]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/huge_memory.c
ksm: reinstate memcg charge on copied pages
[mirror_ubuntu-jammy-kernel.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
76
77 return false;
78 }
79
80 static struct page *get_huge_zero_page(void)
81 {
82 struct page *zero_page;
83 retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 return READ_ONCE(huge_zero_page);
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 HPAGE_PMD_ORDER);
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 return NULL;
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
94 preempt_disable();
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 preempt_enable();
97 __free_pages(zero_page, compound_order(zero_page));
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
104 return READ_ONCE(huge_zero_page);
105 }
106
107 static void put_huge_zero_page(void)
108 {
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128 }
129
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134 }
135
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
138 {
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145 {
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
150 return HPAGE_PMD_NR;
151 }
152
153 return 0;
154 }
155
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
160 };
161
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165 {
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
172 }
173
174 static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177 {
178 ssize_t ret = count;
179
180 if (sysfs_streq(buf, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 } else if (sysfs_streq(buf, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 } else if (sysfs_streq(buf, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
191
192 if (ret > 0) {
193 int err = start_stop_khugepaged();
194 if (err)
195 ret = err;
196 }
197 return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205 {
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
208 }
209
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214 {
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
225 set_bit(flag, &transparent_hugepage_flags);
226 else
227 clear_bit(flag, &transparent_hugepage_flags);
228
229 return count;
230 }
231
232 static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234 {
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245
246 static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249 {
250 if (sysfs_streq(buf, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 } else if (sysfs_streq(buf, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 } else if (sysfs_streq(buf, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 } else if (sysfs_streq(buf, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 } else if (sysfs_streq(buf, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
279 }
280 static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285 {
286 return single_hugepage_flag_show(kobj, attr, buf,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292 return single_hugepage_flag_store(kobj, attr, buf, count,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300 {
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
306 static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
309 &use_zero_page_attr.attr,
310 &hpage_pmd_size_attr.attr,
311 #ifdef CONFIG_SHMEM
312 &shmem_enabled_attr.attr,
313 #endif
314 NULL,
315 };
316
317 static const struct attribute_group hugepage_attr_group = {
318 .attrs = hugepage_attr,
319 };
320
321 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
322 {
323 int err;
324
325 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
326 if (unlikely(!*hugepage_kobj)) {
327 pr_err("failed to create transparent hugepage kobject\n");
328 return -ENOMEM;
329 }
330
331 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
332 if (err) {
333 pr_err("failed to register transparent hugepage group\n");
334 goto delete_obj;
335 }
336
337 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
338 if (err) {
339 pr_err("failed to register transparent hugepage group\n");
340 goto remove_hp_group;
341 }
342
343 return 0;
344
345 remove_hp_group:
346 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
347 delete_obj:
348 kobject_put(*hugepage_kobj);
349 return err;
350 }
351
352 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
353 {
354 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
355 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
356 kobject_put(hugepage_kobj);
357 }
358 #else
359 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
360 {
361 return 0;
362 }
363
364 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 }
367 #endif /* CONFIG_SYSFS */
368
369 static int __init hugepage_init(void)
370 {
371 int err;
372 struct kobject *hugepage_kobj;
373
374 if (!has_transparent_hugepage()) {
375 transparent_hugepage_flags = 0;
376 return -EINVAL;
377 }
378
379 /*
380 * hugepages can't be allocated by the buddy allocator
381 */
382 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
383 /*
384 * we use page->mapping and page->index in second tail page
385 * as list_head: assuming THP order >= 2
386 */
387 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
388
389 err = hugepage_init_sysfs(&hugepage_kobj);
390 if (err)
391 goto err_sysfs;
392
393 err = khugepaged_init();
394 if (err)
395 goto err_slab;
396
397 err = register_shrinker(&huge_zero_page_shrinker);
398 if (err)
399 goto err_hzp_shrinker;
400 err = register_shrinker(&deferred_split_shrinker);
401 if (err)
402 goto err_split_shrinker;
403
404 /*
405 * By default disable transparent hugepages on smaller systems,
406 * where the extra memory used could hurt more than TLB overhead
407 * is likely to save. The admin can still enable it through /sys.
408 */
409 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
410 transparent_hugepage_flags = 0;
411 return 0;
412 }
413
414 err = start_stop_khugepaged();
415 if (err)
416 goto err_khugepaged;
417
418 return 0;
419 err_khugepaged:
420 unregister_shrinker(&deferred_split_shrinker);
421 err_split_shrinker:
422 unregister_shrinker(&huge_zero_page_shrinker);
423 err_hzp_shrinker:
424 khugepaged_destroy();
425 err_slab:
426 hugepage_exit_sysfs(hugepage_kobj);
427 err_sysfs:
428 return err;
429 }
430 subsys_initcall(hugepage_init);
431
432 static int __init setup_transparent_hugepage(char *str)
433 {
434 int ret = 0;
435 if (!str)
436 goto out;
437 if (!strcmp(str, "always")) {
438 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
439 &transparent_hugepage_flags);
440 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
441 &transparent_hugepage_flags);
442 ret = 1;
443 } else if (!strcmp(str, "madvise")) {
444 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
445 &transparent_hugepage_flags);
446 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
447 &transparent_hugepage_flags);
448 ret = 1;
449 } else if (!strcmp(str, "never")) {
450 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 }
456 out:
457 if (!ret)
458 pr_warn("transparent_hugepage= cannot parse, ignored\n");
459 return ret;
460 }
461 __setup("transparent_hugepage=", setup_transparent_hugepage);
462
463 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
464 {
465 if (likely(vma->vm_flags & VM_WRITE))
466 pmd = pmd_mkwrite(pmd);
467 return pmd;
468 }
469
470 #ifdef CONFIG_MEMCG
471 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
472 {
473 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
474 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
475
476 if (memcg)
477 return &memcg->deferred_split_queue;
478 else
479 return &pgdat->deferred_split_queue;
480 }
481 #else
482 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
483 {
484 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
485
486 return &pgdat->deferred_split_queue;
487 }
488 #endif
489
490 void prep_transhuge_page(struct page *page)
491 {
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500
501 bool is_transparent_hugepage(struct page *page)
502 {
503 if (!PageCompound(page))
504 return false;
505
506 page = compound_head(page);
507 return is_huge_zero_page(page) ||
508 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
509 }
510 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
511
512 static unsigned long __thp_get_unmapped_area(struct file *filp,
513 unsigned long addr, unsigned long len,
514 loff_t off, unsigned long flags, unsigned long size)
515 {
516 loff_t off_end = off + len;
517 loff_t off_align = round_up(off, size);
518 unsigned long len_pad, ret;
519
520 if (off_end <= off_align || (off_end - off_align) < size)
521 return 0;
522
523 len_pad = len + size;
524 if (len_pad < len || (off + len_pad) < off)
525 return 0;
526
527 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
528 off >> PAGE_SHIFT, flags);
529
530 /*
531 * The failure might be due to length padding. The caller will retry
532 * without the padding.
533 */
534 if (IS_ERR_VALUE(ret))
535 return 0;
536
537 /*
538 * Do not try to align to THP boundary if allocation at the address
539 * hint succeeds.
540 */
541 if (ret == addr)
542 return addr;
543
544 ret += (off - ret) & (size - 1);
545 return ret;
546 }
547
548 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
549 unsigned long len, unsigned long pgoff, unsigned long flags)
550 {
551 unsigned long ret;
552 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
553
554 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
555 goto out;
556
557 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
558 if (ret)
559 return ret;
560 out:
561 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
562 }
563 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
564
565 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
566 struct page *page, gfp_t gfp)
567 {
568 struct vm_area_struct *vma = vmf->vma;
569 pgtable_t pgtable;
570 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
571 vm_fault_t ret = 0;
572
573 VM_BUG_ON_PAGE(!PageCompound(page), page);
574
575 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
576 put_page(page);
577 count_vm_event(THP_FAULT_FALLBACK);
578 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
579 return VM_FAULT_FALLBACK;
580 }
581 cgroup_throttle_swaprate(page, gfp);
582
583 pgtable = pte_alloc_one(vma->vm_mm);
584 if (unlikely(!pgtable)) {
585 ret = VM_FAULT_OOM;
586 goto release;
587 }
588
589 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
590 /*
591 * The memory barrier inside __SetPageUptodate makes sure that
592 * clear_huge_page writes become visible before the set_pmd_at()
593 * write.
594 */
595 __SetPageUptodate(page);
596
597 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
598 if (unlikely(!pmd_none(*vmf->pmd))) {
599 goto unlock_release;
600 } else {
601 pmd_t entry;
602
603 ret = check_stable_address_space(vma->vm_mm);
604 if (ret)
605 goto unlock_release;
606
607 /* Deliver the page fault to userland */
608 if (userfaultfd_missing(vma)) {
609 vm_fault_t ret2;
610
611 spin_unlock(vmf->ptl);
612 put_page(page);
613 pte_free(vma->vm_mm, pgtable);
614 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
615 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
616 return ret2;
617 }
618
619 entry = mk_huge_pmd(page, vma->vm_page_prot);
620 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
621 page_add_new_anon_rmap(page, vma, haddr, true);
622 lru_cache_add_inactive_or_unevictable(page, vma);
623 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
624 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
625 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
626 mm_inc_nr_ptes(vma->vm_mm);
627 spin_unlock(vmf->ptl);
628 count_vm_event(THP_FAULT_ALLOC);
629 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
630 }
631
632 return 0;
633 unlock_release:
634 spin_unlock(vmf->ptl);
635 release:
636 if (pgtable)
637 pte_free(vma->vm_mm, pgtable);
638 put_page(page);
639 return ret;
640
641 }
642
643 /*
644 * always: directly stall for all thp allocations
645 * defer: wake kswapd and fail if not immediately available
646 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
647 * fail if not immediately available
648 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
649 * available
650 * never: never stall for any thp allocation
651 */
652 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
653 {
654 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
655
656 /* Always do synchronous compaction */
657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
658 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
659
660 /* Kick kcompactd and fail quickly */
661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
662 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
663
664 /* Synchronous compaction if madvised, otherwise kick kcompactd */
665 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
666 return GFP_TRANSHUGE_LIGHT |
667 (vma_madvised ? __GFP_DIRECT_RECLAIM :
668 __GFP_KSWAPD_RECLAIM);
669
670 /* Only do synchronous compaction if madvised */
671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
672 return GFP_TRANSHUGE_LIGHT |
673 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
674
675 return GFP_TRANSHUGE_LIGHT;
676 }
677
678 /* Caller must hold page table lock. */
679 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
680 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
681 struct page *zero_page)
682 {
683 pmd_t entry;
684 if (!pmd_none(*pmd))
685 return false;
686 entry = mk_pmd(zero_page, vma->vm_page_prot);
687 entry = pmd_mkhuge(entry);
688 if (pgtable)
689 pgtable_trans_huge_deposit(mm, pmd, pgtable);
690 set_pmd_at(mm, haddr, pmd, entry);
691 mm_inc_nr_ptes(mm);
692 return true;
693 }
694
695 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
696 {
697 struct vm_area_struct *vma = vmf->vma;
698 gfp_t gfp;
699 struct page *page;
700 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
701
702 if (!transhuge_vma_suitable(vma, haddr))
703 return VM_FAULT_FALLBACK;
704 if (unlikely(anon_vma_prepare(vma)))
705 return VM_FAULT_OOM;
706 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
707 return VM_FAULT_OOM;
708 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
709 !mm_forbids_zeropage(vma->vm_mm) &&
710 transparent_hugepage_use_zero_page()) {
711 pgtable_t pgtable;
712 struct page *zero_page;
713 bool set;
714 vm_fault_t ret;
715 pgtable = pte_alloc_one(vma->vm_mm);
716 if (unlikely(!pgtable))
717 return VM_FAULT_OOM;
718 zero_page = mm_get_huge_zero_page(vma->vm_mm);
719 if (unlikely(!zero_page)) {
720 pte_free(vma->vm_mm, pgtable);
721 count_vm_event(THP_FAULT_FALLBACK);
722 return VM_FAULT_FALLBACK;
723 }
724 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
725 ret = 0;
726 set = false;
727 if (pmd_none(*vmf->pmd)) {
728 ret = check_stable_address_space(vma->vm_mm);
729 if (ret) {
730 spin_unlock(vmf->ptl);
731 } else if (userfaultfd_missing(vma)) {
732 spin_unlock(vmf->ptl);
733 ret = handle_userfault(vmf, VM_UFFD_MISSING);
734 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
735 } else {
736 set_huge_zero_page(pgtable, vma->vm_mm, vma,
737 haddr, vmf->pmd, zero_page);
738 spin_unlock(vmf->ptl);
739 set = true;
740 }
741 } else
742 spin_unlock(vmf->ptl);
743 if (!set)
744 pte_free(vma->vm_mm, pgtable);
745 return ret;
746 }
747 gfp = alloc_hugepage_direct_gfpmask(vma);
748 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
749 if (unlikely(!page)) {
750 count_vm_event(THP_FAULT_FALLBACK);
751 return VM_FAULT_FALLBACK;
752 }
753 prep_transhuge_page(page);
754 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
755 }
756
757 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
758 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
759 pgtable_t pgtable)
760 {
761 struct mm_struct *mm = vma->vm_mm;
762 pmd_t entry;
763 spinlock_t *ptl;
764
765 ptl = pmd_lock(mm, pmd);
766 if (!pmd_none(*pmd)) {
767 if (write) {
768 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
769 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
770 goto out_unlock;
771 }
772 entry = pmd_mkyoung(*pmd);
773 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
774 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
775 update_mmu_cache_pmd(vma, addr, pmd);
776 }
777
778 goto out_unlock;
779 }
780
781 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
782 if (pfn_t_devmap(pfn))
783 entry = pmd_mkdevmap(entry);
784 if (write) {
785 entry = pmd_mkyoung(pmd_mkdirty(entry));
786 entry = maybe_pmd_mkwrite(entry, vma);
787 }
788
789 if (pgtable) {
790 pgtable_trans_huge_deposit(mm, pmd, pgtable);
791 mm_inc_nr_ptes(mm);
792 pgtable = NULL;
793 }
794
795 set_pmd_at(mm, addr, pmd, entry);
796 update_mmu_cache_pmd(vma, addr, pmd);
797
798 out_unlock:
799 spin_unlock(ptl);
800 if (pgtable)
801 pte_free(mm, pgtable);
802 }
803
804 /**
805 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
806 * @vmf: Structure describing the fault
807 * @pfn: pfn to insert
808 * @pgprot: page protection to use
809 * @write: whether it's a write fault
810 *
811 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
812 * also consult the vmf_insert_mixed_prot() documentation when
813 * @pgprot != @vmf->vma->vm_page_prot.
814 *
815 * Return: vm_fault_t value.
816 */
817 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
818 pgprot_t pgprot, bool write)
819 {
820 unsigned long addr = vmf->address & PMD_MASK;
821 struct vm_area_struct *vma = vmf->vma;
822 pgtable_t pgtable = NULL;
823
824 /*
825 * If we had pmd_special, we could avoid all these restrictions,
826 * but we need to be consistent with PTEs and architectures that
827 * can't support a 'special' bit.
828 */
829 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
830 !pfn_t_devmap(pfn));
831 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
832 (VM_PFNMAP|VM_MIXEDMAP));
833 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
834
835 if (addr < vma->vm_start || addr >= vma->vm_end)
836 return VM_FAULT_SIGBUS;
837
838 if (arch_needs_pgtable_deposit()) {
839 pgtable = pte_alloc_one(vma->vm_mm);
840 if (!pgtable)
841 return VM_FAULT_OOM;
842 }
843
844 track_pfn_insert(vma, &pgprot, pfn);
845
846 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
847 return VM_FAULT_NOPAGE;
848 }
849 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
850
851 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
852 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
853 {
854 if (likely(vma->vm_flags & VM_WRITE))
855 pud = pud_mkwrite(pud);
856 return pud;
857 }
858
859 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
860 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
861 {
862 struct mm_struct *mm = vma->vm_mm;
863 pud_t entry;
864 spinlock_t *ptl;
865
866 ptl = pud_lock(mm, pud);
867 if (!pud_none(*pud)) {
868 if (write) {
869 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
870 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
871 goto out_unlock;
872 }
873 entry = pud_mkyoung(*pud);
874 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
875 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
876 update_mmu_cache_pud(vma, addr, pud);
877 }
878 goto out_unlock;
879 }
880
881 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
882 if (pfn_t_devmap(pfn))
883 entry = pud_mkdevmap(entry);
884 if (write) {
885 entry = pud_mkyoung(pud_mkdirty(entry));
886 entry = maybe_pud_mkwrite(entry, vma);
887 }
888 set_pud_at(mm, addr, pud, entry);
889 update_mmu_cache_pud(vma, addr, pud);
890
891 out_unlock:
892 spin_unlock(ptl);
893 }
894
895 /**
896 * vmf_insert_pfn_pud_prot - insert a pud size pfn
897 * @vmf: Structure describing the fault
898 * @pfn: pfn to insert
899 * @pgprot: page protection to use
900 * @write: whether it's a write fault
901 *
902 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
903 * also consult the vmf_insert_mixed_prot() documentation when
904 * @pgprot != @vmf->vma->vm_page_prot.
905 *
906 * Return: vm_fault_t value.
907 */
908 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
909 pgprot_t pgprot, bool write)
910 {
911 unsigned long addr = vmf->address & PUD_MASK;
912 struct vm_area_struct *vma = vmf->vma;
913
914 /*
915 * If we had pud_special, we could avoid all these restrictions,
916 * but we need to be consistent with PTEs and architectures that
917 * can't support a 'special' bit.
918 */
919 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
920 !pfn_t_devmap(pfn));
921 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
922 (VM_PFNMAP|VM_MIXEDMAP));
923 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
924
925 if (addr < vma->vm_start || addr >= vma->vm_end)
926 return VM_FAULT_SIGBUS;
927
928 track_pfn_insert(vma, &pgprot, pfn);
929
930 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
931 return VM_FAULT_NOPAGE;
932 }
933 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
934 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
935
936 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
937 pmd_t *pmd, int flags)
938 {
939 pmd_t _pmd;
940
941 _pmd = pmd_mkyoung(*pmd);
942 if (flags & FOLL_WRITE)
943 _pmd = pmd_mkdirty(_pmd);
944 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
945 pmd, _pmd, flags & FOLL_WRITE))
946 update_mmu_cache_pmd(vma, addr, pmd);
947 }
948
949 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
950 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
951 {
952 unsigned long pfn = pmd_pfn(*pmd);
953 struct mm_struct *mm = vma->vm_mm;
954 struct page *page;
955
956 assert_spin_locked(pmd_lockptr(mm, pmd));
957
958 /*
959 * When we COW a devmap PMD entry, we split it into PTEs, so we should
960 * not be in this function with `flags & FOLL_COW` set.
961 */
962 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
963
964 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
965 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
966 (FOLL_PIN | FOLL_GET)))
967 return NULL;
968
969 if (flags & FOLL_WRITE && !pmd_write(*pmd))
970 return NULL;
971
972 if (pmd_present(*pmd) && pmd_devmap(*pmd))
973 /* pass */;
974 else
975 return NULL;
976
977 if (flags & FOLL_TOUCH)
978 touch_pmd(vma, addr, pmd, flags);
979
980 /*
981 * device mapped pages can only be returned if the
982 * caller will manage the page reference count.
983 */
984 if (!(flags & (FOLL_GET | FOLL_PIN)))
985 return ERR_PTR(-EEXIST);
986
987 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
988 *pgmap = get_dev_pagemap(pfn, *pgmap);
989 if (!*pgmap)
990 return ERR_PTR(-EFAULT);
991 page = pfn_to_page(pfn);
992 if (!try_grab_page(page, flags))
993 page = ERR_PTR(-ENOMEM);
994
995 return page;
996 }
997
998 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
999 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1000 struct vm_area_struct *vma)
1001 {
1002 spinlock_t *dst_ptl, *src_ptl;
1003 struct page *src_page;
1004 pmd_t pmd;
1005 pgtable_t pgtable = NULL;
1006 int ret = -ENOMEM;
1007
1008 /* Skip if can be re-fill on fault */
1009 if (!vma_is_anonymous(vma))
1010 return 0;
1011
1012 pgtable = pte_alloc_one(dst_mm);
1013 if (unlikely(!pgtable))
1014 goto out;
1015
1016 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1017 src_ptl = pmd_lockptr(src_mm, src_pmd);
1018 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1019
1020 ret = -EAGAIN;
1021 pmd = *src_pmd;
1022
1023 /*
1024 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1025 * does not have the VM_UFFD_WP, which means that the uffd
1026 * fork event is not enabled.
1027 */
1028 if (!(vma->vm_flags & VM_UFFD_WP))
1029 pmd = pmd_clear_uffd_wp(pmd);
1030
1031 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1032 if (unlikely(is_swap_pmd(pmd))) {
1033 swp_entry_t entry = pmd_to_swp_entry(pmd);
1034
1035 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1036 if (is_write_migration_entry(entry)) {
1037 make_migration_entry_read(&entry);
1038 pmd = swp_entry_to_pmd(entry);
1039 if (pmd_swp_soft_dirty(*src_pmd))
1040 pmd = pmd_swp_mksoft_dirty(pmd);
1041 set_pmd_at(src_mm, addr, src_pmd, pmd);
1042 }
1043 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1044 mm_inc_nr_ptes(dst_mm);
1045 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1046 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1047 ret = 0;
1048 goto out_unlock;
1049 }
1050 #endif
1051
1052 if (unlikely(!pmd_trans_huge(pmd))) {
1053 pte_free(dst_mm, pgtable);
1054 goto out_unlock;
1055 }
1056 /*
1057 * When page table lock is held, the huge zero pmd should not be
1058 * under splitting since we don't split the page itself, only pmd to
1059 * a page table.
1060 */
1061 if (is_huge_zero_pmd(pmd)) {
1062 struct page *zero_page;
1063 /*
1064 * get_huge_zero_page() will never allocate a new page here,
1065 * since we already have a zero page to copy. It just takes a
1066 * reference.
1067 */
1068 zero_page = mm_get_huge_zero_page(dst_mm);
1069 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1070 zero_page);
1071 ret = 0;
1072 goto out_unlock;
1073 }
1074
1075 src_page = pmd_page(pmd);
1076 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1077 get_page(src_page);
1078 page_dup_rmap(src_page, true);
1079 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1080 mm_inc_nr_ptes(dst_mm);
1081 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1082
1083 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1084 pmd = pmd_mkold(pmd_wrprotect(pmd));
1085 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1086
1087 ret = 0;
1088 out_unlock:
1089 spin_unlock(src_ptl);
1090 spin_unlock(dst_ptl);
1091 out:
1092 return ret;
1093 }
1094
1095 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1096 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1097 pud_t *pud, int flags)
1098 {
1099 pud_t _pud;
1100
1101 _pud = pud_mkyoung(*pud);
1102 if (flags & FOLL_WRITE)
1103 _pud = pud_mkdirty(_pud);
1104 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1105 pud, _pud, flags & FOLL_WRITE))
1106 update_mmu_cache_pud(vma, addr, pud);
1107 }
1108
1109 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1110 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1111 {
1112 unsigned long pfn = pud_pfn(*pud);
1113 struct mm_struct *mm = vma->vm_mm;
1114 struct page *page;
1115
1116 assert_spin_locked(pud_lockptr(mm, pud));
1117
1118 if (flags & FOLL_WRITE && !pud_write(*pud))
1119 return NULL;
1120
1121 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1122 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1123 (FOLL_PIN | FOLL_GET)))
1124 return NULL;
1125
1126 if (pud_present(*pud) && pud_devmap(*pud))
1127 /* pass */;
1128 else
1129 return NULL;
1130
1131 if (flags & FOLL_TOUCH)
1132 touch_pud(vma, addr, pud, flags);
1133
1134 /*
1135 * device mapped pages can only be returned if the
1136 * caller will manage the page reference count.
1137 *
1138 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1139 */
1140 if (!(flags & (FOLL_GET | FOLL_PIN)))
1141 return ERR_PTR(-EEXIST);
1142
1143 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1144 *pgmap = get_dev_pagemap(pfn, *pgmap);
1145 if (!*pgmap)
1146 return ERR_PTR(-EFAULT);
1147 page = pfn_to_page(pfn);
1148 if (!try_grab_page(page, flags))
1149 page = ERR_PTR(-ENOMEM);
1150
1151 return page;
1152 }
1153
1154 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1155 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1156 struct vm_area_struct *vma)
1157 {
1158 spinlock_t *dst_ptl, *src_ptl;
1159 pud_t pud;
1160 int ret;
1161
1162 dst_ptl = pud_lock(dst_mm, dst_pud);
1163 src_ptl = pud_lockptr(src_mm, src_pud);
1164 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1165
1166 ret = -EAGAIN;
1167 pud = *src_pud;
1168 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1169 goto out_unlock;
1170
1171 /*
1172 * When page table lock is held, the huge zero pud should not be
1173 * under splitting since we don't split the page itself, only pud to
1174 * a page table.
1175 */
1176 if (is_huge_zero_pud(pud)) {
1177 /* No huge zero pud yet */
1178 }
1179
1180 pudp_set_wrprotect(src_mm, addr, src_pud);
1181 pud = pud_mkold(pud_wrprotect(pud));
1182 set_pud_at(dst_mm, addr, dst_pud, pud);
1183
1184 ret = 0;
1185 out_unlock:
1186 spin_unlock(src_ptl);
1187 spin_unlock(dst_ptl);
1188 return ret;
1189 }
1190
1191 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1192 {
1193 pud_t entry;
1194 unsigned long haddr;
1195 bool write = vmf->flags & FAULT_FLAG_WRITE;
1196
1197 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1198 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1199 goto unlock;
1200
1201 entry = pud_mkyoung(orig_pud);
1202 if (write)
1203 entry = pud_mkdirty(entry);
1204 haddr = vmf->address & HPAGE_PUD_MASK;
1205 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1206 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1207
1208 unlock:
1209 spin_unlock(vmf->ptl);
1210 }
1211 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1212
1213 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1214 {
1215 pmd_t entry;
1216 unsigned long haddr;
1217 bool write = vmf->flags & FAULT_FLAG_WRITE;
1218
1219 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1220 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1221 goto unlock;
1222
1223 entry = pmd_mkyoung(orig_pmd);
1224 if (write)
1225 entry = pmd_mkdirty(entry);
1226 haddr = vmf->address & HPAGE_PMD_MASK;
1227 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1228 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1229
1230 unlock:
1231 spin_unlock(vmf->ptl);
1232 }
1233
1234 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1235 {
1236 struct vm_area_struct *vma = vmf->vma;
1237 struct page *page;
1238 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1239
1240 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1241 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1242
1243 if (is_huge_zero_pmd(orig_pmd))
1244 goto fallback;
1245
1246 spin_lock(vmf->ptl);
1247
1248 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1249 spin_unlock(vmf->ptl);
1250 return 0;
1251 }
1252
1253 page = pmd_page(orig_pmd);
1254 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1255
1256 /* Lock page for reuse_swap_page() */
1257 if (!trylock_page(page)) {
1258 get_page(page);
1259 spin_unlock(vmf->ptl);
1260 lock_page(page);
1261 spin_lock(vmf->ptl);
1262 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1263 spin_unlock(vmf->ptl);
1264 unlock_page(page);
1265 put_page(page);
1266 return 0;
1267 }
1268 put_page(page);
1269 }
1270
1271 /*
1272 * We can only reuse the page if nobody else maps the huge page or it's
1273 * part.
1274 */
1275 if (reuse_swap_page(page, NULL)) {
1276 pmd_t entry;
1277 entry = pmd_mkyoung(orig_pmd);
1278 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1279 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1280 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1281 unlock_page(page);
1282 spin_unlock(vmf->ptl);
1283 return VM_FAULT_WRITE;
1284 }
1285
1286 unlock_page(page);
1287 spin_unlock(vmf->ptl);
1288 fallback:
1289 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1290 return VM_FAULT_FALLBACK;
1291 }
1292
1293 /*
1294 * FOLL_FORCE can write to even unwritable pmd's, but only
1295 * after we've gone through a COW cycle and they are dirty.
1296 */
1297 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1298 {
1299 return pmd_write(pmd) ||
1300 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1301 }
1302
1303 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1304 unsigned long addr,
1305 pmd_t *pmd,
1306 unsigned int flags)
1307 {
1308 struct mm_struct *mm = vma->vm_mm;
1309 struct page *page = NULL;
1310
1311 assert_spin_locked(pmd_lockptr(mm, pmd));
1312
1313 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1314 goto out;
1315
1316 /* Avoid dumping huge zero page */
1317 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1318 return ERR_PTR(-EFAULT);
1319
1320 /* Full NUMA hinting faults to serialise migration in fault paths */
1321 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1322 goto out;
1323
1324 page = pmd_page(*pmd);
1325 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1326
1327 if (!try_grab_page(page, flags))
1328 return ERR_PTR(-ENOMEM);
1329
1330 if (flags & FOLL_TOUCH)
1331 touch_pmd(vma, addr, pmd, flags);
1332
1333 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1334 /*
1335 * We don't mlock() pte-mapped THPs. This way we can avoid
1336 * leaking mlocked pages into non-VM_LOCKED VMAs.
1337 *
1338 * For anon THP:
1339 *
1340 * In most cases the pmd is the only mapping of the page as we
1341 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1342 * writable private mappings in populate_vma_page_range().
1343 *
1344 * The only scenario when we have the page shared here is if we
1345 * mlocking read-only mapping shared over fork(). We skip
1346 * mlocking such pages.
1347 *
1348 * For file THP:
1349 *
1350 * We can expect PageDoubleMap() to be stable under page lock:
1351 * for file pages we set it in page_add_file_rmap(), which
1352 * requires page to be locked.
1353 */
1354
1355 if (PageAnon(page) && compound_mapcount(page) != 1)
1356 goto skip_mlock;
1357 if (PageDoubleMap(page) || !page->mapping)
1358 goto skip_mlock;
1359 if (!trylock_page(page))
1360 goto skip_mlock;
1361 if (page->mapping && !PageDoubleMap(page))
1362 mlock_vma_page(page);
1363 unlock_page(page);
1364 }
1365 skip_mlock:
1366 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1367 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1368
1369 out:
1370 return page;
1371 }
1372
1373 /* NUMA hinting page fault entry point for trans huge pmds */
1374 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1375 {
1376 struct vm_area_struct *vma = vmf->vma;
1377 struct anon_vma *anon_vma = NULL;
1378 struct page *page;
1379 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1380 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1381 int target_nid, last_cpupid = -1;
1382 bool page_locked;
1383 bool migrated = false;
1384 bool was_writable;
1385 int flags = 0;
1386
1387 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1388 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1389 goto out_unlock;
1390
1391 /*
1392 * If there are potential migrations, wait for completion and retry
1393 * without disrupting NUMA hinting information. Do not relock and
1394 * check_same as the page may no longer be mapped.
1395 */
1396 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1397 page = pmd_page(*vmf->pmd);
1398 if (!get_page_unless_zero(page))
1399 goto out_unlock;
1400 spin_unlock(vmf->ptl);
1401 put_and_wait_on_page_locked(page);
1402 goto out;
1403 }
1404
1405 page = pmd_page(pmd);
1406 BUG_ON(is_huge_zero_page(page));
1407 page_nid = page_to_nid(page);
1408 last_cpupid = page_cpupid_last(page);
1409 count_vm_numa_event(NUMA_HINT_FAULTS);
1410 if (page_nid == this_nid) {
1411 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1412 flags |= TNF_FAULT_LOCAL;
1413 }
1414
1415 /* See similar comment in do_numa_page for explanation */
1416 if (!pmd_savedwrite(pmd))
1417 flags |= TNF_NO_GROUP;
1418
1419 /*
1420 * Acquire the page lock to serialise THP migrations but avoid dropping
1421 * page_table_lock if at all possible
1422 */
1423 page_locked = trylock_page(page);
1424 target_nid = mpol_misplaced(page, vma, haddr);
1425 if (target_nid == NUMA_NO_NODE) {
1426 /* If the page was locked, there are no parallel migrations */
1427 if (page_locked)
1428 goto clear_pmdnuma;
1429 }
1430
1431 /* Migration could have started since the pmd_trans_migrating check */
1432 if (!page_locked) {
1433 page_nid = NUMA_NO_NODE;
1434 if (!get_page_unless_zero(page))
1435 goto out_unlock;
1436 spin_unlock(vmf->ptl);
1437 put_and_wait_on_page_locked(page);
1438 goto out;
1439 }
1440
1441 /*
1442 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1443 * to serialises splits
1444 */
1445 get_page(page);
1446 spin_unlock(vmf->ptl);
1447 anon_vma = page_lock_anon_vma_read(page);
1448
1449 /* Confirm the PMD did not change while page_table_lock was released */
1450 spin_lock(vmf->ptl);
1451 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1452 unlock_page(page);
1453 put_page(page);
1454 page_nid = NUMA_NO_NODE;
1455 goto out_unlock;
1456 }
1457
1458 /* Bail if we fail to protect against THP splits for any reason */
1459 if (unlikely(!anon_vma)) {
1460 put_page(page);
1461 page_nid = NUMA_NO_NODE;
1462 goto clear_pmdnuma;
1463 }
1464
1465 /*
1466 * Since we took the NUMA fault, we must have observed the !accessible
1467 * bit. Make sure all other CPUs agree with that, to avoid them
1468 * modifying the page we're about to migrate.
1469 *
1470 * Must be done under PTL such that we'll observe the relevant
1471 * inc_tlb_flush_pending().
1472 *
1473 * We are not sure a pending tlb flush here is for a huge page
1474 * mapping or not. Hence use the tlb range variant
1475 */
1476 if (mm_tlb_flush_pending(vma->vm_mm)) {
1477 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1478 /*
1479 * change_huge_pmd() released the pmd lock before
1480 * invalidating the secondary MMUs sharing the primary
1481 * MMU pagetables (with ->invalidate_range()). The
1482 * mmu_notifier_invalidate_range_end() (which
1483 * internally calls ->invalidate_range()) in
1484 * change_pmd_range() will run after us, so we can't
1485 * rely on it here and we need an explicit invalidate.
1486 */
1487 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1488 haddr + HPAGE_PMD_SIZE);
1489 }
1490
1491 /*
1492 * Migrate the THP to the requested node, returns with page unlocked
1493 * and access rights restored.
1494 */
1495 spin_unlock(vmf->ptl);
1496
1497 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1498 vmf->pmd, pmd, vmf->address, page, target_nid);
1499 if (migrated) {
1500 flags |= TNF_MIGRATED;
1501 page_nid = target_nid;
1502 } else
1503 flags |= TNF_MIGRATE_FAIL;
1504
1505 goto out;
1506 clear_pmdnuma:
1507 BUG_ON(!PageLocked(page));
1508 was_writable = pmd_savedwrite(pmd);
1509 pmd = pmd_modify(pmd, vma->vm_page_prot);
1510 pmd = pmd_mkyoung(pmd);
1511 if (was_writable)
1512 pmd = pmd_mkwrite(pmd);
1513 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1514 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1515 unlock_page(page);
1516 out_unlock:
1517 spin_unlock(vmf->ptl);
1518
1519 out:
1520 if (anon_vma)
1521 page_unlock_anon_vma_read(anon_vma);
1522
1523 if (page_nid != NUMA_NO_NODE)
1524 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1525 flags);
1526
1527 return 0;
1528 }
1529
1530 /*
1531 * Return true if we do MADV_FREE successfully on entire pmd page.
1532 * Otherwise, return false.
1533 */
1534 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1535 pmd_t *pmd, unsigned long addr, unsigned long next)
1536 {
1537 spinlock_t *ptl;
1538 pmd_t orig_pmd;
1539 struct page *page;
1540 struct mm_struct *mm = tlb->mm;
1541 bool ret = false;
1542
1543 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1544
1545 ptl = pmd_trans_huge_lock(pmd, vma);
1546 if (!ptl)
1547 goto out_unlocked;
1548
1549 orig_pmd = *pmd;
1550 if (is_huge_zero_pmd(orig_pmd))
1551 goto out;
1552
1553 if (unlikely(!pmd_present(orig_pmd))) {
1554 VM_BUG_ON(thp_migration_supported() &&
1555 !is_pmd_migration_entry(orig_pmd));
1556 goto out;
1557 }
1558
1559 page = pmd_page(orig_pmd);
1560 /*
1561 * If other processes are mapping this page, we couldn't discard
1562 * the page unless they all do MADV_FREE so let's skip the page.
1563 */
1564 if (page_mapcount(page) != 1)
1565 goto out;
1566
1567 if (!trylock_page(page))
1568 goto out;
1569
1570 /*
1571 * If user want to discard part-pages of THP, split it so MADV_FREE
1572 * will deactivate only them.
1573 */
1574 if (next - addr != HPAGE_PMD_SIZE) {
1575 get_page(page);
1576 spin_unlock(ptl);
1577 split_huge_page(page);
1578 unlock_page(page);
1579 put_page(page);
1580 goto out_unlocked;
1581 }
1582
1583 if (PageDirty(page))
1584 ClearPageDirty(page);
1585 unlock_page(page);
1586
1587 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1588 pmdp_invalidate(vma, addr, pmd);
1589 orig_pmd = pmd_mkold(orig_pmd);
1590 orig_pmd = pmd_mkclean(orig_pmd);
1591
1592 set_pmd_at(mm, addr, pmd, orig_pmd);
1593 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1594 }
1595
1596 mark_page_lazyfree(page);
1597 ret = true;
1598 out:
1599 spin_unlock(ptl);
1600 out_unlocked:
1601 return ret;
1602 }
1603
1604 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1605 {
1606 pgtable_t pgtable;
1607
1608 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1609 pte_free(mm, pgtable);
1610 mm_dec_nr_ptes(mm);
1611 }
1612
1613 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1614 pmd_t *pmd, unsigned long addr)
1615 {
1616 pmd_t orig_pmd;
1617 spinlock_t *ptl;
1618
1619 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1620
1621 ptl = __pmd_trans_huge_lock(pmd, vma);
1622 if (!ptl)
1623 return 0;
1624 /*
1625 * For architectures like ppc64 we look at deposited pgtable
1626 * when calling pmdp_huge_get_and_clear. So do the
1627 * pgtable_trans_huge_withdraw after finishing pmdp related
1628 * operations.
1629 */
1630 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1631 tlb->fullmm);
1632 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1633 if (vma_is_special_huge(vma)) {
1634 if (arch_needs_pgtable_deposit())
1635 zap_deposited_table(tlb->mm, pmd);
1636 spin_unlock(ptl);
1637 if (is_huge_zero_pmd(orig_pmd))
1638 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1639 } else if (is_huge_zero_pmd(orig_pmd)) {
1640 zap_deposited_table(tlb->mm, pmd);
1641 spin_unlock(ptl);
1642 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1643 } else {
1644 struct page *page = NULL;
1645 int flush_needed = 1;
1646
1647 if (pmd_present(orig_pmd)) {
1648 page = pmd_page(orig_pmd);
1649 page_remove_rmap(page, true);
1650 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1651 VM_BUG_ON_PAGE(!PageHead(page), page);
1652 } else if (thp_migration_supported()) {
1653 swp_entry_t entry;
1654
1655 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1656 entry = pmd_to_swp_entry(orig_pmd);
1657 page = pfn_to_page(swp_offset(entry));
1658 flush_needed = 0;
1659 } else
1660 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1661
1662 if (PageAnon(page)) {
1663 zap_deposited_table(tlb->mm, pmd);
1664 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1665 } else {
1666 if (arch_needs_pgtable_deposit())
1667 zap_deposited_table(tlb->mm, pmd);
1668 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1669 }
1670
1671 spin_unlock(ptl);
1672 if (flush_needed)
1673 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1674 }
1675 return 1;
1676 }
1677
1678 #ifndef pmd_move_must_withdraw
1679 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1680 spinlock_t *old_pmd_ptl,
1681 struct vm_area_struct *vma)
1682 {
1683 /*
1684 * With split pmd lock we also need to move preallocated
1685 * PTE page table if new_pmd is on different PMD page table.
1686 *
1687 * We also don't deposit and withdraw tables for file pages.
1688 */
1689 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1690 }
1691 #endif
1692
1693 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1694 {
1695 #ifdef CONFIG_MEM_SOFT_DIRTY
1696 if (unlikely(is_pmd_migration_entry(pmd)))
1697 pmd = pmd_swp_mksoft_dirty(pmd);
1698 else if (pmd_present(pmd))
1699 pmd = pmd_mksoft_dirty(pmd);
1700 #endif
1701 return pmd;
1702 }
1703
1704 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1705 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1706 {
1707 spinlock_t *old_ptl, *new_ptl;
1708 pmd_t pmd;
1709 struct mm_struct *mm = vma->vm_mm;
1710 bool force_flush = false;
1711
1712 /*
1713 * The destination pmd shouldn't be established, free_pgtables()
1714 * should have release it.
1715 */
1716 if (WARN_ON(!pmd_none(*new_pmd))) {
1717 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1718 return false;
1719 }
1720
1721 /*
1722 * We don't have to worry about the ordering of src and dst
1723 * ptlocks because exclusive mmap_lock prevents deadlock.
1724 */
1725 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1726 if (old_ptl) {
1727 new_ptl = pmd_lockptr(mm, new_pmd);
1728 if (new_ptl != old_ptl)
1729 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1730 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1731 if (pmd_present(pmd))
1732 force_flush = true;
1733 VM_BUG_ON(!pmd_none(*new_pmd));
1734
1735 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1736 pgtable_t pgtable;
1737 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1738 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1739 }
1740 pmd = move_soft_dirty_pmd(pmd);
1741 set_pmd_at(mm, new_addr, new_pmd, pmd);
1742 if (force_flush)
1743 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1744 if (new_ptl != old_ptl)
1745 spin_unlock(new_ptl);
1746 spin_unlock(old_ptl);
1747 return true;
1748 }
1749 return false;
1750 }
1751
1752 /*
1753 * Returns
1754 * - 0 if PMD could not be locked
1755 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1756 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1757 */
1758 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1759 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1760 {
1761 struct mm_struct *mm = vma->vm_mm;
1762 spinlock_t *ptl;
1763 pmd_t entry;
1764 bool preserve_write;
1765 int ret;
1766 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1767 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1768 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1769
1770 ptl = __pmd_trans_huge_lock(pmd, vma);
1771 if (!ptl)
1772 return 0;
1773
1774 preserve_write = prot_numa && pmd_write(*pmd);
1775 ret = 1;
1776
1777 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1778 if (is_swap_pmd(*pmd)) {
1779 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1780
1781 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1782 if (is_write_migration_entry(entry)) {
1783 pmd_t newpmd;
1784 /*
1785 * A protection check is difficult so
1786 * just be safe and disable write
1787 */
1788 make_migration_entry_read(&entry);
1789 newpmd = swp_entry_to_pmd(entry);
1790 if (pmd_swp_soft_dirty(*pmd))
1791 newpmd = pmd_swp_mksoft_dirty(newpmd);
1792 set_pmd_at(mm, addr, pmd, newpmd);
1793 }
1794 goto unlock;
1795 }
1796 #endif
1797
1798 /*
1799 * Avoid trapping faults against the zero page. The read-only
1800 * data is likely to be read-cached on the local CPU and
1801 * local/remote hits to the zero page are not interesting.
1802 */
1803 if (prot_numa && is_huge_zero_pmd(*pmd))
1804 goto unlock;
1805
1806 if (prot_numa && pmd_protnone(*pmd))
1807 goto unlock;
1808
1809 /*
1810 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1811 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1812 * which is also under mmap_read_lock(mm):
1813 *
1814 * CPU0: CPU1:
1815 * change_huge_pmd(prot_numa=1)
1816 * pmdp_huge_get_and_clear_notify()
1817 * madvise_dontneed()
1818 * zap_pmd_range()
1819 * pmd_trans_huge(*pmd) == 0 (without ptl)
1820 * // skip the pmd
1821 * set_pmd_at();
1822 * // pmd is re-established
1823 *
1824 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1825 * which may break userspace.
1826 *
1827 * pmdp_invalidate() is required to make sure we don't miss
1828 * dirty/young flags set by hardware.
1829 */
1830 entry = pmdp_invalidate(vma, addr, pmd);
1831
1832 entry = pmd_modify(entry, newprot);
1833 if (preserve_write)
1834 entry = pmd_mk_savedwrite(entry);
1835 if (uffd_wp) {
1836 entry = pmd_wrprotect(entry);
1837 entry = pmd_mkuffd_wp(entry);
1838 } else if (uffd_wp_resolve) {
1839 /*
1840 * Leave the write bit to be handled by PF interrupt
1841 * handler, then things like COW could be properly
1842 * handled.
1843 */
1844 entry = pmd_clear_uffd_wp(entry);
1845 }
1846 ret = HPAGE_PMD_NR;
1847 set_pmd_at(mm, addr, pmd, entry);
1848 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1849 unlock:
1850 spin_unlock(ptl);
1851 return ret;
1852 }
1853
1854 /*
1855 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1856 *
1857 * Note that if it returns page table lock pointer, this routine returns without
1858 * unlocking page table lock. So callers must unlock it.
1859 */
1860 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1861 {
1862 spinlock_t *ptl;
1863 ptl = pmd_lock(vma->vm_mm, pmd);
1864 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1865 pmd_devmap(*pmd)))
1866 return ptl;
1867 spin_unlock(ptl);
1868 return NULL;
1869 }
1870
1871 /*
1872 * Returns true if a given pud maps a thp, false otherwise.
1873 *
1874 * Note that if it returns true, this routine returns without unlocking page
1875 * table lock. So callers must unlock it.
1876 */
1877 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1878 {
1879 spinlock_t *ptl;
1880
1881 ptl = pud_lock(vma->vm_mm, pud);
1882 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1883 return ptl;
1884 spin_unlock(ptl);
1885 return NULL;
1886 }
1887
1888 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1889 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1890 pud_t *pud, unsigned long addr)
1891 {
1892 spinlock_t *ptl;
1893
1894 ptl = __pud_trans_huge_lock(pud, vma);
1895 if (!ptl)
1896 return 0;
1897 /*
1898 * For architectures like ppc64 we look at deposited pgtable
1899 * when calling pudp_huge_get_and_clear. So do the
1900 * pgtable_trans_huge_withdraw after finishing pudp related
1901 * operations.
1902 */
1903 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1904 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1905 if (vma_is_special_huge(vma)) {
1906 spin_unlock(ptl);
1907 /* No zero page support yet */
1908 } else {
1909 /* No support for anonymous PUD pages yet */
1910 BUG();
1911 }
1912 return 1;
1913 }
1914
1915 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1916 unsigned long haddr)
1917 {
1918 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1919 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1920 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1921 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1922
1923 count_vm_event(THP_SPLIT_PUD);
1924
1925 pudp_huge_clear_flush_notify(vma, haddr, pud);
1926 }
1927
1928 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1929 unsigned long address)
1930 {
1931 spinlock_t *ptl;
1932 struct mmu_notifier_range range;
1933
1934 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1935 address & HPAGE_PUD_MASK,
1936 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1937 mmu_notifier_invalidate_range_start(&range);
1938 ptl = pud_lock(vma->vm_mm, pud);
1939 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1940 goto out;
1941 __split_huge_pud_locked(vma, pud, range.start);
1942
1943 out:
1944 spin_unlock(ptl);
1945 /*
1946 * No need to double call mmu_notifier->invalidate_range() callback as
1947 * the above pudp_huge_clear_flush_notify() did already call it.
1948 */
1949 mmu_notifier_invalidate_range_only_end(&range);
1950 }
1951 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1952
1953 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1954 unsigned long haddr, pmd_t *pmd)
1955 {
1956 struct mm_struct *mm = vma->vm_mm;
1957 pgtable_t pgtable;
1958 pmd_t _pmd;
1959 int i;
1960
1961 /*
1962 * Leave pmd empty until pte is filled note that it is fine to delay
1963 * notification until mmu_notifier_invalidate_range_end() as we are
1964 * replacing a zero pmd write protected page with a zero pte write
1965 * protected page.
1966 *
1967 * See Documentation/vm/mmu_notifier.rst
1968 */
1969 pmdp_huge_clear_flush(vma, haddr, pmd);
1970
1971 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1972 pmd_populate(mm, &_pmd, pgtable);
1973
1974 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1975 pte_t *pte, entry;
1976 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1977 entry = pte_mkspecial(entry);
1978 pte = pte_offset_map(&_pmd, haddr);
1979 VM_BUG_ON(!pte_none(*pte));
1980 set_pte_at(mm, haddr, pte, entry);
1981 pte_unmap(pte);
1982 }
1983 smp_wmb(); /* make pte visible before pmd */
1984 pmd_populate(mm, pmd, pgtable);
1985 }
1986
1987 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1988 unsigned long haddr, bool freeze)
1989 {
1990 struct mm_struct *mm = vma->vm_mm;
1991 struct page *page;
1992 pgtable_t pgtable;
1993 pmd_t old_pmd, _pmd;
1994 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1995 unsigned long addr;
1996 int i;
1997
1998 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1999 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2000 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2001 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2002 && !pmd_devmap(*pmd));
2003
2004 count_vm_event(THP_SPLIT_PMD);
2005
2006 if (!vma_is_anonymous(vma)) {
2007 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2008 /*
2009 * We are going to unmap this huge page. So
2010 * just go ahead and zap it
2011 */
2012 if (arch_needs_pgtable_deposit())
2013 zap_deposited_table(mm, pmd);
2014 if (vma_is_special_huge(vma))
2015 return;
2016 page = pmd_page(_pmd);
2017 if (!PageDirty(page) && pmd_dirty(_pmd))
2018 set_page_dirty(page);
2019 if (!PageReferenced(page) && pmd_young(_pmd))
2020 SetPageReferenced(page);
2021 page_remove_rmap(page, true);
2022 put_page(page);
2023 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2024 return;
2025 } else if (is_huge_zero_pmd(*pmd)) {
2026 /*
2027 * FIXME: Do we want to invalidate secondary mmu by calling
2028 * mmu_notifier_invalidate_range() see comments below inside
2029 * __split_huge_pmd() ?
2030 *
2031 * We are going from a zero huge page write protected to zero
2032 * small page also write protected so it does not seems useful
2033 * to invalidate secondary mmu at this time.
2034 */
2035 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2036 }
2037
2038 /*
2039 * Up to this point the pmd is present and huge and userland has the
2040 * whole access to the hugepage during the split (which happens in
2041 * place). If we overwrite the pmd with the not-huge version pointing
2042 * to the pte here (which of course we could if all CPUs were bug
2043 * free), userland could trigger a small page size TLB miss on the
2044 * small sized TLB while the hugepage TLB entry is still established in
2045 * the huge TLB. Some CPU doesn't like that.
2046 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2047 * 383 on page 105. Intel should be safe but is also warns that it's
2048 * only safe if the permission and cache attributes of the two entries
2049 * loaded in the two TLB is identical (which should be the case here).
2050 * But it is generally safer to never allow small and huge TLB entries
2051 * for the same virtual address to be loaded simultaneously. So instead
2052 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2053 * current pmd notpresent (atomically because here the pmd_trans_huge
2054 * must remain set at all times on the pmd until the split is complete
2055 * for this pmd), then we flush the SMP TLB and finally we write the
2056 * non-huge version of the pmd entry with pmd_populate.
2057 */
2058 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2059
2060 pmd_migration = is_pmd_migration_entry(old_pmd);
2061 if (unlikely(pmd_migration)) {
2062 swp_entry_t entry;
2063
2064 entry = pmd_to_swp_entry(old_pmd);
2065 page = pfn_to_page(swp_offset(entry));
2066 write = is_write_migration_entry(entry);
2067 young = false;
2068 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2069 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2070 } else {
2071 page = pmd_page(old_pmd);
2072 if (pmd_dirty(old_pmd))
2073 SetPageDirty(page);
2074 write = pmd_write(old_pmd);
2075 young = pmd_young(old_pmd);
2076 soft_dirty = pmd_soft_dirty(old_pmd);
2077 uffd_wp = pmd_uffd_wp(old_pmd);
2078 }
2079 VM_BUG_ON_PAGE(!page_count(page), page);
2080 page_ref_add(page, HPAGE_PMD_NR - 1);
2081
2082 /*
2083 * Withdraw the table only after we mark the pmd entry invalid.
2084 * This's critical for some architectures (Power).
2085 */
2086 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2087 pmd_populate(mm, &_pmd, pgtable);
2088
2089 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2090 pte_t entry, *pte;
2091 /*
2092 * Note that NUMA hinting access restrictions are not
2093 * transferred to avoid any possibility of altering
2094 * permissions across VMAs.
2095 */
2096 if (freeze || pmd_migration) {
2097 swp_entry_t swp_entry;
2098 swp_entry = make_migration_entry(page + i, write);
2099 entry = swp_entry_to_pte(swp_entry);
2100 if (soft_dirty)
2101 entry = pte_swp_mksoft_dirty(entry);
2102 if (uffd_wp)
2103 entry = pte_swp_mkuffd_wp(entry);
2104 } else {
2105 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2106 entry = maybe_mkwrite(entry, vma);
2107 if (!write)
2108 entry = pte_wrprotect(entry);
2109 if (!young)
2110 entry = pte_mkold(entry);
2111 if (soft_dirty)
2112 entry = pte_mksoft_dirty(entry);
2113 if (uffd_wp)
2114 entry = pte_mkuffd_wp(entry);
2115 }
2116 pte = pte_offset_map(&_pmd, addr);
2117 BUG_ON(!pte_none(*pte));
2118 set_pte_at(mm, addr, pte, entry);
2119 atomic_inc(&page[i]._mapcount);
2120 pte_unmap(pte);
2121 }
2122
2123 /*
2124 * Set PG_double_map before dropping compound_mapcount to avoid
2125 * false-negative page_mapped().
2126 */
2127 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2128 for (i = 0; i < HPAGE_PMD_NR; i++)
2129 atomic_inc(&page[i]._mapcount);
2130 }
2131
2132 lock_page_memcg(page);
2133 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2134 /* Last compound_mapcount is gone. */
2135 __dec_lruvec_page_state(page, NR_ANON_THPS);
2136 if (TestClearPageDoubleMap(page)) {
2137 /* No need in mapcount reference anymore */
2138 for (i = 0; i < HPAGE_PMD_NR; i++)
2139 atomic_dec(&page[i]._mapcount);
2140 }
2141 }
2142 unlock_page_memcg(page);
2143
2144 smp_wmb(); /* make pte visible before pmd */
2145 pmd_populate(mm, pmd, pgtable);
2146
2147 if (freeze) {
2148 for (i = 0; i < HPAGE_PMD_NR; i++) {
2149 page_remove_rmap(page + i, false);
2150 put_page(page + i);
2151 }
2152 }
2153 }
2154
2155 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2156 unsigned long address, bool freeze, struct page *page)
2157 {
2158 spinlock_t *ptl;
2159 struct mmu_notifier_range range;
2160 bool was_locked = false;
2161 pmd_t _pmd;
2162
2163 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2164 address & HPAGE_PMD_MASK,
2165 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2166 mmu_notifier_invalidate_range_start(&range);
2167 ptl = pmd_lock(vma->vm_mm, pmd);
2168
2169 /*
2170 * If caller asks to setup a migration entries, we need a page to check
2171 * pmd against. Otherwise we can end up replacing wrong page.
2172 */
2173 VM_BUG_ON(freeze && !page);
2174 if (page) {
2175 VM_WARN_ON_ONCE(!PageLocked(page));
2176 was_locked = true;
2177 if (page != pmd_page(*pmd))
2178 goto out;
2179 }
2180
2181 repeat:
2182 if (pmd_trans_huge(*pmd)) {
2183 if (!page) {
2184 page = pmd_page(*pmd);
2185 if (unlikely(!trylock_page(page))) {
2186 get_page(page);
2187 _pmd = *pmd;
2188 spin_unlock(ptl);
2189 lock_page(page);
2190 spin_lock(ptl);
2191 if (unlikely(!pmd_same(*pmd, _pmd))) {
2192 unlock_page(page);
2193 put_page(page);
2194 page = NULL;
2195 goto repeat;
2196 }
2197 put_page(page);
2198 }
2199 }
2200 if (PageMlocked(page))
2201 clear_page_mlock(page);
2202 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2203 goto out;
2204 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2205 out:
2206 spin_unlock(ptl);
2207 if (!was_locked && page)
2208 unlock_page(page);
2209 /*
2210 * No need to double call mmu_notifier->invalidate_range() callback.
2211 * They are 3 cases to consider inside __split_huge_pmd_locked():
2212 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2213 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2214 * fault will trigger a flush_notify before pointing to a new page
2215 * (it is fine if the secondary mmu keeps pointing to the old zero
2216 * page in the meantime)
2217 * 3) Split a huge pmd into pte pointing to the same page. No need
2218 * to invalidate secondary tlb entry they are all still valid.
2219 * any further changes to individual pte will notify. So no need
2220 * to call mmu_notifier->invalidate_range()
2221 */
2222 mmu_notifier_invalidate_range_only_end(&range);
2223 }
2224
2225 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2226 bool freeze, struct page *page)
2227 {
2228 pgd_t *pgd;
2229 p4d_t *p4d;
2230 pud_t *pud;
2231 pmd_t *pmd;
2232
2233 pgd = pgd_offset(vma->vm_mm, address);
2234 if (!pgd_present(*pgd))
2235 return;
2236
2237 p4d = p4d_offset(pgd, address);
2238 if (!p4d_present(*p4d))
2239 return;
2240
2241 pud = pud_offset(p4d, address);
2242 if (!pud_present(*pud))
2243 return;
2244
2245 pmd = pmd_offset(pud, address);
2246
2247 __split_huge_pmd(vma, pmd, address, freeze, page);
2248 }
2249
2250 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2251 unsigned long start,
2252 unsigned long end,
2253 long adjust_next)
2254 {
2255 /*
2256 * If the new start address isn't hpage aligned and it could
2257 * previously contain an hugepage: check if we need to split
2258 * an huge pmd.
2259 */
2260 if (start & ~HPAGE_PMD_MASK &&
2261 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2262 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2263 split_huge_pmd_address(vma, start, false, NULL);
2264
2265 /*
2266 * If the new end address isn't hpage aligned and it could
2267 * previously contain an hugepage: check if we need to split
2268 * an huge pmd.
2269 */
2270 if (end & ~HPAGE_PMD_MASK &&
2271 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2272 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2273 split_huge_pmd_address(vma, end, false, NULL);
2274
2275 /*
2276 * If we're also updating the vma->vm_next->vm_start, if the new
2277 * vm_next->vm_start isn't page aligned and it could previously
2278 * contain an hugepage: check if we need to split an huge pmd.
2279 */
2280 if (adjust_next > 0) {
2281 struct vm_area_struct *next = vma->vm_next;
2282 unsigned long nstart = next->vm_start;
2283 nstart += adjust_next << PAGE_SHIFT;
2284 if (nstart & ~HPAGE_PMD_MASK &&
2285 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2286 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2287 split_huge_pmd_address(next, nstart, false, NULL);
2288 }
2289 }
2290
2291 static void unmap_page(struct page *page)
2292 {
2293 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2294 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2295 bool unmap_success;
2296
2297 VM_BUG_ON_PAGE(!PageHead(page), page);
2298
2299 if (PageAnon(page))
2300 ttu_flags |= TTU_SPLIT_FREEZE;
2301
2302 unmap_success = try_to_unmap(page, ttu_flags);
2303 VM_BUG_ON_PAGE(!unmap_success, page);
2304 }
2305
2306 static void remap_page(struct page *page)
2307 {
2308 int i;
2309 if (PageTransHuge(page)) {
2310 remove_migration_ptes(page, page, true);
2311 } else {
2312 for (i = 0; i < HPAGE_PMD_NR; i++)
2313 remove_migration_ptes(page + i, page + i, true);
2314 }
2315 }
2316
2317 static void __split_huge_page_tail(struct page *head, int tail,
2318 struct lruvec *lruvec, struct list_head *list)
2319 {
2320 struct page *page_tail = head + tail;
2321
2322 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2323
2324 /*
2325 * Clone page flags before unfreezing refcount.
2326 *
2327 * After successful get_page_unless_zero() might follow flags change,
2328 * for exmaple lock_page() which set PG_waiters.
2329 */
2330 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2331 page_tail->flags |= (head->flags &
2332 ((1L << PG_referenced) |
2333 (1L << PG_swapbacked) |
2334 (1L << PG_swapcache) |
2335 (1L << PG_mlocked) |
2336 (1L << PG_uptodate) |
2337 (1L << PG_active) |
2338 (1L << PG_workingset) |
2339 (1L << PG_locked) |
2340 (1L << PG_unevictable) |
2341 (1L << PG_dirty)));
2342
2343 /* ->mapping in first tail page is compound_mapcount */
2344 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2345 page_tail);
2346 page_tail->mapping = head->mapping;
2347 page_tail->index = head->index + tail;
2348
2349 /* Page flags must be visible before we make the page non-compound. */
2350 smp_wmb();
2351
2352 /*
2353 * Clear PageTail before unfreezing page refcount.
2354 *
2355 * After successful get_page_unless_zero() might follow put_page()
2356 * which needs correct compound_head().
2357 */
2358 clear_compound_head(page_tail);
2359
2360 /* Finally unfreeze refcount. Additional reference from page cache. */
2361 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2362 PageSwapCache(head)));
2363
2364 if (page_is_young(head))
2365 set_page_young(page_tail);
2366 if (page_is_idle(head))
2367 set_page_idle(page_tail);
2368
2369 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2370
2371 /*
2372 * always add to the tail because some iterators expect new
2373 * pages to show after the currently processed elements - e.g.
2374 * migrate_pages
2375 */
2376 lru_add_page_tail(head, page_tail, lruvec, list);
2377 }
2378
2379 static void __split_huge_page(struct page *page, struct list_head *list,
2380 pgoff_t end, unsigned long flags)
2381 {
2382 struct page *head = compound_head(page);
2383 pg_data_t *pgdat = page_pgdat(head);
2384 struct lruvec *lruvec;
2385 struct address_space *swap_cache = NULL;
2386 unsigned long offset = 0;
2387 int i;
2388
2389 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2390
2391 /* complete memcg works before add pages to LRU */
2392 mem_cgroup_split_huge_fixup(head);
2393
2394 if (PageAnon(head) && PageSwapCache(head)) {
2395 swp_entry_t entry = { .val = page_private(head) };
2396
2397 offset = swp_offset(entry);
2398 swap_cache = swap_address_space(entry);
2399 xa_lock(&swap_cache->i_pages);
2400 }
2401
2402 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2403 __split_huge_page_tail(head, i, lruvec, list);
2404 /* Some pages can be beyond i_size: drop them from page cache */
2405 if (head[i].index >= end) {
2406 ClearPageDirty(head + i);
2407 __delete_from_page_cache(head + i, NULL);
2408 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2409 shmem_uncharge(head->mapping->host, 1);
2410 put_page(head + i);
2411 } else if (!PageAnon(page)) {
2412 __xa_store(&head->mapping->i_pages, head[i].index,
2413 head + i, 0);
2414 } else if (swap_cache) {
2415 __xa_store(&swap_cache->i_pages, offset + i,
2416 head + i, 0);
2417 }
2418 }
2419
2420 ClearPageCompound(head);
2421
2422 split_page_owner(head, HPAGE_PMD_ORDER);
2423
2424 /* See comment in __split_huge_page_tail() */
2425 if (PageAnon(head)) {
2426 /* Additional pin to swap cache */
2427 if (PageSwapCache(head)) {
2428 page_ref_add(head, 2);
2429 xa_unlock(&swap_cache->i_pages);
2430 } else {
2431 page_ref_inc(head);
2432 }
2433 } else {
2434 /* Additional pin to page cache */
2435 page_ref_add(head, 2);
2436 xa_unlock(&head->mapping->i_pages);
2437 }
2438
2439 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2440
2441 remap_page(head);
2442
2443 for (i = 0; i < HPAGE_PMD_NR; i++) {
2444 struct page *subpage = head + i;
2445 if (subpage == page)
2446 continue;
2447 unlock_page(subpage);
2448
2449 /*
2450 * Subpages may be freed if there wasn't any mapping
2451 * like if add_to_swap() is running on a lru page that
2452 * had its mapping zapped. And freeing these pages
2453 * requires taking the lru_lock so we do the put_page
2454 * of the tail pages after the split is complete.
2455 */
2456 put_page(subpage);
2457 }
2458 }
2459
2460 int total_mapcount(struct page *page)
2461 {
2462 int i, compound, ret;
2463
2464 VM_BUG_ON_PAGE(PageTail(page), page);
2465
2466 if (likely(!PageCompound(page)))
2467 return atomic_read(&page->_mapcount) + 1;
2468
2469 compound = compound_mapcount(page);
2470 if (PageHuge(page))
2471 return compound;
2472 ret = compound;
2473 for (i = 0; i < HPAGE_PMD_NR; i++)
2474 ret += atomic_read(&page[i]._mapcount) + 1;
2475 /* File pages has compound_mapcount included in _mapcount */
2476 if (!PageAnon(page))
2477 return ret - compound * HPAGE_PMD_NR;
2478 if (PageDoubleMap(page))
2479 ret -= HPAGE_PMD_NR;
2480 return ret;
2481 }
2482
2483 /*
2484 * This calculates accurately how many mappings a transparent hugepage
2485 * has (unlike page_mapcount() which isn't fully accurate). This full
2486 * accuracy is primarily needed to know if copy-on-write faults can
2487 * reuse the page and change the mapping to read-write instead of
2488 * copying them. At the same time this returns the total_mapcount too.
2489 *
2490 * The function returns the highest mapcount any one of the subpages
2491 * has. If the return value is one, even if different processes are
2492 * mapping different subpages of the transparent hugepage, they can
2493 * all reuse it, because each process is reusing a different subpage.
2494 *
2495 * The total_mapcount is instead counting all virtual mappings of the
2496 * subpages. If the total_mapcount is equal to "one", it tells the
2497 * caller all mappings belong to the same "mm" and in turn the
2498 * anon_vma of the transparent hugepage can become the vma->anon_vma
2499 * local one as no other process may be mapping any of the subpages.
2500 *
2501 * It would be more accurate to replace page_mapcount() with
2502 * page_trans_huge_mapcount(), however we only use
2503 * page_trans_huge_mapcount() in the copy-on-write faults where we
2504 * need full accuracy to avoid breaking page pinning, because
2505 * page_trans_huge_mapcount() is slower than page_mapcount().
2506 */
2507 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2508 {
2509 int i, ret, _total_mapcount, mapcount;
2510
2511 /* hugetlbfs shouldn't call it */
2512 VM_BUG_ON_PAGE(PageHuge(page), page);
2513
2514 if (likely(!PageTransCompound(page))) {
2515 mapcount = atomic_read(&page->_mapcount) + 1;
2516 if (total_mapcount)
2517 *total_mapcount = mapcount;
2518 return mapcount;
2519 }
2520
2521 page = compound_head(page);
2522
2523 _total_mapcount = ret = 0;
2524 for (i = 0; i < HPAGE_PMD_NR; i++) {
2525 mapcount = atomic_read(&page[i]._mapcount) + 1;
2526 ret = max(ret, mapcount);
2527 _total_mapcount += mapcount;
2528 }
2529 if (PageDoubleMap(page)) {
2530 ret -= 1;
2531 _total_mapcount -= HPAGE_PMD_NR;
2532 }
2533 mapcount = compound_mapcount(page);
2534 ret += mapcount;
2535 _total_mapcount += mapcount;
2536 if (total_mapcount)
2537 *total_mapcount = _total_mapcount;
2538 return ret;
2539 }
2540
2541 /* Racy check whether the huge page can be split */
2542 bool can_split_huge_page(struct page *page, int *pextra_pins)
2543 {
2544 int extra_pins;
2545
2546 /* Additional pins from page cache */
2547 if (PageAnon(page))
2548 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2549 else
2550 extra_pins = HPAGE_PMD_NR;
2551 if (pextra_pins)
2552 *pextra_pins = extra_pins;
2553 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2554 }
2555
2556 /*
2557 * This function splits huge page into normal pages. @page can point to any
2558 * subpage of huge page to split. Split doesn't change the position of @page.
2559 *
2560 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2561 * The huge page must be locked.
2562 *
2563 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2564 *
2565 * Both head page and tail pages will inherit mapping, flags, and so on from
2566 * the hugepage.
2567 *
2568 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2569 * they are not mapped.
2570 *
2571 * Returns 0 if the hugepage is split successfully.
2572 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2573 * us.
2574 */
2575 int split_huge_page_to_list(struct page *page, struct list_head *list)
2576 {
2577 struct page *head = compound_head(page);
2578 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2579 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2580 struct anon_vma *anon_vma = NULL;
2581 struct address_space *mapping = NULL;
2582 int count, mapcount, extra_pins, ret;
2583 unsigned long flags;
2584 pgoff_t end;
2585
2586 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2587 VM_BUG_ON_PAGE(!PageLocked(head), head);
2588 VM_BUG_ON_PAGE(!PageCompound(head), head);
2589
2590 if (PageWriteback(head))
2591 return -EBUSY;
2592
2593 if (PageAnon(head)) {
2594 /*
2595 * The caller does not necessarily hold an mmap_lock that would
2596 * prevent the anon_vma disappearing so we first we take a
2597 * reference to it and then lock the anon_vma for write. This
2598 * is similar to page_lock_anon_vma_read except the write lock
2599 * is taken to serialise against parallel split or collapse
2600 * operations.
2601 */
2602 anon_vma = page_get_anon_vma(head);
2603 if (!anon_vma) {
2604 ret = -EBUSY;
2605 goto out;
2606 }
2607 end = -1;
2608 mapping = NULL;
2609 anon_vma_lock_write(anon_vma);
2610 } else {
2611 mapping = head->mapping;
2612
2613 /* Truncated ? */
2614 if (!mapping) {
2615 ret = -EBUSY;
2616 goto out;
2617 }
2618
2619 anon_vma = NULL;
2620 i_mmap_lock_read(mapping);
2621
2622 /*
2623 *__split_huge_page() may need to trim off pages beyond EOF:
2624 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2625 * which cannot be nested inside the page tree lock. So note
2626 * end now: i_size itself may be changed at any moment, but
2627 * head page lock is good enough to serialize the trimming.
2628 */
2629 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2630 }
2631
2632 /*
2633 * Racy check if we can split the page, before unmap_page() will
2634 * split PMDs
2635 */
2636 if (!can_split_huge_page(head, &extra_pins)) {
2637 ret = -EBUSY;
2638 goto out_unlock;
2639 }
2640
2641 unmap_page(head);
2642 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2643
2644 /* prevent PageLRU to go away from under us, and freeze lru stats */
2645 spin_lock_irqsave(&pgdata->lru_lock, flags);
2646
2647 if (mapping) {
2648 XA_STATE(xas, &mapping->i_pages, page_index(head));
2649
2650 /*
2651 * Check if the head page is present in page cache.
2652 * We assume all tail are present too, if head is there.
2653 */
2654 xa_lock(&mapping->i_pages);
2655 if (xas_load(&xas) != head)
2656 goto fail;
2657 }
2658
2659 /* Prevent deferred_split_scan() touching ->_refcount */
2660 spin_lock(&ds_queue->split_queue_lock);
2661 count = page_count(head);
2662 mapcount = total_mapcount(head);
2663 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2664 if (!list_empty(page_deferred_list(head))) {
2665 ds_queue->split_queue_len--;
2666 list_del(page_deferred_list(head));
2667 }
2668 spin_unlock(&ds_queue->split_queue_lock);
2669 if (mapping) {
2670 if (PageSwapBacked(head))
2671 __dec_node_page_state(head, NR_SHMEM_THPS);
2672 else
2673 __dec_node_page_state(head, NR_FILE_THPS);
2674 }
2675
2676 __split_huge_page(page, list, end, flags);
2677 if (PageSwapCache(head)) {
2678 swp_entry_t entry = { .val = page_private(head) };
2679
2680 ret = split_swap_cluster(entry);
2681 } else
2682 ret = 0;
2683 } else {
2684 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2685 pr_alert("total_mapcount: %u, page_count(): %u\n",
2686 mapcount, count);
2687 if (PageTail(page))
2688 dump_page(head, NULL);
2689 dump_page(page, "total_mapcount(head) > 0");
2690 BUG();
2691 }
2692 spin_unlock(&ds_queue->split_queue_lock);
2693 fail: if (mapping)
2694 xa_unlock(&mapping->i_pages);
2695 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2696 remap_page(head);
2697 ret = -EBUSY;
2698 }
2699
2700 out_unlock:
2701 if (anon_vma) {
2702 anon_vma_unlock_write(anon_vma);
2703 put_anon_vma(anon_vma);
2704 }
2705 if (mapping)
2706 i_mmap_unlock_read(mapping);
2707 out:
2708 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2709 return ret;
2710 }
2711
2712 void free_transhuge_page(struct page *page)
2713 {
2714 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2715 unsigned long flags;
2716
2717 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2718 if (!list_empty(page_deferred_list(page))) {
2719 ds_queue->split_queue_len--;
2720 list_del(page_deferred_list(page));
2721 }
2722 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2723 free_compound_page(page);
2724 }
2725
2726 void deferred_split_huge_page(struct page *page)
2727 {
2728 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2729 #ifdef CONFIG_MEMCG
2730 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2731 #endif
2732 unsigned long flags;
2733
2734 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2735
2736 /*
2737 * The try_to_unmap() in page reclaim path might reach here too,
2738 * this may cause a race condition to corrupt deferred split queue.
2739 * And, if page reclaim is already handling the same page, it is
2740 * unnecessary to handle it again in shrinker.
2741 *
2742 * Check PageSwapCache to determine if the page is being
2743 * handled by page reclaim since THP swap would add the page into
2744 * swap cache before calling try_to_unmap().
2745 */
2746 if (PageSwapCache(page))
2747 return;
2748
2749 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2750 if (list_empty(page_deferred_list(page))) {
2751 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2752 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2753 ds_queue->split_queue_len++;
2754 #ifdef CONFIG_MEMCG
2755 if (memcg)
2756 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2757 deferred_split_shrinker.id);
2758 #endif
2759 }
2760 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2761 }
2762
2763 static unsigned long deferred_split_count(struct shrinker *shrink,
2764 struct shrink_control *sc)
2765 {
2766 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2767 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2768
2769 #ifdef CONFIG_MEMCG
2770 if (sc->memcg)
2771 ds_queue = &sc->memcg->deferred_split_queue;
2772 #endif
2773 return READ_ONCE(ds_queue->split_queue_len);
2774 }
2775
2776 static unsigned long deferred_split_scan(struct shrinker *shrink,
2777 struct shrink_control *sc)
2778 {
2779 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2780 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2781 unsigned long flags;
2782 LIST_HEAD(list), *pos, *next;
2783 struct page *page;
2784 int split = 0;
2785
2786 #ifdef CONFIG_MEMCG
2787 if (sc->memcg)
2788 ds_queue = &sc->memcg->deferred_split_queue;
2789 #endif
2790
2791 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2792 /* Take pin on all head pages to avoid freeing them under us */
2793 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2794 page = list_entry((void *)pos, struct page, mapping);
2795 page = compound_head(page);
2796 if (get_page_unless_zero(page)) {
2797 list_move(page_deferred_list(page), &list);
2798 } else {
2799 /* We lost race with put_compound_page() */
2800 list_del_init(page_deferred_list(page));
2801 ds_queue->split_queue_len--;
2802 }
2803 if (!--sc->nr_to_scan)
2804 break;
2805 }
2806 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2807
2808 list_for_each_safe(pos, next, &list) {
2809 page = list_entry((void *)pos, struct page, mapping);
2810 if (!trylock_page(page))
2811 goto next;
2812 /* split_huge_page() removes page from list on success */
2813 if (!split_huge_page(page))
2814 split++;
2815 unlock_page(page);
2816 next:
2817 put_page(page);
2818 }
2819
2820 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2821 list_splice_tail(&list, &ds_queue->split_queue);
2822 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2823
2824 /*
2825 * Stop shrinker if we didn't split any page, but the queue is empty.
2826 * This can happen if pages were freed under us.
2827 */
2828 if (!split && list_empty(&ds_queue->split_queue))
2829 return SHRINK_STOP;
2830 return split;
2831 }
2832
2833 static struct shrinker deferred_split_shrinker = {
2834 .count_objects = deferred_split_count,
2835 .scan_objects = deferred_split_scan,
2836 .seeks = DEFAULT_SEEKS,
2837 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2838 SHRINKER_NONSLAB,
2839 };
2840
2841 #ifdef CONFIG_DEBUG_FS
2842 static int split_huge_pages_set(void *data, u64 val)
2843 {
2844 struct zone *zone;
2845 struct page *page;
2846 unsigned long pfn, max_zone_pfn;
2847 unsigned long total = 0, split = 0;
2848
2849 if (val != 1)
2850 return -EINVAL;
2851
2852 for_each_populated_zone(zone) {
2853 max_zone_pfn = zone_end_pfn(zone);
2854 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2855 if (!pfn_valid(pfn))
2856 continue;
2857
2858 page = pfn_to_page(pfn);
2859 if (!get_page_unless_zero(page))
2860 continue;
2861
2862 if (zone != page_zone(page))
2863 goto next;
2864
2865 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2866 goto next;
2867
2868 total++;
2869 lock_page(page);
2870 if (!split_huge_page(page))
2871 split++;
2872 unlock_page(page);
2873 next:
2874 put_page(page);
2875 }
2876 }
2877
2878 pr_info("%lu of %lu THP split\n", split, total);
2879
2880 return 0;
2881 }
2882 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2883 "%llu\n");
2884
2885 static int __init split_huge_pages_debugfs(void)
2886 {
2887 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2888 &split_huge_pages_fops);
2889 return 0;
2890 }
2891 late_initcall(split_huge_pages_debugfs);
2892 #endif
2893
2894 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2895 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2896 struct page *page)
2897 {
2898 struct vm_area_struct *vma = pvmw->vma;
2899 struct mm_struct *mm = vma->vm_mm;
2900 unsigned long address = pvmw->address;
2901 pmd_t pmdval;
2902 swp_entry_t entry;
2903 pmd_t pmdswp;
2904
2905 if (!(pvmw->pmd && !pvmw->pte))
2906 return;
2907
2908 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2909 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2910 if (pmd_dirty(pmdval))
2911 set_page_dirty(page);
2912 entry = make_migration_entry(page, pmd_write(pmdval));
2913 pmdswp = swp_entry_to_pmd(entry);
2914 if (pmd_soft_dirty(pmdval))
2915 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2916 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2917 page_remove_rmap(page, true);
2918 put_page(page);
2919 }
2920
2921 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2922 {
2923 struct vm_area_struct *vma = pvmw->vma;
2924 struct mm_struct *mm = vma->vm_mm;
2925 unsigned long address = pvmw->address;
2926 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2927 pmd_t pmde;
2928 swp_entry_t entry;
2929
2930 if (!(pvmw->pmd && !pvmw->pte))
2931 return;
2932
2933 entry = pmd_to_swp_entry(*pvmw->pmd);
2934 get_page(new);
2935 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2936 if (pmd_swp_soft_dirty(*pvmw->pmd))
2937 pmde = pmd_mksoft_dirty(pmde);
2938 if (is_write_migration_entry(entry))
2939 pmde = maybe_pmd_mkwrite(pmde, vma);
2940
2941 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2942 if (PageAnon(new))
2943 page_add_anon_rmap(new, vma, mmun_start, true);
2944 else
2945 page_add_file_rmap(new, true);
2946 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2947 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2948 mlock_vma_page(new);
2949 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2950 }
2951 #endif