]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/huge_memory.c
mm/huge_memory: fix typo when updating mmu cache
[mirror_ubuntu-bionic-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23
24 /*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67
68 /**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74 struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78 };
79
80 /**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88 struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
92 };
93 static struct khugepaged_scan khugepaged_scan = {
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95 };
96
97
98 static int set_recommended_min_free_kbytes(void)
99 {
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
104
105 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 &transparent_hugepage_flags) &&
107 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 &transparent_hugepage_flags))
109 return 0;
110
111 for_each_populated_zone(zone)
112 nr_zones++;
113
114 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 recommended_min = pageblock_nr_pages * nr_zones * 2;
116
117 /*
118 * Make sure that on average at least two pageblocks are almost free
119 * of another type, one for a migratetype to fall back to and a
120 * second to avoid subsequent fallbacks of other types There are 3
121 * MIGRATE_TYPES we care about.
122 */
123 recommended_min += pageblock_nr_pages * nr_zones *
124 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125
126 /* don't ever allow to reserve more than 5% of the lowmem */
127 recommended_min = min(recommended_min,
128 (unsigned long) nr_free_buffer_pages() / 20);
129 recommended_min <<= (PAGE_SHIFT-10);
130
131 if (recommended_min > min_free_kbytes)
132 min_free_kbytes = recommended_min;
133 setup_per_zone_wmarks();
134 return 0;
135 }
136 late_initcall(set_recommended_min_free_kbytes);
137
138 static int start_khugepaged(void)
139 {
140 int err = 0;
141 if (khugepaged_enabled()) {
142 int wakeup;
143 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 err = -ENOMEM;
145 goto out;
146 }
147 mutex_lock(&khugepaged_mutex);
148 if (!khugepaged_thread)
149 khugepaged_thread = kthread_run(khugepaged, NULL,
150 "khugepaged");
151 if (unlikely(IS_ERR(khugepaged_thread))) {
152 printk(KERN_ERR
153 "khugepaged: kthread_run(khugepaged) failed\n");
154 err = PTR_ERR(khugepaged_thread);
155 khugepaged_thread = NULL;
156 }
157 wakeup = !list_empty(&khugepaged_scan.mm_head);
158 mutex_unlock(&khugepaged_mutex);
159 if (wakeup)
160 wake_up_interruptible(&khugepaged_wait);
161
162 set_recommended_min_free_kbytes();
163 } else
164 /* wakeup to exit */
165 wake_up_interruptible(&khugepaged_wait);
166 out:
167 return err;
168 }
169
170 #ifdef CONFIG_SYSFS
171
172 static ssize_t double_flag_show(struct kobject *kobj,
173 struct kobj_attribute *attr, char *buf,
174 enum transparent_hugepage_flag enabled,
175 enum transparent_hugepage_flag req_madv)
176 {
177 if (test_bit(enabled, &transparent_hugepage_flags)) {
178 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 return sprintf(buf, "[always] madvise never\n");
180 } else if (test_bit(req_madv, &transparent_hugepage_flags))
181 return sprintf(buf, "always [madvise] never\n");
182 else
183 return sprintf(buf, "always madvise [never]\n");
184 }
185 static ssize_t double_flag_store(struct kobject *kobj,
186 struct kobj_attribute *attr,
187 const char *buf, size_t count,
188 enum transparent_hugepage_flag enabled,
189 enum transparent_hugepage_flag req_madv)
190 {
191 if (!memcmp("always", buf,
192 min(sizeof("always")-1, count))) {
193 set_bit(enabled, &transparent_hugepage_flags);
194 clear_bit(req_madv, &transparent_hugepage_flags);
195 } else if (!memcmp("madvise", buf,
196 min(sizeof("madvise")-1, count))) {
197 clear_bit(enabled, &transparent_hugepage_flags);
198 set_bit(req_madv, &transparent_hugepage_flags);
199 } else if (!memcmp("never", buf,
200 min(sizeof("never")-1, count))) {
201 clear_bit(enabled, &transparent_hugepage_flags);
202 clear_bit(req_madv, &transparent_hugepage_flags);
203 } else
204 return -EINVAL;
205
206 return count;
207 }
208
209 static ssize_t enabled_show(struct kobject *kobj,
210 struct kobj_attribute *attr, char *buf)
211 {
212 return double_flag_show(kobj, attr, buf,
213 TRANSPARENT_HUGEPAGE_FLAG,
214 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215 }
216 static ssize_t enabled_store(struct kobject *kobj,
217 struct kobj_attribute *attr,
218 const char *buf, size_t count)
219 {
220 ssize_t ret;
221
222 ret = double_flag_store(kobj, attr, buf, count,
223 TRANSPARENT_HUGEPAGE_FLAG,
224 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225
226 if (ret > 0) {
227 int err = start_khugepaged();
228 if (err)
229 ret = err;
230 }
231
232 if (ret > 0 &&
233 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 &transparent_hugepage_flags) ||
235 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 &transparent_hugepage_flags)))
237 set_recommended_min_free_kbytes();
238
239 return ret;
240 }
241 static struct kobj_attribute enabled_attr =
242 __ATTR(enabled, 0644, enabled_show, enabled_store);
243
244 static ssize_t single_flag_show(struct kobject *kobj,
245 struct kobj_attribute *attr, char *buf,
246 enum transparent_hugepage_flag flag)
247 {
248 return sprintf(buf, "%d\n",
249 !!test_bit(flag, &transparent_hugepage_flags));
250 }
251
252 static ssize_t single_flag_store(struct kobject *kobj,
253 struct kobj_attribute *attr,
254 const char *buf, size_t count,
255 enum transparent_hugepage_flag flag)
256 {
257 unsigned long value;
258 int ret;
259
260 ret = kstrtoul(buf, 10, &value);
261 if (ret < 0)
262 return ret;
263 if (value > 1)
264 return -EINVAL;
265
266 if (value)
267 set_bit(flag, &transparent_hugepage_flags);
268 else
269 clear_bit(flag, &transparent_hugepage_flags);
270
271 return count;
272 }
273
274 /*
275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277 * memory just to allocate one more hugepage.
278 */
279 static ssize_t defrag_show(struct kobject *kobj,
280 struct kobj_attribute *attr, char *buf)
281 {
282 return double_flag_show(kobj, attr, buf,
283 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285 }
286 static ssize_t defrag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count)
289 {
290 return double_flag_store(kobj, attr, buf, count,
291 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293 }
294 static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
296
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300 {
301 return single_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
307 {
308 return single_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314
315 static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318 #ifdef CONFIG_DEBUG_VM
319 &debug_cow_attr.attr,
320 #endif
321 NULL,
322 };
323
324 static struct attribute_group hugepage_attr_group = {
325 .attrs = hugepage_attr,
326 };
327
328 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 char *buf)
331 {
332 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333 }
334
335 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 struct kobj_attribute *attr,
337 const char *buf, size_t count)
338 {
339 unsigned long msecs;
340 int err;
341
342 err = strict_strtoul(buf, 10, &msecs);
343 if (err || msecs > UINT_MAX)
344 return -EINVAL;
345
346 khugepaged_scan_sleep_millisecs = msecs;
347 wake_up_interruptible(&khugepaged_wait);
348
349 return count;
350 }
351 static struct kobj_attribute scan_sleep_millisecs_attr =
352 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 scan_sleep_millisecs_store);
354
355 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 char *buf)
358 {
359 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360 }
361
362 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
365 {
366 unsigned long msecs;
367 int err;
368
369 err = strict_strtoul(buf, 10, &msecs);
370 if (err || msecs > UINT_MAX)
371 return -EINVAL;
372
373 khugepaged_alloc_sleep_millisecs = msecs;
374 wake_up_interruptible(&khugepaged_wait);
375
376 return count;
377 }
378 static struct kobj_attribute alloc_sleep_millisecs_attr =
379 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 alloc_sleep_millisecs_store);
381
382 static ssize_t pages_to_scan_show(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 char *buf)
385 {
386 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387 }
388 static ssize_t pages_to_scan_store(struct kobject *kobj,
389 struct kobj_attribute *attr,
390 const char *buf, size_t count)
391 {
392 int err;
393 unsigned long pages;
394
395 err = strict_strtoul(buf, 10, &pages);
396 if (err || !pages || pages > UINT_MAX)
397 return -EINVAL;
398
399 khugepaged_pages_to_scan = pages;
400
401 return count;
402 }
403 static struct kobj_attribute pages_to_scan_attr =
404 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 pages_to_scan_store);
406
407 static ssize_t pages_collapsed_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
410 {
411 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412 }
413 static struct kobj_attribute pages_collapsed_attr =
414 __ATTR_RO(pages_collapsed);
415
416 static ssize_t full_scans_show(struct kobject *kobj,
417 struct kobj_attribute *attr,
418 char *buf)
419 {
420 return sprintf(buf, "%u\n", khugepaged_full_scans);
421 }
422 static struct kobj_attribute full_scans_attr =
423 __ATTR_RO(full_scans);
424
425 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 struct kobj_attribute *attr, char *buf)
427 {
428 return single_flag_show(kobj, attr, buf,
429 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430 }
431 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 struct kobj_attribute *attr,
433 const char *buf, size_t count)
434 {
435 return single_flag_store(kobj, attr, buf, count,
436 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437 }
438 static struct kobj_attribute khugepaged_defrag_attr =
439 __ATTR(defrag, 0644, khugepaged_defrag_show,
440 khugepaged_defrag_store);
441
442 /*
443 * max_ptes_none controls if khugepaged should collapse hugepages over
444 * any unmapped ptes in turn potentially increasing the memory
445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446 * reduce the available free memory in the system as it
447 * runs. Increasing max_ptes_none will instead potentially reduce the
448 * free memory in the system during the khugepaged scan.
449 */
450 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 struct kobj_attribute *attr,
452 char *buf)
453 {
454 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455 }
456 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 struct kobj_attribute *attr,
458 const char *buf, size_t count)
459 {
460 int err;
461 unsigned long max_ptes_none;
462
463 err = strict_strtoul(buf, 10, &max_ptes_none);
464 if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 return -EINVAL;
466
467 khugepaged_max_ptes_none = max_ptes_none;
468
469 return count;
470 }
471 static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 khugepaged_max_ptes_none_store);
474
475 static struct attribute *khugepaged_attr[] = {
476 &khugepaged_defrag_attr.attr,
477 &khugepaged_max_ptes_none_attr.attr,
478 &pages_to_scan_attr.attr,
479 &pages_collapsed_attr.attr,
480 &full_scans_attr.attr,
481 &scan_sleep_millisecs_attr.attr,
482 &alloc_sleep_millisecs_attr.attr,
483 NULL,
484 };
485
486 static struct attribute_group khugepaged_attr_group = {
487 .attrs = khugepaged_attr,
488 .name = "khugepaged",
489 };
490 #endif /* CONFIG_SYSFS */
491
492 static int __init hugepage_init(void)
493 {
494 int err;
495 #ifdef CONFIG_SYSFS
496 static struct kobject *hugepage_kobj;
497 #endif
498
499 err = -EINVAL;
500 if (!has_transparent_hugepage()) {
501 transparent_hugepage_flags = 0;
502 goto out;
503 }
504
505 #ifdef CONFIG_SYSFS
506 err = -ENOMEM;
507 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
508 if (unlikely(!hugepage_kobj)) {
509 printk(KERN_ERR "hugepage: failed kobject create\n");
510 goto out;
511 }
512
513 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
514 if (err) {
515 printk(KERN_ERR "hugepage: failed register hugeage group\n");
516 goto out;
517 }
518
519 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
520 if (err) {
521 printk(KERN_ERR "hugepage: failed register hugeage group\n");
522 goto out;
523 }
524 #endif
525
526 err = khugepaged_slab_init();
527 if (err)
528 goto out;
529
530 err = mm_slots_hash_init();
531 if (err) {
532 khugepaged_slab_free();
533 goto out;
534 }
535
536 /*
537 * By default disable transparent hugepages on smaller systems,
538 * where the extra memory used could hurt more than TLB overhead
539 * is likely to save. The admin can still enable it through /sys.
540 */
541 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
542 transparent_hugepage_flags = 0;
543
544 start_khugepaged();
545
546 set_recommended_min_free_kbytes();
547
548 out:
549 return err;
550 }
551 module_init(hugepage_init)
552
553 static int __init setup_transparent_hugepage(char *str)
554 {
555 int ret = 0;
556 if (!str)
557 goto out;
558 if (!strcmp(str, "always")) {
559 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
560 &transparent_hugepage_flags);
561 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
562 &transparent_hugepage_flags);
563 ret = 1;
564 } else if (!strcmp(str, "madvise")) {
565 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
566 &transparent_hugepage_flags);
567 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
568 &transparent_hugepage_flags);
569 ret = 1;
570 } else if (!strcmp(str, "never")) {
571 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
572 &transparent_hugepage_flags);
573 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
574 &transparent_hugepage_flags);
575 ret = 1;
576 }
577 out:
578 if (!ret)
579 printk(KERN_WARNING
580 "transparent_hugepage= cannot parse, ignored\n");
581 return ret;
582 }
583 __setup("transparent_hugepage=", setup_transparent_hugepage);
584
585 static void prepare_pmd_huge_pte(pgtable_t pgtable,
586 struct mm_struct *mm)
587 {
588 assert_spin_locked(&mm->page_table_lock);
589
590 /* FIFO */
591 if (!mm->pmd_huge_pte)
592 INIT_LIST_HEAD(&pgtable->lru);
593 else
594 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
595 mm->pmd_huge_pte = pgtable;
596 }
597
598 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
599 {
600 if (likely(vma->vm_flags & VM_WRITE))
601 pmd = pmd_mkwrite(pmd);
602 return pmd;
603 }
604
605 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
606 struct vm_area_struct *vma,
607 unsigned long haddr, pmd_t *pmd,
608 struct page *page)
609 {
610 int ret = 0;
611 pgtable_t pgtable;
612
613 VM_BUG_ON(!PageCompound(page));
614 pgtable = pte_alloc_one(mm, haddr);
615 if (unlikely(!pgtable)) {
616 mem_cgroup_uncharge_page(page);
617 put_page(page);
618 return VM_FAULT_OOM;
619 }
620
621 clear_huge_page(page, haddr, HPAGE_PMD_NR);
622 __SetPageUptodate(page);
623
624 spin_lock(&mm->page_table_lock);
625 if (unlikely(!pmd_none(*pmd))) {
626 spin_unlock(&mm->page_table_lock);
627 mem_cgroup_uncharge_page(page);
628 put_page(page);
629 pte_free(mm, pgtable);
630 } else {
631 pmd_t entry;
632 entry = mk_pmd(page, vma->vm_page_prot);
633 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634 entry = pmd_mkhuge(entry);
635 /*
636 * The spinlocking to take the lru_lock inside
637 * page_add_new_anon_rmap() acts as a full memory
638 * barrier to be sure clear_huge_page writes become
639 * visible after the set_pmd_at() write.
640 */
641 page_add_new_anon_rmap(page, vma, haddr);
642 set_pmd_at(mm, haddr, pmd, entry);
643 prepare_pmd_huge_pte(pgtable, mm);
644 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
645 spin_unlock(&mm->page_table_lock);
646 }
647
648 return ret;
649 }
650
651 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
652 {
653 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
654 }
655
656 static inline struct page *alloc_hugepage_vma(int defrag,
657 struct vm_area_struct *vma,
658 unsigned long haddr, int nd,
659 gfp_t extra_gfp)
660 {
661 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
662 HPAGE_PMD_ORDER, vma, haddr, nd);
663 }
664
665 #ifndef CONFIG_NUMA
666 static inline struct page *alloc_hugepage(int defrag)
667 {
668 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
669 HPAGE_PMD_ORDER);
670 }
671 #endif
672
673 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
674 unsigned long address, pmd_t *pmd,
675 unsigned int flags)
676 {
677 struct page *page;
678 unsigned long haddr = address & HPAGE_PMD_MASK;
679 pte_t *pte;
680
681 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
682 if (unlikely(anon_vma_prepare(vma)))
683 return VM_FAULT_OOM;
684 if (unlikely(khugepaged_enter(vma)))
685 return VM_FAULT_OOM;
686 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
687 vma, haddr, numa_node_id(), 0);
688 if (unlikely(!page)) {
689 count_vm_event(THP_FAULT_FALLBACK);
690 goto out;
691 }
692 count_vm_event(THP_FAULT_ALLOC);
693 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
694 put_page(page);
695 goto out;
696 }
697
698 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
699 }
700 out:
701 /*
702 * Use __pte_alloc instead of pte_alloc_map, because we can't
703 * run pte_offset_map on the pmd, if an huge pmd could
704 * materialize from under us from a different thread.
705 */
706 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
707 return VM_FAULT_OOM;
708 /* if an huge pmd materialized from under us just retry later */
709 if (unlikely(pmd_trans_huge(*pmd)))
710 return 0;
711 /*
712 * A regular pmd is established and it can't morph into a huge pmd
713 * from under us anymore at this point because we hold the mmap_sem
714 * read mode and khugepaged takes it in write mode. So now it's
715 * safe to run pte_offset_map().
716 */
717 pte = pte_offset_map(pmd, address);
718 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
719 }
720
721 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
722 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
723 struct vm_area_struct *vma)
724 {
725 struct page *src_page;
726 pmd_t pmd;
727 pgtable_t pgtable;
728 int ret;
729
730 ret = -ENOMEM;
731 pgtable = pte_alloc_one(dst_mm, addr);
732 if (unlikely(!pgtable))
733 goto out;
734
735 spin_lock(&dst_mm->page_table_lock);
736 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
737
738 ret = -EAGAIN;
739 pmd = *src_pmd;
740 if (unlikely(!pmd_trans_huge(pmd))) {
741 pte_free(dst_mm, pgtable);
742 goto out_unlock;
743 }
744 if (unlikely(pmd_trans_splitting(pmd))) {
745 /* split huge page running from under us */
746 spin_unlock(&src_mm->page_table_lock);
747 spin_unlock(&dst_mm->page_table_lock);
748 pte_free(dst_mm, pgtable);
749
750 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
751 goto out;
752 }
753 src_page = pmd_page(pmd);
754 VM_BUG_ON(!PageHead(src_page));
755 get_page(src_page);
756 page_dup_rmap(src_page);
757 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
758
759 pmdp_set_wrprotect(src_mm, addr, src_pmd);
760 pmd = pmd_mkold(pmd_wrprotect(pmd));
761 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
762 prepare_pmd_huge_pte(pgtable, dst_mm);
763
764 ret = 0;
765 out_unlock:
766 spin_unlock(&src_mm->page_table_lock);
767 spin_unlock(&dst_mm->page_table_lock);
768 out:
769 return ret;
770 }
771
772 /* no "address" argument so destroys page coloring of some arch */
773 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
774 {
775 pgtable_t pgtable;
776
777 assert_spin_locked(&mm->page_table_lock);
778
779 /* FIFO */
780 pgtable = mm->pmd_huge_pte;
781 if (list_empty(&pgtable->lru))
782 mm->pmd_huge_pte = NULL;
783 else {
784 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
785 struct page, lru);
786 list_del(&pgtable->lru);
787 }
788 return pgtable;
789 }
790
791 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
792 struct vm_area_struct *vma,
793 unsigned long address,
794 pmd_t *pmd, pmd_t orig_pmd,
795 struct page *page,
796 unsigned long haddr)
797 {
798 pgtable_t pgtable;
799 pmd_t _pmd;
800 int ret = 0, i;
801 struct page **pages;
802
803 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
804 GFP_KERNEL);
805 if (unlikely(!pages)) {
806 ret |= VM_FAULT_OOM;
807 goto out;
808 }
809
810 for (i = 0; i < HPAGE_PMD_NR; i++) {
811 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
812 __GFP_OTHER_NODE,
813 vma, address, page_to_nid(page));
814 if (unlikely(!pages[i] ||
815 mem_cgroup_newpage_charge(pages[i], mm,
816 GFP_KERNEL))) {
817 if (pages[i])
818 put_page(pages[i]);
819 mem_cgroup_uncharge_start();
820 while (--i >= 0) {
821 mem_cgroup_uncharge_page(pages[i]);
822 put_page(pages[i]);
823 }
824 mem_cgroup_uncharge_end();
825 kfree(pages);
826 ret |= VM_FAULT_OOM;
827 goto out;
828 }
829 }
830
831 for (i = 0; i < HPAGE_PMD_NR; i++) {
832 copy_user_highpage(pages[i], page + i,
833 haddr + PAGE_SIZE * i, vma);
834 __SetPageUptodate(pages[i]);
835 cond_resched();
836 }
837
838 spin_lock(&mm->page_table_lock);
839 if (unlikely(!pmd_same(*pmd, orig_pmd)))
840 goto out_free_pages;
841 VM_BUG_ON(!PageHead(page));
842
843 pmdp_clear_flush_notify(vma, haddr, pmd);
844 /* leave pmd empty until pte is filled */
845
846 pgtable = get_pmd_huge_pte(mm);
847 pmd_populate(mm, &_pmd, pgtable);
848
849 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
850 pte_t *pte, entry;
851 entry = mk_pte(pages[i], vma->vm_page_prot);
852 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
853 page_add_new_anon_rmap(pages[i], vma, haddr);
854 pte = pte_offset_map(&_pmd, haddr);
855 VM_BUG_ON(!pte_none(*pte));
856 set_pte_at(mm, haddr, pte, entry);
857 pte_unmap(pte);
858 }
859 kfree(pages);
860
861 mm->nr_ptes++;
862 smp_wmb(); /* make pte visible before pmd */
863 pmd_populate(mm, pmd, pgtable);
864 page_remove_rmap(page);
865 spin_unlock(&mm->page_table_lock);
866
867 ret |= VM_FAULT_WRITE;
868 put_page(page);
869
870 out:
871 return ret;
872
873 out_free_pages:
874 spin_unlock(&mm->page_table_lock);
875 mem_cgroup_uncharge_start();
876 for (i = 0; i < HPAGE_PMD_NR; i++) {
877 mem_cgroup_uncharge_page(pages[i]);
878 put_page(pages[i]);
879 }
880 mem_cgroup_uncharge_end();
881 kfree(pages);
882 goto out;
883 }
884
885 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
886 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
887 {
888 int ret = 0;
889 struct page *page, *new_page;
890 unsigned long haddr;
891
892 VM_BUG_ON(!vma->anon_vma);
893 spin_lock(&mm->page_table_lock);
894 if (unlikely(!pmd_same(*pmd, orig_pmd)))
895 goto out_unlock;
896
897 page = pmd_page(orig_pmd);
898 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
899 haddr = address & HPAGE_PMD_MASK;
900 if (page_mapcount(page) == 1) {
901 pmd_t entry;
902 entry = pmd_mkyoung(orig_pmd);
903 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
904 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
905 update_mmu_cache(vma, address, entry);
906 ret |= VM_FAULT_WRITE;
907 goto out_unlock;
908 }
909 get_page(page);
910 spin_unlock(&mm->page_table_lock);
911
912 if (transparent_hugepage_enabled(vma) &&
913 !transparent_hugepage_debug_cow())
914 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
915 vma, haddr, numa_node_id(), 0);
916 else
917 new_page = NULL;
918
919 if (unlikely(!new_page)) {
920 count_vm_event(THP_FAULT_FALLBACK);
921 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
922 pmd, orig_pmd, page, haddr);
923 put_page(page);
924 goto out;
925 }
926 count_vm_event(THP_FAULT_ALLOC);
927
928 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
929 put_page(new_page);
930 put_page(page);
931 ret |= VM_FAULT_OOM;
932 goto out;
933 }
934
935 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
936 __SetPageUptodate(new_page);
937
938 spin_lock(&mm->page_table_lock);
939 put_page(page);
940 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
941 mem_cgroup_uncharge_page(new_page);
942 put_page(new_page);
943 } else {
944 pmd_t entry;
945 VM_BUG_ON(!PageHead(page));
946 entry = mk_pmd(new_page, vma->vm_page_prot);
947 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
948 entry = pmd_mkhuge(entry);
949 pmdp_clear_flush_notify(vma, haddr, pmd);
950 page_add_new_anon_rmap(new_page, vma, haddr);
951 set_pmd_at(mm, haddr, pmd, entry);
952 update_mmu_cache(vma, address, entry);
953 page_remove_rmap(page);
954 put_page(page);
955 ret |= VM_FAULT_WRITE;
956 }
957 out_unlock:
958 spin_unlock(&mm->page_table_lock);
959 out:
960 return ret;
961 }
962
963 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
964 unsigned long addr,
965 pmd_t *pmd,
966 unsigned int flags)
967 {
968 struct page *page = NULL;
969
970 assert_spin_locked(&mm->page_table_lock);
971
972 if (flags & FOLL_WRITE && !pmd_write(*pmd))
973 goto out;
974
975 page = pmd_page(*pmd);
976 VM_BUG_ON(!PageHead(page));
977 if (flags & FOLL_TOUCH) {
978 pmd_t _pmd;
979 /*
980 * We should set the dirty bit only for FOLL_WRITE but
981 * for now the dirty bit in the pmd is meaningless.
982 * And if the dirty bit will become meaningful and
983 * we'll only set it with FOLL_WRITE, an atomic
984 * set_bit will be required on the pmd to set the
985 * young bit, instead of the current set_pmd_at.
986 */
987 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
988 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
989 }
990 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
991 VM_BUG_ON(!PageCompound(page));
992 if (flags & FOLL_GET)
993 get_page(page);
994
995 out:
996 return page;
997 }
998
999 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1000 pmd_t *pmd)
1001 {
1002 int ret = 0;
1003
1004 spin_lock(&tlb->mm->page_table_lock);
1005 if (likely(pmd_trans_huge(*pmd))) {
1006 if (unlikely(pmd_trans_splitting(*pmd))) {
1007 spin_unlock(&tlb->mm->page_table_lock);
1008 wait_split_huge_page(vma->anon_vma,
1009 pmd);
1010 } else {
1011 struct page *page;
1012 pgtable_t pgtable;
1013 pgtable = get_pmd_huge_pte(tlb->mm);
1014 page = pmd_page(*pmd);
1015 pmd_clear(pmd);
1016 page_remove_rmap(page);
1017 VM_BUG_ON(page_mapcount(page) < 0);
1018 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1019 VM_BUG_ON(!PageHead(page));
1020 spin_unlock(&tlb->mm->page_table_lock);
1021 tlb_remove_page(tlb, page);
1022 pte_free(tlb->mm, pgtable);
1023 ret = 1;
1024 }
1025 } else
1026 spin_unlock(&tlb->mm->page_table_lock);
1027
1028 return ret;
1029 }
1030
1031 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1032 unsigned long addr, unsigned long end,
1033 unsigned char *vec)
1034 {
1035 int ret = 0;
1036
1037 spin_lock(&vma->vm_mm->page_table_lock);
1038 if (likely(pmd_trans_huge(*pmd))) {
1039 ret = !pmd_trans_splitting(*pmd);
1040 spin_unlock(&vma->vm_mm->page_table_lock);
1041 if (unlikely(!ret))
1042 wait_split_huge_page(vma->anon_vma, pmd);
1043 else {
1044 /*
1045 * All logical pages in the range are present
1046 * if backed by a huge page.
1047 */
1048 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1049 }
1050 } else
1051 spin_unlock(&vma->vm_mm->page_table_lock);
1052
1053 return ret;
1054 }
1055
1056 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1057 unsigned long old_addr,
1058 unsigned long new_addr, unsigned long old_end,
1059 pmd_t *old_pmd, pmd_t *new_pmd)
1060 {
1061 int ret = 0;
1062 pmd_t pmd;
1063
1064 struct mm_struct *mm = vma->vm_mm;
1065
1066 if ((old_addr & ~HPAGE_PMD_MASK) ||
1067 (new_addr & ~HPAGE_PMD_MASK) ||
1068 old_end - old_addr < HPAGE_PMD_SIZE ||
1069 (new_vma->vm_flags & VM_NOHUGEPAGE))
1070 goto out;
1071
1072 /*
1073 * The destination pmd shouldn't be established, free_pgtables()
1074 * should have release it.
1075 */
1076 if (WARN_ON(!pmd_none(*new_pmd))) {
1077 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1078 goto out;
1079 }
1080
1081 spin_lock(&mm->page_table_lock);
1082 if (likely(pmd_trans_huge(*old_pmd))) {
1083 if (pmd_trans_splitting(*old_pmd)) {
1084 spin_unlock(&mm->page_table_lock);
1085 wait_split_huge_page(vma->anon_vma, old_pmd);
1086 ret = -1;
1087 } else {
1088 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1089 VM_BUG_ON(!pmd_none(*new_pmd));
1090 set_pmd_at(mm, new_addr, new_pmd, pmd);
1091 spin_unlock(&mm->page_table_lock);
1092 ret = 1;
1093 }
1094 } else {
1095 spin_unlock(&mm->page_table_lock);
1096 }
1097 out:
1098 return ret;
1099 }
1100
1101 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1102 unsigned long addr, pgprot_t newprot)
1103 {
1104 struct mm_struct *mm = vma->vm_mm;
1105 int ret = 0;
1106
1107 spin_lock(&mm->page_table_lock);
1108 if (likely(pmd_trans_huge(*pmd))) {
1109 if (unlikely(pmd_trans_splitting(*pmd))) {
1110 spin_unlock(&mm->page_table_lock);
1111 wait_split_huge_page(vma->anon_vma, pmd);
1112 } else {
1113 pmd_t entry;
1114
1115 entry = pmdp_get_and_clear(mm, addr, pmd);
1116 entry = pmd_modify(entry, newprot);
1117 set_pmd_at(mm, addr, pmd, entry);
1118 spin_unlock(&vma->vm_mm->page_table_lock);
1119 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1120 ret = 1;
1121 }
1122 } else
1123 spin_unlock(&vma->vm_mm->page_table_lock);
1124
1125 return ret;
1126 }
1127
1128 pmd_t *page_check_address_pmd(struct page *page,
1129 struct mm_struct *mm,
1130 unsigned long address,
1131 enum page_check_address_pmd_flag flag)
1132 {
1133 pgd_t *pgd;
1134 pud_t *pud;
1135 pmd_t *pmd, *ret = NULL;
1136
1137 if (address & ~HPAGE_PMD_MASK)
1138 goto out;
1139
1140 pgd = pgd_offset(mm, address);
1141 if (!pgd_present(*pgd))
1142 goto out;
1143
1144 pud = pud_offset(pgd, address);
1145 if (!pud_present(*pud))
1146 goto out;
1147
1148 pmd = pmd_offset(pud, address);
1149 if (pmd_none(*pmd))
1150 goto out;
1151 if (pmd_page(*pmd) != page)
1152 goto out;
1153 /*
1154 * split_vma() may create temporary aliased mappings. There is
1155 * no risk as long as all huge pmd are found and have their
1156 * splitting bit set before __split_huge_page_refcount
1157 * runs. Finding the same huge pmd more than once during the
1158 * same rmap walk is not a problem.
1159 */
1160 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1161 pmd_trans_splitting(*pmd))
1162 goto out;
1163 if (pmd_trans_huge(*pmd)) {
1164 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1165 !pmd_trans_splitting(*pmd));
1166 ret = pmd;
1167 }
1168 out:
1169 return ret;
1170 }
1171
1172 static int __split_huge_page_splitting(struct page *page,
1173 struct vm_area_struct *vma,
1174 unsigned long address)
1175 {
1176 struct mm_struct *mm = vma->vm_mm;
1177 pmd_t *pmd;
1178 int ret = 0;
1179
1180 spin_lock(&mm->page_table_lock);
1181 pmd = page_check_address_pmd(page, mm, address,
1182 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1183 if (pmd) {
1184 /*
1185 * We can't temporarily set the pmd to null in order
1186 * to split it, the pmd must remain marked huge at all
1187 * times or the VM won't take the pmd_trans_huge paths
1188 * and it won't wait on the anon_vma->root->mutex to
1189 * serialize against split_huge_page*.
1190 */
1191 pmdp_splitting_flush_notify(vma, address, pmd);
1192 ret = 1;
1193 }
1194 spin_unlock(&mm->page_table_lock);
1195
1196 return ret;
1197 }
1198
1199 static void __split_huge_page_refcount(struct page *page)
1200 {
1201 int i;
1202 unsigned long head_index = page->index;
1203 struct zone *zone = page_zone(page);
1204 int zonestat;
1205
1206 /* prevent PageLRU to go away from under us, and freeze lru stats */
1207 spin_lock_irq(&zone->lru_lock);
1208 compound_lock(page);
1209
1210 for (i = 1; i < HPAGE_PMD_NR; i++) {
1211 struct page *page_tail = page + i;
1212
1213 /* tail_page->_count cannot change */
1214 atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1215 BUG_ON(page_count(page) <= 0);
1216 atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1217 BUG_ON(atomic_read(&page_tail->_count) <= 0);
1218
1219 /* after clearing PageTail the gup refcount can be released */
1220 smp_mb();
1221
1222 /*
1223 * retain hwpoison flag of the poisoned tail page:
1224 * fix for the unsuitable process killed on Guest Machine(KVM)
1225 * by the memory-failure.
1226 */
1227 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1228 page_tail->flags |= (page->flags &
1229 ((1L << PG_referenced) |
1230 (1L << PG_swapbacked) |
1231 (1L << PG_mlocked) |
1232 (1L << PG_uptodate)));
1233 page_tail->flags |= (1L << PG_dirty);
1234
1235 /*
1236 * 1) clear PageTail before overwriting first_page
1237 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1238 */
1239 smp_wmb();
1240
1241 /*
1242 * __split_huge_page_splitting() already set the
1243 * splitting bit in all pmd that could map this
1244 * hugepage, that will ensure no CPU can alter the
1245 * mapcount on the head page. The mapcount is only
1246 * accounted in the head page and it has to be
1247 * transferred to all tail pages in the below code. So
1248 * for this code to be safe, the split the mapcount
1249 * can't change. But that doesn't mean userland can't
1250 * keep changing and reading the page contents while
1251 * we transfer the mapcount, so the pmd splitting
1252 * status is achieved setting a reserved bit in the
1253 * pmd, not by clearing the present bit.
1254 */
1255 BUG_ON(page_mapcount(page_tail));
1256 page_tail->_mapcount = page->_mapcount;
1257
1258 BUG_ON(page_tail->mapping);
1259 page_tail->mapping = page->mapping;
1260
1261 page_tail->index = ++head_index;
1262
1263 BUG_ON(!PageAnon(page_tail));
1264 BUG_ON(!PageUptodate(page_tail));
1265 BUG_ON(!PageDirty(page_tail));
1266 BUG_ON(!PageSwapBacked(page_tail));
1267
1268 mem_cgroup_split_huge_fixup(page, page_tail);
1269
1270 lru_add_page_tail(zone, page, page_tail);
1271 }
1272
1273 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1274 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1275
1276 /*
1277 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1278 * so adjust those appropriately if this page is on the LRU.
1279 */
1280 if (PageLRU(page)) {
1281 zonestat = NR_LRU_BASE + page_lru(page);
1282 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1283 }
1284
1285 ClearPageCompound(page);
1286 compound_unlock(page);
1287 spin_unlock_irq(&zone->lru_lock);
1288
1289 for (i = 1; i < HPAGE_PMD_NR; i++) {
1290 struct page *page_tail = page + i;
1291 BUG_ON(page_count(page_tail) <= 0);
1292 /*
1293 * Tail pages may be freed if there wasn't any mapping
1294 * like if add_to_swap() is running on a lru page that
1295 * had its mapping zapped. And freeing these pages
1296 * requires taking the lru_lock so we do the put_page
1297 * of the tail pages after the split is complete.
1298 */
1299 put_page(page_tail);
1300 }
1301
1302 /*
1303 * Only the head page (now become a regular page) is required
1304 * to be pinned by the caller.
1305 */
1306 BUG_ON(page_count(page) <= 0);
1307 }
1308
1309 static int __split_huge_page_map(struct page *page,
1310 struct vm_area_struct *vma,
1311 unsigned long address)
1312 {
1313 struct mm_struct *mm = vma->vm_mm;
1314 pmd_t *pmd, _pmd;
1315 int ret = 0, i;
1316 pgtable_t pgtable;
1317 unsigned long haddr;
1318
1319 spin_lock(&mm->page_table_lock);
1320 pmd = page_check_address_pmd(page, mm, address,
1321 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1322 if (pmd) {
1323 pgtable = get_pmd_huge_pte(mm);
1324 pmd_populate(mm, &_pmd, pgtable);
1325
1326 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1327 i++, haddr += PAGE_SIZE) {
1328 pte_t *pte, entry;
1329 BUG_ON(PageCompound(page+i));
1330 entry = mk_pte(page + i, vma->vm_page_prot);
1331 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1332 if (!pmd_write(*pmd))
1333 entry = pte_wrprotect(entry);
1334 else
1335 BUG_ON(page_mapcount(page) != 1);
1336 if (!pmd_young(*pmd))
1337 entry = pte_mkold(entry);
1338 pte = pte_offset_map(&_pmd, haddr);
1339 BUG_ON(!pte_none(*pte));
1340 set_pte_at(mm, haddr, pte, entry);
1341 pte_unmap(pte);
1342 }
1343
1344 mm->nr_ptes++;
1345 smp_wmb(); /* make pte visible before pmd */
1346 /*
1347 * Up to this point the pmd is present and huge and
1348 * userland has the whole access to the hugepage
1349 * during the split (which happens in place). If we
1350 * overwrite the pmd with the not-huge version
1351 * pointing to the pte here (which of course we could
1352 * if all CPUs were bug free), userland could trigger
1353 * a small page size TLB miss on the small sized TLB
1354 * while the hugepage TLB entry is still established
1355 * in the huge TLB. Some CPU doesn't like that. See
1356 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1357 * Erratum 383 on page 93. Intel should be safe but is
1358 * also warns that it's only safe if the permission
1359 * and cache attributes of the two entries loaded in
1360 * the two TLB is identical (which should be the case
1361 * here). But it is generally safer to never allow
1362 * small and huge TLB entries for the same virtual
1363 * address to be loaded simultaneously. So instead of
1364 * doing "pmd_populate(); flush_tlb_range();" we first
1365 * mark the current pmd notpresent (atomically because
1366 * here the pmd_trans_huge and pmd_trans_splitting
1367 * must remain set at all times on the pmd until the
1368 * split is complete for this pmd), then we flush the
1369 * SMP TLB and finally we write the non-huge version
1370 * of the pmd entry with pmd_populate.
1371 */
1372 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1373 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1374 pmd_populate(mm, pmd, pgtable);
1375 ret = 1;
1376 }
1377 spin_unlock(&mm->page_table_lock);
1378
1379 return ret;
1380 }
1381
1382 /* must be called with anon_vma->root->mutex hold */
1383 static void __split_huge_page(struct page *page,
1384 struct anon_vma *anon_vma)
1385 {
1386 int mapcount, mapcount2;
1387 struct anon_vma_chain *avc;
1388
1389 BUG_ON(!PageHead(page));
1390 BUG_ON(PageTail(page));
1391
1392 mapcount = 0;
1393 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1394 struct vm_area_struct *vma = avc->vma;
1395 unsigned long addr = vma_address(page, vma);
1396 BUG_ON(is_vma_temporary_stack(vma));
1397 if (addr == -EFAULT)
1398 continue;
1399 mapcount += __split_huge_page_splitting(page, vma, addr);
1400 }
1401 /*
1402 * It is critical that new vmas are added to the tail of the
1403 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1404 * and establishes a child pmd before
1405 * __split_huge_page_splitting() freezes the parent pmd (so if
1406 * we fail to prevent copy_huge_pmd() from running until the
1407 * whole __split_huge_page() is complete), we will still see
1408 * the newly established pmd of the child later during the
1409 * walk, to be able to set it as pmd_trans_splitting too.
1410 */
1411 if (mapcount != page_mapcount(page))
1412 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1413 mapcount, page_mapcount(page));
1414 BUG_ON(mapcount != page_mapcount(page));
1415
1416 __split_huge_page_refcount(page);
1417
1418 mapcount2 = 0;
1419 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1420 struct vm_area_struct *vma = avc->vma;
1421 unsigned long addr = vma_address(page, vma);
1422 BUG_ON(is_vma_temporary_stack(vma));
1423 if (addr == -EFAULT)
1424 continue;
1425 mapcount2 += __split_huge_page_map(page, vma, addr);
1426 }
1427 if (mapcount != mapcount2)
1428 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1429 mapcount, mapcount2, page_mapcount(page));
1430 BUG_ON(mapcount != mapcount2);
1431 }
1432
1433 int split_huge_page(struct page *page)
1434 {
1435 struct anon_vma *anon_vma;
1436 int ret = 1;
1437
1438 BUG_ON(!PageAnon(page));
1439 anon_vma = page_lock_anon_vma(page);
1440 if (!anon_vma)
1441 goto out;
1442 ret = 0;
1443 if (!PageCompound(page))
1444 goto out_unlock;
1445
1446 BUG_ON(!PageSwapBacked(page));
1447 __split_huge_page(page, anon_vma);
1448 count_vm_event(THP_SPLIT);
1449
1450 BUG_ON(PageCompound(page));
1451 out_unlock:
1452 page_unlock_anon_vma(anon_vma);
1453 out:
1454 return ret;
1455 }
1456
1457 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1458 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1459
1460 int hugepage_madvise(struct vm_area_struct *vma,
1461 unsigned long *vm_flags, int advice)
1462 {
1463 switch (advice) {
1464 case MADV_HUGEPAGE:
1465 /*
1466 * Be somewhat over-protective like KSM for now!
1467 */
1468 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1469 return -EINVAL;
1470 *vm_flags &= ~VM_NOHUGEPAGE;
1471 *vm_flags |= VM_HUGEPAGE;
1472 /*
1473 * If the vma become good for khugepaged to scan,
1474 * register it here without waiting a page fault that
1475 * may not happen any time soon.
1476 */
1477 if (unlikely(khugepaged_enter_vma_merge(vma)))
1478 return -ENOMEM;
1479 break;
1480 case MADV_NOHUGEPAGE:
1481 /*
1482 * Be somewhat over-protective like KSM for now!
1483 */
1484 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1485 return -EINVAL;
1486 *vm_flags &= ~VM_HUGEPAGE;
1487 *vm_flags |= VM_NOHUGEPAGE;
1488 /*
1489 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1490 * this vma even if we leave the mm registered in khugepaged if
1491 * it got registered before VM_NOHUGEPAGE was set.
1492 */
1493 break;
1494 }
1495
1496 return 0;
1497 }
1498
1499 static int __init khugepaged_slab_init(void)
1500 {
1501 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1502 sizeof(struct mm_slot),
1503 __alignof__(struct mm_slot), 0, NULL);
1504 if (!mm_slot_cache)
1505 return -ENOMEM;
1506
1507 return 0;
1508 }
1509
1510 static void __init khugepaged_slab_free(void)
1511 {
1512 kmem_cache_destroy(mm_slot_cache);
1513 mm_slot_cache = NULL;
1514 }
1515
1516 static inline struct mm_slot *alloc_mm_slot(void)
1517 {
1518 if (!mm_slot_cache) /* initialization failed */
1519 return NULL;
1520 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1521 }
1522
1523 static inline void free_mm_slot(struct mm_slot *mm_slot)
1524 {
1525 kmem_cache_free(mm_slot_cache, mm_slot);
1526 }
1527
1528 static int __init mm_slots_hash_init(void)
1529 {
1530 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1531 GFP_KERNEL);
1532 if (!mm_slots_hash)
1533 return -ENOMEM;
1534 return 0;
1535 }
1536
1537 #if 0
1538 static void __init mm_slots_hash_free(void)
1539 {
1540 kfree(mm_slots_hash);
1541 mm_slots_hash = NULL;
1542 }
1543 #endif
1544
1545 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1546 {
1547 struct mm_slot *mm_slot;
1548 struct hlist_head *bucket;
1549 struct hlist_node *node;
1550
1551 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1552 % MM_SLOTS_HASH_HEADS];
1553 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1554 if (mm == mm_slot->mm)
1555 return mm_slot;
1556 }
1557 return NULL;
1558 }
1559
1560 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1561 struct mm_slot *mm_slot)
1562 {
1563 struct hlist_head *bucket;
1564
1565 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1566 % MM_SLOTS_HASH_HEADS];
1567 mm_slot->mm = mm;
1568 hlist_add_head(&mm_slot->hash, bucket);
1569 }
1570
1571 static inline int khugepaged_test_exit(struct mm_struct *mm)
1572 {
1573 return atomic_read(&mm->mm_users) == 0;
1574 }
1575
1576 int __khugepaged_enter(struct mm_struct *mm)
1577 {
1578 struct mm_slot *mm_slot;
1579 int wakeup;
1580
1581 mm_slot = alloc_mm_slot();
1582 if (!mm_slot)
1583 return -ENOMEM;
1584
1585 /* __khugepaged_exit() must not run from under us */
1586 VM_BUG_ON(khugepaged_test_exit(mm));
1587 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1588 free_mm_slot(mm_slot);
1589 return 0;
1590 }
1591
1592 spin_lock(&khugepaged_mm_lock);
1593 insert_to_mm_slots_hash(mm, mm_slot);
1594 /*
1595 * Insert just behind the scanning cursor, to let the area settle
1596 * down a little.
1597 */
1598 wakeup = list_empty(&khugepaged_scan.mm_head);
1599 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1600 spin_unlock(&khugepaged_mm_lock);
1601
1602 atomic_inc(&mm->mm_count);
1603 if (wakeup)
1604 wake_up_interruptible(&khugepaged_wait);
1605
1606 return 0;
1607 }
1608
1609 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1610 {
1611 unsigned long hstart, hend;
1612 if (!vma->anon_vma)
1613 /*
1614 * Not yet faulted in so we will register later in the
1615 * page fault if needed.
1616 */
1617 return 0;
1618 if (vma->vm_ops)
1619 /* khugepaged not yet working on file or special mappings */
1620 return 0;
1621 /*
1622 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1623 * true too, verify it here.
1624 */
1625 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1626 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1627 hend = vma->vm_end & HPAGE_PMD_MASK;
1628 if (hstart < hend)
1629 return khugepaged_enter(vma);
1630 return 0;
1631 }
1632
1633 void __khugepaged_exit(struct mm_struct *mm)
1634 {
1635 struct mm_slot *mm_slot;
1636 int free = 0;
1637
1638 spin_lock(&khugepaged_mm_lock);
1639 mm_slot = get_mm_slot(mm);
1640 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1641 hlist_del(&mm_slot->hash);
1642 list_del(&mm_slot->mm_node);
1643 free = 1;
1644 }
1645 spin_unlock(&khugepaged_mm_lock);
1646
1647 if (free) {
1648 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1649 free_mm_slot(mm_slot);
1650 mmdrop(mm);
1651 } else if (mm_slot) {
1652 /*
1653 * This is required to serialize against
1654 * khugepaged_test_exit() (which is guaranteed to run
1655 * under mmap sem read mode). Stop here (after we
1656 * return all pagetables will be destroyed) until
1657 * khugepaged has finished working on the pagetables
1658 * under the mmap_sem.
1659 */
1660 down_write(&mm->mmap_sem);
1661 up_write(&mm->mmap_sem);
1662 }
1663 }
1664
1665 static void release_pte_page(struct page *page)
1666 {
1667 /* 0 stands for page_is_file_cache(page) == false */
1668 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1669 unlock_page(page);
1670 putback_lru_page(page);
1671 }
1672
1673 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1674 {
1675 while (--_pte >= pte) {
1676 pte_t pteval = *_pte;
1677 if (!pte_none(pteval))
1678 release_pte_page(pte_page(pteval));
1679 }
1680 }
1681
1682 static void release_all_pte_pages(pte_t *pte)
1683 {
1684 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1685 }
1686
1687 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1688 unsigned long address,
1689 pte_t *pte)
1690 {
1691 struct page *page;
1692 pte_t *_pte;
1693 int referenced = 0, isolated = 0, none = 0;
1694 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1695 _pte++, address += PAGE_SIZE) {
1696 pte_t pteval = *_pte;
1697 if (pte_none(pteval)) {
1698 if (++none <= khugepaged_max_ptes_none)
1699 continue;
1700 else {
1701 release_pte_pages(pte, _pte);
1702 goto out;
1703 }
1704 }
1705 if (!pte_present(pteval) || !pte_write(pteval)) {
1706 release_pte_pages(pte, _pte);
1707 goto out;
1708 }
1709 page = vm_normal_page(vma, address, pteval);
1710 if (unlikely(!page)) {
1711 release_pte_pages(pte, _pte);
1712 goto out;
1713 }
1714 VM_BUG_ON(PageCompound(page));
1715 BUG_ON(!PageAnon(page));
1716 VM_BUG_ON(!PageSwapBacked(page));
1717
1718 /* cannot use mapcount: can't collapse if there's a gup pin */
1719 if (page_count(page) != 1) {
1720 release_pte_pages(pte, _pte);
1721 goto out;
1722 }
1723 /*
1724 * We can do it before isolate_lru_page because the
1725 * page can't be freed from under us. NOTE: PG_lock
1726 * is needed to serialize against split_huge_page
1727 * when invoked from the VM.
1728 */
1729 if (!trylock_page(page)) {
1730 release_pte_pages(pte, _pte);
1731 goto out;
1732 }
1733 /*
1734 * Isolate the page to avoid collapsing an hugepage
1735 * currently in use by the VM.
1736 */
1737 if (isolate_lru_page(page)) {
1738 unlock_page(page);
1739 release_pte_pages(pte, _pte);
1740 goto out;
1741 }
1742 /* 0 stands for page_is_file_cache(page) == false */
1743 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1744 VM_BUG_ON(!PageLocked(page));
1745 VM_BUG_ON(PageLRU(page));
1746
1747 /* If there is no mapped pte young don't collapse the page */
1748 if (pte_young(pteval) || PageReferenced(page) ||
1749 mmu_notifier_test_young(vma->vm_mm, address))
1750 referenced = 1;
1751 }
1752 if (unlikely(!referenced))
1753 release_all_pte_pages(pte);
1754 else
1755 isolated = 1;
1756 out:
1757 return isolated;
1758 }
1759
1760 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1761 struct vm_area_struct *vma,
1762 unsigned long address,
1763 spinlock_t *ptl)
1764 {
1765 pte_t *_pte;
1766 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1767 pte_t pteval = *_pte;
1768 struct page *src_page;
1769
1770 if (pte_none(pteval)) {
1771 clear_user_highpage(page, address);
1772 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1773 } else {
1774 src_page = pte_page(pteval);
1775 copy_user_highpage(page, src_page, address, vma);
1776 VM_BUG_ON(page_mapcount(src_page) != 1);
1777 VM_BUG_ON(page_count(src_page) != 2);
1778 release_pte_page(src_page);
1779 /*
1780 * ptl mostly unnecessary, but preempt has to
1781 * be disabled to update the per-cpu stats
1782 * inside page_remove_rmap().
1783 */
1784 spin_lock(ptl);
1785 /*
1786 * paravirt calls inside pte_clear here are
1787 * superfluous.
1788 */
1789 pte_clear(vma->vm_mm, address, _pte);
1790 page_remove_rmap(src_page);
1791 spin_unlock(ptl);
1792 free_page_and_swap_cache(src_page);
1793 }
1794
1795 address += PAGE_SIZE;
1796 page++;
1797 }
1798 }
1799
1800 static void collapse_huge_page(struct mm_struct *mm,
1801 unsigned long address,
1802 struct page **hpage,
1803 struct vm_area_struct *vma,
1804 int node)
1805 {
1806 pgd_t *pgd;
1807 pud_t *pud;
1808 pmd_t *pmd, _pmd;
1809 pte_t *pte;
1810 pgtable_t pgtable;
1811 struct page *new_page;
1812 spinlock_t *ptl;
1813 int isolated;
1814 unsigned long hstart, hend;
1815
1816 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1817 #ifndef CONFIG_NUMA
1818 up_read(&mm->mmap_sem);
1819 VM_BUG_ON(!*hpage);
1820 new_page = *hpage;
1821 #else
1822 VM_BUG_ON(*hpage);
1823 /*
1824 * Allocate the page while the vma is still valid and under
1825 * the mmap_sem read mode so there is no memory allocation
1826 * later when we take the mmap_sem in write mode. This is more
1827 * friendly behavior (OTOH it may actually hide bugs) to
1828 * filesystems in userland with daemons allocating memory in
1829 * the userland I/O paths. Allocating memory with the
1830 * mmap_sem in read mode is good idea also to allow greater
1831 * scalability.
1832 */
1833 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1834 node, __GFP_OTHER_NODE);
1835
1836 /*
1837 * After allocating the hugepage, release the mmap_sem read lock in
1838 * preparation for taking it in write mode.
1839 */
1840 up_read(&mm->mmap_sem);
1841 if (unlikely(!new_page)) {
1842 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1843 *hpage = ERR_PTR(-ENOMEM);
1844 return;
1845 }
1846 #endif
1847
1848 count_vm_event(THP_COLLAPSE_ALLOC);
1849 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1850 #ifdef CONFIG_NUMA
1851 put_page(new_page);
1852 #endif
1853 return;
1854 }
1855
1856 /*
1857 * Prevent all access to pagetables with the exception of
1858 * gup_fast later hanlded by the ptep_clear_flush and the VM
1859 * handled by the anon_vma lock + PG_lock.
1860 */
1861 down_write(&mm->mmap_sem);
1862 if (unlikely(khugepaged_test_exit(mm)))
1863 goto out;
1864
1865 vma = find_vma(mm, address);
1866 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1867 hend = vma->vm_end & HPAGE_PMD_MASK;
1868 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1869 goto out;
1870
1871 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1872 (vma->vm_flags & VM_NOHUGEPAGE))
1873 goto out;
1874
1875 if (!vma->anon_vma || vma->vm_ops)
1876 goto out;
1877 if (is_vma_temporary_stack(vma))
1878 goto out;
1879 /*
1880 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1881 * true too, verify it here.
1882 */
1883 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1884
1885 pgd = pgd_offset(mm, address);
1886 if (!pgd_present(*pgd))
1887 goto out;
1888
1889 pud = pud_offset(pgd, address);
1890 if (!pud_present(*pud))
1891 goto out;
1892
1893 pmd = pmd_offset(pud, address);
1894 /* pmd can't go away or become huge under us */
1895 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1896 goto out;
1897
1898 anon_vma_lock(vma->anon_vma);
1899
1900 pte = pte_offset_map(pmd, address);
1901 ptl = pte_lockptr(mm, pmd);
1902
1903 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1904 /*
1905 * After this gup_fast can't run anymore. This also removes
1906 * any huge TLB entry from the CPU so we won't allow
1907 * huge and small TLB entries for the same virtual address
1908 * to avoid the risk of CPU bugs in that area.
1909 */
1910 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1911 spin_unlock(&mm->page_table_lock);
1912
1913 spin_lock(ptl);
1914 isolated = __collapse_huge_page_isolate(vma, address, pte);
1915 spin_unlock(ptl);
1916
1917 if (unlikely(!isolated)) {
1918 pte_unmap(pte);
1919 spin_lock(&mm->page_table_lock);
1920 BUG_ON(!pmd_none(*pmd));
1921 set_pmd_at(mm, address, pmd, _pmd);
1922 spin_unlock(&mm->page_table_lock);
1923 anon_vma_unlock(vma->anon_vma);
1924 goto out;
1925 }
1926
1927 /*
1928 * All pages are isolated and locked so anon_vma rmap
1929 * can't run anymore.
1930 */
1931 anon_vma_unlock(vma->anon_vma);
1932
1933 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1934 pte_unmap(pte);
1935 __SetPageUptodate(new_page);
1936 pgtable = pmd_pgtable(_pmd);
1937 VM_BUG_ON(page_count(pgtable) != 1);
1938 VM_BUG_ON(page_mapcount(pgtable) != 0);
1939
1940 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1941 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1942 _pmd = pmd_mkhuge(_pmd);
1943
1944 /*
1945 * spin_lock() below is not the equivalent of smp_wmb(), so
1946 * this is needed to avoid the copy_huge_page writes to become
1947 * visible after the set_pmd_at() write.
1948 */
1949 smp_wmb();
1950
1951 spin_lock(&mm->page_table_lock);
1952 BUG_ON(!pmd_none(*pmd));
1953 page_add_new_anon_rmap(new_page, vma, address);
1954 set_pmd_at(mm, address, pmd, _pmd);
1955 update_mmu_cache(vma, address, _pmd);
1956 prepare_pmd_huge_pte(pgtable, mm);
1957 mm->nr_ptes--;
1958 spin_unlock(&mm->page_table_lock);
1959
1960 #ifndef CONFIG_NUMA
1961 *hpage = NULL;
1962 #endif
1963 khugepaged_pages_collapsed++;
1964 out_up_write:
1965 up_write(&mm->mmap_sem);
1966 return;
1967
1968 out:
1969 mem_cgroup_uncharge_page(new_page);
1970 #ifdef CONFIG_NUMA
1971 put_page(new_page);
1972 #endif
1973 goto out_up_write;
1974 }
1975
1976 static int khugepaged_scan_pmd(struct mm_struct *mm,
1977 struct vm_area_struct *vma,
1978 unsigned long address,
1979 struct page **hpage)
1980 {
1981 pgd_t *pgd;
1982 pud_t *pud;
1983 pmd_t *pmd;
1984 pte_t *pte, *_pte;
1985 int ret = 0, referenced = 0, none = 0;
1986 struct page *page;
1987 unsigned long _address;
1988 spinlock_t *ptl;
1989 int node = -1;
1990
1991 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1992
1993 pgd = pgd_offset(mm, address);
1994 if (!pgd_present(*pgd))
1995 goto out;
1996
1997 pud = pud_offset(pgd, address);
1998 if (!pud_present(*pud))
1999 goto out;
2000
2001 pmd = pmd_offset(pud, address);
2002 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2003 goto out;
2004
2005 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2006 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2007 _pte++, _address += PAGE_SIZE) {
2008 pte_t pteval = *_pte;
2009 if (pte_none(pteval)) {
2010 if (++none <= khugepaged_max_ptes_none)
2011 continue;
2012 else
2013 goto out_unmap;
2014 }
2015 if (!pte_present(pteval) || !pte_write(pteval))
2016 goto out_unmap;
2017 page = vm_normal_page(vma, _address, pteval);
2018 if (unlikely(!page))
2019 goto out_unmap;
2020 /*
2021 * Chose the node of the first page. This could
2022 * be more sophisticated and look at more pages,
2023 * but isn't for now.
2024 */
2025 if (node == -1)
2026 node = page_to_nid(page);
2027 VM_BUG_ON(PageCompound(page));
2028 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2029 goto out_unmap;
2030 /* cannot use mapcount: can't collapse if there's a gup pin */
2031 if (page_count(page) != 1)
2032 goto out_unmap;
2033 if (pte_young(pteval) || PageReferenced(page) ||
2034 mmu_notifier_test_young(vma->vm_mm, address))
2035 referenced = 1;
2036 }
2037 if (referenced)
2038 ret = 1;
2039 out_unmap:
2040 pte_unmap_unlock(pte, ptl);
2041 if (ret)
2042 /* collapse_huge_page will return with the mmap_sem released */
2043 collapse_huge_page(mm, address, hpage, vma, node);
2044 out:
2045 return ret;
2046 }
2047
2048 static void collect_mm_slot(struct mm_slot *mm_slot)
2049 {
2050 struct mm_struct *mm = mm_slot->mm;
2051
2052 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2053
2054 if (khugepaged_test_exit(mm)) {
2055 /* free mm_slot */
2056 hlist_del(&mm_slot->hash);
2057 list_del(&mm_slot->mm_node);
2058
2059 /*
2060 * Not strictly needed because the mm exited already.
2061 *
2062 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2063 */
2064
2065 /* khugepaged_mm_lock actually not necessary for the below */
2066 free_mm_slot(mm_slot);
2067 mmdrop(mm);
2068 }
2069 }
2070
2071 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2072 struct page **hpage)
2073 __releases(&khugepaged_mm_lock)
2074 __acquires(&khugepaged_mm_lock)
2075 {
2076 struct mm_slot *mm_slot;
2077 struct mm_struct *mm;
2078 struct vm_area_struct *vma;
2079 int progress = 0;
2080
2081 VM_BUG_ON(!pages);
2082 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
2083
2084 if (khugepaged_scan.mm_slot)
2085 mm_slot = khugepaged_scan.mm_slot;
2086 else {
2087 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2088 struct mm_slot, mm_node);
2089 khugepaged_scan.address = 0;
2090 khugepaged_scan.mm_slot = mm_slot;
2091 }
2092 spin_unlock(&khugepaged_mm_lock);
2093
2094 mm = mm_slot->mm;
2095 down_read(&mm->mmap_sem);
2096 if (unlikely(khugepaged_test_exit(mm)))
2097 vma = NULL;
2098 else
2099 vma = find_vma(mm, khugepaged_scan.address);
2100
2101 progress++;
2102 for (; vma; vma = vma->vm_next) {
2103 unsigned long hstart, hend;
2104
2105 cond_resched();
2106 if (unlikely(khugepaged_test_exit(mm))) {
2107 progress++;
2108 break;
2109 }
2110
2111 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2112 !khugepaged_always()) ||
2113 (vma->vm_flags & VM_NOHUGEPAGE)) {
2114 skip:
2115 progress++;
2116 continue;
2117 }
2118 if (!vma->anon_vma || vma->vm_ops)
2119 goto skip;
2120 if (is_vma_temporary_stack(vma))
2121 goto skip;
2122 /*
2123 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2124 * must be true too, verify it here.
2125 */
2126 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2127 vma->vm_flags & VM_NO_THP);
2128
2129 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2130 hend = vma->vm_end & HPAGE_PMD_MASK;
2131 if (hstart >= hend)
2132 goto skip;
2133 if (khugepaged_scan.address > hend)
2134 goto skip;
2135 if (khugepaged_scan.address < hstart)
2136 khugepaged_scan.address = hstart;
2137 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2138
2139 while (khugepaged_scan.address < hend) {
2140 int ret;
2141 cond_resched();
2142 if (unlikely(khugepaged_test_exit(mm)))
2143 goto breakouterloop;
2144
2145 VM_BUG_ON(khugepaged_scan.address < hstart ||
2146 khugepaged_scan.address + HPAGE_PMD_SIZE >
2147 hend);
2148 ret = khugepaged_scan_pmd(mm, vma,
2149 khugepaged_scan.address,
2150 hpage);
2151 /* move to next address */
2152 khugepaged_scan.address += HPAGE_PMD_SIZE;
2153 progress += HPAGE_PMD_NR;
2154 if (ret)
2155 /* we released mmap_sem so break loop */
2156 goto breakouterloop_mmap_sem;
2157 if (progress >= pages)
2158 goto breakouterloop;
2159 }
2160 }
2161 breakouterloop:
2162 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2163 breakouterloop_mmap_sem:
2164
2165 spin_lock(&khugepaged_mm_lock);
2166 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2167 /*
2168 * Release the current mm_slot if this mm is about to die, or
2169 * if we scanned all vmas of this mm.
2170 */
2171 if (khugepaged_test_exit(mm) || !vma) {
2172 /*
2173 * Make sure that if mm_users is reaching zero while
2174 * khugepaged runs here, khugepaged_exit will find
2175 * mm_slot not pointing to the exiting mm.
2176 */
2177 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2178 khugepaged_scan.mm_slot = list_entry(
2179 mm_slot->mm_node.next,
2180 struct mm_slot, mm_node);
2181 khugepaged_scan.address = 0;
2182 } else {
2183 khugepaged_scan.mm_slot = NULL;
2184 khugepaged_full_scans++;
2185 }
2186
2187 collect_mm_slot(mm_slot);
2188 }
2189
2190 return progress;
2191 }
2192
2193 static int khugepaged_has_work(void)
2194 {
2195 return !list_empty(&khugepaged_scan.mm_head) &&
2196 khugepaged_enabled();
2197 }
2198
2199 static int khugepaged_wait_event(void)
2200 {
2201 return !list_empty(&khugepaged_scan.mm_head) ||
2202 !khugepaged_enabled();
2203 }
2204
2205 static void khugepaged_do_scan(struct page **hpage)
2206 {
2207 unsigned int progress = 0, pass_through_head = 0;
2208 unsigned int pages = khugepaged_pages_to_scan;
2209
2210 barrier(); /* write khugepaged_pages_to_scan to local stack */
2211
2212 while (progress < pages) {
2213 cond_resched();
2214
2215 #ifndef CONFIG_NUMA
2216 if (!*hpage) {
2217 *hpage = alloc_hugepage(khugepaged_defrag());
2218 if (unlikely(!*hpage)) {
2219 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2220 break;
2221 }
2222 count_vm_event(THP_COLLAPSE_ALLOC);
2223 }
2224 #else
2225 if (IS_ERR(*hpage))
2226 break;
2227 #endif
2228
2229 if (unlikely(kthread_should_stop() || freezing(current)))
2230 break;
2231
2232 spin_lock(&khugepaged_mm_lock);
2233 if (!khugepaged_scan.mm_slot)
2234 pass_through_head++;
2235 if (khugepaged_has_work() &&
2236 pass_through_head < 2)
2237 progress += khugepaged_scan_mm_slot(pages - progress,
2238 hpage);
2239 else
2240 progress = pages;
2241 spin_unlock(&khugepaged_mm_lock);
2242 }
2243 }
2244
2245 static void khugepaged_alloc_sleep(void)
2246 {
2247 DEFINE_WAIT(wait);
2248 add_wait_queue(&khugepaged_wait, &wait);
2249 schedule_timeout_interruptible(
2250 msecs_to_jiffies(
2251 khugepaged_alloc_sleep_millisecs));
2252 remove_wait_queue(&khugepaged_wait, &wait);
2253 }
2254
2255 #ifndef CONFIG_NUMA
2256 static struct page *khugepaged_alloc_hugepage(void)
2257 {
2258 struct page *hpage;
2259
2260 do {
2261 hpage = alloc_hugepage(khugepaged_defrag());
2262 if (!hpage) {
2263 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2264 khugepaged_alloc_sleep();
2265 } else
2266 count_vm_event(THP_COLLAPSE_ALLOC);
2267 } while (unlikely(!hpage) &&
2268 likely(khugepaged_enabled()));
2269 return hpage;
2270 }
2271 #endif
2272
2273 static void khugepaged_loop(void)
2274 {
2275 struct page *hpage;
2276
2277 #ifdef CONFIG_NUMA
2278 hpage = NULL;
2279 #endif
2280 while (likely(khugepaged_enabled())) {
2281 #ifndef CONFIG_NUMA
2282 hpage = khugepaged_alloc_hugepage();
2283 if (unlikely(!hpage))
2284 break;
2285 #else
2286 if (IS_ERR(hpage)) {
2287 khugepaged_alloc_sleep();
2288 hpage = NULL;
2289 }
2290 #endif
2291
2292 khugepaged_do_scan(&hpage);
2293 #ifndef CONFIG_NUMA
2294 if (hpage)
2295 put_page(hpage);
2296 #endif
2297 try_to_freeze();
2298 if (unlikely(kthread_should_stop()))
2299 break;
2300 if (khugepaged_has_work()) {
2301 DEFINE_WAIT(wait);
2302 if (!khugepaged_scan_sleep_millisecs)
2303 continue;
2304 add_wait_queue(&khugepaged_wait, &wait);
2305 schedule_timeout_interruptible(
2306 msecs_to_jiffies(
2307 khugepaged_scan_sleep_millisecs));
2308 remove_wait_queue(&khugepaged_wait, &wait);
2309 } else if (khugepaged_enabled())
2310 wait_event_freezable(khugepaged_wait,
2311 khugepaged_wait_event());
2312 }
2313 }
2314
2315 static int khugepaged(void *none)
2316 {
2317 struct mm_slot *mm_slot;
2318
2319 set_freezable();
2320 set_user_nice(current, 19);
2321
2322 /* serialize with start_khugepaged() */
2323 mutex_lock(&khugepaged_mutex);
2324
2325 for (;;) {
2326 mutex_unlock(&khugepaged_mutex);
2327 VM_BUG_ON(khugepaged_thread != current);
2328 khugepaged_loop();
2329 VM_BUG_ON(khugepaged_thread != current);
2330
2331 mutex_lock(&khugepaged_mutex);
2332 if (!khugepaged_enabled())
2333 break;
2334 if (unlikely(kthread_should_stop()))
2335 break;
2336 }
2337
2338 spin_lock(&khugepaged_mm_lock);
2339 mm_slot = khugepaged_scan.mm_slot;
2340 khugepaged_scan.mm_slot = NULL;
2341 if (mm_slot)
2342 collect_mm_slot(mm_slot);
2343 spin_unlock(&khugepaged_mm_lock);
2344
2345 khugepaged_thread = NULL;
2346 mutex_unlock(&khugepaged_mutex);
2347
2348 return 0;
2349 }
2350
2351 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2352 {
2353 struct page *page;
2354
2355 spin_lock(&mm->page_table_lock);
2356 if (unlikely(!pmd_trans_huge(*pmd))) {
2357 spin_unlock(&mm->page_table_lock);
2358 return;
2359 }
2360 page = pmd_page(*pmd);
2361 VM_BUG_ON(!page_count(page));
2362 get_page(page);
2363 spin_unlock(&mm->page_table_lock);
2364
2365 split_huge_page(page);
2366
2367 put_page(page);
2368 BUG_ON(pmd_trans_huge(*pmd));
2369 }
2370
2371 static void split_huge_page_address(struct mm_struct *mm,
2372 unsigned long address)
2373 {
2374 pgd_t *pgd;
2375 pud_t *pud;
2376 pmd_t *pmd;
2377
2378 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2379
2380 pgd = pgd_offset(mm, address);
2381 if (!pgd_present(*pgd))
2382 return;
2383
2384 pud = pud_offset(pgd, address);
2385 if (!pud_present(*pud))
2386 return;
2387
2388 pmd = pmd_offset(pud, address);
2389 if (!pmd_present(*pmd))
2390 return;
2391 /*
2392 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2393 * materialize from under us.
2394 */
2395 split_huge_page_pmd(mm, pmd);
2396 }
2397
2398 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2399 unsigned long start,
2400 unsigned long end,
2401 long adjust_next)
2402 {
2403 /*
2404 * If the new start address isn't hpage aligned and it could
2405 * previously contain an hugepage: check if we need to split
2406 * an huge pmd.
2407 */
2408 if (start & ~HPAGE_PMD_MASK &&
2409 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2410 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2411 split_huge_page_address(vma->vm_mm, start);
2412
2413 /*
2414 * If the new end address isn't hpage aligned and it could
2415 * previously contain an hugepage: check if we need to split
2416 * an huge pmd.
2417 */
2418 if (end & ~HPAGE_PMD_MASK &&
2419 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2420 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2421 split_huge_page_address(vma->vm_mm, end);
2422
2423 /*
2424 * If we're also updating the vma->vm_next->vm_start, if the new
2425 * vm_next->vm_start isn't page aligned and it could previously
2426 * contain an hugepage: check if we need to split an huge pmd.
2427 */
2428 if (adjust_next > 0) {
2429 struct vm_area_struct *next = vma->vm_next;
2430 unsigned long nstart = next->vm_start;
2431 nstart += adjust_next << PAGE_SHIFT;
2432 if (nstart & ~HPAGE_PMD_MASK &&
2433 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2434 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2435 split_huge_page_address(next->vm_mm, nstart);
2436 }
2437 }