]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/huge_memory.c
mm: numa: Do not migrate or account for hinting faults on the zero page
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28
29 /*
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34 * allocations.
35 */
36 unsigned long transparent_hugepage_flags __read_mostly =
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
39 #endif
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42 #endif
43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
46
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49 static unsigned int khugepaged_pages_collapsed;
50 static unsigned int khugepaged_full_scans;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54 static struct task_struct *khugepaged_thread __read_mostly;
55 static DEFINE_MUTEX(khugepaged_mutex);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58 /*
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
61 * fault.
62 */
63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64
65 static int khugepaged(void *none);
66 static int khugepaged_slab_init(void);
67
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70
71 static struct kmem_cache *mm_slot_cache __read_mostly;
72
73 /**
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
78 */
79 struct mm_slot {
80 struct hlist_node hash;
81 struct list_head mm_node;
82 struct mm_struct *mm;
83 };
84
85 /**
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
90 *
91 * There is only the one khugepaged_scan instance of this cursor structure.
92 */
93 struct khugepaged_scan {
94 struct list_head mm_head;
95 struct mm_slot *mm_slot;
96 unsigned long address;
97 };
98 static struct khugepaged_scan khugepaged_scan = {
99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100 };
101
102
103 static int set_recommended_min_free_kbytes(void)
104 {
105 struct zone *zone;
106 int nr_zones = 0;
107 unsigned long recommended_min;
108
109 if (!khugepaged_enabled())
110 return 0;
111
112 for_each_populated_zone(zone)
113 nr_zones++;
114
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118 /*
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
123 */
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
131
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
136 }
137 late_initcall(set_recommended_min_free_kbytes);
138
139 static int start_khugepaged(void)
140 {
141 int err = 0;
142 if (khugepaged_enabled()) {
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
151 }
152
153 if (!list_empty(&khugepaged_scan.mm_head))
154 wake_up_interruptible(&khugepaged_wait);
155
156 set_recommended_min_free_kbytes();
157 } else if (khugepaged_thread) {
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
160 }
161
162 return err;
163 }
164
165 static atomic_t huge_zero_refcount;
166 static struct page *huge_zero_page __read_mostly;
167
168 static inline bool is_huge_zero_page(struct page *page)
169 {
170 return ACCESS_ONCE(huge_zero_page) == page;
171 }
172
173 static inline bool is_huge_zero_pmd(pmd_t pmd)
174 {
175 return is_huge_zero_page(pmd_page(pmd));
176 }
177
178 static struct page *get_huge_zero_page(void)
179 {
180 struct page *zero_page;
181 retry:
182 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
183 return ACCESS_ONCE(huge_zero_page);
184
185 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
186 HPAGE_PMD_ORDER);
187 if (!zero_page) {
188 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
189 return NULL;
190 }
191 count_vm_event(THP_ZERO_PAGE_ALLOC);
192 preempt_disable();
193 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
194 preempt_enable();
195 __free_page(zero_page);
196 goto retry;
197 }
198
199 /* We take additional reference here. It will be put back by shrinker */
200 atomic_set(&huge_zero_refcount, 2);
201 preempt_enable();
202 return ACCESS_ONCE(huge_zero_page);
203 }
204
205 static void put_huge_zero_page(void)
206 {
207 /*
208 * Counter should never go to zero here. Only shrinker can put
209 * last reference.
210 */
211 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
212 }
213
214 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
215 struct shrink_control *sc)
216 {
217 /* we can free zero page only if last reference remains */
218 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
219 }
220
221 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
222 struct shrink_control *sc)
223 {
224 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
225 struct page *zero_page = xchg(&huge_zero_page, NULL);
226 BUG_ON(zero_page == NULL);
227 __free_page(zero_page);
228 return HPAGE_PMD_NR;
229 }
230
231 return 0;
232 }
233
234 static struct shrinker huge_zero_page_shrinker = {
235 .count_objects = shrink_huge_zero_page_count,
236 .scan_objects = shrink_huge_zero_page_scan,
237 .seeks = DEFAULT_SEEKS,
238 };
239
240 #ifdef CONFIG_SYSFS
241
242 static ssize_t double_flag_show(struct kobject *kobj,
243 struct kobj_attribute *attr, char *buf,
244 enum transparent_hugepage_flag enabled,
245 enum transparent_hugepage_flag req_madv)
246 {
247 if (test_bit(enabled, &transparent_hugepage_flags)) {
248 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
249 return sprintf(buf, "[always] madvise never\n");
250 } else if (test_bit(req_madv, &transparent_hugepage_flags))
251 return sprintf(buf, "always [madvise] never\n");
252 else
253 return sprintf(buf, "always madvise [never]\n");
254 }
255 static ssize_t double_flag_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count,
258 enum transparent_hugepage_flag enabled,
259 enum transparent_hugepage_flag req_madv)
260 {
261 if (!memcmp("always", buf,
262 min(sizeof("always")-1, count))) {
263 set_bit(enabled, &transparent_hugepage_flags);
264 clear_bit(req_madv, &transparent_hugepage_flags);
265 } else if (!memcmp("madvise", buf,
266 min(sizeof("madvise")-1, count))) {
267 clear_bit(enabled, &transparent_hugepage_flags);
268 set_bit(req_madv, &transparent_hugepage_flags);
269 } else if (!memcmp("never", buf,
270 min(sizeof("never")-1, count))) {
271 clear_bit(enabled, &transparent_hugepage_flags);
272 clear_bit(req_madv, &transparent_hugepage_flags);
273 } else
274 return -EINVAL;
275
276 return count;
277 }
278
279 static ssize_t enabled_show(struct kobject *kobj,
280 struct kobj_attribute *attr, char *buf)
281 {
282 return double_flag_show(kobj, attr, buf,
283 TRANSPARENT_HUGEPAGE_FLAG,
284 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
285 }
286 static ssize_t enabled_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count)
289 {
290 ssize_t ret;
291
292 ret = double_flag_store(kobj, attr, buf, count,
293 TRANSPARENT_HUGEPAGE_FLAG,
294 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
295
296 if (ret > 0) {
297 int err;
298
299 mutex_lock(&khugepaged_mutex);
300 err = start_khugepaged();
301 mutex_unlock(&khugepaged_mutex);
302
303 if (err)
304 ret = err;
305 }
306
307 return ret;
308 }
309 static struct kobj_attribute enabled_attr =
310 __ATTR(enabled, 0644, enabled_show, enabled_store);
311
312 static ssize_t single_flag_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf,
314 enum transparent_hugepage_flag flag)
315 {
316 return sprintf(buf, "%d\n",
317 !!test_bit(flag, &transparent_hugepage_flags));
318 }
319
320 static ssize_t single_flag_store(struct kobject *kobj,
321 struct kobj_attribute *attr,
322 const char *buf, size_t count,
323 enum transparent_hugepage_flag flag)
324 {
325 unsigned long value;
326 int ret;
327
328 ret = kstrtoul(buf, 10, &value);
329 if (ret < 0)
330 return ret;
331 if (value > 1)
332 return -EINVAL;
333
334 if (value)
335 set_bit(flag, &transparent_hugepage_flags);
336 else
337 clear_bit(flag, &transparent_hugepage_flags);
338
339 return count;
340 }
341
342 /*
343 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
344 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
345 * memory just to allocate one more hugepage.
346 */
347 static ssize_t defrag_show(struct kobject *kobj,
348 struct kobj_attribute *attr, char *buf)
349 {
350 return double_flag_show(kobj, attr, buf,
351 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
352 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
353 }
354 static ssize_t defrag_store(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 const char *buf, size_t count)
357 {
358 return double_flag_store(kobj, attr, buf, count,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361 }
362 static struct kobj_attribute defrag_attr =
363 __ATTR(defrag, 0644, defrag_show, defrag_store);
364
365 static ssize_t use_zero_page_show(struct kobject *kobj,
366 struct kobj_attribute *attr, char *buf)
367 {
368 return single_flag_show(kobj, attr, buf,
369 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
370 }
371 static ssize_t use_zero_page_store(struct kobject *kobj,
372 struct kobj_attribute *attr, const char *buf, size_t count)
373 {
374 return single_flag_store(kobj, attr, buf, count,
375 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
376 }
377 static struct kobj_attribute use_zero_page_attr =
378 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
379 #ifdef CONFIG_DEBUG_VM
380 static ssize_t debug_cow_show(struct kobject *kobj,
381 struct kobj_attribute *attr, char *buf)
382 {
383 return single_flag_show(kobj, attr, buf,
384 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
385 }
386 static ssize_t debug_cow_store(struct kobject *kobj,
387 struct kobj_attribute *attr,
388 const char *buf, size_t count)
389 {
390 return single_flag_store(kobj, attr, buf, count,
391 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392 }
393 static struct kobj_attribute debug_cow_attr =
394 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
395 #endif /* CONFIG_DEBUG_VM */
396
397 static struct attribute *hugepage_attr[] = {
398 &enabled_attr.attr,
399 &defrag_attr.attr,
400 &use_zero_page_attr.attr,
401 #ifdef CONFIG_DEBUG_VM
402 &debug_cow_attr.attr,
403 #endif
404 NULL,
405 };
406
407 static struct attribute_group hugepage_attr_group = {
408 .attrs = hugepage_attr,
409 };
410
411 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
412 struct kobj_attribute *attr,
413 char *buf)
414 {
415 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
416 }
417
418 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
419 struct kobj_attribute *attr,
420 const char *buf, size_t count)
421 {
422 unsigned long msecs;
423 int err;
424
425 err = kstrtoul(buf, 10, &msecs);
426 if (err || msecs > UINT_MAX)
427 return -EINVAL;
428
429 khugepaged_scan_sleep_millisecs = msecs;
430 wake_up_interruptible(&khugepaged_wait);
431
432 return count;
433 }
434 static struct kobj_attribute scan_sleep_millisecs_attr =
435 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
436 scan_sleep_millisecs_store);
437
438 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
439 struct kobj_attribute *attr,
440 char *buf)
441 {
442 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
443 }
444
445 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448 {
449 unsigned long msecs;
450 int err;
451
452 err = kstrtoul(buf, 10, &msecs);
453 if (err || msecs > UINT_MAX)
454 return -EINVAL;
455
456 khugepaged_alloc_sleep_millisecs = msecs;
457 wake_up_interruptible(&khugepaged_wait);
458
459 return count;
460 }
461 static struct kobj_attribute alloc_sleep_millisecs_attr =
462 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
463 alloc_sleep_millisecs_store);
464
465 static ssize_t pages_to_scan_show(struct kobject *kobj,
466 struct kobj_attribute *attr,
467 char *buf)
468 {
469 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
470 }
471 static ssize_t pages_to_scan_store(struct kobject *kobj,
472 struct kobj_attribute *attr,
473 const char *buf, size_t count)
474 {
475 int err;
476 unsigned long pages;
477
478 err = kstrtoul(buf, 10, &pages);
479 if (err || !pages || pages > UINT_MAX)
480 return -EINVAL;
481
482 khugepaged_pages_to_scan = pages;
483
484 return count;
485 }
486 static struct kobj_attribute pages_to_scan_attr =
487 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
488 pages_to_scan_store);
489
490 static ssize_t pages_collapsed_show(struct kobject *kobj,
491 struct kobj_attribute *attr,
492 char *buf)
493 {
494 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
495 }
496 static struct kobj_attribute pages_collapsed_attr =
497 __ATTR_RO(pages_collapsed);
498
499 static ssize_t full_scans_show(struct kobject *kobj,
500 struct kobj_attribute *attr,
501 char *buf)
502 {
503 return sprintf(buf, "%u\n", khugepaged_full_scans);
504 }
505 static struct kobj_attribute full_scans_attr =
506 __ATTR_RO(full_scans);
507
508 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
509 struct kobj_attribute *attr, char *buf)
510 {
511 return single_flag_show(kobj, attr, buf,
512 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
513 }
514 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
515 struct kobj_attribute *attr,
516 const char *buf, size_t count)
517 {
518 return single_flag_store(kobj, attr, buf, count,
519 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520 }
521 static struct kobj_attribute khugepaged_defrag_attr =
522 __ATTR(defrag, 0644, khugepaged_defrag_show,
523 khugepaged_defrag_store);
524
525 /*
526 * max_ptes_none controls if khugepaged should collapse hugepages over
527 * any unmapped ptes in turn potentially increasing the memory
528 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
529 * reduce the available free memory in the system as it
530 * runs. Increasing max_ptes_none will instead potentially reduce the
531 * free memory in the system during the khugepaged scan.
532 */
533 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
534 struct kobj_attribute *attr,
535 char *buf)
536 {
537 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
538 }
539 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
540 struct kobj_attribute *attr,
541 const char *buf, size_t count)
542 {
543 int err;
544 unsigned long max_ptes_none;
545
546 err = kstrtoul(buf, 10, &max_ptes_none);
547 if (err || max_ptes_none > HPAGE_PMD_NR-1)
548 return -EINVAL;
549
550 khugepaged_max_ptes_none = max_ptes_none;
551
552 return count;
553 }
554 static struct kobj_attribute khugepaged_max_ptes_none_attr =
555 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
556 khugepaged_max_ptes_none_store);
557
558 static struct attribute *khugepaged_attr[] = {
559 &khugepaged_defrag_attr.attr,
560 &khugepaged_max_ptes_none_attr.attr,
561 &pages_to_scan_attr.attr,
562 &pages_collapsed_attr.attr,
563 &full_scans_attr.attr,
564 &scan_sleep_millisecs_attr.attr,
565 &alloc_sleep_millisecs_attr.attr,
566 NULL,
567 };
568
569 static struct attribute_group khugepaged_attr_group = {
570 .attrs = khugepaged_attr,
571 .name = "khugepaged",
572 };
573
574 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
575 {
576 int err;
577
578 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
579 if (unlikely(!*hugepage_kobj)) {
580 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
581 return -ENOMEM;
582 }
583
584 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
585 if (err) {
586 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
587 goto delete_obj;
588 }
589
590 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
591 if (err) {
592 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
593 goto remove_hp_group;
594 }
595
596 return 0;
597
598 remove_hp_group:
599 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
600 delete_obj:
601 kobject_put(*hugepage_kobj);
602 return err;
603 }
604
605 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
606 {
607 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
608 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
609 kobject_put(hugepage_kobj);
610 }
611 #else
612 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
613 {
614 return 0;
615 }
616
617 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
618 {
619 }
620 #endif /* CONFIG_SYSFS */
621
622 static int __init hugepage_init(void)
623 {
624 int err;
625 struct kobject *hugepage_kobj;
626
627 if (!has_transparent_hugepage()) {
628 transparent_hugepage_flags = 0;
629 return -EINVAL;
630 }
631
632 err = hugepage_init_sysfs(&hugepage_kobj);
633 if (err)
634 return err;
635
636 err = khugepaged_slab_init();
637 if (err)
638 goto out;
639
640 register_shrinker(&huge_zero_page_shrinker);
641
642 /*
643 * By default disable transparent hugepages on smaller systems,
644 * where the extra memory used could hurt more than TLB overhead
645 * is likely to save. The admin can still enable it through /sys.
646 */
647 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
648 transparent_hugepage_flags = 0;
649
650 start_khugepaged();
651
652 return 0;
653 out:
654 hugepage_exit_sysfs(hugepage_kobj);
655 return err;
656 }
657 module_init(hugepage_init)
658
659 static int __init setup_transparent_hugepage(char *str)
660 {
661 int ret = 0;
662 if (!str)
663 goto out;
664 if (!strcmp(str, "always")) {
665 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
666 &transparent_hugepage_flags);
667 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
668 &transparent_hugepage_flags);
669 ret = 1;
670 } else if (!strcmp(str, "madvise")) {
671 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
672 &transparent_hugepage_flags);
673 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
674 &transparent_hugepage_flags);
675 ret = 1;
676 } else if (!strcmp(str, "never")) {
677 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
678 &transparent_hugepage_flags);
679 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
680 &transparent_hugepage_flags);
681 ret = 1;
682 }
683 out:
684 if (!ret)
685 printk(KERN_WARNING
686 "transparent_hugepage= cannot parse, ignored\n");
687 return ret;
688 }
689 __setup("transparent_hugepage=", setup_transparent_hugepage);
690
691 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
692 {
693 if (likely(vma->vm_flags & VM_WRITE))
694 pmd = pmd_mkwrite(pmd);
695 return pmd;
696 }
697
698 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
699 {
700 pmd_t entry;
701 entry = mk_pmd(page, prot);
702 entry = pmd_mkhuge(entry);
703 return entry;
704 }
705
706 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
707 struct vm_area_struct *vma,
708 unsigned long haddr, pmd_t *pmd,
709 struct page *page)
710 {
711 pgtable_t pgtable;
712
713 VM_BUG_ON(!PageCompound(page));
714 pgtable = pte_alloc_one(mm, haddr);
715 if (unlikely(!pgtable))
716 return VM_FAULT_OOM;
717
718 clear_huge_page(page, haddr, HPAGE_PMD_NR);
719 /*
720 * The memory barrier inside __SetPageUptodate makes sure that
721 * clear_huge_page writes become visible before the set_pmd_at()
722 * write.
723 */
724 __SetPageUptodate(page);
725
726 spin_lock(&mm->page_table_lock);
727 if (unlikely(!pmd_none(*pmd))) {
728 spin_unlock(&mm->page_table_lock);
729 mem_cgroup_uncharge_page(page);
730 put_page(page);
731 pte_free(mm, pgtable);
732 } else {
733 pmd_t entry;
734 entry = mk_huge_pmd(page, vma->vm_page_prot);
735 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
736 page_add_new_anon_rmap(page, vma, haddr);
737 pgtable_trans_huge_deposit(mm, pmd, pgtable);
738 set_pmd_at(mm, haddr, pmd, entry);
739 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
740 mm->nr_ptes++;
741 spin_unlock(&mm->page_table_lock);
742 }
743
744 return 0;
745 }
746
747 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
748 {
749 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
750 }
751
752 static inline struct page *alloc_hugepage_vma(int defrag,
753 struct vm_area_struct *vma,
754 unsigned long haddr, int nd,
755 gfp_t extra_gfp)
756 {
757 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
758 HPAGE_PMD_ORDER, vma, haddr, nd);
759 }
760
761 #ifndef CONFIG_NUMA
762 static inline struct page *alloc_hugepage(int defrag)
763 {
764 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
765 HPAGE_PMD_ORDER);
766 }
767 #endif
768
769 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
770 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
771 struct page *zero_page)
772 {
773 pmd_t entry;
774 if (!pmd_none(*pmd))
775 return false;
776 entry = mk_pmd(zero_page, vma->vm_page_prot);
777 entry = pmd_wrprotect(entry);
778 entry = pmd_mkhuge(entry);
779 pgtable_trans_huge_deposit(mm, pmd, pgtable);
780 set_pmd_at(mm, haddr, pmd, entry);
781 mm->nr_ptes++;
782 return true;
783 }
784
785 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
786 unsigned long address, pmd_t *pmd,
787 unsigned int flags)
788 {
789 struct page *page;
790 unsigned long haddr = address & HPAGE_PMD_MASK;
791
792 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
793 return VM_FAULT_FALLBACK;
794 if (unlikely(anon_vma_prepare(vma)))
795 return VM_FAULT_OOM;
796 if (unlikely(khugepaged_enter(vma)))
797 return VM_FAULT_OOM;
798 if (!(flags & FAULT_FLAG_WRITE) &&
799 transparent_hugepage_use_zero_page()) {
800 pgtable_t pgtable;
801 struct page *zero_page;
802 bool set;
803 pgtable = pte_alloc_one(mm, haddr);
804 if (unlikely(!pgtable))
805 return VM_FAULT_OOM;
806 zero_page = get_huge_zero_page();
807 if (unlikely(!zero_page)) {
808 pte_free(mm, pgtable);
809 count_vm_event(THP_FAULT_FALLBACK);
810 return VM_FAULT_FALLBACK;
811 }
812 spin_lock(&mm->page_table_lock);
813 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
814 zero_page);
815 spin_unlock(&mm->page_table_lock);
816 if (!set) {
817 pte_free(mm, pgtable);
818 put_huge_zero_page();
819 }
820 return 0;
821 }
822 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
823 vma, haddr, numa_node_id(), 0);
824 if (unlikely(!page)) {
825 count_vm_event(THP_FAULT_FALLBACK);
826 return VM_FAULT_FALLBACK;
827 }
828 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
829 put_page(page);
830 count_vm_event(THP_FAULT_FALLBACK);
831 return VM_FAULT_FALLBACK;
832 }
833 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
834 mem_cgroup_uncharge_page(page);
835 put_page(page);
836 count_vm_event(THP_FAULT_FALLBACK);
837 return VM_FAULT_FALLBACK;
838 }
839
840 count_vm_event(THP_FAULT_ALLOC);
841 return 0;
842 }
843
844 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
845 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
846 struct vm_area_struct *vma)
847 {
848 struct page *src_page;
849 pmd_t pmd;
850 pgtable_t pgtable;
851 int ret;
852
853 ret = -ENOMEM;
854 pgtable = pte_alloc_one(dst_mm, addr);
855 if (unlikely(!pgtable))
856 goto out;
857
858 spin_lock(&dst_mm->page_table_lock);
859 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
860
861 ret = -EAGAIN;
862 pmd = *src_pmd;
863 if (unlikely(!pmd_trans_huge(pmd))) {
864 pte_free(dst_mm, pgtable);
865 goto out_unlock;
866 }
867 /*
868 * mm->page_table_lock is enough to be sure that huge zero pmd is not
869 * under splitting since we don't split the page itself, only pmd to
870 * a page table.
871 */
872 if (is_huge_zero_pmd(pmd)) {
873 struct page *zero_page;
874 bool set;
875 /*
876 * get_huge_zero_page() will never allocate a new page here,
877 * since we already have a zero page to copy. It just takes a
878 * reference.
879 */
880 zero_page = get_huge_zero_page();
881 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
882 zero_page);
883 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
884 ret = 0;
885 goto out_unlock;
886 }
887 if (unlikely(pmd_trans_splitting(pmd))) {
888 /* split huge page running from under us */
889 spin_unlock(&src_mm->page_table_lock);
890 spin_unlock(&dst_mm->page_table_lock);
891 pte_free(dst_mm, pgtable);
892
893 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
894 goto out;
895 }
896 src_page = pmd_page(pmd);
897 VM_BUG_ON(!PageHead(src_page));
898 get_page(src_page);
899 page_dup_rmap(src_page);
900 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
901
902 pmdp_set_wrprotect(src_mm, addr, src_pmd);
903 pmd = pmd_mkold(pmd_wrprotect(pmd));
904 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
905 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
906 dst_mm->nr_ptes++;
907
908 ret = 0;
909 out_unlock:
910 spin_unlock(&src_mm->page_table_lock);
911 spin_unlock(&dst_mm->page_table_lock);
912 out:
913 return ret;
914 }
915
916 void huge_pmd_set_accessed(struct mm_struct *mm,
917 struct vm_area_struct *vma,
918 unsigned long address,
919 pmd_t *pmd, pmd_t orig_pmd,
920 int dirty)
921 {
922 pmd_t entry;
923 unsigned long haddr;
924
925 spin_lock(&mm->page_table_lock);
926 if (unlikely(!pmd_same(*pmd, orig_pmd)))
927 goto unlock;
928
929 entry = pmd_mkyoung(orig_pmd);
930 haddr = address & HPAGE_PMD_MASK;
931 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
932 update_mmu_cache_pmd(vma, address, pmd);
933
934 unlock:
935 spin_unlock(&mm->page_table_lock);
936 }
937
938 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
939 struct vm_area_struct *vma, unsigned long address,
940 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
941 {
942 pgtable_t pgtable;
943 pmd_t _pmd;
944 struct page *page;
945 int i, ret = 0;
946 unsigned long mmun_start; /* For mmu_notifiers */
947 unsigned long mmun_end; /* For mmu_notifiers */
948
949 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
950 if (!page) {
951 ret |= VM_FAULT_OOM;
952 goto out;
953 }
954
955 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
956 put_page(page);
957 ret |= VM_FAULT_OOM;
958 goto out;
959 }
960
961 clear_user_highpage(page, address);
962 __SetPageUptodate(page);
963
964 mmun_start = haddr;
965 mmun_end = haddr + HPAGE_PMD_SIZE;
966 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
967
968 spin_lock(&mm->page_table_lock);
969 if (unlikely(!pmd_same(*pmd, orig_pmd)))
970 goto out_free_page;
971
972 pmdp_clear_flush(vma, haddr, pmd);
973 /* leave pmd empty until pte is filled */
974
975 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
976 pmd_populate(mm, &_pmd, pgtable);
977
978 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
979 pte_t *pte, entry;
980 if (haddr == (address & PAGE_MASK)) {
981 entry = mk_pte(page, vma->vm_page_prot);
982 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
983 page_add_new_anon_rmap(page, vma, haddr);
984 } else {
985 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
986 entry = pte_mkspecial(entry);
987 }
988 pte = pte_offset_map(&_pmd, haddr);
989 VM_BUG_ON(!pte_none(*pte));
990 set_pte_at(mm, haddr, pte, entry);
991 pte_unmap(pte);
992 }
993 smp_wmb(); /* make pte visible before pmd */
994 pmd_populate(mm, pmd, pgtable);
995 spin_unlock(&mm->page_table_lock);
996 put_huge_zero_page();
997 inc_mm_counter(mm, MM_ANONPAGES);
998
999 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1000
1001 ret |= VM_FAULT_WRITE;
1002 out:
1003 return ret;
1004 out_free_page:
1005 spin_unlock(&mm->page_table_lock);
1006 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007 mem_cgroup_uncharge_page(page);
1008 put_page(page);
1009 goto out;
1010 }
1011
1012 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1013 struct vm_area_struct *vma,
1014 unsigned long address,
1015 pmd_t *pmd, pmd_t orig_pmd,
1016 struct page *page,
1017 unsigned long haddr)
1018 {
1019 pgtable_t pgtable;
1020 pmd_t _pmd;
1021 int ret = 0, i;
1022 struct page **pages;
1023 unsigned long mmun_start; /* For mmu_notifiers */
1024 unsigned long mmun_end; /* For mmu_notifiers */
1025
1026 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1027 GFP_KERNEL);
1028 if (unlikely(!pages)) {
1029 ret |= VM_FAULT_OOM;
1030 goto out;
1031 }
1032
1033 for (i = 0; i < HPAGE_PMD_NR; i++) {
1034 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1035 __GFP_OTHER_NODE,
1036 vma, address, page_to_nid(page));
1037 if (unlikely(!pages[i] ||
1038 mem_cgroup_newpage_charge(pages[i], mm,
1039 GFP_KERNEL))) {
1040 if (pages[i])
1041 put_page(pages[i]);
1042 mem_cgroup_uncharge_start();
1043 while (--i >= 0) {
1044 mem_cgroup_uncharge_page(pages[i]);
1045 put_page(pages[i]);
1046 }
1047 mem_cgroup_uncharge_end();
1048 kfree(pages);
1049 ret |= VM_FAULT_OOM;
1050 goto out;
1051 }
1052 }
1053
1054 for (i = 0; i < HPAGE_PMD_NR; i++) {
1055 copy_user_highpage(pages[i], page + i,
1056 haddr + PAGE_SIZE * i, vma);
1057 __SetPageUptodate(pages[i]);
1058 cond_resched();
1059 }
1060
1061 mmun_start = haddr;
1062 mmun_end = haddr + HPAGE_PMD_SIZE;
1063 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1064
1065 spin_lock(&mm->page_table_lock);
1066 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1067 goto out_free_pages;
1068 VM_BUG_ON(!PageHead(page));
1069
1070 pmdp_clear_flush(vma, haddr, pmd);
1071 /* leave pmd empty until pte is filled */
1072
1073 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1074 pmd_populate(mm, &_pmd, pgtable);
1075
1076 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1077 pte_t *pte, entry;
1078 entry = mk_pte(pages[i], vma->vm_page_prot);
1079 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1080 page_add_new_anon_rmap(pages[i], vma, haddr);
1081 pte = pte_offset_map(&_pmd, haddr);
1082 VM_BUG_ON(!pte_none(*pte));
1083 set_pte_at(mm, haddr, pte, entry);
1084 pte_unmap(pte);
1085 }
1086 kfree(pages);
1087
1088 smp_wmb(); /* make pte visible before pmd */
1089 pmd_populate(mm, pmd, pgtable);
1090 page_remove_rmap(page);
1091 spin_unlock(&mm->page_table_lock);
1092
1093 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1094
1095 ret |= VM_FAULT_WRITE;
1096 put_page(page);
1097
1098 out:
1099 return ret;
1100
1101 out_free_pages:
1102 spin_unlock(&mm->page_table_lock);
1103 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1104 mem_cgroup_uncharge_start();
1105 for (i = 0; i < HPAGE_PMD_NR; i++) {
1106 mem_cgroup_uncharge_page(pages[i]);
1107 put_page(pages[i]);
1108 }
1109 mem_cgroup_uncharge_end();
1110 kfree(pages);
1111 goto out;
1112 }
1113
1114 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1115 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1116 {
1117 int ret = 0;
1118 struct page *page = NULL, *new_page;
1119 unsigned long haddr;
1120 unsigned long mmun_start; /* For mmu_notifiers */
1121 unsigned long mmun_end; /* For mmu_notifiers */
1122
1123 VM_BUG_ON(!vma->anon_vma);
1124 haddr = address & HPAGE_PMD_MASK;
1125 if (is_huge_zero_pmd(orig_pmd))
1126 goto alloc;
1127 spin_lock(&mm->page_table_lock);
1128 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1129 goto out_unlock;
1130
1131 page = pmd_page(orig_pmd);
1132 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1133 if (page_mapcount(page) == 1) {
1134 pmd_t entry;
1135 entry = pmd_mkyoung(orig_pmd);
1136 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1137 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1138 update_mmu_cache_pmd(vma, address, pmd);
1139 ret |= VM_FAULT_WRITE;
1140 goto out_unlock;
1141 }
1142 get_page(page);
1143 spin_unlock(&mm->page_table_lock);
1144 alloc:
1145 if (transparent_hugepage_enabled(vma) &&
1146 !transparent_hugepage_debug_cow())
1147 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1148 vma, haddr, numa_node_id(), 0);
1149 else
1150 new_page = NULL;
1151
1152 if (unlikely(!new_page)) {
1153 if (is_huge_zero_pmd(orig_pmd)) {
1154 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1155 address, pmd, orig_pmd, haddr);
1156 } else {
1157 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1158 pmd, orig_pmd, page, haddr);
1159 if (ret & VM_FAULT_OOM)
1160 split_huge_page(page);
1161 put_page(page);
1162 }
1163 count_vm_event(THP_FAULT_FALLBACK);
1164 goto out;
1165 }
1166
1167 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1168 put_page(new_page);
1169 if (page) {
1170 split_huge_page(page);
1171 put_page(page);
1172 }
1173 count_vm_event(THP_FAULT_FALLBACK);
1174 ret |= VM_FAULT_OOM;
1175 goto out;
1176 }
1177
1178 count_vm_event(THP_FAULT_ALLOC);
1179
1180 if (is_huge_zero_pmd(orig_pmd))
1181 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1182 else
1183 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1184 __SetPageUptodate(new_page);
1185
1186 mmun_start = haddr;
1187 mmun_end = haddr + HPAGE_PMD_SIZE;
1188 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1189
1190 spin_lock(&mm->page_table_lock);
1191 if (page)
1192 put_page(page);
1193 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1194 spin_unlock(&mm->page_table_lock);
1195 mem_cgroup_uncharge_page(new_page);
1196 put_page(new_page);
1197 goto out_mn;
1198 } else {
1199 pmd_t entry;
1200 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1201 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1202 pmdp_clear_flush(vma, haddr, pmd);
1203 page_add_new_anon_rmap(new_page, vma, haddr);
1204 set_pmd_at(mm, haddr, pmd, entry);
1205 update_mmu_cache_pmd(vma, address, pmd);
1206 if (is_huge_zero_pmd(orig_pmd)) {
1207 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1208 put_huge_zero_page();
1209 } else {
1210 VM_BUG_ON(!PageHead(page));
1211 page_remove_rmap(page);
1212 put_page(page);
1213 }
1214 ret |= VM_FAULT_WRITE;
1215 }
1216 spin_unlock(&mm->page_table_lock);
1217 out_mn:
1218 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1219 out:
1220 return ret;
1221 out_unlock:
1222 spin_unlock(&mm->page_table_lock);
1223 return ret;
1224 }
1225
1226 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1227 unsigned long addr,
1228 pmd_t *pmd,
1229 unsigned int flags)
1230 {
1231 struct mm_struct *mm = vma->vm_mm;
1232 struct page *page = NULL;
1233
1234 assert_spin_locked(&mm->page_table_lock);
1235
1236 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1237 goto out;
1238
1239 /* Avoid dumping huge zero page */
1240 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1241 return ERR_PTR(-EFAULT);
1242
1243 page = pmd_page(*pmd);
1244 VM_BUG_ON(!PageHead(page));
1245 if (flags & FOLL_TOUCH) {
1246 pmd_t _pmd;
1247 /*
1248 * We should set the dirty bit only for FOLL_WRITE but
1249 * for now the dirty bit in the pmd is meaningless.
1250 * And if the dirty bit will become meaningful and
1251 * we'll only set it with FOLL_WRITE, an atomic
1252 * set_bit will be required on the pmd to set the
1253 * young bit, instead of the current set_pmd_at.
1254 */
1255 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1256 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1257 pmd, _pmd, 1))
1258 update_mmu_cache_pmd(vma, addr, pmd);
1259 }
1260 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1261 if (page->mapping && trylock_page(page)) {
1262 lru_add_drain();
1263 if (page->mapping)
1264 mlock_vma_page(page);
1265 unlock_page(page);
1266 }
1267 }
1268 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1269 VM_BUG_ON(!PageCompound(page));
1270 if (flags & FOLL_GET)
1271 get_page_foll(page);
1272
1273 out:
1274 return page;
1275 }
1276
1277 /* NUMA hinting page fault entry point for trans huge pmds */
1278 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1279 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1280 {
1281 struct anon_vma *anon_vma = NULL;
1282 struct page *page;
1283 unsigned long haddr = addr & HPAGE_PMD_MASK;
1284 int page_nid = -1, this_nid = numa_node_id();
1285 int target_nid;
1286 bool page_locked;
1287 bool migrated = false;
1288
1289 spin_lock(&mm->page_table_lock);
1290 if (unlikely(!pmd_same(pmd, *pmdp)))
1291 goto out_unlock;
1292
1293 page = pmd_page(pmd);
1294 BUG_ON(is_huge_zero_page(page));
1295 page_nid = page_to_nid(page);
1296 count_vm_numa_event(NUMA_HINT_FAULTS);
1297 if (page_nid == this_nid)
1298 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1299
1300 /*
1301 * Acquire the page lock to serialise THP migrations but avoid dropping
1302 * page_table_lock if at all possible
1303 */
1304 page_locked = trylock_page(page);
1305 target_nid = mpol_misplaced(page, vma, haddr);
1306 if (target_nid == -1) {
1307 /* If the page was locked, there are no parallel migrations */
1308 if (page_locked)
1309 goto clear_pmdnuma;
1310
1311 /*
1312 * Otherwise wait for potential migrations and retry. We do
1313 * relock and check_same as the page may no longer be mapped.
1314 * As the fault is being retried, do not account for it.
1315 */
1316 spin_unlock(&mm->page_table_lock);
1317 wait_on_page_locked(page);
1318 page_nid = -1;
1319 goto out;
1320 }
1321
1322 /* Page is misplaced, serialise migrations and parallel THP splits */
1323 get_page(page);
1324 spin_unlock(&mm->page_table_lock);
1325 if (!page_locked)
1326 lock_page(page);
1327 anon_vma = page_lock_anon_vma_read(page);
1328
1329 /* Confirm the PMD did not change while page_table_lock was released */
1330 spin_lock(&mm->page_table_lock);
1331 if (unlikely(!pmd_same(pmd, *pmdp))) {
1332 unlock_page(page);
1333 put_page(page);
1334 page_nid = -1;
1335 goto out_unlock;
1336 }
1337
1338 /*
1339 * Migrate the THP to the requested node, returns with page unlocked
1340 * and pmd_numa cleared.
1341 */
1342 spin_unlock(&mm->page_table_lock);
1343 migrated = migrate_misplaced_transhuge_page(mm, vma,
1344 pmdp, pmd, addr, page, target_nid);
1345 if (migrated)
1346 page_nid = target_nid;
1347
1348 goto out;
1349 clear_pmdnuma:
1350 BUG_ON(!PageLocked(page));
1351 pmd = pmd_mknonnuma(pmd);
1352 set_pmd_at(mm, haddr, pmdp, pmd);
1353 VM_BUG_ON(pmd_numa(*pmdp));
1354 update_mmu_cache_pmd(vma, addr, pmdp);
1355 unlock_page(page);
1356 out_unlock:
1357 spin_unlock(&mm->page_table_lock);
1358
1359 out:
1360 if (anon_vma)
1361 page_unlock_anon_vma_read(anon_vma);
1362
1363 if (page_nid != -1)
1364 task_numa_fault(page_nid, HPAGE_PMD_NR, migrated);
1365
1366 return 0;
1367 }
1368
1369 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1370 pmd_t *pmd, unsigned long addr)
1371 {
1372 int ret = 0;
1373
1374 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1375 struct page *page;
1376 pgtable_t pgtable;
1377 pmd_t orig_pmd;
1378 /*
1379 * For architectures like ppc64 we look at deposited pgtable
1380 * when calling pmdp_get_and_clear. So do the
1381 * pgtable_trans_huge_withdraw after finishing pmdp related
1382 * operations.
1383 */
1384 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1385 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1386 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1387 if (is_huge_zero_pmd(orig_pmd)) {
1388 tlb->mm->nr_ptes--;
1389 spin_unlock(&tlb->mm->page_table_lock);
1390 put_huge_zero_page();
1391 } else {
1392 page = pmd_page(orig_pmd);
1393 page_remove_rmap(page);
1394 VM_BUG_ON(page_mapcount(page) < 0);
1395 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1396 VM_BUG_ON(!PageHead(page));
1397 tlb->mm->nr_ptes--;
1398 spin_unlock(&tlb->mm->page_table_lock);
1399 tlb_remove_page(tlb, page);
1400 }
1401 pte_free(tlb->mm, pgtable);
1402 ret = 1;
1403 }
1404 return ret;
1405 }
1406
1407 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1408 unsigned long addr, unsigned long end,
1409 unsigned char *vec)
1410 {
1411 int ret = 0;
1412
1413 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1414 /*
1415 * All logical pages in the range are present
1416 * if backed by a huge page.
1417 */
1418 spin_unlock(&vma->vm_mm->page_table_lock);
1419 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1420 ret = 1;
1421 }
1422
1423 return ret;
1424 }
1425
1426 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1427 unsigned long old_addr,
1428 unsigned long new_addr, unsigned long old_end,
1429 pmd_t *old_pmd, pmd_t *new_pmd)
1430 {
1431 int ret = 0;
1432 pmd_t pmd;
1433
1434 struct mm_struct *mm = vma->vm_mm;
1435
1436 if ((old_addr & ~HPAGE_PMD_MASK) ||
1437 (new_addr & ~HPAGE_PMD_MASK) ||
1438 old_end - old_addr < HPAGE_PMD_SIZE ||
1439 (new_vma->vm_flags & VM_NOHUGEPAGE))
1440 goto out;
1441
1442 /*
1443 * The destination pmd shouldn't be established, free_pgtables()
1444 * should have release it.
1445 */
1446 if (WARN_ON(!pmd_none(*new_pmd))) {
1447 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1448 goto out;
1449 }
1450
1451 ret = __pmd_trans_huge_lock(old_pmd, vma);
1452 if (ret == 1) {
1453 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1454 VM_BUG_ON(!pmd_none(*new_pmd));
1455 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1456 spin_unlock(&mm->page_table_lock);
1457 }
1458 out:
1459 return ret;
1460 }
1461
1462 /*
1463 * Returns
1464 * - 0 if PMD could not be locked
1465 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1466 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1467 */
1468 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1469 unsigned long addr, pgprot_t newprot, int prot_numa)
1470 {
1471 struct mm_struct *mm = vma->vm_mm;
1472 int ret = 0;
1473
1474 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1475 pmd_t entry;
1476 ret = 1;
1477 if (!prot_numa) {
1478 entry = pmdp_get_and_clear(mm, addr, pmd);
1479 entry = pmd_modify(entry, newprot);
1480 ret = HPAGE_PMD_NR;
1481 BUG_ON(pmd_write(entry));
1482 } else {
1483 struct page *page = pmd_page(*pmd);
1484
1485 /*
1486 * Only check non-shared pages. Do not trap faults
1487 * against the zero page. The read-only data is likely
1488 * to be read-cached on the local CPU cache and it is
1489 * less useful to know about local vs remote hits on
1490 * the zero page.
1491 */
1492 if (page_mapcount(page) == 1 &&
1493 !is_huge_zero_page(page) &&
1494 !pmd_numa(*pmd)) {
1495 entry = pmdp_get_and_clear(mm, addr, pmd);
1496 entry = pmd_mknuma(entry);
1497 ret = HPAGE_PMD_NR;
1498 }
1499 }
1500
1501 /* Set PMD if cleared earlier */
1502 if (ret == HPAGE_PMD_NR)
1503 set_pmd_at(mm, addr, pmd, entry);
1504
1505 spin_unlock(&vma->vm_mm->page_table_lock);
1506 }
1507
1508 return ret;
1509 }
1510
1511 /*
1512 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1513 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1514 *
1515 * Note that if it returns 1, this routine returns without unlocking page
1516 * table locks. So callers must unlock them.
1517 */
1518 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1519 {
1520 spin_lock(&vma->vm_mm->page_table_lock);
1521 if (likely(pmd_trans_huge(*pmd))) {
1522 if (unlikely(pmd_trans_splitting(*pmd))) {
1523 spin_unlock(&vma->vm_mm->page_table_lock);
1524 wait_split_huge_page(vma->anon_vma, pmd);
1525 return -1;
1526 } else {
1527 /* Thp mapped by 'pmd' is stable, so we can
1528 * handle it as it is. */
1529 return 1;
1530 }
1531 }
1532 spin_unlock(&vma->vm_mm->page_table_lock);
1533 return 0;
1534 }
1535
1536 pmd_t *page_check_address_pmd(struct page *page,
1537 struct mm_struct *mm,
1538 unsigned long address,
1539 enum page_check_address_pmd_flag flag)
1540 {
1541 pmd_t *pmd, *ret = NULL;
1542
1543 if (address & ~HPAGE_PMD_MASK)
1544 goto out;
1545
1546 pmd = mm_find_pmd(mm, address);
1547 if (!pmd)
1548 goto out;
1549 if (pmd_none(*pmd))
1550 goto out;
1551 if (pmd_page(*pmd) != page)
1552 goto out;
1553 /*
1554 * split_vma() may create temporary aliased mappings. There is
1555 * no risk as long as all huge pmd are found and have their
1556 * splitting bit set before __split_huge_page_refcount
1557 * runs. Finding the same huge pmd more than once during the
1558 * same rmap walk is not a problem.
1559 */
1560 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1561 pmd_trans_splitting(*pmd))
1562 goto out;
1563 if (pmd_trans_huge(*pmd)) {
1564 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1565 !pmd_trans_splitting(*pmd));
1566 ret = pmd;
1567 }
1568 out:
1569 return ret;
1570 }
1571
1572 static int __split_huge_page_splitting(struct page *page,
1573 struct vm_area_struct *vma,
1574 unsigned long address)
1575 {
1576 struct mm_struct *mm = vma->vm_mm;
1577 pmd_t *pmd;
1578 int ret = 0;
1579 /* For mmu_notifiers */
1580 const unsigned long mmun_start = address;
1581 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1582
1583 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1584 spin_lock(&mm->page_table_lock);
1585 pmd = page_check_address_pmd(page, mm, address,
1586 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1587 if (pmd) {
1588 /*
1589 * We can't temporarily set the pmd to null in order
1590 * to split it, the pmd must remain marked huge at all
1591 * times or the VM won't take the pmd_trans_huge paths
1592 * and it won't wait on the anon_vma->root->rwsem to
1593 * serialize against split_huge_page*.
1594 */
1595 pmdp_splitting_flush(vma, address, pmd);
1596 ret = 1;
1597 }
1598 spin_unlock(&mm->page_table_lock);
1599 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1600
1601 return ret;
1602 }
1603
1604 static void __split_huge_page_refcount(struct page *page,
1605 struct list_head *list)
1606 {
1607 int i;
1608 struct zone *zone = page_zone(page);
1609 struct lruvec *lruvec;
1610 int tail_count = 0;
1611
1612 /* prevent PageLRU to go away from under us, and freeze lru stats */
1613 spin_lock_irq(&zone->lru_lock);
1614 lruvec = mem_cgroup_page_lruvec(page, zone);
1615
1616 compound_lock(page);
1617 /* complete memcg works before add pages to LRU */
1618 mem_cgroup_split_huge_fixup(page);
1619
1620 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1621 struct page *page_tail = page + i;
1622
1623 /* tail_page->_mapcount cannot change */
1624 BUG_ON(page_mapcount(page_tail) < 0);
1625 tail_count += page_mapcount(page_tail);
1626 /* check for overflow */
1627 BUG_ON(tail_count < 0);
1628 BUG_ON(atomic_read(&page_tail->_count) != 0);
1629 /*
1630 * tail_page->_count is zero and not changing from
1631 * under us. But get_page_unless_zero() may be running
1632 * from under us on the tail_page. If we used
1633 * atomic_set() below instead of atomic_add(), we
1634 * would then run atomic_set() concurrently with
1635 * get_page_unless_zero(), and atomic_set() is
1636 * implemented in C not using locked ops. spin_unlock
1637 * on x86 sometime uses locked ops because of PPro
1638 * errata 66, 92, so unless somebody can guarantee
1639 * atomic_set() here would be safe on all archs (and
1640 * not only on x86), it's safer to use atomic_add().
1641 */
1642 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1643 &page_tail->_count);
1644
1645 /* after clearing PageTail the gup refcount can be released */
1646 smp_mb();
1647
1648 /*
1649 * retain hwpoison flag of the poisoned tail page:
1650 * fix for the unsuitable process killed on Guest Machine(KVM)
1651 * by the memory-failure.
1652 */
1653 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1654 page_tail->flags |= (page->flags &
1655 ((1L << PG_referenced) |
1656 (1L << PG_swapbacked) |
1657 (1L << PG_mlocked) |
1658 (1L << PG_uptodate) |
1659 (1L << PG_active) |
1660 (1L << PG_unevictable)));
1661 page_tail->flags |= (1L << PG_dirty);
1662
1663 /* clear PageTail before overwriting first_page */
1664 smp_wmb();
1665
1666 /*
1667 * __split_huge_page_splitting() already set the
1668 * splitting bit in all pmd that could map this
1669 * hugepage, that will ensure no CPU can alter the
1670 * mapcount on the head page. The mapcount is only
1671 * accounted in the head page and it has to be
1672 * transferred to all tail pages in the below code. So
1673 * for this code to be safe, the split the mapcount
1674 * can't change. But that doesn't mean userland can't
1675 * keep changing and reading the page contents while
1676 * we transfer the mapcount, so the pmd splitting
1677 * status is achieved setting a reserved bit in the
1678 * pmd, not by clearing the present bit.
1679 */
1680 page_tail->_mapcount = page->_mapcount;
1681
1682 BUG_ON(page_tail->mapping);
1683 page_tail->mapping = page->mapping;
1684
1685 page_tail->index = page->index + i;
1686 page_nid_xchg_last(page_tail, page_nid_last(page));
1687
1688 BUG_ON(!PageAnon(page_tail));
1689 BUG_ON(!PageUptodate(page_tail));
1690 BUG_ON(!PageDirty(page_tail));
1691 BUG_ON(!PageSwapBacked(page_tail));
1692
1693 lru_add_page_tail(page, page_tail, lruvec, list);
1694 }
1695 atomic_sub(tail_count, &page->_count);
1696 BUG_ON(atomic_read(&page->_count) <= 0);
1697
1698 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1699
1700 ClearPageCompound(page);
1701 compound_unlock(page);
1702 spin_unlock_irq(&zone->lru_lock);
1703
1704 for (i = 1; i < HPAGE_PMD_NR; i++) {
1705 struct page *page_tail = page + i;
1706 BUG_ON(page_count(page_tail) <= 0);
1707 /*
1708 * Tail pages may be freed if there wasn't any mapping
1709 * like if add_to_swap() is running on a lru page that
1710 * had its mapping zapped. And freeing these pages
1711 * requires taking the lru_lock so we do the put_page
1712 * of the tail pages after the split is complete.
1713 */
1714 put_page(page_tail);
1715 }
1716
1717 /*
1718 * Only the head page (now become a regular page) is required
1719 * to be pinned by the caller.
1720 */
1721 BUG_ON(page_count(page) <= 0);
1722 }
1723
1724 static int __split_huge_page_map(struct page *page,
1725 struct vm_area_struct *vma,
1726 unsigned long address)
1727 {
1728 struct mm_struct *mm = vma->vm_mm;
1729 pmd_t *pmd, _pmd;
1730 int ret = 0, i;
1731 pgtable_t pgtable;
1732 unsigned long haddr;
1733
1734 spin_lock(&mm->page_table_lock);
1735 pmd = page_check_address_pmd(page, mm, address,
1736 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1737 if (pmd) {
1738 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1739 pmd_populate(mm, &_pmd, pgtable);
1740
1741 haddr = address;
1742 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1743 pte_t *pte, entry;
1744 BUG_ON(PageCompound(page+i));
1745 entry = mk_pte(page + i, vma->vm_page_prot);
1746 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1747 if (!pmd_write(*pmd))
1748 entry = pte_wrprotect(entry);
1749 else
1750 BUG_ON(page_mapcount(page) != 1);
1751 if (!pmd_young(*pmd))
1752 entry = pte_mkold(entry);
1753 if (pmd_numa(*pmd))
1754 entry = pte_mknuma(entry);
1755 pte = pte_offset_map(&_pmd, haddr);
1756 BUG_ON(!pte_none(*pte));
1757 set_pte_at(mm, haddr, pte, entry);
1758 pte_unmap(pte);
1759 }
1760
1761 smp_wmb(); /* make pte visible before pmd */
1762 /*
1763 * Up to this point the pmd is present and huge and
1764 * userland has the whole access to the hugepage
1765 * during the split (which happens in place). If we
1766 * overwrite the pmd with the not-huge version
1767 * pointing to the pte here (which of course we could
1768 * if all CPUs were bug free), userland could trigger
1769 * a small page size TLB miss on the small sized TLB
1770 * while the hugepage TLB entry is still established
1771 * in the huge TLB. Some CPU doesn't like that. See
1772 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1773 * Erratum 383 on page 93. Intel should be safe but is
1774 * also warns that it's only safe if the permission
1775 * and cache attributes of the two entries loaded in
1776 * the two TLB is identical (which should be the case
1777 * here). But it is generally safer to never allow
1778 * small and huge TLB entries for the same virtual
1779 * address to be loaded simultaneously. So instead of
1780 * doing "pmd_populate(); flush_tlb_range();" we first
1781 * mark the current pmd notpresent (atomically because
1782 * here the pmd_trans_huge and pmd_trans_splitting
1783 * must remain set at all times on the pmd until the
1784 * split is complete for this pmd), then we flush the
1785 * SMP TLB and finally we write the non-huge version
1786 * of the pmd entry with pmd_populate.
1787 */
1788 pmdp_invalidate(vma, address, pmd);
1789 pmd_populate(mm, pmd, pgtable);
1790 ret = 1;
1791 }
1792 spin_unlock(&mm->page_table_lock);
1793
1794 return ret;
1795 }
1796
1797 /* must be called with anon_vma->root->rwsem held */
1798 static void __split_huge_page(struct page *page,
1799 struct anon_vma *anon_vma,
1800 struct list_head *list)
1801 {
1802 int mapcount, mapcount2;
1803 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1804 struct anon_vma_chain *avc;
1805
1806 BUG_ON(!PageHead(page));
1807 BUG_ON(PageTail(page));
1808
1809 mapcount = 0;
1810 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1811 struct vm_area_struct *vma = avc->vma;
1812 unsigned long addr = vma_address(page, vma);
1813 BUG_ON(is_vma_temporary_stack(vma));
1814 mapcount += __split_huge_page_splitting(page, vma, addr);
1815 }
1816 /*
1817 * It is critical that new vmas are added to the tail of the
1818 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1819 * and establishes a child pmd before
1820 * __split_huge_page_splitting() freezes the parent pmd (so if
1821 * we fail to prevent copy_huge_pmd() from running until the
1822 * whole __split_huge_page() is complete), we will still see
1823 * the newly established pmd of the child later during the
1824 * walk, to be able to set it as pmd_trans_splitting too.
1825 */
1826 if (mapcount != page_mapcount(page))
1827 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1828 mapcount, page_mapcount(page));
1829 BUG_ON(mapcount != page_mapcount(page));
1830
1831 __split_huge_page_refcount(page, list);
1832
1833 mapcount2 = 0;
1834 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1835 struct vm_area_struct *vma = avc->vma;
1836 unsigned long addr = vma_address(page, vma);
1837 BUG_ON(is_vma_temporary_stack(vma));
1838 mapcount2 += __split_huge_page_map(page, vma, addr);
1839 }
1840 if (mapcount != mapcount2)
1841 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1842 mapcount, mapcount2, page_mapcount(page));
1843 BUG_ON(mapcount != mapcount2);
1844 }
1845
1846 /*
1847 * Split a hugepage into normal pages. This doesn't change the position of head
1848 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1849 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1850 * from the hugepage.
1851 * Return 0 if the hugepage is split successfully otherwise return 1.
1852 */
1853 int split_huge_page_to_list(struct page *page, struct list_head *list)
1854 {
1855 struct anon_vma *anon_vma;
1856 int ret = 1;
1857
1858 BUG_ON(is_huge_zero_page(page));
1859 BUG_ON(!PageAnon(page));
1860
1861 /*
1862 * The caller does not necessarily hold an mmap_sem that would prevent
1863 * the anon_vma disappearing so we first we take a reference to it
1864 * and then lock the anon_vma for write. This is similar to
1865 * page_lock_anon_vma_read except the write lock is taken to serialise
1866 * against parallel split or collapse operations.
1867 */
1868 anon_vma = page_get_anon_vma(page);
1869 if (!anon_vma)
1870 goto out;
1871 anon_vma_lock_write(anon_vma);
1872
1873 ret = 0;
1874 if (!PageCompound(page))
1875 goto out_unlock;
1876
1877 BUG_ON(!PageSwapBacked(page));
1878 __split_huge_page(page, anon_vma, list);
1879 count_vm_event(THP_SPLIT);
1880
1881 BUG_ON(PageCompound(page));
1882 out_unlock:
1883 anon_vma_unlock_write(anon_vma);
1884 put_anon_vma(anon_vma);
1885 out:
1886 return ret;
1887 }
1888
1889 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1890
1891 int hugepage_madvise(struct vm_area_struct *vma,
1892 unsigned long *vm_flags, int advice)
1893 {
1894 struct mm_struct *mm = vma->vm_mm;
1895
1896 switch (advice) {
1897 case MADV_HUGEPAGE:
1898 /*
1899 * Be somewhat over-protective like KSM for now!
1900 */
1901 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1902 return -EINVAL;
1903 if (mm->def_flags & VM_NOHUGEPAGE)
1904 return -EINVAL;
1905 *vm_flags &= ~VM_NOHUGEPAGE;
1906 *vm_flags |= VM_HUGEPAGE;
1907 /*
1908 * If the vma become good for khugepaged to scan,
1909 * register it here without waiting a page fault that
1910 * may not happen any time soon.
1911 */
1912 if (unlikely(khugepaged_enter_vma_merge(vma)))
1913 return -ENOMEM;
1914 break;
1915 case MADV_NOHUGEPAGE:
1916 /*
1917 * Be somewhat over-protective like KSM for now!
1918 */
1919 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1920 return -EINVAL;
1921 *vm_flags &= ~VM_HUGEPAGE;
1922 *vm_flags |= VM_NOHUGEPAGE;
1923 /*
1924 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1925 * this vma even if we leave the mm registered in khugepaged if
1926 * it got registered before VM_NOHUGEPAGE was set.
1927 */
1928 break;
1929 }
1930
1931 return 0;
1932 }
1933
1934 static int __init khugepaged_slab_init(void)
1935 {
1936 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1937 sizeof(struct mm_slot),
1938 __alignof__(struct mm_slot), 0, NULL);
1939 if (!mm_slot_cache)
1940 return -ENOMEM;
1941
1942 return 0;
1943 }
1944
1945 static inline struct mm_slot *alloc_mm_slot(void)
1946 {
1947 if (!mm_slot_cache) /* initialization failed */
1948 return NULL;
1949 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1950 }
1951
1952 static inline void free_mm_slot(struct mm_slot *mm_slot)
1953 {
1954 kmem_cache_free(mm_slot_cache, mm_slot);
1955 }
1956
1957 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1958 {
1959 struct mm_slot *mm_slot;
1960
1961 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1962 if (mm == mm_slot->mm)
1963 return mm_slot;
1964
1965 return NULL;
1966 }
1967
1968 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1969 struct mm_slot *mm_slot)
1970 {
1971 mm_slot->mm = mm;
1972 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1973 }
1974
1975 static inline int khugepaged_test_exit(struct mm_struct *mm)
1976 {
1977 return atomic_read(&mm->mm_users) == 0;
1978 }
1979
1980 int __khugepaged_enter(struct mm_struct *mm)
1981 {
1982 struct mm_slot *mm_slot;
1983 int wakeup;
1984
1985 mm_slot = alloc_mm_slot();
1986 if (!mm_slot)
1987 return -ENOMEM;
1988
1989 /* __khugepaged_exit() must not run from under us */
1990 VM_BUG_ON(khugepaged_test_exit(mm));
1991 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1992 free_mm_slot(mm_slot);
1993 return 0;
1994 }
1995
1996 spin_lock(&khugepaged_mm_lock);
1997 insert_to_mm_slots_hash(mm, mm_slot);
1998 /*
1999 * Insert just behind the scanning cursor, to let the area settle
2000 * down a little.
2001 */
2002 wakeup = list_empty(&khugepaged_scan.mm_head);
2003 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2004 spin_unlock(&khugepaged_mm_lock);
2005
2006 atomic_inc(&mm->mm_count);
2007 if (wakeup)
2008 wake_up_interruptible(&khugepaged_wait);
2009
2010 return 0;
2011 }
2012
2013 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2014 {
2015 unsigned long hstart, hend;
2016 if (!vma->anon_vma)
2017 /*
2018 * Not yet faulted in so we will register later in the
2019 * page fault if needed.
2020 */
2021 return 0;
2022 if (vma->vm_ops)
2023 /* khugepaged not yet working on file or special mappings */
2024 return 0;
2025 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2026 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2027 hend = vma->vm_end & HPAGE_PMD_MASK;
2028 if (hstart < hend)
2029 return khugepaged_enter(vma);
2030 return 0;
2031 }
2032
2033 void __khugepaged_exit(struct mm_struct *mm)
2034 {
2035 struct mm_slot *mm_slot;
2036 int free = 0;
2037
2038 spin_lock(&khugepaged_mm_lock);
2039 mm_slot = get_mm_slot(mm);
2040 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2041 hash_del(&mm_slot->hash);
2042 list_del(&mm_slot->mm_node);
2043 free = 1;
2044 }
2045 spin_unlock(&khugepaged_mm_lock);
2046
2047 if (free) {
2048 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2049 free_mm_slot(mm_slot);
2050 mmdrop(mm);
2051 } else if (mm_slot) {
2052 /*
2053 * This is required to serialize against
2054 * khugepaged_test_exit() (which is guaranteed to run
2055 * under mmap sem read mode). Stop here (after we
2056 * return all pagetables will be destroyed) until
2057 * khugepaged has finished working on the pagetables
2058 * under the mmap_sem.
2059 */
2060 down_write(&mm->mmap_sem);
2061 up_write(&mm->mmap_sem);
2062 }
2063 }
2064
2065 static void release_pte_page(struct page *page)
2066 {
2067 /* 0 stands for page_is_file_cache(page) == false */
2068 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2069 unlock_page(page);
2070 putback_lru_page(page);
2071 }
2072
2073 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2074 {
2075 while (--_pte >= pte) {
2076 pte_t pteval = *_pte;
2077 if (!pte_none(pteval))
2078 release_pte_page(pte_page(pteval));
2079 }
2080 }
2081
2082 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2083 unsigned long address,
2084 pte_t *pte)
2085 {
2086 struct page *page;
2087 pte_t *_pte;
2088 int referenced = 0, none = 0;
2089 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2090 _pte++, address += PAGE_SIZE) {
2091 pte_t pteval = *_pte;
2092 if (pte_none(pteval)) {
2093 if (++none <= khugepaged_max_ptes_none)
2094 continue;
2095 else
2096 goto out;
2097 }
2098 if (!pte_present(pteval) || !pte_write(pteval))
2099 goto out;
2100 page = vm_normal_page(vma, address, pteval);
2101 if (unlikely(!page))
2102 goto out;
2103
2104 VM_BUG_ON(PageCompound(page));
2105 BUG_ON(!PageAnon(page));
2106 VM_BUG_ON(!PageSwapBacked(page));
2107
2108 /* cannot use mapcount: can't collapse if there's a gup pin */
2109 if (page_count(page) != 1)
2110 goto out;
2111 /*
2112 * We can do it before isolate_lru_page because the
2113 * page can't be freed from under us. NOTE: PG_lock
2114 * is needed to serialize against split_huge_page
2115 * when invoked from the VM.
2116 */
2117 if (!trylock_page(page))
2118 goto out;
2119 /*
2120 * Isolate the page to avoid collapsing an hugepage
2121 * currently in use by the VM.
2122 */
2123 if (isolate_lru_page(page)) {
2124 unlock_page(page);
2125 goto out;
2126 }
2127 /* 0 stands for page_is_file_cache(page) == false */
2128 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2129 VM_BUG_ON(!PageLocked(page));
2130 VM_BUG_ON(PageLRU(page));
2131
2132 /* If there is no mapped pte young don't collapse the page */
2133 if (pte_young(pteval) || PageReferenced(page) ||
2134 mmu_notifier_test_young(vma->vm_mm, address))
2135 referenced = 1;
2136 }
2137 if (likely(referenced))
2138 return 1;
2139 out:
2140 release_pte_pages(pte, _pte);
2141 return 0;
2142 }
2143
2144 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2145 struct vm_area_struct *vma,
2146 unsigned long address,
2147 spinlock_t *ptl)
2148 {
2149 pte_t *_pte;
2150 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2151 pte_t pteval = *_pte;
2152 struct page *src_page;
2153
2154 if (pte_none(pteval)) {
2155 clear_user_highpage(page, address);
2156 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2157 } else {
2158 src_page = pte_page(pteval);
2159 copy_user_highpage(page, src_page, address, vma);
2160 VM_BUG_ON(page_mapcount(src_page) != 1);
2161 release_pte_page(src_page);
2162 /*
2163 * ptl mostly unnecessary, but preempt has to
2164 * be disabled to update the per-cpu stats
2165 * inside page_remove_rmap().
2166 */
2167 spin_lock(ptl);
2168 /*
2169 * paravirt calls inside pte_clear here are
2170 * superfluous.
2171 */
2172 pte_clear(vma->vm_mm, address, _pte);
2173 page_remove_rmap(src_page);
2174 spin_unlock(ptl);
2175 free_page_and_swap_cache(src_page);
2176 }
2177
2178 address += PAGE_SIZE;
2179 page++;
2180 }
2181 }
2182
2183 static void khugepaged_alloc_sleep(void)
2184 {
2185 wait_event_freezable_timeout(khugepaged_wait, false,
2186 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2187 }
2188
2189 #ifdef CONFIG_NUMA
2190 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2191 {
2192 if (IS_ERR(*hpage)) {
2193 if (!*wait)
2194 return false;
2195
2196 *wait = false;
2197 *hpage = NULL;
2198 khugepaged_alloc_sleep();
2199 } else if (*hpage) {
2200 put_page(*hpage);
2201 *hpage = NULL;
2202 }
2203
2204 return true;
2205 }
2206
2207 static struct page
2208 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2209 struct vm_area_struct *vma, unsigned long address,
2210 int node)
2211 {
2212 VM_BUG_ON(*hpage);
2213 /*
2214 * Allocate the page while the vma is still valid and under
2215 * the mmap_sem read mode so there is no memory allocation
2216 * later when we take the mmap_sem in write mode. This is more
2217 * friendly behavior (OTOH it may actually hide bugs) to
2218 * filesystems in userland with daemons allocating memory in
2219 * the userland I/O paths. Allocating memory with the
2220 * mmap_sem in read mode is good idea also to allow greater
2221 * scalability.
2222 */
2223 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2224 node, __GFP_OTHER_NODE);
2225
2226 /*
2227 * After allocating the hugepage, release the mmap_sem read lock in
2228 * preparation for taking it in write mode.
2229 */
2230 up_read(&mm->mmap_sem);
2231 if (unlikely(!*hpage)) {
2232 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2233 *hpage = ERR_PTR(-ENOMEM);
2234 return NULL;
2235 }
2236
2237 count_vm_event(THP_COLLAPSE_ALLOC);
2238 return *hpage;
2239 }
2240 #else
2241 static struct page *khugepaged_alloc_hugepage(bool *wait)
2242 {
2243 struct page *hpage;
2244
2245 do {
2246 hpage = alloc_hugepage(khugepaged_defrag());
2247 if (!hpage) {
2248 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2249 if (!*wait)
2250 return NULL;
2251
2252 *wait = false;
2253 khugepaged_alloc_sleep();
2254 } else
2255 count_vm_event(THP_COLLAPSE_ALLOC);
2256 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2257
2258 return hpage;
2259 }
2260
2261 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2262 {
2263 if (!*hpage)
2264 *hpage = khugepaged_alloc_hugepage(wait);
2265
2266 if (unlikely(!*hpage))
2267 return false;
2268
2269 return true;
2270 }
2271
2272 static struct page
2273 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2274 struct vm_area_struct *vma, unsigned long address,
2275 int node)
2276 {
2277 up_read(&mm->mmap_sem);
2278 VM_BUG_ON(!*hpage);
2279 return *hpage;
2280 }
2281 #endif
2282
2283 static bool hugepage_vma_check(struct vm_area_struct *vma)
2284 {
2285 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2286 (vma->vm_flags & VM_NOHUGEPAGE))
2287 return false;
2288
2289 if (!vma->anon_vma || vma->vm_ops)
2290 return false;
2291 if (is_vma_temporary_stack(vma))
2292 return false;
2293 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2294 return true;
2295 }
2296
2297 static void collapse_huge_page(struct mm_struct *mm,
2298 unsigned long address,
2299 struct page **hpage,
2300 struct vm_area_struct *vma,
2301 int node)
2302 {
2303 pmd_t *pmd, _pmd;
2304 pte_t *pte;
2305 pgtable_t pgtable;
2306 struct page *new_page;
2307 spinlock_t *ptl;
2308 int isolated;
2309 unsigned long hstart, hend;
2310 unsigned long mmun_start; /* For mmu_notifiers */
2311 unsigned long mmun_end; /* For mmu_notifiers */
2312
2313 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2314
2315 /* release the mmap_sem read lock. */
2316 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2317 if (!new_page)
2318 return;
2319
2320 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2321 return;
2322
2323 /*
2324 * Prevent all access to pagetables with the exception of
2325 * gup_fast later hanlded by the ptep_clear_flush and the VM
2326 * handled by the anon_vma lock + PG_lock.
2327 */
2328 down_write(&mm->mmap_sem);
2329 if (unlikely(khugepaged_test_exit(mm)))
2330 goto out;
2331
2332 vma = find_vma(mm, address);
2333 if (!vma)
2334 goto out;
2335 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2336 hend = vma->vm_end & HPAGE_PMD_MASK;
2337 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2338 goto out;
2339 if (!hugepage_vma_check(vma))
2340 goto out;
2341 pmd = mm_find_pmd(mm, address);
2342 if (!pmd)
2343 goto out;
2344 if (pmd_trans_huge(*pmd))
2345 goto out;
2346
2347 anon_vma_lock_write(vma->anon_vma);
2348
2349 pte = pte_offset_map(pmd, address);
2350 ptl = pte_lockptr(mm, pmd);
2351
2352 mmun_start = address;
2353 mmun_end = address + HPAGE_PMD_SIZE;
2354 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2355 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2356 /*
2357 * After this gup_fast can't run anymore. This also removes
2358 * any huge TLB entry from the CPU so we won't allow
2359 * huge and small TLB entries for the same virtual address
2360 * to avoid the risk of CPU bugs in that area.
2361 */
2362 _pmd = pmdp_clear_flush(vma, address, pmd);
2363 spin_unlock(&mm->page_table_lock);
2364 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2365
2366 spin_lock(ptl);
2367 isolated = __collapse_huge_page_isolate(vma, address, pte);
2368 spin_unlock(ptl);
2369
2370 if (unlikely(!isolated)) {
2371 pte_unmap(pte);
2372 spin_lock(&mm->page_table_lock);
2373 BUG_ON(!pmd_none(*pmd));
2374 /*
2375 * We can only use set_pmd_at when establishing
2376 * hugepmds and never for establishing regular pmds that
2377 * points to regular pagetables. Use pmd_populate for that
2378 */
2379 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2380 spin_unlock(&mm->page_table_lock);
2381 anon_vma_unlock_write(vma->anon_vma);
2382 goto out;
2383 }
2384
2385 /*
2386 * All pages are isolated and locked so anon_vma rmap
2387 * can't run anymore.
2388 */
2389 anon_vma_unlock_write(vma->anon_vma);
2390
2391 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2392 pte_unmap(pte);
2393 __SetPageUptodate(new_page);
2394 pgtable = pmd_pgtable(_pmd);
2395
2396 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2397 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2398
2399 /*
2400 * spin_lock() below is not the equivalent of smp_wmb(), so
2401 * this is needed to avoid the copy_huge_page writes to become
2402 * visible after the set_pmd_at() write.
2403 */
2404 smp_wmb();
2405
2406 spin_lock(&mm->page_table_lock);
2407 BUG_ON(!pmd_none(*pmd));
2408 page_add_new_anon_rmap(new_page, vma, address);
2409 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2410 set_pmd_at(mm, address, pmd, _pmd);
2411 update_mmu_cache_pmd(vma, address, pmd);
2412 spin_unlock(&mm->page_table_lock);
2413
2414 *hpage = NULL;
2415
2416 khugepaged_pages_collapsed++;
2417 out_up_write:
2418 up_write(&mm->mmap_sem);
2419 return;
2420
2421 out:
2422 mem_cgroup_uncharge_page(new_page);
2423 goto out_up_write;
2424 }
2425
2426 static int khugepaged_scan_pmd(struct mm_struct *mm,
2427 struct vm_area_struct *vma,
2428 unsigned long address,
2429 struct page **hpage)
2430 {
2431 pmd_t *pmd;
2432 pte_t *pte, *_pte;
2433 int ret = 0, referenced = 0, none = 0;
2434 struct page *page;
2435 unsigned long _address;
2436 spinlock_t *ptl;
2437 int node = NUMA_NO_NODE;
2438
2439 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2440
2441 pmd = mm_find_pmd(mm, address);
2442 if (!pmd)
2443 goto out;
2444 if (pmd_trans_huge(*pmd))
2445 goto out;
2446
2447 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2448 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2449 _pte++, _address += PAGE_SIZE) {
2450 pte_t pteval = *_pte;
2451 if (pte_none(pteval)) {
2452 if (++none <= khugepaged_max_ptes_none)
2453 continue;
2454 else
2455 goto out_unmap;
2456 }
2457 if (!pte_present(pteval) || !pte_write(pteval))
2458 goto out_unmap;
2459 page = vm_normal_page(vma, _address, pteval);
2460 if (unlikely(!page))
2461 goto out_unmap;
2462 /*
2463 * Chose the node of the first page. This could
2464 * be more sophisticated and look at more pages,
2465 * but isn't for now.
2466 */
2467 if (node == NUMA_NO_NODE)
2468 node = page_to_nid(page);
2469 VM_BUG_ON(PageCompound(page));
2470 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2471 goto out_unmap;
2472 /* cannot use mapcount: can't collapse if there's a gup pin */
2473 if (page_count(page) != 1)
2474 goto out_unmap;
2475 if (pte_young(pteval) || PageReferenced(page) ||
2476 mmu_notifier_test_young(vma->vm_mm, address))
2477 referenced = 1;
2478 }
2479 if (referenced)
2480 ret = 1;
2481 out_unmap:
2482 pte_unmap_unlock(pte, ptl);
2483 if (ret)
2484 /* collapse_huge_page will return with the mmap_sem released */
2485 collapse_huge_page(mm, address, hpage, vma, node);
2486 out:
2487 return ret;
2488 }
2489
2490 static void collect_mm_slot(struct mm_slot *mm_slot)
2491 {
2492 struct mm_struct *mm = mm_slot->mm;
2493
2494 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2495
2496 if (khugepaged_test_exit(mm)) {
2497 /* free mm_slot */
2498 hash_del(&mm_slot->hash);
2499 list_del(&mm_slot->mm_node);
2500
2501 /*
2502 * Not strictly needed because the mm exited already.
2503 *
2504 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2505 */
2506
2507 /* khugepaged_mm_lock actually not necessary for the below */
2508 free_mm_slot(mm_slot);
2509 mmdrop(mm);
2510 }
2511 }
2512
2513 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2514 struct page **hpage)
2515 __releases(&khugepaged_mm_lock)
2516 __acquires(&khugepaged_mm_lock)
2517 {
2518 struct mm_slot *mm_slot;
2519 struct mm_struct *mm;
2520 struct vm_area_struct *vma;
2521 int progress = 0;
2522
2523 VM_BUG_ON(!pages);
2524 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2525
2526 if (khugepaged_scan.mm_slot)
2527 mm_slot = khugepaged_scan.mm_slot;
2528 else {
2529 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2530 struct mm_slot, mm_node);
2531 khugepaged_scan.address = 0;
2532 khugepaged_scan.mm_slot = mm_slot;
2533 }
2534 spin_unlock(&khugepaged_mm_lock);
2535
2536 mm = mm_slot->mm;
2537 down_read(&mm->mmap_sem);
2538 if (unlikely(khugepaged_test_exit(mm)))
2539 vma = NULL;
2540 else
2541 vma = find_vma(mm, khugepaged_scan.address);
2542
2543 progress++;
2544 for (; vma; vma = vma->vm_next) {
2545 unsigned long hstart, hend;
2546
2547 cond_resched();
2548 if (unlikely(khugepaged_test_exit(mm))) {
2549 progress++;
2550 break;
2551 }
2552 if (!hugepage_vma_check(vma)) {
2553 skip:
2554 progress++;
2555 continue;
2556 }
2557 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2558 hend = vma->vm_end & HPAGE_PMD_MASK;
2559 if (hstart >= hend)
2560 goto skip;
2561 if (khugepaged_scan.address > hend)
2562 goto skip;
2563 if (khugepaged_scan.address < hstart)
2564 khugepaged_scan.address = hstart;
2565 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2566
2567 while (khugepaged_scan.address < hend) {
2568 int ret;
2569 cond_resched();
2570 if (unlikely(khugepaged_test_exit(mm)))
2571 goto breakouterloop;
2572
2573 VM_BUG_ON(khugepaged_scan.address < hstart ||
2574 khugepaged_scan.address + HPAGE_PMD_SIZE >
2575 hend);
2576 ret = khugepaged_scan_pmd(mm, vma,
2577 khugepaged_scan.address,
2578 hpage);
2579 /* move to next address */
2580 khugepaged_scan.address += HPAGE_PMD_SIZE;
2581 progress += HPAGE_PMD_NR;
2582 if (ret)
2583 /* we released mmap_sem so break loop */
2584 goto breakouterloop_mmap_sem;
2585 if (progress >= pages)
2586 goto breakouterloop;
2587 }
2588 }
2589 breakouterloop:
2590 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2591 breakouterloop_mmap_sem:
2592
2593 spin_lock(&khugepaged_mm_lock);
2594 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2595 /*
2596 * Release the current mm_slot if this mm is about to die, or
2597 * if we scanned all vmas of this mm.
2598 */
2599 if (khugepaged_test_exit(mm) || !vma) {
2600 /*
2601 * Make sure that if mm_users is reaching zero while
2602 * khugepaged runs here, khugepaged_exit will find
2603 * mm_slot not pointing to the exiting mm.
2604 */
2605 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2606 khugepaged_scan.mm_slot = list_entry(
2607 mm_slot->mm_node.next,
2608 struct mm_slot, mm_node);
2609 khugepaged_scan.address = 0;
2610 } else {
2611 khugepaged_scan.mm_slot = NULL;
2612 khugepaged_full_scans++;
2613 }
2614
2615 collect_mm_slot(mm_slot);
2616 }
2617
2618 return progress;
2619 }
2620
2621 static int khugepaged_has_work(void)
2622 {
2623 return !list_empty(&khugepaged_scan.mm_head) &&
2624 khugepaged_enabled();
2625 }
2626
2627 static int khugepaged_wait_event(void)
2628 {
2629 return !list_empty(&khugepaged_scan.mm_head) ||
2630 kthread_should_stop();
2631 }
2632
2633 static void khugepaged_do_scan(void)
2634 {
2635 struct page *hpage = NULL;
2636 unsigned int progress = 0, pass_through_head = 0;
2637 unsigned int pages = khugepaged_pages_to_scan;
2638 bool wait = true;
2639
2640 barrier(); /* write khugepaged_pages_to_scan to local stack */
2641
2642 while (progress < pages) {
2643 if (!khugepaged_prealloc_page(&hpage, &wait))
2644 break;
2645
2646 cond_resched();
2647
2648 if (unlikely(kthread_should_stop() || freezing(current)))
2649 break;
2650
2651 spin_lock(&khugepaged_mm_lock);
2652 if (!khugepaged_scan.mm_slot)
2653 pass_through_head++;
2654 if (khugepaged_has_work() &&
2655 pass_through_head < 2)
2656 progress += khugepaged_scan_mm_slot(pages - progress,
2657 &hpage);
2658 else
2659 progress = pages;
2660 spin_unlock(&khugepaged_mm_lock);
2661 }
2662
2663 if (!IS_ERR_OR_NULL(hpage))
2664 put_page(hpage);
2665 }
2666
2667 static void khugepaged_wait_work(void)
2668 {
2669 try_to_freeze();
2670
2671 if (khugepaged_has_work()) {
2672 if (!khugepaged_scan_sleep_millisecs)
2673 return;
2674
2675 wait_event_freezable_timeout(khugepaged_wait,
2676 kthread_should_stop(),
2677 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2678 return;
2679 }
2680
2681 if (khugepaged_enabled())
2682 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2683 }
2684
2685 static int khugepaged(void *none)
2686 {
2687 struct mm_slot *mm_slot;
2688
2689 set_freezable();
2690 set_user_nice(current, 19);
2691
2692 while (!kthread_should_stop()) {
2693 khugepaged_do_scan();
2694 khugepaged_wait_work();
2695 }
2696
2697 spin_lock(&khugepaged_mm_lock);
2698 mm_slot = khugepaged_scan.mm_slot;
2699 khugepaged_scan.mm_slot = NULL;
2700 if (mm_slot)
2701 collect_mm_slot(mm_slot);
2702 spin_unlock(&khugepaged_mm_lock);
2703 return 0;
2704 }
2705
2706 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2707 unsigned long haddr, pmd_t *pmd)
2708 {
2709 struct mm_struct *mm = vma->vm_mm;
2710 pgtable_t pgtable;
2711 pmd_t _pmd;
2712 int i;
2713
2714 pmdp_clear_flush(vma, haddr, pmd);
2715 /* leave pmd empty until pte is filled */
2716
2717 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2718 pmd_populate(mm, &_pmd, pgtable);
2719
2720 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2721 pte_t *pte, entry;
2722 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2723 entry = pte_mkspecial(entry);
2724 pte = pte_offset_map(&_pmd, haddr);
2725 VM_BUG_ON(!pte_none(*pte));
2726 set_pte_at(mm, haddr, pte, entry);
2727 pte_unmap(pte);
2728 }
2729 smp_wmb(); /* make pte visible before pmd */
2730 pmd_populate(mm, pmd, pgtable);
2731 put_huge_zero_page();
2732 }
2733
2734 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2735 pmd_t *pmd)
2736 {
2737 struct page *page;
2738 struct mm_struct *mm = vma->vm_mm;
2739 unsigned long haddr = address & HPAGE_PMD_MASK;
2740 unsigned long mmun_start; /* For mmu_notifiers */
2741 unsigned long mmun_end; /* For mmu_notifiers */
2742
2743 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2744
2745 mmun_start = haddr;
2746 mmun_end = haddr + HPAGE_PMD_SIZE;
2747 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2748 spin_lock(&mm->page_table_lock);
2749 if (unlikely(!pmd_trans_huge(*pmd))) {
2750 spin_unlock(&mm->page_table_lock);
2751 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2752 return;
2753 }
2754 if (is_huge_zero_pmd(*pmd)) {
2755 __split_huge_zero_page_pmd(vma, haddr, pmd);
2756 spin_unlock(&mm->page_table_lock);
2757 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2758 return;
2759 }
2760 page = pmd_page(*pmd);
2761 VM_BUG_ON(!page_count(page));
2762 get_page(page);
2763 spin_unlock(&mm->page_table_lock);
2764 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2765
2766 split_huge_page(page);
2767
2768 put_page(page);
2769 BUG_ON(pmd_trans_huge(*pmd));
2770 }
2771
2772 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2773 pmd_t *pmd)
2774 {
2775 struct vm_area_struct *vma;
2776
2777 vma = find_vma(mm, address);
2778 BUG_ON(vma == NULL);
2779 split_huge_page_pmd(vma, address, pmd);
2780 }
2781
2782 static void split_huge_page_address(struct mm_struct *mm,
2783 unsigned long address)
2784 {
2785 pmd_t *pmd;
2786
2787 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2788
2789 pmd = mm_find_pmd(mm, address);
2790 if (!pmd)
2791 return;
2792 /*
2793 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2794 * materialize from under us.
2795 */
2796 split_huge_page_pmd_mm(mm, address, pmd);
2797 }
2798
2799 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2800 unsigned long start,
2801 unsigned long end,
2802 long adjust_next)
2803 {
2804 /*
2805 * If the new start address isn't hpage aligned and it could
2806 * previously contain an hugepage: check if we need to split
2807 * an huge pmd.
2808 */
2809 if (start & ~HPAGE_PMD_MASK &&
2810 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2811 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2812 split_huge_page_address(vma->vm_mm, start);
2813
2814 /*
2815 * If the new end address isn't hpage aligned and it could
2816 * previously contain an hugepage: check if we need to split
2817 * an huge pmd.
2818 */
2819 if (end & ~HPAGE_PMD_MASK &&
2820 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2821 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2822 split_huge_page_address(vma->vm_mm, end);
2823
2824 /*
2825 * If we're also updating the vma->vm_next->vm_start, if the new
2826 * vm_next->vm_start isn't page aligned and it could previously
2827 * contain an hugepage: check if we need to split an huge pmd.
2828 */
2829 if (adjust_next > 0) {
2830 struct vm_area_struct *next = vma->vm_next;
2831 unsigned long nstart = next->vm_start;
2832 nstart += adjust_next << PAGE_SHIFT;
2833 if (nstart & ~HPAGE_PMD_MASK &&
2834 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2835 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2836 split_huge_page_address(next->vm_mm, nstart);
2837 }
2838 }