]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/huge_memory.c
Merge tag 'sound-5.10-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-hirsute-kernel.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
76
77 return false;
78 }
79
80 static struct page *get_huge_zero_page(void)
81 {
82 struct page *zero_page;
83 retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 return READ_ONCE(huge_zero_page);
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 HPAGE_PMD_ORDER);
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 return NULL;
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
94 preempt_disable();
95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 preempt_enable();
97 __free_pages(zero_page, compound_order(zero_page));
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
104 return READ_ONCE(huge_zero_page);
105 }
106
107 static void put_huge_zero_page(void)
108 {
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128 }
129
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134 }
135
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
138 {
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145 {
146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
149 __free_pages(zero_page, compound_order(zero_page));
150 return HPAGE_PMD_NR;
151 }
152
153 return 0;
154 }
155
156 static struct shrinker huge_zero_page_shrinker = {
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
159 .seeks = DEFAULT_SEEKS,
160 };
161
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165 {
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
172 }
173
174 static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177 {
178 ssize_t ret = count;
179
180 if (sysfs_streq(buf, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 } else if (sysfs_streq(buf, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 } else if (sysfs_streq(buf, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
191
192 if (ret > 0) {
193 int err = start_stop_khugepaged();
194 if (err)
195 ret = err;
196 }
197 return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205 {
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
208 }
209
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214 {
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
225 set_bit(flag, &transparent_hugepage_flags);
226 else
227 clear_bit(flag, &transparent_hugepage_flags);
228
229 return count;
230 }
231
232 static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234 {
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245
246 static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249 {
250 if (sysfs_streq(buf, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 } else if (sysfs_streq(buf, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 } else if (sysfs_streq(buf, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 } else if (sysfs_streq(buf, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 } else if (sysfs_streq(buf, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
279 }
280 static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285 {
286 return single_hugepage_flag_show(kobj, attr, buf,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292 return single_hugepage_flag_store(kobj, attr, buf, count,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300 {
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
306 static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
309 &use_zero_page_attr.attr,
310 &hpage_pmd_size_attr.attr,
311 #ifdef CONFIG_SHMEM
312 &shmem_enabled_attr.attr,
313 #endif
314 NULL,
315 };
316
317 static const struct attribute_group hugepage_attr_group = {
318 .attrs = hugepage_attr,
319 };
320
321 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
322 {
323 int err;
324
325 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
326 if (unlikely(!*hugepage_kobj)) {
327 pr_err("failed to create transparent hugepage kobject\n");
328 return -ENOMEM;
329 }
330
331 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
332 if (err) {
333 pr_err("failed to register transparent hugepage group\n");
334 goto delete_obj;
335 }
336
337 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
338 if (err) {
339 pr_err("failed to register transparent hugepage group\n");
340 goto remove_hp_group;
341 }
342
343 return 0;
344
345 remove_hp_group:
346 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
347 delete_obj:
348 kobject_put(*hugepage_kobj);
349 return err;
350 }
351
352 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
353 {
354 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
355 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
356 kobject_put(hugepage_kobj);
357 }
358 #else
359 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
360 {
361 return 0;
362 }
363
364 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 }
367 #endif /* CONFIG_SYSFS */
368
369 static int __init hugepage_init(void)
370 {
371 int err;
372 struct kobject *hugepage_kobj;
373
374 if (!has_transparent_hugepage()) {
375 transparent_hugepage_flags = 0;
376 return -EINVAL;
377 }
378
379 /*
380 * hugepages can't be allocated by the buddy allocator
381 */
382 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
383 /*
384 * we use page->mapping and page->index in second tail page
385 * as list_head: assuming THP order >= 2
386 */
387 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
388
389 err = hugepage_init_sysfs(&hugepage_kobj);
390 if (err)
391 goto err_sysfs;
392
393 err = khugepaged_init();
394 if (err)
395 goto err_slab;
396
397 err = register_shrinker(&huge_zero_page_shrinker);
398 if (err)
399 goto err_hzp_shrinker;
400 err = register_shrinker(&deferred_split_shrinker);
401 if (err)
402 goto err_split_shrinker;
403
404 /*
405 * By default disable transparent hugepages on smaller systems,
406 * where the extra memory used could hurt more than TLB overhead
407 * is likely to save. The admin can still enable it through /sys.
408 */
409 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
410 transparent_hugepage_flags = 0;
411 return 0;
412 }
413
414 err = start_stop_khugepaged();
415 if (err)
416 goto err_khugepaged;
417
418 return 0;
419 err_khugepaged:
420 unregister_shrinker(&deferred_split_shrinker);
421 err_split_shrinker:
422 unregister_shrinker(&huge_zero_page_shrinker);
423 err_hzp_shrinker:
424 khugepaged_destroy();
425 err_slab:
426 hugepage_exit_sysfs(hugepage_kobj);
427 err_sysfs:
428 return err;
429 }
430 subsys_initcall(hugepage_init);
431
432 static int __init setup_transparent_hugepage(char *str)
433 {
434 int ret = 0;
435 if (!str)
436 goto out;
437 if (!strcmp(str, "always")) {
438 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
439 &transparent_hugepage_flags);
440 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
441 &transparent_hugepage_flags);
442 ret = 1;
443 } else if (!strcmp(str, "madvise")) {
444 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
445 &transparent_hugepage_flags);
446 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
447 &transparent_hugepage_flags);
448 ret = 1;
449 } else if (!strcmp(str, "never")) {
450 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 }
456 out:
457 if (!ret)
458 pr_warn("transparent_hugepage= cannot parse, ignored\n");
459 return ret;
460 }
461 __setup("transparent_hugepage=", setup_transparent_hugepage);
462
463 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
464 {
465 if (likely(vma->vm_flags & VM_WRITE))
466 pmd = pmd_mkwrite(pmd);
467 return pmd;
468 }
469
470 #ifdef CONFIG_MEMCG
471 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
472 {
473 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
474 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
475
476 if (memcg)
477 return &memcg->deferred_split_queue;
478 else
479 return &pgdat->deferred_split_queue;
480 }
481 #else
482 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
483 {
484 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
485
486 return &pgdat->deferred_split_queue;
487 }
488 #endif
489
490 void prep_transhuge_page(struct page *page)
491 {
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500
501 bool is_transparent_hugepage(struct page *page)
502 {
503 if (!PageCompound(page))
504 return false;
505
506 page = compound_head(page);
507 return is_huge_zero_page(page) ||
508 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
509 }
510 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
511
512 static unsigned long __thp_get_unmapped_area(struct file *filp,
513 unsigned long addr, unsigned long len,
514 loff_t off, unsigned long flags, unsigned long size)
515 {
516 loff_t off_end = off + len;
517 loff_t off_align = round_up(off, size);
518 unsigned long len_pad, ret;
519
520 if (off_end <= off_align || (off_end - off_align) < size)
521 return 0;
522
523 len_pad = len + size;
524 if (len_pad < len || (off + len_pad) < off)
525 return 0;
526
527 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
528 off >> PAGE_SHIFT, flags);
529
530 /*
531 * The failure might be due to length padding. The caller will retry
532 * without the padding.
533 */
534 if (IS_ERR_VALUE(ret))
535 return 0;
536
537 /*
538 * Do not try to align to THP boundary if allocation at the address
539 * hint succeeds.
540 */
541 if (ret == addr)
542 return addr;
543
544 ret += (off - ret) & (size - 1);
545 return ret;
546 }
547
548 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
549 unsigned long len, unsigned long pgoff, unsigned long flags)
550 {
551 unsigned long ret;
552 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
553
554 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
555 goto out;
556
557 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
558 if (ret)
559 return ret;
560 out:
561 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
562 }
563 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
564
565 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
566 struct page *page, gfp_t gfp)
567 {
568 struct vm_area_struct *vma = vmf->vma;
569 pgtable_t pgtable;
570 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
571 vm_fault_t ret = 0;
572
573 VM_BUG_ON_PAGE(!PageCompound(page), page);
574
575 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
576 put_page(page);
577 count_vm_event(THP_FAULT_FALLBACK);
578 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
579 return VM_FAULT_FALLBACK;
580 }
581 cgroup_throttle_swaprate(page, gfp);
582
583 pgtable = pte_alloc_one(vma->vm_mm);
584 if (unlikely(!pgtable)) {
585 ret = VM_FAULT_OOM;
586 goto release;
587 }
588
589 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
590 /*
591 * The memory barrier inside __SetPageUptodate makes sure that
592 * clear_huge_page writes become visible before the set_pmd_at()
593 * write.
594 */
595 __SetPageUptodate(page);
596
597 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
598 if (unlikely(!pmd_none(*vmf->pmd))) {
599 goto unlock_release;
600 } else {
601 pmd_t entry;
602
603 ret = check_stable_address_space(vma->vm_mm);
604 if (ret)
605 goto unlock_release;
606
607 /* Deliver the page fault to userland */
608 if (userfaultfd_missing(vma)) {
609 vm_fault_t ret2;
610
611 spin_unlock(vmf->ptl);
612 put_page(page);
613 pte_free(vma->vm_mm, pgtable);
614 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
615 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
616 return ret2;
617 }
618
619 entry = mk_huge_pmd(page, vma->vm_page_prot);
620 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
621 page_add_new_anon_rmap(page, vma, haddr, true);
622 lru_cache_add_inactive_or_unevictable(page, vma);
623 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
624 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
625 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
626 mm_inc_nr_ptes(vma->vm_mm);
627 spin_unlock(vmf->ptl);
628 count_vm_event(THP_FAULT_ALLOC);
629 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
630 }
631
632 return 0;
633 unlock_release:
634 spin_unlock(vmf->ptl);
635 release:
636 if (pgtable)
637 pte_free(vma->vm_mm, pgtable);
638 put_page(page);
639 return ret;
640
641 }
642
643 /*
644 * always: directly stall for all thp allocations
645 * defer: wake kswapd and fail if not immediately available
646 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
647 * fail if not immediately available
648 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
649 * available
650 * never: never stall for any thp allocation
651 */
652 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
653 {
654 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
655
656 /* Always do synchronous compaction */
657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
658 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
659
660 /* Kick kcompactd and fail quickly */
661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
662 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
663
664 /* Synchronous compaction if madvised, otherwise kick kcompactd */
665 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
666 return GFP_TRANSHUGE_LIGHT |
667 (vma_madvised ? __GFP_DIRECT_RECLAIM :
668 __GFP_KSWAPD_RECLAIM);
669
670 /* Only do synchronous compaction if madvised */
671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
672 return GFP_TRANSHUGE_LIGHT |
673 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
674
675 return GFP_TRANSHUGE_LIGHT;
676 }
677
678 /* Caller must hold page table lock. */
679 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
680 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
681 struct page *zero_page)
682 {
683 pmd_t entry;
684 if (!pmd_none(*pmd))
685 return false;
686 entry = mk_pmd(zero_page, vma->vm_page_prot);
687 entry = pmd_mkhuge(entry);
688 if (pgtable)
689 pgtable_trans_huge_deposit(mm, pmd, pgtable);
690 set_pmd_at(mm, haddr, pmd, entry);
691 mm_inc_nr_ptes(mm);
692 return true;
693 }
694
695 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
696 {
697 struct vm_area_struct *vma = vmf->vma;
698 gfp_t gfp;
699 struct page *page;
700 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
701
702 if (!transhuge_vma_suitable(vma, haddr))
703 return VM_FAULT_FALLBACK;
704 if (unlikely(anon_vma_prepare(vma)))
705 return VM_FAULT_OOM;
706 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
707 return VM_FAULT_OOM;
708 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
709 !mm_forbids_zeropage(vma->vm_mm) &&
710 transparent_hugepage_use_zero_page()) {
711 pgtable_t pgtable;
712 struct page *zero_page;
713 bool set;
714 vm_fault_t ret;
715 pgtable = pte_alloc_one(vma->vm_mm);
716 if (unlikely(!pgtable))
717 return VM_FAULT_OOM;
718 zero_page = mm_get_huge_zero_page(vma->vm_mm);
719 if (unlikely(!zero_page)) {
720 pte_free(vma->vm_mm, pgtable);
721 count_vm_event(THP_FAULT_FALLBACK);
722 return VM_FAULT_FALLBACK;
723 }
724 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
725 ret = 0;
726 set = false;
727 if (pmd_none(*vmf->pmd)) {
728 ret = check_stable_address_space(vma->vm_mm);
729 if (ret) {
730 spin_unlock(vmf->ptl);
731 } else if (userfaultfd_missing(vma)) {
732 spin_unlock(vmf->ptl);
733 ret = handle_userfault(vmf, VM_UFFD_MISSING);
734 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
735 } else {
736 set_huge_zero_page(pgtable, vma->vm_mm, vma,
737 haddr, vmf->pmd, zero_page);
738 spin_unlock(vmf->ptl);
739 set = true;
740 }
741 } else
742 spin_unlock(vmf->ptl);
743 if (!set)
744 pte_free(vma->vm_mm, pgtable);
745 return ret;
746 }
747 gfp = alloc_hugepage_direct_gfpmask(vma);
748 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
749 if (unlikely(!page)) {
750 count_vm_event(THP_FAULT_FALLBACK);
751 return VM_FAULT_FALLBACK;
752 }
753 prep_transhuge_page(page);
754 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
755 }
756
757 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
758 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
759 pgtable_t pgtable)
760 {
761 struct mm_struct *mm = vma->vm_mm;
762 pmd_t entry;
763 spinlock_t *ptl;
764
765 ptl = pmd_lock(mm, pmd);
766 if (!pmd_none(*pmd)) {
767 if (write) {
768 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
769 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
770 goto out_unlock;
771 }
772 entry = pmd_mkyoung(*pmd);
773 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
774 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
775 update_mmu_cache_pmd(vma, addr, pmd);
776 }
777
778 goto out_unlock;
779 }
780
781 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
782 if (pfn_t_devmap(pfn))
783 entry = pmd_mkdevmap(entry);
784 if (write) {
785 entry = pmd_mkyoung(pmd_mkdirty(entry));
786 entry = maybe_pmd_mkwrite(entry, vma);
787 }
788
789 if (pgtable) {
790 pgtable_trans_huge_deposit(mm, pmd, pgtable);
791 mm_inc_nr_ptes(mm);
792 pgtable = NULL;
793 }
794
795 set_pmd_at(mm, addr, pmd, entry);
796 update_mmu_cache_pmd(vma, addr, pmd);
797
798 out_unlock:
799 spin_unlock(ptl);
800 if (pgtable)
801 pte_free(mm, pgtable);
802 }
803
804 /**
805 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
806 * @vmf: Structure describing the fault
807 * @pfn: pfn to insert
808 * @pgprot: page protection to use
809 * @write: whether it's a write fault
810 *
811 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
812 * also consult the vmf_insert_mixed_prot() documentation when
813 * @pgprot != @vmf->vma->vm_page_prot.
814 *
815 * Return: vm_fault_t value.
816 */
817 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
818 pgprot_t pgprot, bool write)
819 {
820 unsigned long addr = vmf->address & PMD_MASK;
821 struct vm_area_struct *vma = vmf->vma;
822 pgtable_t pgtable = NULL;
823
824 /*
825 * If we had pmd_special, we could avoid all these restrictions,
826 * but we need to be consistent with PTEs and architectures that
827 * can't support a 'special' bit.
828 */
829 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
830 !pfn_t_devmap(pfn));
831 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
832 (VM_PFNMAP|VM_MIXEDMAP));
833 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
834
835 if (addr < vma->vm_start || addr >= vma->vm_end)
836 return VM_FAULT_SIGBUS;
837
838 if (arch_needs_pgtable_deposit()) {
839 pgtable = pte_alloc_one(vma->vm_mm);
840 if (!pgtable)
841 return VM_FAULT_OOM;
842 }
843
844 track_pfn_insert(vma, &pgprot, pfn);
845
846 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
847 return VM_FAULT_NOPAGE;
848 }
849 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
850
851 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
852 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
853 {
854 if (likely(vma->vm_flags & VM_WRITE))
855 pud = pud_mkwrite(pud);
856 return pud;
857 }
858
859 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
860 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
861 {
862 struct mm_struct *mm = vma->vm_mm;
863 pud_t entry;
864 spinlock_t *ptl;
865
866 ptl = pud_lock(mm, pud);
867 if (!pud_none(*pud)) {
868 if (write) {
869 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
870 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
871 goto out_unlock;
872 }
873 entry = pud_mkyoung(*pud);
874 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
875 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
876 update_mmu_cache_pud(vma, addr, pud);
877 }
878 goto out_unlock;
879 }
880
881 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
882 if (pfn_t_devmap(pfn))
883 entry = pud_mkdevmap(entry);
884 if (write) {
885 entry = pud_mkyoung(pud_mkdirty(entry));
886 entry = maybe_pud_mkwrite(entry, vma);
887 }
888 set_pud_at(mm, addr, pud, entry);
889 update_mmu_cache_pud(vma, addr, pud);
890
891 out_unlock:
892 spin_unlock(ptl);
893 }
894
895 /**
896 * vmf_insert_pfn_pud_prot - insert a pud size pfn
897 * @vmf: Structure describing the fault
898 * @pfn: pfn to insert
899 * @pgprot: page protection to use
900 * @write: whether it's a write fault
901 *
902 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
903 * also consult the vmf_insert_mixed_prot() documentation when
904 * @pgprot != @vmf->vma->vm_page_prot.
905 *
906 * Return: vm_fault_t value.
907 */
908 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
909 pgprot_t pgprot, bool write)
910 {
911 unsigned long addr = vmf->address & PUD_MASK;
912 struct vm_area_struct *vma = vmf->vma;
913
914 /*
915 * If we had pud_special, we could avoid all these restrictions,
916 * but we need to be consistent with PTEs and architectures that
917 * can't support a 'special' bit.
918 */
919 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
920 !pfn_t_devmap(pfn));
921 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
922 (VM_PFNMAP|VM_MIXEDMAP));
923 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
924
925 if (addr < vma->vm_start || addr >= vma->vm_end)
926 return VM_FAULT_SIGBUS;
927
928 track_pfn_insert(vma, &pgprot, pfn);
929
930 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
931 return VM_FAULT_NOPAGE;
932 }
933 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
934 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
935
936 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
937 pmd_t *pmd, int flags)
938 {
939 pmd_t _pmd;
940
941 _pmd = pmd_mkyoung(*pmd);
942 if (flags & FOLL_WRITE)
943 _pmd = pmd_mkdirty(_pmd);
944 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
945 pmd, _pmd, flags & FOLL_WRITE))
946 update_mmu_cache_pmd(vma, addr, pmd);
947 }
948
949 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
950 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
951 {
952 unsigned long pfn = pmd_pfn(*pmd);
953 struct mm_struct *mm = vma->vm_mm;
954 struct page *page;
955
956 assert_spin_locked(pmd_lockptr(mm, pmd));
957
958 /*
959 * When we COW a devmap PMD entry, we split it into PTEs, so we should
960 * not be in this function with `flags & FOLL_COW` set.
961 */
962 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
963
964 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
965 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
966 (FOLL_PIN | FOLL_GET)))
967 return NULL;
968
969 if (flags & FOLL_WRITE && !pmd_write(*pmd))
970 return NULL;
971
972 if (pmd_present(*pmd) && pmd_devmap(*pmd))
973 /* pass */;
974 else
975 return NULL;
976
977 if (flags & FOLL_TOUCH)
978 touch_pmd(vma, addr, pmd, flags);
979
980 /*
981 * device mapped pages can only be returned if the
982 * caller will manage the page reference count.
983 */
984 if (!(flags & (FOLL_GET | FOLL_PIN)))
985 return ERR_PTR(-EEXIST);
986
987 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
988 *pgmap = get_dev_pagemap(pfn, *pgmap);
989 if (!*pgmap)
990 return ERR_PTR(-EFAULT);
991 page = pfn_to_page(pfn);
992 if (!try_grab_page(page, flags))
993 page = ERR_PTR(-ENOMEM);
994
995 return page;
996 }
997
998 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
999 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1000 struct vm_area_struct *vma)
1001 {
1002 spinlock_t *dst_ptl, *src_ptl;
1003 struct page *src_page;
1004 pmd_t pmd;
1005 pgtable_t pgtable = NULL;
1006 int ret = -ENOMEM;
1007
1008 /* Skip if can be re-fill on fault */
1009 if (!vma_is_anonymous(vma))
1010 return 0;
1011
1012 pgtable = pte_alloc_one(dst_mm);
1013 if (unlikely(!pgtable))
1014 goto out;
1015
1016 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1017 src_ptl = pmd_lockptr(src_mm, src_pmd);
1018 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1019
1020 ret = -EAGAIN;
1021 pmd = *src_pmd;
1022
1023 /*
1024 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1025 * does not have the VM_UFFD_WP, which means that the uffd
1026 * fork event is not enabled.
1027 */
1028 if (!(vma->vm_flags & VM_UFFD_WP))
1029 pmd = pmd_clear_uffd_wp(pmd);
1030
1031 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1032 if (unlikely(is_swap_pmd(pmd))) {
1033 swp_entry_t entry = pmd_to_swp_entry(pmd);
1034
1035 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1036 if (is_write_migration_entry(entry)) {
1037 make_migration_entry_read(&entry);
1038 pmd = swp_entry_to_pmd(entry);
1039 if (pmd_swp_soft_dirty(*src_pmd))
1040 pmd = pmd_swp_mksoft_dirty(pmd);
1041 set_pmd_at(src_mm, addr, src_pmd, pmd);
1042 }
1043 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1044 mm_inc_nr_ptes(dst_mm);
1045 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1046 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1047 ret = 0;
1048 goto out_unlock;
1049 }
1050 #endif
1051
1052 if (unlikely(!pmd_trans_huge(pmd))) {
1053 pte_free(dst_mm, pgtable);
1054 goto out_unlock;
1055 }
1056 /*
1057 * When page table lock is held, the huge zero pmd should not be
1058 * under splitting since we don't split the page itself, only pmd to
1059 * a page table.
1060 */
1061 if (is_huge_zero_pmd(pmd)) {
1062 struct page *zero_page;
1063 /*
1064 * get_huge_zero_page() will never allocate a new page here,
1065 * since we already have a zero page to copy. It just takes a
1066 * reference.
1067 */
1068 zero_page = mm_get_huge_zero_page(dst_mm);
1069 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1070 zero_page);
1071 ret = 0;
1072 goto out_unlock;
1073 }
1074
1075 src_page = pmd_page(pmd);
1076 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1077
1078 /*
1079 * If this page is a potentially pinned page, split and retry the fault
1080 * with smaller page size. Normally this should not happen because the
1081 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1082 * best effort that the pinned pages won't be replaced by another
1083 * random page during the coming copy-on-write.
1084 */
1085 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1086 atomic_read(&src_mm->has_pinned) &&
1087 page_maybe_dma_pinned(src_page))) {
1088 pte_free(dst_mm, pgtable);
1089 spin_unlock(src_ptl);
1090 spin_unlock(dst_ptl);
1091 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1092 return -EAGAIN;
1093 }
1094
1095 get_page(src_page);
1096 page_dup_rmap(src_page, true);
1097 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1098 mm_inc_nr_ptes(dst_mm);
1099 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1100
1101 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1102 pmd = pmd_mkold(pmd_wrprotect(pmd));
1103 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1104
1105 ret = 0;
1106 out_unlock:
1107 spin_unlock(src_ptl);
1108 spin_unlock(dst_ptl);
1109 out:
1110 return ret;
1111 }
1112
1113 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1114 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1115 pud_t *pud, int flags)
1116 {
1117 pud_t _pud;
1118
1119 _pud = pud_mkyoung(*pud);
1120 if (flags & FOLL_WRITE)
1121 _pud = pud_mkdirty(_pud);
1122 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1123 pud, _pud, flags & FOLL_WRITE))
1124 update_mmu_cache_pud(vma, addr, pud);
1125 }
1126
1127 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1128 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1129 {
1130 unsigned long pfn = pud_pfn(*pud);
1131 struct mm_struct *mm = vma->vm_mm;
1132 struct page *page;
1133
1134 assert_spin_locked(pud_lockptr(mm, pud));
1135
1136 if (flags & FOLL_WRITE && !pud_write(*pud))
1137 return NULL;
1138
1139 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1140 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1141 (FOLL_PIN | FOLL_GET)))
1142 return NULL;
1143
1144 if (pud_present(*pud) && pud_devmap(*pud))
1145 /* pass */;
1146 else
1147 return NULL;
1148
1149 if (flags & FOLL_TOUCH)
1150 touch_pud(vma, addr, pud, flags);
1151
1152 /*
1153 * device mapped pages can only be returned if the
1154 * caller will manage the page reference count.
1155 *
1156 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1157 */
1158 if (!(flags & (FOLL_GET | FOLL_PIN)))
1159 return ERR_PTR(-EEXIST);
1160
1161 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1162 *pgmap = get_dev_pagemap(pfn, *pgmap);
1163 if (!*pgmap)
1164 return ERR_PTR(-EFAULT);
1165 page = pfn_to_page(pfn);
1166 if (!try_grab_page(page, flags))
1167 page = ERR_PTR(-ENOMEM);
1168
1169 return page;
1170 }
1171
1172 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1173 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1174 struct vm_area_struct *vma)
1175 {
1176 spinlock_t *dst_ptl, *src_ptl;
1177 pud_t pud;
1178 int ret;
1179
1180 dst_ptl = pud_lock(dst_mm, dst_pud);
1181 src_ptl = pud_lockptr(src_mm, src_pud);
1182 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1183
1184 ret = -EAGAIN;
1185 pud = *src_pud;
1186 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1187 goto out_unlock;
1188
1189 /*
1190 * When page table lock is held, the huge zero pud should not be
1191 * under splitting since we don't split the page itself, only pud to
1192 * a page table.
1193 */
1194 if (is_huge_zero_pud(pud)) {
1195 /* No huge zero pud yet */
1196 }
1197
1198 /* Please refer to comments in copy_huge_pmd() */
1199 if (unlikely(is_cow_mapping(vma->vm_flags) &&
1200 atomic_read(&src_mm->has_pinned) &&
1201 page_maybe_dma_pinned(pud_page(pud)))) {
1202 spin_unlock(src_ptl);
1203 spin_unlock(dst_ptl);
1204 __split_huge_pud(vma, src_pud, addr);
1205 return -EAGAIN;
1206 }
1207
1208 pudp_set_wrprotect(src_mm, addr, src_pud);
1209 pud = pud_mkold(pud_wrprotect(pud));
1210 set_pud_at(dst_mm, addr, dst_pud, pud);
1211
1212 ret = 0;
1213 out_unlock:
1214 spin_unlock(src_ptl);
1215 spin_unlock(dst_ptl);
1216 return ret;
1217 }
1218
1219 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1220 {
1221 pud_t entry;
1222 unsigned long haddr;
1223 bool write = vmf->flags & FAULT_FLAG_WRITE;
1224
1225 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1226 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1227 goto unlock;
1228
1229 entry = pud_mkyoung(orig_pud);
1230 if (write)
1231 entry = pud_mkdirty(entry);
1232 haddr = vmf->address & HPAGE_PUD_MASK;
1233 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1234 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1235
1236 unlock:
1237 spin_unlock(vmf->ptl);
1238 }
1239 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1240
1241 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1242 {
1243 pmd_t entry;
1244 unsigned long haddr;
1245 bool write = vmf->flags & FAULT_FLAG_WRITE;
1246
1247 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1248 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1249 goto unlock;
1250
1251 entry = pmd_mkyoung(orig_pmd);
1252 if (write)
1253 entry = pmd_mkdirty(entry);
1254 haddr = vmf->address & HPAGE_PMD_MASK;
1255 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1256 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1257
1258 unlock:
1259 spin_unlock(vmf->ptl);
1260 }
1261
1262 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1263 {
1264 struct vm_area_struct *vma = vmf->vma;
1265 struct page *page;
1266 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1267
1268 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1269 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1270
1271 if (is_huge_zero_pmd(orig_pmd))
1272 goto fallback;
1273
1274 spin_lock(vmf->ptl);
1275
1276 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1277 spin_unlock(vmf->ptl);
1278 return 0;
1279 }
1280
1281 page = pmd_page(orig_pmd);
1282 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1283
1284 /* Lock page for reuse_swap_page() */
1285 if (!trylock_page(page)) {
1286 get_page(page);
1287 spin_unlock(vmf->ptl);
1288 lock_page(page);
1289 spin_lock(vmf->ptl);
1290 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1291 spin_unlock(vmf->ptl);
1292 unlock_page(page);
1293 put_page(page);
1294 return 0;
1295 }
1296 put_page(page);
1297 }
1298
1299 /*
1300 * We can only reuse the page if nobody else maps the huge page or it's
1301 * part.
1302 */
1303 if (reuse_swap_page(page, NULL)) {
1304 pmd_t entry;
1305 entry = pmd_mkyoung(orig_pmd);
1306 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1307 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1308 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1309 unlock_page(page);
1310 spin_unlock(vmf->ptl);
1311 return VM_FAULT_WRITE;
1312 }
1313
1314 unlock_page(page);
1315 spin_unlock(vmf->ptl);
1316 fallback:
1317 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1318 return VM_FAULT_FALLBACK;
1319 }
1320
1321 /*
1322 * FOLL_FORCE can write to even unwritable pmd's, but only
1323 * after we've gone through a COW cycle and they are dirty.
1324 */
1325 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1326 {
1327 return pmd_write(pmd) ||
1328 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1329 }
1330
1331 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1332 unsigned long addr,
1333 pmd_t *pmd,
1334 unsigned int flags)
1335 {
1336 struct mm_struct *mm = vma->vm_mm;
1337 struct page *page = NULL;
1338
1339 assert_spin_locked(pmd_lockptr(mm, pmd));
1340
1341 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1342 goto out;
1343
1344 /* Avoid dumping huge zero page */
1345 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1346 return ERR_PTR(-EFAULT);
1347
1348 /* Full NUMA hinting faults to serialise migration in fault paths */
1349 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1350 goto out;
1351
1352 page = pmd_page(*pmd);
1353 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1354
1355 if (!try_grab_page(page, flags))
1356 return ERR_PTR(-ENOMEM);
1357
1358 if (flags & FOLL_TOUCH)
1359 touch_pmd(vma, addr, pmd, flags);
1360
1361 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1362 /*
1363 * We don't mlock() pte-mapped THPs. This way we can avoid
1364 * leaking mlocked pages into non-VM_LOCKED VMAs.
1365 *
1366 * For anon THP:
1367 *
1368 * In most cases the pmd is the only mapping of the page as we
1369 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1370 * writable private mappings in populate_vma_page_range().
1371 *
1372 * The only scenario when we have the page shared here is if we
1373 * mlocking read-only mapping shared over fork(). We skip
1374 * mlocking such pages.
1375 *
1376 * For file THP:
1377 *
1378 * We can expect PageDoubleMap() to be stable under page lock:
1379 * for file pages we set it in page_add_file_rmap(), which
1380 * requires page to be locked.
1381 */
1382
1383 if (PageAnon(page) && compound_mapcount(page) != 1)
1384 goto skip_mlock;
1385 if (PageDoubleMap(page) || !page->mapping)
1386 goto skip_mlock;
1387 if (!trylock_page(page))
1388 goto skip_mlock;
1389 if (page->mapping && !PageDoubleMap(page))
1390 mlock_vma_page(page);
1391 unlock_page(page);
1392 }
1393 skip_mlock:
1394 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1395 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1396
1397 out:
1398 return page;
1399 }
1400
1401 /* NUMA hinting page fault entry point for trans huge pmds */
1402 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1403 {
1404 struct vm_area_struct *vma = vmf->vma;
1405 struct anon_vma *anon_vma = NULL;
1406 struct page *page;
1407 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1408 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1409 int target_nid, last_cpupid = -1;
1410 bool page_locked;
1411 bool migrated = false;
1412 bool was_writable;
1413 int flags = 0;
1414
1415 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1416 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1417 goto out_unlock;
1418
1419 /*
1420 * If there are potential migrations, wait for completion and retry
1421 * without disrupting NUMA hinting information. Do not relock and
1422 * check_same as the page may no longer be mapped.
1423 */
1424 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1425 page = pmd_page(*vmf->pmd);
1426 if (!get_page_unless_zero(page))
1427 goto out_unlock;
1428 spin_unlock(vmf->ptl);
1429 put_and_wait_on_page_locked(page);
1430 goto out;
1431 }
1432
1433 page = pmd_page(pmd);
1434 BUG_ON(is_huge_zero_page(page));
1435 page_nid = page_to_nid(page);
1436 last_cpupid = page_cpupid_last(page);
1437 count_vm_numa_event(NUMA_HINT_FAULTS);
1438 if (page_nid == this_nid) {
1439 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1440 flags |= TNF_FAULT_LOCAL;
1441 }
1442
1443 /* See similar comment in do_numa_page for explanation */
1444 if (!pmd_savedwrite(pmd))
1445 flags |= TNF_NO_GROUP;
1446
1447 /*
1448 * Acquire the page lock to serialise THP migrations but avoid dropping
1449 * page_table_lock if at all possible
1450 */
1451 page_locked = trylock_page(page);
1452 target_nid = mpol_misplaced(page, vma, haddr);
1453 if (target_nid == NUMA_NO_NODE) {
1454 /* If the page was locked, there are no parallel migrations */
1455 if (page_locked)
1456 goto clear_pmdnuma;
1457 }
1458
1459 /* Migration could have started since the pmd_trans_migrating check */
1460 if (!page_locked) {
1461 page_nid = NUMA_NO_NODE;
1462 if (!get_page_unless_zero(page))
1463 goto out_unlock;
1464 spin_unlock(vmf->ptl);
1465 put_and_wait_on_page_locked(page);
1466 goto out;
1467 }
1468
1469 /*
1470 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1471 * to serialises splits
1472 */
1473 get_page(page);
1474 spin_unlock(vmf->ptl);
1475 anon_vma = page_lock_anon_vma_read(page);
1476
1477 /* Confirm the PMD did not change while page_table_lock was released */
1478 spin_lock(vmf->ptl);
1479 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1480 unlock_page(page);
1481 put_page(page);
1482 page_nid = NUMA_NO_NODE;
1483 goto out_unlock;
1484 }
1485
1486 /* Bail if we fail to protect against THP splits for any reason */
1487 if (unlikely(!anon_vma)) {
1488 put_page(page);
1489 page_nid = NUMA_NO_NODE;
1490 goto clear_pmdnuma;
1491 }
1492
1493 /*
1494 * Since we took the NUMA fault, we must have observed the !accessible
1495 * bit. Make sure all other CPUs agree with that, to avoid them
1496 * modifying the page we're about to migrate.
1497 *
1498 * Must be done under PTL such that we'll observe the relevant
1499 * inc_tlb_flush_pending().
1500 *
1501 * We are not sure a pending tlb flush here is for a huge page
1502 * mapping or not. Hence use the tlb range variant
1503 */
1504 if (mm_tlb_flush_pending(vma->vm_mm)) {
1505 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1506 /*
1507 * change_huge_pmd() released the pmd lock before
1508 * invalidating the secondary MMUs sharing the primary
1509 * MMU pagetables (with ->invalidate_range()). The
1510 * mmu_notifier_invalidate_range_end() (which
1511 * internally calls ->invalidate_range()) in
1512 * change_pmd_range() will run after us, so we can't
1513 * rely on it here and we need an explicit invalidate.
1514 */
1515 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1516 haddr + HPAGE_PMD_SIZE);
1517 }
1518
1519 /*
1520 * Migrate the THP to the requested node, returns with page unlocked
1521 * and access rights restored.
1522 */
1523 spin_unlock(vmf->ptl);
1524
1525 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1526 vmf->pmd, pmd, vmf->address, page, target_nid);
1527 if (migrated) {
1528 flags |= TNF_MIGRATED;
1529 page_nid = target_nid;
1530 } else
1531 flags |= TNF_MIGRATE_FAIL;
1532
1533 goto out;
1534 clear_pmdnuma:
1535 BUG_ON(!PageLocked(page));
1536 was_writable = pmd_savedwrite(pmd);
1537 pmd = pmd_modify(pmd, vma->vm_page_prot);
1538 pmd = pmd_mkyoung(pmd);
1539 if (was_writable)
1540 pmd = pmd_mkwrite(pmd);
1541 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1542 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1543 unlock_page(page);
1544 out_unlock:
1545 spin_unlock(vmf->ptl);
1546
1547 out:
1548 if (anon_vma)
1549 page_unlock_anon_vma_read(anon_vma);
1550
1551 if (page_nid != NUMA_NO_NODE)
1552 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1553 flags);
1554
1555 return 0;
1556 }
1557
1558 /*
1559 * Return true if we do MADV_FREE successfully on entire pmd page.
1560 * Otherwise, return false.
1561 */
1562 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1563 pmd_t *pmd, unsigned long addr, unsigned long next)
1564 {
1565 spinlock_t *ptl;
1566 pmd_t orig_pmd;
1567 struct page *page;
1568 struct mm_struct *mm = tlb->mm;
1569 bool ret = false;
1570
1571 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1572
1573 ptl = pmd_trans_huge_lock(pmd, vma);
1574 if (!ptl)
1575 goto out_unlocked;
1576
1577 orig_pmd = *pmd;
1578 if (is_huge_zero_pmd(orig_pmd))
1579 goto out;
1580
1581 if (unlikely(!pmd_present(orig_pmd))) {
1582 VM_BUG_ON(thp_migration_supported() &&
1583 !is_pmd_migration_entry(orig_pmd));
1584 goto out;
1585 }
1586
1587 page = pmd_page(orig_pmd);
1588 /*
1589 * If other processes are mapping this page, we couldn't discard
1590 * the page unless they all do MADV_FREE so let's skip the page.
1591 */
1592 if (page_mapcount(page) != 1)
1593 goto out;
1594
1595 if (!trylock_page(page))
1596 goto out;
1597
1598 /*
1599 * If user want to discard part-pages of THP, split it so MADV_FREE
1600 * will deactivate only them.
1601 */
1602 if (next - addr != HPAGE_PMD_SIZE) {
1603 get_page(page);
1604 spin_unlock(ptl);
1605 split_huge_page(page);
1606 unlock_page(page);
1607 put_page(page);
1608 goto out_unlocked;
1609 }
1610
1611 if (PageDirty(page))
1612 ClearPageDirty(page);
1613 unlock_page(page);
1614
1615 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1616 pmdp_invalidate(vma, addr, pmd);
1617 orig_pmd = pmd_mkold(orig_pmd);
1618 orig_pmd = pmd_mkclean(orig_pmd);
1619
1620 set_pmd_at(mm, addr, pmd, orig_pmd);
1621 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1622 }
1623
1624 mark_page_lazyfree(page);
1625 ret = true;
1626 out:
1627 spin_unlock(ptl);
1628 out_unlocked:
1629 return ret;
1630 }
1631
1632 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1633 {
1634 pgtable_t pgtable;
1635
1636 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1637 pte_free(mm, pgtable);
1638 mm_dec_nr_ptes(mm);
1639 }
1640
1641 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1642 pmd_t *pmd, unsigned long addr)
1643 {
1644 pmd_t orig_pmd;
1645 spinlock_t *ptl;
1646
1647 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1648
1649 ptl = __pmd_trans_huge_lock(pmd, vma);
1650 if (!ptl)
1651 return 0;
1652 /*
1653 * For architectures like ppc64 we look at deposited pgtable
1654 * when calling pmdp_huge_get_and_clear. So do the
1655 * pgtable_trans_huge_withdraw after finishing pmdp related
1656 * operations.
1657 */
1658 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1659 tlb->fullmm);
1660 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1661 if (vma_is_special_huge(vma)) {
1662 if (arch_needs_pgtable_deposit())
1663 zap_deposited_table(tlb->mm, pmd);
1664 spin_unlock(ptl);
1665 if (is_huge_zero_pmd(orig_pmd))
1666 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1667 } else if (is_huge_zero_pmd(orig_pmd)) {
1668 zap_deposited_table(tlb->mm, pmd);
1669 spin_unlock(ptl);
1670 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1671 } else {
1672 struct page *page = NULL;
1673 int flush_needed = 1;
1674
1675 if (pmd_present(orig_pmd)) {
1676 page = pmd_page(orig_pmd);
1677 page_remove_rmap(page, true);
1678 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1679 VM_BUG_ON_PAGE(!PageHead(page), page);
1680 } else if (thp_migration_supported()) {
1681 swp_entry_t entry;
1682
1683 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1684 entry = pmd_to_swp_entry(orig_pmd);
1685 page = pfn_to_page(swp_offset(entry));
1686 flush_needed = 0;
1687 } else
1688 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1689
1690 if (PageAnon(page)) {
1691 zap_deposited_table(tlb->mm, pmd);
1692 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1693 } else {
1694 if (arch_needs_pgtable_deposit())
1695 zap_deposited_table(tlb->mm, pmd);
1696 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1697 }
1698
1699 spin_unlock(ptl);
1700 if (flush_needed)
1701 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1702 }
1703 return 1;
1704 }
1705
1706 #ifndef pmd_move_must_withdraw
1707 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1708 spinlock_t *old_pmd_ptl,
1709 struct vm_area_struct *vma)
1710 {
1711 /*
1712 * With split pmd lock we also need to move preallocated
1713 * PTE page table if new_pmd is on different PMD page table.
1714 *
1715 * We also don't deposit and withdraw tables for file pages.
1716 */
1717 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1718 }
1719 #endif
1720
1721 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1722 {
1723 #ifdef CONFIG_MEM_SOFT_DIRTY
1724 if (unlikely(is_pmd_migration_entry(pmd)))
1725 pmd = pmd_swp_mksoft_dirty(pmd);
1726 else if (pmd_present(pmd))
1727 pmd = pmd_mksoft_dirty(pmd);
1728 #endif
1729 return pmd;
1730 }
1731
1732 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1733 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1734 {
1735 spinlock_t *old_ptl, *new_ptl;
1736 pmd_t pmd;
1737 struct mm_struct *mm = vma->vm_mm;
1738 bool force_flush = false;
1739
1740 /*
1741 * The destination pmd shouldn't be established, free_pgtables()
1742 * should have release it.
1743 */
1744 if (WARN_ON(!pmd_none(*new_pmd))) {
1745 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1746 return false;
1747 }
1748
1749 /*
1750 * We don't have to worry about the ordering of src and dst
1751 * ptlocks because exclusive mmap_lock prevents deadlock.
1752 */
1753 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1754 if (old_ptl) {
1755 new_ptl = pmd_lockptr(mm, new_pmd);
1756 if (new_ptl != old_ptl)
1757 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1758 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1759 if (pmd_present(pmd))
1760 force_flush = true;
1761 VM_BUG_ON(!pmd_none(*new_pmd));
1762
1763 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1764 pgtable_t pgtable;
1765 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1766 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1767 }
1768 pmd = move_soft_dirty_pmd(pmd);
1769 set_pmd_at(mm, new_addr, new_pmd, pmd);
1770 if (force_flush)
1771 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1772 if (new_ptl != old_ptl)
1773 spin_unlock(new_ptl);
1774 spin_unlock(old_ptl);
1775 return true;
1776 }
1777 return false;
1778 }
1779
1780 /*
1781 * Returns
1782 * - 0 if PMD could not be locked
1783 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1784 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1785 */
1786 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1787 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1788 {
1789 struct mm_struct *mm = vma->vm_mm;
1790 spinlock_t *ptl;
1791 pmd_t entry;
1792 bool preserve_write;
1793 int ret;
1794 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1795 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1796 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1797
1798 ptl = __pmd_trans_huge_lock(pmd, vma);
1799 if (!ptl)
1800 return 0;
1801
1802 preserve_write = prot_numa && pmd_write(*pmd);
1803 ret = 1;
1804
1805 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1806 if (is_swap_pmd(*pmd)) {
1807 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1808
1809 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1810 if (is_write_migration_entry(entry)) {
1811 pmd_t newpmd;
1812 /*
1813 * A protection check is difficult so
1814 * just be safe and disable write
1815 */
1816 make_migration_entry_read(&entry);
1817 newpmd = swp_entry_to_pmd(entry);
1818 if (pmd_swp_soft_dirty(*pmd))
1819 newpmd = pmd_swp_mksoft_dirty(newpmd);
1820 set_pmd_at(mm, addr, pmd, newpmd);
1821 }
1822 goto unlock;
1823 }
1824 #endif
1825
1826 /*
1827 * Avoid trapping faults against the zero page. The read-only
1828 * data is likely to be read-cached on the local CPU and
1829 * local/remote hits to the zero page are not interesting.
1830 */
1831 if (prot_numa && is_huge_zero_pmd(*pmd))
1832 goto unlock;
1833
1834 if (prot_numa && pmd_protnone(*pmd))
1835 goto unlock;
1836
1837 /*
1838 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1839 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1840 * which is also under mmap_read_lock(mm):
1841 *
1842 * CPU0: CPU1:
1843 * change_huge_pmd(prot_numa=1)
1844 * pmdp_huge_get_and_clear_notify()
1845 * madvise_dontneed()
1846 * zap_pmd_range()
1847 * pmd_trans_huge(*pmd) == 0 (without ptl)
1848 * // skip the pmd
1849 * set_pmd_at();
1850 * // pmd is re-established
1851 *
1852 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1853 * which may break userspace.
1854 *
1855 * pmdp_invalidate() is required to make sure we don't miss
1856 * dirty/young flags set by hardware.
1857 */
1858 entry = pmdp_invalidate(vma, addr, pmd);
1859
1860 entry = pmd_modify(entry, newprot);
1861 if (preserve_write)
1862 entry = pmd_mk_savedwrite(entry);
1863 if (uffd_wp) {
1864 entry = pmd_wrprotect(entry);
1865 entry = pmd_mkuffd_wp(entry);
1866 } else if (uffd_wp_resolve) {
1867 /*
1868 * Leave the write bit to be handled by PF interrupt
1869 * handler, then things like COW could be properly
1870 * handled.
1871 */
1872 entry = pmd_clear_uffd_wp(entry);
1873 }
1874 ret = HPAGE_PMD_NR;
1875 set_pmd_at(mm, addr, pmd, entry);
1876 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1877 unlock:
1878 spin_unlock(ptl);
1879 return ret;
1880 }
1881
1882 /*
1883 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1884 *
1885 * Note that if it returns page table lock pointer, this routine returns without
1886 * unlocking page table lock. So callers must unlock it.
1887 */
1888 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1889 {
1890 spinlock_t *ptl;
1891 ptl = pmd_lock(vma->vm_mm, pmd);
1892 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1893 pmd_devmap(*pmd)))
1894 return ptl;
1895 spin_unlock(ptl);
1896 return NULL;
1897 }
1898
1899 /*
1900 * Returns true if a given pud maps a thp, false otherwise.
1901 *
1902 * Note that if it returns true, this routine returns without unlocking page
1903 * table lock. So callers must unlock it.
1904 */
1905 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1906 {
1907 spinlock_t *ptl;
1908
1909 ptl = pud_lock(vma->vm_mm, pud);
1910 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1911 return ptl;
1912 spin_unlock(ptl);
1913 return NULL;
1914 }
1915
1916 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1917 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1918 pud_t *pud, unsigned long addr)
1919 {
1920 spinlock_t *ptl;
1921
1922 ptl = __pud_trans_huge_lock(pud, vma);
1923 if (!ptl)
1924 return 0;
1925 /*
1926 * For architectures like ppc64 we look at deposited pgtable
1927 * when calling pudp_huge_get_and_clear. So do the
1928 * pgtable_trans_huge_withdraw after finishing pudp related
1929 * operations.
1930 */
1931 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1932 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1933 if (vma_is_special_huge(vma)) {
1934 spin_unlock(ptl);
1935 /* No zero page support yet */
1936 } else {
1937 /* No support for anonymous PUD pages yet */
1938 BUG();
1939 }
1940 return 1;
1941 }
1942
1943 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1944 unsigned long haddr)
1945 {
1946 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1947 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1948 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1949 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1950
1951 count_vm_event(THP_SPLIT_PUD);
1952
1953 pudp_huge_clear_flush_notify(vma, haddr, pud);
1954 }
1955
1956 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1957 unsigned long address)
1958 {
1959 spinlock_t *ptl;
1960 struct mmu_notifier_range range;
1961
1962 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1963 address & HPAGE_PUD_MASK,
1964 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1965 mmu_notifier_invalidate_range_start(&range);
1966 ptl = pud_lock(vma->vm_mm, pud);
1967 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1968 goto out;
1969 __split_huge_pud_locked(vma, pud, range.start);
1970
1971 out:
1972 spin_unlock(ptl);
1973 /*
1974 * No need to double call mmu_notifier->invalidate_range() callback as
1975 * the above pudp_huge_clear_flush_notify() did already call it.
1976 */
1977 mmu_notifier_invalidate_range_only_end(&range);
1978 }
1979 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1980
1981 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1982 unsigned long haddr, pmd_t *pmd)
1983 {
1984 struct mm_struct *mm = vma->vm_mm;
1985 pgtable_t pgtable;
1986 pmd_t _pmd;
1987 int i;
1988
1989 /*
1990 * Leave pmd empty until pte is filled note that it is fine to delay
1991 * notification until mmu_notifier_invalidate_range_end() as we are
1992 * replacing a zero pmd write protected page with a zero pte write
1993 * protected page.
1994 *
1995 * See Documentation/vm/mmu_notifier.rst
1996 */
1997 pmdp_huge_clear_flush(vma, haddr, pmd);
1998
1999 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2000 pmd_populate(mm, &_pmd, pgtable);
2001
2002 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2003 pte_t *pte, entry;
2004 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2005 entry = pte_mkspecial(entry);
2006 pte = pte_offset_map(&_pmd, haddr);
2007 VM_BUG_ON(!pte_none(*pte));
2008 set_pte_at(mm, haddr, pte, entry);
2009 pte_unmap(pte);
2010 }
2011 smp_wmb(); /* make pte visible before pmd */
2012 pmd_populate(mm, pmd, pgtable);
2013 }
2014
2015 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2016 unsigned long haddr, bool freeze)
2017 {
2018 struct mm_struct *mm = vma->vm_mm;
2019 struct page *page;
2020 pgtable_t pgtable;
2021 pmd_t old_pmd, _pmd;
2022 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2023 unsigned long addr;
2024 int i;
2025
2026 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2027 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2028 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2029 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2030 && !pmd_devmap(*pmd));
2031
2032 count_vm_event(THP_SPLIT_PMD);
2033
2034 if (!vma_is_anonymous(vma)) {
2035 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2036 /*
2037 * We are going to unmap this huge page. So
2038 * just go ahead and zap it
2039 */
2040 if (arch_needs_pgtable_deposit())
2041 zap_deposited_table(mm, pmd);
2042 if (vma_is_special_huge(vma))
2043 return;
2044 page = pmd_page(_pmd);
2045 if (!PageDirty(page) && pmd_dirty(_pmd))
2046 set_page_dirty(page);
2047 if (!PageReferenced(page) && pmd_young(_pmd))
2048 SetPageReferenced(page);
2049 page_remove_rmap(page, true);
2050 put_page(page);
2051 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2052 return;
2053 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2054 /*
2055 * FIXME: Do we want to invalidate secondary mmu by calling
2056 * mmu_notifier_invalidate_range() see comments below inside
2057 * __split_huge_pmd() ?
2058 *
2059 * We are going from a zero huge page write protected to zero
2060 * small page also write protected so it does not seems useful
2061 * to invalidate secondary mmu at this time.
2062 */
2063 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2064 }
2065
2066 /*
2067 * Up to this point the pmd is present and huge and userland has the
2068 * whole access to the hugepage during the split (which happens in
2069 * place). If we overwrite the pmd with the not-huge version pointing
2070 * to the pte here (which of course we could if all CPUs were bug
2071 * free), userland could trigger a small page size TLB miss on the
2072 * small sized TLB while the hugepage TLB entry is still established in
2073 * the huge TLB. Some CPU doesn't like that.
2074 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2075 * 383 on page 105. Intel should be safe but is also warns that it's
2076 * only safe if the permission and cache attributes of the two entries
2077 * loaded in the two TLB is identical (which should be the case here).
2078 * But it is generally safer to never allow small and huge TLB entries
2079 * for the same virtual address to be loaded simultaneously. So instead
2080 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2081 * current pmd notpresent (atomically because here the pmd_trans_huge
2082 * must remain set at all times on the pmd until the split is complete
2083 * for this pmd), then we flush the SMP TLB and finally we write the
2084 * non-huge version of the pmd entry with pmd_populate.
2085 */
2086 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2087
2088 pmd_migration = is_pmd_migration_entry(old_pmd);
2089 if (unlikely(pmd_migration)) {
2090 swp_entry_t entry;
2091
2092 entry = pmd_to_swp_entry(old_pmd);
2093 page = pfn_to_page(swp_offset(entry));
2094 write = is_write_migration_entry(entry);
2095 young = false;
2096 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2097 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2098 } else {
2099 page = pmd_page(old_pmd);
2100 if (pmd_dirty(old_pmd))
2101 SetPageDirty(page);
2102 write = pmd_write(old_pmd);
2103 young = pmd_young(old_pmd);
2104 soft_dirty = pmd_soft_dirty(old_pmd);
2105 uffd_wp = pmd_uffd_wp(old_pmd);
2106 }
2107 VM_BUG_ON_PAGE(!page_count(page), page);
2108 page_ref_add(page, HPAGE_PMD_NR - 1);
2109
2110 /*
2111 * Withdraw the table only after we mark the pmd entry invalid.
2112 * This's critical for some architectures (Power).
2113 */
2114 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2115 pmd_populate(mm, &_pmd, pgtable);
2116
2117 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2118 pte_t entry, *pte;
2119 /*
2120 * Note that NUMA hinting access restrictions are not
2121 * transferred to avoid any possibility of altering
2122 * permissions across VMAs.
2123 */
2124 if (freeze || pmd_migration) {
2125 swp_entry_t swp_entry;
2126 swp_entry = make_migration_entry(page + i, write);
2127 entry = swp_entry_to_pte(swp_entry);
2128 if (soft_dirty)
2129 entry = pte_swp_mksoft_dirty(entry);
2130 if (uffd_wp)
2131 entry = pte_swp_mkuffd_wp(entry);
2132 } else {
2133 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2134 entry = maybe_mkwrite(entry, vma);
2135 if (!write)
2136 entry = pte_wrprotect(entry);
2137 if (!young)
2138 entry = pte_mkold(entry);
2139 if (soft_dirty)
2140 entry = pte_mksoft_dirty(entry);
2141 if (uffd_wp)
2142 entry = pte_mkuffd_wp(entry);
2143 }
2144 pte = pte_offset_map(&_pmd, addr);
2145 BUG_ON(!pte_none(*pte));
2146 set_pte_at(mm, addr, pte, entry);
2147 if (!pmd_migration)
2148 atomic_inc(&page[i]._mapcount);
2149 pte_unmap(pte);
2150 }
2151
2152 if (!pmd_migration) {
2153 /*
2154 * Set PG_double_map before dropping compound_mapcount to avoid
2155 * false-negative page_mapped().
2156 */
2157 if (compound_mapcount(page) > 1 &&
2158 !TestSetPageDoubleMap(page)) {
2159 for (i = 0; i < HPAGE_PMD_NR; i++)
2160 atomic_inc(&page[i]._mapcount);
2161 }
2162
2163 lock_page_memcg(page);
2164 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2165 /* Last compound_mapcount is gone. */
2166 __dec_lruvec_page_state(page, NR_ANON_THPS);
2167 if (TestClearPageDoubleMap(page)) {
2168 /* No need in mapcount reference anymore */
2169 for (i = 0; i < HPAGE_PMD_NR; i++)
2170 atomic_dec(&page[i]._mapcount);
2171 }
2172 }
2173 unlock_page_memcg(page);
2174 }
2175
2176 smp_wmb(); /* make pte visible before pmd */
2177 pmd_populate(mm, pmd, pgtable);
2178
2179 if (freeze) {
2180 for (i = 0; i < HPAGE_PMD_NR; i++) {
2181 page_remove_rmap(page + i, false);
2182 put_page(page + i);
2183 }
2184 }
2185 }
2186
2187 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2188 unsigned long address, bool freeze, struct page *page)
2189 {
2190 spinlock_t *ptl;
2191 struct mmu_notifier_range range;
2192 bool was_locked = false;
2193 pmd_t _pmd;
2194
2195 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2196 address & HPAGE_PMD_MASK,
2197 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2198 mmu_notifier_invalidate_range_start(&range);
2199 ptl = pmd_lock(vma->vm_mm, pmd);
2200
2201 /*
2202 * If caller asks to setup a migration entries, we need a page to check
2203 * pmd against. Otherwise we can end up replacing wrong page.
2204 */
2205 VM_BUG_ON(freeze && !page);
2206 if (page) {
2207 VM_WARN_ON_ONCE(!PageLocked(page));
2208 was_locked = true;
2209 if (page != pmd_page(*pmd))
2210 goto out;
2211 }
2212
2213 repeat:
2214 if (pmd_trans_huge(*pmd)) {
2215 if (!page) {
2216 page = pmd_page(*pmd);
2217 if (unlikely(!trylock_page(page))) {
2218 get_page(page);
2219 _pmd = *pmd;
2220 spin_unlock(ptl);
2221 lock_page(page);
2222 spin_lock(ptl);
2223 if (unlikely(!pmd_same(*pmd, _pmd))) {
2224 unlock_page(page);
2225 put_page(page);
2226 page = NULL;
2227 goto repeat;
2228 }
2229 put_page(page);
2230 }
2231 }
2232 if (PageMlocked(page))
2233 clear_page_mlock(page);
2234 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2235 goto out;
2236 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2237 out:
2238 spin_unlock(ptl);
2239 if (!was_locked && page)
2240 unlock_page(page);
2241 /*
2242 * No need to double call mmu_notifier->invalidate_range() callback.
2243 * They are 3 cases to consider inside __split_huge_pmd_locked():
2244 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2245 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2246 * fault will trigger a flush_notify before pointing to a new page
2247 * (it is fine if the secondary mmu keeps pointing to the old zero
2248 * page in the meantime)
2249 * 3) Split a huge pmd into pte pointing to the same page. No need
2250 * to invalidate secondary tlb entry they are all still valid.
2251 * any further changes to individual pte will notify. So no need
2252 * to call mmu_notifier->invalidate_range()
2253 */
2254 mmu_notifier_invalidate_range_only_end(&range);
2255 }
2256
2257 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2258 bool freeze, struct page *page)
2259 {
2260 pgd_t *pgd;
2261 p4d_t *p4d;
2262 pud_t *pud;
2263 pmd_t *pmd;
2264
2265 pgd = pgd_offset(vma->vm_mm, address);
2266 if (!pgd_present(*pgd))
2267 return;
2268
2269 p4d = p4d_offset(pgd, address);
2270 if (!p4d_present(*p4d))
2271 return;
2272
2273 pud = pud_offset(p4d, address);
2274 if (!pud_present(*pud))
2275 return;
2276
2277 pmd = pmd_offset(pud, address);
2278
2279 __split_huge_pmd(vma, pmd, address, freeze, page);
2280 }
2281
2282 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2283 unsigned long start,
2284 unsigned long end,
2285 long adjust_next)
2286 {
2287 /*
2288 * If the new start address isn't hpage aligned and it could
2289 * previously contain an hugepage: check if we need to split
2290 * an huge pmd.
2291 */
2292 if (start & ~HPAGE_PMD_MASK &&
2293 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2294 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2295 split_huge_pmd_address(vma, start, false, NULL);
2296
2297 /*
2298 * If the new end address isn't hpage aligned and it could
2299 * previously contain an hugepage: check if we need to split
2300 * an huge pmd.
2301 */
2302 if (end & ~HPAGE_PMD_MASK &&
2303 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2304 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2305 split_huge_pmd_address(vma, end, false, NULL);
2306
2307 /*
2308 * If we're also updating the vma->vm_next->vm_start, if the new
2309 * vm_next->vm_start isn't hpage aligned and it could previously
2310 * contain an hugepage: check if we need to split an huge pmd.
2311 */
2312 if (adjust_next > 0) {
2313 struct vm_area_struct *next = vma->vm_next;
2314 unsigned long nstart = next->vm_start;
2315 nstart += adjust_next;
2316 if (nstart & ~HPAGE_PMD_MASK &&
2317 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2318 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2319 split_huge_pmd_address(next, nstart, false, NULL);
2320 }
2321 }
2322
2323 static void unmap_page(struct page *page)
2324 {
2325 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2326 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2327 bool unmap_success;
2328
2329 VM_BUG_ON_PAGE(!PageHead(page), page);
2330
2331 if (PageAnon(page))
2332 ttu_flags |= TTU_SPLIT_FREEZE;
2333
2334 unmap_success = try_to_unmap(page, ttu_flags);
2335 VM_BUG_ON_PAGE(!unmap_success, page);
2336 }
2337
2338 static void remap_page(struct page *page, unsigned int nr)
2339 {
2340 int i;
2341 if (PageTransHuge(page)) {
2342 remove_migration_ptes(page, page, true);
2343 } else {
2344 for (i = 0; i < nr; i++)
2345 remove_migration_ptes(page + i, page + i, true);
2346 }
2347 }
2348
2349 static void __split_huge_page_tail(struct page *head, int tail,
2350 struct lruvec *lruvec, struct list_head *list)
2351 {
2352 struct page *page_tail = head + tail;
2353
2354 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2355
2356 /*
2357 * Clone page flags before unfreezing refcount.
2358 *
2359 * After successful get_page_unless_zero() might follow flags change,
2360 * for exmaple lock_page() which set PG_waiters.
2361 */
2362 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2363 page_tail->flags |= (head->flags &
2364 ((1L << PG_referenced) |
2365 (1L << PG_swapbacked) |
2366 (1L << PG_swapcache) |
2367 (1L << PG_mlocked) |
2368 (1L << PG_uptodate) |
2369 (1L << PG_active) |
2370 (1L << PG_workingset) |
2371 (1L << PG_locked) |
2372 (1L << PG_unevictable) |
2373 #ifdef CONFIG_64BIT
2374 (1L << PG_arch_2) |
2375 #endif
2376 (1L << PG_dirty)));
2377
2378 /* ->mapping in first tail page is compound_mapcount */
2379 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2380 page_tail);
2381 page_tail->mapping = head->mapping;
2382 page_tail->index = head->index + tail;
2383
2384 /* Page flags must be visible before we make the page non-compound. */
2385 smp_wmb();
2386
2387 /*
2388 * Clear PageTail before unfreezing page refcount.
2389 *
2390 * After successful get_page_unless_zero() might follow put_page()
2391 * which needs correct compound_head().
2392 */
2393 clear_compound_head(page_tail);
2394
2395 /* Finally unfreeze refcount. Additional reference from page cache. */
2396 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2397 PageSwapCache(head)));
2398
2399 if (page_is_young(head))
2400 set_page_young(page_tail);
2401 if (page_is_idle(head))
2402 set_page_idle(page_tail);
2403
2404 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2405
2406 /*
2407 * always add to the tail because some iterators expect new
2408 * pages to show after the currently processed elements - e.g.
2409 * migrate_pages
2410 */
2411 lru_add_page_tail(head, page_tail, lruvec, list);
2412 }
2413
2414 static void __split_huge_page(struct page *page, struct list_head *list,
2415 pgoff_t end, unsigned long flags)
2416 {
2417 struct page *head = compound_head(page);
2418 pg_data_t *pgdat = page_pgdat(head);
2419 struct lruvec *lruvec;
2420 struct address_space *swap_cache = NULL;
2421 unsigned long offset = 0;
2422 unsigned int nr = thp_nr_pages(head);
2423 int i;
2424
2425 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2426
2427 /* complete memcg works before add pages to LRU */
2428 mem_cgroup_split_huge_fixup(head);
2429
2430 if (PageAnon(head) && PageSwapCache(head)) {
2431 swp_entry_t entry = { .val = page_private(head) };
2432
2433 offset = swp_offset(entry);
2434 swap_cache = swap_address_space(entry);
2435 xa_lock(&swap_cache->i_pages);
2436 }
2437
2438 for (i = nr - 1; i >= 1; i--) {
2439 __split_huge_page_tail(head, i, lruvec, list);
2440 /* Some pages can be beyond i_size: drop them from page cache */
2441 if (head[i].index >= end) {
2442 ClearPageDirty(head + i);
2443 __delete_from_page_cache(head + i, NULL);
2444 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2445 shmem_uncharge(head->mapping->host, 1);
2446 put_page(head + i);
2447 } else if (!PageAnon(page)) {
2448 __xa_store(&head->mapping->i_pages, head[i].index,
2449 head + i, 0);
2450 } else if (swap_cache) {
2451 __xa_store(&swap_cache->i_pages, offset + i,
2452 head + i, 0);
2453 }
2454 }
2455
2456 ClearPageCompound(head);
2457
2458 split_page_owner(head, nr);
2459
2460 /* See comment in __split_huge_page_tail() */
2461 if (PageAnon(head)) {
2462 /* Additional pin to swap cache */
2463 if (PageSwapCache(head)) {
2464 page_ref_add(head, 2);
2465 xa_unlock(&swap_cache->i_pages);
2466 } else {
2467 page_ref_inc(head);
2468 }
2469 } else {
2470 /* Additional pin to page cache */
2471 page_ref_add(head, 2);
2472 xa_unlock(&head->mapping->i_pages);
2473 }
2474
2475 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2476
2477 remap_page(head, nr);
2478
2479 if (PageSwapCache(head)) {
2480 swp_entry_t entry = { .val = page_private(head) };
2481
2482 split_swap_cluster(entry);
2483 }
2484
2485 for (i = 0; i < nr; i++) {
2486 struct page *subpage = head + i;
2487 if (subpage == page)
2488 continue;
2489 unlock_page(subpage);
2490
2491 /*
2492 * Subpages may be freed if there wasn't any mapping
2493 * like if add_to_swap() is running on a lru page that
2494 * had its mapping zapped. And freeing these pages
2495 * requires taking the lru_lock so we do the put_page
2496 * of the tail pages after the split is complete.
2497 */
2498 put_page(subpage);
2499 }
2500 }
2501
2502 int total_mapcount(struct page *page)
2503 {
2504 int i, compound, nr, ret;
2505
2506 VM_BUG_ON_PAGE(PageTail(page), page);
2507
2508 if (likely(!PageCompound(page)))
2509 return atomic_read(&page->_mapcount) + 1;
2510
2511 compound = compound_mapcount(page);
2512 nr = compound_nr(page);
2513 if (PageHuge(page))
2514 return compound;
2515 ret = compound;
2516 for (i = 0; i < nr; i++)
2517 ret += atomic_read(&page[i]._mapcount) + 1;
2518 /* File pages has compound_mapcount included in _mapcount */
2519 if (!PageAnon(page))
2520 return ret - compound * nr;
2521 if (PageDoubleMap(page))
2522 ret -= nr;
2523 return ret;
2524 }
2525
2526 /*
2527 * This calculates accurately how many mappings a transparent hugepage
2528 * has (unlike page_mapcount() which isn't fully accurate). This full
2529 * accuracy is primarily needed to know if copy-on-write faults can
2530 * reuse the page and change the mapping to read-write instead of
2531 * copying them. At the same time this returns the total_mapcount too.
2532 *
2533 * The function returns the highest mapcount any one of the subpages
2534 * has. If the return value is one, even if different processes are
2535 * mapping different subpages of the transparent hugepage, they can
2536 * all reuse it, because each process is reusing a different subpage.
2537 *
2538 * The total_mapcount is instead counting all virtual mappings of the
2539 * subpages. If the total_mapcount is equal to "one", it tells the
2540 * caller all mappings belong to the same "mm" and in turn the
2541 * anon_vma of the transparent hugepage can become the vma->anon_vma
2542 * local one as no other process may be mapping any of the subpages.
2543 *
2544 * It would be more accurate to replace page_mapcount() with
2545 * page_trans_huge_mapcount(), however we only use
2546 * page_trans_huge_mapcount() in the copy-on-write faults where we
2547 * need full accuracy to avoid breaking page pinning, because
2548 * page_trans_huge_mapcount() is slower than page_mapcount().
2549 */
2550 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2551 {
2552 int i, ret, _total_mapcount, mapcount;
2553
2554 /* hugetlbfs shouldn't call it */
2555 VM_BUG_ON_PAGE(PageHuge(page), page);
2556
2557 if (likely(!PageTransCompound(page))) {
2558 mapcount = atomic_read(&page->_mapcount) + 1;
2559 if (total_mapcount)
2560 *total_mapcount = mapcount;
2561 return mapcount;
2562 }
2563
2564 page = compound_head(page);
2565
2566 _total_mapcount = ret = 0;
2567 for (i = 0; i < thp_nr_pages(page); i++) {
2568 mapcount = atomic_read(&page[i]._mapcount) + 1;
2569 ret = max(ret, mapcount);
2570 _total_mapcount += mapcount;
2571 }
2572 if (PageDoubleMap(page)) {
2573 ret -= 1;
2574 _total_mapcount -= thp_nr_pages(page);
2575 }
2576 mapcount = compound_mapcount(page);
2577 ret += mapcount;
2578 _total_mapcount += mapcount;
2579 if (total_mapcount)
2580 *total_mapcount = _total_mapcount;
2581 return ret;
2582 }
2583
2584 /* Racy check whether the huge page can be split */
2585 bool can_split_huge_page(struct page *page, int *pextra_pins)
2586 {
2587 int extra_pins;
2588
2589 /* Additional pins from page cache */
2590 if (PageAnon(page))
2591 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2592 else
2593 extra_pins = thp_nr_pages(page);
2594 if (pextra_pins)
2595 *pextra_pins = extra_pins;
2596 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2597 }
2598
2599 /*
2600 * This function splits huge page into normal pages. @page can point to any
2601 * subpage of huge page to split. Split doesn't change the position of @page.
2602 *
2603 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2604 * The huge page must be locked.
2605 *
2606 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2607 *
2608 * Both head page and tail pages will inherit mapping, flags, and so on from
2609 * the hugepage.
2610 *
2611 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2612 * they are not mapped.
2613 *
2614 * Returns 0 if the hugepage is split successfully.
2615 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2616 * us.
2617 */
2618 int split_huge_page_to_list(struct page *page, struct list_head *list)
2619 {
2620 struct page *head = compound_head(page);
2621 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2622 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2623 struct anon_vma *anon_vma = NULL;
2624 struct address_space *mapping = NULL;
2625 int count, mapcount, extra_pins, ret;
2626 unsigned long flags;
2627 pgoff_t end;
2628
2629 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2630 VM_BUG_ON_PAGE(!PageLocked(head), head);
2631 VM_BUG_ON_PAGE(!PageCompound(head), head);
2632
2633 if (PageWriteback(head))
2634 return -EBUSY;
2635
2636 if (PageAnon(head)) {
2637 /*
2638 * The caller does not necessarily hold an mmap_lock that would
2639 * prevent the anon_vma disappearing so we first we take a
2640 * reference to it and then lock the anon_vma for write. This
2641 * is similar to page_lock_anon_vma_read except the write lock
2642 * is taken to serialise against parallel split or collapse
2643 * operations.
2644 */
2645 anon_vma = page_get_anon_vma(head);
2646 if (!anon_vma) {
2647 ret = -EBUSY;
2648 goto out;
2649 }
2650 end = -1;
2651 mapping = NULL;
2652 anon_vma_lock_write(anon_vma);
2653 } else {
2654 mapping = head->mapping;
2655
2656 /* Truncated ? */
2657 if (!mapping) {
2658 ret = -EBUSY;
2659 goto out;
2660 }
2661
2662 anon_vma = NULL;
2663 i_mmap_lock_read(mapping);
2664
2665 /*
2666 *__split_huge_page() may need to trim off pages beyond EOF:
2667 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2668 * which cannot be nested inside the page tree lock. So note
2669 * end now: i_size itself may be changed at any moment, but
2670 * head page lock is good enough to serialize the trimming.
2671 */
2672 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2673 }
2674
2675 /*
2676 * Racy check if we can split the page, before unmap_page() will
2677 * split PMDs
2678 */
2679 if (!can_split_huge_page(head, &extra_pins)) {
2680 ret = -EBUSY;
2681 goto out_unlock;
2682 }
2683
2684 unmap_page(head);
2685 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2686
2687 /* prevent PageLRU to go away from under us, and freeze lru stats */
2688 spin_lock_irqsave(&pgdata->lru_lock, flags);
2689
2690 if (mapping) {
2691 XA_STATE(xas, &mapping->i_pages, page_index(head));
2692
2693 /*
2694 * Check if the head page is present in page cache.
2695 * We assume all tail are present too, if head is there.
2696 */
2697 xa_lock(&mapping->i_pages);
2698 if (xas_load(&xas) != head)
2699 goto fail;
2700 }
2701
2702 /* Prevent deferred_split_scan() touching ->_refcount */
2703 spin_lock(&ds_queue->split_queue_lock);
2704 count = page_count(head);
2705 mapcount = total_mapcount(head);
2706 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2707 if (!list_empty(page_deferred_list(head))) {
2708 ds_queue->split_queue_len--;
2709 list_del(page_deferred_list(head));
2710 }
2711 spin_unlock(&ds_queue->split_queue_lock);
2712 if (mapping) {
2713 if (PageSwapBacked(head))
2714 __dec_node_page_state(head, NR_SHMEM_THPS);
2715 else
2716 __dec_node_page_state(head, NR_FILE_THPS);
2717 }
2718
2719 __split_huge_page(page, list, end, flags);
2720 ret = 0;
2721 } else {
2722 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2723 pr_alert("total_mapcount: %u, page_count(): %u\n",
2724 mapcount, count);
2725 if (PageTail(page))
2726 dump_page(head, NULL);
2727 dump_page(page, "total_mapcount(head) > 0");
2728 BUG();
2729 }
2730 spin_unlock(&ds_queue->split_queue_lock);
2731 fail: if (mapping)
2732 xa_unlock(&mapping->i_pages);
2733 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2734 remap_page(head, thp_nr_pages(head));
2735 ret = -EBUSY;
2736 }
2737
2738 out_unlock:
2739 if (anon_vma) {
2740 anon_vma_unlock_write(anon_vma);
2741 put_anon_vma(anon_vma);
2742 }
2743 if (mapping)
2744 i_mmap_unlock_read(mapping);
2745 out:
2746 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2747 return ret;
2748 }
2749
2750 void free_transhuge_page(struct page *page)
2751 {
2752 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2753 unsigned long flags;
2754
2755 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2756 if (!list_empty(page_deferred_list(page))) {
2757 ds_queue->split_queue_len--;
2758 list_del(page_deferred_list(page));
2759 }
2760 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2761 free_compound_page(page);
2762 }
2763
2764 void deferred_split_huge_page(struct page *page)
2765 {
2766 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2767 #ifdef CONFIG_MEMCG
2768 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2769 #endif
2770 unsigned long flags;
2771
2772 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2773
2774 /*
2775 * The try_to_unmap() in page reclaim path might reach here too,
2776 * this may cause a race condition to corrupt deferred split queue.
2777 * And, if page reclaim is already handling the same page, it is
2778 * unnecessary to handle it again in shrinker.
2779 *
2780 * Check PageSwapCache to determine if the page is being
2781 * handled by page reclaim since THP swap would add the page into
2782 * swap cache before calling try_to_unmap().
2783 */
2784 if (PageSwapCache(page))
2785 return;
2786
2787 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2788 if (list_empty(page_deferred_list(page))) {
2789 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2790 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2791 ds_queue->split_queue_len++;
2792 #ifdef CONFIG_MEMCG
2793 if (memcg)
2794 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2795 deferred_split_shrinker.id);
2796 #endif
2797 }
2798 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2799 }
2800
2801 static unsigned long deferred_split_count(struct shrinker *shrink,
2802 struct shrink_control *sc)
2803 {
2804 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2805 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2806
2807 #ifdef CONFIG_MEMCG
2808 if (sc->memcg)
2809 ds_queue = &sc->memcg->deferred_split_queue;
2810 #endif
2811 return READ_ONCE(ds_queue->split_queue_len);
2812 }
2813
2814 static unsigned long deferred_split_scan(struct shrinker *shrink,
2815 struct shrink_control *sc)
2816 {
2817 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2818 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2819 unsigned long flags;
2820 LIST_HEAD(list), *pos, *next;
2821 struct page *page;
2822 int split = 0;
2823
2824 #ifdef CONFIG_MEMCG
2825 if (sc->memcg)
2826 ds_queue = &sc->memcg->deferred_split_queue;
2827 #endif
2828
2829 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2830 /* Take pin on all head pages to avoid freeing them under us */
2831 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2832 page = list_entry((void *)pos, struct page, mapping);
2833 page = compound_head(page);
2834 if (get_page_unless_zero(page)) {
2835 list_move(page_deferred_list(page), &list);
2836 } else {
2837 /* We lost race with put_compound_page() */
2838 list_del_init(page_deferred_list(page));
2839 ds_queue->split_queue_len--;
2840 }
2841 if (!--sc->nr_to_scan)
2842 break;
2843 }
2844 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2845
2846 list_for_each_safe(pos, next, &list) {
2847 page = list_entry((void *)pos, struct page, mapping);
2848 if (!trylock_page(page))
2849 goto next;
2850 /* split_huge_page() removes page from list on success */
2851 if (!split_huge_page(page))
2852 split++;
2853 unlock_page(page);
2854 next:
2855 put_page(page);
2856 }
2857
2858 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2859 list_splice_tail(&list, &ds_queue->split_queue);
2860 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2861
2862 /*
2863 * Stop shrinker if we didn't split any page, but the queue is empty.
2864 * This can happen if pages were freed under us.
2865 */
2866 if (!split && list_empty(&ds_queue->split_queue))
2867 return SHRINK_STOP;
2868 return split;
2869 }
2870
2871 static struct shrinker deferred_split_shrinker = {
2872 .count_objects = deferred_split_count,
2873 .scan_objects = deferred_split_scan,
2874 .seeks = DEFAULT_SEEKS,
2875 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2876 SHRINKER_NONSLAB,
2877 };
2878
2879 #ifdef CONFIG_DEBUG_FS
2880 static int split_huge_pages_set(void *data, u64 val)
2881 {
2882 struct zone *zone;
2883 struct page *page;
2884 unsigned long pfn, max_zone_pfn;
2885 unsigned long total = 0, split = 0;
2886
2887 if (val != 1)
2888 return -EINVAL;
2889
2890 for_each_populated_zone(zone) {
2891 max_zone_pfn = zone_end_pfn(zone);
2892 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2893 if (!pfn_valid(pfn))
2894 continue;
2895
2896 page = pfn_to_page(pfn);
2897 if (!get_page_unless_zero(page))
2898 continue;
2899
2900 if (zone != page_zone(page))
2901 goto next;
2902
2903 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2904 goto next;
2905
2906 total++;
2907 lock_page(page);
2908 if (!split_huge_page(page))
2909 split++;
2910 unlock_page(page);
2911 next:
2912 put_page(page);
2913 }
2914 }
2915
2916 pr_info("%lu of %lu THP split\n", split, total);
2917
2918 return 0;
2919 }
2920 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2921 "%llu\n");
2922
2923 static int __init split_huge_pages_debugfs(void)
2924 {
2925 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2926 &split_huge_pages_fops);
2927 return 0;
2928 }
2929 late_initcall(split_huge_pages_debugfs);
2930 #endif
2931
2932 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2933 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2934 struct page *page)
2935 {
2936 struct vm_area_struct *vma = pvmw->vma;
2937 struct mm_struct *mm = vma->vm_mm;
2938 unsigned long address = pvmw->address;
2939 pmd_t pmdval;
2940 swp_entry_t entry;
2941 pmd_t pmdswp;
2942
2943 if (!(pvmw->pmd && !pvmw->pte))
2944 return;
2945
2946 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2947 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2948 if (pmd_dirty(pmdval))
2949 set_page_dirty(page);
2950 entry = make_migration_entry(page, pmd_write(pmdval));
2951 pmdswp = swp_entry_to_pmd(entry);
2952 if (pmd_soft_dirty(pmdval))
2953 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2954 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2955 page_remove_rmap(page, true);
2956 put_page(page);
2957 }
2958
2959 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2960 {
2961 struct vm_area_struct *vma = pvmw->vma;
2962 struct mm_struct *mm = vma->vm_mm;
2963 unsigned long address = pvmw->address;
2964 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2965 pmd_t pmde;
2966 swp_entry_t entry;
2967
2968 if (!(pvmw->pmd && !pvmw->pte))
2969 return;
2970
2971 entry = pmd_to_swp_entry(*pvmw->pmd);
2972 get_page(new);
2973 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2974 if (pmd_swp_soft_dirty(*pvmw->pmd))
2975 pmde = pmd_mksoft_dirty(pmde);
2976 if (is_write_migration_entry(entry))
2977 pmde = maybe_pmd_mkwrite(pmde, vma);
2978
2979 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2980 if (PageAnon(new))
2981 page_add_anon_rmap(new, vma, mmun_start, true);
2982 else
2983 page_add_file_rmap(new, true);
2984 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2985 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2986 mlock_vma_page(new);
2987 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2988 }
2989 #endif