]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/huge_memory.c
mm: introduce page reference manipulation functions
[mirror_ubuntu-zesty-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
52 SCAN_PAGE_COMPOUND,
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL
61 };
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65
66 /*
67 * By default transparent hugepage support is disabled in order that avoid
68 * to risk increase the memory footprint of applications without a guaranteed
69 * benefit. When transparent hugepage support is enabled, is for all mappings,
70 * and khugepaged scans all mappings.
71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
72 * for all hugepage allocations.
73 */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static struct task_struct *khugepaged_thread __read_mostly;
93 static DEFINE_MUTEX(khugepaged_mutex);
94 static DEFINE_SPINLOCK(khugepaged_mm_lock);
95 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96 /*
97 * default collapse hugepages if there is at least one pte mapped like
98 * it would have happened if the vma was large enough during page
99 * fault.
100 */
101 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
102
103 static int khugepaged(void *none);
104 static int khugepaged_slab_init(void);
105 static void khugepaged_slab_exit(void);
106
107 #define MM_SLOTS_HASH_BITS 10
108 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109
110 static struct kmem_cache *mm_slot_cache __read_mostly;
111
112 /**
113 * struct mm_slot - hash lookup from mm to mm_slot
114 * @hash: hash collision list
115 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116 * @mm: the mm that this information is valid for
117 */
118 struct mm_slot {
119 struct hlist_node hash;
120 struct list_head mm_node;
121 struct mm_struct *mm;
122 };
123
124 /**
125 * struct khugepaged_scan - cursor for scanning
126 * @mm_head: the head of the mm list to scan
127 * @mm_slot: the current mm_slot we are scanning
128 * @address: the next address inside that to be scanned
129 *
130 * There is only the one khugepaged_scan instance of this cursor structure.
131 */
132 struct khugepaged_scan {
133 struct list_head mm_head;
134 struct mm_slot *mm_slot;
135 unsigned long address;
136 };
137 static struct khugepaged_scan khugepaged_scan = {
138 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139 };
140
141 static struct shrinker deferred_split_shrinker;
142
143 static void set_recommended_min_free_kbytes(void)
144 {
145 struct zone *zone;
146 int nr_zones = 0;
147 unsigned long recommended_min;
148
149 for_each_populated_zone(zone)
150 nr_zones++;
151
152 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
153 recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155 /*
156 * Make sure that on average at least two pageblocks are almost free
157 * of another type, one for a migratetype to fall back to and a
158 * second to avoid subsequent fallbacks of other types There are 3
159 * MIGRATE_TYPES we care about.
160 */
161 recommended_min += pageblock_nr_pages * nr_zones *
162 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164 /* don't ever allow to reserve more than 5% of the lowmem */
165 recommended_min = min(recommended_min,
166 (unsigned long) nr_free_buffer_pages() / 20);
167 recommended_min <<= (PAGE_SHIFT-10);
168
169 if (recommended_min > min_free_kbytes) {
170 if (user_min_free_kbytes >= 0)
171 pr_info("raising min_free_kbytes from %d to %lu "
172 "to help transparent hugepage allocations\n",
173 min_free_kbytes, recommended_min);
174
175 min_free_kbytes = recommended_min;
176 }
177 setup_per_zone_wmarks();
178 }
179
180 static int start_stop_khugepaged(void)
181 {
182 int err = 0;
183 if (khugepaged_enabled()) {
184 if (!khugepaged_thread)
185 khugepaged_thread = kthread_run(khugepaged, NULL,
186 "khugepaged");
187 if (IS_ERR(khugepaged_thread)) {
188 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
189 err = PTR_ERR(khugepaged_thread);
190 khugepaged_thread = NULL;
191 goto fail;
192 }
193
194 if (!list_empty(&khugepaged_scan.mm_head))
195 wake_up_interruptible(&khugepaged_wait);
196
197 set_recommended_min_free_kbytes();
198 } else if (khugepaged_thread) {
199 kthread_stop(khugepaged_thread);
200 khugepaged_thread = NULL;
201 }
202 fail:
203 return err;
204 }
205
206 static atomic_t huge_zero_refcount;
207 struct page *huge_zero_page __read_mostly;
208
209 struct page *get_huge_zero_page(void)
210 {
211 struct page *zero_page;
212 retry:
213 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
214 return READ_ONCE(huge_zero_page);
215
216 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
217 HPAGE_PMD_ORDER);
218 if (!zero_page) {
219 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
220 return NULL;
221 }
222 count_vm_event(THP_ZERO_PAGE_ALLOC);
223 preempt_disable();
224 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
225 preempt_enable();
226 __free_pages(zero_page, compound_order(zero_page));
227 goto retry;
228 }
229
230 /* We take additional reference here. It will be put back by shrinker */
231 atomic_set(&huge_zero_refcount, 2);
232 preempt_enable();
233 return READ_ONCE(huge_zero_page);
234 }
235
236 static void put_huge_zero_page(void)
237 {
238 /*
239 * Counter should never go to zero here. Only shrinker can put
240 * last reference.
241 */
242 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244
245 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 struct shrink_control *sc)
247 {
248 /* we can free zero page only if last reference remains */
249 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250 }
251
252 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 struct shrink_control *sc)
254 {
255 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
256 struct page *zero_page = xchg(&huge_zero_page, NULL);
257 BUG_ON(zero_page == NULL);
258 __free_pages(zero_page, compound_order(zero_page));
259 return HPAGE_PMD_NR;
260 }
261
262 return 0;
263 }
264
265 static struct shrinker huge_zero_page_shrinker = {
266 .count_objects = shrink_huge_zero_page_count,
267 .scan_objects = shrink_huge_zero_page_scan,
268 .seeks = DEFAULT_SEEKS,
269 };
270
271 #ifdef CONFIG_SYSFS
272
273 static ssize_t triple_flag_store(struct kobject *kobj,
274 struct kobj_attribute *attr,
275 const char *buf, size_t count,
276 enum transparent_hugepage_flag enabled,
277 enum transparent_hugepage_flag deferred,
278 enum transparent_hugepage_flag req_madv)
279 {
280 if (!memcmp("defer", buf,
281 min(sizeof("defer")-1, count))) {
282 if (enabled == deferred)
283 return -EINVAL;
284 clear_bit(enabled, &transparent_hugepage_flags);
285 clear_bit(req_madv, &transparent_hugepage_flags);
286 set_bit(deferred, &transparent_hugepage_flags);
287 } else if (!memcmp("always", buf,
288 min(sizeof("always")-1, count))) {
289 clear_bit(deferred, &transparent_hugepage_flags);
290 clear_bit(req_madv, &transparent_hugepage_flags);
291 set_bit(enabled, &transparent_hugepage_flags);
292 } else if (!memcmp("madvise", buf,
293 min(sizeof("madvise")-1, count))) {
294 clear_bit(enabled, &transparent_hugepage_flags);
295 clear_bit(deferred, &transparent_hugepage_flags);
296 set_bit(req_madv, &transparent_hugepage_flags);
297 } else if (!memcmp("never", buf,
298 min(sizeof("never")-1, count))) {
299 clear_bit(enabled, &transparent_hugepage_flags);
300 clear_bit(req_madv, &transparent_hugepage_flags);
301 clear_bit(deferred, &transparent_hugepage_flags);
302 } else
303 return -EINVAL;
304
305 return count;
306 }
307
308 static ssize_t enabled_show(struct kobject *kobj,
309 struct kobj_attribute *attr, char *buf)
310 {
311 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
312 return sprintf(buf, "[always] madvise never\n");
313 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
314 return sprintf(buf, "always [madvise] never\n");
315 else
316 return sprintf(buf, "always madvise [never]\n");
317 }
318
319 static ssize_t enabled_store(struct kobject *kobj,
320 struct kobj_attribute *attr,
321 const char *buf, size_t count)
322 {
323 ssize_t ret;
324
325 ret = triple_flag_store(kobj, attr, buf, count,
326 TRANSPARENT_HUGEPAGE_FLAG,
327 TRANSPARENT_HUGEPAGE_FLAG,
328 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
329
330 if (ret > 0) {
331 int err;
332
333 mutex_lock(&khugepaged_mutex);
334 err = start_stop_khugepaged();
335 mutex_unlock(&khugepaged_mutex);
336
337 if (err)
338 ret = err;
339 }
340
341 return ret;
342 }
343 static struct kobj_attribute enabled_attr =
344 __ATTR(enabled, 0644, enabled_show, enabled_store);
345
346 static ssize_t single_flag_show(struct kobject *kobj,
347 struct kobj_attribute *attr, char *buf,
348 enum transparent_hugepage_flag flag)
349 {
350 return sprintf(buf, "%d\n",
351 !!test_bit(flag, &transparent_hugepage_flags));
352 }
353
354 static ssize_t single_flag_store(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 const char *buf, size_t count,
357 enum transparent_hugepage_flag flag)
358 {
359 unsigned long value;
360 int ret;
361
362 ret = kstrtoul(buf, 10, &value);
363 if (ret < 0)
364 return ret;
365 if (value > 1)
366 return -EINVAL;
367
368 if (value)
369 set_bit(flag, &transparent_hugepage_flags);
370 else
371 clear_bit(flag, &transparent_hugepage_flags);
372
373 return count;
374 }
375
376 /*
377 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
378 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
379 * memory just to allocate one more hugepage.
380 */
381 static ssize_t defrag_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
383 {
384 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
385 return sprintf(buf, "[always] defer madvise never\n");
386 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
387 return sprintf(buf, "always [defer] madvise never\n");
388 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
389 return sprintf(buf, "always defer [madvise] never\n");
390 else
391 return sprintf(buf, "always defer madvise [never]\n");
392
393 }
394 static ssize_t defrag_store(struct kobject *kobj,
395 struct kobj_attribute *attr,
396 const char *buf, size_t count)
397 {
398 return triple_flag_store(kobj, attr, buf, count,
399 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
400 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
401 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
402 }
403 static struct kobj_attribute defrag_attr =
404 __ATTR(defrag, 0644, defrag_show, defrag_store);
405
406 static ssize_t use_zero_page_show(struct kobject *kobj,
407 struct kobj_attribute *attr, char *buf)
408 {
409 return single_flag_show(kobj, attr, buf,
410 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
411 }
412 static ssize_t use_zero_page_store(struct kobject *kobj,
413 struct kobj_attribute *attr, const char *buf, size_t count)
414 {
415 return single_flag_store(kobj, attr, buf, count,
416 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
417 }
418 static struct kobj_attribute use_zero_page_attr =
419 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
420 #ifdef CONFIG_DEBUG_VM
421 static ssize_t debug_cow_show(struct kobject *kobj,
422 struct kobj_attribute *attr, char *buf)
423 {
424 return single_flag_show(kobj, attr, buf,
425 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
426 }
427 static ssize_t debug_cow_store(struct kobject *kobj,
428 struct kobj_attribute *attr,
429 const char *buf, size_t count)
430 {
431 return single_flag_store(kobj, attr, buf, count,
432 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
433 }
434 static struct kobj_attribute debug_cow_attr =
435 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
436 #endif /* CONFIG_DEBUG_VM */
437
438 static struct attribute *hugepage_attr[] = {
439 &enabled_attr.attr,
440 &defrag_attr.attr,
441 &use_zero_page_attr.attr,
442 #ifdef CONFIG_DEBUG_VM
443 &debug_cow_attr.attr,
444 #endif
445 NULL,
446 };
447
448 static struct attribute_group hugepage_attr_group = {
449 .attrs = hugepage_attr,
450 };
451
452 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
453 struct kobj_attribute *attr,
454 char *buf)
455 {
456 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
457 }
458
459 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
460 struct kobj_attribute *attr,
461 const char *buf, size_t count)
462 {
463 unsigned long msecs;
464 int err;
465
466 err = kstrtoul(buf, 10, &msecs);
467 if (err || msecs > UINT_MAX)
468 return -EINVAL;
469
470 khugepaged_scan_sleep_millisecs = msecs;
471 wake_up_interruptible(&khugepaged_wait);
472
473 return count;
474 }
475 static struct kobj_attribute scan_sleep_millisecs_attr =
476 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
477 scan_sleep_millisecs_store);
478
479 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
480 struct kobj_attribute *attr,
481 char *buf)
482 {
483 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
484 }
485
486 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
487 struct kobj_attribute *attr,
488 const char *buf, size_t count)
489 {
490 unsigned long msecs;
491 int err;
492
493 err = kstrtoul(buf, 10, &msecs);
494 if (err || msecs > UINT_MAX)
495 return -EINVAL;
496
497 khugepaged_alloc_sleep_millisecs = msecs;
498 wake_up_interruptible(&khugepaged_wait);
499
500 return count;
501 }
502 static struct kobj_attribute alloc_sleep_millisecs_attr =
503 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
504 alloc_sleep_millisecs_store);
505
506 static ssize_t pages_to_scan_show(struct kobject *kobj,
507 struct kobj_attribute *attr,
508 char *buf)
509 {
510 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
511 }
512 static ssize_t pages_to_scan_store(struct kobject *kobj,
513 struct kobj_attribute *attr,
514 const char *buf, size_t count)
515 {
516 int err;
517 unsigned long pages;
518
519 err = kstrtoul(buf, 10, &pages);
520 if (err || !pages || pages > UINT_MAX)
521 return -EINVAL;
522
523 khugepaged_pages_to_scan = pages;
524
525 return count;
526 }
527 static struct kobj_attribute pages_to_scan_attr =
528 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
529 pages_to_scan_store);
530
531 static ssize_t pages_collapsed_show(struct kobject *kobj,
532 struct kobj_attribute *attr,
533 char *buf)
534 {
535 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
536 }
537 static struct kobj_attribute pages_collapsed_attr =
538 __ATTR_RO(pages_collapsed);
539
540 static ssize_t full_scans_show(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 char *buf)
543 {
544 return sprintf(buf, "%u\n", khugepaged_full_scans);
545 }
546 static struct kobj_attribute full_scans_attr =
547 __ATTR_RO(full_scans);
548
549 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
550 struct kobj_attribute *attr, char *buf)
551 {
552 return single_flag_show(kobj, attr, buf,
553 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
554 }
555 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
556 struct kobj_attribute *attr,
557 const char *buf, size_t count)
558 {
559 return single_flag_store(kobj, attr, buf, count,
560 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
561 }
562 static struct kobj_attribute khugepaged_defrag_attr =
563 __ATTR(defrag, 0644, khugepaged_defrag_show,
564 khugepaged_defrag_store);
565
566 /*
567 * max_ptes_none controls if khugepaged should collapse hugepages over
568 * any unmapped ptes in turn potentially increasing the memory
569 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
570 * reduce the available free memory in the system as it
571 * runs. Increasing max_ptes_none will instead potentially reduce the
572 * free memory in the system during the khugepaged scan.
573 */
574 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
575 struct kobj_attribute *attr,
576 char *buf)
577 {
578 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
579 }
580 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
581 struct kobj_attribute *attr,
582 const char *buf, size_t count)
583 {
584 int err;
585 unsigned long max_ptes_none;
586
587 err = kstrtoul(buf, 10, &max_ptes_none);
588 if (err || max_ptes_none > HPAGE_PMD_NR-1)
589 return -EINVAL;
590
591 khugepaged_max_ptes_none = max_ptes_none;
592
593 return count;
594 }
595 static struct kobj_attribute khugepaged_max_ptes_none_attr =
596 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
597 khugepaged_max_ptes_none_store);
598
599 static struct attribute *khugepaged_attr[] = {
600 &khugepaged_defrag_attr.attr,
601 &khugepaged_max_ptes_none_attr.attr,
602 &pages_to_scan_attr.attr,
603 &pages_collapsed_attr.attr,
604 &full_scans_attr.attr,
605 &scan_sleep_millisecs_attr.attr,
606 &alloc_sleep_millisecs_attr.attr,
607 NULL,
608 };
609
610 static struct attribute_group khugepaged_attr_group = {
611 .attrs = khugepaged_attr,
612 .name = "khugepaged",
613 };
614
615 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
616 {
617 int err;
618
619 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
620 if (unlikely(!*hugepage_kobj)) {
621 pr_err("failed to create transparent hugepage kobject\n");
622 return -ENOMEM;
623 }
624
625 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
626 if (err) {
627 pr_err("failed to register transparent hugepage group\n");
628 goto delete_obj;
629 }
630
631 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
632 if (err) {
633 pr_err("failed to register transparent hugepage group\n");
634 goto remove_hp_group;
635 }
636
637 return 0;
638
639 remove_hp_group:
640 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
641 delete_obj:
642 kobject_put(*hugepage_kobj);
643 return err;
644 }
645
646 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
647 {
648 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
649 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
650 kobject_put(hugepage_kobj);
651 }
652 #else
653 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
654 {
655 return 0;
656 }
657
658 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
659 {
660 }
661 #endif /* CONFIG_SYSFS */
662
663 static int __init hugepage_init(void)
664 {
665 int err;
666 struct kobject *hugepage_kobj;
667
668 if (!has_transparent_hugepage()) {
669 transparent_hugepage_flags = 0;
670 return -EINVAL;
671 }
672
673 err = hugepage_init_sysfs(&hugepage_kobj);
674 if (err)
675 goto err_sysfs;
676
677 err = khugepaged_slab_init();
678 if (err)
679 goto err_slab;
680
681 err = register_shrinker(&huge_zero_page_shrinker);
682 if (err)
683 goto err_hzp_shrinker;
684 err = register_shrinker(&deferred_split_shrinker);
685 if (err)
686 goto err_split_shrinker;
687
688 /*
689 * By default disable transparent hugepages on smaller systems,
690 * where the extra memory used could hurt more than TLB overhead
691 * is likely to save. The admin can still enable it through /sys.
692 */
693 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
694 transparent_hugepage_flags = 0;
695 return 0;
696 }
697
698 err = start_stop_khugepaged();
699 if (err)
700 goto err_khugepaged;
701
702 return 0;
703 err_khugepaged:
704 unregister_shrinker(&deferred_split_shrinker);
705 err_split_shrinker:
706 unregister_shrinker(&huge_zero_page_shrinker);
707 err_hzp_shrinker:
708 khugepaged_slab_exit();
709 err_slab:
710 hugepage_exit_sysfs(hugepage_kobj);
711 err_sysfs:
712 return err;
713 }
714 subsys_initcall(hugepage_init);
715
716 static int __init setup_transparent_hugepage(char *str)
717 {
718 int ret = 0;
719 if (!str)
720 goto out;
721 if (!strcmp(str, "always")) {
722 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
723 &transparent_hugepage_flags);
724 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
725 &transparent_hugepage_flags);
726 ret = 1;
727 } else if (!strcmp(str, "madvise")) {
728 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
729 &transparent_hugepage_flags);
730 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
731 &transparent_hugepage_flags);
732 ret = 1;
733 } else if (!strcmp(str, "never")) {
734 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
735 &transparent_hugepage_flags);
736 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
737 &transparent_hugepage_flags);
738 ret = 1;
739 }
740 out:
741 if (!ret)
742 pr_warn("transparent_hugepage= cannot parse, ignored\n");
743 return ret;
744 }
745 __setup("transparent_hugepage=", setup_transparent_hugepage);
746
747 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
748 {
749 if (likely(vma->vm_flags & VM_WRITE))
750 pmd = pmd_mkwrite(pmd);
751 return pmd;
752 }
753
754 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
755 {
756 pmd_t entry;
757 entry = mk_pmd(page, prot);
758 entry = pmd_mkhuge(entry);
759 return entry;
760 }
761
762 static inline struct list_head *page_deferred_list(struct page *page)
763 {
764 /*
765 * ->lru in the tail pages is occupied by compound_head.
766 * Let's use ->mapping + ->index in the second tail page as list_head.
767 */
768 return (struct list_head *)&page[2].mapping;
769 }
770
771 void prep_transhuge_page(struct page *page)
772 {
773 /*
774 * we use page->mapping and page->indexlru in second tail page
775 * as list_head: assuming THP order >= 2
776 */
777 BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
778
779 INIT_LIST_HEAD(page_deferred_list(page));
780 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
781 }
782
783 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
784 struct vm_area_struct *vma,
785 unsigned long address, pmd_t *pmd,
786 struct page *page, gfp_t gfp,
787 unsigned int flags)
788 {
789 struct mem_cgroup *memcg;
790 pgtable_t pgtable;
791 spinlock_t *ptl;
792 unsigned long haddr = address & HPAGE_PMD_MASK;
793
794 VM_BUG_ON_PAGE(!PageCompound(page), page);
795
796 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
797 put_page(page);
798 count_vm_event(THP_FAULT_FALLBACK);
799 return VM_FAULT_FALLBACK;
800 }
801
802 pgtable = pte_alloc_one(mm, haddr);
803 if (unlikely(!pgtable)) {
804 mem_cgroup_cancel_charge(page, memcg, true);
805 put_page(page);
806 return VM_FAULT_OOM;
807 }
808
809 clear_huge_page(page, haddr, HPAGE_PMD_NR);
810 /*
811 * The memory barrier inside __SetPageUptodate makes sure that
812 * clear_huge_page writes become visible before the set_pmd_at()
813 * write.
814 */
815 __SetPageUptodate(page);
816
817 ptl = pmd_lock(mm, pmd);
818 if (unlikely(!pmd_none(*pmd))) {
819 spin_unlock(ptl);
820 mem_cgroup_cancel_charge(page, memcg, true);
821 put_page(page);
822 pte_free(mm, pgtable);
823 } else {
824 pmd_t entry;
825
826 /* Deliver the page fault to userland */
827 if (userfaultfd_missing(vma)) {
828 int ret;
829
830 spin_unlock(ptl);
831 mem_cgroup_cancel_charge(page, memcg, true);
832 put_page(page);
833 pte_free(mm, pgtable);
834 ret = handle_userfault(vma, address, flags,
835 VM_UFFD_MISSING);
836 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
837 return ret;
838 }
839
840 entry = mk_huge_pmd(page, vma->vm_page_prot);
841 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
842 page_add_new_anon_rmap(page, vma, haddr, true);
843 mem_cgroup_commit_charge(page, memcg, false, true);
844 lru_cache_add_active_or_unevictable(page, vma);
845 pgtable_trans_huge_deposit(mm, pmd, pgtable);
846 set_pmd_at(mm, haddr, pmd, entry);
847 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
848 atomic_long_inc(&mm->nr_ptes);
849 spin_unlock(ptl);
850 count_vm_event(THP_FAULT_ALLOC);
851 }
852
853 return 0;
854 }
855
856 /*
857 * If THP is set to always then directly reclaim/compact as necessary
858 * If set to defer then do no reclaim and defer to khugepaged
859 * If set to madvise and the VMA is flagged then directly reclaim/compact
860 */
861 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
862 {
863 gfp_t reclaim_flags = 0;
864
865 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
866 (vma->vm_flags & VM_HUGEPAGE))
867 reclaim_flags = __GFP_DIRECT_RECLAIM;
868 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
869 reclaim_flags = __GFP_KSWAPD_RECLAIM;
870 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
871 reclaim_flags = __GFP_DIRECT_RECLAIM;
872
873 return GFP_TRANSHUGE | reclaim_flags;
874 }
875
876 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
877 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
878 {
879 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
880 }
881
882 /* Caller must hold page table lock. */
883 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
884 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
885 struct page *zero_page)
886 {
887 pmd_t entry;
888 if (!pmd_none(*pmd))
889 return false;
890 entry = mk_pmd(zero_page, vma->vm_page_prot);
891 entry = pmd_mkhuge(entry);
892 if (pgtable)
893 pgtable_trans_huge_deposit(mm, pmd, pgtable);
894 set_pmd_at(mm, haddr, pmd, entry);
895 atomic_long_inc(&mm->nr_ptes);
896 return true;
897 }
898
899 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
900 unsigned long address, pmd_t *pmd,
901 unsigned int flags)
902 {
903 gfp_t gfp;
904 struct page *page;
905 unsigned long haddr = address & HPAGE_PMD_MASK;
906
907 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
908 return VM_FAULT_FALLBACK;
909 if (unlikely(anon_vma_prepare(vma)))
910 return VM_FAULT_OOM;
911 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
912 return VM_FAULT_OOM;
913 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
914 transparent_hugepage_use_zero_page()) {
915 spinlock_t *ptl;
916 pgtable_t pgtable;
917 struct page *zero_page;
918 bool set;
919 int ret;
920 pgtable = pte_alloc_one(mm, haddr);
921 if (unlikely(!pgtable))
922 return VM_FAULT_OOM;
923 zero_page = get_huge_zero_page();
924 if (unlikely(!zero_page)) {
925 pte_free(mm, pgtable);
926 count_vm_event(THP_FAULT_FALLBACK);
927 return VM_FAULT_FALLBACK;
928 }
929 ptl = pmd_lock(mm, pmd);
930 ret = 0;
931 set = false;
932 if (pmd_none(*pmd)) {
933 if (userfaultfd_missing(vma)) {
934 spin_unlock(ptl);
935 ret = handle_userfault(vma, address, flags,
936 VM_UFFD_MISSING);
937 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
938 } else {
939 set_huge_zero_page(pgtable, mm, vma,
940 haddr, pmd,
941 zero_page);
942 spin_unlock(ptl);
943 set = true;
944 }
945 } else
946 spin_unlock(ptl);
947 if (!set) {
948 pte_free(mm, pgtable);
949 put_huge_zero_page();
950 }
951 return ret;
952 }
953 gfp = alloc_hugepage_direct_gfpmask(vma);
954 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
955 if (unlikely(!page)) {
956 count_vm_event(THP_FAULT_FALLBACK);
957 return VM_FAULT_FALLBACK;
958 }
959 prep_transhuge_page(page);
960 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
961 flags);
962 }
963
964 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
965 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
966 {
967 struct mm_struct *mm = vma->vm_mm;
968 pmd_t entry;
969 spinlock_t *ptl;
970
971 ptl = pmd_lock(mm, pmd);
972 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
973 if (pfn_t_devmap(pfn))
974 entry = pmd_mkdevmap(entry);
975 if (write) {
976 entry = pmd_mkyoung(pmd_mkdirty(entry));
977 entry = maybe_pmd_mkwrite(entry, vma);
978 }
979 set_pmd_at(mm, addr, pmd, entry);
980 update_mmu_cache_pmd(vma, addr, pmd);
981 spin_unlock(ptl);
982 }
983
984 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
985 pmd_t *pmd, pfn_t pfn, bool write)
986 {
987 pgprot_t pgprot = vma->vm_page_prot;
988 /*
989 * If we had pmd_special, we could avoid all these restrictions,
990 * but we need to be consistent with PTEs and architectures that
991 * can't support a 'special' bit.
992 */
993 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
994 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
995 (VM_PFNMAP|VM_MIXEDMAP));
996 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
997 BUG_ON(!pfn_t_devmap(pfn));
998
999 if (addr < vma->vm_start || addr >= vma->vm_end)
1000 return VM_FAULT_SIGBUS;
1001 if (track_pfn_insert(vma, &pgprot, pfn))
1002 return VM_FAULT_SIGBUS;
1003 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1004 return VM_FAULT_NOPAGE;
1005 }
1006
1007 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1008 pmd_t *pmd)
1009 {
1010 pmd_t _pmd;
1011
1012 /*
1013 * We should set the dirty bit only for FOLL_WRITE but for now
1014 * the dirty bit in the pmd is meaningless. And if the dirty
1015 * bit will become meaningful and we'll only set it with
1016 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1017 * set the young bit, instead of the current set_pmd_at.
1018 */
1019 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1020 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1021 pmd, _pmd, 1))
1022 update_mmu_cache_pmd(vma, addr, pmd);
1023 }
1024
1025 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1026 pmd_t *pmd, int flags)
1027 {
1028 unsigned long pfn = pmd_pfn(*pmd);
1029 struct mm_struct *mm = vma->vm_mm;
1030 struct dev_pagemap *pgmap;
1031 struct page *page;
1032
1033 assert_spin_locked(pmd_lockptr(mm, pmd));
1034
1035 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1036 return NULL;
1037
1038 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1039 /* pass */;
1040 else
1041 return NULL;
1042
1043 if (flags & FOLL_TOUCH)
1044 touch_pmd(vma, addr, pmd);
1045
1046 /*
1047 * device mapped pages can only be returned if the
1048 * caller will manage the page reference count.
1049 */
1050 if (!(flags & FOLL_GET))
1051 return ERR_PTR(-EEXIST);
1052
1053 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1054 pgmap = get_dev_pagemap(pfn, NULL);
1055 if (!pgmap)
1056 return ERR_PTR(-EFAULT);
1057 page = pfn_to_page(pfn);
1058 get_page(page);
1059 put_dev_pagemap(pgmap);
1060
1061 return page;
1062 }
1063
1064 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1065 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1066 struct vm_area_struct *vma)
1067 {
1068 spinlock_t *dst_ptl, *src_ptl;
1069 struct page *src_page;
1070 pmd_t pmd;
1071 pgtable_t pgtable = NULL;
1072 int ret;
1073
1074 if (!vma_is_dax(vma)) {
1075 ret = -ENOMEM;
1076 pgtable = pte_alloc_one(dst_mm, addr);
1077 if (unlikely(!pgtable))
1078 goto out;
1079 }
1080
1081 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1082 src_ptl = pmd_lockptr(src_mm, src_pmd);
1083 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1084
1085 ret = -EAGAIN;
1086 pmd = *src_pmd;
1087 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1088 pte_free(dst_mm, pgtable);
1089 goto out_unlock;
1090 }
1091 /*
1092 * When page table lock is held, the huge zero pmd should not be
1093 * under splitting since we don't split the page itself, only pmd to
1094 * a page table.
1095 */
1096 if (is_huge_zero_pmd(pmd)) {
1097 struct page *zero_page;
1098 /*
1099 * get_huge_zero_page() will never allocate a new page here,
1100 * since we already have a zero page to copy. It just takes a
1101 * reference.
1102 */
1103 zero_page = get_huge_zero_page();
1104 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1105 zero_page);
1106 ret = 0;
1107 goto out_unlock;
1108 }
1109
1110 if (!vma_is_dax(vma)) {
1111 /* thp accounting separate from pmd_devmap accounting */
1112 src_page = pmd_page(pmd);
1113 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1114 get_page(src_page);
1115 page_dup_rmap(src_page, true);
1116 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1117 atomic_long_inc(&dst_mm->nr_ptes);
1118 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1119 }
1120
1121 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122 pmd = pmd_mkold(pmd_wrprotect(pmd));
1123 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1124
1125 ret = 0;
1126 out_unlock:
1127 spin_unlock(src_ptl);
1128 spin_unlock(dst_ptl);
1129 out:
1130 return ret;
1131 }
1132
1133 void huge_pmd_set_accessed(struct mm_struct *mm,
1134 struct vm_area_struct *vma,
1135 unsigned long address,
1136 pmd_t *pmd, pmd_t orig_pmd,
1137 int dirty)
1138 {
1139 spinlock_t *ptl;
1140 pmd_t entry;
1141 unsigned long haddr;
1142
1143 ptl = pmd_lock(mm, pmd);
1144 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1145 goto unlock;
1146
1147 entry = pmd_mkyoung(orig_pmd);
1148 haddr = address & HPAGE_PMD_MASK;
1149 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1150 update_mmu_cache_pmd(vma, address, pmd);
1151
1152 unlock:
1153 spin_unlock(ptl);
1154 }
1155
1156 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1157 struct vm_area_struct *vma,
1158 unsigned long address,
1159 pmd_t *pmd, pmd_t orig_pmd,
1160 struct page *page,
1161 unsigned long haddr)
1162 {
1163 struct mem_cgroup *memcg;
1164 spinlock_t *ptl;
1165 pgtable_t pgtable;
1166 pmd_t _pmd;
1167 int ret = 0, i;
1168 struct page **pages;
1169 unsigned long mmun_start; /* For mmu_notifiers */
1170 unsigned long mmun_end; /* For mmu_notifiers */
1171
1172 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1173 GFP_KERNEL);
1174 if (unlikely(!pages)) {
1175 ret |= VM_FAULT_OOM;
1176 goto out;
1177 }
1178
1179 for (i = 0; i < HPAGE_PMD_NR; i++) {
1180 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1181 __GFP_OTHER_NODE,
1182 vma, address, page_to_nid(page));
1183 if (unlikely(!pages[i] ||
1184 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1185 &memcg, false))) {
1186 if (pages[i])
1187 put_page(pages[i]);
1188 while (--i >= 0) {
1189 memcg = (void *)page_private(pages[i]);
1190 set_page_private(pages[i], 0);
1191 mem_cgroup_cancel_charge(pages[i], memcg,
1192 false);
1193 put_page(pages[i]);
1194 }
1195 kfree(pages);
1196 ret |= VM_FAULT_OOM;
1197 goto out;
1198 }
1199 set_page_private(pages[i], (unsigned long)memcg);
1200 }
1201
1202 for (i = 0; i < HPAGE_PMD_NR; i++) {
1203 copy_user_highpage(pages[i], page + i,
1204 haddr + PAGE_SIZE * i, vma);
1205 __SetPageUptodate(pages[i]);
1206 cond_resched();
1207 }
1208
1209 mmun_start = haddr;
1210 mmun_end = haddr + HPAGE_PMD_SIZE;
1211 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1212
1213 ptl = pmd_lock(mm, pmd);
1214 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1215 goto out_free_pages;
1216 VM_BUG_ON_PAGE(!PageHead(page), page);
1217
1218 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1219 /* leave pmd empty until pte is filled */
1220
1221 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1222 pmd_populate(mm, &_pmd, pgtable);
1223
1224 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1225 pte_t *pte, entry;
1226 entry = mk_pte(pages[i], vma->vm_page_prot);
1227 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1228 memcg = (void *)page_private(pages[i]);
1229 set_page_private(pages[i], 0);
1230 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1231 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1232 lru_cache_add_active_or_unevictable(pages[i], vma);
1233 pte = pte_offset_map(&_pmd, haddr);
1234 VM_BUG_ON(!pte_none(*pte));
1235 set_pte_at(mm, haddr, pte, entry);
1236 pte_unmap(pte);
1237 }
1238 kfree(pages);
1239
1240 smp_wmb(); /* make pte visible before pmd */
1241 pmd_populate(mm, pmd, pgtable);
1242 page_remove_rmap(page, true);
1243 spin_unlock(ptl);
1244
1245 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1246
1247 ret |= VM_FAULT_WRITE;
1248 put_page(page);
1249
1250 out:
1251 return ret;
1252
1253 out_free_pages:
1254 spin_unlock(ptl);
1255 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1256 for (i = 0; i < HPAGE_PMD_NR; i++) {
1257 memcg = (void *)page_private(pages[i]);
1258 set_page_private(pages[i], 0);
1259 mem_cgroup_cancel_charge(pages[i], memcg, false);
1260 put_page(pages[i]);
1261 }
1262 kfree(pages);
1263 goto out;
1264 }
1265
1266 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1267 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1268 {
1269 spinlock_t *ptl;
1270 int ret = 0;
1271 struct page *page = NULL, *new_page;
1272 struct mem_cgroup *memcg;
1273 unsigned long haddr;
1274 unsigned long mmun_start; /* For mmu_notifiers */
1275 unsigned long mmun_end; /* For mmu_notifiers */
1276 gfp_t huge_gfp; /* for allocation and charge */
1277
1278 ptl = pmd_lockptr(mm, pmd);
1279 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1280 haddr = address & HPAGE_PMD_MASK;
1281 if (is_huge_zero_pmd(orig_pmd))
1282 goto alloc;
1283 spin_lock(ptl);
1284 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1285 goto out_unlock;
1286
1287 page = pmd_page(orig_pmd);
1288 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1289 /*
1290 * We can only reuse the page if nobody else maps the huge page or it's
1291 * part. We can do it by checking page_mapcount() on each sub-page, but
1292 * it's expensive.
1293 * The cheaper way is to check page_count() to be equal 1: every
1294 * mapcount takes page reference reference, so this way we can
1295 * guarantee, that the PMD is the only mapping.
1296 * This can give false negative if somebody pinned the page, but that's
1297 * fine.
1298 */
1299 if (page_mapcount(page) == 1 && page_count(page) == 1) {
1300 pmd_t entry;
1301 entry = pmd_mkyoung(orig_pmd);
1302 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1303 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1304 update_mmu_cache_pmd(vma, address, pmd);
1305 ret |= VM_FAULT_WRITE;
1306 goto out_unlock;
1307 }
1308 get_page(page);
1309 spin_unlock(ptl);
1310 alloc:
1311 if (transparent_hugepage_enabled(vma) &&
1312 !transparent_hugepage_debug_cow()) {
1313 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1314 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1315 } else
1316 new_page = NULL;
1317
1318 if (likely(new_page)) {
1319 prep_transhuge_page(new_page);
1320 } else {
1321 if (!page) {
1322 split_huge_pmd(vma, pmd, address);
1323 ret |= VM_FAULT_FALLBACK;
1324 } else {
1325 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1326 pmd, orig_pmd, page, haddr);
1327 if (ret & VM_FAULT_OOM) {
1328 split_huge_pmd(vma, pmd, address);
1329 ret |= VM_FAULT_FALLBACK;
1330 }
1331 put_page(page);
1332 }
1333 count_vm_event(THP_FAULT_FALLBACK);
1334 goto out;
1335 }
1336
1337 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1338 true))) {
1339 put_page(new_page);
1340 if (page) {
1341 split_huge_pmd(vma, pmd, address);
1342 put_page(page);
1343 } else
1344 split_huge_pmd(vma, pmd, address);
1345 ret |= VM_FAULT_FALLBACK;
1346 count_vm_event(THP_FAULT_FALLBACK);
1347 goto out;
1348 }
1349
1350 count_vm_event(THP_FAULT_ALLOC);
1351
1352 if (!page)
1353 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1354 else
1355 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1356 __SetPageUptodate(new_page);
1357
1358 mmun_start = haddr;
1359 mmun_end = haddr + HPAGE_PMD_SIZE;
1360 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1361
1362 spin_lock(ptl);
1363 if (page)
1364 put_page(page);
1365 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1366 spin_unlock(ptl);
1367 mem_cgroup_cancel_charge(new_page, memcg, true);
1368 put_page(new_page);
1369 goto out_mn;
1370 } else {
1371 pmd_t entry;
1372 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1373 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1374 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1375 page_add_new_anon_rmap(new_page, vma, haddr, true);
1376 mem_cgroup_commit_charge(new_page, memcg, false, true);
1377 lru_cache_add_active_or_unevictable(new_page, vma);
1378 set_pmd_at(mm, haddr, pmd, entry);
1379 update_mmu_cache_pmd(vma, address, pmd);
1380 if (!page) {
1381 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1382 put_huge_zero_page();
1383 } else {
1384 VM_BUG_ON_PAGE(!PageHead(page), page);
1385 page_remove_rmap(page, true);
1386 put_page(page);
1387 }
1388 ret |= VM_FAULT_WRITE;
1389 }
1390 spin_unlock(ptl);
1391 out_mn:
1392 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1393 out:
1394 return ret;
1395 out_unlock:
1396 spin_unlock(ptl);
1397 return ret;
1398 }
1399
1400 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1401 unsigned long addr,
1402 pmd_t *pmd,
1403 unsigned int flags)
1404 {
1405 struct mm_struct *mm = vma->vm_mm;
1406 struct page *page = NULL;
1407
1408 assert_spin_locked(pmd_lockptr(mm, pmd));
1409
1410 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1411 goto out;
1412
1413 /* Avoid dumping huge zero page */
1414 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1415 return ERR_PTR(-EFAULT);
1416
1417 /* Full NUMA hinting faults to serialise migration in fault paths */
1418 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1419 goto out;
1420
1421 page = pmd_page(*pmd);
1422 VM_BUG_ON_PAGE(!PageHead(page), page);
1423 if (flags & FOLL_TOUCH)
1424 touch_pmd(vma, addr, pmd);
1425 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1426 /*
1427 * We don't mlock() pte-mapped THPs. This way we can avoid
1428 * leaking mlocked pages into non-VM_LOCKED VMAs.
1429 *
1430 * In most cases the pmd is the only mapping of the page as we
1431 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1432 * writable private mappings in populate_vma_page_range().
1433 *
1434 * The only scenario when we have the page shared here is if we
1435 * mlocking read-only mapping shared over fork(). We skip
1436 * mlocking such pages.
1437 */
1438 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1439 page->mapping && trylock_page(page)) {
1440 lru_add_drain();
1441 if (page->mapping)
1442 mlock_vma_page(page);
1443 unlock_page(page);
1444 }
1445 }
1446 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1447 VM_BUG_ON_PAGE(!PageCompound(page), page);
1448 if (flags & FOLL_GET)
1449 get_page(page);
1450
1451 out:
1452 return page;
1453 }
1454
1455 /* NUMA hinting page fault entry point for trans huge pmds */
1456 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1457 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1458 {
1459 spinlock_t *ptl;
1460 struct anon_vma *anon_vma = NULL;
1461 struct page *page;
1462 unsigned long haddr = addr & HPAGE_PMD_MASK;
1463 int page_nid = -1, this_nid = numa_node_id();
1464 int target_nid, last_cpupid = -1;
1465 bool page_locked;
1466 bool migrated = false;
1467 bool was_writable;
1468 int flags = 0;
1469
1470 /* A PROT_NONE fault should not end up here */
1471 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1472
1473 ptl = pmd_lock(mm, pmdp);
1474 if (unlikely(!pmd_same(pmd, *pmdp)))
1475 goto out_unlock;
1476
1477 /*
1478 * If there are potential migrations, wait for completion and retry
1479 * without disrupting NUMA hinting information. Do not relock and
1480 * check_same as the page may no longer be mapped.
1481 */
1482 if (unlikely(pmd_trans_migrating(*pmdp))) {
1483 page = pmd_page(*pmdp);
1484 spin_unlock(ptl);
1485 wait_on_page_locked(page);
1486 goto out;
1487 }
1488
1489 page = pmd_page(pmd);
1490 BUG_ON(is_huge_zero_page(page));
1491 page_nid = page_to_nid(page);
1492 last_cpupid = page_cpupid_last(page);
1493 count_vm_numa_event(NUMA_HINT_FAULTS);
1494 if (page_nid == this_nid) {
1495 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1496 flags |= TNF_FAULT_LOCAL;
1497 }
1498
1499 /* See similar comment in do_numa_page for explanation */
1500 if (!(vma->vm_flags & VM_WRITE))
1501 flags |= TNF_NO_GROUP;
1502
1503 /*
1504 * Acquire the page lock to serialise THP migrations but avoid dropping
1505 * page_table_lock if at all possible
1506 */
1507 page_locked = trylock_page(page);
1508 target_nid = mpol_misplaced(page, vma, haddr);
1509 if (target_nid == -1) {
1510 /* If the page was locked, there are no parallel migrations */
1511 if (page_locked)
1512 goto clear_pmdnuma;
1513 }
1514
1515 /* Migration could have started since the pmd_trans_migrating check */
1516 if (!page_locked) {
1517 spin_unlock(ptl);
1518 wait_on_page_locked(page);
1519 page_nid = -1;
1520 goto out;
1521 }
1522
1523 /*
1524 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1525 * to serialises splits
1526 */
1527 get_page(page);
1528 spin_unlock(ptl);
1529 anon_vma = page_lock_anon_vma_read(page);
1530
1531 /* Confirm the PMD did not change while page_table_lock was released */
1532 spin_lock(ptl);
1533 if (unlikely(!pmd_same(pmd, *pmdp))) {
1534 unlock_page(page);
1535 put_page(page);
1536 page_nid = -1;
1537 goto out_unlock;
1538 }
1539
1540 /* Bail if we fail to protect against THP splits for any reason */
1541 if (unlikely(!anon_vma)) {
1542 put_page(page);
1543 page_nid = -1;
1544 goto clear_pmdnuma;
1545 }
1546
1547 /*
1548 * Migrate the THP to the requested node, returns with page unlocked
1549 * and access rights restored.
1550 */
1551 spin_unlock(ptl);
1552 migrated = migrate_misplaced_transhuge_page(mm, vma,
1553 pmdp, pmd, addr, page, target_nid);
1554 if (migrated) {
1555 flags |= TNF_MIGRATED;
1556 page_nid = target_nid;
1557 } else
1558 flags |= TNF_MIGRATE_FAIL;
1559
1560 goto out;
1561 clear_pmdnuma:
1562 BUG_ON(!PageLocked(page));
1563 was_writable = pmd_write(pmd);
1564 pmd = pmd_modify(pmd, vma->vm_page_prot);
1565 pmd = pmd_mkyoung(pmd);
1566 if (was_writable)
1567 pmd = pmd_mkwrite(pmd);
1568 set_pmd_at(mm, haddr, pmdp, pmd);
1569 update_mmu_cache_pmd(vma, addr, pmdp);
1570 unlock_page(page);
1571 out_unlock:
1572 spin_unlock(ptl);
1573
1574 out:
1575 if (anon_vma)
1576 page_unlock_anon_vma_read(anon_vma);
1577
1578 if (page_nid != -1)
1579 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1580
1581 return 0;
1582 }
1583
1584 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1585 pmd_t *pmd, unsigned long addr, unsigned long next)
1586
1587 {
1588 spinlock_t *ptl;
1589 pmd_t orig_pmd;
1590 struct page *page;
1591 struct mm_struct *mm = tlb->mm;
1592 int ret = 0;
1593
1594 ptl = pmd_trans_huge_lock(pmd, vma);
1595 if (!ptl)
1596 goto out_unlocked;
1597
1598 orig_pmd = *pmd;
1599 if (is_huge_zero_pmd(orig_pmd)) {
1600 ret = 1;
1601 goto out;
1602 }
1603
1604 page = pmd_page(orig_pmd);
1605 /*
1606 * If other processes are mapping this page, we couldn't discard
1607 * the page unless they all do MADV_FREE so let's skip the page.
1608 */
1609 if (page_mapcount(page) != 1)
1610 goto out;
1611
1612 if (!trylock_page(page))
1613 goto out;
1614
1615 /*
1616 * If user want to discard part-pages of THP, split it so MADV_FREE
1617 * will deactivate only them.
1618 */
1619 if (next - addr != HPAGE_PMD_SIZE) {
1620 get_page(page);
1621 spin_unlock(ptl);
1622 if (split_huge_page(page)) {
1623 put_page(page);
1624 unlock_page(page);
1625 goto out_unlocked;
1626 }
1627 put_page(page);
1628 unlock_page(page);
1629 ret = 1;
1630 goto out_unlocked;
1631 }
1632
1633 if (PageDirty(page))
1634 ClearPageDirty(page);
1635 unlock_page(page);
1636
1637 if (PageActive(page))
1638 deactivate_page(page);
1639
1640 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1641 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1642 tlb->fullmm);
1643 orig_pmd = pmd_mkold(orig_pmd);
1644 orig_pmd = pmd_mkclean(orig_pmd);
1645
1646 set_pmd_at(mm, addr, pmd, orig_pmd);
1647 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1648 }
1649 ret = 1;
1650 out:
1651 spin_unlock(ptl);
1652 out_unlocked:
1653 return ret;
1654 }
1655
1656 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1657 pmd_t *pmd, unsigned long addr)
1658 {
1659 pmd_t orig_pmd;
1660 spinlock_t *ptl;
1661
1662 ptl = __pmd_trans_huge_lock(pmd, vma);
1663 if (!ptl)
1664 return 0;
1665 /*
1666 * For architectures like ppc64 we look at deposited pgtable
1667 * when calling pmdp_huge_get_and_clear. So do the
1668 * pgtable_trans_huge_withdraw after finishing pmdp related
1669 * operations.
1670 */
1671 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1672 tlb->fullmm);
1673 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1674 if (vma_is_dax(vma)) {
1675 spin_unlock(ptl);
1676 if (is_huge_zero_pmd(orig_pmd))
1677 put_huge_zero_page();
1678 } else if (is_huge_zero_pmd(orig_pmd)) {
1679 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1680 atomic_long_dec(&tlb->mm->nr_ptes);
1681 spin_unlock(ptl);
1682 put_huge_zero_page();
1683 } else {
1684 struct page *page = pmd_page(orig_pmd);
1685 page_remove_rmap(page, true);
1686 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1687 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1688 VM_BUG_ON_PAGE(!PageHead(page), page);
1689 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1690 atomic_long_dec(&tlb->mm->nr_ptes);
1691 spin_unlock(ptl);
1692 tlb_remove_page(tlb, page);
1693 }
1694 return 1;
1695 }
1696
1697 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1698 unsigned long old_addr,
1699 unsigned long new_addr, unsigned long old_end,
1700 pmd_t *old_pmd, pmd_t *new_pmd)
1701 {
1702 spinlock_t *old_ptl, *new_ptl;
1703 pmd_t pmd;
1704
1705 struct mm_struct *mm = vma->vm_mm;
1706
1707 if ((old_addr & ~HPAGE_PMD_MASK) ||
1708 (new_addr & ~HPAGE_PMD_MASK) ||
1709 old_end - old_addr < HPAGE_PMD_SIZE ||
1710 (new_vma->vm_flags & VM_NOHUGEPAGE))
1711 return false;
1712
1713 /*
1714 * The destination pmd shouldn't be established, free_pgtables()
1715 * should have release it.
1716 */
1717 if (WARN_ON(!pmd_none(*new_pmd))) {
1718 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1719 return false;
1720 }
1721
1722 /*
1723 * We don't have to worry about the ordering of src and dst
1724 * ptlocks because exclusive mmap_sem prevents deadlock.
1725 */
1726 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1727 if (old_ptl) {
1728 new_ptl = pmd_lockptr(mm, new_pmd);
1729 if (new_ptl != old_ptl)
1730 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1731 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1732 VM_BUG_ON(!pmd_none(*new_pmd));
1733
1734 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1735 vma_is_anonymous(vma)) {
1736 pgtable_t pgtable;
1737 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1738 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1739 }
1740 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1741 if (new_ptl != old_ptl)
1742 spin_unlock(new_ptl);
1743 spin_unlock(old_ptl);
1744 return true;
1745 }
1746 return false;
1747 }
1748
1749 /*
1750 * Returns
1751 * - 0 if PMD could not be locked
1752 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1753 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1754 */
1755 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1756 unsigned long addr, pgprot_t newprot, int prot_numa)
1757 {
1758 struct mm_struct *mm = vma->vm_mm;
1759 spinlock_t *ptl;
1760 int ret = 0;
1761
1762 ptl = __pmd_trans_huge_lock(pmd, vma);
1763 if (ptl) {
1764 pmd_t entry;
1765 bool preserve_write = prot_numa && pmd_write(*pmd);
1766 ret = 1;
1767
1768 /*
1769 * Avoid trapping faults against the zero page. The read-only
1770 * data is likely to be read-cached on the local CPU and
1771 * local/remote hits to the zero page are not interesting.
1772 */
1773 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1774 spin_unlock(ptl);
1775 return ret;
1776 }
1777
1778 if (!prot_numa || !pmd_protnone(*pmd)) {
1779 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1780 entry = pmd_modify(entry, newprot);
1781 if (preserve_write)
1782 entry = pmd_mkwrite(entry);
1783 ret = HPAGE_PMD_NR;
1784 set_pmd_at(mm, addr, pmd, entry);
1785 BUG_ON(!preserve_write && pmd_write(entry));
1786 }
1787 spin_unlock(ptl);
1788 }
1789
1790 return ret;
1791 }
1792
1793 /*
1794 * Returns true if a given pmd maps a thp, false otherwise.
1795 *
1796 * Note that if it returns true, this routine returns without unlocking page
1797 * table lock. So callers must unlock it.
1798 */
1799 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1800 {
1801 spinlock_t *ptl;
1802 ptl = pmd_lock(vma->vm_mm, pmd);
1803 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1804 return ptl;
1805 spin_unlock(ptl);
1806 return NULL;
1807 }
1808
1809 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1810
1811 int hugepage_madvise(struct vm_area_struct *vma,
1812 unsigned long *vm_flags, int advice)
1813 {
1814 switch (advice) {
1815 case MADV_HUGEPAGE:
1816 #ifdef CONFIG_S390
1817 /*
1818 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1819 * can't handle this properly after s390_enable_sie, so we simply
1820 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1821 */
1822 if (mm_has_pgste(vma->vm_mm))
1823 return 0;
1824 #endif
1825 /*
1826 * Be somewhat over-protective like KSM for now!
1827 */
1828 if (*vm_flags & VM_NO_THP)
1829 return -EINVAL;
1830 *vm_flags &= ~VM_NOHUGEPAGE;
1831 *vm_flags |= VM_HUGEPAGE;
1832 /*
1833 * If the vma become good for khugepaged to scan,
1834 * register it here without waiting a page fault that
1835 * may not happen any time soon.
1836 */
1837 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1838 return -ENOMEM;
1839 break;
1840 case MADV_NOHUGEPAGE:
1841 /*
1842 * Be somewhat over-protective like KSM for now!
1843 */
1844 if (*vm_flags & VM_NO_THP)
1845 return -EINVAL;
1846 *vm_flags &= ~VM_HUGEPAGE;
1847 *vm_flags |= VM_NOHUGEPAGE;
1848 /*
1849 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1850 * this vma even if we leave the mm registered in khugepaged if
1851 * it got registered before VM_NOHUGEPAGE was set.
1852 */
1853 break;
1854 }
1855
1856 return 0;
1857 }
1858
1859 static int __init khugepaged_slab_init(void)
1860 {
1861 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1862 sizeof(struct mm_slot),
1863 __alignof__(struct mm_slot), 0, NULL);
1864 if (!mm_slot_cache)
1865 return -ENOMEM;
1866
1867 return 0;
1868 }
1869
1870 static void __init khugepaged_slab_exit(void)
1871 {
1872 kmem_cache_destroy(mm_slot_cache);
1873 }
1874
1875 static inline struct mm_slot *alloc_mm_slot(void)
1876 {
1877 if (!mm_slot_cache) /* initialization failed */
1878 return NULL;
1879 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1880 }
1881
1882 static inline void free_mm_slot(struct mm_slot *mm_slot)
1883 {
1884 kmem_cache_free(mm_slot_cache, mm_slot);
1885 }
1886
1887 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1888 {
1889 struct mm_slot *mm_slot;
1890
1891 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1892 if (mm == mm_slot->mm)
1893 return mm_slot;
1894
1895 return NULL;
1896 }
1897
1898 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1899 struct mm_slot *mm_slot)
1900 {
1901 mm_slot->mm = mm;
1902 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1903 }
1904
1905 static inline int khugepaged_test_exit(struct mm_struct *mm)
1906 {
1907 return atomic_read(&mm->mm_users) == 0;
1908 }
1909
1910 int __khugepaged_enter(struct mm_struct *mm)
1911 {
1912 struct mm_slot *mm_slot;
1913 int wakeup;
1914
1915 mm_slot = alloc_mm_slot();
1916 if (!mm_slot)
1917 return -ENOMEM;
1918
1919 /* __khugepaged_exit() must not run from under us */
1920 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1921 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1922 free_mm_slot(mm_slot);
1923 return 0;
1924 }
1925
1926 spin_lock(&khugepaged_mm_lock);
1927 insert_to_mm_slots_hash(mm, mm_slot);
1928 /*
1929 * Insert just behind the scanning cursor, to let the area settle
1930 * down a little.
1931 */
1932 wakeup = list_empty(&khugepaged_scan.mm_head);
1933 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1934 spin_unlock(&khugepaged_mm_lock);
1935
1936 atomic_inc(&mm->mm_count);
1937 if (wakeup)
1938 wake_up_interruptible(&khugepaged_wait);
1939
1940 return 0;
1941 }
1942
1943 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1944 unsigned long vm_flags)
1945 {
1946 unsigned long hstart, hend;
1947 if (!vma->anon_vma)
1948 /*
1949 * Not yet faulted in so we will register later in the
1950 * page fault if needed.
1951 */
1952 return 0;
1953 if (vma->vm_ops)
1954 /* khugepaged not yet working on file or special mappings */
1955 return 0;
1956 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1957 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1958 hend = vma->vm_end & HPAGE_PMD_MASK;
1959 if (hstart < hend)
1960 return khugepaged_enter(vma, vm_flags);
1961 return 0;
1962 }
1963
1964 void __khugepaged_exit(struct mm_struct *mm)
1965 {
1966 struct mm_slot *mm_slot;
1967 int free = 0;
1968
1969 spin_lock(&khugepaged_mm_lock);
1970 mm_slot = get_mm_slot(mm);
1971 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1972 hash_del(&mm_slot->hash);
1973 list_del(&mm_slot->mm_node);
1974 free = 1;
1975 }
1976 spin_unlock(&khugepaged_mm_lock);
1977
1978 if (free) {
1979 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1980 free_mm_slot(mm_slot);
1981 mmdrop(mm);
1982 } else if (mm_slot) {
1983 /*
1984 * This is required to serialize against
1985 * khugepaged_test_exit() (which is guaranteed to run
1986 * under mmap sem read mode). Stop here (after we
1987 * return all pagetables will be destroyed) until
1988 * khugepaged has finished working on the pagetables
1989 * under the mmap_sem.
1990 */
1991 down_write(&mm->mmap_sem);
1992 up_write(&mm->mmap_sem);
1993 }
1994 }
1995
1996 static void release_pte_page(struct page *page)
1997 {
1998 /* 0 stands for page_is_file_cache(page) == false */
1999 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2000 unlock_page(page);
2001 putback_lru_page(page);
2002 }
2003
2004 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2005 {
2006 while (--_pte >= pte) {
2007 pte_t pteval = *_pte;
2008 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2009 release_pte_page(pte_page(pteval));
2010 }
2011 }
2012
2013 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2014 unsigned long address,
2015 pte_t *pte)
2016 {
2017 struct page *page = NULL;
2018 pte_t *_pte;
2019 int none_or_zero = 0, result = 0;
2020 bool referenced = false, writable = false;
2021
2022 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2023 _pte++, address += PAGE_SIZE) {
2024 pte_t pteval = *_pte;
2025 if (pte_none(pteval) || (pte_present(pteval) &&
2026 is_zero_pfn(pte_pfn(pteval)))) {
2027 if (!userfaultfd_armed(vma) &&
2028 ++none_or_zero <= khugepaged_max_ptes_none) {
2029 continue;
2030 } else {
2031 result = SCAN_EXCEED_NONE_PTE;
2032 goto out;
2033 }
2034 }
2035 if (!pte_present(pteval)) {
2036 result = SCAN_PTE_NON_PRESENT;
2037 goto out;
2038 }
2039 page = vm_normal_page(vma, address, pteval);
2040 if (unlikely(!page)) {
2041 result = SCAN_PAGE_NULL;
2042 goto out;
2043 }
2044
2045 VM_BUG_ON_PAGE(PageCompound(page), page);
2046 VM_BUG_ON_PAGE(!PageAnon(page), page);
2047 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2048
2049 /*
2050 * We can do it before isolate_lru_page because the
2051 * page can't be freed from under us. NOTE: PG_lock
2052 * is needed to serialize against split_huge_page
2053 * when invoked from the VM.
2054 */
2055 if (!trylock_page(page)) {
2056 result = SCAN_PAGE_LOCK;
2057 goto out;
2058 }
2059
2060 /*
2061 * cannot use mapcount: can't collapse if there's a gup pin.
2062 * The page must only be referenced by the scanned process
2063 * and page swap cache.
2064 */
2065 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2066 unlock_page(page);
2067 result = SCAN_PAGE_COUNT;
2068 goto out;
2069 }
2070 if (pte_write(pteval)) {
2071 writable = true;
2072 } else {
2073 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2074 unlock_page(page);
2075 result = SCAN_SWAP_CACHE_PAGE;
2076 goto out;
2077 }
2078 /*
2079 * Page is not in the swap cache. It can be collapsed
2080 * into a THP.
2081 */
2082 }
2083
2084 /*
2085 * Isolate the page to avoid collapsing an hugepage
2086 * currently in use by the VM.
2087 */
2088 if (isolate_lru_page(page)) {
2089 unlock_page(page);
2090 result = SCAN_DEL_PAGE_LRU;
2091 goto out;
2092 }
2093 /* 0 stands for page_is_file_cache(page) == false */
2094 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2095 VM_BUG_ON_PAGE(!PageLocked(page), page);
2096 VM_BUG_ON_PAGE(PageLRU(page), page);
2097
2098 /* If there is no mapped pte young don't collapse the page */
2099 if (pte_young(pteval) ||
2100 page_is_young(page) || PageReferenced(page) ||
2101 mmu_notifier_test_young(vma->vm_mm, address))
2102 referenced = true;
2103 }
2104 if (likely(writable)) {
2105 if (likely(referenced)) {
2106 result = SCAN_SUCCEED;
2107 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2108 referenced, writable, result);
2109 return 1;
2110 }
2111 } else {
2112 result = SCAN_PAGE_RO;
2113 }
2114
2115 out:
2116 release_pte_pages(pte, _pte);
2117 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2118 referenced, writable, result);
2119 return 0;
2120 }
2121
2122 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2123 struct vm_area_struct *vma,
2124 unsigned long address,
2125 spinlock_t *ptl)
2126 {
2127 pte_t *_pte;
2128 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2129 pte_t pteval = *_pte;
2130 struct page *src_page;
2131
2132 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2133 clear_user_highpage(page, address);
2134 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2135 if (is_zero_pfn(pte_pfn(pteval))) {
2136 /*
2137 * ptl mostly unnecessary.
2138 */
2139 spin_lock(ptl);
2140 /*
2141 * paravirt calls inside pte_clear here are
2142 * superfluous.
2143 */
2144 pte_clear(vma->vm_mm, address, _pte);
2145 spin_unlock(ptl);
2146 }
2147 } else {
2148 src_page = pte_page(pteval);
2149 copy_user_highpage(page, src_page, address, vma);
2150 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2151 release_pte_page(src_page);
2152 /*
2153 * ptl mostly unnecessary, but preempt has to
2154 * be disabled to update the per-cpu stats
2155 * inside page_remove_rmap().
2156 */
2157 spin_lock(ptl);
2158 /*
2159 * paravirt calls inside pte_clear here are
2160 * superfluous.
2161 */
2162 pte_clear(vma->vm_mm, address, _pte);
2163 page_remove_rmap(src_page, false);
2164 spin_unlock(ptl);
2165 free_page_and_swap_cache(src_page);
2166 }
2167
2168 address += PAGE_SIZE;
2169 page++;
2170 }
2171 }
2172
2173 static void khugepaged_alloc_sleep(void)
2174 {
2175 DEFINE_WAIT(wait);
2176
2177 add_wait_queue(&khugepaged_wait, &wait);
2178 freezable_schedule_timeout_interruptible(
2179 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2180 remove_wait_queue(&khugepaged_wait, &wait);
2181 }
2182
2183 static int khugepaged_node_load[MAX_NUMNODES];
2184
2185 static bool khugepaged_scan_abort(int nid)
2186 {
2187 int i;
2188
2189 /*
2190 * If zone_reclaim_mode is disabled, then no extra effort is made to
2191 * allocate memory locally.
2192 */
2193 if (!zone_reclaim_mode)
2194 return false;
2195
2196 /* If there is a count for this node already, it must be acceptable */
2197 if (khugepaged_node_load[nid])
2198 return false;
2199
2200 for (i = 0; i < MAX_NUMNODES; i++) {
2201 if (!khugepaged_node_load[i])
2202 continue;
2203 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2204 return true;
2205 }
2206 return false;
2207 }
2208
2209 #ifdef CONFIG_NUMA
2210 static int khugepaged_find_target_node(void)
2211 {
2212 static int last_khugepaged_target_node = NUMA_NO_NODE;
2213 int nid, target_node = 0, max_value = 0;
2214
2215 /* find first node with max normal pages hit */
2216 for (nid = 0; nid < MAX_NUMNODES; nid++)
2217 if (khugepaged_node_load[nid] > max_value) {
2218 max_value = khugepaged_node_load[nid];
2219 target_node = nid;
2220 }
2221
2222 /* do some balance if several nodes have the same hit record */
2223 if (target_node <= last_khugepaged_target_node)
2224 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2225 nid++)
2226 if (max_value == khugepaged_node_load[nid]) {
2227 target_node = nid;
2228 break;
2229 }
2230
2231 last_khugepaged_target_node = target_node;
2232 return target_node;
2233 }
2234
2235 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2236 {
2237 if (IS_ERR(*hpage)) {
2238 if (!*wait)
2239 return false;
2240
2241 *wait = false;
2242 *hpage = NULL;
2243 khugepaged_alloc_sleep();
2244 } else if (*hpage) {
2245 put_page(*hpage);
2246 *hpage = NULL;
2247 }
2248
2249 return true;
2250 }
2251
2252 static struct page *
2253 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2254 unsigned long address, int node)
2255 {
2256 VM_BUG_ON_PAGE(*hpage, *hpage);
2257
2258 /*
2259 * Before allocating the hugepage, release the mmap_sem read lock.
2260 * The allocation can take potentially a long time if it involves
2261 * sync compaction, and we do not need to hold the mmap_sem during
2262 * that. We will recheck the vma after taking it again in write mode.
2263 */
2264 up_read(&mm->mmap_sem);
2265
2266 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2267 if (unlikely(!*hpage)) {
2268 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2269 *hpage = ERR_PTR(-ENOMEM);
2270 return NULL;
2271 }
2272
2273 prep_transhuge_page(*hpage);
2274 count_vm_event(THP_COLLAPSE_ALLOC);
2275 return *hpage;
2276 }
2277 #else
2278 static int khugepaged_find_target_node(void)
2279 {
2280 return 0;
2281 }
2282
2283 static inline struct page *alloc_khugepaged_hugepage(void)
2284 {
2285 struct page *page;
2286
2287 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2288 HPAGE_PMD_ORDER);
2289 if (page)
2290 prep_transhuge_page(page);
2291 return page;
2292 }
2293
2294 static struct page *khugepaged_alloc_hugepage(bool *wait)
2295 {
2296 struct page *hpage;
2297
2298 do {
2299 hpage = alloc_khugepaged_hugepage();
2300 if (!hpage) {
2301 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2302 if (!*wait)
2303 return NULL;
2304
2305 *wait = false;
2306 khugepaged_alloc_sleep();
2307 } else
2308 count_vm_event(THP_COLLAPSE_ALLOC);
2309 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2310
2311 return hpage;
2312 }
2313
2314 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2315 {
2316 if (!*hpage)
2317 *hpage = khugepaged_alloc_hugepage(wait);
2318
2319 if (unlikely(!*hpage))
2320 return false;
2321
2322 return true;
2323 }
2324
2325 static struct page *
2326 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2327 unsigned long address, int node)
2328 {
2329 up_read(&mm->mmap_sem);
2330 VM_BUG_ON(!*hpage);
2331
2332 return *hpage;
2333 }
2334 #endif
2335
2336 static bool hugepage_vma_check(struct vm_area_struct *vma)
2337 {
2338 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2339 (vma->vm_flags & VM_NOHUGEPAGE))
2340 return false;
2341 if (!vma->anon_vma || vma->vm_ops)
2342 return false;
2343 if (is_vma_temporary_stack(vma))
2344 return false;
2345 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2346 return true;
2347 }
2348
2349 static void collapse_huge_page(struct mm_struct *mm,
2350 unsigned long address,
2351 struct page **hpage,
2352 struct vm_area_struct *vma,
2353 int node)
2354 {
2355 pmd_t *pmd, _pmd;
2356 pte_t *pte;
2357 pgtable_t pgtable;
2358 struct page *new_page;
2359 spinlock_t *pmd_ptl, *pte_ptl;
2360 int isolated = 0, result = 0;
2361 unsigned long hstart, hend;
2362 struct mem_cgroup *memcg;
2363 unsigned long mmun_start; /* For mmu_notifiers */
2364 unsigned long mmun_end; /* For mmu_notifiers */
2365 gfp_t gfp;
2366
2367 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2368
2369 /* Only allocate from the target node */
2370 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2371
2372 /* release the mmap_sem read lock. */
2373 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2374 if (!new_page) {
2375 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2376 goto out_nolock;
2377 }
2378
2379 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2380 result = SCAN_CGROUP_CHARGE_FAIL;
2381 goto out_nolock;
2382 }
2383
2384 /*
2385 * Prevent all access to pagetables with the exception of
2386 * gup_fast later hanlded by the ptep_clear_flush and the VM
2387 * handled by the anon_vma lock + PG_lock.
2388 */
2389 down_write(&mm->mmap_sem);
2390 if (unlikely(khugepaged_test_exit(mm))) {
2391 result = SCAN_ANY_PROCESS;
2392 goto out;
2393 }
2394
2395 vma = find_vma(mm, address);
2396 if (!vma) {
2397 result = SCAN_VMA_NULL;
2398 goto out;
2399 }
2400 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2401 hend = vma->vm_end & HPAGE_PMD_MASK;
2402 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2403 result = SCAN_ADDRESS_RANGE;
2404 goto out;
2405 }
2406 if (!hugepage_vma_check(vma)) {
2407 result = SCAN_VMA_CHECK;
2408 goto out;
2409 }
2410 pmd = mm_find_pmd(mm, address);
2411 if (!pmd) {
2412 result = SCAN_PMD_NULL;
2413 goto out;
2414 }
2415
2416 anon_vma_lock_write(vma->anon_vma);
2417
2418 pte = pte_offset_map(pmd, address);
2419 pte_ptl = pte_lockptr(mm, pmd);
2420
2421 mmun_start = address;
2422 mmun_end = address + HPAGE_PMD_SIZE;
2423 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2424 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2425 /*
2426 * After this gup_fast can't run anymore. This also removes
2427 * any huge TLB entry from the CPU so we won't allow
2428 * huge and small TLB entries for the same virtual address
2429 * to avoid the risk of CPU bugs in that area.
2430 */
2431 _pmd = pmdp_collapse_flush(vma, address, pmd);
2432 spin_unlock(pmd_ptl);
2433 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2434
2435 spin_lock(pte_ptl);
2436 isolated = __collapse_huge_page_isolate(vma, address, pte);
2437 spin_unlock(pte_ptl);
2438
2439 if (unlikely(!isolated)) {
2440 pte_unmap(pte);
2441 spin_lock(pmd_ptl);
2442 BUG_ON(!pmd_none(*pmd));
2443 /*
2444 * We can only use set_pmd_at when establishing
2445 * hugepmds and never for establishing regular pmds that
2446 * points to regular pagetables. Use pmd_populate for that
2447 */
2448 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2449 spin_unlock(pmd_ptl);
2450 anon_vma_unlock_write(vma->anon_vma);
2451 result = SCAN_FAIL;
2452 goto out;
2453 }
2454
2455 /*
2456 * All pages are isolated and locked so anon_vma rmap
2457 * can't run anymore.
2458 */
2459 anon_vma_unlock_write(vma->anon_vma);
2460
2461 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2462 pte_unmap(pte);
2463 __SetPageUptodate(new_page);
2464 pgtable = pmd_pgtable(_pmd);
2465
2466 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2467 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2468
2469 /*
2470 * spin_lock() below is not the equivalent of smp_wmb(), so
2471 * this is needed to avoid the copy_huge_page writes to become
2472 * visible after the set_pmd_at() write.
2473 */
2474 smp_wmb();
2475
2476 spin_lock(pmd_ptl);
2477 BUG_ON(!pmd_none(*pmd));
2478 page_add_new_anon_rmap(new_page, vma, address, true);
2479 mem_cgroup_commit_charge(new_page, memcg, false, true);
2480 lru_cache_add_active_or_unevictable(new_page, vma);
2481 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2482 set_pmd_at(mm, address, pmd, _pmd);
2483 update_mmu_cache_pmd(vma, address, pmd);
2484 spin_unlock(pmd_ptl);
2485
2486 *hpage = NULL;
2487
2488 khugepaged_pages_collapsed++;
2489 result = SCAN_SUCCEED;
2490 out_up_write:
2491 up_write(&mm->mmap_sem);
2492 trace_mm_collapse_huge_page(mm, isolated, result);
2493 return;
2494
2495 out_nolock:
2496 trace_mm_collapse_huge_page(mm, isolated, result);
2497 return;
2498 out:
2499 mem_cgroup_cancel_charge(new_page, memcg, true);
2500 goto out_up_write;
2501 }
2502
2503 static int khugepaged_scan_pmd(struct mm_struct *mm,
2504 struct vm_area_struct *vma,
2505 unsigned long address,
2506 struct page **hpage)
2507 {
2508 pmd_t *pmd;
2509 pte_t *pte, *_pte;
2510 int ret = 0, none_or_zero = 0, result = 0;
2511 struct page *page = NULL;
2512 unsigned long _address;
2513 spinlock_t *ptl;
2514 int node = NUMA_NO_NODE;
2515 bool writable = false, referenced = false;
2516
2517 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2518
2519 pmd = mm_find_pmd(mm, address);
2520 if (!pmd) {
2521 result = SCAN_PMD_NULL;
2522 goto out;
2523 }
2524
2525 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2526 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2527 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2528 _pte++, _address += PAGE_SIZE) {
2529 pte_t pteval = *_pte;
2530 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2531 if (!userfaultfd_armed(vma) &&
2532 ++none_or_zero <= khugepaged_max_ptes_none) {
2533 continue;
2534 } else {
2535 result = SCAN_EXCEED_NONE_PTE;
2536 goto out_unmap;
2537 }
2538 }
2539 if (!pte_present(pteval)) {
2540 result = SCAN_PTE_NON_PRESENT;
2541 goto out_unmap;
2542 }
2543 if (pte_write(pteval))
2544 writable = true;
2545
2546 page = vm_normal_page(vma, _address, pteval);
2547 if (unlikely(!page)) {
2548 result = SCAN_PAGE_NULL;
2549 goto out_unmap;
2550 }
2551
2552 /* TODO: teach khugepaged to collapse THP mapped with pte */
2553 if (PageCompound(page)) {
2554 result = SCAN_PAGE_COMPOUND;
2555 goto out_unmap;
2556 }
2557
2558 /*
2559 * Record which node the original page is from and save this
2560 * information to khugepaged_node_load[].
2561 * Khupaged will allocate hugepage from the node has the max
2562 * hit record.
2563 */
2564 node = page_to_nid(page);
2565 if (khugepaged_scan_abort(node)) {
2566 result = SCAN_SCAN_ABORT;
2567 goto out_unmap;
2568 }
2569 khugepaged_node_load[node]++;
2570 if (!PageLRU(page)) {
2571 result = SCAN_SCAN_ABORT;
2572 goto out_unmap;
2573 }
2574 if (PageLocked(page)) {
2575 result = SCAN_PAGE_LOCK;
2576 goto out_unmap;
2577 }
2578 if (!PageAnon(page)) {
2579 result = SCAN_PAGE_ANON;
2580 goto out_unmap;
2581 }
2582
2583 /*
2584 * cannot use mapcount: can't collapse if there's a gup pin.
2585 * The page must only be referenced by the scanned process
2586 * and page swap cache.
2587 */
2588 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2589 result = SCAN_PAGE_COUNT;
2590 goto out_unmap;
2591 }
2592 if (pte_young(pteval) ||
2593 page_is_young(page) || PageReferenced(page) ||
2594 mmu_notifier_test_young(vma->vm_mm, address))
2595 referenced = true;
2596 }
2597 if (writable) {
2598 if (referenced) {
2599 result = SCAN_SUCCEED;
2600 ret = 1;
2601 } else {
2602 result = SCAN_NO_REFERENCED_PAGE;
2603 }
2604 } else {
2605 result = SCAN_PAGE_RO;
2606 }
2607 out_unmap:
2608 pte_unmap_unlock(pte, ptl);
2609 if (ret) {
2610 node = khugepaged_find_target_node();
2611 /* collapse_huge_page will return with the mmap_sem released */
2612 collapse_huge_page(mm, address, hpage, vma, node);
2613 }
2614 out:
2615 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2616 none_or_zero, result);
2617 return ret;
2618 }
2619
2620 static void collect_mm_slot(struct mm_slot *mm_slot)
2621 {
2622 struct mm_struct *mm = mm_slot->mm;
2623
2624 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2625
2626 if (khugepaged_test_exit(mm)) {
2627 /* free mm_slot */
2628 hash_del(&mm_slot->hash);
2629 list_del(&mm_slot->mm_node);
2630
2631 /*
2632 * Not strictly needed because the mm exited already.
2633 *
2634 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2635 */
2636
2637 /* khugepaged_mm_lock actually not necessary for the below */
2638 free_mm_slot(mm_slot);
2639 mmdrop(mm);
2640 }
2641 }
2642
2643 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2644 struct page **hpage)
2645 __releases(&khugepaged_mm_lock)
2646 __acquires(&khugepaged_mm_lock)
2647 {
2648 struct mm_slot *mm_slot;
2649 struct mm_struct *mm;
2650 struct vm_area_struct *vma;
2651 int progress = 0;
2652
2653 VM_BUG_ON(!pages);
2654 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2655
2656 if (khugepaged_scan.mm_slot)
2657 mm_slot = khugepaged_scan.mm_slot;
2658 else {
2659 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2660 struct mm_slot, mm_node);
2661 khugepaged_scan.address = 0;
2662 khugepaged_scan.mm_slot = mm_slot;
2663 }
2664 spin_unlock(&khugepaged_mm_lock);
2665
2666 mm = mm_slot->mm;
2667 down_read(&mm->mmap_sem);
2668 if (unlikely(khugepaged_test_exit(mm)))
2669 vma = NULL;
2670 else
2671 vma = find_vma(mm, khugepaged_scan.address);
2672
2673 progress++;
2674 for (; vma; vma = vma->vm_next) {
2675 unsigned long hstart, hend;
2676
2677 cond_resched();
2678 if (unlikely(khugepaged_test_exit(mm))) {
2679 progress++;
2680 break;
2681 }
2682 if (!hugepage_vma_check(vma)) {
2683 skip:
2684 progress++;
2685 continue;
2686 }
2687 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2688 hend = vma->vm_end & HPAGE_PMD_MASK;
2689 if (hstart >= hend)
2690 goto skip;
2691 if (khugepaged_scan.address > hend)
2692 goto skip;
2693 if (khugepaged_scan.address < hstart)
2694 khugepaged_scan.address = hstart;
2695 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2696
2697 while (khugepaged_scan.address < hend) {
2698 int ret;
2699 cond_resched();
2700 if (unlikely(khugepaged_test_exit(mm)))
2701 goto breakouterloop;
2702
2703 VM_BUG_ON(khugepaged_scan.address < hstart ||
2704 khugepaged_scan.address + HPAGE_PMD_SIZE >
2705 hend);
2706 ret = khugepaged_scan_pmd(mm, vma,
2707 khugepaged_scan.address,
2708 hpage);
2709 /* move to next address */
2710 khugepaged_scan.address += HPAGE_PMD_SIZE;
2711 progress += HPAGE_PMD_NR;
2712 if (ret)
2713 /* we released mmap_sem so break loop */
2714 goto breakouterloop_mmap_sem;
2715 if (progress >= pages)
2716 goto breakouterloop;
2717 }
2718 }
2719 breakouterloop:
2720 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2721 breakouterloop_mmap_sem:
2722
2723 spin_lock(&khugepaged_mm_lock);
2724 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2725 /*
2726 * Release the current mm_slot if this mm is about to die, or
2727 * if we scanned all vmas of this mm.
2728 */
2729 if (khugepaged_test_exit(mm) || !vma) {
2730 /*
2731 * Make sure that if mm_users is reaching zero while
2732 * khugepaged runs here, khugepaged_exit will find
2733 * mm_slot not pointing to the exiting mm.
2734 */
2735 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2736 khugepaged_scan.mm_slot = list_entry(
2737 mm_slot->mm_node.next,
2738 struct mm_slot, mm_node);
2739 khugepaged_scan.address = 0;
2740 } else {
2741 khugepaged_scan.mm_slot = NULL;
2742 khugepaged_full_scans++;
2743 }
2744
2745 collect_mm_slot(mm_slot);
2746 }
2747
2748 return progress;
2749 }
2750
2751 static int khugepaged_has_work(void)
2752 {
2753 return !list_empty(&khugepaged_scan.mm_head) &&
2754 khugepaged_enabled();
2755 }
2756
2757 static int khugepaged_wait_event(void)
2758 {
2759 return !list_empty(&khugepaged_scan.mm_head) ||
2760 kthread_should_stop();
2761 }
2762
2763 static void khugepaged_do_scan(void)
2764 {
2765 struct page *hpage = NULL;
2766 unsigned int progress = 0, pass_through_head = 0;
2767 unsigned int pages = khugepaged_pages_to_scan;
2768 bool wait = true;
2769
2770 barrier(); /* write khugepaged_pages_to_scan to local stack */
2771
2772 while (progress < pages) {
2773 if (!khugepaged_prealloc_page(&hpage, &wait))
2774 break;
2775
2776 cond_resched();
2777
2778 if (unlikely(kthread_should_stop() || try_to_freeze()))
2779 break;
2780
2781 spin_lock(&khugepaged_mm_lock);
2782 if (!khugepaged_scan.mm_slot)
2783 pass_through_head++;
2784 if (khugepaged_has_work() &&
2785 pass_through_head < 2)
2786 progress += khugepaged_scan_mm_slot(pages - progress,
2787 &hpage);
2788 else
2789 progress = pages;
2790 spin_unlock(&khugepaged_mm_lock);
2791 }
2792
2793 if (!IS_ERR_OR_NULL(hpage))
2794 put_page(hpage);
2795 }
2796
2797 static void khugepaged_wait_work(void)
2798 {
2799 if (khugepaged_has_work()) {
2800 if (!khugepaged_scan_sleep_millisecs)
2801 return;
2802
2803 wait_event_freezable_timeout(khugepaged_wait,
2804 kthread_should_stop(),
2805 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2806 return;
2807 }
2808
2809 if (khugepaged_enabled())
2810 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2811 }
2812
2813 static int khugepaged(void *none)
2814 {
2815 struct mm_slot *mm_slot;
2816
2817 set_freezable();
2818 set_user_nice(current, MAX_NICE);
2819
2820 while (!kthread_should_stop()) {
2821 khugepaged_do_scan();
2822 khugepaged_wait_work();
2823 }
2824
2825 spin_lock(&khugepaged_mm_lock);
2826 mm_slot = khugepaged_scan.mm_slot;
2827 khugepaged_scan.mm_slot = NULL;
2828 if (mm_slot)
2829 collect_mm_slot(mm_slot);
2830 spin_unlock(&khugepaged_mm_lock);
2831 return 0;
2832 }
2833
2834 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2835 unsigned long haddr, pmd_t *pmd)
2836 {
2837 struct mm_struct *mm = vma->vm_mm;
2838 pgtable_t pgtable;
2839 pmd_t _pmd;
2840 int i;
2841
2842 /* leave pmd empty until pte is filled */
2843 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2844
2845 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2846 pmd_populate(mm, &_pmd, pgtable);
2847
2848 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2849 pte_t *pte, entry;
2850 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2851 entry = pte_mkspecial(entry);
2852 pte = pte_offset_map(&_pmd, haddr);
2853 VM_BUG_ON(!pte_none(*pte));
2854 set_pte_at(mm, haddr, pte, entry);
2855 pte_unmap(pte);
2856 }
2857 smp_wmb(); /* make pte visible before pmd */
2858 pmd_populate(mm, pmd, pgtable);
2859 put_huge_zero_page();
2860 }
2861
2862 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2863 unsigned long haddr, bool freeze)
2864 {
2865 struct mm_struct *mm = vma->vm_mm;
2866 struct page *page;
2867 pgtable_t pgtable;
2868 pmd_t _pmd;
2869 bool young, write, dirty;
2870 unsigned long addr;
2871 int i;
2872
2873 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2874 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2875 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2876 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2877
2878 count_vm_event(THP_SPLIT_PMD);
2879
2880 if (vma_is_dax(vma)) {
2881 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2882 if (is_huge_zero_pmd(_pmd))
2883 put_huge_zero_page();
2884 return;
2885 } else if (is_huge_zero_pmd(*pmd)) {
2886 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2887 }
2888
2889 page = pmd_page(*pmd);
2890 VM_BUG_ON_PAGE(!page_count(page), page);
2891 page_ref_add(page, HPAGE_PMD_NR - 1);
2892 write = pmd_write(*pmd);
2893 young = pmd_young(*pmd);
2894 dirty = pmd_dirty(*pmd);
2895
2896 pmdp_huge_split_prepare(vma, haddr, pmd);
2897 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2898 pmd_populate(mm, &_pmd, pgtable);
2899
2900 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2901 pte_t entry, *pte;
2902 /*
2903 * Note that NUMA hinting access restrictions are not
2904 * transferred to avoid any possibility of altering
2905 * permissions across VMAs.
2906 */
2907 if (freeze) {
2908 swp_entry_t swp_entry;
2909 swp_entry = make_migration_entry(page + i, write);
2910 entry = swp_entry_to_pte(swp_entry);
2911 } else {
2912 entry = mk_pte(page + i, vma->vm_page_prot);
2913 entry = maybe_mkwrite(entry, vma);
2914 if (!write)
2915 entry = pte_wrprotect(entry);
2916 if (!young)
2917 entry = pte_mkold(entry);
2918 }
2919 if (dirty)
2920 SetPageDirty(page + i);
2921 pte = pte_offset_map(&_pmd, addr);
2922 BUG_ON(!pte_none(*pte));
2923 set_pte_at(mm, addr, pte, entry);
2924 atomic_inc(&page[i]._mapcount);
2925 pte_unmap(pte);
2926 }
2927
2928 /*
2929 * Set PG_double_map before dropping compound_mapcount to avoid
2930 * false-negative page_mapped().
2931 */
2932 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2933 for (i = 0; i < HPAGE_PMD_NR; i++)
2934 atomic_inc(&page[i]._mapcount);
2935 }
2936
2937 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2938 /* Last compound_mapcount is gone. */
2939 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2940 if (TestClearPageDoubleMap(page)) {
2941 /* No need in mapcount reference anymore */
2942 for (i = 0; i < HPAGE_PMD_NR; i++)
2943 atomic_dec(&page[i]._mapcount);
2944 }
2945 }
2946
2947 smp_wmb(); /* make pte visible before pmd */
2948 /*
2949 * Up to this point the pmd is present and huge and userland has the
2950 * whole access to the hugepage during the split (which happens in
2951 * place). If we overwrite the pmd with the not-huge version pointing
2952 * to the pte here (which of course we could if all CPUs were bug
2953 * free), userland could trigger a small page size TLB miss on the
2954 * small sized TLB while the hugepage TLB entry is still established in
2955 * the huge TLB. Some CPU doesn't like that.
2956 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2957 * 383 on page 93. Intel should be safe but is also warns that it's
2958 * only safe if the permission and cache attributes of the two entries
2959 * loaded in the two TLB is identical (which should be the case here).
2960 * But it is generally safer to never allow small and huge TLB entries
2961 * for the same virtual address to be loaded simultaneously. So instead
2962 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2963 * current pmd notpresent (atomically because here the pmd_trans_huge
2964 * and pmd_trans_splitting must remain set at all times on the pmd
2965 * until the split is complete for this pmd), then we flush the SMP TLB
2966 * and finally we write the non-huge version of the pmd entry with
2967 * pmd_populate.
2968 */
2969 pmdp_invalidate(vma, haddr, pmd);
2970 pmd_populate(mm, pmd, pgtable);
2971
2972 if (freeze) {
2973 for (i = 0; i < HPAGE_PMD_NR; i++) {
2974 page_remove_rmap(page + i, false);
2975 put_page(page + i);
2976 }
2977 }
2978 }
2979
2980 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2981 unsigned long address)
2982 {
2983 spinlock_t *ptl;
2984 struct mm_struct *mm = vma->vm_mm;
2985 struct page *page = NULL;
2986 unsigned long haddr = address & HPAGE_PMD_MASK;
2987
2988 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2989 ptl = pmd_lock(mm, pmd);
2990 if (pmd_trans_huge(*pmd)) {
2991 page = pmd_page(*pmd);
2992 if (PageMlocked(page))
2993 get_page(page);
2994 else
2995 page = NULL;
2996 } else if (!pmd_devmap(*pmd))
2997 goto out;
2998 __split_huge_pmd_locked(vma, pmd, haddr, false);
2999 out:
3000 spin_unlock(ptl);
3001 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3002 if (page) {
3003 lock_page(page);
3004 munlock_vma_page(page);
3005 unlock_page(page);
3006 put_page(page);
3007 }
3008 }
3009
3010 static void split_huge_pmd_address(struct vm_area_struct *vma,
3011 unsigned long address)
3012 {
3013 pgd_t *pgd;
3014 pud_t *pud;
3015 pmd_t *pmd;
3016
3017 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3018
3019 pgd = pgd_offset(vma->vm_mm, address);
3020 if (!pgd_present(*pgd))
3021 return;
3022
3023 pud = pud_offset(pgd, address);
3024 if (!pud_present(*pud))
3025 return;
3026
3027 pmd = pmd_offset(pud, address);
3028 if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
3029 return;
3030 /*
3031 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3032 * materialize from under us.
3033 */
3034 split_huge_pmd(vma, pmd, address);
3035 }
3036
3037 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3038 unsigned long start,
3039 unsigned long end,
3040 long adjust_next)
3041 {
3042 /*
3043 * If the new start address isn't hpage aligned and it could
3044 * previously contain an hugepage: check if we need to split
3045 * an huge pmd.
3046 */
3047 if (start & ~HPAGE_PMD_MASK &&
3048 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3049 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3050 split_huge_pmd_address(vma, start);
3051
3052 /*
3053 * If the new end address isn't hpage aligned and it could
3054 * previously contain an hugepage: check if we need to split
3055 * an huge pmd.
3056 */
3057 if (end & ~HPAGE_PMD_MASK &&
3058 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3059 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3060 split_huge_pmd_address(vma, end);
3061
3062 /*
3063 * If we're also updating the vma->vm_next->vm_start, if the new
3064 * vm_next->vm_start isn't page aligned and it could previously
3065 * contain an hugepage: check if we need to split an huge pmd.
3066 */
3067 if (adjust_next > 0) {
3068 struct vm_area_struct *next = vma->vm_next;
3069 unsigned long nstart = next->vm_start;
3070 nstart += adjust_next << PAGE_SHIFT;
3071 if (nstart & ~HPAGE_PMD_MASK &&
3072 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3073 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3074 split_huge_pmd_address(next, nstart);
3075 }
3076 }
3077
3078 static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
3079 unsigned long address)
3080 {
3081 unsigned long haddr = address & HPAGE_PMD_MASK;
3082 spinlock_t *ptl;
3083 pgd_t *pgd;
3084 pud_t *pud;
3085 pmd_t *pmd;
3086 pte_t *pte;
3087 int i, nr = HPAGE_PMD_NR;
3088
3089 /* Skip pages which doesn't belong to the VMA */
3090 if (address < vma->vm_start) {
3091 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3092 page += off;
3093 nr -= off;
3094 address = vma->vm_start;
3095 }
3096
3097 pgd = pgd_offset(vma->vm_mm, address);
3098 if (!pgd_present(*pgd))
3099 return;
3100 pud = pud_offset(pgd, address);
3101 if (!pud_present(*pud))
3102 return;
3103 pmd = pmd_offset(pud, address);
3104 ptl = pmd_lock(vma->vm_mm, pmd);
3105 if (!pmd_present(*pmd)) {
3106 spin_unlock(ptl);
3107 return;
3108 }
3109 if (pmd_trans_huge(*pmd)) {
3110 if (page == pmd_page(*pmd))
3111 __split_huge_pmd_locked(vma, pmd, haddr, true);
3112 spin_unlock(ptl);
3113 return;
3114 }
3115 spin_unlock(ptl);
3116
3117 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3118 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3119 pte_t entry, swp_pte;
3120 swp_entry_t swp_entry;
3121
3122 /*
3123 * We've just crossed page table boundary: need to map next one.
3124 * It can happen if THP was mremaped to non PMD-aligned address.
3125 */
3126 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3127 pte_unmap_unlock(pte - 1, ptl);
3128 pmd = mm_find_pmd(vma->vm_mm, address);
3129 if (!pmd)
3130 return;
3131 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3132 address, &ptl);
3133 }
3134
3135 if (!pte_present(*pte))
3136 continue;
3137 if (page_to_pfn(page) != pte_pfn(*pte))
3138 continue;
3139 flush_cache_page(vma, address, page_to_pfn(page));
3140 entry = ptep_clear_flush(vma, address, pte);
3141 if (pte_dirty(entry))
3142 SetPageDirty(page);
3143 swp_entry = make_migration_entry(page, pte_write(entry));
3144 swp_pte = swp_entry_to_pte(swp_entry);
3145 if (pte_soft_dirty(entry))
3146 swp_pte = pte_swp_mksoft_dirty(swp_pte);
3147 set_pte_at(vma->vm_mm, address, pte, swp_pte);
3148 page_remove_rmap(page, false);
3149 put_page(page);
3150 }
3151 pte_unmap_unlock(pte - 1, ptl);
3152 }
3153
3154 static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3155 {
3156 struct anon_vma_chain *avc;
3157 pgoff_t pgoff = page_to_pgoff(page);
3158
3159 VM_BUG_ON_PAGE(!PageHead(page), page);
3160
3161 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3162 pgoff + HPAGE_PMD_NR - 1) {
3163 unsigned long address = __vma_address(page, avc->vma);
3164
3165 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3166 address, address + HPAGE_PMD_SIZE);
3167 freeze_page_vma(avc->vma, page, address);
3168 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3169 address, address + HPAGE_PMD_SIZE);
3170 }
3171 }
3172
3173 static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3174 unsigned long address)
3175 {
3176 spinlock_t *ptl;
3177 pmd_t *pmd;
3178 pte_t *pte, entry;
3179 swp_entry_t swp_entry;
3180 unsigned long haddr = address & HPAGE_PMD_MASK;
3181 int i, nr = HPAGE_PMD_NR;
3182
3183 /* Skip pages which doesn't belong to the VMA */
3184 if (address < vma->vm_start) {
3185 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3186 page += off;
3187 nr -= off;
3188 address = vma->vm_start;
3189 }
3190
3191 pmd = mm_find_pmd(vma->vm_mm, address);
3192 if (!pmd)
3193 return;
3194
3195 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3196 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3197 /*
3198 * We've just crossed page table boundary: need to map next one.
3199 * It can happen if THP was mremaped to non-PMD aligned address.
3200 */
3201 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3202 pte_unmap_unlock(pte - 1, ptl);
3203 pmd = mm_find_pmd(vma->vm_mm, address);
3204 if (!pmd)
3205 return;
3206 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3207 address, &ptl);
3208 }
3209
3210 if (!is_swap_pte(*pte))
3211 continue;
3212
3213 swp_entry = pte_to_swp_entry(*pte);
3214 if (!is_migration_entry(swp_entry))
3215 continue;
3216 if (migration_entry_to_page(swp_entry) != page)
3217 continue;
3218
3219 get_page(page);
3220 page_add_anon_rmap(page, vma, address, false);
3221
3222 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3223 if (PageDirty(page))
3224 entry = pte_mkdirty(entry);
3225 if (is_write_migration_entry(swp_entry))
3226 entry = maybe_mkwrite(entry, vma);
3227
3228 flush_dcache_page(page);
3229 set_pte_at(vma->vm_mm, address, pte, entry);
3230
3231 /* No need to invalidate - it was non-present before */
3232 update_mmu_cache(vma, address, pte);
3233 }
3234 pte_unmap_unlock(pte - 1, ptl);
3235 }
3236
3237 static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3238 {
3239 struct anon_vma_chain *avc;
3240 pgoff_t pgoff = page_to_pgoff(page);
3241
3242 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3243 pgoff, pgoff + HPAGE_PMD_NR - 1) {
3244 unsigned long address = __vma_address(page, avc->vma);
3245
3246 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3247 address, address + HPAGE_PMD_SIZE);
3248 unfreeze_page_vma(avc->vma, page, address);
3249 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3250 address, address + HPAGE_PMD_SIZE);
3251 }
3252 }
3253
3254 static void __split_huge_page_tail(struct page *head, int tail,
3255 struct lruvec *lruvec, struct list_head *list)
3256 {
3257 struct page *page_tail = head + tail;
3258
3259 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3260 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3261
3262 /*
3263 * tail_page->_count is zero and not changing from under us. But
3264 * get_page_unless_zero() may be running from under us on the
3265 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3266 * would then run atomic_set() concurrently with
3267 * get_page_unless_zero(), and atomic_set() is implemented in C not
3268 * using locked ops. spin_unlock on x86 sometime uses locked ops
3269 * because of PPro errata 66, 92, so unless somebody can guarantee
3270 * atomic_set() here would be safe on all archs (and not only on x86),
3271 * it's safer to use atomic_inc().
3272 */
3273 page_ref_inc(page_tail);
3274
3275 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3276 page_tail->flags |= (head->flags &
3277 ((1L << PG_referenced) |
3278 (1L << PG_swapbacked) |
3279 (1L << PG_mlocked) |
3280 (1L << PG_uptodate) |
3281 (1L << PG_active) |
3282 (1L << PG_locked) |
3283 (1L << PG_unevictable) |
3284 (1L << PG_dirty)));
3285
3286 /*
3287 * After clearing PageTail the gup refcount can be released.
3288 * Page flags also must be visible before we make the page non-compound.
3289 */
3290 smp_wmb();
3291
3292 clear_compound_head(page_tail);
3293
3294 if (page_is_young(head))
3295 set_page_young(page_tail);
3296 if (page_is_idle(head))
3297 set_page_idle(page_tail);
3298
3299 /* ->mapping in first tail page is compound_mapcount */
3300 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3301 page_tail);
3302 page_tail->mapping = head->mapping;
3303
3304 page_tail->index = head->index + tail;
3305 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3306 lru_add_page_tail(head, page_tail, lruvec, list);
3307 }
3308
3309 static void __split_huge_page(struct page *page, struct list_head *list)
3310 {
3311 struct page *head = compound_head(page);
3312 struct zone *zone = page_zone(head);
3313 struct lruvec *lruvec;
3314 int i;
3315
3316 /* prevent PageLRU to go away from under us, and freeze lru stats */
3317 spin_lock_irq(&zone->lru_lock);
3318 lruvec = mem_cgroup_page_lruvec(head, zone);
3319
3320 /* complete memcg works before add pages to LRU */
3321 mem_cgroup_split_huge_fixup(head);
3322
3323 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3324 __split_huge_page_tail(head, i, lruvec, list);
3325
3326 ClearPageCompound(head);
3327 spin_unlock_irq(&zone->lru_lock);
3328
3329 unfreeze_page(page_anon_vma(head), head);
3330
3331 for (i = 0; i < HPAGE_PMD_NR; i++) {
3332 struct page *subpage = head + i;
3333 if (subpage == page)
3334 continue;
3335 unlock_page(subpage);
3336
3337 /*
3338 * Subpages may be freed if there wasn't any mapping
3339 * like if add_to_swap() is running on a lru page that
3340 * had its mapping zapped. And freeing these pages
3341 * requires taking the lru_lock so we do the put_page
3342 * of the tail pages after the split is complete.
3343 */
3344 put_page(subpage);
3345 }
3346 }
3347
3348 int total_mapcount(struct page *page)
3349 {
3350 int i, ret;
3351
3352 VM_BUG_ON_PAGE(PageTail(page), page);
3353
3354 if (likely(!PageCompound(page)))
3355 return atomic_read(&page->_mapcount) + 1;
3356
3357 ret = compound_mapcount(page);
3358 if (PageHuge(page))
3359 return ret;
3360 for (i = 0; i < HPAGE_PMD_NR; i++)
3361 ret += atomic_read(&page[i]._mapcount) + 1;
3362 if (PageDoubleMap(page))
3363 ret -= HPAGE_PMD_NR;
3364 return ret;
3365 }
3366
3367 /*
3368 * This function splits huge page into normal pages. @page can point to any
3369 * subpage of huge page to split. Split doesn't change the position of @page.
3370 *
3371 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3372 * The huge page must be locked.
3373 *
3374 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3375 *
3376 * Both head page and tail pages will inherit mapping, flags, and so on from
3377 * the hugepage.
3378 *
3379 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3380 * they are not mapped.
3381 *
3382 * Returns 0 if the hugepage is split successfully.
3383 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3384 * us.
3385 */
3386 int split_huge_page_to_list(struct page *page, struct list_head *list)
3387 {
3388 struct page *head = compound_head(page);
3389 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3390 struct anon_vma *anon_vma;
3391 int count, mapcount, ret;
3392 bool mlocked;
3393 unsigned long flags;
3394
3395 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3396 VM_BUG_ON_PAGE(!PageAnon(page), page);
3397 VM_BUG_ON_PAGE(!PageLocked(page), page);
3398 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3399 VM_BUG_ON_PAGE(!PageCompound(page), page);
3400
3401 /*
3402 * The caller does not necessarily hold an mmap_sem that would prevent
3403 * the anon_vma disappearing so we first we take a reference to it
3404 * and then lock the anon_vma for write. This is similar to
3405 * page_lock_anon_vma_read except the write lock is taken to serialise
3406 * against parallel split or collapse operations.
3407 */
3408 anon_vma = page_get_anon_vma(head);
3409 if (!anon_vma) {
3410 ret = -EBUSY;
3411 goto out;
3412 }
3413 anon_vma_lock_write(anon_vma);
3414
3415 /*
3416 * Racy check if we can split the page, before freeze_page() will
3417 * split PMDs
3418 */
3419 if (total_mapcount(head) != page_count(head) - 1) {
3420 ret = -EBUSY;
3421 goto out_unlock;
3422 }
3423
3424 mlocked = PageMlocked(page);
3425 freeze_page(anon_vma, head);
3426 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3427
3428 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3429 if (mlocked)
3430 lru_add_drain();
3431
3432 /* Prevent deferred_split_scan() touching ->_count */
3433 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3434 count = page_count(head);
3435 mapcount = total_mapcount(head);
3436 if (!mapcount && count == 1) {
3437 if (!list_empty(page_deferred_list(head))) {
3438 pgdata->split_queue_len--;
3439 list_del(page_deferred_list(head));
3440 }
3441 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3442 __split_huge_page(page, list);
3443 ret = 0;
3444 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3445 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3446 pr_alert("total_mapcount: %u, page_count(): %u\n",
3447 mapcount, count);
3448 if (PageTail(page))
3449 dump_page(head, NULL);
3450 dump_page(page, "total_mapcount(head) > 0");
3451 BUG();
3452 } else {
3453 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3454 unfreeze_page(anon_vma, head);
3455 ret = -EBUSY;
3456 }
3457
3458 out_unlock:
3459 anon_vma_unlock_write(anon_vma);
3460 put_anon_vma(anon_vma);
3461 out:
3462 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3463 return ret;
3464 }
3465
3466 void free_transhuge_page(struct page *page)
3467 {
3468 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3469 unsigned long flags;
3470
3471 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3472 if (!list_empty(page_deferred_list(page))) {
3473 pgdata->split_queue_len--;
3474 list_del(page_deferred_list(page));
3475 }
3476 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3477 free_compound_page(page);
3478 }
3479
3480 void deferred_split_huge_page(struct page *page)
3481 {
3482 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3483 unsigned long flags;
3484
3485 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3486
3487 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3488 if (list_empty(page_deferred_list(page))) {
3489 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3490 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3491 pgdata->split_queue_len++;
3492 }
3493 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3494 }
3495
3496 static unsigned long deferred_split_count(struct shrinker *shrink,
3497 struct shrink_control *sc)
3498 {
3499 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3500 return ACCESS_ONCE(pgdata->split_queue_len);
3501 }
3502
3503 static unsigned long deferred_split_scan(struct shrinker *shrink,
3504 struct shrink_control *sc)
3505 {
3506 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3507 unsigned long flags;
3508 LIST_HEAD(list), *pos, *next;
3509 struct page *page;
3510 int split = 0;
3511
3512 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3513 /* Take pin on all head pages to avoid freeing them under us */
3514 list_for_each_safe(pos, next, &pgdata->split_queue) {
3515 page = list_entry((void *)pos, struct page, mapping);
3516 page = compound_head(page);
3517 if (get_page_unless_zero(page)) {
3518 list_move(page_deferred_list(page), &list);
3519 } else {
3520 /* We lost race with put_compound_page() */
3521 list_del_init(page_deferred_list(page));
3522 pgdata->split_queue_len--;
3523 }
3524 if (!--sc->nr_to_scan)
3525 break;
3526 }
3527 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3528
3529 list_for_each_safe(pos, next, &list) {
3530 page = list_entry((void *)pos, struct page, mapping);
3531 lock_page(page);
3532 /* split_huge_page() removes page from list on success */
3533 if (!split_huge_page(page))
3534 split++;
3535 unlock_page(page);
3536 put_page(page);
3537 }
3538
3539 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3540 list_splice_tail(&list, &pgdata->split_queue);
3541 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3542
3543 /*
3544 * Stop shrinker if we didn't split any page, but the queue is empty.
3545 * This can happen if pages were freed under us.
3546 */
3547 if (!split && list_empty(&pgdata->split_queue))
3548 return SHRINK_STOP;
3549 return split;
3550 }
3551
3552 static struct shrinker deferred_split_shrinker = {
3553 .count_objects = deferred_split_count,
3554 .scan_objects = deferred_split_scan,
3555 .seeks = DEFAULT_SEEKS,
3556 .flags = SHRINKER_NUMA_AWARE,
3557 };
3558
3559 #ifdef CONFIG_DEBUG_FS
3560 static int split_huge_pages_set(void *data, u64 val)
3561 {
3562 struct zone *zone;
3563 struct page *page;
3564 unsigned long pfn, max_zone_pfn;
3565 unsigned long total = 0, split = 0;
3566
3567 if (val != 1)
3568 return -EINVAL;
3569
3570 for_each_populated_zone(zone) {
3571 max_zone_pfn = zone_end_pfn(zone);
3572 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3573 if (!pfn_valid(pfn))
3574 continue;
3575
3576 page = pfn_to_page(pfn);
3577 if (!get_page_unless_zero(page))
3578 continue;
3579
3580 if (zone != page_zone(page))
3581 goto next;
3582
3583 if (!PageHead(page) || !PageAnon(page) ||
3584 PageHuge(page))
3585 goto next;
3586
3587 total++;
3588 lock_page(page);
3589 if (!split_huge_page(page))
3590 split++;
3591 unlock_page(page);
3592 next:
3593 put_page(page);
3594 }
3595 }
3596
3597 pr_info("%lu of %lu THP split", split, total);
3598
3599 return 0;
3600 }
3601 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3602 "%llu\n");
3603
3604 static int __init split_huge_pages_debugfs(void)
3605 {
3606 void *ret;
3607
3608 ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3609 &split_huge_pages_fops);
3610 if (!ret)
3611 pr_warn("Failed to create split_huge_pages in debugfs");
3612 return 0;
3613 }
3614 late_initcall(split_huge_pages_debugfs);
3615 #endif