]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/huge_memory.c
Merge tag 'configfs-for-4.10' of git://git.infradead.org/users/hch/configfs
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 /*
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
45 */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56
57 static struct shrinker deferred_split_shrinker;
58
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61
62 static struct page *get_huge_zero_page(void)
63 {
64 struct page *zero_page;
65 retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
87 }
88
89 static void put_huge_zero_page(void)
90 {
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110 }
111
112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116 }
117
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127 {
128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
131 __free_pages(zero_page, compound_order(zero_page));
132 return HPAGE_PMD_NR;
133 }
134
135 return 0;
136 }
137
138 static struct shrinker huge_zero_page_shrinker = {
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
141 .seeks = DEFAULT_SEEKS,
142 };
143
144 #ifdef CONFIG_SYSFS
145
146 static ssize_t triple_flag_store(struct kobject *kobj,
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
150 enum transparent_hugepage_flag deferred,
151 enum transparent_hugepage_flag req_madv)
152 {
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
161 min(sizeof("always")-1, count))) {
162 clear_bit(deferred, &transparent_hugepage_flags);
163 clear_bit(req_madv, &transparent_hugepage_flags);
164 set_bit(enabled, &transparent_hugepage_flags);
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
168 clear_bit(deferred, &transparent_hugepage_flags);
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
174 clear_bit(deferred, &transparent_hugepage_flags);
175 } else
176 return -EINVAL;
177
178 return count;
179 }
180
181 static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
183 {
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
190 }
191
192 static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195 {
196 ssize_t ret;
197
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202
203 if (ret > 0) {
204 int err = start_stop_khugepaged();
205 if (err)
206 ret = err;
207 }
208
209 return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
213
214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
217 {
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
220 }
221
222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
226 {
227 unsigned long value;
228 int ret;
229
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
235
236 if (value)
237 set_bit(flag, &transparent_hugepage_flags);
238 else
239 clear_bit(flag, &transparent_hugepage_flags);
240
241 return count;
242 }
243
244 /*
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
248 */
249 static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
251 {
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
260
261 }
262 static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265 {
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270 }
271 static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
273
274 static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276 {
277 return single_hugepage_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279 }
280 static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
282 {
283 return single_hugepage_flag_store(kobj, attr, buf, count,
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285 }
286 static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288
289 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291 {
292 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
293 }
294 static struct kobj_attribute hpage_pmd_size_attr =
295 __ATTR_RO(hpage_pmd_size);
296
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300 {
301 return single_hugepage_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
307 {
308 return single_hugepage_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314
315 static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318 &use_zero_page_attr.attr,
319 &hpage_pmd_size_attr.attr,
320 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
321 &shmem_enabled_attr.attr,
322 #endif
323 #ifdef CONFIG_DEBUG_VM
324 &debug_cow_attr.attr,
325 #endif
326 NULL,
327 };
328
329 static struct attribute_group hugepage_attr_group = {
330 .attrs = hugepage_attr,
331 };
332
333 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
334 {
335 int err;
336
337 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
338 if (unlikely(!*hugepage_kobj)) {
339 pr_err("failed to create transparent hugepage kobject\n");
340 return -ENOMEM;
341 }
342
343 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
344 if (err) {
345 pr_err("failed to register transparent hugepage group\n");
346 goto delete_obj;
347 }
348
349 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
350 if (err) {
351 pr_err("failed to register transparent hugepage group\n");
352 goto remove_hp_group;
353 }
354
355 return 0;
356
357 remove_hp_group:
358 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
359 delete_obj:
360 kobject_put(*hugepage_kobj);
361 return err;
362 }
363
364 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
367 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
368 kobject_put(hugepage_kobj);
369 }
370 #else
371 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
372 {
373 return 0;
374 }
375
376 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377 {
378 }
379 #endif /* CONFIG_SYSFS */
380
381 static int __init hugepage_init(void)
382 {
383 int err;
384 struct kobject *hugepage_kobj;
385
386 if (!has_transparent_hugepage()) {
387 transparent_hugepage_flags = 0;
388 return -EINVAL;
389 }
390
391 /*
392 * hugepages can't be allocated by the buddy allocator
393 */
394 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
395 /*
396 * we use page->mapping and page->index in second tail page
397 * as list_head: assuming THP order >= 2
398 */
399 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
400
401 err = hugepage_init_sysfs(&hugepage_kobj);
402 if (err)
403 goto err_sysfs;
404
405 err = khugepaged_init();
406 if (err)
407 goto err_slab;
408
409 err = register_shrinker(&huge_zero_page_shrinker);
410 if (err)
411 goto err_hzp_shrinker;
412 err = register_shrinker(&deferred_split_shrinker);
413 if (err)
414 goto err_split_shrinker;
415
416 /*
417 * By default disable transparent hugepages on smaller systems,
418 * where the extra memory used could hurt more than TLB overhead
419 * is likely to save. The admin can still enable it through /sys.
420 */
421 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
422 transparent_hugepage_flags = 0;
423 return 0;
424 }
425
426 err = start_stop_khugepaged();
427 if (err)
428 goto err_khugepaged;
429
430 return 0;
431 err_khugepaged:
432 unregister_shrinker(&deferred_split_shrinker);
433 err_split_shrinker:
434 unregister_shrinker(&huge_zero_page_shrinker);
435 err_hzp_shrinker:
436 khugepaged_destroy();
437 err_slab:
438 hugepage_exit_sysfs(hugepage_kobj);
439 err_sysfs:
440 return err;
441 }
442 subsys_initcall(hugepage_init);
443
444 static int __init setup_transparent_hugepage(char *str)
445 {
446 int ret = 0;
447 if (!str)
448 goto out;
449 if (!strcmp(str, "always")) {
450 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 } else if (!strcmp(str, "madvise")) {
456 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 &transparent_hugepage_flags);
458 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 &transparent_hugepage_flags);
460 ret = 1;
461 } else if (!strcmp(str, "never")) {
462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
467 }
468 out:
469 if (!ret)
470 pr_warn("transparent_hugepage= cannot parse, ignored\n");
471 return ret;
472 }
473 __setup("transparent_hugepage=", setup_transparent_hugepage);
474
475 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
476 {
477 if (likely(vma->vm_flags & VM_WRITE))
478 pmd = pmd_mkwrite(pmd);
479 return pmd;
480 }
481
482 static inline struct list_head *page_deferred_list(struct page *page)
483 {
484 /*
485 * ->lru in the tail pages is occupied by compound_head.
486 * Let's use ->mapping + ->index in the second tail page as list_head.
487 */
488 return (struct list_head *)&page[2].mapping;
489 }
490
491 void prep_transhuge_page(struct page *page)
492 {
493 /*
494 * we use page->mapping and page->indexlru in second tail page
495 * as list_head: assuming THP order >= 2
496 */
497
498 INIT_LIST_HEAD(page_deferred_list(page));
499 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
500 }
501
502 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
503 loff_t off, unsigned long flags, unsigned long size)
504 {
505 unsigned long addr;
506 loff_t off_end = off + len;
507 loff_t off_align = round_up(off, size);
508 unsigned long len_pad;
509
510 if (off_end <= off_align || (off_end - off_align) < size)
511 return 0;
512
513 len_pad = len + size;
514 if (len_pad < len || (off + len_pad) < off)
515 return 0;
516
517 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
518 off >> PAGE_SHIFT, flags);
519 if (IS_ERR_VALUE(addr))
520 return 0;
521
522 addr += (off - addr) & (size - 1);
523 return addr;
524 }
525
526 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
527 unsigned long len, unsigned long pgoff, unsigned long flags)
528 {
529 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
530
531 if (addr)
532 goto out;
533 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
534 goto out;
535
536 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
537 if (addr)
538 return addr;
539
540 out:
541 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
542 }
543 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
544
545 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
546 gfp_t gfp)
547 {
548 struct vm_area_struct *vma = fe->vma;
549 struct mem_cgroup *memcg;
550 pgtable_t pgtable;
551 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
552
553 VM_BUG_ON_PAGE(!PageCompound(page), page);
554
555 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
560
561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 if (unlikely(!pgtable)) {
563 mem_cgroup_cancel_charge(page, memcg, true);
564 put_page(page);
565 return VM_FAULT_OOM;
566 }
567
568 clear_huge_page(page, haddr, HPAGE_PMD_NR);
569 /*
570 * The memory barrier inside __SetPageUptodate makes sure that
571 * clear_huge_page writes become visible before the set_pmd_at()
572 * write.
573 */
574 __SetPageUptodate(page);
575
576 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
577 if (unlikely(!pmd_none(*fe->pmd))) {
578 spin_unlock(fe->ptl);
579 mem_cgroup_cancel_charge(page, memcg, true);
580 put_page(page);
581 pte_free(vma->vm_mm, pgtable);
582 } else {
583 pmd_t entry;
584
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
587 int ret;
588
589 spin_unlock(fe->ptl);
590 mem_cgroup_cancel_charge(page, memcg, true);
591 put_page(page);
592 pte_free(vma->vm_mm, pgtable);
593 ret = handle_userfault(fe, VM_UFFD_MISSING);
594 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
595 return ret;
596 }
597
598 entry = mk_huge_pmd(page, vma->vm_page_prot);
599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 page_add_new_anon_rmap(page, vma, haddr, true);
601 mem_cgroup_commit_charge(page, memcg, false, true);
602 lru_cache_add_active_or_unevictable(page, vma);
603 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 atomic_long_inc(&vma->vm_mm->nr_ptes);
607 spin_unlock(fe->ptl);
608 count_vm_event(THP_FAULT_ALLOC);
609 }
610
611 return 0;
612 }
613
614 /*
615 * If THP defrag is set to always then directly reclaim/compact as necessary
616 * If set to defer then do only background reclaim/compact and defer to khugepaged
617 * If set to madvise and the VMA is flagged then directly reclaim/compact
618 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
619 */
620 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
621 {
622 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
623
624 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
625 &transparent_hugepage_flags) && vma_madvised)
626 return GFP_TRANSHUGE;
627 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
628 &transparent_hugepage_flags))
629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
631 &transparent_hugepage_flags))
632 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
633
634 return GFP_TRANSHUGE_LIGHT;
635 }
636
637 /* Caller must hold page table lock. */
638 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
639 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
640 struct page *zero_page)
641 {
642 pmd_t entry;
643 if (!pmd_none(*pmd))
644 return false;
645 entry = mk_pmd(zero_page, vma->vm_page_prot);
646 entry = pmd_mkhuge(entry);
647 if (pgtable)
648 pgtable_trans_huge_deposit(mm, pmd, pgtable);
649 set_pmd_at(mm, haddr, pmd, entry);
650 atomic_long_inc(&mm->nr_ptes);
651 return true;
652 }
653
654 int do_huge_pmd_anonymous_page(struct fault_env *fe)
655 {
656 struct vm_area_struct *vma = fe->vma;
657 gfp_t gfp;
658 struct page *page;
659 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
660
661 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
662 return VM_FAULT_FALLBACK;
663 if (unlikely(anon_vma_prepare(vma)))
664 return VM_FAULT_OOM;
665 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
666 return VM_FAULT_OOM;
667 if (!(fe->flags & FAULT_FLAG_WRITE) &&
668 !mm_forbids_zeropage(vma->vm_mm) &&
669 transparent_hugepage_use_zero_page()) {
670 pgtable_t pgtable;
671 struct page *zero_page;
672 bool set;
673 int ret;
674 pgtable = pte_alloc_one(vma->vm_mm, haddr);
675 if (unlikely(!pgtable))
676 return VM_FAULT_OOM;
677 zero_page = mm_get_huge_zero_page(vma->vm_mm);
678 if (unlikely(!zero_page)) {
679 pte_free(vma->vm_mm, pgtable);
680 count_vm_event(THP_FAULT_FALLBACK);
681 return VM_FAULT_FALLBACK;
682 }
683 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
684 ret = 0;
685 set = false;
686 if (pmd_none(*fe->pmd)) {
687 if (userfaultfd_missing(vma)) {
688 spin_unlock(fe->ptl);
689 ret = handle_userfault(fe, VM_UFFD_MISSING);
690 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
691 } else {
692 set_huge_zero_page(pgtable, vma->vm_mm, vma,
693 haddr, fe->pmd, zero_page);
694 spin_unlock(fe->ptl);
695 set = true;
696 }
697 } else
698 spin_unlock(fe->ptl);
699 if (!set)
700 pte_free(vma->vm_mm, pgtable);
701 return ret;
702 }
703 gfp = alloc_hugepage_direct_gfpmask(vma);
704 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
705 if (unlikely(!page)) {
706 count_vm_event(THP_FAULT_FALLBACK);
707 return VM_FAULT_FALLBACK;
708 }
709 prep_transhuge_page(page);
710 return __do_huge_pmd_anonymous_page(fe, page, gfp);
711 }
712
713 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
714 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
715 {
716 struct mm_struct *mm = vma->vm_mm;
717 pmd_t entry;
718 spinlock_t *ptl;
719
720 ptl = pmd_lock(mm, pmd);
721 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
722 if (pfn_t_devmap(pfn))
723 entry = pmd_mkdevmap(entry);
724 if (write) {
725 entry = pmd_mkyoung(pmd_mkdirty(entry));
726 entry = maybe_pmd_mkwrite(entry, vma);
727 }
728 set_pmd_at(mm, addr, pmd, entry);
729 update_mmu_cache_pmd(vma, addr, pmd);
730 spin_unlock(ptl);
731 }
732
733 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
734 pmd_t *pmd, pfn_t pfn, bool write)
735 {
736 pgprot_t pgprot = vma->vm_page_prot;
737 /*
738 * If we had pmd_special, we could avoid all these restrictions,
739 * but we need to be consistent with PTEs and architectures that
740 * can't support a 'special' bit.
741 */
742 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
743 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
744 (VM_PFNMAP|VM_MIXEDMAP));
745 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
746 BUG_ON(!pfn_t_devmap(pfn));
747
748 if (addr < vma->vm_start || addr >= vma->vm_end)
749 return VM_FAULT_SIGBUS;
750
751 track_pfn_insert(vma, &pgprot, pfn);
752
753 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
754 return VM_FAULT_NOPAGE;
755 }
756 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
757
758 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
759 pmd_t *pmd)
760 {
761 pmd_t _pmd;
762
763 /*
764 * We should set the dirty bit only for FOLL_WRITE but for now
765 * the dirty bit in the pmd is meaningless. And if the dirty
766 * bit will become meaningful and we'll only set it with
767 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
768 * set the young bit, instead of the current set_pmd_at.
769 */
770 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
771 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
772 pmd, _pmd, 1))
773 update_mmu_cache_pmd(vma, addr, pmd);
774 }
775
776 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
777 pmd_t *pmd, int flags)
778 {
779 unsigned long pfn = pmd_pfn(*pmd);
780 struct mm_struct *mm = vma->vm_mm;
781 struct dev_pagemap *pgmap;
782 struct page *page;
783
784 assert_spin_locked(pmd_lockptr(mm, pmd));
785
786 if (flags & FOLL_WRITE && !pmd_write(*pmd))
787 return NULL;
788
789 if (pmd_present(*pmd) && pmd_devmap(*pmd))
790 /* pass */;
791 else
792 return NULL;
793
794 if (flags & FOLL_TOUCH)
795 touch_pmd(vma, addr, pmd);
796
797 /*
798 * device mapped pages can only be returned if the
799 * caller will manage the page reference count.
800 */
801 if (!(flags & FOLL_GET))
802 return ERR_PTR(-EEXIST);
803
804 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
805 pgmap = get_dev_pagemap(pfn, NULL);
806 if (!pgmap)
807 return ERR_PTR(-EFAULT);
808 page = pfn_to_page(pfn);
809 get_page(page);
810 put_dev_pagemap(pgmap);
811
812 return page;
813 }
814
815 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
816 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
817 struct vm_area_struct *vma)
818 {
819 spinlock_t *dst_ptl, *src_ptl;
820 struct page *src_page;
821 pmd_t pmd;
822 pgtable_t pgtable = NULL;
823 int ret = -ENOMEM;
824
825 /* Skip if can be re-fill on fault */
826 if (!vma_is_anonymous(vma))
827 return 0;
828
829 pgtable = pte_alloc_one(dst_mm, addr);
830 if (unlikely(!pgtable))
831 goto out;
832
833 dst_ptl = pmd_lock(dst_mm, dst_pmd);
834 src_ptl = pmd_lockptr(src_mm, src_pmd);
835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
836
837 ret = -EAGAIN;
838 pmd = *src_pmd;
839 if (unlikely(!pmd_trans_huge(pmd))) {
840 pte_free(dst_mm, pgtable);
841 goto out_unlock;
842 }
843 /*
844 * When page table lock is held, the huge zero pmd should not be
845 * under splitting since we don't split the page itself, only pmd to
846 * a page table.
847 */
848 if (is_huge_zero_pmd(pmd)) {
849 struct page *zero_page;
850 /*
851 * get_huge_zero_page() will never allocate a new page here,
852 * since we already have a zero page to copy. It just takes a
853 * reference.
854 */
855 zero_page = mm_get_huge_zero_page(dst_mm);
856 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
857 zero_page);
858 ret = 0;
859 goto out_unlock;
860 }
861
862 src_page = pmd_page(pmd);
863 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
864 get_page(src_page);
865 page_dup_rmap(src_page, true);
866 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
867 atomic_long_inc(&dst_mm->nr_ptes);
868 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
869
870 pmdp_set_wrprotect(src_mm, addr, src_pmd);
871 pmd = pmd_mkold(pmd_wrprotect(pmd));
872 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
873
874 ret = 0;
875 out_unlock:
876 spin_unlock(src_ptl);
877 spin_unlock(dst_ptl);
878 out:
879 return ret;
880 }
881
882 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
883 {
884 pmd_t entry;
885 unsigned long haddr;
886
887 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
888 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
889 goto unlock;
890
891 entry = pmd_mkyoung(orig_pmd);
892 haddr = fe->address & HPAGE_PMD_MASK;
893 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
894 fe->flags & FAULT_FLAG_WRITE))
895 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
896
897 unlock:
898 spin_unlock(fe->ptl);
899 }
900
901 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
902 struct page *page)
903 {
904 struct vm_area_struct *vma = fe->vma;
905 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
906 struct mem_cgroup *memcg;
907 pgtable_t pgtable;
908 pmd_t _pmd;
909 int ret = 0, i;
910 struct page **pages;
911 unsigned long mmun_start; /* For mmu_notifiers */
912 unsigned long mmun_end; /* For mmu_notifiers */
913
914 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
915 GFP_KERNEL);
916 if (unlikely(!pages)) {
917 ret |= VM_FAULT_OOM;
918 goto out;
919 }
920
921 for (i = 0; i < HPAGE_PMD_NR; i++) {
922 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
923 __GFP_OTHER_NODE, vma,
924 fe->address, page_to_nid(page));
925 if (unlikely(!pages[i] ||
926 mem_cgroup_try_charge(pages[i], vma->vm_mm,
927 GFP_KERNEL, &memcg, false))) {
928 if (pages[i])
929 put_page(pages[i]);
930 while (--i >= 0) {
931 memcg = (void *)page_private(pages[i]);
932 set_page_private(pages[i], 0);
933 mem_cgroup_cancel_charge(pages[i], memcg,
934 false);
935 put_page(pages[i]);
936 }
937 kfree(pages);
938 ret |= VM_FAULT_OOM;
939 goto out;
940 }
941 set_page_private(pages[i], (unsigned long)memcg);
942 }
943
944 for (i = 0; i < HPAGE_PMD_NR; i++) {
945 copy_user_highpage(pages[i], page + i,
946 haddr + PAGE_SIZE * i, vma);
947 __SetPageUptodate(pages[i]);
948 cond_resched();
949 }
950
951 mmun_start = haddr;
952 mmun_end = haddr + HPAGE_PMD_SIZE;
953 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
954
955 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
956 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
957 goto out_free_pages;
958 VM_BUG_ON_PAGE(!PageHead(page), page);
959
960 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
961 /* leave pmd empty until pte is filled */
962
963 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
964 pmd_populate(vma->vm_mm, &_pmd, pgtable);
965
966 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
967 pte_t entry;
968 entry = mk_pte(pages[i], vma->vm_page_prot);
969 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
970 memcg = (void *)page_private(pages[i]);
971 set_page_private(pages[i], 0);
972 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
973 mem_cgroup_commit_charge(pages[i], memcg, false, false);
974 lru_cache_add_active_or_unevictable(pages[i], vma);
975 fe->pte = pte_offset_map(&_pmd, haddr);
976 VM_BUG_ON(!pte_none(*fe->pte));
977 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
978 pte_unmap(fe->pte);
979 }
980 kfree(pages);
981
982 smp_wmb(); /* make pte visible before pmd */
983 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
984 page_remove_rmap(page, true);
985 spin_unlock(fe->ptl);
986
987 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
988
989 ret |= VM_FAULT_WRITE;
990 put_page(page);
991
992 out:
993 return ret;
994
995 out_free_pages:
996 spin_unlock(fe->ptl);
997 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
998 for (i = 0; i < HPAGE_PMD_NR; i++) {
999 memcg = (void *)page_private(pages[i]);
1000 set_page_private(pages[i], 0);
1001 mem_cgroup_cancel_charge(pages[i], memcg, false);
1002 put_page(pages[i]);
1003 }
1004 kfree(pages);
1005 goto out;
1006 }
1007
1008 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
1009 {
1010 struct vm_area_struct *vma = fe->vma;
1011 struct page *page = NULL, *new_page;
1012 struct mem_cgroup *memcg;
1013 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1014 unsigned long mmun_start; /* For mmu_notifiers */
1015 unsigned long mmun_end; /* For mmu_notifiers */
1016 gfp_t huge_gfp; /* for allocation and charge */
1017 int ret = 0;
1018
1019 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1020 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1021 if (is_huge_zero_pmd(orig_pmd))
1022 goto alloc;
1023 spin_lock(fe->ptl);
1024 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1025 goto out_unlock;
1026
1027 page = pmd_page(orig_pmd);
1028 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1029 /*
1030 * We can only reuse the page if nobody else maps the huge page or it's
1031 * part.
1032 */
1033 if (page_trans_huge_mapcount(page, NULL) == 1) {
1034 pmd_t entry;
1035 entry = pmd_mkyoung(orig_pmd);
1036 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1037 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1038 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1039 ret |= VM_FAULT_WRITE;
1040 goto out_unlock;
1041 }
1042 get_page(page);
1043 spin_unlock(fe->ptl);
1044 alloc:
1045 if (transparent_hugepage_enabled(vma) &&
1046 !transparent_hugepage_debug_cow()) {
1047 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1048 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1049 } else
1050 new_page = NULL;
1051
1052 if (likely(new_page)) {
1053 prep_transhuge_page(new_page);
1054 } else {
1055 if (!page) {
1056 split_huge_pmd(vma, fe->pmd, fe->address);
1057 ret |= VM_FAULT_FALLBACK;
1058 } else {
1059 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1060 if (ret & VM_FAULT_OOM) {
1061 split_huge_pmd(vma, fe->pmd, fe->address);
1062 ret |= VM_FAULT_FALLBACK;
1063 }
1064 put_page(page);
1065 }
1066 count_vm_event(THP_FAULT_FALLBACK);
1067 goto out;
1068 }
1069
1070 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1071 huge_gfp, &memcg, true))) {
1072 put_page(new_page);
1073 split_huge_pmd(vma, fe->pmd, fe->address);
1074 if (page)
1075 put_page(page);
1076 ret |= VM_FAULT_FALLBACK;
1077 count_vm_event(THP_FAULT_FALLBACK);
1078 goto out;
1079 }
1080
1081 count_vm_event(THP_FAULT_ALLOC);
1082
1083 if (!page)
1084 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1085 else
1086 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1087 __SetPageUptodate(new_page);
1088
1089 mmun_start = haddr;
1090 mmun_end = haddr + HPAGE_PMD_SIZE;
1091 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1092
1093 spin_lock(fe->ptl);
1094 if (page)
1095 put_page(page);
1096 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1097 spin_unlock(fe->ptl);
1098 mem_cgroup_cancel_charge(new_page, memcg, true);
1099 put_page(new_page);
1100 goto out_mn;
1101 } else {
1102 pmd_t entry;
1103 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1104 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1105 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1106 page_add_new_anon_rmap(new_page, vma, haddr, true);
1107 mem_cgroup_commit_charge(new_page, memcg, false, true);
1108 lru_cache_add_active_or_unevictable(new_page, vma);
1109 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1110 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1111 if (!page) {
1112 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1113 } else {
1114 VM_BUG_ON_PAGE(!PageHead(page), page);
1115 page_remove_rmap(page, true);
1116 put_page(page);
1117 }
1118 ret |= VM_FAULT_WRITE;
1119 }
1120 spin_unlock(fe->ptl);
1121 out_mn:
1122 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1123 out:
1124 return ret;
1125 out_unlock:
1126 spin_unlock(fe->ptl);
1127 return ret;
1128 }
1129
1130 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1131 unsigned long addr,
1132 pmd_t *pmd,
1133 unsigned int flags)
1134 {
1135 struct mm_struct *mm = vma->vm_mm;
1136 struct page *page = NULL;
1137
1138 assert_spin_locked(pmd_lockptr(mm, pmd));
1139
1140 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1141 goto out;
1142
1143 /* Avoid dumping huge zero page */
1144 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1145 return ERR_PTR(-EFAULT);
1146
1147 /* Full NUMA hinting faults to serialise migration in fault paths */
1148 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1149 goto out;
1150
1151 page = pmd_page(*pmd);
1152 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1153 if (flags & FOLL_TOUCH)
1154 touch_pmd(vma, addr, pmd);
1155 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1156 /*
1157 * We don't mlock() pte-mapped THPs. This way we can avoid
1158 * leaking mlocked pages into non-VM_LOCKED VMAs.
1159 *
1160 * For anon THP:
1161 *
1162 * In most cases the pmd is the only mapping of the page as we
1163 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1164 * writable private mappings in populate_vma_page_range().
1165 *
1166 * The only scenario when we have the page shared here is if we
1167 * mlocking read-only mapping shared over fork(). We skip
1168 * mlocking such pages.
1169 *
1170 * For file THP:
1171 *
1172 * We can expect PageDoubleMap() to be stable under page lock:
1173 * for file pages we set it in page_add_file_rmap(), which
1174 * requires page to be locked.
1175 */
1176
1177 if (PageAnon(page) && compound_mapcount(page) != 1)
1178 goto skip_mlock;
1179 if (PageDoubleMap(page) || !page->mapping)
1180 goto skip_mlock;
1181 if (!trylock_page(page))
1182 goto skip_mlock;
1183 lru_add_drain();
1184 if (page->mapping && !PageDoubleMap(page))
1185 mlock_vma_page(page);
1186 unlock_page(page);
1187 }
1188 skip_mlock:
1189 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1190 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1191 if (flags & FOLL_GET)
1192 get_page(page);
1193
1194 out:
1195 return page;
1196 }
1197
1198 /* NUMA hinting page fault entry point for trans huge pmds */
1199 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1200 {
1201 struct vm_area_struct *vma = fe->vma;
1202 struct anon_vma *anon_vma = NULL;
1203 struct page *page;
1204 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1205 int page_nid = -1, this_nid = numa_node_id();
1206 int target_nid, last_cpupid = -1;
1207 bool page_locked;
1208 bool migrated = false;
1209 bool was_writable;
1210 int flags = 0;
1211
1212 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1213 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1214 goto out_unlock;
1215
1216 /*
1217 * If there are potential migrations, wait for completion and retry
1218 * without disrupting NUMA hinting information. Do not relock and
1219 * check_same as the page may no longer be mapped.
1220 */
1221 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1222 page = pmd_page(*fe->pmd);
1223 spin_unlock(fe->ptl);
1224 wait_on_page_locked(page);
1225 goto out;
1226 }
1227
1228 page = pmd_page(pmd);
1229 BUG_ON(is_huge_zero_page(page));
1230 page_nid = page_to_nid(page);
1231 last_cpupid = page_cpupid_last(page);
1232 count_vm_numa_event(NUMA_HINT_FAULTS);
1233 if (page_nid == this_nid) {
1234 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1235 flags |= TNF_FAULT_LOCAL;
1236 }
1237
1238 /* See similar comment in do_numa_page for explanation */
1239 if (!pmd_write(pmd))
1240 flags |= TNF_NO_GROUP;
1241
1242 /*
1243 * Acquire the page lock to serialise THP migrations but avoid dropping
1244 * page_table_lock if at all possible
1245 */
1246 page_locked = trylock_page(page);
1247 target_nid = mpol_misplaced(page, vma, haddr);
1248 if (target_nid == -1) {
1249 /* If the page was locked, there are no parallel migrations */
1250 if (page_locked)
1251 goto clear_pmdnuma;
1252 }
1253
1254 /* Migration could have started since the pmd_trans_migrating check */
1255 if (!page_locked) {
1256 spin_unlock(fe->ptl);
1257 wait_on_page_locked(page);
1258 page_nid = -1;
1259 goto out;
1260 }
1261
1262 /*
1263 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1264 * to serialises splits
1265 */
1266 get_page(page);
1267 spin_unlock(fe->ptl);
1268 anon_vma = page_lock_anon_vma_read(page);
1269
1270 /* Confirm the PMD did not change while page_table_lock was released */
1271 spin_lock(fe->ptl);
1272 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1273 unlock_page(page);
1274 put_page(page);
1275 page_nid = -1;
1276 goto out_unlock;
1277 }
1278
1279 /* Bail if we fail to protect against THP splits for any reason */
1280 if (unlikely(!anon_vma)) {
1281 put_page(page);
1282 page_nid = -1;
1283 goto clear_pmdnuma;
1284 }
1285
1286 /*
1287 * Migrate the THP to the requested node, returns with page unlocked
1288 * and access rights restored.
1289 */
1290 spin_unlock(fe->ptl);
1291 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1292 fe->pmd, pmd, fe->address, page, target_nid);
1293 if (migrated) {
1294 flags |= TNF_MIGRATED;
1295 page_nid = target_nid;
1296 } else
1297 flags |= TNF_MIGRATE_FAIL;
1298
1299 goto out;
1300 clear_pmdnuma:
1301 BUG_ON(!PageLocked(page));
1302 was_writable = pmd_write(pmd);
1303 pmd = pmd_modify(pmd, vma->vm_page_prot);
1304 pmd = pmd_mkyoung(pmd);
1305 if (was_writable)
1306 pmd = pmd_mkwrite(pmd);
1307 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1308 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1309 unlock_page(page);
1310 out_unlock:
1311 spin_unlock(fe->ptl);
1312
1313 out:
1314 if (anon_vma)
1315 page_unlock_anon_vma_read(anon_vma);
1316
1317 if (page_nid != -1)
1318 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1319
1320 return 0;
1321 }
1322
1323 /*
1324 * Return true if we do MADV_FREE successfully on entire pmd page.
1325 * Otherwise, return false.
1326 */
1327 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1328 pmd_t *pmd, unsigned long addr, unsigned long next)
1329 {
1330 spinlock_t *ptl;
1331 pmd_t orig_pmd;
1332 struct page *page;
1333 struct mm_struct *mm = tlb->mm;
1334 bool ret = false;
1335
1336 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1337
1338 ptl = pmd_trans_huge_lock(pmd, vma);
1339 if (!ptl)
1340 goto out_unlocked;
1341
1342 orig_pmd = *pmd;
1343 if (is_huge_zero_pmd(orig_pmd))
1344 goto out;
1345
1346 page = pmd_page(orig_pmd);
1347 /*
1348 * If other processes are mapping this page, we couldn't discard
1349 * the page unless they all do MADV_FREE so let's skip the page.
1350 */
1351 if (page_mapcount(page) != 1)
1352 goto out;
1353
1354 if (!trylock_page(page))
1355 goto out;
1356
1357 /*
1358 * If user want to discard part-pages of THP, split it so MADV_FREE
1359 * will deactivate only them.
1360 */
1361 if (next - addr != HPAGE_PMD_SIZE) {
1362 get_page(page);
1363 spin_unlock(ptl);
1364 split_huge_page(page);
1365 put_page(page);
1366 unlock_page(page);
1367 goto out_unlocked;
1368 }
1369
1370 if (PageDirty(page))
1371 ClearPageDirty(page);
1372 unlock_page(page);
1373
1374 if (PageActive(page))
1375 deactivate_page(page);
1376
1377 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1378 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1379 tlb->fullmm);
1380 orig_pmd = pmd_mkold(orig_pmd);
1381 orig_pmd = pmd_mkclean(orig_pmd);
1382
1383 set_pmd_at(mm, addr, pmd, orig_pmd);
1384 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1385 }
1386 ret = true;
1387 out:
1388 spin_unlock(ptl);
1389 out_unlocked:
1390 return ret;
1391 }
1392
1393 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1394 {
1395 pgtable_t pgtable;
1396
1397 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1398 pte_free(mm, pgtable);
1399 atomic_long_dec(&mm->nr_ptes);
1400 }
1401
1402 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1403 pmd_t *pmd, unsigned long addr)
1404 {
1405 pmd_t orig_pmd;
1406 spinlock_t *ptl;
1407
1408 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1409
1410 ptl = __pmd_trans_huge_lock(pmd, vma);
1411 if (!ptl)
1412 return 0;
1413 /*
1414 * For architectures like ppc64 we look at deposited pgtable
1415 * when calling pmdp_huge_get_and_clear. So do the
1416 * pgtable_trans_huge_withdraw after finishing pmdp related
1417 * operations.
1418 */
1419 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1420 tlb->fullmm);
1421 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1422 if (vma_is_dax(vma)) {
1423 spin_unlock(ptl);
1424 if (is_huge_zero_pmd(orig_pmd))
1425 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1426 } else if (is_huge_zero_pmd(orig_pmd)) {
1427 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1428 atomic_long_dec(&tlb->mm->nr_ptes);
1429 spin_unlock(ptl);
1430 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1431 } else {
1432 struct page *page = pmd_page(orig_pmd);
1433 page_remove_rmap(page, true);
1434 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1435 VM_BUG_ON_PAGE(!PageHead(page), page);
1436 if (PageAnon(page)) {
1437 pgtable_t pgtable;
1438 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1439 pte_free(tlb->mm, pgtable);
1440 atomic_long_dec(&tlb->mm->nr_ptes);
1441 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1442 } else {
1443 if (arch_needs_pgtable_deposit())
1444 zap_deposited_table(tlb->mm, pmd);
1445 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1446 }
1447 spin_unlock(ptl);
1448 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1449 }
1450 return 1;
1451 }
1452
1453 #ifndef pmd_move_must_withdraw
1454 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1455 spinlock_t *old_pmd_ptl,
1456 struct vm_area_struct *vma)
1457 {
1458 /*
1459 * With split pmd lock we also need to move preallocated
1460 * PTE page table if new_pmd is on different PMD page table.
1461 *
1462 * We also don't deposit and withdraw tables for file pages.
1463 */
1464 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1465 }
1466 #endif
1467
1468 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1469 unsigned long new_addr, unsigned long old_end,
1470 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1471 {
1472 spinlock_t *old_ptl, *new_ptl;
1473 pmd_t pmd;
1474 struct mm_struct *mm = vma->vm_mm;
1475 bool force_flush = false;
1476
1477 if ((old_addr & ~HPAGE_PMD_MASK) ||
1478 (new_addr & ~HPAGE_PMD_MASK) ||
1479 old_end - old_addr < HPAGE_PMD_SIZE)
1480 return false;
1481
1482 /*
1483 * The destination pmd shouldn't be established, free_pgtables()
1484 * should have release it.
1485 */
1486 if (WARN_ON(!pmd_none(*new_pmd))) {
1487 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1488 return false;
1489 }
1490
1491 /*
1492 * We don't have to worry about the ordering of src and dst
1493 * ptlocks because exclusive mmap_sem prevents deadlock.
1494 */
1495 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1496 if (old_ptl) {
1497 new_ptl = pmd_lockptr(mm, new_pmd);
1498 if (new_ptl != old_ptl)
1499 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1500 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1501 if (pmd_present(pmd) && pmd_dirty(pmd))
1502 force_flush = true;
1503 VM_BUG_ON(!pmd_none(*new_pmd));
1504
1505 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1506 pgtable_t pgtable;
1507 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1508 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1509 }
1510 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1511 if (new_ptl != old_ptl)
1512 spin_unlock(new_ptl);
1513 if (force_flush)
1514 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1515 else
1516 *need_flush = true;
1517 spin_unlock(old_ptl);
1518 return true;
1519 }
1520 return false;
1521 }
1522
1523 /*
1524 * Returns
1525 * - 0 if PMD could not be locked
1526 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1527 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1528 */
1529 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1530 unsigned long addr, pgprot_t newprot, int prot_numa)
1531 {
1532 struct mm_struct *mm = vma->vm_mm;
1533 spinlock_t *ptl;
1534 int ret = 0;
1535
1536 ptl = __pmd_trans_huge_lock(pmd, vma);
1537 if (ptl) {
1538 pmd_t entry;
1539 bool preserve_write = prot_numa && pmd_write(*pmd);
1540 ret = 1;
1541
1542 /*
1543 * Avoid trapping faults against the zero page. The read-only
1544 * data is likely to be read-cached on the local CPU and
1545 * local/remote hits to the zero page are not interesting.
1546 */
1547 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1548 spin_unlock(ptl);
1549 return ret;
1550 }
1551
1552 if (!prot_numa || !pmd_protnone(*pmd)) {
1553 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1554 entry = pmd_modify(entry, newprot);
1555 if (preserve_write)
1556 entry = pmd_mkwrite(entry);
1557 ret = HPAGE_PMD_NR;
1558 set_pmd_at(mm, addr, pmd, entry);
1559 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1560 pmd_write(entry));
1561 }
1562 spin_unlock(ptl);
1563 }
1564
1565 return ret;
1566 }
1567
1568 /*
1569 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1570 *
1571 * Note that if it returns page table lock pointer, this routine returns without
1572 * unlocking page table lock. So callers must unlock it.
1573 */
1574 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1575 {
1576 spinlock_t *ptl;
1577 ptl = pmd_lock(vma->vm_mm, pmd);
1578 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1579 return ptl;
1580 spin_unlock(ptl);
1581 return NULL;
1582 }
1583
1584 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1585 unsigned long haddr, pmd_t *pmd)
1586 {
1587 struct mm_struct *mm = vma->vm_mm;
1588 pgtable_t pgtable;
1589 pmd_t _pmd;
1590 int i;
1591
1592 /* leave pmd empty until pte is filled */
1593 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1594
1595 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1596 pmd_populate(mm, &_pmd, pgtable);
1597
1598 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1599 pte_t *pte, entry;
1600 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1601 entry = pte_mkspecial(entry);
1602 pte = pte_offset_map(&_pmd, haddr);
1603 VM_BUG_ON(!pte_none(*pte));
1604 set_pte_at(mm, haddr, pte, entry);
1605 pte_unmap(pte);
1606 }
1607 smp_wmb(); /* make pte visible before pmd */
1608 pmd_populate(mm, pmd, pgtable);
1609 }
1610
1611 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1612 unsigned long haddr, bool freeze)
1613 {
1614 struct mm_struct *mm = vma->vm_mm;
1615 struct page *page;
1616 pgtable_t pgtable;
1617 pmd_t _pmd;
1618 bool young, write, dirty, soft_dirty;
1619 unsigned long addr;
1620 int i;
1621
1622 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1623 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1624 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1625 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1626
1627 count_vm_event(THP_SPLIT_PMD);
1628
1629 if (!vma_is_anonymous(vma)) {
1630 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1631 /*
1632 * We are going to unmap this huge page. So
1633 * just go ahead and zap it
1634 */
1635 if (arch_needs_pgtable_deposit())
1636 zap_deposited_table(mm, pmd);
1637 if (vma_is_dax(vma))
1638 return;
1639 page = pmd_page(_pmd);
1640 if (!PageReferenced(page) && pmd_young(_pmd))
1641 SetPageReferenced(page);
1642 page_remove_rmap(page, true);
1643 put_page(page);
1644 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1645 return;
1646 } else if (is_huge_zero_pmd(*pmd)) {
1647 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1648 }
1649
1650 page = pmd_page(*pmd);
1651 VM_BUG_ON_PAGE(!page_count(page), page);
1652 page_ref_add(page, HPAGE_PMD_NR - 1);
1653 write = pmd_write(*pmd);
1654 young = pmd_young(*pmd);
1655 dirty = pmd_dirty(*pmd);
1656 soft_dirty = pmd_soft_dirty(*pmd);
1657
1658 pmdp_huge_split_prepare(vma, haddr, pmd);
1659 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1660 pmd_populate(mm, &_pmd, pgtable);
1661
1662 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1663 pte_t entry, *pte;
1664 /*
1665 * Note that NUMA hinting access restrictions are not
1666 * transferred to avoid any possibility of altering
1667 * permissions across VMAs.
1668 */
1669 if (freeze) {
1670 swp_entry_t swp_entry;
1671 swp_entry = make_migration_entry(page + i, write);
1672 entry = swp_entry_to_pte(swp_entry);
1673 if (soft_dirty)
1674 entry = pte_swp_mksoft_dirty(entry);
1675 } else {
1676 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1677 entry = maybe_mkwrite(entry, vma);
1678 if (!write)
1679 entry = pte_wrprotect(entry);
1680 if (!young)
1681 entry = pte_mkold(entry);
1682 if (soft_dirty)
1683 entry = pte_mksoft_dirty(entry);
1684 }
1685 if (dirty)
1686 SetPageDirty(page + i);
1687 pte = pte_offset_map(&_pmd, addr);
1688 BUG_ON(!pte_none(*pte));
1689 set_pte_at(mm, addr, pte, entry);
1690 atomic_inc(&page[i]._mapcount);
1691 pte_unmap(pte);
1692 }
1693
1694 /*
1695 * Set PG_double_map before dropping compound_mapcount to avoid
1696 * false-negative page_mapped().
1697 */
1698 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1699 for (i = 0; i < HPAGE_PMD_NR; i++)
1700 atomic_inc(&page[i]._mapcount);
1701 }
1702
1703 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1704 /* Last compound_mapcount is gone. */
1705 __dec_node_page_state(page, NR_ANON_THPS);
1706 if (TestClearPageDoubleMap(page)) {
1707 /* No need in mapcount reference anymore */
1708 for (i = 0; i < HPAGE_PMD_NR; i++)
1709 atomic_dec(&page[i]._mapcount);
1710 }
1711 }
1712
1713 smp_wmb(); /* make pte visible before pmd */
1714 /*
1715 * Up to this point the pmd is present and huge and userland has the
1716 * whole access to the hugepage during the split (which happens in
1717 * place). If we overwrite the pmd with the not-huge version pointing
1718 * to the pte here (which of course we could if all CPUs were bug
1719 * free), userland could trigger a small page size TLB miss on the
1720 * small sized TLB while the hugepage TLB entry is still established in
1721 * the huge TLB. Some CPU doesn't like that.
1722 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1723 * 383 on page 93. Intel should be safe but is also warns that it's
1724 * only safe if the permission and cache attributes of the two entries
1725 * loaded in the two TLB is identical (which should be the case here).
1726 * But it is generally safer to never allow small and huge TLB entries
1727 * for the same virtual address to be loaded simultaneously. So instead
1728 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1729 * current pmd notpresent (atomically because here the pmd_trans_huge
1730 * and pmd_trans_splitting must remain set at all times on the pmd
1731 * until the split is complete for this pmd), then we flush the SMP TLB
1732 * and finally we write the non-huge version of the pmd entry with
1733 * pmd_populate.
1734 */
1735 pmdp_invalidate(vma, haddr, pmd);
1736 pmd_populate(mm, pmd, pgtable);
1737
1738 if (freeze) {
1739 for (i = 0; i < HPAGE_PMD_NR; i++) {
1740 page_remove_rmap(page + i, false);
1741 put_page(page + i);
1742 }
1743 }
1744 }
1745
1746 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1747 unsigned long address, bool freeze, struct page *page)
1748 {
1749 spinlock_t *ptl;
1750 struct mm_struct *mm = vma->vm_mm;
1751 unsigned long haddr = address & HPAGE_PMD_MASK;
1752
1753 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1754 ptl = pmd_lock(mm, pmd);
1755
1756 /*
1757 * If caller asks to setup a migration entries, we need a page to check
1758 * pmd against. Otherwise we can end up replacing wrong page.
1759 */
1760 VM_BUG_ON(freeze && !page);
1761 if (page && page != pmd_page(*pmd))
1762 goto out;
1763
1764 if (pmd_trans_huge(*pmd)) {
1765 page = pmd_page(*pmd);
1766 if (PageMlocked(page))
1767 clear_page_mlock(page);
1768 } else if (!pmd_devmap(*pmd))
1769 goto out;
1770 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1771 out:
1772 spin_unlock(ptl);
1773 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1774 }
1775
1776 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1777 bool freeze, struct page *page)
1778 {
1779 pgd_t *pgd;
1780 pud_t *pud;
1781 pmd_t *pmd;
1782
1783 pgd = pgd_offset(vma->vm_mm, address);
1784 if (!pgd_present(*pgd))
1785 return;
1786
1787 pud = pud_offset(pgd, address);
1788 if (!pud_present(*pud))
1789 return;
1790
1791 pmd = pmd_offset(pud, address);
1792
1793 __split_huge_pmd(vma, pmd, address, freeze, page);
1794 }
1795
1796 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1797 unsigned long start,
1798 unsigned long end,
1799 long adjust_next)
1800 {
1801 /*
1802 * If the new start address isn't hpage aligned and it could
1803 * previously contain an hugepage: check if we need to split
1804 * an huge pmd.
1805 */
1806 if (start & ~HPAGE_PMD_MASK &&
1807 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1808 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1809 split_huge_pmd_address(vma, start, false, NULL);
1810
1811 /*
1812 * If the new end address isn't hpage aligned and it could
1813 * previously contain an hugepage: check if we need to split
1814 * an huge pmd.
1815 */
1816 if (end & ~HPAGE_PMD_MASK &&
1817 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1818 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1819 split_huge_pmd_address(vma, end, false, NULL);
1820
1821 /*
1822 * If we're also updating the vma->vm_next->vm_start, if the new
1823 * vm_next->vm_start isn't page aligned and it could previously
1824 * contain an hugepage: check if we need to split an huge pmd.
1825 */
1826 if (adjust_next > 0) {
1827 struct vm_area_struct *next = vma->vm_next;
1828 unsigned long nstart = next->vm_start;
1829 nstart += adjust_next << PAGE_SHIFT;
1830 if (nstart & ~HPAGE_PMD_MASK &&
1831 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1832 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1833 split_huge_pmd_address(next, nstart, false, NULL);
1834 }
1835 }
1836
1837 static void freeze_page(struct page *page)
1838 {
1839 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1840 TTU_RMAP_LOCKED;
1841 int i, ret;
1842
1843 VM_BUG_ON_PAGE(!PageHead(page), page);
1844
1845 if (PageAnon(page))
1846 ttu_flags |= TTU_MIGRATION;
1847
1848 /* We only need TTU_SPLIT_HUGE_PMD once */
1849 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1850 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1851 /* Cut short if the page is unmapped */
1852 if (page_count(page) == 1)
1853 return;
1854
1855 ret = try_to_unmap(page + i, ttu_flags);
1856 }
1857 VM_BUG_ON_PAGE(ret, page + i - 1);
1858 }
1859
1860 static void unfreeze_page(struct page *page)
1861 {
1862 int i;
1863
1864 for (i = 0; i < HPAGE_PMD_NR; i++)
1865 remove_migration_ptes(page + i, page + i, true);
1866 }
1867
1868 static void __split_huge_page_tail(struct page *head, int tail,
1869 struct lruvec *lruvec, struct list_head *list)
1870 {
1871 struct page *page_tail = head + tail;
1872
1873 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1874 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1875
1876 /*
1877 * tail_page->_refcount is zero and not changing from under us. But
1878 * get_page_unless_zero() may be running from under us on the
1879 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1880 * atomic_add(), we would then run atomic_set() concurrently with
1881 * get_page_unless_zero(), and atomic_set() is implemented in C not
1882 * using locked ops. spin_unlock on x86 sometime uses locked ops
1883 * because of PPro errata 66, 92, so unless somebody can guarantee
1884 * atomic_set() here would be safe on all archs (and not only on x86),
1885 * it's safer to use atomic_inc()/atomic_add().
1886 */
1887 if (PageAnon(head)) {
1888 page_ref_inc(page_tail);
1889 } else {
1890 /* Additional pin to radix tree */
1891 page_ref_add(page_tail, 2);
1892 }
1893
1894 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1895 page_tail->flags |= (head->flags &
1896 ((1L << PG_referenced) |
1897 (1L << PG_swapbacked) |
1898 (1L << PG_mlocked) |
1899 (1L << PG_uptodate) |
1900 (1L << PG_active) |
1901 (1L << PG_locked) |
1902 (1L << PG_unevictable) |
1903 (1L << PG_dirty)));
1904
1905 /*
1906 * After clearing PageTail the gup refcount can be released.
1907 * Page flags also must be visible before we make the page non-compound.
1908 */
1909 smp_wmb();
1910
1911 clear_compound_head(page_tail);
1912
1913 if (page_is_young(head))
1914 set_page_young(page_tail);
1915 if (page_is_idle(head))
1916 set_page_idle(page_tail);
1917
1918 /* ->mapping in first tail page is compound_mapcount */
1919 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1920 page_tail);
1921 page_tail->mapping = head->mapping;
1922
1923 page_tail->index = head->index + tail;
1924 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1925 lru_add_page_tail(head, page_tail, lruvec, list);
1926 }
1927
1928 static void __split_huge_page(struct page *page, struct list_head *list,
1929 unsigned long flags)
1930 {
1931 struct page *head = compound_head(page);
1932 struct zone *zone = page_zone(head);
1933 struct lruvec *lruvec;
1934 pgoff_t end = -1;
1935 int i;
1936
1937 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1938
1939 /* complete memcg works before add pages to LRU */
1940 mem_cgroup_split_huge_fixup(head);
1941
1942 if (!PageAnon(page))
1943 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1944
1945 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1946 __split_huge_page_tail(head, i, lruvec, list);
1947 /* Some pages can be beyond i_size: drop them from page cache */
1948 if (head[i].index >= end) {
1949 __ClearPageDirty(head + i);
1950 __delete_from_page_cache(head + i, NULL);
1951 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1952 shmem_uncharge(head->mapping->host, 1);
1953 put_page(head + i);
1954 }
1955 }
1956
1957 ClearPageCompound(head);
1958 /* See comment in __split_huge_page_tail() */
1959 if (PageAnon(head)) {
1960 page_ref_inc(head);
1961 } else {
1962 /* Additional pin to radix tree */
1963 page_ref_add(head, 2);
1964 spin_unlock(&head->mapping->tree_lock);
1965 }
1966
1967 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1968
1969 unfreeze_page(head);
1970
1971 for (i = 0; i < HPAGE_PMD_NR; i++) {
1972 struct page *subpage = head + i;
1973 if (subpage == page)
1974 continue;
1975 unlock_page(subpage);
1976
1977 /*
1978 * Subpages may be freed if there wasn't any mapping
1979 * like if add_to_swap() is running on a lru page that
1980 * had its mapping zapped. And freeing these pages
1981 * requires taking the lru_lock so we do the put_page
1982 * of the tail pages after the split is complete.
1983 */
1984 put_page(subpage);
1985 }
1986 }
1987
1988 int total_mapcount(struct page *page)
1989 {
1990 int i, compound, ret;
1991
1992 VM_BUG_ON_PAGE(PageTail(page), page);
1993
1994 if (likely(!PageCompound(page)))
1995 return atomic_read(&page->_mapcount) + 1;
1996
1997 compound = compound_mapcount(page);
1998 if (PageHuge(page))
1999 return compound;
2000 ret = compound;
2001 for (i = 0; i < HPAGE_PMD_NR; i++)
2002 ret += atomic_read(&page[i]._mapcount) + 1;
2003 /* File pages has compound_mapcount included in _mapcount */
2004 if (!PageAnon(page))
2005 return ret - compound * HPAGE_PMD_NR;
2006 if (PageDoubleMap(page))
2007 ret -= HPAGE_PMD_NR;
2008 return ret;
2009 }
2010
2011 /*
2012 * This calculates accurately how many mappings a transparent hugepage
2013 * has (unlike page_mapcount() which isn't fully accurate). This full
2014 * accuracy is primarily needed to know if copy-on-write faults can
2015 * reuse the page and change the mapping to read-write instead of
2016 * copying them. At the same time this returns the total_mapcount too.
2017 *
2018 * The function returns the highest mapcount any one of the subpages
2019 * has. If the return value is one, even if different processes are
2020 * mapping different subpages of the transparent hugepage, they can
2021 * all reuse it, because each process is reusing a different subpage.
2022 *
2023 * The total_mapcount is instead counting all virtual mappings of the
2024 * subpages. If the total_mapcount is equal to "one", it tells the
2025 * caller all mappings belong to the same "mm" and in turn the
2026 * anon_vma of the transparent hugepage can become the vma->anon_vma
2027 * local one as no other process may be mapping any of the subpages.
2028 *
2029 * It would be more accurate to replace page_mapcount() with
2030 * page_trans_huge_mapcount(), however we only use
2031 * page_trans_huge_mapcount() in the copy-on-write faults where we
2032 * need full accuracy to avoid breaking page pinning, because
2033 * page_trans_huge_mapcount() is slower than page_mapcount().
2034 */
2035 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2036 {
2037 int i, ret, _total_mapcount, mapcount;
2038
2039 /* hugetlbfs shouldn't call it */
2040 VM_BUG_ON_PAGE(PageHuge(page), page);
2041
2042 if (likely(!PageTransCompound(page))) {
2043 mapcount = atomic_read(&page->_mapcount) + 1;
2044 if (total_mapcount)
2045 *total_mapcount = mapcount;
2046 return mapcount;
2047 }
2048
2049 page = compound_head(page);
2050
2051 _total_mapcount = ret = 0;
2052 for (i = 0; i < HPAGE_PMD_NR; i++) {
2053 mapcount = atomic_read(&page[i]._mapcount) + 1;
2054 ret = max(ret, mapcount);
2055 _total_mapcount += mapcount;
2056 }
2057 if (PageDoubleMap(page)) {
2058 ret -= 1;
2059 _total_mapcount -= HPAGE_PMD_NR;
2060 }
2061 mapcount = compound_mapcount(page);
2062 ret += mapcount;
2063 _total_mapcount += mapcount;
2064 if (total_mapcount)
2065 *total_mapcount = _total_mapcount;
2066 return ret;
2067 }
2068
2069 /*
2070 * This function splits huge page into normal pages. @page can point to any
2071 * subpage of huge page to split. Split doesn't change the position of @page.
2072 *
2073 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2074 * The huge page must be locked.
2075 *
2076 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2077 *
2078 * Both head page and tail pages will inherit mapping, flags, and so on from
2079 * the hugepage.
2080 *
2081 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2082 * they are not mapped.
2083 *
2084 * Returns 0 if the hugepage is split successfully.
2085 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2086 * us.
2087 */
2088 int split_huge_page_to_list(struct page *page, struct list_head *list)
2089 {
2090 struct page *head = compound_head(page);
2091 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2092 struct anon_vma *anon_vma = NULL;
2093 struct address_space *mapping = NULL;
2094 int count, mapcount, extra_pins, ret;
2095 bool mlocked;
2096 unsigned long flags;
2097
2098 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2099 VM_BUG_ON_PAGE(!PageLocked(page), page);
2100 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2101 VM_BUG_ON_PAGE(!PageCompound(page), page);
2102
2103 if (PageAnon(head)) {
2104 /*
2105 * The caller does not necessarily hold an mmap_sem that would
2106 * prevent the anon_vma disappearing so we first we take a
2107 * reference to it and then lock the anon_vma for write. This
2108 * is similar to page_lock_anon_vma_read except the write lock
2109 * is taken to serialise against parallel split or collapse
2110 * operations.
2111 */
2112 anon_vma = page_get_anon_vma(head);
2113 if (!anon_vma) {
2114 ret = -EBUSY;
2115 goto out;
2116 }
2117 extra_pins = 0;
2118 mapping = NULL;
2119 anon_vma_lock_write(anon_vma);
2120 } else {
2121 mapping = head->mapping;
2122
2123 /* Truncated ? */
2124 if (!mapping) {
2125 ret = -EBUSY;
2126 goto out;
2127 }
2128
2129 /* Addidional pins from radix tree */
2130 extra_pins = HPAGE_PMD_NR;
2131 anon_vma = NULL;
2132 i_mmap_lock_read(mapping);
2133 }
2134
2135 /*
2136 * Racy check if we can split the page, before freeze_page() will
2137 * split PMDs
2138 */
2139 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2140 ret = -EBUSY;
2141 goto out_unlock;
2142 }
2143
2144 mlocked = PageMlocked(page);
2145 freeze_page(head);
2146 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2147
2148 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2149 if (mlocked)
2150 lru_add_drain();
2151
2152 /* prevent PageLRU to go away from under us, and freeze lru stats */
2153 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2154
2155 if (mapping) {
2156 void **pslot;
2157
2158 spin_lock(&mapping->tree_lock);
2159 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2160 page_index(head));
2161 /*
2162 * Check if the head page is present in radix tree.
2163 * We assume all tail are present too, if head is there.
2164 */
2165 if (radix_tree_deref_slot_protected(pslot,
2166 &mapping->tree_lock) != head)
2167 goto fail;
2168 }
2169
2170 /* Prevent deferred_split_scan() touching ->_refcount */
2171 spin_lock(&pgdata->split_queue_lock);
2172 count = page_count(head);
2173 mapcount = total_mapcount(head);
2174 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2175 if (!list_empty(page_deferred_list(head))) {
2176 pgdata->split_queue_len--;
2177 list_del(page_deferred_list(head));
2178 }
2179 if (mapping)
2180 __dec_node_page_state(page, NR_SHMEM_THPS);
2181 spin_unlock(&pgdata->split_queue_lock);
2182 __split_huge_page(page, list, flags);
2183 ret = 0;
2184 } else {
2185 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2186 pr_alert("total_mapcount: %u, page_count(): %u\n",
2187 mapcount, count);
2188 if (PageTail(page))
2189 dump_page(head, NULL);
2190 dump_page(page, "total_mapcount(head) > 0");
2191 BUG();
2192 }
2193 spin_unlock(&pgdata->split_queue_lock);
2194 fail: if (mapping)
2195 spin_unlock(&mapping->tree_lock);
2196 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2197 unfreeze_page(head);
2198 ret = -EBUSY;
2199 }
2200
2201 out_unlock:
2202 if (anon_vma) {
2203 anon_vma_unlock_write(anon_vma);
2204 put_anon_vma(anon_vma);
2205 }
2206 if (mapping)
2207 i_mmap_unlock_read(mapping);
2208 out:
2209 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2210 return ret;
2211 }
2212
2213 void free_transhuge_page(struct page *page)
2214 {
2215 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2216 unsigned long flags;
2217
2218 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2219 if (!list_empty(page_deferred_list(page))) {
2220 pgdata->split_queue_len--;
2221 list_del(page_deferred_list(page));
2222 }
2223 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2224 free_compound_page(page);
2225 }
2226
2227 void deferred_split_huge_page(struct page *page)
2228 {
2229 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2230 unsigned long flags;
2231
2232 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2233
2234 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2235 if (list_empty(page_deferred_list(page))) {
2236 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2237 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2238 pgdata->split_queue_len++;
2239 }
2240 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2241 }
2242
2243 static unsigned long deferred_split_count(struct shrinker *shrink,
2244 struct shrink_control *sc)
2245 {
2246 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2247 return ACCESS_ONCE(pgdata->split_queue_len);
2248 }
2249
2250 static unsigned long deferred_split_scan(struct shrinker *shrink,
2251 struct shrink_control *sc)
2252 {
2253 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2254 unsigned long flags;
2255 LIST_HEAD(list), *pos, *next;
2256 struct page *page;
2257 int split = 0;
2258
2259 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2260 /* Take pin on all head pages to avoid freeing them under us */
2261 list_for_each_safe(pos, next, &pgdata->split_queue) {
2262 page = list_entry((void *)pos, struct page, mapping);
2263 page = compound_head(page);
2264 if (get_page_unless_zero(page)) {
2265 list_move(page_deferred_list(page), &list);
2266 } else {
2267 /* We lost race with put_compound_page() */
2268 list_del_init(page_deferred_list(page));
2269 pgdata->split_queue_len--;
2270 }
2271 if (!--sc->nr_to_scan)
2272 break;
2273 }
2274 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2275
2276 list_for_each_safe(pos, next, &list) {
2277 page = list_entry((void *)pos, struct page, mapping);
2278 lock_page(page);
2279 /* split_huge_page() removes page from list on success */
2280 if (!split_huge_page(page))
2281 split++;
2282 unlock_page(page);
2283 put_page(page);
2284 }
2285
2286 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2287 list_splice_tail(&list, &pgdata->split_queue);
2288 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2289
2290 /*
2291 * Stop shrinker if we didn't split any page, but the queue is empty.
2292 * This can happen if pages were freed under us.
2293 */
2294 if (!split && list_empty(&pgdata->split_queue))
2295 return SHRINK_STOP;
2296 return split;
2297 }
2298
2299 static struct shrinker deferred_split_shrinker = {
2300 .count_objects = deferred_split_count,
2301 .scan_objects = deferred_split_scan,
2302 .seeks = DEFAULT_SEEKS,
2303 .flags = SHRINKER_NUMA_AWARE,
2304 };
2305
2306 #ifdef CONFIG_DEBUG_FS
2307 static int split_huge_pages_set(void *data, u64 val)
2308 {
2309 struct zone *zone;
2310 struct page *page;
2311 unsigned long pfn, max_zone_pfn;
2312 unsigned long total = 0, split = 0;
2313
2314 if (val != 1)
2315 return -EINVAL;
2316
2317 for_each_populated_zone(zone) {
2318 max_zone_pfn = zone_end_pfn(zone);
2319 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2320 if (!pfn_valid(pfn))
2321 continue;
2322
2323 page = pfn_to_page(pfn);
2324 if (!get_page_unless_zero(page))
2325 continue;
2326
2327 if (zone != page_zone(page))
2328 goto next;
2329
2330 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2331 goto next;
2332
2333 total++;
2334 lock_page(page);
2335 if (!split_huge_page(page))
2336 split++;
2337 unlock_page(page);
2338 next:
2339 put_page(page);
2340 }
2341 }
2342
2343 pr_info("%lu of %lu THP split\n", split, total);
2344
2345 return 0;
2346 }
2347 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2348 "%llu\n");
2349
2350 static int __init split_huge_pages_debugfs(void)
2351 {
2352 void *ret;
2353
2354 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2355 &split_huge_pages_fops);
2356 if (!ret)
2357 pr_warn("Failed to create split_huge_pages in debugfs");
2358 return 0;
2359 }
2360 late_initcall(split_huge_pages_debugfs);
2361 #endif