]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/huge_memory.c
mm: thp: refactor NUMA fault handling
[mirror_ubuntu-kernels.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41
42 /*
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
49 */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60
61 static struct shrinker deferred_split_shrinker;
62
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 unsigned long huge_zero_pfn __read_mostly = ~0UL;
66
67 static inline bool file_thp_enabled(struct vm_area_struct *vma)
68 {
69 return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
70 !inode_is_open_for_write(vma->vm_file->f_inode) &&
71 (vma->vm_flags & VM_EXEC);
72 }
73
74 bool transparent_hugepage_active(struct vm_area_struct *vma)
75 {
76 /* The addr is used to check if the vma size fits */
77 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
78
79 if (!transhuge_vma_suitable(vma, addr))
80 return false;
81 if (vma_is_anonymous(vma))
82 return __transparent_hugepage_enabled(vma);
83 if (vma_is_shmem(vma))
84 return shmem_huge_enabled(vma);
85 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
86 return file_thp_enabled(vma);
87
88 return false;
89 }
90
91 static bool get_huge_zero_page(void)
92 {
93 struct page *zero_page;
94 retry:
95 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
96 return true;
97
98 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
99 HPAGE_PMD_ORDER);
100 if (!zero_page) {
101 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
102 return false;
103 }
104 count_vm_event(THP_ZERO_PAGE_ALLOC);
105 preempt_disable();
106 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
107 preempt_enable();
108 __free_pages(zero_page, compound_order(zero_page));
109 goto retry;
110 }
111 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
112
113 /* We take additional reference here. It will be put back by shrinker */
114 atomic_set(&huge_zero_refcount, 2);
115 preempt_enable();
116 return true;
117 }
118
119 static void put_huge_zero_page(void)
120 {
121 /*
122 * Counter should never go to zero here. Only shrinker can put
123 * last reference.
124 */
125 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
126 }
127
128 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
129 {
130 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
131 return READ_ONCE(huge_zero_page);
132
133 if (!get_huge_zero_page())
134 return NULL;
135
136 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
137 put_huge_zero_page();
138
139 return READ_ONCE(huge_zero_page);
140 }
141
142 void mm_put_huge_zero_page(struct mm_struct *mm)
143 {
144 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
145 put_huge_zero_page();
146 }
147
148 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
149 struct shrink_control *sc)
150 {
151 /* we can free zero page only if last reference remains */
152 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
153 }
154
155 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
156 struct shrink_control *sc)
157 {
158 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
159 struct page *zero_page = xchg(&huge_zero_page, NULL);
160 BUG_ON(zero_page == NULL);
161 WRITE_ONCE(huge_zero_pfn, ~0UL);
162 __free_pages(zero_page, compound_order(zero_page));
163 return HPAGE_PMD_NR;
164 }
165
166 return 0;
167 }
168
169 static struct shrinker huge_zero_page_shrinker = {
170 .count_objects = shrink_huge_zero_page_count,
171 .scan_objects = shrink_huge_zero_page_scan,
172 .seeks = DEFAULT_SEEKS,
173 };
174
175 #ifdef CONFIG_SYSFS
176 static ssize_t enabled_show(struct kobject *kobj,
177 struct kobj_attribute *attr, char *buf)
178 {
179 const char *output;
180
181 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
182 output = "[always] madvise never";
183 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
184 &transparent_hugepage_flags))
185 output = "always [madvise] never";
186 else
187 output = "always madvise [never]";
188
189 return sysfs_emit(buf, "%s\n", output);
190 }
191
192 static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195 {
196 ssize_t ret = count;
197
198 if (sysfs_streq(buf, "always")) {
199 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
200 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
201 } else if (sysfs_streq(buf, "madvise")) {
202 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
203 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
204 } else if (sysfs_streq(buf, "never")) {
205 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
206 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
207 } else
208 ret = -EINVAL;
209
210 if (ret > 0) {
211 int err = start_stop_khugepaged();
212 if (err)
213 ret = err;
214 }
215 return ret;
216 }
217 static struct kobj_attribute enabled_attr =
218 __ATTR(enabled, 0644, enabled_show, enabled_store);
219
220 ssize_t single_hugepage_flag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf,
222 enum transparent_hugepage_flag flag)
223 {
224 return sysfs_emit(buf, "%d\n",
225 !!test_bit(flag, &transparent_hugepage_flags));
226 }
227
228 ssize_t single_hugepage_flag_store(struct kobject *kobj,
229 struct kobj_attribute *attr,
230 const char *buf, size_t count,
231 enum transparent_hugepage_flag flag)
232 {
233 unsigned long value;
234 int ret;
235
236 ret = kstrtoul(buf, 10, &value);
237 if (ret < 0)
238 return ret;
239 if (value > 1)
240 return -EINVAL;
241
242 if (value)
243 set_bit(flag, &transparent_hugepage_flags);
244 else
245 clear_bit(flag, &transparent_hugepage_flags);
246
247 return count;
248 }
249
250 static ssize_t defrag_show(struct kobject *kobj,
251 struct kobj_attribute *attr, char *buf)
252 {
253 const char *output;
254
255 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
256 &transparent_hugepage_flags))
257 output = "[always] defer defer+madvise madvise never";
258 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
259 &transparent_hugepage_flags))
260 output = "always [defer] defer+madvise madvise never";
261 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
262 &transparent_hugepage_flags))
263 output = "always defer [defer+madvise] madvise never";
264 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
265 &transparent_hugepage_flags))
266 output = "always defer defer+madvise [madvise] never";
267 else
268 output = "always defer defer+madvise madvise [never]";
269
270 return sysfs_emit(buf, "%s\n", output);
271 }
272
273 static ssize_t defrag_store(struct kobject *kobj,
274 struct kobj_attribute *attr,
275 const char *buf, size_t count)
276 {
277 if (sysfs_streq(buf, "always")) {
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
281 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282 } else if (sysfs_streq(buf, "defer+madvise")) {
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
286 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
287 } else if (sysfs_streq(buf, "defer")) {
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
290 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
291 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
292 } else if (sysfs_streq(buf, "madvise")) {
293 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
294 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
295 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
296 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
297 } else if (sysfs_streq(buf, "never")) {
298 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
300 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
301 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
302 } else
303 return -EINVAL;
304
305 return count;
306 }
307 static struct kobj_attribute defrag_attr =
308 __ATTR(defrag, 0644, defrag_show, defrag_store);
309
310 static ssize_t use_zero_page_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312 {
313 return single_hugepage_flag_show(kobj, attr, buf,
314 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
315 }
316 static ssize_t use_zero_page_store(struct kobject *kobj,
317 struct kobj_attribute *attr, const char *buf, size_t count)
318 {
319 return single_hugepage_flag_store(kobj, attr, buf, count,
320 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
321 }
322 static struct kobj_attribute use_zero_page_attr =
323 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
324
325 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
326 struct kobj_attribute *attr, char *buf)
327 {
328 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
329 }
330 static struct kobj_attribute hpage_pmd_size_attr =
331 __ATTR_RO(hpage_pmd_size);
332
333 static struct attribute *hugepage_attr[] = {
334 &enabled_attr.attr,
335 &defrag_attr.attr,
336 &use_zero_page_attr.attr,
337 &hpage_pmd_size_attr.attr,
338 #ifdef CONFIG_SHMEM
339 &shmem_enabled_attr.attr,
340 #endif
341 NULL,
342 };
343
344 static const struct attribute_group hugepage_attr_group = {
345 .attrs = hugepage_attr,
346 };
347
348 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
349 {
350 int err;
351
352 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
353 if (unlikely(!*hugepage_kobj)) {
354 pr_err("failed to create transparent hugepage kobject\n");
355 return -ENOMEM;
356 }
357
358 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
359 if (err) {
360 pr_err("failed to register transparent hugepage group\n");
361 goto delete_obj;
362 }
363
364 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
365 if (err) {
366 pr_err("failed to register transparent hugepage group\n");
367 goto remove_hp_group;
368 }
369
370 return 0;
371
372 remove_hp_group:
373 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
374 delete_obj:
375 kobject_put(*hugepage_kobj);
376 return err;
377 }
378
379 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380 {
381 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
382 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
383 kobject_put(hugepage_kobj);
384 }
385 #else
386 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
387 {
388 return 0;
389 }
390
391 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
392 {
393 }
394 #endif /* CONFIG_SYSFS */
395
396 static int __init hugepage_init(void)
397 {
398 int err;
399 struct kobject *hugepage_kobj;
400
401 if (!has_transparent_hugepage()) {
402 /*
403 * Hardware doesn't support hugepages, hence disable
404 * DAX PMD support.
405 */
406 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
407 return -EINVAL;
408 }
409
410 /*
411 * hugepages can't be allocated by the buddy allocator
412 */
413 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
414 /*
415 * we use page->mapping and page->index in second tail page
416 * as list_head: assuming THP order >= 2
417 */
418 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
419
420 err = hugepage_init_sysfs(&hugepage_kobj);
421 if (err)
422 goto err_sysfs;
423
424 err = khugepaged_init();
425 if (err)
426 goto err_slab;
427
428 err = register_shrinker(&huge_zero_page_shrinker);
429 if (err)
430 goto err_hzp_shrinker;
431 err = register_shrinker(&deferred_split_shrinker);
432 if (err)
433 goto err_split_shrinker;
434
435 /*
436 * By default disable transparent hugepages on smaller systems,
437 * where the extra memory used could hurt more than TLB overhead
438 * is likely to save. The admin can still enable it through /sys.
439 */
440 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
441 transparent_hugepage_flags = 0;
442 return 0;
443 }
444
445 err = start_stop_khugepaged();
446 if (err)
447 goto err_khugepaged;
448
449 return 0;
450 err_khugepaged:
451 unregister_shrinker(&deferred_split_shrinker);
452 err_split_shrinker:
453 unregister_shrinker(&huge_zero_page_shrinker);
454 err_hzp_shrinker:
455 khugepaged_destroy();
456 err_slab:
457 hugepage_exit_sysfs(hugepage_kobj);
458 err_sysfs:
459 return err;
460 }
461 subsys_initcall(hugepage_init);
462
463 static int __init setup_transparent_hugepage(char *str)
464 {
465 int ret = 0;
466 if (!str)
467 goto out;
468 if (!strcmp(str, "always")) {
469 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
473 ret = 1;
474 } else if (!strcmp(str, "madvise")) {
475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 &transparent_hugepage_flags);
477 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 &transparent_hugepage_flags);
479 ret = 1;
480 } else if (!strcmp(str, "never")) {
481 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
482 &transparent_hugepage_flags);
483 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
484 &transparent_hugepage_flags);
485 ret = 1;
486 }
487 out:
488 if (!ret)
489 pr_warn("transparent_hugepage= cannot parse, ignored\n");
490 return ret;
491 }
492 __setup("transparent_hugepage=", setup_transparent_hugepage);
493
494 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
495 {
496 if (likely(vma->vm_flags & VM_WRITE))
497 pmd = pmd_mkwrite(pmd);
498 return pmd;
499 }
500
501 #ifdef CONFIG_MEMCG
502 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
503 {
504 struct mem_cgroup *memcg = page_memcg(compound_head(page));
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 if (memcg)
508 return &memcg->deferred_split_queue;
509 else
510 return &pgdat->deferred_split_queue;
511 }
512 #else
513 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
514 {
515 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
516
517 return &pgdat->deferred_split_queue;
518 }
519 #endif
520
521 void prep_transhuge_page(struct page *page)
522 {
523 /*
524 * we use page->mapping and page->indexlru in second tail page
525 * as list_head: assuming THP order >= 2
526 */
527
528 INIT_LIST_HEAD(page_deferred_list(page));
529 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
530 }
531
532 bool is_transparent_hugepage(struct page *page)
533 {
534 if (!PageCompound(page))
535 return false;
536
537 page = compound_head(page);
538 return is_huge_zero_page(page) ||
539 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
540 }
541 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
542
543 static unsigned long __thp_get_unmapped_area(struct file *filp,
544 unsigned long addr, unsigned long len,
545 loff_t off, unsigned long flags, unsigned long size)
546 {
547 loff_t off_end = off + len;
548 loff_t off_align = round_up(off, size);
549 unsigned long len_pad, ret;
550
551 if (off_end <= off_align || (off_end - off_align) < size)
552 return 0;
553
554 len_pad = len + size;
555 if (len_pad < len || (off + len_pad) < off)
556 return 0;
557
558 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
559 off >> PAGE_SHIFT, flags);
560
561 /*
562 * The failure might be due to length padding. The caller will retry
563 * without the padding.
564 */
565 if (IS_ERR_VALUE(ret))
566 return 0;
567
568 /*
569 * Do not try to align to THP boundary if allocation at the address
570 * hint succeeds.
571 */
572 if (ret == addr)
573 return addr;
574
575 ret += (off - ret) & (size - 1);
576 return ret;
577 }
578
579 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
580 unsigned long len, unsigned long pgoff, unsigned long flags)
581 {
582 unsigned long ret;
583 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
584
585 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
586 goto out;
587
588 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
589 if (ret)
590 return ret;
591 out:
592 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
593 }
594 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
595
596 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
597 struct page *page, gfp_t gfp)
598 {
599 struct vm_area_struct *vma = vmf->vma;
600 pgtable_t pgtable;
601 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
602 vm_fault_t ret = 0;
603
604 VM_BUG_ON_PAGE(!PageCompound(page), page);
605
606 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
607 put_page(page);
608 count_vm_event(THP_FAULT_FALLBACK);
609 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
610 return VM_FAULT_FALLBACK;
611 }
612 cgroup_throttle_swaprate(page, gfp);
613
614 pgtable = pte_alloc_one(vma->vm_mm);
615 if (unlikely(!pgtable)) {
616 ret = VM_FAULT_OOM;
617 goto release;
618 }
619
620 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
621 /*
622 * The memory barrier inside __SetPageUptodate makes sure that
623 * clear_huge_page writes become visible before the set_pmd_at()
624 * write.
625 */
626 __SetPageUptodate(page);
627
628 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
629 if (unlikely(!pmd_none(*vmf->pmd))) {
630 goto unlock_release;
631 } else {
632 pmd_t entry;
633
634 ret = check_stable_address_space(vma->vm_mm);
635 if (ret)
636 goto unlock_release;
637
638 /* Deliver the page fault to userland */
639 if (userfaultfd_missing(vma)) {
640 spin_unlock(vmf->ptl);
641 put_page(page);
642 pte_free(vma->vm_mm, pgtable);
643 ret = handle_userfault(vmf, VM_UFFD_MISSING);
644 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
645 return ret;
646 }
647
648 entry = mk_huge_pmd(page, vma->vm_page_prot);
649 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650 page_add_new_anon_rmap(page, vma, haddr, true);
651 lru_cache_add_inactive_or_unevictable(page, vma);
652 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
653 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
654 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
655 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656 mm_inc_nr_ptes(vma->vm_mm);
657 spin_unlock(vmf->ptl);
658 count_vm_event(THP_FAULT_ALLOC);
659 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
660 }
661
662 return 0;
663 unlock_release:
664 spin_unlock(vmf->ptl);
665 release:
666 if (pgtable)
667 pte_free(vma->vm_mm, pgtable);
668 put_page(page);
669 return ret;
670
671 }
672
673 /*
674 * always: directly stall for all thp allocations
675 * defer: wake kswapd and fail if not immediately available
676 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
677 * fail if not immediately available
678 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
679 * available
680 * never: never stall for any thp allocation
681 */
682 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
683 {
684 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
685
686 /* Always do synchronous compaction */
687 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
688 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
689
690 /* Kick kcompactd and fail quickly */
691 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
692 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
693
694 /* Synchronous compaction if madvised, otherwise kick kcompactd */
695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
696 return GFP_TRANSHUGE_LIGHT |
697 (vma_madvised ? __GFP_DIRECT_RECLAIM :
698 __GFP_KSWAPD_RECLAIM);
699
700 /* Only do synchronous compaction if madvised */
701 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
702 return GFP_TRANSHUGE_LIGHT |
703 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
704
705 return GFP_TRANSHUGE_LIGHT;
706 }
707
708 /* Caller must hold page table lock. */
709 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
710 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
711 struct page *zero_page)
712 {
713 pmd_t entry;
714 if (!pmd_none(*pmd))
715 return;
716 entry = mk_pmd(zero_page, vma->vm_page_prot);
717 entry = pmd_mkhuge(entry);
718 if (pgtable)
719 pgtable_trans_huge_deposit(mm, pmd, pgtable);
720 set_pmd_at(mm, haddr, pmd, entry);
721 mm_inc_nr_ptes(mm);
722 }
723
724 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
725 {
726 struct vm_area_struct *vma = vmf->vma;
727 gfp_t gfp;
728 struct page *page;
729 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
730
731 if (!transhuge_vma_suitable(vma, haddr))
732 return VM_FAULT_FALLBACK;
733 if (unlikely(anon_vma_prepare(vma)))
734 return VM_FAULT_OOM;
735 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
736 return VM_FAULT_OOM;
737 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
738 !mm_forbids_zeropage(vma->vm_mm) &&
739 transparent_hugepage_use_zero_page()) {
740 pgtable_t pgtable;
741 struct page *zero_page;
742 vm_fault_t ret;
743 pgtable = pte_alloc_one(vma->vm_mm);
744 if (unlikely(!pgtable))
745 return VM_FAULT_OOM;
746 zero_page = mm_get_huge_zero_page(vma->vm_mm);
747 if (unlikely(!zero_page)) {
748 pte_free(vma->vm_mm, pgtable);
749 count_vm_event(THP_FAULT_FALLBACK);
750 return VM_FAULT_FALLBACK;
751 }
752 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
753 ret = 0;
754 if (pmd_none(*vmf->pmd)) {
755 ret = check_stable_address_space(vma->vm_mm);
756 if (ret) {
757 spin_unlock(vmf->ptl);
758 pte_free(vma->vm_mm, pgtable);
759 } else if (userfaultfd_missing(vma)) {
760 spin_unlock(vmf->ptl);
761 pte_free(vma->vm_mm, pgtable);
762 ret = handle_userfault(vmf, VM_UFFD_MISSING);
763 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
764 } else {
765 set_huge_zero_page(pgtable, vma->vm_mm, vma,
766 haddr, vmf->pmd, zero_page);
767 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
768 spin_unlock(vmf->ptl);
769 }
770 } else {
771 spin_unlock(vmf->ptl);
772 pte_free(vma->vm_mm, pgtable);
773 }
774 return ret;
775 }
776 gfp = vma_thp_gfp_mask(vma);
777 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
778 if (unlikely(!page)) {
779 count_vm_event(THP_FAULT_FALLBACK);
780 return VM_FAULT_FALLBACK;
781 }
782 prep_transhuge_page(page);
783 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
784 }
785
786 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
787 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
788 pgtable_t pgtable)
789 {
790 struct mm_struct *mm = vma->vm_mm;
791 pmd_t entry;
792 spinlock_t *ptl;
793
794 ptl = pmd_lock(mm, pmd);
795 if (!pmd_none(*pmd)) {
796 if (write) {
797 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
798 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
799 goto out_unlock;
800 }
801 entry = pmd_mkyoung(*pmd);
802 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
803 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
804 update_mmu_cache_pmd(vma, addr, pmd);
805 }
806
807 goto out_unlock;
808 }
809
810 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
811 if (pfn_t_devmap(pfn))
812 entry = pmd_mkdevmap(entry);
813 if (write) {
814 entry = pmd_mkyoung(pmd_mkdirty(entry));
815 entry = maybe_pmd_mkwrite(entry, vma);
816 }
817
818 if (pgtable) {
819 pgtable_trans_huge_deposit(mm, pmd, pgtable);
820 mm_inc_nr_ptes(mm);
821 pgtable = NULL;
822 }
823
824 set_pmd_at(mm, addr, pmd, entry);
825 update_mmu_cache_pmd(vma, addr, pmd);
826
827 out_unlock:
828 spin_unlock(ptl);
829 if (pgtable)
830 pte_free(mm, pgtable);
831 }
832
833 /**
834 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
835 * @vmf: Structure describing the fault
836 * @pfn: pfn to insert
837 * @pgprot: page protection to use
838 * @write: whether it's a write fault
839 *
840 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
841 * also consult the vmf_insert_mixed_prot() documentation when
842 * @pgprot != @vmf->vma->vm_page_prot.
843 *
844 * Return: vm_fault_t value.
845 */
846 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
847 pgprot_t pgprot, bool write)
848 {
849 unsigned long addr = vmf->address & PMD_MASK;
850 struct vm_area_struct *vma = vmf->vma;
851 pgtable_t pgtable = NULL;
852
853 /*
854 * If we had pmd_special, we could avoid all these restrictions,
855 * but we need to be consistent with PTEs and architectures that
856 * can't support a 'special' bit.
857 */
858 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
859 !pfn_t_devmap(pfn));
860 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
861 (VM_PFNMAP|VM_MIXEDMAP));
862 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
863
864 if (addr < vma->vm_start || addr >= vma->vm_end)
865 return VM_FAULT_SIGBUS;
866
867 if (arch_needs_pgtable_deposit()) {
868 pgtable = pte_alloc_one(vma->vm_mm);
869 if (!pgtable)
870 return VM_FAULT_OOM;
871 }
872
873 track_pfn_insert(vma, &pgprot, pfn);
874
875 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
876 return VM_FAULT_NOPAGE;
877 }
878 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
879
880 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
881 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
882 {
883 if (likely(vma->vm_flags & VM_WRITE))
884 pud = pud_mkwrite(pud);
885 return pud;
886 }
887
888 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
889 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
890 {
891 struct mm_struct *mm = vma->vm_mm;
892 pud_t entry;
893 spinlock_t *ptl;
894
895 ptl = pud_lock(mm, pud);
896 if (!pud_none(*pud)) {
897 if (write) {
898 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
899 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
900 goto out_unlock;
901 }
902 entry = pud_mkyoung(*pud);
903 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
904 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
905 update_mmu_cache_pud(vma, addr, pud);
906 }
907 goto out_unlock;
908 }
909
910 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
911 if (pfn_t_devmap(pfn))
912 entry = pud_mkdevmap(entry);
913 if (write) {
914 entry = pud_mkyoung(pud_mkdirty(entry));
915 entry = maybe_pud_mkwrite(entry, vma);
916 }
917 set_pud_at(mm, addr, pud, entry);
918 update_mmu_cache_pud(vma, addr, pud);
919
920 out_unlock:
921 spin_unlock(ptl);
922 }
923
924 /**
925 * vmf_insert_pfn_pud_prot - insert a pud size pfn
926 * @vmf: Structure describing the fault
927 * @pfn: pfn to insert
928 * @pgprot: page protection to use
929 * @write: whether it's a write fault
930 *
931 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
932 * also consult the vmf_insert_mixed_prot() documentation when
933 * @pgprot != @vmf->vma->vm_page_prot.
934 *
935 * Return: vm_fault_t value.
936 */
937 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
938 pgprot_t pgprot, bool write)
939 {
940 unsigned long addr = vmf->address & PUD_MASK;
941 struct vm_area_struct *vma = vmf->vma;
942
943 /*
944 * If we had pud_special, we could avoid all these restrictions,
945 * but we need to be consistent with PTEs and architectures that
946 * can't support a 'special' bit.
947 */
948 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
949 !pfn_t_devmap(pfn));
950 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
951 (VM_PFNMAP|VM_MIXEDMAP));
952 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
953
954 if (addr < vma->vm_start || addr >= vma->vm_end)
955 return VM_FAULT_SIGBUS;
956
957 track_pfn_insert(vma, &pgprot, pfn);
958
959 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
960 return VM_FAULT_NOPAGE;
961 }
962 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
963 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
964
965 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
966 pmd_t *pmd, int flags)
967 {
968 pmd_t _pmd;
969
970 _pmd = pmd_mkyoung(*pmd);
971 if (flags & FOLL_WRITE)
972 _pmd = pmd_mkdirty(_pmd);
973 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
974 pmd, _pmd, flags & FOLL_WRITE))
975 update_mmu_cache_pmd(vma, addr, pmd);
976 }
977
978 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
979 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
980 {
981 unsigned long pfn = pmd_pfn(*pmd);
982 struct mm_struct *mm = vma->vm_mm;
983 struct page *page;
984
985 assert_spin_locked(pmd_lockptr(mm, pmd));
986
987 /*
988 * When we COW a devmap PMD entry, we split it into PTEs, so we should
989 * not be in this function with `flags & FOLL_COW` set.
990 */
991 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
992
993 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
994 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
995 (FOLL_PIN | FOLL_GET)))
996 return NULL;
997
998 if (flags & FOLL_WRITE && !pmd_write(*pmd))
999 return NULL;
1000
1001 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002 /* pass */;
1003 else
1004 return NULL;
1005
1006 if (flags & FOLL_TOUCH)
1007 touch_pmd(vma, addr, pmd, flags);
1008
1009 /*
1010 * device mapped pages can only be returned if the
1011 * caller will manage the page reference count.
1012 */
1013 if (!(flags & (FOLL_GET | FOLL_PIN)))
1014 return ERR_PTR(-EEXIST);
1015
1016 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017 *pgmap = get_dev_pagemap(pfn, *pgmap);
1018 if (!*pgmap)
1019 return ERR_PTR(-EFAULT);
1020 page = pfn_to_page(pfn);
1021 if (!try_grab_page(page, flags))
1022 page = ERR_PTR(-ENOMEM);
1023
1024 return page;
1025 }
1026
1027 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030 {
1031 spinlock_t *dst_ptl, *src_ptl;
1032 struct page *src_page;
1033 pmd_t pmd;
1034 pgtable_t pgtable = NULL;
1035 int ret = -ENOMEM;
1036
1037 /* Skip if can be re-fill on fault */
1038 if (!vma_is_anonymous(dst_vma))
1039 return 0;
1040
1041 pgtable = pte_alloc_one(dst_mm);
1042 if (unlikely(!pgtable))
1043 goto out;
1044
1045 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046 src_ptl = pmd_lockptr(src_mm, src_pmd);
1047 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048
1049 ret = -EAGAIN;
1050 pmd = *src_pmd;
1051
1052 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053 if (unlikely(is_swap_pmd(pmd))) {
1054 swp_entry_t entry = pmd_to_swp_entry(pmd);
1055
1056 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 if (is_write_migration_entry(entry)) {
1058 make_migration_entry_read(&entry);
1059 pmd = swp_entry_to_pmd(entry);
1060 if (pmd_swp_soft_dirty(*src_pmd))
1061 pmd = pmd_swp_mksoft_dirty(pmd);
1062 if (pmd_swp_uffd_wp(*src_pmd))
1063 pmd = pmd_swp_mkuffd_wp(pmd);
1064 set_pmd_at(src_mm, addr, src_pmd, pmd);
1065 }
1066 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1067 mm_inc_nr_ptes(dst_mm);
1068 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1069 if (!userfaultfd_wp(dst_vma))
1070 pmd = pmd_swp_clear_uffd_wp(pmd);
1071 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1072 ret = 0;
1073 goto out_unlock;
1074 }
1075 #endif
1076
1077 if (unlikely(!pmd_trans_huge(pmd))) {
1078 pte_free(dst_mm, pgtable);
1079 goto out_unlock;
1080 }
1081 /*
1082 * When page table lock is held, the huge zero pmd should not be
1083 * under splitting since we don't split the page itself, only pmd to
1084 * a page table.
1085 */
1086 if (is_huge_zero_pmd(pmd)) {
1087 /*
1088 * get_huge_zero_page() will never allocate a new page here,
1089 * since we already have a zero page to copy. It just takes a
1090 * reference.
1091 */
1092 mm_get_huge_zero_page(dst_mm);
1093 goto out_zero_page;
1094 }
1095
1096 src_page = pmd_page(pmd);
1097 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1098
1099 /*
1100 * If this page is a potentially pinned page, split and retry the fault
1101 * with smaller page size. Normally this should not happen because the
1102 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1103 * best effort that the pinned pages won't be replaced by another
1104 * random page during the coming copy-on-write.
1105 */
1106 if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1107 pte_free(dst_mm, pgtable);
1108 spin_unlock(src_ptl);
1109 spin_unlock(dst_ptl);
1110 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1111 return -EAGAIN;
1112 }
1113
1114 get_page(src_page);
1115 page_dup_rmap(src_page, true);
1116 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1117 out_zero_page:
1118 mm_inc_nr_ptes(dst_mm);
1119 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1120 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1121 if (!userfaultfd_wp(dst_vma))
1122 pmd = pmd_clear_uffd_wp(pmd);
1123 pmd = pmd_mkold(pmd_wrprotect(pmd));
1124 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1125
1126 ret = 0;
1127 out_unlock:
1128 spin_unlock(src_ptl);
1129 spin_unlock(dst_ptl);
1130 out:
1131 return ret;
1132 }
1133
1134 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1135 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1136 pud_t *pud, int flags)
1137 {
1138 pud_t _pud;
1139
1140 _pud = pud_mkyoung(*pud);
1141 if (flags & FOLL_WRITE)
1142 _pud = pud_mkdirty(_pud);
1143 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1144 pud, _pud, flags & FOLL_WRITE))
1145 update_mmu_cache_pud(vma, addr, pud);
1146 }
1147
1148 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1149 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1150 {
1151 unsigned long pfn = pud_pfn(*pud);
1152 struct mm_struct *mm = vma->vm_mm;
1153 struct page *page;
1154
1155 assert_spin_locked(pud_lockptr(mm, pud));
1156
1157 if (flags & FOLL_WRITE && !pud_write(*pud))
1158 return NULL;
1159
1160 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1161 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1162 (FOLL_PIN | FOLL_GET)))
1163 return NULL;
1164
1165 if (pud_present(*pud) && pud_devmap(*pud))
1166 /* pass */;
1167 else
1168 return NULL;
1169
1170 if (flags & FOLL_TOUCH)
1171 touch_pud(vma, addr, pud, flags);
1172
1173 /*
1174 * device mapped pages can only be returned if the
1175 * caller will manage the page reference count.
1176 *
1177 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1178 */
1179 if (!(flags & (FOLL_GET | FOLL_PIN)))
1180 return ERR_PTR(-EEXIST);
1181
1182 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1183 *pgmap = get_dev_pagemap(pfn, *pgmap);
1184 if (!*pgmap)
1185 return ERR_PTR(-EFAULT);
1186 page = pfn_to_page(pfn);
1187 if (!try_grab_page(page, flags))
1188 page = ERR_PTR(-ENOMEM);
1189
1190 return page;
1191 }
1192
1193 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1194 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1195 struct vm_area_struct *vma)
1196 {
1197 spinlock_t *dst_ptl, *src_ptl;
1198 pud_t pud;
1199 int ret;
1200
1201 dst_ptl = pud_lock(dst_mm, dst_pud);
1202 src_ptl = pud_lockptr(src_mm, src_pud);
1203 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1204
1205 ret = -EAGAIN;
1206 pud = *src_pud;
1207 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1208 goto out_unlock;
1209
1210 /*
1211 * When page table lock is held, the huge zero pud should not be
1212 * under splitting since we don't split the page itself, only pud to
1213 * a page table.
1214 */
1215 if (is_huge_zero_pud(pud)) {
1216 /* No huge zero pud yet */
1217 }
1218
1219 /* Please refer to comments in copy_huge_pmd() */
1220 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1221 spin_unlock(src_ptl);
1222 spin_unlock(dst_ptl);
1223 __split_huge_pud(vma, src_pud, addr);
1224 return -EAGAIN;
1225 }
1226
1227 pudp_set_wrprotect(src_mm, addr, src_pud);
1228 pud = pud_mkold(pud_wrprotect(pud));
1229 set_pud_at(dst_mm, addr, dst_pud, pud);
1230
1231 ret = 0;
1232 out_unlock:
1233 spin_unlock(src_ptl);
1234 spin_unlock(dst_ptl);
1235 return ret;
1236 }
1237
1238 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1239 {
1240 pud_t entry;
1241 unsigned long haddr;
1242 bool write = vmf->flags & FAULT_FLAG_WRITE;
1243
1244 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1245 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1246 goto unlock;
1247
1248 entry = pud_mkyoung(orig_pud);
1249 if (write)
1250 entry = pud_mkdirty(entry);
1251 haddr = vmf->address & HPAGE_PUD_MASK;
1252 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1253 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1254
1255 unlock:
1256 spin_unlock(vmf->ptl);
1257 }
1258 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1259
1260 void huge_pmd_set_accessed(struct vm_fault *vmf)
1261 {
1262 pmd_t entry;
1263 unsigned long haddr;
1264 bool write = vmf->flags & FAULT_FLAG_WRITE;
1265 pmd_t orig_pmd = vmf->orig_pmd;
1266
1267 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1268 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1269 goto unlock;
1270
1271 entry = pmd_mkyoung(orig_pmd);
1272 if (write)
1273 entry = pmd_mkdirty(entry);
1274 haddr = vmf->address & HPAGE_PMD_MASK;
1275 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1276 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1277
1278 unlock:
1279 spin_unlock(vmf->ptl);
1280 }
1281
1282 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1283 {
1284 struct vm_area_struct *vma = vmf->vma;
1285 struct page *page;
1286 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1287 pmd_t orig_pmd = vmf->orig_pmd;
1288
1289 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1290 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1291
1292 if (is_huge_zero_pmd(orig_pmd))
1293 goto fallback;
1294
1295 spin_lock(vmf->ptl);
1296
1297 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1298 spin_unlock(vmf->ptl);
1299 return 0;
1300 }
1301
1302 page = pmd_page(orig_pmd);
1303 VM_BUG_ON_PAGE(!PageHead(page), page);
1304
1305 /* Lock page for reuse_swap_page() */
1306 if (!trylock_page(page)) {
1307 get_page(page);
1308 spin_unlock(vmf->ptl);
1309 lock_page(page);
1310 spin_lock(vmf->ptl);
1311 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1312 spin_unlock(vmf->ptl);
1313 unlock_page(page);
1314 put_page(page);
1315 return 0;
1316 }
1317 put_page(page);
1318 }
1319
1320 /*
1321 * We can only reuse the page if nobody else maps the huge page or it's
1322 * part.
1323 */
1324 if (reuse_swap_page(page, NULL)) {
1325 pmd_t entry;
1326 entry = pmd_mkyoung(orig_pmd);
1327 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1328 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1329 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1330 unlock_page(page);
1331 spin_unlock(vmf->ptl);
1332 return VM_FAULT_WRITE;
1333 }
1334
1335 unlock_page(page);
1336 spin_unlock(vmf->ptl);
1337 fallback:
1338 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1339 return VM_FAULT_FALLBACK;
1340 }
1341
1342 /*
1343 * FOLL_FORCE can write to even unwritable pmd's, but only
1344 * after we've gone through a COW cycle and they are dirty.
1345 */
1346 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1347 {
1348 return pmd_write(pmd) ||
1349 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1350 }
1351
1352 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1353 unsigned long addr,
1354 pmd_t *pmd,
1355 unsigned int flags)
1356 {
1357 struct mm_struct *mm = vma->vm_mm;
1358 struct page *page = NULL;
1359
1360 assert_spin_locked(pmd_lockptr(mm, pmd));
1361
1362 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1363 goto out;
1364
1365 /* Avoid dumping huge zero page */
1366 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1367 return ERR_PTR(-EFAULT);
1368
1369 /* Full NUMA hinting faults to serialise migration in fault paths */
1370 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1371 goto out;
1372
1373 page = pmd_page(*pmd);
1374 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1375
1376 if (!try_grab_page(page, flags))
1377 return ERR_PTR(-ENOMEM);
1378
1379 if (flags & FOLL_TOUCH)
1380 touch_pmd(vma, addr, pmd, flags);
1381
1382 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1383 /*
1384 * We don't mlock() pte-mapped THPs. This way we can avoid
1385 * leaking mlocked pages into non-VM_LOCKED VMAs.
1386 *
1387 * For anon THP:
1388 *
1389 * In most cases the pmd is the only mapping of the page as we
1390 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1391 * writable private mappings in populate_vma_page_range().
1392 *
1393 * The only scenario when we have the page shared here is if we
1394 * mlocking read-only mapping shared over fork(). We skip
1395 * mlocking such pages.
1396 *
1397 * For file THP:
1398 *
1399 * We can expect PageDoubleMap() to be stable under page lock:
1400 * for file pages we set it in page_add_file_rmap(), which
1401 * requires page to be locked.
1402 */
1403
1404 if (PageAnon(page) && compound_mapcount(page) != 1)
1405 goto skip_mlock;
1406 if (PageDoubleMap(page) || !page->mapping)
1407 goto skip_mlock;
1408 if (!trylock_page(page))
1409 goto skip_mlock;
1410 if (page->mapping && !PageDoubleMap(page))
1411 mlock_vma_page(page);
1412 unlock_page(page);
1413 }
1414 skip_mlock:
1415 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1416 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1417
1418 out:
1419 return page;
1420 }
1421
1422 /* NUMA hinting page fault entry point for trans huge pmds */
1423 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1424 {
1425 struct vm_area_struct *vma = vmf->vma;
1426 pmd_t oldpmd = vmf->orig_pmd;
1427 pmd_t pmd;
1428 struct page *page;
1429 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1430 int page_nid = NUMA_NO_NODE;
1431 int target_nid, last_cpupid = -1;
1432 bool migrated = false;
1433 bool was_writable = pmd_savedwrite(oldpmd);
1434 int flags = 0;
1435
1436 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1437 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1438 spin_unlock(vmf->ptl);
1439 goto out;
1440 }
1441
1442 /*
1443 * Since we took the NUMA fault, we must have observed the !accessible
1444 * bit. Make sure all other CPUs agree with that, to avoid them
1445 * modifying the page we're about to migrate.
1446 *
1447 * Must be done under PTL such that we'll observe the relevant
1448 * inc_tlb_flush_pending().
1449 *
1450 * We are not sure a pending tlb flush here is for a huge page
1451 * mapping or not. Hence use the tlb range variant
1452 */
1453 if (mm_tlb_flush_pending(vma->vm_mm)) {
1454 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1455 /*
1456 * change_huge_pmd() released the pmd lock before
1457 * invalidating the secondary MMUs sharing the primary
1458 * MMU pagetables (with ->invalidate_range()). The
1459 * mmu_notifier_invalidate_range_end() (which
1460 * internally calls ->invalidate_range()) in
1461 * change_pmd_range() will run after us, so we can't
1462 * rely on it here and we need an explicit invalidate.
1463 */
1464 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1465 haddr + HPAGE_PMD_SIZE);
1466 }
1467
1468 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1469 page = vm_normal_page_pmd(vma, haddr, pmd);
1470 if (!page)
1471 goto out_map;
1472
1473 /* See similar comment in do_numa_page for explanation */
1474 if (!was_writable)
1475 flags |= TNF_NO_GROUP;
1476
1477 page_nid = page_to_nid(page);
1478 last_cpupid = page_cpupid_last(page);
1479 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1480 &flags);
1481
1482 if (target_nid == NUMA_NO_NODE) {
1483 put_page(page);
1484 goto out_map;
1485 }
1486
1487 spin_unlock(vmf->ptl);
1488
1489 migrated = migrate_misplaced_page(page, vma, target_nid);
1490 if (migrated) {
1491 flags |= TNF_MIGRATED;
1492 page_nid = target_nid;
1493 } else {
1494 flags |= TNF_MIGRATE_FAIL;
1495 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1496 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1497 spin_unlock(vmf->ptl);
1498 goto out;
1499 }
1500 goto out_map;
1501 }
1502
1503 out:
1504 if (page_nid != NUMA_NO_NODE)
1505 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1506 flags);
1507
1508 return 0;
1509
1510 out_map:
1511 /* Restore the PMD */
1512 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1513 pmd = pmd_mkyoung(pmd);
1514 if (was_writable)
1515 pmd = pmd_mkwrite(pmd);
1516 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1517 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1518 spin_unlock(vmf->ptl);
1519 goto out;
1520 }
1521
1522 /*
1523 * Return true if we do MADV_FREE successfully on entire pmd page.
1524 * Otherwise, return false.
1525 */
1526 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1527 pmd_t *pmd, unsigned long addr, unsigned long next)
1528 {
1529 spinlock_t *ptl;
1530 pmd_t orig_pmd;
1531 struct page *page;
1532 struct mm_struct *mm = tlb->mm;
1533 bool ret = false;
1534
1535 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1536
1537 ptl = pmd_trans_huge_lock(pmd, vma);
1538 if (!ptl)
1539 goto out_unlocked;
1540
1541 orig_pmd = *pmd;
1542 if (is_huge_zero_pmd(orig_pmd))
1543 goto out;
1544
1545 if (unlikely(!pmd_present(orig_pmd))) {
1546 VM_BUG_ON(thp_migration_supported() &&
1547 !is_pmd_migration_entry(orig_pmd));
1548 goto out;
1549 }
1550
1551 page = pmd_page(orig_pmd);
1552 /*
1553 * If other processes are mapping this page, we couldn't discard
1554 * the page unless they all do MADV_FREE so let's skip the page.
1555 */
1556 if (total_mapcount(page) != 1)
1557 goto out;
1558
1559 if (!trylock_page(page))
1560 goto out;
1561
1562 /*
1563 * If user want to discard part-pages of THP, split it so MADV_FREE
1564 * will deactivate only them.
1565 */
1566 if (next - addr != HPAGE_PMD_SIZE) {
1567 get_page(page);
1568 spin_unlock(ptl);
1569 split_huge_page(page);
1570 unlock_page(page);
1571 put_page(page);
1572 goto out_unlocked;
1573 }
1574
1575 if (PageDirty(page))
1576 ClearPageDirty(page);
1577 unlock_page(page);
1578
1579 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1580 pmdp_invalidate(vma, addr, pmd);
1581 orig_pmd = pmd_mkold(orig_pmd);
1582 orig_pmd = pmd_mkclean(orig_pmd);
1583
1584 set_pmd_at(mm, addr, pmd, orig_pmd);
1585 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1586 }
1587
1588 mark_page_lazyfree(page);
1589 ret = true;
1590 out:
1591 spin_unlock(ptl);
1592 out_unlocked:
1593 return ret;
1594 }
1595
1596 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1597 {
1598 pgtable_t pgtable;
1599
1600 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1601 pte_free(mm, pgtable);
1602 mm_dec_nr_ptes(mm);
1603 }
1604
1605 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1606 pmd_t *pmd, unsigned long addr)
1607 {
1608 pmd_t orig_pmd;
1609 spinlock_t *ptl;
1610
1611 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1612
1613 ptl = __pmd_trans_huge_lock(pmd, vma);
1614 if (!ptl)
1615 return 0;
1616 /*
1617 * For architectures like ppc64 we look at deposited pgtable
1618 * when calling pmdp_huge_get_and_clear. So do the
1619 * pgtable_trans_huge_withdraw after finishing pmdp related
1620 * operations.
1621 */
1622 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1623 tlb->fullmm);
1624 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1625 if (vma_is_special_huge(vma)) {
1626 if (arch_needs_pgtable_deposit())
1627 zap_deposited_table(tlb->mm, pmd);
1628 spin_unlock(ptl);
1629 } else if (is_huge_zero_pmd(orig_pmd)) {
1630 zap_deposited_table(tlb->mm, pmd);
1631 spin_unlock(ptl);
1632 } else {
1633 struct page *page = NULL;
1634 int flush_needed = 1;
1635
1636 if (pmd_present(orig_pmd)) {
1637 page = pmd_page(orig_pmd);
1638 page_remove_rmap(page, true);
1639 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1640 VM_BUG_ON_PAGE(!PageHead(page), page);
1641 } else if (thp_migration_supported()) {
1642 swp_entry_t entry;
1643
1644 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1645 entry = pmd_to_swp_entry(orig_pmd);
1646 page = migration_entry_to_page(entry);
1647 flush_needed = 0;
1648 } else
1649 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1650
1651 if (PageAnon(page)) {
1652 zap_deposited_table(tlb->mm, pmd);
1653 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1654 } else {
1655 if (arch_needs_pgtable_deposit())
1656 zap_deposited_table(tlb->mm, pmd);
1657 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1658 }
1659
1660 spin_unlock(ptl);
1661 if (flush_needed)
1662 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1663 }
1664 return 1;
1665 }
1666
1667 #ifndef pmd_move_must_withdraw
1668 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1669 spinlock_t *old_pmd_ptl,
1670 struct vm_area_struct *vma)
1671 {
1672 /*
1673 * With split pmd lock we also need to move preallocated
1674 * PTE page table if new_pmd is on different PMD page table.
1675 *
1676 * We also don't deposit and withdraw tables for file pages.
1677 */
1678 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1679 }
1680 #endif
1681
1682 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1683 {
1684 #ifdef CONFIG_MEM_SOFT_DIRTY
1685 if (unlikely(is_pmd_migration_entry(pmd)))
1686 pmd = pmd_swp_mksoft_dirty(pmd);
1687 else if (pmd_present(pmd))
1688 pmd = pmd_mksoft_dirty(pmd);
1689 #endif
1690 return pmd;
1691 }
1692
1693 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1694 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1695 {
1696 spinlock_t *old_ptl, *new_ptl;
1697 pmd_t pmd;
1698 struct mm_struct *mm = vma->vm_mm;
1699 bool force_flush = false;
1700
1701 /*
1702 * The destination pmd shouldn't be established, free_pgtables()
1703 * should have release it.
1704 */
1705 if (WARN_ON(!pmd_none(*new_pmd))) {
1706 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1707 return false;
1708 }
1709
1710 /*
1711 * We don't have to worry about the ordering of src and dst
1712 * ptlocks because exclusive mmap_lock prevents deadlock.
1713 */
1714 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1715 if (old_ptl) {
1716 new_ptl = pmd_lockptr(mm, new_pmd);
1717 if (new_ptl != old_ptl)
1718 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1719 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1720 if (pmd_present(pmd))
1721 force_flush = true;
1722 VM_BUG_ON(!pmd_none(*new_pmd));
1723
1724 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1725 pgtable_t pgtable;
1726 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1727 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1728 }
1729 pmd = move_soft_dirty_pmd(pmd);
1730 set_pmd_at(mm, new_addr, new_pmd, pmd);
1731 if (force_flush)
1732 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1733 if (new_ptl != old_ptl)
1734 spin_unlock(new_ptl);
1735 spin_unlock(old_ptl);
1736 return true;
1737 }
1738 return false;
1739 }
1740
1741 /*
1742 * Returns
1743 * - 0 if PMD could not be locked
1744 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1745 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1746 */
1747 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1748 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1749 {
1750 struct mm_struct *mm = vma->vm_mm;
1751 spinlock_t *ptl;
1752 pmd_t entry;
1753 bool preserve_write;
1754 int ret;
1755 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1756 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1757 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1758
1759 ptl = __pmd_trans_huge_lock(pmd, vma);
1760 if (!ptl)
1761 return 0;
1762
1763 preserve_write = prot_numa && pmd_write(*pmd);
1764 ret = 1;
1765
1766 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1767 if (is_swap_pmd(*pmd)) {
1768 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1769
1770 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1771 if (is_write_migration_entry(entry)) {
1772 pmd_t newpmd;
1773 /*
1774 * A protection check is difficult so
1775 * just be safe and disable write
1776 */
1777 make_migration_entry_read(&entry);
1778 newpmd = swp_entry_to_pmd(entry);
1779 if (pmd_swp_soft_dirty(*pmd))
1780 newpmd = pmd_swp_mksoft_dirty(newpmd);
1781 if (pmd_swp_uffd_wp(*pmd))
1782 newpmd = pmd_swp_mkuffd_wp(newpmd);
1783 set_pmd_at(mm, addr, pmd, newpmd);
1784 }
1785 goto unlock;
1786 }
1787 #endif
1788
1789 /*
1790 * Avoid trapping faults against the zero page. The read-only
1791 * data is likely to be read-cached on the local CPU and
1792 * local/remote hits to the zero page are not interesting.
1793 */
1794 if (prot_numa && is_huge_zero_pmd(*pmd))
1795 goto unlock;
1796
1797 if (prot_numa && pmd_protnone(*pmd))
1798 goto unlock;
1799
1800 /*
1801 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1802 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1803 * which is also under mmap_read_lock(mm):
1804 *
1805 * CPU0: CPU1:
1806 * change_huge_pmd(prot_numa=1)
1807 * pmdp_huge_get_and_clear_notify()
1808 * madvise_dontneed()
1809 * zap_pmd_range()
1810 * pmd_trans_huge(*pmd) == 0 (without ptl)
1811 * // skip the pmd
1812 * set_pmd_at();
1813 * // pmd is re-established
1814 *
1815 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1816 * which may break userspace.
1817 *
1818 * pmdp_invalidate() is required to make sure we don't miss
1819 * dirty/young flags set by hardware.
1820 */
1821 entry = pmdp_invalidate(vma, addr, pmd);
1822
1823 entry = pmd_modify(entry, newprot);
1824 if (preserve_write)
1825 entry = pmd_mk_savedwrite(entry);
1826 if (uffd_wp) {
1827 entry = pmd_wrprotect(entry);
1828 entry = pmd_mkuffd_wp(entry);
1829 } else if (uffd_wp_resolve) {
1830 /*
1831 * Leave the write bit to be handled by PF interrupt
1832 * handler, then things like COW could be properly
1833 * handled.
1834 */
1835 entry = pmd_clear_uffd_wp(entry);
1836 }
1837 ret = HPAGE_PMD_NR;
1838 set_pmd_at(mm, addr, pmd, entry);
1839 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1840 unlock:
1841 spin_unlock(ptl);
1842 return ret;
1843 }
1844
1845 /*
1846 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1847 *
1848 * Note that if it returns page table lock pointer, this routine returns without
1849 * unlocking page table lock. So callers must unlock it.
1850 */
1851 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1852 {
1853 spinlock_t *ptl;
1854 ptl = pmd_lock(vma->vm_mm, pmd);
1855 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1856 pmd_devmap(*pmd)))
1857 return ptl;
1858 spin_unlock(ptl);
1859 return NULL;
1860 }
1861
1862 /*
1863 * Returns true if a given pud maps a thp, false otherwise.
1864 *
1865 * Note that if it returns true, this routine returns without unlocking page
1866 * table lock. So callers must unlock it.
1867 */
1868 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1869 {
1870 spinlock_t *ptl;
1871
1872 ptl = pud_lock(vma->vm_mm, pud);
1873 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1874 return ptl;
1875 spin_unlock(ptl);
1876 return NULL;
1877 }
1878
1879 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1880 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1881 pud_t *pud, unsigned long addr)
1882 {
1883 spinlock_t *ptl;
1884
1885 ptl = __pud_trans_huge_lock(pud, vma);
1886 if (!ptl)
1887 return 0;
1888 /*
1889 * For architectures like ppc64 we look at deposited pgtable
1890 * when calling pudp_huge_get_and_clear. So do the
1891 * pgtable_trans_huge_withdraw after finishing pudp related
1892 * operations.
1893 */
1894 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1895 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1896 if (vma_is_special_huge(vma)) {
1897 spin_unlock(ptl);
1898 /* No zero page support yet */
1899 } else {
1900 /* No support for anonymous PUD pages yet */
1901 BUG();
1902 }
1903 return 1;
1904 }
1905
1906 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1907 unsigned long haddr)
1908 {
1909 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1910 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1911 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1912 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1913
1914 count_vm_event(THP_SPLIT_PUD);
1915
1916 pudp_huge_clear_flush_notify(vma, haddr, pud);
1917 }
1918
1919 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1920 unsigned long address)
1921 {
1922 spinlock_t *ptl;
1923 struct mmu_notifier_range range;
1924
1925 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1926 address & HPAGE_PUD_MASK,
1927 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1928 mmu_notifier_invalidate_range_start(&range);
1929 ptl = pud_lock(vma->vm_mm, pud);
1930 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1931 goto out;
1932 __split_huge_pud_locked(vma, pud, range.start);
1933
1934 out:
1935 spin_unlock(ptl);
1936 /*
1937 * No need to double call mmu_notifier->invalidate_range() callback as
1938 * the above pudp_huge_clear_flush_notify() did already call it.
1939 */
1940 mmu_notifier_invalidate_range_only_end(&range);
1941 }
1942 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1943
1944 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1945 unsigned long haddr, pmd_t *pmd)
1946 {
1947 struct mm_struct *mm = vma->vm_mm;
1948 pgtable_t pgtable;
1949 pmd_t _pmd;
1950 int i;
1951
1952 /*
1953 * Leave pmd empty until pte is filled note that it is fine to delay
1954 * notification until mmu_notifier_invalidate_range_end() as we are
1955 * replacing a zero pmd write protected page with a zero pte write
1956 * protected page.
1957 *
1958 * See Documentation/vm/mmu_notifier.rst
1959 */
1960 pmdp_huge_clear_flush(vma, haddr, pmd);
1961
1962 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1963 pmd_populate(mm, &_pmd, pgtable);
1964
1965 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1966 pte_t *pte, entry;
1967 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1968 entry = pte_mkspecial(entry);
1969 pte = pte_offset_map(&_pmd, haddr);
1970 VM_BUG_ON(!pte_none(*pte));
1971 set_pte_at(mm, haddr, pte, entry);
1972 pte_unmap(pte);
1973 }
1974 smp_wmb(); /* make pte visible before pmd */
1975 pmd_populate(mm, pmd, pgtable);
1976 }
1977
1978 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1979 unsigned long haddr, bool freeze)
1980 {
1981 struct mm_struct *mm = vma->vm_mm;
1982 struct page *page;
1983 pgtable_t pgtable;
1984 pmd_t old_pmd, _pmd;
1985 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1986 unsigned long addr;
1987 int i;
1988
1989 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1990 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1991 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1992 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1993 && !pmd_devmap(*pmd));
1994
1995 count_vm_event(THP_SPLIT_PMD);
1996
1997 if (!vma_is_anonymous(vma)) {
1998 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1999 /*
2000 * We are going to unmap this huge page. So
2001 * just go ahead and zap it
2002 */
2003 if (arch_needs_pgtable_deposit())
2004 zap_deposited_table(mm, pmd);
2005 if (vma_is_special_huge(vma))
2006 return;
2007 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2008 swp_entry_t entry;
2009
2010 entry = pmd_to_swp_entry(old_pmd);
2011 page = migration_entry_to_page(entry);
2012 } else {
2013 page = pmd_page(old_pmd);
2014 if (!PageDirty(page) && pmd_dirty(old_pmd))
2015 set_page_dirty(page);
2016 if (!PageReferenced(page) && pmd_young(old_pmd))
2017 SetPageReferenced(page);
2018 page_remove_rmap(page, true);
2019 put_page(page);
2020 }
2021 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2022 return;
2023 }
2024
2025 if (is_huge_zero_pmd(*pmd)) {
2026 /*
2027 * FIXME: Do we want to invalidate secondary mmu by calling
2028 * mmu_notifier_invalidate_range() see comments below inside
2029 * __split_huge_pmd() ?
2030 *
2031 * We are going from a zero huge page write protected to zero
2032 * small page also write protected so it does not seems useful
2033 * to invalidate secondary mmu at this time.
2034 */
2035 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2036 }
2037
2038 /*
2039 * Up to this point the pmd is present and huge and userland has the
2040 * whole access to the hugepage during the split (which happens in
2041 * place). If we overwrite the pmd with the not-huge version pointing
2042 * to the pte here (which of course we could if all CPUs were bug
2043 * free), userland could trigger a small page size TLB miss on the
2044 * small sized TLB while the hugepage TLB entry is still established in
2045 * the huge TLB. Some CPU doesn't like that.
2046 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2047 * 383 on page 105. Intel should be safe but is also warns that it's
2048 * only safe if the permission and cache attributes of the two entries
2049 * loaded in the two TLB is identical (which should be the case here).
2050 * But it is generally safer to never allow small and huge TLB entries
2051 * for the same virtual address to be loaded simultaneously. So instead
2052 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2053 * current pmd notpresent (atomically because here the pmd_trans_huge
2054 * must remain set at all times on the pmd until the split is complete
2055 * for this pmd), then we flush the SMP TLB and finally we write the
2056 * non-huge version of the pmd entry with pmd_populate.
2057 */
2058 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2059
2060 pmd_migration = is_pmd_migration_entry(old_pmd);
2061 if (unlikely(pmd_migration)) {
2062 swp_entry_t entry;
2063
2064 entry = pmd_to_swp_entry(old_pmd);
2065 page = migration_entry_to_page(entry);
2066 write = is_write_migration_entry(entry);
2067 young = false;
2068 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2069 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2070 } else {
2071 page = pmd_page(old_pmd);
2072 if (pmd_dirty(old_pmd))
2073 SetPageDirty(page);
2074 write = pmd_write(old_pmd);
2075 young = pmd_young(old_pmd);
2076 soft_dirty = pmd_soft_dirty(old_pmd);
2077 uffd_wp = pmd_uffd_wp(old_pmd);
2078 }
2079 VM_BUG_ON_PAGE(!page_count(page), page);
2080 page_ref_add(page, HPAGE_PMD_NR - 1);
2081
2082 /*
2083 * Withdraw the table only after we mark the pmd entry invalid.
2084 * This's critical for some architectures (Power).
2085 */
2086 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2087 pmd_populate(mm, &_pmd, pgtable);
2088
2089 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2090 pte_t entry, *pte;
2091 /*
2092 * Note that NUMA hinting access restrictions are not
2093 * transferred to avoid any possibility of altering
2094 * permissions across VMAs.
2095 */
2096 if (freeze || pmd_migration) {
2097 swp_entry_t swp_entry;
2098 swp_entry = make_migration_entry(page + i, write);
2099 entry = swp_entry_to_pte(swp_entry);
2100 if (soft_dirty)
2101 entry = pte_swp_mksoft_dirty(entry);
2102 if (uffd_wp)
2103 entry = pte_swp_mkuffd_wp(entry);
2104 } else {
2105 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2106 entry = maybe_mkwrite(entry, vma);
2107 if (!write)
2108 entry = pte_wrprotect(entry);
2109 if (!young)
2110 entry = pte_mkold(entry);
2111 if (soft_dirty)
2112 entry = pte_mksoft_dirty(entry);
2113 if (uffd_wp)
2114 entry = pte_mkuffd_wp(entry);
2115 }
2116 pte = pte_offset_map(&_pmd, addr);
2117 BUG_ON(!pte_none(*pte));
2118 set_pte_at(mm, addr, pte, entry);
2119 if (!pmd_migration)
2120 atomic_inc(&page[i]._mapcount);
2121 pte_unmap(pte);
2122 }
2123
2124 if (!pmd_migration) {
2125 /*
2126 * Set PG_double_map before dropping compound_mapcount to avoid
2127 * false-negative page_mapped().
2128 */
2129 if (compound_mapcount(page) > 1 &&
2130 !TestSetPageDoubleMap(page)) {
2131 for (i = 0; i < HPAGE_PMD_NR; i++)
2132 atomic_inc(&page[i]._mapcount);
2133 }
2134
2135 lock_page_memcg(page);
2136 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2137 /* Last compound_mapcount is gone. */
2138 __mod_lruvec_page_state(page, NR_ANON_THPS,
2139 -HPAGE_PMD_NR);
2140 if (TestClearPageDoubleMap(page)) {
2141 /* No need in mapcount reference anymore */
2142 for (i = 0; i < HPAGE_PMD_NR; i++)
2143 atomic_dec(&page[i]._mapcount);
2144 }
2145 }
2146 unlock_page_memcg(page);
2147 }
2148
2149 smp_wmb(); /* make pte visible before pmd */
2150 pmd_populate(mm, pmd, pgtable);
2151
2152 if (freeze) {
2153 for (i = 0; i < HPAGE_PMD_NR; i++) {
2154 page_remove_rmap(page + i, false);
2155 put_page(page + i);
2156 }
2157 }
2158 }
2159
2160 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2161 unsigned long address, bool freeze, struct page *page)
2162 {
2163 spinlock_t *ptl;
2164 struct mmu_notifier_range range;
2165 bool do_unlock_page = false;
2166 pmd_t _pmd;
2167
2168 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2169 address & HPAGE_PMD_MASK,
2170 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2171 mmu_notifier_invalidate_range_start(&range);
2172 ptl = pmd_lock(vma->vm_mm, pmd);
2173
2174 /*
2175 * If caller asks to setup a migration entries, we need a page to check
2176 * pmd against. Otherwise we can end up replacing wrong page.
2177 */
2178 VM_BUG_ON(freeze && !page);
2179 if (page) {
2180 VM_WARN_ON_ONCE(!PageLocked(page));
2181 if (page != pmd_page(*pmd))
2182 goto out;
2183 }
2184
2185 repeat:
2186 if (pmd_trans_huge(*pmd)) {
2187 if (!page) {
2188 page = pmd_page(*pmd);
2189 /*
2190 * An anonymous page must be locked, to ensure that a
2191 * concurrent reuse_swap_page() sees stable mapcount;
2192 * but reuse_swap_page() is not used on shmem or file,
2193 * and page lock must not be taken when zap_pmd_range()
2194 * calls __split_huge_pmd() while i_mmap_lock is held.
2195 */
2196 if (PageAnon(page)) {
2197 if (unlikely(!trylock_page(page))) {
2198 get_page(page);
2199 _pmd = *pmd;
2200 spin_unlock(ptl);
2201 lock_page(page);
2202 spin_lock(ptl);
2203 if (unlikely(!pmd_same(*pmd, _pmd))) {
2204 unlock_page(page);
2205 put_page(page);
2206 page = NULL;
2207 goto repeat;
2208 }
2209 put_page(page);
2210 }
2211 do_unlock_page = true;
2212 }
2213 }
2214 if (PageMlocked(page))
2215 clear_page_mlock(page);
2216 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2217 goto out;
2218 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2219 out:
2220 spin_unlock(ptl);
2221 if (do_unlock_page)
2222 unlock_page(page);
2223 /*
2224 * No need to double call mmu_notifier->invalidate_range() callback.
2225 * They are 3 cases to consider inside __split_huge_pmd_locked():
2226 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2227 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2228 * fault will trigger a flush_notify before pointing to a new page
2229 * (it is fine if the secondary mmu keeps pointing to the old zero
2230 * page in the meantime)
2231 * 3) Split a huge pmd into pte pointing to the same page. No need
2232 * to invalidate secondary tlb entry they are all still valid.
2233 * any further changes to individual pte will notify. So no need
2234 * to call mmu_notifier->invalidate_range()
2235 */
2236 mmu_notifier_invalidate_range_only_end(&range);
2237 }
2238
2239 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2240 bool freeze, struct page *page)
2241 {
2242 pgd_t *pgd;
2243 p4d_t *p4d;
2244 pud_t *pud;
2245 pmd_t *pmd;
2246
2247 pgd = pgd_offset(vma->vm_mm, address);
2248 if (!pgd_present(*pgd))
2249 return;
2250
2251 p4d = p4d_offset(pgd, address);
2252 if (!p4d_present(*p4d))
2253 return;
2254
2255 pud = pud_offset(p4d, address);
2256 if (!pud_present(*pud))
2257 return;
2258
2259 pmd = pmd_offset(pud, address);
2260
2261 __split_huge_pmd(vma, pmd, address, freeze, page);
2262 }
2263
2264 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2265 {
2266 /*
2267 * If the new address isn't hpage aligned and it could previously
2268 * contain an hugepage: check if we need to split an huge pmd.
2269 */
2270 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2271 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2272 ALIGN(address, HPAGE_PMD_SIZE)))
2273 split_huge_pmd_address(vma, address, false, NULL);
2274 }
2275
2276 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2277 unsigned long start,
2278 unsigned long end,
2279 long adjust_next)
2280 {
2281 /* Check if we need to split start first. */
2282 split_huge_pmd_if_needed(vma, start);
2283
2284 /* Check if we need to split end next. */
2285 split_huge_pmd_if_needed(vma, end);
2286
2287 /*
2288 * If we're also updating the vma->vm_next->vm_start,
2289 * check if we need to split it.
2290 */
2291 if (adjust_next > 0) {
2292 struct vm_area_struct *next = vma->vm_next;
2293 unsigned long nstart = next->vm_start;
2294 nstart += adjust_next;
2295 split_huge_pmd_if_needed(next, nstart);
2296 }
2297 }
2298
2299 static void unmap_page(struct page *page)
2300 {
2301 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
2302 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2303
2304 VM_BUG_ON_PAGE(!PageHead(page), page);
2305
2306 if (PageAnon(page))
2307 ttu_flags |= TTU_SPLIT_FREEZE;
2308
2309 try_to_unmap(page, ttu_flags);
2310
2311 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2312 }
2313
2314 static void remap_page(struct page *page, unsigned int nr)
2315 {
2316 int i;
2317 if (PageTransHuge(page)) {
2318 remove_migration_ptes(page, page, true);
2319 } else {
2320 for (i = 0; i < nr; i++)
2321 remove_migration_ptes(page + i, page + i, true);
2322 }
2323 }
2324
2325 static void lru_add_page_tail(struct page *head, struct page *tail,
2326 struct lruvec *lruvec, struct list_head *list)
2327 {
2328 VM_BUG_ON_PAGE(!PageHead(head), head);
2329 VM_BUG_ON_PAGE(PageCompound(tail), head);
2330 VM_BUG_ON_PAGE(PageLRU(tail), head);
2331 lockdep_assert_held(&lruvec->lru_lock);
2332
2333 if (list) {
2334 /* page reclaim is reclaiming a huge page */
2335 VM_WARN_ON(PageLRU(head));
2336 get_page(tail);
2337 list_add_tail(&tail->lru, list);
2338 } else {
2339 /* head is still on lru (and we have it frozen) */
2340 VM_WARN_ON(!PageLRU(head));
2341 SetPageLRU(tail);
2342 list_add_tail(&tail->lru, &head->lru);
2343 }
2344 }
2345
2346 static void __split_huge_page_tail(struct page *head, int tail,
2347 struct lruvec *lruvec, struct list_head *list)
2348 {
2349 struct page *page_tail = head + tail;
2350
2351 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2352
2353 /*
2354 * Clone page flags before unfreezing refcount.
2355 *
2356 * After successful get_page_unless_zero() might follow flags change,
2357 * for example lock_page() which set PG_waiters.
2358 */
2359 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2360 page_tail->flags |= (head->flags &
2361 ((1L << PG_referenced) |
2362 (1L << PG_swapbacked) |
2363 (1L << PG_swapcache) |
2364 (1L << PG_mlocked) |
2365 (1L << PG_uptodate) |
2366 (1L << PG_active) |
2367 (1L << PG_workingset) |
2368 (1L << PG_locked) |
2369 (1L << PG_unevictable) |
2370 #ifdef CONFIG_64BIT
2371 (1L << PG_arch_2) |
2372 #endif
2373 (1L << PG_dirty)));
2374
2375 /* ->mapping in first tail page is compound_mapcount */
2376 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2377 page_tail);
2378 page_tail->mapping = head->mapping;
2379 page_tail->index = head->index + tail;
2380
2381 /* Page flags must be visible before we make the page non-compound. */
2382 smp_wmb();
2383
2384 /*
2385 * Clear PageTail before unfreezing page refcount.
2386 *
2387 * After successful get_page_unless_zero() might follow put_page()
2388 * which needs correct compound_head().
2389 */
2390 clear_compound_head(page_tail);
2391
2392 /* Finally unfreeze refcount. Additional reference from page cache. */
2393 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2394 PageSwapCache(head)));
2395
2396 if (page_is_young(head))
2397 set_page_young(page_tail);
2398 if (page_is_idle(head))
2399 set_page_idle(page_tail);
2400
2401 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2402
2403 /*
2404 * always add to the tail because some iterators expect new
2405 * pages to show after the currently processed elements - e.g.
2406 * migrate_pages
2407 */
2408 lru_add_page_tail(head, page_tail, lruvec, list);
2409 }
2410
2411 static void __split_huge_page(struct page *page, struct list_head *list,
2412 pgoff_t end)
2413 {
2414 struct page *head = compound_head(page);
2415 struct lruvec *lruvec;
2416 struct address_space *swap_cache = NULL;
2417 unsigned long offset = 0;
2418 unsigned int nr = thp_nr_pages(head);
2419 int i;
2420
2421 /* complete memcg works before add pages to LRU */
2422 split_page_memcg(head, nr);
2423
2424 if (PageAnon(head) && PageSwapCache(head)) {
2425 swp_entry_t entry = { .val = page_private(head) };
2426
2427 offset = swp_offset(entry);
2428 swap_cache = swap_address_space(entry);
2429 xa_lock(&swap_cache->i_pages);
2430 }
2431
2432 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2433 lruvec = lock_page_lruvec(head);
2434
2435 for (i = nr - 1; i >= 1; i--) {
2436 __split_huge_page_tail(head, i, lruvec, list);
2437 /* Some pages can be beyond i_size: drop them from page cache */
2438 if (head[i].index >= end) {
2439 ClearPageDirty(head + i);
2440 __delete_from_page_cache(head + i, NULL);
2441 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2442 shmem_uncharge(head->mapping->host, 1);
2443 put_page(head + i);
2444 } else if (!PageAnon(page)) {
2445 __xa_store(&head->mapping->i_pages, head[i].index,
2446 head + i, 0);
2447 } else if (swap_cache) {
2448 __xa_store(&swap_cache->i_pages, offset + i,
2449 head + i, 0);
2450 }
2451 }
2452
2453 ClearPageCompound(head);
2454 unlock_page_lruvec(lruvec);
2455 /* Caller disabled irqs, so they are still disabled here */
2456
2457 split_page_owner(head, nr);
2458
2459 /* See comment in __split_huge_page_tail() */
2460 if (PageAnon(head)) {
2461 /* Additional pin to swap cache */
2462 if (PageSwapCache(head)) {
2463 page_ref_add(head, 2);
2464 xa_unlock(&swap_cache->i_pages);
2465 } else {
2466 page_ref_inc(head);
2467 }
2468 } else {
2469 /* Additional pin to page cache */
2470 page_ref_add(head, 2);
2471 xa_unlock(&head->mapping->i_pages);
2472 }
2473 local_irq_enable();
2474
2475 remap_page(head, nr);
2476
2477 if (PageSwapCache(head)) {
2478 swp_entry_t entry = { .val = page_private(head) };
2479
2480 split_swap_cluster(entry);
2481 }
2482
2483 for (i = 0; i < nr; i++) {
2484 struct page *subpage = head + i;
2485 if (subpage == page)
2486 continue;
2487 unlock_page(subpage);
2488
2489 /*
2490 * Subpages may be freed if there wasn't any mapping
2491 * like if add_to_swap() is running on a lru page that
2492 * had its mapping zapped. And freeing these pages
2493 * requires taking the lru_lock so we do the put_page
2494 * of the tail pages after the split is complete.
2495 */
2496 put_page(subpage);
2497 }
2498 }
2499
2500 int total_mapcount(struct page *page)
2501 {
2502 int i, compound, nr, ret;
2503
2504 VM_BUG_ON_PAGE(PageTail(page), page);
2505
2506 if (likely(!PageCompound(page)))
2507 return atomic_read(&page->_mapcount) + 1;
2508
2509 compound = compound_mapcount(page);
2510 nr = compound_nr(page);
2511 if (PageHuge(page))
2512 return compound;
2513 ret = compound;
2514 for (i = 0; i < nr; i++)
2515 ret += atomic_read(&page[i]._mapcount) + 1;
2516 /* File pages has compound_mapcount included in _mapcount */
2517 if (!PageAnon(page))
2518 return ret - compound * nr;
2519 if (PageDoubleMap(page))
2520 ret -= nr;
2521 return ret;
2522 }
2523
2524 /*
2525 * This calculates accurately how many mappings a transparent hugepage
2526 * has (unlike page_mapcount() which isn't fully accurate). This full
2527 * accuracy is primarily needed to know if copy-on-write faults can
2528 * reuse the page and change the mapping to read-write instead of
2529 * copying them. At the same time this returns the total_mapcount too.
2530 *
2531 * The function returns the highest mapcount any one of the subpages
2532 * has. If the return value is one, even if different processes are
2533 * mapping different subpages of the transparent hugepage, they can
2534 * all reuse it, because each process is reusing a different subpage.
2535 *
2536 * The total_mapcount is instead counting all virtual mappings of the
2537 * subpages. If the total_mapcount is equal to "one", it tells the
2538 * caller all mappings belong to the same "mm" and in turn the
2539 * anon_vma of the transparent hugepage can become the vma->anon_vma
2540 * local one as no other process may be mapping any of the subpages.
2541 *
2542 * It would be more accurate to replace page_mapcount() with
2543 * page_trans_huge_mapcount(), however we only use
2544 * page_trans_huge_mapcount() in the copy-on-write faults where we
2545 * need full accuracy to avoid breaking page pinning, because
2546 * page_trans_huge_mapcount() is slower than page_mapcount().
2547 */
2548 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2549 {
2550 int i, ret, _total_mapcount, mapcount;
2551
2552 /* hugetlbfs shouldn't call it */
2553 VM_BUG_ON_PAGE(PageHuge(page), page);
2554
2555 if (likely(!PageTransCompound(page))) {
2556 mapcount = atomic_read(&page->_mapcount) + 1;
2557 if (total_mapcount)
2558 *total_mapcount = mapcount;
2559 return mapcount;
2560 }
2561
2562 page = compound_head(page);
2563
2564 _total_mapcount = ret = 0;
2565 for (i = 0; i < thp_nr_pages(page); i++) {
2566 mapcount = atomic_read(&page[i]._mapcount) + 1;
2567 ret = max(ret, mapcount);
2568 _total_mapcount += mapcount;
2569 }
2570 if (PageDoubleMap(page)) {
2571 ret -= 1;
2572 _total_mapcount -= thp_nr_pages(page);
2573 }
2574 mapcount = compound_mapcount(page);
2575 ret += mapcount;
2576 _total_mapcount += mapcount;
2577 if (total_mapcount)
2578 *total_mapcount = _total_mapcount;
2579 return ret;
2580 }
2581
2582 /* Racy check whether the huge page can be split */
2583 bool can_split_huge_page(struct page *page, int *pextra_pins)
2584 {
2585 int extra_pins;
2586
2587 /* Additional pins from page cache */
2588 if (PageAnon(page))
2589 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2590 else
2591 extra_pins = thp_nr_pages(page);
2592 if (pextra_pins)
2593 *pextra_pins = extra_pins;
2594 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2595 }
2596
2597 /*
2598 * This function splits huge page into normal pages. @page can point to any
2599 * subpage of huge page to split. Split doesn't change the position of @page.
2600 *
2601 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2602 * The huge page must be locked.
2603 *
2604 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2605 *
2606 * Both head page and tail pages will inherit mapping, flags, and so on from
2607 * the hugepage.
2608 *
2609 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2610 * they are not mapped.
2611 *
2612 * Returns 0 if the hugepage is split successfully.
2613 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2614 * us.
2615 */
2616 int split_huge_page_to_list(struct page *page, struct list_head *list)
2617 {
2618 struct page *head = compound_head(page);
2619 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2620 struct anon_vma *anon_vma = NULL;
2621 struct address_space *mapping = NULL;
2622 int extra_pins, ret;
2623 pgoff_t end;
2624
2625 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2626 VM_BUG_ON_PAGE(!PageLocked(head), head);
2627 VM_BUG_ON_PAGE(!PageCompound(head), head);
2628
2629 if (PageWriteback(head))
2630 return -EBUSY;
2631
2632 if (PageAnon(head)) {
2633 /*
2634 * The caller does not necessarily hold an mmap_lock that would
2635 * prevent the anon_vma disappearing so we first we take a
2636 * reference to it and then lock the anon_vma for write. This
2637 * is similar to page_lock_anon_vma_read except the write lock
2638 * is taken to serialise against parallel split or collapse
2639 * operations.
2640 */
2641 anon_vma = page_get_anon_vma(head);
2642 if (!anon_vma) {
2643 ret = -EBUSY;
2644 goto out;
2645 }
2646 end = -1;
2647 mapping = NULL;
2648 anon_vma_lock_write(anon_vma);
2649 } else {
2650 mapping = head->mapping;
2651
2652 /* Truncated ? */
2653 if (!mapping) {
2654 ret = -EBUSY;
2655 goto out;
2656 }
2657
2658 anon_vma = NULL;
2659 i_mmap_lock_read(mapping);
2660
2661 /*
2662 *__split_huge_page() may need to trim off pages beyond EOF:
2663 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2664 * which cannot be nested inside the page tree lock. So note
2665 * end now: i_size itself may be changed at any moment, but
2666 * head page lock is good enough to serialize the trimming.
2667 */
2668 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2669 }
2670
2671 /*
2672 * Racy check if we can split the page, before unmap_page() will
2673 * split PMDs
2674 */
2675 if (!can_split_huge_page(head, &extra_pins)) {
2676 ret = -EBUSY;
2677 goto out_unlock;
2678 }
2679
2680 unmap_page(head);
2681
2682 /* block interrupt reentry in xa_lock and spinlock */
2683 local_irq_disable();
2684 if (mapping) {
2685 XA_STATE(xas, &mapping->i_pages, page_index(head));
2686
2687 /*
2688 * Check if the head page is present in page cache.
2689 * We assume all tail are present too, if head is there.
2690 */
2691 xa_lock(&mapping->i_pages);
2692 if (xas_load(&xas) != head)
2693 goto fail;
2694 }
2695
2696 /* Prevent deferred_split_scan() touching ->_refcount */
2697 spin_lock(&ds_queue->split_queue_lock);
2698 if (page_ref_freeze(head, 1 + extra_pins)) {
2699 if (!list_empty(page_deferred_list(head))) {
2700 ds_queue->split_queue_len--;
2701 list_del(page_deferred_list(head));
2702 }
2703 spin_unlock(&ds_queue->split_queue_lock);
2704 if (mapping) {
2705 int nr = thp_nr_pages(head);
2706
2707 if (PageSwapBacked(head))
2708 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2709 -nr);
2710 else
2711 __mod_lruvec_page_state(head, NR_FILE_THPS,
2712 -nr);
2713 }
2714
2715 __split_huge_page(page, list, end);
2716 ret = 0;
2717 } else {
2718 spin_unlock(&ds_queue->split_queue_lock);
2719 fail:
2720 if (mapping)
2721 xa_unlock(&mapping->i_pages);
2722 local_irq_enable();
2723 remap_page(head, thp_nr_pages(head));
2724 ret = -EBUSY;
2725 }
2726
2727 out_unlock:
2728 if (anon_vma) {
2729 anon_vma_unlock_write(anon_vma);
2730 put_anon_vma(anon_vma);
2731 }
2732 if (mapping)
2733 i_mmap_unlock_read(mapping);
2734 out:
2735 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2736 return ret;
2737 }
2738
2739 void free_transhuge_page(struct page *page)
2740 {
2741 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2742 unsigned long flags;
2743
2744 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2745 if (!list_empty(page_deferred_list(page))) {
2746 ds_queue->split_queue_len--;
2747 list_del(page_deferred_list(page));
2748 }
2749 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2750 free_compound_page(page);
2751 }
2752
2753 void deferred_split_huge_page(struct page *page)
2754 {
2755 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2756 #ifdef CONFIG_MEMCG
2757 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2758 #endif
2759 unsigned long flags;
2760
2761 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2762
2763 /*
2764 * The try_to_unmap() in page reclaim path might reach here too,
2765 * this may cause a race condition to corrupt deferred split queue.
2766 * And, if page reclaim is already handling the same page, it is
2767 * unnecessary to handle it again in shrinker.
2768 *
2769 * Check PageSwapCache to determine if the page is being
2770 * handled by page reclaim since THP swap would add the page into
2771 * swap cache before calling try_to_unmap().
2772 */
2773 if (PageSwapCache(page))
2774 return;
2775
2776 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2777 if (list_empty(page_deferred_list(page))) {
2778 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2779 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2780 ds_queue->split_queue_len++;
2781 #ifdef CONFIG_MEMCG
2782 if (memcg)
2783 set_shrinker_bit(memcg, page_to_nid(page),
2784 deferred_split_shrinker.id);
2785 #endif
2786 }
2787 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2788 }
2789
2790 static unsigned long deferred_split_count(struct shrinker *shrink,
2791 struct shrink_control *sc)
2792 {
2793 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2794 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2795
2796 #ifdef CONFIG_MEMCG
2797 if (sc->memcg)
2798 ds_queue = &sc->memcg->deferred_split_queue;
2799 #endif
2800 return READ_ONCE(ds_queue->split_queue_len);
2801 }
2802
2803 static unsigned long deferred_split_scan(struct shrinker *shrink,
2804 struct shrink_control *sc)
2805 {
2806 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2807 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2808 unsigned long flags;
2809 LIST_HEAD(list), *pos, *next;
2810 struct page *page;
2811 int split = 0;
2812
2813 #ifdef CONFIG_MEMCG
2814 if (sc->memcg)
2815 ds_queue = &sc->memcg->deferred_split_queue;
2816 #endif
2817
2818 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2819 /* Take pin on all head pages to avoid freeing them under us */
2820 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2821 page = list_entry((void *)pos, struct page, deferred_list);
2822 page = compound_head(page);
2823 if (get_page_unless_zero(page)) {
2824 list_move(page_deferred_list(page), &list);
2825 } else {
2826 /* We lost race with put_compound_page() */
2827 list_del_init(page_deferred_list(page));
2828 ds_queue->split_queue_len--;
2829 }
2830 if (!--sc->nr_to_scan)
2831 break;
2832 }
2833 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2834
2835 list_for_each_safe(pos, next, &list) {
2836 page = list_entry((void *)pos, struct page, deferred_list);
2837 if (!trylock_page(page))
2838 goto next;
2839 /* split_huge_page() removes page from list on success */
2840 if (!split_huge_page(page))
2841 split++;
2842 unlock_page(page);
2843 next:
2844 put_page(page);
2845 }
2846
2847 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2848 list_splice_tail(&list, &ds_queue->split_queue);
2849 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2850
2851 /*
2852 * Stop shrinker if we didn't split any page, but the queue is empty.
2853 * This can happen if pages were freed under us.
2854 */
2855 if (!split && list_empty(&ds_queue->split_queue))
2856 return SHRINK_STOP;
2857 return split;
2858 }
2859
2860 static struct shrinker deferred_split_shrinker = {
2861 .count_objects = deferred_split_count,
2862 .scan_objects = deferred_split_scan,
2863 .seeks = DEFAULT_SEEKS,
2864 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2865 SHRINKER_NONSLAB,
2866 };
2867
2868 #ifdef CONFIG_DEBUG_FS
2869 static void split_huge_pages_all(void)
2870 {
2871 struct zone *zone;
2872 struct page *page;
2873 unsigned long pfn, max_zone_pfn;
2874 unsigned long total = 0, split = 0;
2875
2876 pr_debug("Split all THPs\n");
2877 for_each_populated_zone(zone) {
2878 max_zone_pfn = zone_end_pfn(zone);
2879 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2880 if (!pfn_valid(pfn))
2881 continue;
2882
2883 page = pfn_to_page(pfn);
2884 if (!get_page_unless_zero(page))
2885 continue;
2886
2887 if (zone != page_zone(page))
2888 goto next;
2889
2890 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2891 goto next;
2892
2893 total++;
2894 lock_page(page);
2895 if (!split_huge_page(page))
2896 split++;
2897 unlock_page(page);
2898 next:
2899 put_page(page);
2900 cond_resched();
2901 }
2902 }
2903
2904 pr_debug("%lu of %lu THP split\n", split, total);
2905 }
2906
2907 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2908 {
2909 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2910 is_vm_hugetlb_page(vma);
2911 }
2912
2913 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2914 unsigned long vaddr_end)
2915 {
2916 int ret = 0;
2917 struct task_struct *task;
2918 struct mm_struct *mm;
2919 unsigned long total = 0, split = 0;
2920 unsigned long addr;
2921
2922 vaddr_start &= PAGE_MASK;
2923 vaddr_end &= PAGE_MASK;
2924
2925 /* Find the task_struct from pid */
2926 rcu_read_lock();
2927 task = find_task_by_vpid(pid);
2928 if (!task) {
2929 rcu_read_unlock();
2930 ret = -ESRCH;
2931 goto out;
2932 }
2933 get_task_struct(task);
2934 rcu_read_unlock();
2935
2936 /* Find the mm_struct */
2937 mm = get_task_mm(task);
2938 put_task_struct(task);
2939
2940 if (!mm) {
2941 ret = -EINVAL;
2942 goto out;
2943 }
2944
2945 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2946 pid, vaddr_start, vaddr_end);
2947
2948 mmap_read_lock(mm);
2949 /*
2950 * always increase addr by PAGE_SIZE, since we could have a PTE page
2951 * table filled with PTE-mapped THPs, each of which is distinct.
2952 */
2953 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2954 struct vm_area_struct *vma = find_vma(mm, addr);
2955 unsigned int follflags;
2956 struct page *page;
2957
2958 if (!vma || addr < vma->vm_start)
2959 break;
2960
2961 /* skip special VMA and hugetlb VMA */
2962 if (vma_not_suitable_for_thp_split(vma)) {
2963 addr = vma->vm_end;
2964 continue;
2965 }
2966
2967 /* FOLL_DUMP to ignore special (like zero) pages */
2968 follflags = FOLL_GET | FOLL_DUMP;
2969 page = follow_page(vma, addr, follflags);
2970
2971 if (IS_ERR(page))
2972 continue;
2973 if (!page)
2974 continue;
2975
2976 if (!is_transparent_hugepage(page))
2977 goto next;
2978
2979 total++;
2980 if (!can_split_huge_page(compound_head(page), NULL))
2981 goto next;
2982
2983 if (!trylock_page(page))
2984 goto next;
2985
2986 if (!split_huge_page(page))
2987 split++;
2988
2989 unlock_page(page);
2990 next:
2991 put_page(page);
2992 cond_resched();
2993 }
2994 mmap_read_unlock(mm);
2995 mmput(mm);
2996
2997 pr_debug("%lu of %lu THP split\n", split, total);
2998
2999 out:
3000 return ret;
3001 }
3002
3003 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3004 pgoff_t off_end)
3005 {
3006 struct filename *file;
3007 struct file *candidate;
3008 struct address_space *mapping;
3009 int ret = -EINVAL;
3010 pgoff_t index;
3011 int nr_pages = 1;
3012 unsigned long total = 0, split = 0;
3013
3014 file = getname_kernel(file_path);
3015 if (IS_ERR(file))
3016 return ret;
3017
3018 candidate = file_open_name(file, O_RDONLY, 0);
3019 if (IS_ERR(candidate))
3020 goto out;
3021
3022 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3023 file_path, off_start, off_end);
3024
3025 mapping = candidate->f_mapping;
3026
3027 for (index = off_start; index < off_end; index += nr_pages) {
3028 struct page *fpage = pagecache_get_page(mapping, index,
3029 FGP_ENTRY | FGP_HEAD, 0);
3030
3031 nr_pages = 1;
3032 if (xa_is_value(fpage) || !fpage)
3033 continue;
3034
3035 if (!is_transparent_hugepage(fpage))
3036 goto next;
3037
3038 total++;
3039 nr_pages = thp_nr_pages(fpage);
3040
3041 if (!trylock_page(fpage))
3042 goto next;
3043
3044 if (!split_huge_page(fpage))
3045 split++;
3046
3047 unlock_page(fpage);
3048 next:
3049 put_page(fpage);
3050 cond_resched();
3051 }
3052
3053 filp_close(candidate, NULL);
3054 ret = 0;
3055
3056 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3057 out:
3058 putname(file);
3059 return ret;
3060 }
3061
3062 #define MAX_INPUT_BUF_SZ 255
3063
3064 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3065 size_t count, loff_t *ppops)
3066 {
3067 static DEFINE_MUTEX(split_debug_mutex);
3068 ssize_t ret;
3069 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3070 char input_buf[MAX_INPUT_BUF_SZ];
3071 int pid;
3072 unsigned long vaddr_start, vaddr_end;
3073
3074 ret = mutex_lock_interruptible(&split_debug_mutex);
3075 if (ret)
3076 return ret;
3077
3078 ret = -EFAULT;
3079
3080 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3081 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3082 goto out;
3083
3084 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3085
3086 if (input_buf[0] == '/') {
3087 char *tok;
3088 char *buf = input_buf;
3089 char file_path[MAX_INPUT_BUF_SZ];
3090 pgoff_t off_start = 0, off_end = 0;
3091 size_t input_len = strlen(input_buf);
3092
3093 tok = strsep(&buf, ",");
3094 if (tok) {
3095 strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
3096 } else {
3097 ret = -EINVAL;
3098 goto out;
3099 }
3100
3101 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3102 if (ret != 2) {
3103 ret = -EINVAL;
3104 goto out;
3105 }
3106 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3107 if (!ret)
3108 ret = input_len;
3109
3110 goto out;
3111 }
3112
3113 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3114 if (ret == 1 && pid == 1) {
3115 split_huge_pages_all();
3116 ret = strlen(input_buf);
3117 goto out;
3118 } else if (ret != 3) {
3119 ret = -EINVAL;
3120 goto out;
3121 }
3122
3123 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3124 if (!ret)
3125 ret = strlen(input_buf);
3126 out:
3127 mutex_unlock(&split_debug_mutex);
3128 return ret;
3129
3130 }
3131
3132 static const struct file_operations split_huge_pages_fops = {
3133 .owner = THIS_MODULE,
3134 .write = split_huge_pages_write,
3135 .llseek = no_llseek,
3136 };
3137
3138 static int __init split_huge_pages_debugfs(void)
3139 {
3140 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3141 &split_huge_pages_fops);
3142 return 0;
3143 }
3144 late_initcall(split_huge_pages_debugfs);
3145 #endif
3146
3147 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3148 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3149 struct page *page)
3150 {
3151 struct vm_area_struct *vma = pvmw->vma;
3152 struct mm_struct *mm = vma->vm_mm;
3153 unsigned long address = pvmw->address;
3154 pmd_t pmdval;
3155 swp_entry_t entry;
3156 pmd_t pmdswp;
3157
3158 if (!(pvmw->pmd && !pvmw->pte))
3159 return;
3160
3161 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3162 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3163 if (pmd_dirty(pmdval))
3164 set_page_dirty(page);
3165 entry = make_migration_entry(page, pmd_write(pmdval));
3166 pmdswp = swp_entry_to_pmd(entry);
3167 if (pmd_soft_dirty(pmdval))
3168 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3169 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3170 page_remove_rmap(page, true);
3171 put_page(page);
3172 }
3173
3174 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3175 {
3176 struct vm_area_struct *vma = pvmw->vma;
3177 struct mm_struct *mm = vma->vm_mm;
3178 unsigned long address = pvmw->address;
3179 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3180 pmd_t pmde;
3181 swp_entry_t entry;
3182
3183 if (!(pvmw->pmd && !pvmw->pte))
3184 return;
3185
3186 entry = pmd_to_swp_entry(*pvmw->pmd);
3187 get_page(new);
3188 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3189 if (pmd_swp_soft_dirty(*pvmw->pmd))
3190 pmde = pmd_mksoft_dirty(pmde);
3191 if (is_write_migration_entry(entry))
3192 pmde = maybe_pmd_mkwrite(pmde, vma);
3193 if (pmd_swp_uffd_wp(*pvmw->pmd))
3194 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3195
3196 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3197 if (PageAnon(new))
3198 page_add_anon_rmap(new, vma, mmun_start, true);
3199 else
3200 page_add_file_rmap(new, true);
3201 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3202 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3203 mlock_vma_page(new);
3204 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3205 }
3206 #endif