]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/huge_memory.c
scsi: aha152x: Fix aha152x_setup() __setup handler return value
[mirror_ubuntu-focal-kernel.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
48 */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 unsigned long huge_zero_pfn __read_mostly = ~0UL;
65
66 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 {
68 /* The addr is used to check if the vma size fits */
69 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
70
71 if (!transhuge_vma_suitable(vma, addr))
72 return false;
73 if (vma_is_anonymous(vma))
74 return __transparent_hugepage_enabled(vma);
75 if (vma_is_shmem(vma))
76 return shmem_huge_enabled(vma);
77
78 return false;
79 }
80
81 static struct page *get_huge_zero_page(void)
82 {
83 struct page *zero_page;
84 retry:
85 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
86 return READ_ONCE(huge_zero_page);
87
88 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
89 HPAGE_PMD_ORDER);
90 if (!zero_page) {
91 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
92 return NULL;
93 }
94 count_vm_event(THP_ZERO_PAGE_ALLOC);
95 preempt_disable();
96 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97 preempt_enable();
98 __free_pages(zero_page, compound_order(zero_page));
99 goto retry;
100 }
101 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
102
103 /* We take additional reference here. It will be put back by shrinker */
104 atomic_set(&huge_zero_refcount, 2);
105 preempt_enable();
106 return READ_ONCE(huge_zero_page);
107 }
108
109 static void put_huge_zero_page(void)
110 {
111 /*
112 * Counter should never go to zero here. Only shrinker can put
113 * last reference.
114 */
115 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
116 }
117
118 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
119 {
120 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
121 return READ_ONCE(huge_zero_page);
122
123 if (!get_huge_zero_page())
124 return NULL;
125
126 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
127 put_huge_zero_page();
128
129 return READ_ONCE(huge_zero_page);
130 }
131
132 void mm_put_huge_zero_page(struct mm_struct *mm)
133 {
134 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
135 put_huge_zero_page();
136 }
137
138 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
139 struct shrink_control *sc)
140 {
141 /* we can free zero page only if last reference remains */
142 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
143 }
144
145 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
146 struct shrink_control *sc)
147 {
148 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
149 struct page *zero_page = xchg(&huge_zero_page, NULL);
150 BUG_ON(zero_page == NULL);
151 WRITE_ONCE(huge_zero_pfn, ~0UL);
152 __free_pages(zero_page, compound_order(zero_page));
153 return HPAGE_PMD_NR;
154 }
155
156 return 0;
157 }
158
159 static struct shrinker huge_zero_page_shrinker = {
160 .count_objects = shrink_huge_zero_page_count,
161 .scan_objects = shrink_huge_zero_page_scan,
162 .seeks = DEFAULT_SEEKS,
163 };
164
165 #ifdef CONFIG_SYSFS
166 static ssize_t enabled_show(struct kobject *kobj,
167 struct kobj_attribute *attr, char *buf)
168 {
169 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
170 return sprintf(buf, "[always] madvise never\n");
171 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
172 return sprintf(buf, "always [madvise] never\n");
173 else
174 return sprintf(buf, "always madvise [never]\n");
175 }
176
177 static ssize_t enabled_store(struct kobject *kobj,
178 struct kobj_attribute *attr,
179 const char *buf, size_t count)
180 {
181 ssize_t ret = count;
182
183 if (sysfs_streq(buf, "always")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 } else if (sysfs_streq(buf, "madvise")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else if (sysfs_streq(buf, "never")) {
190 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
192 } else
193 ret = -EINVAL;
194
195 if (ret > 0) {
196 int err = start_stop_khugepaged();
197 if (err)
198 ret = err;
199 }
200 return ret;
201 }
202 static struct kobj_attribute enabled_attr =
203 __ATTR(enabled, 0644, enabled_show, enabled_store);
204
205 ssize_t single_hugepage_flag_show(struct kobject *kobj,
206 struct kobj_attribute *attr, char *buf,
207 enum transparent_hugepage_flag flag)
208 {
209 return sprintf(buf, "%d\n",
210 !!test_bit(flag, &transparent_hugepage_flags));
211 }
212
213 ssize_t single_hugepage_flag_store(struct kobject *kobj,
214 struct kobj_attribute *attr,
215 const char *buf, size_t count,
216 enum transparent_hugepage_flag flag)
217 {
218 unsigned long value;
219 int ret;
220
221 ret = kstrtoul(buf, 10, &value);
222 if (ret < 0)
223 return ret;
224 if (value > 1)
225 return -EINVAL;
226
227 if (value)
228 set_bit(flag, &transparent_hugepage_flags);
229 else
230 clear_bit(flag, &transparent_hugepage_flags);
231
232 return count;
233 }
234
235 static ssize_t defrag_show(struct kobject *kobj,
236 struct kobj_attribute *attr, char *buf)
237 {
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
241 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
243 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
244 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
245 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
246 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
247 }
248
249 static ssize_t defrag_store(struct kobject *kobj,
250 struct kobj_attribute *attr,
251 const char *buf, size_t count)
252 {
253 if (sysfs_streq(buf, "always")) {
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
257 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 } else if (sysfs_streq(buf, "defer+madvise")) {
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 } else if (sysfs_streq(buf, "defer")) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 } else if (sysfs_streq(buf, "madvise")) {
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 } else if (sysfs_streq(buf, "never")) {
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 } else
279 return -EINVAL;
280
281 return count;
282 }
283 static struct kobj_attribute defrag_attr =
284 __ATTR(defrag, 0644, defrag_show, defrag_store);
285
286 static ssize_t use_zero_page_show(struct kobject *kobj,
287 struct kobj_attribute *attr, char *buf)
288 {
289 return single_hugepage_flag_show(kobj, attr, buf,
290 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
291 }
292 static ssize_t use_zero_page_store(struct kobject *kobj,
293 struct kobj_attribute *attr, const char *buf, size_t count)
294 {
295 return single_hugepage_flag_store(kobj, attr, buf, count,
296 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
297 }
298 static struct kobj_attribute use_zero_page_attr =
299 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
300
301 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
302 struct kobj_attribute *attr, char *buf)
303 {
304 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
305 }
306 static struct kobj_attribute hpage_pmd_size_attr =
307 __ATTR_RO(hpage_pmd_size);
308
309 #ifdef CONFIG_DEBUG_VM
310 static ssize_t debug_cow_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312 {
313 return single_hugepage_flag_show(kobj, attr, buf,
314 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
315 }
316 static ssize_t debug_cow_store(struct kobject *kobj,
317 struct kobj_attribute *attr,
318 const char *buf, size_t count)
319 {
320 return single_hugepage_flag_store(kobj, attr, buf, count,
321 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
322 }
323 static struct kobj_attribute debug_cow_attr =
324 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
325 #endif /* CONFIG_DEBUG_VM */
326
327 static struct attribute *hugepage_attr[] = {
328 &enabled_attr.attr,
329 &defrag_attr.attr,
330 &use_zero_page_attr.attr,
331 &hpage_pmd_size_attr.attr,
332 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
333 &shmem_enabled_attr.attr,
334 #endif
335 #ifdef CONFIG_DEBUG_VM
336 &debug_cow_attr.attr,
337 #endif
338 NULL,
339 };
340
341 static const struct attribute_group hugepage_attr_group = {
342 .attrs = hugepage_attr,
343 };
344
345 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
346 {
347 int err;
348
349 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
350 if (unlikely(!*hugepage_kobj)) {
351 pr_err("failed to create transparent hugepage kobject\n");
352 return -ENOMEM;
353 }
354
355 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
356 if (err) {
357 pr_err("failed to register transparent hugepage group\n");
358 goto delete_obj;
359 }
360
361 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
362 if (err) {
363 pr_err("failed to register transparent hugepage group\n");
364 goto remove_hp_group;
365 }
366
367 return 0;
368
369 remove_hp_group:
370 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
371 delete_obj:
372 kobject_put(*hugepage_kobj);
373 return err;
374 }
375
376 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377 {
378 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
379 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
380 kobject_put(hugepage_kobj);
381 }
382 #else
383 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
384 {
385 return 0;
386 }
387
388 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
389 {
390 }
391 #endif /* CONFIG_SYSFS */
392
393 static int __init hugepage_init(void)
394 {
395 int err;
396 struct kobject *hugepage_kobj;
397
398 if (!has_transparent_hugepage()) {
399 transparent_hugepage_flags = 0;
400 return -EINVAL;
401 }
402
403 /*
404 * hugepages can't be allocated by the buddy allocator
405 */
406 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
407 /*
408 * we use page->mapping and page->index in second tail page
409 * as list_head: assuming THP order >= 2
410 */
411 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
412
413 err = hugepage_init_sysfs(&hugepage_kobj);
414 if (err)
415 goto err_sysfs;
416
417 err = khugepaged_init();
418 if (err)
419 goto err_slab;
420
421 err = register_shrinker(&huge_zero_page_shrinker);
422 if (err)
423 goto err_hzp_shrinker;
424 err = register_shrinker(&deferred_split_shrinker);
425 if (err)
426 goto err_split_shrinker;
427
428 /*
429 * By default disable transparent hugepages on smaller systems,
430 * where the extra memory used could hurt more than TLB overhead
431 * is likely to save. The admin can still enable it through /sys.
432 */
433 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
434 transparent_hugepage_flags = 0;
435 return 0;
436 }
437
438 err = start_stop_khugepaged();
439 if (err)
440 goto err_khugepaged;
441
442 return 0;
443 err_khugepaged:
444 unregister_shrinker(&deferred_split_shrinker);
445 err_split_shrinker:
446 unregister_shrinker(&huge_zero_page_shrinker);
447 err_hzp_shrinker:
448 khugepaged_destroy();
449 err_slab:
450 hugepage_exit_sysfs(hugepage_kobj);
451 err_sysfs:
452 return err;
453 }
454 subsys_initcall(hugepage_init);
455
456 static int __init setup_transparent_hugepage(char *str)
457 {
458 int ret = 0;
459 if (!str)
460 goto out;
461 if (!strcmp(str, "always")) {
462 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
467 } else if (!strcmp(str, "madvise")) {
468 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 &transparent_hugepage_flags);
470 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 &transparent_hugepage_flags);
472 ret = 1;
473 } else if (!strcmp(str, "never")) {
474 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
475 &transparent_hugepage_flags);
476 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
477 &transparent_hugepage_flags);
478 ret = 1;
479 }
480 out:
481 if (!ret)
482 pr_warn("transparent_hugepage= cannot parse, ignored\n");
483 return ret;
484 }
485 __setup("transparent_hugepage=", setup_transparent_hugepage);
486
487 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
488 {
489 if (likely(vma->vm_flags & VM_WRITE))
490 pmd = pmd_mkwrite(pmd);
491 return pmd;
492 }
493
494 #ifdef CONFIG_MEMCG
495 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
496 {
497 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
498 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
499
500 if (memcg)
501 return &memcg->deferred_split_queue;
502 else
503 return &pgdat->deferred_split_queue;
504 }
505 #else
506 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
507 {
508 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
509
510 return &pgdat->deferred_split_queue;
511 }
512 #endif
513
514 void prep_transhuge_page(struct page *page)
515 {
516 /*
517 * we use page->mapping and page->indexlru in second tail page
518 * as list_head: assuming THP order >= 2
519 */
520
521 INIT_LIST_HEAD(page_deferred_list(page));
522 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
523 }
524
525 static unsigned long __thp_get_unmapped_area(struct file *filp,
526 unsigned long addr, unsigned long len,
527 loff_t off, unsigned long flags, unsigned long size)
528 {
529 loff_t off_end = off + len;
530 loff_t off_align = round_up(off, size);
531 unsigned long len_pad, ret;
532
533 if (off_end <= off_align || (off_end - off_align) < size)
534 return 0;
535
536 len_pad = len + size;
537 if (len_pad < len || (off + len_pad) < off)
538 return 0;
539
540 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
541 off >> PAGE_SHIFT, flags);
542
543 /*
544 * The failure might be due to length padding. The caller will retry
545 * without the padding.
546 */
547 if (IS_ERR_VALUE(ret))
548 return 0;
549
550 /*
551 * Do not try to align to THP boundary if allocation at the address
552 * hint succeeds.
553 */
554 if (ret == addr)
555 return addr;
556
557 ret += (off - ret) & (size - 1);
558 return ret;
559 }
560
561 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
562 unsigned long len, unsigned long pgoff, unsigned long flags)
563 {
564 unsigned long ret;
565 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
566
567 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
568 goto out;
569
570 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
571 if (ret)
572 return ret;
573 out:
574 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
575 }
576 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
577
578 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
579 struct page *page, gfp_t gfp)
580 {
581 struct vm_area_struct *vma = vmf->vma;
582 struct mem_cgroup *memcg;
583 pgtable_t pgtable;
584 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
585 vm_fault_t ret = 0;
586
587 VM_BUG_ON_PAGE(!PageCompound(page), page);
588
589 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
590 put_page(page);
591 count_vm_event(THP_FAULT_FALLBACK);
592 return VM_FAULT_FALLBACK;
593 }
594
595 pgtable = pte_alloc_one(vma->vm_mm);
596 if (unlikely(!pgtable)) {
597 ret = VM_FAULT_OOM;
598 goto release;
599 }
600
601 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
602 /*
603 * The memory barrier inside __SetPageUptodate makes sure that
604 * clear_huge_page writes become visible before the set_pmd_at()
605 * write.
606 */
607 __SetPageUptodate(page);
608
609 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
610 if (unlikely(!pmd_none(*vmf->pmd))) {
611 goto unlock_release;
612 } else {
613 pmd_t entry;
614
615 ret = check_stable_address_space(vma->vm_mm);
616 if (ret)
617 goto unlock_release;
618
619 /* Deliver the page fault to userland */
620 if (userfaultfd_missing(vma)) {
621 vm_fault_t ret2;
622
623 spin_unlock(vmf->ptl);
624 mem_cgroup_cancel_charge(page, memcg, true);
625 put_page(page);
626 pte_free(vma->vm_mm, pgtable);
627 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
628 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
629 return ret2;
630 }
631
632 entry = mk_huge_pmd(page, vma->vm_page_prot);
633 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
634 page_add_new_anon_rmap(page, vma, haddr, true);
635 mem_cgroup_commit_charge(page, memcg, false, true);
636 lru_cache_add_active_or_unevictable(page, vma);
637 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
638 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
639 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
640 mm_inc_nr_ptes(vma->vm_mm);
641 spin_unlock(vmf->ptl);
642 count_vm_event(THP_FAULT_ALLOC);
643 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
644 }
645
646 return 0;
647 unlock_release:
648 spin_unlock(vmf->ptl);
649 release:
650 if (pgtable)
651 pte_free(vma->vm_mm, pgtable);
652 mem_cgroup_cancel_charge(page, memcg, true);
653 put_page(page);
654 return ret;
655
656 }
657
658 /*
659 * always: directly stall for all thp allocations
660 * defer: wake kswapd and fail if not immediately available
661 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
662 * fail if not immediately available
663 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
664 * available
665 * never: never stall for any thp allocation
666 */
667 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
668 {
669 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
670
671 /* Always do synchronous compaction */
672 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
673 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
674
675 /* Kick kcompactd and fail quickly */
676 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
677 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
678
679 /* Synchronous compaction if madvised, otherwise kick kcompactd */
680 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
681 return GFP_TRANSHUGE_LIGHT |
682 (vma_madvised ? __GFP_DIRECT_RECLAIM :
683 __GFP_KSWAPD_RECLAIM);
684
685 /* Only do synchronous compaction if madvised */
686 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
687 return GFP_TRANSHUGE_LIGHT |
688 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
689
690 return GFP_TRANSHUGE_LIGHT;
691 }
692
693 /* Caller must hold page table lock. */
694 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
695 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
696 struct page *zero_page)
697 {
698 pmd_t entry;
699 if (!pmd_none(*pmd))
700 return false;
701 entry = mk_pmd(zero_page, vma->vm_page_prot);
702 entry = pmd_mkhuge(entry);
703 if (pgtable)
704 pgtable_trans_huge_deposit(mm, pmd, pgtable);
705 set_pmd_at(mm, haddr, pmd, entry);
706 mm_inc_nr_ptes(mm);
707 return true;
708 }
709
710 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
711 {
712 struct vm_area_struct *vma = vmf->vma;
713 gfp_t gfp;
714 struct page *page;
715 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
716
717 if (!transhuge_vma_suitable(vma, haddr))
718 return VM_FAULT_FALLBACK;
719 if (unlikely(anon_vma_prepare(vma)))
720 return VM_FAULT_OOM;
721 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
722 return VM_FAULT_OOM;
723 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
724 !mm_forbids_zeropage(vma->vm_mm) &&
725 transparent_hugepage_use_zero_page()) {
726 pgtable_t pgtable;
727 struct page *zero_page;
728 vm_fault_t ret;
729 pgtable = pte_alloc_one(vma->vm_mm);
730 if (unlikely(!pgtable))
731 return VM_FAULT_OOM;
732 zero_page = mm_get_huge_zero_page(vma->vm_mm);
733 if (unlikely(!zero_page)) {
734 pte_free(vma->vm_mm, pgtable);
735 count_vm_event(THP_FAULT_FALLBACK);
736 return VM_FAULT_FALLBACK;
737 }
738 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
739 ret = 0;
740 if (pmd_none(*vmf->pmd)) {
741 ret = check_stable_address_space(vma->vm_mm);
742 if (ret) {
743 spin_unlock(vmf->ptl);
744 pte_free(vma->vm_mm, pgtable);
745 } else if (userfaultfd_missing(vma)) {
746 spin_unlock(vmf->ptl);
747 pte_free(vma->vm_mm, pgtable);
748 ret = handle_userfault(vmf, VM_UFFD_MISSING);
749 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
750 } else {
751 set_huge_zero_page(pgtable, vma->vm_mm, vma,
752 haddr, vmf->pmd, zero_page);
753 spin_unlock(vmf->ptl);
754 }
755 } else {
756 spin_unlock(vmf->ptl);
757 pte_free(vma->vm_mm, pgtable);
758 }
759 return ret;
760 }
761 gfp = alloc_hugepage_direct_gfpmask(vma);
762 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
763 if (unlikely(!page)) {
764 count_vm_event(THP_FAULT_FALLBACK);
765 return VM_FAULT_FALLBACK;
766 }
767 prep_transhuge_page(page);
768 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
769 }
770
771 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
772 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
773 pgtable_t pgtable)
774 {
775 struct mm_struct *mm = vma->vm_mm;
776 pmd_t entry;
777 spinlock_t *ptl;
778
779 ptl = pmd_lock(mm, pmd);
780 if (!pmd_none(*pmd)) {
781 if (write) {
782 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
783 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
784 goto out_unlock;
785 }
786 entry = pmd_mkyoung(*pmd);
787 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
788 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
789 update_mmu_cache_pmd(vma, addr, pmd);
790 }
791
792 goto out_unlock;
793 }
794
795 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
796 if (pfn_t_devmap(pfn))
797 entry = pmd_mkdevmap(entry);
798 if (write) {
799 entry = pmd_mkyoung(pmd_mkdirty(entry));
800 entry = maybe_pmd_mkwrite(entry, vma);
801 }
802
803 if (pgtable) {
804 pgtable_trans_huge_deposit(mm, pmd, pgtable);
805 mm_inc_nr_ptes(mm);
806 pgtable = NULL;
807 }
808
809 set_pmd_at(mm, addr, pmd, entry);
810 update_mmu_cache_pmd(vma, addr, pmd);
811
812 out_unlock:
813 spin_unlock(ptl);
814 if (pgtable)
815 pte_free(mm, pgtable);
816 }
817
818 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
819 {
820 unsigned long addr = vmf->address & PMD_MASK;
821 struct vm_area_struct *vma = vmf->vma;
822 pgprot_t pgprot = vma->vm_page_prot;
823 pgtable_t pgtable = NULL;
824
825 /*
826 * If we had pmd_special, we could avoid all these restrictions,
827 * but we need to be consistent with PTEs and architectures that
828 * can't support a 'special' bit.
829 */
830 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
831 !pfn_t_devmap(pfn));
832 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
833 (VM_PFNMAP|VM_MIXEDMAP));
834 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
835
836 if (addr < vma->vm_start || addr >= vma->vm_end)
837 return VM_FAULT_SIGBUS;
838
839 if (arch_needs_pgtable_deposit()) {
840 pgtable = pte_alloc_one(vma->vm_mm);
841 if (!pgtable)
842 return VM_FAULT_OOM;
843 }
844
845 track_pfn_insert(vma, &pgprot, pfn);
846
847 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
848 return VM_FAULT_NOPAGE;
849 }
850 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
851
852 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
853 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
854 {
855 if (likely(vma->vm_flags & VM_WRITE))
856 pud = pud_mkwrite(pud);
857 return pud;
858 }
859
860 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
861 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
862 {
863 struct mm_struct *mm = vma->vm_mm;
864 pud_t entry;
865 spinlock_t *ptl;
866
867 ptl = pud_lock(mm, pud);
868 if (!pud_none(*pud)) {
869 if (write) {
870 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
871 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
872 goto out_unlock;
873 }
874 entry = pud_mkyoung(*pud);
875 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
876 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
877 update_mmu_cache_pud(vma, addr, pud);
878 }
879 goto out_unlock;
880 }
881
882 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
883 if (pfn_t_devmap(pfn))
884 entry = pud_mkdevmap(entry);
885 if (write) {
886 entry = pud_mkyoung(pud_mkdirty(entry));
887 entry = maybe_pud_mkwrite(entry, vma);
888 }
889 set_pud_at(mm, addr, pud, entry);
890 update_mmu_cache_pud(vma, addr, pud);
891
892 out_unlock:
893 spin_unlock(ptl);
894 }
895
896 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
897 {
898 unsigned long addr = vmf->address & PUD_MASK;
899 struct vm_area_struct *vma = vmf->vma;
900 pgprot_t pgprot = vma->vm_page_prot;
901
902 /*
903 * If we had pud_special, we could avoid all these restrictions,
904 * but we need to be consistent with PTEs and architectures that
905 * can't support a 'special' bit.
906 */
907 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
908 !pfn_t_devmap(pfn));
909 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
910 (VM_PFNMAP|VM_MIXEDMAP));
911 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
912
913 if (addr < vma->vm_start || addr >= vma->vm_end)
914 return VM_FAULT_SIGBUS;
915
916 track_pfn_insert(vma, &pgprot, pfn);
917
918 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
919 return VM_FAULT_NOPAGE;
920 }
921 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
922 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
923
924 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
925 pmd_t *pmd, int flags)
926 {
927 pmd_t _pmd;
928
929 _pmd = pmd_mkyoung(*pmd);
930 if (flags & FOLL_WRITE)
931 _pmd = pmd_mkdirty(_pmd);
932 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
933 pmd, _pmd, flags & FOLL_WRITE))
934 update_mmu_cache_pmd(vma, addr, pmd);
935 }
936
937 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
938 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
939 {
940 unsigned long pfn = pmd_pfn(*pmd);
941 struct mm_struct *mm = vma->vm_mm;
942 struct page *page;
943
944 assert_spin_locked(pmd_lockptr(mm, pmd));
945
946 /*
947 * When we COW a devmap PMD entry, we split it into PTEs, so we should
948 * not be in this function with `flags & FOLL_COW` set.
949 */
950 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
951
952 if (flags & FOLL_WRITE && !pmd_write(*pmd))
953 return NULL;
954
955 if (pmd_present(*pmd) && pmd_devmap(*pmd))
956 /* pass */;
957 else
958 return NULL;
959
960 if (flags & FOLL_TOUCH)
961 touch_pmd(vma, addr, pmd, flags);
962
963 /*
964 * device mapped pages can only be returned if the
965 * caller will manage the page reference count.
966 */
967 if (!(flags & FOLL_GET))
968 return ERR_PTR(-EEXIST);
969
970 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
971 *pgmap = get_dev_pagemap(pfn, *pgmap);
972 if (!*pgmap)
973 return ERR_PTR(-EFAULT);
974 page = pfn_to_page(pfn);
975 get_page(page);
976
977 return page;
978 }
979
980 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
982 struct vm_area_struct *vma)
983 {
984 spinlock_t *dst_ptl, *src_ptl;
985 struct page *src_page;
986 pmd_t pmd;
987 pgtable_t pgtable = NULL;
988 int ret = -ENOMEM;
989
990 /* Skip if can be re-fill on fault */
991 if (!vma_is_anonymous(vma))
992 return 0;
993
994 pgtable = pte_alloc_one(dst_mm);
995 if (unlikely(!pgtable))
996 goto out;
997
998 dst_ptl = pmd_lock(dst_mm, dst_pmd);
999 src_ptl = pmd_lockptr(src_mm, src_pmd);
1000 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1001
1002 ret = -EAGAIN;
1003 pmd = *src_pmd;
1004
1005 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1006 if (unlikely(is_swap_pmd(pmd))) {
1007 swp_entry_t entry = pmd_to_swp_entry(pmd);
1008
1009 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1010 if (is_write_migration_entry(entry)) {
1011 make_migration_entry_read(&entry);
1012 pmd = swp_entry_to_pmd(entry);
1013 if (pmd_swp_soft_dirty(*src_pmd))
1014 pmd = pmd_swp_mksoft_dirty(pmd);
1015 set_pmd_at(src_mm, addr, src_pmd, pmd);
1016 }
1017 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1018 mm_inc_nr_ptes(dst_mm);
1019 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1020 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1021 ret = 0;
1022 goto out_unlock;
1023 }
1024 #endif
1025
1026 if (unlikely(!pmd_trans_huge(pmd))) {
1027 pte_free(dst_mm, pgtable);
1028 goto out_unlock;
1029 }
1030 /*
1031 * When page table lock is held, the huge zero pmd should not be
1032 * under splitting since we don't split the page itself, only pmd to
1033 * a page table.
1034 */
1035 if (is_huge_zero_pmd(pmd)) {
1036 struct page *zero_page;
1037 /*
1038 * get_huge_zero_page() will never allocate a new page here,
1039 * since we already have a zero page to copy. It just takes a
1040 * reference.
1041 */
1042 zero_page = mm_get_huge_zero_page(dst_mm);
1043 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1044 zero_page);
1045 ret = 0;
1046 goto out_unlock;
1047 }
1048
1049 src_page = pmd_page(pmd);
1050 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1051 get_page(src_page);
1052 page_dup_rmap(src_page, true);
1053 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1054 mm_inc_nr_ptes(dst_mm);
1055 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1056
1057 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1058 pmd = pmd_mkold(pmd_wrprotect(pmd));
1059 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1060
1061 ret = 0;
1062 out_unlock:
1063 spin_unlock(src_ptl);
1064 spin_unlock(dst_ptl);
1065 out:
1066 return ret;
1067 }
1068
1069 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1070 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1071 pud_t *pud, int flags)
1072 {
1073 pud_t _pud;
1074
1075 _pud = pud_mkyoung(*pud);
1076 if (flags & FOLL_WRITE)
1077 _pud = pud_mkdirty(_pud);
1078 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1079 pud, _pud, flags & FOLL_WRITE))
1080 update_mmu_cache_pud(vma, addr, pud);
1081 }
1082
1083 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1084 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1085 {
1086 unsigned long pfn = pud_pfn(*pud);
1087 struct mm_struct *mm = vma->vm_mm;
1088 struct page *page;
1089
1090 assert_spin_locked(pud_lockptr(mm, pud));
1091
1092 if (flags & FOLL_WRITE && !pud_write(*pud))
1093 return NULL;
1094
1095 if (pud_present(*pud) && pud_devmap(*pud))
1096 /* pass */;
1097 else
1098 return NULL;
1099
1100 if (flags & FOLL_TOUCH)
1101 touch_pud(vma, addr, pud, flags);
1102
1103 /*
1104 * device mapped pages can only be returned if the
1105 * caller will manage the page reference count.
1106 */
1107 if (!(flags & FOLL_GET))
1108 return ERR_PTR(-EEXIST);
1109
1110 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1111 *pgmap = get_dev_pagemap(pfn, *pgmap);
1112 if (!*pgmap)
1113 return ERR_PTR(-EFAULT);
1114 page = pfn_to_page(pfn);
1115 get_page(page);
1116
1117 return page;
1118 }
1119
1120 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1121 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1122 struct vm_area_struct *vma)
1123 {
1124 spinlock_t *dst_ptl, *src_ptl;
1125 pud_t pud;
1126 int ret;
1127
1128 dst_ptl = pud_lock(dst_mm, dst_pud);
1129 src_ptl = pud_lockptr(src_mm, src_pud);
1130 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1131
1132 ret = -EAGAIN;
1133 pud = *src_pud;
1134 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1135 goto out_unlock;
1136
1137 /*
1138 * When page table lock is held, the huge zero pud should not be
1139 * under splitting since we don't split the page itself, only pud to
1140 * a page table.
1141 */
1142 if (is_huge_zero_pud(pud)) {
1143 /* No huge zero pud yet */
1144 }
1145
1146 pudp_set_wrprotect(src_mm, addr, src_pud);
1147 pud = pud_mkold(pud_wrprotect(pud));
1148 set_pud_at(dst_mm, addr, dst_pud, pud);
1149
1150 ret = 0;
1151 out_unlock:
1152 spin_unlock(src_ptl);
1153 spin_unlock(dst_ptl);
1154 return ret;
1155 }
1156
1157 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1158 {
1159 pud_t entry;
1160 unsigned long haddr;
1161 bool write = vmf->flags & FAULT_FLAG_WRITE;
1162
1163 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1164 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1165 goto unlock;
1166
1167 entry = pud_mkyoung(orig_pud);
1168 if (write)
1169 entry = pud_mkdirty(entry);
1170 haddr = vmf->address & HPAGE_PUD_MASK;
1171 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1172 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1173
1174 unlock:
1175 spin_unlock(vmf->ptl);
1176 }
1177 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1178
1179 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1180 {
1181 pmd_t entry;
1182 unsigned long haddr;
1183 bool write = vmf->flags & FAULT_FLAG_WRITE;
1184
1185 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1186 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1187 goto unlock;
1188
1189 entry = pmd_mkyoung(orig_pmd);
1190 if (write)
1191 entry = pmd_mkdirty(entry);
1192 haddr = vmf->address & HPAGE_PMD_MASK;
1193 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1194 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1195
1196 unlock:
1197 spin_unlock(vmf->ptl);
1198 }
1199
1200 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1201 pmd_t orig_pmd, struct page *page)
1202 {
1203 struct vm_area_struct *vma = vmf->vma;
1204 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1205 struct mem_cgroup *memcg;
1206 pgtable_t pgtable;
1207 pmd_t _pmd;
1208 int i;
1209 vm_fault_t ret = 0;
1210 struct page **pages;
1211 struct mmu_notifier_range range;
1212
1213 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1214 GFP_KERNEL);
1215 if (unlikely(!pages)) {
1216 ret |= VM_FAULT_OOM;
1217 goto out;
1218 }
1219
1220 for (i = 0; i < HPAGE_PMD_NR; i++) {
1221 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1222 vmf->address, page_to_nid(page));
1223 if (unlikely(!pages[i] ||
1224 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1225 GFP_KERNEL, &memcg, false))) {
1226 if (pages[i])
1227 put_page(pages[i]);
1228 while (--i >= 0) {
1229 memcg = (void *)page_private(pages[i]);
1230 set_page_private(pages[i], 0);
1231 mem_cgroup_cancel_charge(pages[i], memcg,
1232 false);
1233 put_page(pages[i]);
1234 }
1235 kfree(pages);
1236 ret |= VM_FAULT_OOM;
1237 goto out;
1238 }
1239 set_page_private(pages[i], (unsigned long)memcg);
1240 }
1241
1242 for (i = 0; i < HPAGE_PMD_NR; i++) {
1243 copy_user_highpage(pages[i], page + i,
1244 haddr + PAGE_SIZE * i, vma);
1245 __SetPageUptodate(pages[i]);
1246 cond_resched();
1247 }
1248
1249 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1250 haddr, haddr + HPAGE_PMD_SIZE);
1251 mmu_notifier_invalidate_range_start(&range);
1252
1253 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1254 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1255 goto out_free_pages;
1256 VM_BUG_ON_PAGE(!PageHead(page), page);
1257
1258 /*
1259 * Leave pmd empty until pte is filled note we must notify here as
1260 * concurrent CPU thread might write to new page before the call to
1261 * mmu_notifier_invalidate_range_end() happens which can lead to a
1262 * device seeing memory write in different order than CPU.
1263 *
1264 * See Documentation/vm/mmu_notifier.rst
1265 */
1266 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1267
1268 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1269 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1270
1271 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1272 pte_t entry;
1273 entry = mk_pte(pages[i], vma->vm_page_prot);
1274 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1275 memcg = (void *)page_private(pages[i]);
1276 set_page_private(pages[i], 0);
1277 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1278 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1279 lru_cache_add_active_or_unevictable(pages[i], vma);
1280 vmf->pte = pte_offset_map(&_pmd, haddr);
1281 VM_BUG_ON(!pte_none(*vmf->pte));
1282 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1283 pte_unmap(vmf->pte);
1284 }
1285 kfree(pages);
1286
1287 smp_wmb(); /* make pte visible before pmd */
1288 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1289 page_remove_rmap(page, true);
1290 spin_unlock(vmf->ptl);
1291
1292 /*
1293 * No need to double call mmu_notifier->invalidate_range() callback as
1294 * the above pmdp_huge_clear_flush_notify() did already call it.
1295 */
1296 mmu_notifier_invalidate_range_only_end(&range);
1297
1298 ret |= VM_FAULT_WRITE;
1299 put_page(page);
1300
1301 out:
1302 return ret;
1303
1304 out_free_pages:
1305 spin_unlock(vmf->ptl);
1306 mmu_notifier_invalidate_range_end(&range);
1307 for (i = 0; i < HPAGE_PMD_NR; i++) {
1308 memcg = (void *)page_private(pages[i]);
1309 set_page_private(pages[i], 0);
1310 mem_cgroup_cancel_charge(pages[i], memcg, false);
1311 put_page(pages[i]);
1312 }
1313 kfree(pages);
1314 goto out;
1315 }
1316
1317 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1318 {
1319 struct vm_area_struct *vma = vmf->vma;
1320 struct page *page = NULL, *new_page;
1321 struct mem_cgroup *memcg;
1322 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1323 struct mmu_notifier_range range;
1324 gfp_t huge_gfp; /* for allocation and charge */
1325 vm_fault_t ret = 0;
1326
1327 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1328 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1329 if (is_huge_zero_pmd(orig_pmd))
1330 goto alloc;
1331 spin_lock(vmf->ptl);
1332 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1333 goto out_unlock;
1334
1335 page = pmd_page(orig_pmd);
1336 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1337 /*
1338 * We can only reuse the page if nobody else maps the huge page or it's
1339 * part.
1340 */
1341 if (!trylock_page(page)) {
1342 get_page(page);
1343 spin_unlock(vmf->ptl);
1344 lock_page(page);
1345 spin_lock(vmf->ptl);
1346 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1347 unlock_page(page);
1348 put_page(page);
1349 goto out_unlock;
1350 }
1351 put_page(page);
1352 }
1353 if (reuse_swap_page(page, NULL)) {
1354 pmd_t entry;
1355 entry = pmd_mkyoung(orig_pmd);
1356 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1357 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1358 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359 ret |= VM_FAULT_WRITE;
1360 unlock_page(page);
1361 goto out_unlock;
1362 }
1363 unlock_page(page);
1364 get_page(page);
1365 spin_unlock(vmf->ptl);
1366 alloc:
1367 if (__transparent_hugepage_enabled(vma) &&
1368 !transparent_hugepage_debug_cow()) {
1369 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1370 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1371 } else
1372 new_page = NULL;
1373
1374 if (likely(new_page)) {
1375 prep_transhuge_page(new_page);
1376 } else {
1377 if (!page) {
1378 split_huge_pmd(vma, vmf->pmd, vmf->address);
1379 ret |= VM_FAULT_FALLBACK;
1380 } else {
1381 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1382 if (ret & VM_FAULT_OOM) {
1383 split_huge_pmd(vma, vmf->pmd, vmf->address);
1384 ret |= VM_FAULT_FALLBACK;
1385 }
1386 put_page(page);
1387 }
1388 count_vm_event(THP_FAULT_FALLBACK);
1389 goto out;
1390 }
1391
1392 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1393 huge_gfp, &memcg, true))) {
1394 put_page(new_page);
1395 split_huge_pmd(vma, vmf->pmd, vmf->address);
1396 if (page)
1397 put_page(page);
1398 ret |= VM_FAULT_FALLBACK;
1399 count_vm_event(THP_FAULT_FALLBACK);
1400 goto out;
1401 }
1402
1403 count_vm_event(THP_FAULT_ALLOC);
1404 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1405
1406 if (!page)
1407 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1408 else
1409 copy_user_huge_page(new_page, page, vmf->address,
1410 vma, HPAGE_PMD_NR);
1411 __SetPageUptodate(new_page);
1412
1413 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1414 haddr, haddr + HPAGE_PMD_SIZE);
1415 mmu_notifier_invalidate_range_start(&range);
1416
1417 spin_lock(vmf->ptl);
1418 if (page)
1419 put_page(page);
1420 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1421 spin_unlock(vmf->ptl);
1422 mem_cgroup_cancel_charge(new_page, memcg, true);
1423 put_page(new_page);
1424 goto out_mn;
1425 } else {
1426 pmd_t entry;
1427 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1428 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1429 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1430 page_add_new_anon_rmap(new_page, vma, haddr, true);
1431 mem_cgroup_commit_charge(new_page, memcg, false, true);
1432 lru_cache_add_active_or_unevictable(new_page, vma);
1433 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1434 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1435 if (!page) {
1436 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1437 } else {
1438 VM_BUG_ON_PAGE(!PageHead(page), page);
1439 page_remove_rmap(page, true);
1440 put_page(page);
1441 }
1442 ret |= VM_FAULT_WRITE;
1443 }
1444 spin_unlock(vmf->ptl);
1445 out_mn:
1446 /*
1447 * No need to double call mmu_notifier->invalidate_range() callback as
1448 * the above pmdp_huge_clear_flush_notify() did already call it.
1449 */
1450 mmu_notifier_invalidate_range_only_end(&range);
1451 out:
1452 return ret;
1453 out_unlock:
1454 spin_unlock(vmf->ptl);
1455 return ret;
1456 }
1457
1458 /*
1459 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1460 * but only after we've gone through a COW cycle and they are dirty.
1461 */
1462 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1463 {
1464 return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
1465 }
1466
1467 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1468 unsigned long addr,
1469 pmd_t *pmd,
1470 unsigned int flags)
1471 {
1472 struct mm_struct *mm = vma->vm_mm;
1473 struct page *page = NULL;
1474
1475 assert_spin_locked(pmd_lockptr(mm, pmd));
1476
1477 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1478 goto out;
1479
1480 /* Avoid dumping huge zero page */
1481 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1482 return ERR_PTR(-EFAULT);
1483
1484 /* Full NUMA hinting faults to serialise migration in fault paths */
1485 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1486 goto out;
1487
1488 page = pmd_page(*pmd);
1489 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1490 if (flags & FOLL_TOUCH)
1491 touch_pmd(vma, addr, pmd, flags);
1492 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1493 /*
1494 * We don't mlock() pte-mapped THPs. This way we can avoid
1495 * leaking mlocked pages into non-VM_LOCKED VMAs.
1496 *
1497 * For anon THP:
1498 *
1499 * In most cases the pmd is the only mapping of the page as we
1500 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1501 * writable private mappings in populate_vma_page_range().
1502 *
1503 * The only scenario when we have the page shared here is if we
1504 * mlocking read-only mapping shared over fork(). We skip
1505 * mlocking such pages.
1506 *
1507 * For file THP:
1508 *
1509 * We can expect PageDoubleMap() to be stable under page lock:
1510 * for file pages we set it in page_add_file_rmap(), which
1511 * requires page to be locked.
1512 */
1513
1514 if (PageAnon(page) && compound_mapcount(page) != 1)
1515 goto skip_mlock;
1516 if (PageDoubleMap(page) || !page->mapping)
1517 goto skip_mlock;
1518 if (!trylock_page(page))
1519 goto skip_mlock;
1520 lru_add_drain();
1521 if (page->mapping && !PageDoubleMap(page))
1522 mlock_vma_page(page);
1523 unlock_page(page);
1524 }
1525 skip_mlock:
1526 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1527 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1528 if (flags & FOLL_GET)
1529 get_page(page);
1530
1531 out:
1532 return page;
1533 }
1534
1535 /* NUMA hinting page fault entry point for trans huge pmds */
1536 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1537 {
1538 struct vm_area_struct *vma = vmf->vma;
1539 struct anon_vma *anon_vma = NULL;
1540 struct page *page;
1541 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1542 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1543 int target_nid, last_cpupid = -1;
1544 bool page_locked;
1545 bool migrated = false;
1546 bool was_writable;
1547 int flags = 0;
1548
1549 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1550 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1551 goto out_unlock;
1552
1553 /*
1554 * If there are potential migrations, wait for completion and retry
1555 * without disrupting NUMA hinting information. Do not relock and
1556 * check_same as the page may no longer be mapped.
1557 */
1558 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1559 page = pmd_page(*vmf->pmd);
1560 if (!get_page_unless_zero(page))
1561 goto out_unlock;
1562 spin_unlock(vmf->ptl);
1563 put_and_wait_on_page_locked(page);
1564 goto out;
1565 }
1566
1567 page = pmd_page(pmd);
1568 BUG_ON(is_huge_zero_page(page));
1569 page_nid = page_to_nid(page);
1570 last_cpupid = page_cpupid_last(page);
1571 count_vm_numa_event(NUMA_HINT_FAULTS);
1572 if (page_nid == this_nid) {
1573 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1574 flags |= TNF_FAULT_LOCAL;
1575 }
1576
1577 /* See similar comment in do_numa_page for explanation */
1578 if (!pmd_savedwrite(pmd))
1579 flags |= TNF_NO_GROUP;
1580
1581 /*
1582 * Acquire the page lock to serialise THP migrations but avoid dropping
1583 * page_table_lock if at all possible
1584 */
1585 page_locked = trylock_page(page);
1586 target_nid = mpol_misplaced(page, vma, haddr);
1587 if (target_nid == NUMA_NO_NODE) {
1588 /* If the page was locked, there are no parallel migrations */
1589 if (page_locked)
1590 goto clear_pmdnuma;
1591 }
1592
1593 /* Migration could have started since the pmd_trans_migrating check */
1594 if (!page_locked) {
1595 page_nid = NUMA_NO_NODE;
1596 if (!get_page_unless_zero(page))
1597 goto out_unlock;
1598 spin_unlock(vmf->ptl);
1599 put_and_wait_on_page_locked(page);
1600 goto out;
1601 }
1602
1603 /*
1604 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1605 * to serialises splits
1606 */
1607 get_page(page);
1608 spin_unlock(vmf->ptl);
1609 anon_vma = page_lock_anon_vma_read(page);
1610
1611 /* Confirm the PMD did not change while page_table_lock was released */
1612 spin_lock(vmf->ptl);
1613 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1614 unlock_page(page);
1615 put_page(page);
1616 page_nid = NUMA_NO_NODE;
1617 goto out_unlock;
1618 }
1619
1620 /* Bail if we fail to protect against THP splits for any reason */
1621 if (unlikely(!anon_vma)) {
1622 put_page(page);
1623 page_nid = NUMA_NO_NODE;
1624 goto clear_pmdnuma;
1625 }
1626
1627 /*
1628 * Since we took the NUMA fault, we must have observed the !accessible
1629 * bit. Make sure all other CPUs agree with that, to avoid them
1630 * modifying the page we're about to migrate.
1631 *
1632 * Must be done under PTL such that we'll observe the relevant
1633 * inc_tlb_flush_pending().
1634 *
1635 * We are not sure a pending tlb flush here is for a huge page
1636 * mapping or not. Hence use the tlb range variant
1637 */
1638 if (mm_tlb_flush_pending(vma->vm_mm)) {
1639 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1640 /*
1641 * change_huge_pmd() released the pmd lock before
1642 * invalidating the secondary MMUs sharing the primary
1643 * MMU pagetables (with ->invalidate_range()). The
1644 * mmu_notifier_invalidate_range_end() (which
1645 * internally calls ->invalidate_range()) in
1646 * change_pmd_range() will run after us, so we can't
1647 * rely on it here and we need an explicit invalidate.
1648 */
1649 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1650 haddr + HPAGE_PMD_SIZE);
1651 }
1652
1653 /*
1654 * Migrate the THP to the requested node, returns with page unlocked
1655 * and access rights restored.
1656 */
1657 spin_unlock(vmf->ptl);
1658
1659 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1660 vmf->pmd, pmd, vmf->address, page, target_nid);
1661 if (migrated) {
1662 flags |= TNF_MIGRATED;
1663 page_nid = target_nid;
1664 } else
1665 flags |= TNF_MIGRATE_FAIL;
1666
1667 goto out;
1668 clear_pmdnuma:
1669 BUG_ON(!PageLocked(page));
1670 was_writable = pmd_savedwrite(pmd);
1671 pmd = pmd_modify(pmd, vma->vm_page_prot);
1672 pmd = pmd_mkyoung(pmd);
1673 if (was_writable)
1674 pmd = pmd_mkwrite(pmd);
1675 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1676 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1677 unlock_page(page);
1678 out_unlock:
1679 spin_unlock(vmf->ptl);
1680
1681 out:
1682 if (anon_vma)
1683 page_unlock_anon_vma_read(anon_vma);
1684
1685 if (page_nid != NUMA_NO_NODE)
1686 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1687 flags);
1688
1689 return 0;
1690 }
1691
1692 /*
1693 * Return true if we do MADV_FREE successfully on entire pmd page.
1694 * Otherwise, return false.
1695 */
1696 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1697 pmd_t *pmd, unsigned long addr, unsigned long next)
1698 {
1699 spinlock_t *ptl;
1700 pmd_t orig_pmd;
1701 struct page *page;
1702 struct mm_struct *mm = tlb->mm;
1703 bool ret = false;
1704
1705 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1706
1707 ptl = pmd_trans_huge_lock(pmd, vma);
1708 if (!ptl)
1709 goto out_unlocked;
1710
1711 orig_pmd = *pmd;
1712 if (is_huge_zero_pmd(orig_pmd))
1713 goto out;
1714
1715 if (unlikely(!pmd_present(orig_pmd))) {
1716 VM_BUG_ON(thp_migration_supported() &&
1717 !is_pmd_migration_entry(orig_pmd));
1718 goto out;
1719 }
1720
1721 page = pmd_page(orig_pmd);
1722 /*
1723 * If other processes are mapping this page, we couldn't discard
1724 * the page unless they all do MADV_FREE so let's skip the page.
1725 */
1726 if (total_mapcount(page) != 1)
1727 goto out;
1728
1729 if (!trylock_page(page))
1730 goto out;
1731
1732 /*
1733 * If user want to discard part-pages of THP, split it so MADV_FREE
1734 * will deactivate only them.
1735 */
1736 if (next - addr != HPAGE_PMD_SIZE) {
1737 get_page(page);
1738 spin_unlock(ptl);
1739 split_huge_page(page);
1740 unlock_page(page);
1741 put_page(page);
1742 goto out_unlocked;
1743 }
1744
1745 if (PageDirty(page))
1746 ClearPageDirty(page);
1747 unlock_page(page);
1748
1749 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1750 pmdp_invalidate(vma, addr, pmd);
1751 orig_pmd = pmd_mkold(orig_pmd);
1752 orig_pmd = pmd_mkclean(orig_pmd);
1753
1754 set_pmd_at(mm, addr, pmd, orig_pmd);
1755 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1756 }
1757
1758 mark_page_lazyfree(page);
1759 ret = true;
1760 out:
1761 spin_unlock(ptl);
1762 out_unlocked:
1763 return ret;
1764 }
1765
1766 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1767 {
1768 pgtable_t pgtable;
1769
1770 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1771 pte_free(mm, pgtable);
1772 mm_dec_nr_ptes(mm);
1773 }
1774
1775 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1776 pmd_t *pmd, unsigned long addr)
1777 {
1778 pmd_t orig_pmd;
1779 spinlock_t *ptl;
1780
1781 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1782
1783 ptl = __pmd_trans_huge_lock(pmd, vma);
1784 if (!ptl)
1785 return 0;
1786 /*
1787 * For architectures like ppc64 we look at deposited pgtable
1788 * when calling pmdp_huge_get_and_clear. So do the
1789 * pgtable_trans_huge_withdraw after finishing pmdp related
1790 * operations.
1791 */
1792 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1793 tlb->fullmm);
1794 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1795 if (vma_is_dax(vma)) {
1796 if (arch_needs_pgtable_deposit())
1797 zap_deposited_table(tlb->mm, pmd);
1798 spin_unlock(ptl);
1799 if (is_huge_zero_pmd(orig_pmd))
1800 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1801 } else if (is_huge_zero_pmd(orig_pmd)) {
1802 zap_deposited_table(tlb->mm, pmd);
1803 spin_unlock(ptl);
1804 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1805 } else {
1806 struct page *page = NULL;
1807 int flush_needed = 1;
1808
1809 if (pmd_present(orig_pmd)) {
1810 page = pmd_page(orig_pmd);
1811 page_remove_rmap(page, true);
1812 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1813 VM_BUG_ON_PAGE(!PageHead(page), page);
1814 } else if (thp_migration_supported()) {
1815 swp_entry_t entry;
1816
1817 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1818 entry = pmd_to_swp_entry(orig_pmd);
1819 page = pfn_to_page(swp_offset(entry));
1820 flush_needed = 0;
1821 } else
1822 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1823
1824 if (PageAnon(page)) {
1825 zap_deposited_table(tlb->mm, pmd);
1826 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1827 } else {
1828 if (arch_needs_pgtable_deposit())
1829 zap_deposited_table(tlb->mm, pmd);
1830 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1831 }
1832
1833 spin_unlock(ptl);
1834 if (flush_needed)
1835 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1836 }
1837 return 1;
1838 }
1839
1840 #ifndef pmd_move_must_withdraw
1841 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1842 spinlock_t *old_pmd_ptl,
1843 struct vm_area_struct *vma)
1844 {
1845 /*
1846 * With split pmd lock we also need to move preallocated
1847 * PTE page table if new_pmd is on different PMD page table.
1848 *
1849 * We also don't deposit and withdraw tables for file pages.
1850 */
1851 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1852 }
1853 #endif
1854
1855 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1856 {
1857 #ifdef CONFIG_MEM_SOFT_DIRTY
1858 if (unlikely(is_pmd_migration_entry(pmd)))
1859 pmd = pmd_swp_mksoft_dirty(pmd);
1860 else if (pmd_present(pmd))
1861 pmd = pmd_mksoft_dirty(pmd);
1862 #endif
1863 return pmd;
1864 }
1865
1866 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1867 unsigned long new_addr, unsigned long old_end,
1868 pmd_t *old_pmd, pmd_t *new_pmd)
1869 {
1870 spinlock_t *old_ptl, *new_ptl;
1871 pmd_t pmd;
1872 struct mm_struct *mm = vma->vm_mm;
1873 bool force_flush = false;
1874
1875 if ((old_addr & ~HPAGE_PMD_MASK) ||
1876 (new_addr & ~HPAGE_PMD_MASK) ||
1877 old_end - old_addr < HPAGE_PMD_SIZE)
1878 return false;
1879
1880 /*
1881 * The destination pmd shouldn't be established, free_pgtables()
1882 * should have release it.
1883 */
1884 if (WARN_ON(!pmd_none(*new_pmd))) {
1885 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1886 return false;
1887 }
1888
1889 /*
1890 * We don't have to worry about the ordering of src and dst
1891 * ptlocks because exclusive mmap_sem prevents deadlock.
1892 */
1893 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1894 if (old_ptl) {
1895 new_ptl = pmd_lockptr(mm, new_pmd);
1896 if (new_ptl != old_ptl)
1897 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1898 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1899 if (pmd_present(pmd))
1900 force_flush = true;
1901 VM_BUG_ON(!pmd_none(*new_pmd));
1902
1903 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1904 pgtable_t pgtable;
1905 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1906 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1907 }
1908 pmd = move_soft_dirty_pmd(pmd);
1909 set_pmd_at(mm, new_addr, new_pmd, pmd);
1910 if (force_flush)
1911 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1912 if (new_ptl != old_ptl)
1913 spin_unlock(new_ptl);
1914 spin_unlock(old_ptl);
1915 return true;
1916 }
1917 return false;
1918 }
1919
1920 /*
1921 * Returns
1922 * - 0 if PMD could not be locked
1923 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1924 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1925 */
1926 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1927 unsigned long addr, pgprot_t newprot, int prot_numa)
1928 {
1929 struct mm_struct *mm = vma->vm_mm;
1930 spinlock_t *ptl;
1931 pmd_t entry;
1932 bool preserve_write;
1933 int ret;
1934
1935 ptl = __pmd_trans_huge_lock(pmd, vma);
1936 if (!ptl)
1937 return 0;
1938
1939 preserve_write = prot_numa && pmd_write(*pmd);
1940 ret = 1;
1941
1942 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1943 if (is_swap_pmd(*pmd)) {
1944 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1945
1946 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1947 if (is_write_migration_entry(entry)) {
1948 pmd_t newpmd;
1949 /*
1950 * A protection check is difficult so
1951 * just be safe and disable write
1952 */
1953 make_migration_entry_read(&entry);
1954 newpmd = swp_entry_to_pmd(entry);
1955 if (pmd_swp_soft_dirty(*pmd))
1956 newpmd = pmd_swp_mksoft_dirty(newpmd);
1957 set_pmd_at(mm, addr, pmd, newpmd);
1958 }
1959 goto unlock;
1960 }
1961 #endif
1962
1963 /*
1964 * Avoid trapping faults against the zero page. The read-only
1965 * data is likely to be read-cached on the local CPU and
1966 * local/remote hits to the zero page are not interesting.
1967 */
1968 if (prot_numa && is_huge_zero_pmd(*pmd))
1969 goto unlock;
1970
1971 if (prot_numa && pmd_protnone(*pmd))
1972 goto unlock;
1973
1974 /*
1975 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1976 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1977 * which is also under down_read(mmap_sem):
1978 *
1979 * CPU0: CPU1:
1980 * change_huge_pmd(prot_numa=1)
1981 * pmdp_huge_get_and_clear_notify()
1982 * madvise_dontneed()
1983 * zap_pmd_range()
1984 * pmd_trans_huge(*pmd) == 0 (without ptl)
1985 * // skip the pmd
1986 * set_pmd_at();
1987 * // pmd is re-established
1988 *
1989 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1990 * which may break userspace.
1991 *
1992 * pmdp_invalidate() is required to make sure we don't miss
1993 * dirty/young flags set by hardware.
1994 */
1995 entry = pmdp_invalidate(vma, addr, pmd);
1996
1997 entry = pmd_modify(entry, newprot);
1998 if (preserve_write)
1999 entry = pmd_mk_savedwrite(entry);
2000 ret = HPAGE_PMD_NR;
2001 set_pmd_at(mm, addr, pmd, entry);
2002 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2003 unlock:
2004 spin_unlock(ptl);
2005 return ret;
2006 }
2007
2008 /*
2009 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2010 *
2011 * Note that if it returns page table lock pointer, this routine returns without
2012 * unlocking page table lock. So callers must unlock it.
2013 */
2014 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2015 {
2016 spinlock_t *ptl;
2017 ptl = pmd_lock(vma->vm_mm, pmd);
2018 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2019 pmd_devmap(*pmd)))
2020 return ptl;
2021 spin_unlock(ptl);
2022 return NULL;
2023 }
2024
2025 /*
2026 * Returns true if a given pud maps a thp, false otherwise.
2027 *
2028 * Note that if it returns true, this routine returns without unlocking page
2029 * table lock. So callers must unlock it.
2030 */
2031 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2032 {
2033 spinlock_t *ptl;
2034
2035 ptl = pud_lock(vma->vm_mm, pud);
2036 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2037 return ptl;
2038 spin_unlock(ptl);
2039 return NULL;
2040 }
2041
2042 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2043 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2044 pud_t *pud, unsigned long addr)
2045 {
2046 spinlock_t *ptl;
2047
2048 ptl = __pud_trans_huge_lock(pud, vma);
2049 if (!ptl)
2050 return 0;
2051 /*
2052 * For architectures like ppc64 we look at deposited pgtable
2053 * when calling pudp_huge_get_and_clear. So do the
2054 * pgtable_trans_huge_withdraw after finishing pudp related
2055 * operations.
2056 */
2057 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2058 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2059 if (vma_is_dax(vma)) {
2060 spin_unlock(ptl);
2061 /* No zero page support yet */
2062 } else {
2063 /* No support for anonymous PUD pages yet */
2064 BUG();
2065 }
2066 return 1;
2067 }
2068
2069 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2070 unsigned long haddr)
2071 {
2072 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2073 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2074 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2075 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2076
2077 count_vm_event(THP_SPLIT_PUD);
2078
2079 pudp_huge_clear_flush_notify(vma, haddr, pud);
2080 }
2081
2082 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2083 unsigned long address)
2084 {
2085 spinlock_t *ptl;
2086 struct mmu_notifier_range range;
2087
2088 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2089 address & HPAGE_PUD_MASK,
2090 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2091 mmu_notifier_invalidate_range_start(&range);
2092 ptl = pud_lock(vma->vm_mm, pud);
2093 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2094 goto out;
2095 __split_huge_pud_locked(vma, pud, range.start);
2096
2097 out:
2098 spin_unlock(ptl);
2099 /*
2100 * No need to double call mmu_notifier->invalidate_range() callback as
2101 * the above pudp_huge_clear_flush_notify() did already call it.
2102 */
2103 mmu_notifier_invalidate_range_only_end(&range);
2104 }
2105 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2106
2107 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2108 unsigned long haddr, pmd_t *pmd)
2109 {
2110 struct mm_struct *mm = vma->vm_mm;
2111 pgtable_t pgtable;
2112 pmd_t _pmd;
2113 int i;
2114
2115 /*
2116 * Leave pmd empty until pte is filled note that it is fine to delay
2117 * notification until mmu_notifier_invalidate_range_end() as we are
2118 * replacing a zero pmd write protected page with a zero pte write
2119 * protected page.
2120 *
2121 * See Documentation/vm/mmu_notifier.rst
2122 */
2123 pmdp_huge_clear_flush(vma, haddr, pmd);
2124
2125 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2126 pmd_populate(mm, &_pmd, pgtable);
2127
2128 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2129 pte_t *pte, entry;
2130 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2131 entry = pte_mkspecial(entry);
2132 pte = pte_offset_map(&_pmd, haddr);
2133 VM_BUG_ON(!pte_none(*pte));
2134 set_pte_at(mm, haddr, pte, entry);
2135 pte_unmap(pte);
2136 }
2137 smp_wmb(); /* make pte visible before pmd */
2138 pmd_populate(mm, pmd, pgtable);
2139 }
2140
2141 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2142 unsigned long haddr, bool freeze)
2143 {
2144 struct mm_struct *mm = vma->vm_mm;
2145 struct page *page;
2146 pgtable_t pgtable;
2147 pmd_t old_pmd, _pmd;
2148 bool young, write, soft_dirty, pmd_migration = false;
2149 unsigned long addr;
2150 int i;
2151
2152 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2153 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2154 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2155 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2156 && !pmd_devmap(*pmd));
2157
2158 count_vm_event(THP_SPLIT_PMD);
2159
2160 if (!vma_is_anonymous(vma)) {
2161 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2162 /*
2163 * We are going to unmap this huge page. So
2164 * just go ahead and zap it
2165 */
2166 if (arch_needs_pgtable_deposit())
2167 zap_deposited_table(mm, pmd);
2168 if (vma_is_dax(vma))
2169 return;
2170 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2171 swp_entry_t entry;
2172
2173 entry = pmd_to_swp_entry(old_pmd);
2174 page = migration_entry_to_page(entry);
2175 } else {
2176 page = pmd_page(old_pmd);
2177 if (!PageDirty(page) && pmd_dirty(old_pmd))
2178 set_page_dirty(page);
2179 if (!PageReferenced(page) && pmd_young(old_pmd))
2180 SetPageReferenced(page);
2181 page_remove_rmap(page, true);
2182 put_page(page);
2183 }
2184 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2185 return;
2186 }
2187
2188 if (is_huge_zero_pmd(*pmd)) {
2189 /*
2190 * FIXME: Do we want to invalidate secondary mmu by calling
2191 * mmu_notifier_invalidate_range() see comments below inside
2192 * __split_huge_pmd() ?
2193 *
2194 * We are going from a zero huge page write protected to zero
2195 * small page also write protected so it does not seems useful
2196 * to invalidate secondary mmu at this time.
2197 */
2198 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2199 }
2200
2201 /*
2202 * Up to this point the pmd is present and huge and userland has the
2203 * whole access to the hugepage during the split (which happens in
2204 * place). If we overwrite the pmd with the not-huge version pointing
2205 * to the pte here (which of course we could if all CPUs were bug
2206 * free), userland could trigger a small page size TLB miss on the
2207 * small sized TLB while the hugepage TLB entry is still established in
2208 * the huge TLB. Some CPU doesn't like that.
2209 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2210 * 383 on page 93. Intel should be safe but is also warns that it's
2211 * only safe if the permission and cache attributes of the two entries
2212 * loaded in the two TLB is identical (which should be the case here).
2213 * But it is generally safer to never allow small and huge TLB entries
2214 * for the same virtual address to be loaded simultaneously. So instead
2215 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2216 * current pmd notpresent (atomically because here the pmd_trans_huge
2217 * must remain set at all times on the pmd until the split is complete
2218 * for this pmd), then we flush the SMP TLB and finally we write the
2219 * non-huge version of the pmd entry with pmd_populate.
2220 */
2221 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2222
2223 pmd_migration = is_pmd_migration_entry(old_pmd);
2224 if (unlikely(pmd_migration)) {
2225 swp_entry_t entry;
2226
2227 entry = pmd_to_swp_entry(old_pmd);
2228 page = pfn_to_page(swp_offset(entry));
2229 write = is_write_migration_entry(entry);
2230 young = false;
2231 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2232 } else {
2233 page = pmd_page(old_pmd);
2234 if (pmd_dirty(old_pmd))
2235 SetPageDirty(page);
2236 write = pmd_write(old_pmd);
2237 young = pmd_young(old_pmd);
2238 soft_dirty = pmd_soft_dirty(old_pmd);
2239 }
2240 VM_BUG_ON_PAGE(!page_count(page), page);
2241 page_ref_add(page, HPAGE_PMD_NR - 1);
2242
2243 /*
2244 * Withdraw the table only after we mark the pmd entry invalid.
2245 * This's critical for some architectures (Power).
2246 */
2247 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2248 pmd_populate(mm, &_pmd, pgtable);
2249
2250 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2251 pte_t entry, *pte;
2252 /*
2253 * Note that NUMA hinting access restrictions are not
2254 * transferred to avoid any possibility of altering
2255 * permissions across VMAs.
2256 */
2257 if (freeze || pmd_migration) {
2258 swp_entry_t swp_entry;
2259 swp_entry = make_migration_entry(page + i, write);
2260 entry = swp_entry_to_pte(swp_entry);
2261 if (soft_dirty)
2262 entry = pte_swp_mksoft_dirty(entry);
2263 } else {
2264 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2265 entry = maybe_mkwrite(entry, vma);
2266 if (!write)
2267 entry = pte_wrprotect(entry);
2268 if (!young)
2269 entry = pte_mkold(entry);
2270 if (soft_dirty)
2271 entry = pte_mksoft_dirty(entry);
2272 }
2273 pte = pte_offset_map(&_pmd, addr);
2274 BUG_ON(!pte_none(*pte));
2275 set_pte_at(mm, addr, pte, entry);
2276 if (!pmd_migration)
2277 atomic_inc(&page[i]._mapcount);
2278 pte_unmap(pte);
2279 }
2280
2281 if (!pmd_migration) {
2282 /*
2283 * Set PG_double_map before dropping compound_mapcount to avoid
2284 * false-negative page_mapped().
2285 */
2286 if (compound_mapcount(page) > 1 &&
2287 !TestSetPageDoubleMap(page)) {
2288 for (i = 0; i < HPAGE_PMD_NR; i++)
2289 atomic_inc(&page[i]._mapcount);
2290 }
2291
2292 lock_page_memcg(page);
2293 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2294 /* Last compound_mapcount is gone. */
2295 __dec_lruvec_page_state(page, NR_ANON_THPS);
2296 if (TestClearPageDoubleMap(page)) {
2297 /* No need in mapcount reference anymore */
2298 for (i = 0; i < HPAGE_PMD_NR; i++)
2299 atomic_dec(&page[i]._mapcount);
2300 }
2301 }
2302 unlock_page_memcg(page);
2303 }
2304
2305 smp_wmb(); /* make pte visible before pmd */
2306 pmd_populate(mm, pmd, pgtable);
2307
2308 if (freeze) {
2309 for (i = 0; i < HPAGE_PMD_NR; i++) {
2310 page_remove_rmap(page + i, false);
2311 put_page(page + i);
2312 }
2313 }
2314 }
2315
2316 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2317 unsigned long address, bool freeze, struct page *page)
2318 {
2319 spinlock_t *ptl;
2320 struct mmu_notifier_range range;
2321 bool do_unlock_page = false;
2322 pmd_t _pmd;
2323
2324 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2325 address & HPAGE_PMD_MASK,
2326 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2327 mmu_notifier_invalidate_range_start(&range);
2328 ptl = pmd_lock(vma->vm_mm, pmd);
2329
2330 /*
2331 * If caller asks to setup a migration entries, we need a page to check
2332 * pmd against. Otherwise we can end up replacing wrong page.
2333 */
2334 VM_BUG_ON(freeze && !page);
2335 if (page) {
2336 VM_WARN_ON_ONCE(!PageLocked(page));
2337 if (page != pmd_page(*pmd))
2338 goto out;
2339 }
2340
2341 repeat:
2342 if (pmd_trans_huge(*pmd)) {
2343 if (!page) {
2344 page = pmd_page(*pmd);
2345 /*
2346 * An anonymous page must be locked, to ensure that a
2347 * concurrent reuse_swap_page() sees stable mapcount;
2348 * but reuse_swap_page() is not used on shmem or file,
2349 * and page lock must not be taken when zap_pmd_range()
2350 * calls __split_huge_pmd() while i_mmap_lock is held.
2351 */
2352 if (PageAnon(page)) {
2353 if (unlikely(!trylock_page(page))) {
2354 get_page(page);
2355 _pmd = *pmd;
2356 spin_unlock(ptl);
2357 lock_page(page);
2358 spin_lock(ptl);
2359 if (unlikely(!pmd_same(*pmd, _pmd))) {
2360 unlock_page(page);
2361 put_page(page);
2362 page = NULL;
2363 goto repeat;
2364 }
2365 put_page(page);
2366 }
2367 do_unlock_page = true;
2368 }
2369 }
2370 if (PageMlocked(page))
2371 clear_page_mlock(page);
2372 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2373 goto out;
2374 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2375 out:
2376 spin_unlock(ptl);
2377 if (do_unlock_page)
2378 unlock_page(page);
2379 /*
2380 * No need to double call mmu_notifier->invalidate_range() callback.
2381 * They are 3 cases to consider inside __split_huge_pmd_locked():
2382 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2383 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2384 * fault will trigger a flush_notify before pointing to a new page
2385 * (it is fine if the secondary mmu keeps pointing to the old zero
2386 * page in the meantime)
2387 * 3) Split a huge pmd into pte pointing to the same page. No need
2388 * to invalidate secondary tlb entry they are all still valid.
2389 * any further changes to individual pte will notify. So no need
2390 * to call mmu_notifier->invalidate_range()
2391 */
2392 mmu_notifier_invalidate_range_only_end(&range);
2393 }
2394
2395 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2396 bool freeze, struct page *page)
2397 {
2398 pgd_t *pgd;
2399 p4d_t *p4d;
2400 pud_t *pud;
2401 pmd_t *pmd;
2402
2403 pgd = pgd_offset(vma->vm_mm, address);
2404 if (!pgd_present(*pgd))
2405 return;
2406
2407 p4d = p4d_offset(pgd, address);
2408 if (!p4d_present(*p4d))
2409 return;
2410
2411 pud = pud_offset(p4d, address);
2412 if (!pud_present(*pud))
2413 return;
2414
2415 pmd = pmd_offset(pud, address);
2416
2417 __split_huge_pmd(vma, pmd, address, freeze, page);
2418 }
2419
2420 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2421 unsigned long start,
2422 unsigned long end,
2423 long adjust_next)
2424 {
2425 /*
2426 * If the new start address isn't hpage aligned and it could
2427 * previously contain an hugepage: check if we need to split
2428 * an huge pmd.
2429 */
2430 if (start & ~HPAGE_PMD_MASK &&
2431 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2432 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2433 split_huge_pmd_address(vma, start, false, NULL);
2434
2435 /*
2436 * If the new end address isn't hpage aligned and it could
2437 * previously contain an hugepage: check if we need to split
2438 * an huge pmd.
2439 */
2440 if (end & ~HPAGE_PMD_MASK &&
2441 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2442 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2443 split_huge_pmd_address(vma, end, false, NULL);
2444
2445 /*
2446 * If we're also updating the vma->vm_next->vm_start, if the new
2447 * vm_next->vm_start isn't page aligned and it could previously
2448 * contain an hugepage: check if we need to split an huge pmd.
2449 */
2450 if (adjust_next > 0) {
2451 struct vm_area_struct *next = vma->vm_next;
2452 unsigned long nstart = next->vm_start;
2453 nstart += adjust_next << PAGE_SHIFT;
2454 if (nstart & ~HPAGE_PMD_MASK &&
2455 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2456 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2457 split_huge_pmd_address(next, nstart, false, NULL);
2458 }
2459 }
2460
2461 static void unmap_page(struct page *page)
2462 {
2463 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2464 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | TTU_SYNC;
2465
2466 VM_BUG_ON_PAGE(!PageHead(page), page);
2467
2468 if (PageAnon(page))
2469 ttu_flags |= TTU_SPLIT_FREEZE;
2470
2471 try_to_unmap(page, ttu_flags);
2472
2473 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2474 }
2475
2476 static void remap_page(struct page *page)
2477 {
2478 int i;
2479 if (PageTransHuge(page)) {
2480 remove_migration_ptes(page, page, true);
2481 } else {
2482 for (i = 0; i < HPAGE_PMD_NR; i++)
2483 remove_migration_ptes(page + i, page + i, true);
2484 }
2485 }
2486
2487 static void __split_huge_page_tail(struct page *head, int tail,
2488 struct lruvec *lruvec, struct list_head *list)
2489 {
2490 struct page *page_tail = head + tail;
2491
2492 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2493
2494 /*
2495 * Clone page flags before unfreezing refcount.
2496 *
2497 * After successful get_page_unless_zero() might follow flags change,
2498 * for exmaple lock_page() which set PG_waiters.
2499 */
2500 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2501 page_tail->flags |= (head->flags &
2502 ((1L << PG_referenced) |
2503 (1L << PG_swapbacked) |
2504 (1L << PG_swapcache) |
2505 (1L << PG_mlocked) |
2506 (1L << PG_uptodate) |
2507 (1L << PG_active) |
2508 (1L << PG_workingset) |
2509 (1L << PG_locked) |
2510 (1L << PG_unevictable) |
2511 (1L << PG_dirty)));
2512
2513 /* ->mapping in first tail page is compound_mapcount */
2514 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2515 page_tail);
2516 page_tail->mapping = head->mapping;
2517 page_tail->index = head->index + tail;
2518
2519 /* Page flags must be visible before we make the page non-compound. */
2520 smp_wmb();
2521
2522 /*
2523 * Clear PageTail before unfreezing page refcount.
2524 *
2525 * After successful get_page_unless_zero() might follow put_page()
2526 * which needs correct compound_head().
2527 */
2528 clear_compound_head(page_tail);
2529
2530 /* Finally unfreeze refcount. Additional reference from page cache. */
2531 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2532 PageSwapCache(head)));
2533
2534 if (page_is_young(head))
2535 set_page_young(page_tail);
2536 if (page_is_idle(head))
2537 set_page_idle(page_tail);
2538
2539 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2540
2541 /*
2542 * always add to the tail because some iterators expect new
2543 * pages to show after the currently processed elements - e.g.
2544 * migrate_pages
2545 */
2546 lru_add_page_tail(head, page_tail, lruvec, list);
2547 }
2548
2549 static void __split_huge_page(struct page *page, struct list_head *list,
2550 pgoff_t end, unsigned long flags)
2551 {
2552 struct page *head = compound_head(page);
2553 pg_data_t *pgdat = page_pgdat(head);
2554 struct lruvec *lruvec;
2555 struct address_space *swap_cache = NULL;
2556 unsigned long offset = 0;
2557 int i;
2558
2559 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2560
2561 /* complete memcg works before add pages to LRU */
2562 mem_cgroup_split_huge_fixup(head);
2563
2564 if (PageAnon(head) && PageSwapCache(head)) {
2565 swp_entry_t entry = { .val = page_private(head) };
2566
2567 offset = swp_offset(entry);
2568 swap_cache = swap_address_space(entry);
2569 xa_lock(&swap_cache->i_pages);
2570 }
2571
2572 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2573 __split_huge_page_tail(head, i, lruvec, list);
2574 /* Some pages can be beyond i_size: drop them from page cache */
2575 if (head[i].index >= end) {
2576 ClearPageDirty(head + i);
2577 __delete_from_page_cache(head + i, NULL);
2578 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2579 shmem_uncharge(head->mapping->host, 1);
2580 put_page(head + i);
2581 } else if (!PageAnon(page)) {
2582 __xa_store(&head->mapping->i_pages, head[i].index,
2583 head + i, 0);
2584 } else if (swap_cache) {
2585 __xa_store(&swap_cache->i_pages, offset + i,
2586 head + i, 0);
2587 }
2588 }
2589
2590 ClearPageCompound(head);
2591
2592 split_page_owner(head, HPAGE_PMD_NR);
2593
2594 /* See comment in __split_huge_page_tail() */
2595 if (PageAnon(head)) {
2596 /* Additional pin to swap cache */
2597 if (PageSwapCache(head)) {
2598 page_ref_add(head, 2);
2599 xa_unlock(&swap_cache->i_pages);
2600 } else {
2601 page_ref_inc(head);
2602 }
2603 } else {
2604 /* Additional pin to page cache */
2605 page_ref_add(head, 2);
2606 xa_unlock(&head->mapping->i_pages);
2607 }
2608
2609 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2610
2611 remap_page(head);
2612
2613 for (i = 0; i < HPAGE_PMD_NR; i++) {
2614 struct page *subpage = head + i;
2615 if (subpage == page)
2616 continue;
2617 unlock_page(subpage);
2618
2619 /*
2620 * Subpages may be freed if there wasn't any mapping
2621 * like if add_to_swap() is running on a lru page that
2622 * had its mapping zapped. And freeing these pages
2623 * requires taking the lru_lock so we do the put_page
2624 * of the tail pages after the split is complete.
2625 */
2626 put_page(subpage);
2627 }
2628 }
2629
2630 int total_mapcount(struct page *page)
2631 {
2632 int i, compound, ret;
2633
2634 VM_BUG_ON_PAGE(PageTail(page), page);
2635
2636 if (likely(!PageCompound(page)))
2637 return atomic_read(&page->_mapcount) + 1;
2638
2639 compound = compound_mapcount(page);
2640 if (PageHuge(page))
2641 return compound;
2642 ret = compound;
2643 for (i = 0; i < HPAGE_PMD_NR; i++)
2644 ret += atomic_read(&page[i]._mapcount) + 1;
2645 /* File pages has compound_mapcount included in _mapcount */
2646 if (!PageAnon(page))
2647 return ret - compound * HPAGE_PMD_NR;
2648 if (PageDoubleMap(page))
2649 ret -= HPAGE_PMD_NR;
2650 return ret;
2651 }
2652
2653 /*
2654 * This calculates accurately how many mappings a transparent hugepage
2655 * has (unlike page_mapcount() which isn't fully accurate). This full
2656 * accuracy is primarily needed to know if copy-on-write faults can
2657 * reuse the page and change the mapping to read-write instead of
2658 * copying them. At the same time this returns the total_mapcount too.
2659 *
2660 * The function returns the highest mapcount any one of the subpages
2661 * has. If the return value is one, even if different processes are
2662 * mapping different subpages of the transparent hugepage, they can
2663 * all reuse it, because each process is reusing a different subpage.
2664 *
2665 * The total_mapcount is instead counting all virtual mappings of the
2666 * subpages. If the total_mapcount is equal to "one", it tells the
2667 * caller all mappings belong to the same "mm" and in turn the
2668 * anon_vma of the transparent hugepage can become the vma->anon_vma
2669 * local one as no other process may be mapping any of the subpages.
2670 *
2671 * It would be more accurate to replace page_mapcount() with
2672 * page_trans_huge_mapcount(), however we only use
2673 * page_trans_huge_mapcount() in the copy-on-write faults where we
2674 * need full accuracy to avoid breaking page pinning, because
2675 * page_trans_huge_mapcount() is slower than page_mapcount().
2676 */
2677 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2678 {
2679 int i, ret, _total_mapcount, mapcount;
2680
2681 /* hugetlbfs shouldn't call it */
2682 VM_BUG_ON_PAGE(PageHuge(page), page);
2683
2684 if (likely(!PageTransCompound(page))) {
2685 mapcount = atomic_read(&page->_mapcount) + 1;
2686 if (total_mapcount)
2687 *total_mapcount = mapcount;
2688 return mapcount;
2689 }
2690
2691 page = compound_head(page);
2692
2693 _total_mapcount = ret = 0;
2694 for (i = 0; i < HPAGE_PMD_NR; i++) {
2695 mapcount = atomic_read(&page[i]._mapcount) + 1;
2696 ret = max(ret, mapcount);
2697 _total_mapcount += mapcount;
2698 }
2699 if (PageDoubleMap(page)) {
2700 ret -= 1;
2701 _total_mapcount -= HPAGE_PMD_NR;
2702 }
2703 mapcount = compound_mapcount(page);
2704 ret += mapcount;
2705 _total_mapcount += mapcount;
2706 if (total_mapcount)
2707 *total_mapcount = _total_mapcount;
2708 return ret;
2709 }
2710
2711 /* Racy check whether the huge page can be split */
2712 bool can_split_huge_page(struct page *page, int *pextra_pins)
2713 {
2714 int extra_pins;
2715
2716 /* Additional pins from page cache */
2717 if (PageAnon(page))
2718 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2719 else
2720 extra_pins = HPAGE_PMD_NR;
2721 if (pextra_pins)
2722 *pextra_pins = extra_pins;
2723 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2724 }
2725
2726 /*
2727 * This function splits huge page into normal pages. @page can point to any
2728 * subpage of huge page to split. Split doesn't change the position of @page.
2729 *
2730 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2731 * The huge page must be locked.
2732 *
2733 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2734 *
2735 * Both head page and tail pages will inherit mapping, flags, and so on from
2736 * the hugepage.
2737 *
2738 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2739 * they are not mapped.
2740 *
2741 * Returns 0 if the hugepage is split successfully.
2742 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2743 * us.
2744 */
2745 int split_huge_page_to_list(struct page *page, struct list_head *list)
2746 {
2747 struct page *head = compound_head(page);
2748 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2749 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2750 struct anon_vma *anon_vma = NULL;
2751 struct address_space *mapping = NULL;
2752 int extra_pins, ret;
2753 bool mlocked;
2754 unsigned long flags;
2755 pgoff_t end;
2756
2757 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2758 VM_BUG_ON_PAGE(!PageLocked(page), page);
2759 VM_BUG_ON_PAGE(!PageCompound(page), page);
2760
2761 if (PageWriteback(page))
2762 return -EBUSY;
2763
2764 if (PageAnon(head)) {
2765 /*
2766 * The caller does not necessarily hold an mmap_sem that would
2767 * prevent the anon_vma disappearing so we first we take a
2768 * reference to it and then lock the anon_vma for write. This
2769 * is similar to page_lock_anon_vma_read except the write lock
2770 * is taken to serialise against parallel split or collapse
2771 * operations.
2772 */
2773 anon_vma = page_get_anon_vma(head);
2774 if (!anon_vma) {
2775 ret = -EBUSY;
2776 goto out;
2777 }
2778 end = -1;
2779 mapping = NULL;
2780 anon_vma_lock_write(anon_vma);
2781 } else {
2782 mapping = head->mapping;
2783
2784 /* Truncated ? */
2785 if (!mapping) {
2786 ret = -EBUSY;
2787 goto out;
2788 }
2789
2790 anon_vma = NULL;
2791 i_mmap_lock_read(mapping);
2792
2793 /*
2794 *__split_huge_page() may need to trim off pages beyond EOF:
2795 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2796 * which cannot be nested inside the page tree lock. So note
2797 * end now: i_size itself may be changed at any moment, but
2798 * head page lock is good enough to serialize the trimming.
2799 */
2800 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2801 }
2802
2803 /*
2804 * Racy check if we can split the page, before unmap_page() will
2805 * split PMDs
2806 */
2807 if (!can_split_huge_page(head, &extra_pins)) {
2808 ret = -EBUSY;
2809 goto out_unlock;
2810 }
2811
2812 mlocked = PageMlocked(page);
2813 unmap_page(head);
2814
2815 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2816 if (mlocked)
2817 lru_add_drain();
2818
2819 /* prevent PageLRU to go away from under us, and freeze lru stats */
2820 spin_lock_irqsave(&pgdata->lru_lock, flags);
2821
2822 if (mapping) {
2823 XA_STATE(xas, &mapping->i_pages, page_index(head));
2824
2825 /*
2826 * Check if the head page is present in page cache.
2827 * We assume all tail are present too, if head is there.
2828 */
2829 xa_lock(&mapping->i_pages);
2830 if (xas_load(&xas) != head)
2831 goto fail;
2832 }
2833
2834 /* Prevent deferred_split_scan() touching ->_refcount */
2835 spin_lock(&ds_queue->split_queue_lock);
2836 if (page_ref_freeze(head, 1 + extra_pins)) {
2837 if (!list_empty(page_deferred_list(head))) {
2838 ds_queue->split_queue_len--;
2839 list_del(page_deferred_list(head));
2840 }
2841 if (mapping) {
2842 if (PageSwapBacked(page))
2843 __dec_node_page_state(page, NR_SHMEM_THPS);
2844 else
2845 __dec_node_page_state(page, NR_FILE_THPS);
2846 }
2847
2848 spin_unlock(&ds_queue->split_queue_lock);
2849 __split_huge_page(page, list, end, flags);
2850 if (PageSwapCache(head)) {
2851 swp_entry_t entry = { .val = page_private(head) };
2852
2853 ret = split_swap_cluster(entry);
2854 } else
2855 ret = 0;
2856 } else {
2857 spin_unlock(&ds_queue->split_queue_lock);
2858 fail:
2859 if (mapping)
2860 xa_unlock(&mapping->i_pages);
2861 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2862 remap_page(head);
2863 ret = -EBUSY;
2864 }
2865
2866 out_unlock:
2867 if (anon_vma) {
2868 anon_vma_unlock_write(anon_vma);
2869 put_anon_vma(anon_vma);
2870 }
2871 if (mapping)
2872 i_mmap_unlock_read(mapping);
2873 out:
2874 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2875 return ret;
2876 }
2877
2878 void free_transhuge_page(struct page *page)
2879 {
2880 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2881 unsigned long flags;
2882
2883 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2884 if (!list_empty(page_deferred_list(page))) {
2885 ds_queue->split_queue_len--;
2886 list_del(page_deferred_list(page));
2887 }
2888 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2889 free_compound_page(page);
2890 }
2891
2892 void deferred_split_huge_page(struct page *page)
2893 {
2894 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2895 #ifdef CONFIG_MEMCG
2896 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2897 #endif
2898 unsigned long flags;
2899
2900 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2901
2902 /*
2903 * The try_to_unmap() in page reclaim path might reach here too,
2904 * this may cause a race condition to corrupt deferred split queue.
2905 * And, if page reclaim is already handling the same page, it is
2906 * unnecessary to handle it again in shrinker.
2907 *
2908 * Check PageSwapCache to determine if the page is being
2909 * handled by page reclaim since THP swap would add the page into
2910 * swap cache before calling try_to_unmap().
2911 */
2912 if (PageSwapCache(page))
2913 return;
2914
2915 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2916 if (list_empty(page_deferred_list(page))) {
2917 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2918 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2919 ds_queue->split_queue_len++;
2920 #ifdef CONFIG_MEMCG
2921 if (memcg)
2922 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2923 deferred_split_shrinker.id);
2924 #endif
2925 }
2926 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2927 }
2928
2929 static unsigned long deferred_split_count(struct shrinker *shrink,
2930 struct shrink_control *sc)
2931 {
2932 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2933 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2934
2935 #ifdef CONFIG_MEMCG
2936 if (sc->memcg)
2937 ds_queue = &sc->memcg->deferred_split_queue;
2938 #endif
2939 return READ_ONCE(ds_queue->split_queue_len);
2940 }
2941
2942 static unsigned long deferred_split_scan(struct shrinker *shrink,
2943 struct shrink_control *sc)
2944 {
2945 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2946 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2947 unsigned long flags;
2948 LIST_HEAD(list), *pos, *next;
2949 struct page *page;
2950 int split = 0;
2951
2952 #ifdef CONFIG_MEMCG
2953 if (sc->memcg)
2954 ds_queue = &sc->memcg->deferred_split_queue;
2955 #endif
2956
2957 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2958 /* Take pin on all head pages to avoid freeing them under us */
2959 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2960 page = list_entry((void *)pos, struct page, mapping);
2961 page = compound_head(page);
2962 if (get_page_unless_zero(page)) {
2963 list_move(page_deferred_list(page), &list);
2964 } else {
2965 /* We lost race with put_compound_page() */
2966 list_del_init(page_deferred_list(page));
2967 ds_queue->split_queue_len--;
2968 }
2969 if (!--sc->nr_to_scan)
2970 break;
2971 }
2972 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2973
2974 list_for_each_safe(pos, next, &list) {
2975 page = list_entry((void *)pos, struct page, mapping);
2976 if (!trylock_page(page))
2977 goto next;
2978 /* split_huge_page() removes page from list on success */
2979 if (!split_huge_page(page))
2980 split++;
2981 unlock_page(page);
2982 next:
2983 put_page(page);
2984 }
2985
2986 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2987 list_splice_tail(&list, &ds_queue->split_queue);
2988 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2989
2990 /*
2991 * Stop shrinker if we didn't split any page, but the queue is empty.
2992 * This can happen if pages were freed under us.
2993 */
2994 if (!split && list_empty(&ds_queue->split_queue))
2995 return SHRINK_STOP;
2996 return split;
2997 }
2998
2999 static struct shrinker deferred_split_shrinker = {
3000 .count_objects = deferred_split_count,
3001 .scan_objects = deferred_split_scan,
3002 .seeks = DEFAULT_SEEKS,
3003 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
3004 SHRINKER_NONSLAB,
3005 };
3006
3007 #ifdef CONFIG_DEBUG_FS
3008 static int split_huge_pages_set(void *data, u64 val)
3009 {
3010 struct zone *zone;
3011 struct page *page;
3012 unsigned long pfn, max_zone_pfn;
3013 unsigned long total = 0, split = 0;
3014
3015 if (val != 1)
3016 return -EINVAL;
3017
3018 for_each_populated_zone(zone) {
3019 max_zone_pfn = zone_end_pfn(zone);
3020 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3021 if (!pfn_valid(pfn))
3022 continue;
3023
3024 page = pfn_to_page(pfn);
3025 if (!get_page_unless_zero(page))
3026 continue;
3027
3028 if (zone != page_zone(page))
3029 goto next;
3030
3031 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3032 goto next;
3033
3034 total++;
3035 lock_page(page);
3036 if (!split_huge_page(page))
3037 split++;
3038 unlock_page(page);
3039 next:
3040 put_page(page);
3041 }
3042 }
3043
3044 pr_info("%lu of %lu THP split\n", split, total);
3045
3046 return 0;
3047 }
3048 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3049 "%llu\n");
3050
3051 static int __init split_huge_pages_debugfs(void)
3052 {
3053 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3054 &split_huge_pages_fops);
3055 return 0;
3056 }
3057 late_initcall(split_huge_pages_debugfs);
3058 #endif
3059
3060 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3061 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3062 struct page *page)
3063 {
3064 struct vm_area_struct *vma = pvmw->vma;
3065 struct mm_struct *mm = vma->vm_mm;
3066 unsigned long address = pvmw->address;
3067 pmd_t pmdval;
3068 swp_entry_t entry;
3069 pmd_t pmdswp;
3070
3071 if (!(pvmw->pmd && !pvmw->pte))
3072 return;
3073
3074 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3075 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3076 if (pmd_dirty(pmdval))
3077 set_page_dirty(page);
3078 entry = make_migration_entry(page, pmd_write(pmdval));
3079 pmdswp = swp_entry_to_pmd(entry);
3080 if (pmd_soft_dirty(pmdval))
3081 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3082 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3083 page_remove_rmap(page, true);
3084 put_page(page);
3085 }
3086
3087 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3088 {
3089 struct vm_area_struct *vma = pvmw->vma;
3090 struct mm_struct *mm = vma->vm_mm;
3091 unsigned long address = pvmw->address;
3092 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3093 pmd_t pmde;
3094 swp_entry_t entry;
3095
3096 if (!(pvmw->pmd && !pvmw->pte))
3097 return;
3098
3099 entry = pmd_to_swp_entry(*pvmw->pmd);
3100 get_page(new);
3101 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3102 if (pmd_swp_soft_dirty(*pvmw->pmd))
3103 pmde = pmd_mksoft_dirty(pmde);
3104 if (is_write_migration_entry(entry))
3105 pmde = maybe_pmd_mkwrite(pmde, vma);
3106
3107 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3108 if (PageAnon(new))
3109 page_add_anon_rmap(new, vma, mmun_start, true);
3110 else
3111 page_add_file_rmap(new, true);
3112 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3113 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3114 mlock_vma_page(new);
3115 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3116 }
3117 #endif