]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/huge_memory.c
Merge tag 'imx-drm-fixes-2015-02-24' of git://git.pengutronix.de/git/pza/linux into...
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
26
27 #include <asm/tlb.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30
31 /*
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
38 */
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
42 #endif
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45 #endif
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
49
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61 /*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
70
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75
76 /**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82 struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86 };
87
88 /**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96 struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
100 };
101 static struct khugepaged_scan khugepaged_scan = {
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103 };
104
105
106 static int set_recommended_min_free_kbytes(void)
107 {
108 struct zone *zone;
109 int nr_zones = 0;
110 unsigned long recommended_min;
111
112 if (!khugepaged_enabled())
113 return 0;
114
115 for_each_populated_zone(zone)
116 nr_zones++;
117
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
120
121 /*
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
126 */
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
134
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
141 min_free_kbytes = recommended_min;
142 }
143 setup_per_zone_wmarks();
144 return 0;
145 }
146 late_initcall(set_recommended_min_free_kbytes);
147
148 static int start_khugepaged(void)
149 {
150 int err = 0;
151 if (khugepaged_enabled()) {
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
154 "khugepaged");
155 if (unlikely(IS_ERR(khugepaged_thread))) {
156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
159 }
160
161 if (!list_empty(&khugepaged_scan.mm_head))
162 wake_up_interruptible(&khugepaged_wait);
163
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread) {
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
168 }
169
170 return err;
171 }
172
173 static atomic_t huge_zero_refcount;
174 struct page *huge_zero_page __read_mostly;
175
176 static inline bool is_huge_zero_pmd(pmd_t pmd)
177 {
178 return is_huge_zero_page(pmd_page(pmd));
179 }
180
181 static struct page *get_huge_zero_page(void)
182 {
183 struct page *zero_page;
184 retry:
185 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
186 return ACCESS_ONCE(huge_zero_page);
187
188 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
189 HPAGE_PMD_ORDER);
190 if (!zero_page) {
191 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
192 return NULL;
193 }
194 count_vm_event(THP_ZERO_PAGE_ALLOC);
195 preempt_disable();
196 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
197 preempt_enable();
198 __free_pages(zero_page, compound_order(zero_page));
199 goto retry;
200 }
201
202 /* We take additional reference here. It will be put back by shrinker */
203 atomic_set(&huge_zero_refcount, 2);
204 preempt_enable();
205 return ACCESS_ONCE(huge_zero_page);
206 }
207
208 static void put_huge_zero_page(void)
209 {
210 /*
211 * Counter should never go to zero here. Only shrinker can put
212 * last reference.
213 */
214 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
215 }
216
217 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
218 struct shrink_control *sc)
219 {
220 /* we can free zero page only if last reference remains */
221 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222 }
223
224 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
225 struct shrink_control *sc)
226 {
227 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
228 struct page *zero_page = xchg(&huge_zero_page, NULL);
229 BUG_ON(zero_page == NULL);
230 __free_pages(zero_page, compound_order(zero_page));
231 return HPAGE_PMD_NR;
232 }
233
234 return 0;
235 }
236
237 static struct shrinker huge_zero_page_shrinker = {
238 .count_objects = shrink_huge_zero_page_count,
239 .scan_objects = shrink_huge_zero_page_scan,
240 .seeks = DEFAULT_SEEKS,
241 };
242
243 #ifdef CONFIG_SYSFS
244
245 static ssize_t double_flag_show(struct kobject *kobj,
246 struct kobj_attribute *attr, char *buf,
247 enum transparent_hugepage_flag enabled,
248 enum transparent_hugepage_flag req_madv)
249 {
250 if (test_bit(enabled, &transparent_hugepage_flags)) {
251 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
252 return sprintf(buf, "[always] madvise never\n");
253 } else if (test_bit(req_madv, &transparent_hugepage_flags))
254 return sprintf(buf, "always [madvise] never\n");
255 else
256 return sprintf(buf, "always madvise [never]\n");
257 }
258 static ssize_t double_flag_store(struct kobject *kobj,
259 struct kobj_attribute *attr,
260 const char *buf, size_t count,
261 enum transparent_hugepage_flag enabled,
262 enum transparent_hugepage_flag req_madv)
263 {
264 if (!memcmp("always", buf,
265 min(sizeof("always")-1, count))) {
266 set_bit(enabled, &transparent_hugepage_flags);
267 clear_bit(req_madv, &transparent_hugepage_flags);
268 } else if (!memcmp("madvise", buf,
269 min(sizeof("madvise")-1, count))) {
270 clear_bit(enabled, &transparent_hugepage_flags);
271 set_bit(req_madv, &transparent_hugepage_flags);
272 } else if (!memcmp("never", buf,
273 min(sizeof("never")-1, count))) {
274 clear_bit(enabled, &transparent_hugepage_flags);
275 clear_bit(req_madv, &transparent_hugepage_flags);
276 } else
277 return -EINVAL;
278
279 return count;
280 }
281
282 static ssize_t enabled_show(struct kobject *kobj,
283 struct kobj_attribute *attr, char *buf)
284 {
285 return double_flag_show(kobj, attr, buf,
286 TRANSPARENT_HUGEPAGE_FLAG,
287 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
288 }
289 static ssize_t enabled_store(struct kobject *kobj,
290 struct kobj_attribute *attr,
291 const char *buf, size_t count)
292 {
293 ssize_t ret;
294
295 ret = double_flag_store(kobj, attr, buf, count,
296 TRANSPARENT_HUGEPAGE_FLAG,
297 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
298
299 if (ret > 0) {
300 int err;
301
302 mutex_lock(&khugepaged_mutex);
303 err = start_khugepaged();
304 mutex_unlock(&khugepaged_mutex);
305
306 if (err)
307 ret = err;
308 }
309
310 return ret;
311 }
312 static struct kobj_attribute enabled_attr =
313 __ATTR(enabled, 0644, enabled_show, enabled_store);
314
315 static ssize_t single_flag_show(struct kobject *kobj,
316 struct kobj_attribute *attr, char *buf,
317 enum transparent_hugepage_flag flag)
318 {
319 return sprintf(buf, "%d\n",
320 !!test_bit(flag, &transparent_hugepage_flags));
321 }
322
323 static ssize_t single_flag_store(struct kobject *kobj,
324 struct kobj_attribute *attr,
325 const char *buf, size_t count,
326 enum transparent_hugepage_flag flag)
327 {
328 unsigned long value;
329 int ret;
330
331 ret = kstrtoul(buf, 10, &value);
332 if (ret < 0)
333 return ret;
334 if (value > 1)
335 return -EINVAL;
336
337 if (value)
338 set_bit(flag, &transparent_hugepage_flags);
339 else
340 clear_bit(flag, &transparent_hugepage_flags);
341
342 return count;
343 }
344
345 /*
346 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
347 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
348 * memory just to allocate one more hugepage.
349 */
350 static ssize_t defrag_show(struct kobject *kobj,
351 struct kobj_attribute *attr, char *buf)
352 {
353 return double_flag_show(kobj, attr, buf,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
356 }
357 static ssize_t defrag_store(struct kobject *kobj,
358 struct kobj_attribute *attr,
359 const char *buf, size_t count)
360 {
361 return double_flag_store(kobj, attr, buf, count,
362 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
363 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
364 }
365 static struct kobj_attribute defrag_attr =
366 __ATTR(defrag, 0644, defrag_show, defrag_store);
367
368 static ssize_t use_zero_page_show(struct kobject *kobj,
369 struct kobj_attribute *attr, char *buf)
370 {
371 return single_flag_show(kobj, attr, buf,
372 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373 }
374 static ssize_t use_zero_page_store(struct kobject *kobj,
375 struct kobj_attribute *attr, const char *buf, size_t count)
376 {
377 return single_flag_store(kobj, attr, buf, count,
378 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
379 }
380 static struct kobj_attribute use_zero_page_attr =
381 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
382 #ifdef CONFIG_DEBUG_VM
383 static ssize_t debug_cow_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385 {
386 return single_flag_show(kobj, attr, buf,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
388 }
389 static ssize_t debug_cow_store(struct kobject *kobj,
390 struct kobj_attribute *attr,
391 const char *buf, size_t count)
392 {
393 return single_flag_store(kobj, attr, buf, count,
394 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
395 }
396 static struct kobj_attribute debug_cow_attr =
397 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
398 #endif /* CONFIG_DEBUG_VM */
399
400 static struct attribute *hugepage_attr[] = {
401 &enabled_attr.attr,
402 &defrag_attr.attr,
403 &use_zero_page_attr.attr,
404 #ifdef CONFIG_DEBUG_VM
405 &debug_cow_attr.attr,
406 #endif
407 NULL,
408 };
409
410 static struct attribute_group hugepage_attr_group = {
411 .attrs = hugepage_attr,
412 };
413
414 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
415 struct kobj_attribute *attr,
416 char *buf)
417 {
418 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
419 }
420
421 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 const char *buf, size_t count)
424 {
425 unsigned long msecs;
426 int err;
427
428 err = kstrtoul(buf, 10, &msecs);
429 if (err || msecs > UINT_MAX)
430 return -EINVAL;
431
432 khugepaged_scan_sleep_millisecs = msecs;
433 wake_up_interruptible(&khugepaged_wait);
434
435 return count;
436 }
437 static struct kobj_attribute scan_sleep_millisecs_attr =
438 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
439 scan_sleep_millisecs_store);
440
441 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 char *buf)
444 {
445 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
446 }
447
448 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
449 struct kobj_attribute *attr,
450 const char *buf, size_t count)
451 {
452 unsigned long msecs;
453 int err;
454
455 err = kstrtoul(buf, 10, &msecs);
456 if (err || msecs > UINT_MAX)
457 return -EINVAL;
458
459 khugepaged_alloc_sleep_millisecs = msecs;
460 wake_up_interruptible(&khugepaged_wait);
461
462 return count;
463 }
464 static struct kobj_attribute alloc_sleep_millisecs_attr =
465 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
466 alloc_sleep_millisecs_store);
467
468 static ssize_t pages_to_scan_show(struct kobject *kobj,
469 struct kobj_attribute *attr,
470 char *buf)
471 {
472 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
473 }
474 static ssize_t pages_to_scan_store(struct kobject *kobj,
475 struct kobj_attribute *attr,
476 const char *buf, size_t count)
477 {
478 int err;
479 unsigned long pages;
480
481 err = kstrtoul(buf, 10, &pages);
482 if (err || !pages || pages > UINT_MAX)
483 return -EINVAL;
484
485 khugepaged_pages_to_scan = pages;
486
487 return count;
488 }
489 static struct kobj_attribute pages_to_scan_attr =
490 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
491 pages_to_scan_store);
492
493 static ssize_t pages_collapsed_show(struct kobject *kobj,
494 struct kobj_attribute *attr,
495 char *buf)
496 {
497 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
498 }
499 static struct kobj_attribute pages_collapsed_attr =
500 __ATTR_RO(pages_collapsed);
501
502 static ssize_t full_scans_show(struct kobject *kobj,
503 struct kobj_attribute *attr,
504 char *buf)
505 {
506 return sprintf(buf, "%u\n", khugepaged_full_scans);
507 }
508 static struct kobj_attribute full_scans_attr =
509 __ATTR_RO(full_scans);
510
511 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
512 struct kobj_attribute *attr, char *buf)
513 {
514 return single_flag_show(kobj, attr, buf,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
516 }
517 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
518 struct kobj_attribute *attr,
519 const char *buf, size_t count)
520 {
521 return single_flag_store(kobj, attr, buf, count,
522 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
523 }
524 static struct kobj_attribute khugepaged_defrag_attr =
525 __ATTR(defrag, 0644, khugepaged_defrag_show,
526 khugepaged_defrag_store);
527
528 /*
529 * max_ptes_none controls if khugepaged should collapse hugepages over
530 * any unmapped ptes in turn potentially increasing the memory
531 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
532 * reduce the available free memory in the system as it
533 * runs. Increasing max_ptes_none will instead potentially reduce the
534 * free memory in the system during the khugepaged scan.
535 */
536 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
537 struct kobj_attribute *attr,
538 char *buf)
539 {
540 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
541 }
542 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
543 struct kobj_attribute *attr,
544 const char *buf, size_t count)
545 {
546 int err;
547 unsigned long max_ptes_none;
548
549 err = kstrtoul(buf, 10, &max_ptes_none);
550 if (err || max_ptes_none > HPAGE_PMD_NR-1)
551 return -EINVAL;
552
553 khugepaged_max_ptes_none = max_ptes_none;
554
555 return count;
556 }
557 static struct kobj_attribute khugepaged_max_ptes_none_attr =
558 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
559 khugepaged_max_ptes_none_store);
560
561 static struct attribute *khugepaged_attr[] = {
562 &khugepaged_defrag_attr.attr,
563 &khugepaged_max_ptes_none_attr.attr,
564 &pages_to_scan_attr.attr,
565 &pages_collapsed_attr.attr,
566 &full_scans_attr.attr,
567 &scan_sleep_millisecs_attr.attr,
568 &alloc_sleep_millisecs_attr.attr,
569 NULL,
570 };
571
572 static struct attribute_group khugepaged_attr_group = {
573 .attrs = khugepaged_attr,
574 .name = "khugepaged",
575 };
576
577 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
578 {
579 int err;
580
581 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
582 if (unlikely(!*hugepage_kobj)) {
583 pr_err("failed to create transparent hugepage kobject\n");
584 return -ENOMEM;
585 }
586
587 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
588 if (err) {
589 pr_err("failed to register transparent hugepage group\n");
590 goto delete_obj;
591 }
592
593 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
594 if (err) {
595 pr_err("failed to register transparent hugepage group\n");
596 goto remove_hp_group;
597 }
598
599 return 0;
600
601 remove_hp_group:
602 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
603 delete_obj:
604 kobject_put(*hugepage_kobj);
605 return err;
606 }
607
608 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
609 {
610 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
611 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
612 kobject_put(hugepage_kobj);
613 }
614 #else
615 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
616 {
617 return 0;
618 }
619
620 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
621 {
622 }
623 #endif /* CONFIG_SYSFS */
624
625 static int __init hugepage_init(void)
626 {
627 int err;
628 struct kobject *hugepage_kobj;
629
630 if (!has_transparent_hugepage()) {
631 transparent_hugepage_flags = 0;
632 return -EINVAL;
633 }
634
635 err = hugepage_init_sysfs(&hugepage_kobj);
636 if (err)
637 return err;
638
639 err = khugepaged_slab_init();
640 if (err)
641 goto out;
642
643 register_shrinker(&huge_zero_page_shrinker);
644
645 /*
646 * By default disable transparent hugepages on smaller systems,
647 * where the extra memory used could hurt more than TLB overhead
648 * is likely to save. The admin can still enable it through /sys.
649 */
650 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
651 transparent_hugepage_flags = 0;
652
653 start_khugepaged();
654
655 return 0;
656 out:
657 hugepage_exit_sysfs(hugepage_kobj);
658 return err;
659 }
660 subsys_initcall(hugepage_init);
661
662 static int __init setup_transparent_hugepage(char *str)
663 {
664 int ret = 0;
665 if (!str)
666 goto out;
667 if (!strcmp(str, "always")) {
668 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
669 &transparent_hugepage_flags);
670 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
671 &transparent_hugepage_flags);
672 ret = 1;
673 } else if (!strcmp(str, "madvise")) {
674 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 &transparent_hugepage_flags);
676 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 &transparent_hugepage_flags);
678 ret = 1;
679 } else if (!strcmp(str, "never")) {
680 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 &transparent_hugepage_flags);
682 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 &transparent_hugepage_flags);
684 ret = 1;
685 }
686 out:
687 if (!ret)
688 pr_warn("transparent_hugepage= cannot parse, ignored\n");
689 return ret;
690 }
691 __setup("transparent_hugepage=", setup_transparent_hugepage);
692
693 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
694 {
695 if (likely(vma->vm_flags & VM_WRITE))
696 pmd = pmd_mkwrite(pmd);
697 return pmd;
698 }
699
700 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
701 {
702 pmd_t entry;
703 entry = mk_pmd(page, prot);
704 entry = pmd_mkhuge(entry);
705 return entry;
706 }
707
708 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
709 struct vm_area_struct *vma,
710 unsigned long haddr, pmd_t *pmd,
711 struct page *page)
712 {
713 struct mem_cgroup *memcg;
714 pgtable_t pgtable;
715 spinlock_t *ptl;
716
717 VM_BUG_ON_PAGE(!PageCompound(page), page);
718
719 if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg))
720 return VM_FAULT_OOM;
721
722 pgtable = pte_alloc_one(mm, haddr);
723 if (unlikely(!pgtable)) {
724 mem_cgroup_cancel_charge(page, memcg);
725 return VM_FAULT_OOM;
726 }
727
728 clear_huge_page(page, haddr, HPAGE_PMD_NR);
729 /*
730 * The memory barrier inside __SetPageUptodate makes sure that
731 * clear_huge_page writes become visible before the set_pmd_at()
732 * write.
733 */
734 __SetPageUptodate(page);
735
736 ptl = pmd_lock(mm, pmd);
737 if (unlikely(!pmd_none(*pmd))) {
738 spin_unlock(ptl);
739 mem_cgroup_cancel_charge(page, memcg);
740 put_page(page);
741 pte_free(mm, pgtable);
742 } else {
743 pmd_t entry;
744 entry = mk_huge_pmd(page, vma->vm_page_prot);
745 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
746 page_add_new_anon_rmap(page, vma, haddr);
747 mem_cgroup_commit_charge(page, memcg, false);
748 lru_cache_add_active_or_unevictable(page, vma);
749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 set_pmd_at(mm, haddr, pmd, entry);
751 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
752 atomic_long_inc(&mm->nr_ptes);
753 spin_unlock(ptl);
754 }
755
756 return 0;
757 }
758
759 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
760 {
761 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
762 }
763
764 /* Caller must hold page table lock. */
765 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 struct page *zero_page)
768 {
769 pmd_t entry;
770 if (!pmd_none(*pmd))
771 return false;
772 entry = mk_pmd(zero_page, vma->vm_page_prot);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
776 atomic_long_inc(&mm->nr_ptes);
777 return true;
778 }
779
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
783 {
784 gfp_t gfp;
785 struct page *page;
786 unsigned long haddr = address & HPAGE_PMD_MASK;
787
788 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
789 return VM_FAULT_FALLBACK;
790 if (unlikely(anon_vma_prepare(vma)))
791 return VM_FAULT_OOM;
792 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
793 return VM_FAULT_OOM;
794 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
795 transparent_hugepage_use_zero_page()) {
796 spinlock_t *ptl;
797 pgtable_t pgtable;
798 struct page *zero_page;
799 bool set;
800 pgtable = pte_alloc_one(mm, haddr);
801 if (unlikely(!pgtable))
802 return VM_FAULT_OOM;
803 zero_page = get_huge_zero_page();
804 if (unlikely(!zero_page)) {
805 pte_free(mm, pgtable);
806 count_vm_event(THP_FAULT_FALLBACK);
807 return VM_FAULT_FALLBACK;
808 }
809 ptl = pmd_lock(mm, pmd);
810 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
811 zero_page);
812 spin_unlock(ptl);
813 if (!set) {
814 pte_free(mm, pgtable);
815 put_huge_zero_page();
816 }
817 return 0;
818 }
819 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
820 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
821 if (unlikely(!page)) {
822 count_vm_event(THP_FAULT_FALLBACK);
823 return VM_FAULT_FALLBACK;
824 }
825 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
826 put_page(page);
827 count_vm_event(THP_FAULT_FALLBACK);
828 return VM_FAULT_FALLBACK;
829 }
830
831 count_vm_event(THP_FAULT_ALLOC);
832 return 0;
833 }
834
835 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
836 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
837 struct vm_area_struct *vma)
838 {
839 spinlock_t *dst_ptl, *src_ptl;
840 struct page *src_page;
841 pmd_t pmd;
842 pgtable_t pgtable;
843 int ret;
844
845 ret = -ENOMEM;
846 pgtable = pte_alloc_one(dst_mm, addr);
847 if (unlikely(!pgtable))
848 goto out;
849
850 dst_ptl = pmd_lock(dst_mm, dst_pmd);
851 src_ptl = pmd_lockptr(src_mm, src_pmd);
852 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
853
854 ret = -EAGAIN;
855 pmd = *src_pmd;
856 if (unlikely(!pmd_trans_huge(pmd))) {
857 pte_free(dst_mm, pgtable);
858 goto out_unlock;
859 }
860 /*
861 * When page table lock is held, the huge zero pmd should not be
862 * under splitting since we don't split the page itself, only pmd to
863 * a page table.
864 */
865 if (is_huge_zero_pmd(pmd)) {
866 struct page *zero_page;
867 bool set;
868 /*
869 * get_huge_zero_page() will never allocate a new page here,
870 * since we already have a zero page to copy. It just takes a
871 * reference.
872 */
873 zero_page = get_huge_zero_page();
874 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
875 zero_page);
876 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
877 ret = 0;
878 goto out_unlock;
879 }
880
881 if (unlikely(pmd_trans_splitting(pmd))) {
882 /* split huge page running from under us */
883 spin_unlock(src_ptl);
884 spin_unlock(dst_ptl);
885 pte_free(dst_mm, pgtable);
886
887 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
888 goto out;
889 }
890 src_page = pmd_page(pmd);
891 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
892 get_page(src_page);
893 page_dup_rmap(src_page);
894 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
895
896 pmdp_set_wrprotect(src_mm, addr, src_pmd);
897 pmd = pmd_mkold(pmd_wrprotect(pmd));
898 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
899 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
900 atomic_long_inc(&dst_mm->nr_ptes);
901
902 ret = 0;
903 out_unlock:
904 spin_unlock(src_ptl);
905 spin_unlock(dst_ptl);
906 out:
907 return ret;
908 }
909
910 void huge_pmd_set_accessed(struct mm_struct *mm,
911 struct vm_area_struct *vma,
912 unsigned long address,
913 pmd_t *pmd, pmd_t orig_pmd,
914 int dirty)
915 {
916 spinlock_t *ptl;
917 pmd_t entry;
918 unsigned long haddr;
919
920 ptl = pmd_lock(mm, pmd);
921 if (unlikely(!pmd_same(*pmd, orig_pmd)))
922 goto unlock;
923
924 entry = pmd_mkyoung(orig_pmd);
925 haddr = address & HPAGE_PMD_MASK;
926 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
927 update_mmu_cache_pmd(vma, address, pmd);
928
929 unlock:
930 spin_unlock(ptl);
931 }
932
933 /*
934 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
935 * during copy_user_huge_page()'s copy_page_rep(): in the case when
936 * the source page gets split and a tail freed before copy completes.
937 * Called under pmd_lock of checked pmd, so safe from splitting itself.
938 */
939 static void get_user_huge_page(struct page *page)
940 {
941 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
942 struct page *endpage = page + HPAGE_PMD_NR;
943
944 atomic_add(HPAGE_PMD_NR, &page->_count);
945 while (++page < endpage)
946 get_huge_page_tail(page);
947 } else {
948 get_page(page);
949 }
950 }
951
952 static void put_user_huge_page(struct page *page)
953 {
954 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
955 struct page *endpage = page + HPAGE_PMD_NR;
956
957 while (page < endpage)
958 put_page(page++);
959 } else {
960 put_page(page);
961 }
962 }
963
964 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
965 struct vm_area_struct *vma,
966 unsigned long address,
967 pmd_t *pmd, pmd_t orig_pmd,
968 struct page *page,
969 unsigned long haddr)
970 {
971 struct mem_cgroup *memcg;
972 spinlock_t *ptl;
973 pgtable_t pgtable;
974 pmd_t _pmd;
975 int ret = 0, i;
976 struct page **pages;
977 unsigned long mmun_start; /* For mmu_notifiers */
978 unsigned long mmun_end; /* For mmu_notifiers */
979
980 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
981 GFP_KERNEL);
982 if (unlikely(!pages)) {
983 ret |= VM_FAULT_OOM;
984 goto out;
985 }
986
987 for (i = 0; i < HPAGE_PMD_NR; i++) {
988 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
989 __GFP_OTHER_NODE,
990 vma, address, page_to_nid(page));
991 if (unlikely(!pages[i] ||
992 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
993 &memcg))) {
994 if (pages[i])
995 put_page(pages[i]);
996 while (--i >= 0) {
997 memcg = (void *)page_private(pages[i]);
998 set_page_private(pages[i], 0);
999 mem_cgroup_cancel_charge(pages[i], memcg);
1000 put_page(pages[i]);
1001 }
1002 kfree(pages);
1003 ret |= VM_FAULT_OOM;
1004 goto out;
1005 }
1006 set_page_private(pages[i], (unsigned long)memcg);
1007 }
1008
1009 for (i = 0; i < HPAGE_PMD_NR; i++) {
1010 copy_user_highpage(pages[i], page + i,
1011 haddr + PAGE_SIZE * i, vma);
1012 __SetPageUptodate(pages[i]);
1013 cond_resched();
1014 }
1015
1016 mmun_start = haddr;
1017 mmun_end = haddr + HPAGE_PMD_SIZE;
1018 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1019
1020 ptl = pmd_lock(mm, pmd);
1021 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1022 goto out_free_pages;
1023 VM_BUG_ON_PAGE(!PageHead(page), page);
1024
1025 pmdp_clear_flush_notify(vma, haddr, pmd);
1026 /* leave pmd empty until pte is filled */
1027
1028 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1029 pmd_populate(mm, &_pmd, pgtable);
1030
1031 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1032 pte_t *pte, entry;
1033 entry = mk_pte(pages[i], vma->vm_page_prot);
1034 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1035 memcg = (void *)page_private(pages[i]);
1036 set_page_private(pages[i], 0);
1037 page_add_new_anon_rmap(pages[i], vma, haddr);
1038 mem_cgroup_commit_charge(pages[i], memcg, false);
1039 lru_cache_add_active_or_unevictable(pages[i], vma);
1040 pte = pte_offset_map(&_pmd, haddr);
1041 VM_BUG_ON(!pte_none(*pte));
1042 set_pte_at(mm, haddr, pte, entry);
1043 pte_unmap(pte);
1044 }
1045 kfree(pages);
1046
1047 smp_wmb(); /* make pte visible before pmd */
1048 pmd_populate(mm, pmd, pgtable);
1049 page_remove_rmap(page);
1050 spin_unlock(ptl);
1051
1052 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1053
1054 ret |= VM_FAULT_WRITE;
1055 put_page(page);
1056
1057 out:
1058 return ret;
1059
1060 out_free_pages:
1061 spin_unlock(ptl);
1062 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1063 for (i = 0; i < HPAGE_PMD_NR; i++) {
1064 memcg = (void *)page_private(pages[i]);
1065 set_page_private(pages[i], 0);
1066 mem_cgroup_cancel_charge(pages[i], memcg);
1067 put_page(pages[i]);
1068 }
1069 kfree(pages);
1070 goto out;
1071 }
1072
1073 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1074 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1075 {
1076 spinlock_t *ptl;
1077 int ret = 0;
1078 struct page *page = NULL, *new_page;
1079 struct mem_cgroup *memcg;
1080 unsigned long haddr;
1081 unsigned long mmun_start; /* For mmu_notifiers */
1082 unsigned long mmun_end; /* For mmu_notifiers */
1083
1084 ptl = pmd_lockptr(mm, pmd);
1085 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1086 haddr = address & HPAGE_PMD_MASK;
1087 if (is_huge_zero_pmd(orig_pmd))
1088 goto alloc;
1089 spin_lock(ptl);
1090 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1091 goto out_unlock;
1092
1093 page = pmd_page(orig_pmd);
1094 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1095 if (page_mapcount(page) == 1) {
1096 pmd_t entry;
1097 entry = pmd_mkyoung(orig_pmd);
1098 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1099 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1100 update_mmu_cache_pmd(vma, address, pmd);
1101 ret |= VM_FAULT_WRITE;
1102 goto out_unlock;
1103 }
1104 get_user_huge_page(page);
1105 spin_unlock(ptl);
1106 alloc:
1107 if (transparent_hugepage_enabled(vma) &&
1108 !transparent_hugepage_debug_cow()) {
1109 gfp_t gfp;
1110
1111 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1112 new_page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
1113 } else
1114 new_page = NULL;
1115
1116 if (unlikely(!new_page)) {
1117 if (!page) {
1118 split_huge_page_pmd(vma, address, pmd);
1119 ret |= VM_FAULT_FALLBACK;
1120 } else {
1121 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1122 pmd, orig_pmd, page, haddr);
1123 if (ret & VM_FAULT_OOM) {
1124 split_huge_page(page);
1125 ret |= VM_FAULT_FALLBACK;
1126 }
1127 put_user_huge_page(page);
1128 }
1129 count_vm_event(THP_FAULT_FALLBACK);
1130 goto out;
1131 }
1132
1133 if (unlikely(mem_cgroup_try_charge(new_page, mm,
1134 GFP_TRANSHUGE, &memcg))) {
1135 put_page(new_page);
1136 if (page) {
1137 split_huge_page(page);
1138 put_user_huge_page(page);
1139 } else
1140 split_huge_page_pmd(vma, address, pmd);
1141 ret |= VM_FAULT_FALLBACK;
1142 count_vm_event(THP_FAULT_FALLBACK);
1143 goto out;
1144 }
1145
1146 count_vm_event(THP_FAULT_ALLOC);
1147
1148 if (!page)
1149 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1150 else
1151 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1152 __SetPageUptodate(new_page);
1153
1154 mmun_start = haddr;
1155 mmun_end = haddr + HPAGE_PMD_SIZE;
1156 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1157
1158 spin_lock(ptl);
1159 if (page)
1160 put_user_huge_page(page);
1161 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1162 spin_unlock(ptl);
1163 mem_cgroup_cancel_charge(new_page, memcg);
1164 put_page(new_page);
1165 goto out_mn;
1166 } else {
1167 pmd_t entry;
1168 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1169 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1170 pmdp_clear_flush_notify(vma, haddr, pmd);
1171 page_add_new_anon_rmap(new_page, vma, haddr);
1172 mem_cgroup_commit_charge(new_page, memcg, false);
1173 lru_cache_add_active_or_unevictable(new_page, vma);
1174 set_pmd_at(mm, haddr, pmd, entry);
1175 update_mmu_cache_pmd(vma, address, pmd);
1176 if (!page) {
1177 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1178 put_huge_zero_page();
1179 } else {
1180 VM_BUG_ON_PAGE(!PageHead(page), page);
1181 page_remove_rmap(page);
1182 put_page(page);
1183 }
1184 ret |= VM_FAULT_WRITE;
1185 }
1186 spin_unlock(ptl);
1187 out_mn:
1188 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1189 out:
1190 return ret;
1191 out_unlock:
1192 spin_unlock(ptl);
1193 return ret;
1194 }
1195
1196 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1197 unsigned long addr,
1198 pmd_t *pmd,
1199 unsigned int flags)
1200 {
1201 struct mm_struct *mm = vma->vm_mm;
1202 struct page *page = NULL;
1203
1204 assert_spin_locked(pmd_lockptr(mm, pmd));
1205
1206 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1207 goto out;
1208
1209 /* Avoid dumping huge zero page */
1210 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1211 return ERR_PTR(-EFAULT);
1212
1213 /* Full NUMA hinting faults to serialise migration in fault paths */
1214 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1215 goto out;
1216
1217 page = pmd_page(*pmd);
1218 VM_BUG_ON_PAGE(!PageHead(page), page);
1219 if (flags & FOLL_TOUCH) {
1220 pmd_t _pmd;
1221 /*
1222 * We should set the dirty bit only for FOLL_WRITE but
1223 * for now the dirty bit in the pmd is meaningless.
1224 * And if the dirty bit will become meaningful and
1225 * we'll only set it with FOLL_WRITE, an atomic
1226 * set_bit will be required on the pmd to set the
1227 * young bit, instead of the current set_pmd_at.
1228 */
1229 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1230 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1231 pmd, _pmd, 1))
1232 update_mmu_cache_pmd(vma, addr, pmd);
1233 }
1234 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1235 if (page->mapping && trylock_page(page)) {
1236 lru_add_drain();
1237 if (page->mapping)
1238 mlock_vma_page(page);
1239 unlock_page(page);
1240 }
1241 }
1242 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1243 VM_BUG_ON_PAGE(!PageCompound(page), page);
1244 if (flags & FOLL_GET)
1245 get_page_foll(page);
1246
1247 out:
1248 return page;
1249 }
1250
1251 /* NUMA hinting page fault entry point for trans huge pmds */
1252 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1253 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1254 {
1255 spinlock_t *ptl;
1256 struct anon_vma *anon_vma = NULL;
1257 struct page *page;
1258 unsigned long haddr = addr & HPAGE_PMD_MASK;
1259 int page_nid = -1, this_nid = numa_node_id();
1260 int target_nid, last_cpupid = -1;
1261 bool page_locked;
1262 bool migrated = false;
1263 int flags = 0;
1264
1265 /* A PROT_NONE fault should not end up here */
1266 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1267
1268 ptl = pmd_lock(mm, pmdp);
1269 if (unlikely(!pmd_same(pmd, *pmdp)))
1270 goto out_unlock;
1271
1272 /*
1273 * If there are potential migrations, wait for completion and retry
1274 * without disrupting NUMA hinting information. Do not relock and
1275 * check_same as the page may no longer be mapped.
1276 */
1277 if (unlikely(pmd_trans_migrating(*pmdp))) {
1278 page = pmd_page(*pmdp);
1279 spin_unlock(ptl);
1280 wait_on_page_locked(page);
1281 goto out;
1282 }
1283
1284 page = pmd_page(pmd);
1285 BUG_ON(is_huge_zero_page(page));
1286 page_nid = page_to_nid(page);
1287 last_cpupid = page_cpupid_last(page);
1288 count_vm_numa_event(NUMA_HINT_FAULTS);
1289 if (page_nid == this_nid) {
1290 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1291 flags |= TNF_FAULT_LOCAL;
1292 }
1293
1294 /*
1295 * Avoid grouping on DSO/COW pages in specific and RO pages
1296 * in general, RO pages shouldn't hurt as much anyway since
1297 * they can be in shared cache state.
1298 */
1299 if (!pmd_write(pmd))
1300 flags |= TNF_NO_GROUP;
1301
1302 /*
1303 * Acquire the page lock to serialise THP migrations but avoid dropping
1304 * page_table_lock if at all possible
1305 */
1306 page_locked = trylock_page(page);
1307 target_nid = mpol_misplaced(page, vma, haddr);
1308 if (target_nid == -1) {
1309 /* If the page was locked, there are no parallel migrations */
1310 if (page_locked)
1311 goto clear_pmdnuma;
1312 }
1313
1314 /* Migration could have started since the pmd_trans_migrating check */
1315 if (!page_locked) {
1316 spin_unlock(ptl);
1317 wait_on_page_locked(page);
1318 page_nid = -1;
1319 goto out;
1320 }
1321
1322 /*
1323 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1324 * to serialises splits
1325 */
1326 get_page(page);
1327 spin_unlock(ptl);
1328 anon_vma = page_lock_anon_vma_read(page);
1329
1330 /* Confirm the PMD did not change while page_table_lock was released */
1331 spin_lock(ptl);
1332 if (unlikely(!pmd_same(pmd, *pmdp))) {
1333 unlock_page(page);
1334 put_page(page);
1335 page_nid = -1;
1336 goto out_unlock;
1337 }
1338
1339 /* Bail if we fail to protect against THP splits for any reason */
1340 if (unlikely(!anon_vma)) {
1341 put_page(page);
1342 page_nid = -1;
1343 goto clear_pmdnuma;
1344 }
1345
1346 /*
1347 * Migrate the THP to the requested node, returns with page unlocked
1348 * and access rights restored.
1349 */
1350 spin_unlock(ptl);
1351 migrated = migrate_misplaced_transhuge_page(mm, vma,
1352 pmdp, pmd, addr, page, target_nid);
1353 if (migrated) {
1354 flags |= TNF_MIGRATED;
1355 page_nid = target_nid;
1356 }
1357
1358 goto out;
1359 clear_pmdnuma:
1360 BUG_ON(!PageLocked(page));
1361 pmd = pmd_modify(pmd, vma->vm_page_prot);
1362 set_pmd_at(mm, haddr, pmdp, pmd);
1363 update_mmu_cache_pmd(vma, addr, pmdp);
1364 unlock_page(page);
1365 out_unlock:
1366 spin_unlock(ptl);
1367
1368 out:
1369 if (anon_vma)
1370 page_unlock_anon_vma_read(anon_vma);
1371
1372 if (page_nid != -1)
1373 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1374
1375 return 0;
1376 }
1377
1378 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1379 pmd_t *pmd, unsigned long addr)
1380 {
1381 spinlock_t *ptl;
1382 int ret = 0;
1383
1384 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1385 struct page *page;
1386 pgtable_t pgtable;
1387 pmd_t orig_pmd;
1388 /*
1389 * For architectures like ppc64 we look at deposited pgtable
1390 * when calling pmdp_get_and_clear. So do the
1391 * pgtable_trans_huge_withdraw after finishing pmdp related
1392 * operations.
1393 */
1394 orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
1395 tlb->fullmm);
1396 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1397 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1398 if (is_huge_zero_pmd(orig_pmd)) {
1399 atomic_long_dec(&tlb->mm->nr_ptes);
1400 spin_unlock(ptl);
1401 put_huge_zero_page();
1402 } else {
1403 page = pmd_page(orig_pmd);
1404 page_remove_rmap(page);
1405 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1406 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1407 VM_BUG_ON_PAGE(!PageHead(page), page);
1408 atomic_long_dec(&tlb->mm->nr_ptes);
1409 spin_unlock(ptl);
1410 tlb_remove_page(tlb, page);
1411 }
1412 pte_free(tlb->mm, pgtable);
1413 ret = 1;
1414 }
1415 return ret;
1416 }
1417
1418 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1419 unsigned long old_addr,
1420 unsigned long new_addr, unsigned long old_end,
1421 pmd_t *old_pmd, pmd_t *new_pmd)
1422 {
1423 spinlock_t *old_ptl, *new_ptl;
1424 int ret = 0;
1425 pmd_t pmd;
1426
1427 struct mm_struct *mm = vma->vm_mm;
1428
1429 if ((old_addr & ~HPAGE_PMD_MASK) ||
1430 (new_addr & ~HPAGE_PMD_MASK) ||
1431 old_end - old_addr < HPAGE_PMD_SIZE ||
1432 (new_vma->vm_flags & VM_NOHUGEPAGE))
1433 goto out;
1434
1435 /*
1436 * The destination pmd shouldn't be established, free_pgtables()
1437 * should have release it.
1438 */
1439 if (WARN_ON(!pmd_none(*new_pmd))) {
1440 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1441 goto out;
1442 }
1443
1444 /*
1445 * We don't have to worry about the ordering of src and dst
1446 * ptlocks because exclusive mmap_sem prevents deadlock.
1447 */
1448 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1449 if (ret == 1) {
1450 new_ptl = pmd_lockptr(mm, new_pmd);
1451 if (new_ptl != old_ptl)
1452 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1453 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1454 VM_BUG_ON(!pmd_none(*new_pmd));
1455
1456 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1457 pgtable_t pgtable;
1458 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1459 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1460 }
1461 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1462 if (new_ptl != old_ptl)
1463 spin_unlock(new_ptl);
1464 spin_unlock(old_ptl);
1465 }
1466 out:
1467 return ret;
1468 }
1469
1470 /*
1471 * Returns
1472 * - 0 if PMD could not be locked
1473 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1474 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1475 */
1476 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1477 unsigned long addr, pgprot_t newprot, int prot_numa)
1478 {
1479 struct mm_struct *mm = vma->vm_mm;
1480 spinlock_t *ptl;
1481 int ret = 0;
1482
1483 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1484 pmd_t entry;
1485
1486 /*
1487 * Avoid trapping faults against the zero page. The read-only
1488 * data is likely to be read-cached on the local CPU and
1489 * local/remote hits to the zero page are not interesting.
1490 */
1491 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1492 spin_unlock(ptl);
1493 return 0;
1494 }
1495
1496 if (!prot_numa || !pmd_protnone(*pmd)) {
1497 ret = 1;
1498 entry = pmdp_get_and_clear_notify(mm, addr, pmd);
1499 entry = pmd_modify(entry, newprot);
1500 ret = HPAGE_PMD_NR;
1501 set_pmd_at(mm, addr, pmd, entry);
1502 BUG_ON(pmd_write(entry));
1503 }
1504 spin_unlock(ptl);
1505 }
1506
1507 return ret;
1508 }
1509
1510 /*
1511 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1512 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1513 *
1514 * Note that if it returns 1, this routine returns without unlocking page
1515 * table locks. So callers must unlock them.
1516 */
1517 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1518 spinlock_t **ptl)
1519 {
1520 *ptl = pmd_lock(vma->vm_mm, pmd);
1521 if (likely(pmd_trans_huge(*pmd))) {
1522 if (unlikely(pmd_trans_splitting(*pmd))) {
1523 spin_unlock(*ptl);
1524 wait_split_huge_page(vma->anon_vma, pmd);
1525 return -1;
1526 } else {
1527 /* Thp mapped by 'pmd' is stable, so we can
1528 * handle it as it is. */
1529 return 1;
1530 }
1531 }
1532 spin_unlock(*ptl);
1533 return 0;
1534 }
1535
1536 /*
1537 * This function returns whether a given @page is mapped onto the @address
1538 * in the virtual space of @mm.
1539 *
1540 * When it's true, this function returns *pmd with holding the page table lock
1541 * and passing it back to the caller via @ptl.
1542 * If it's false, returns NULL without holding the page table lock.
1543 */
1544 pmd_t *page_check_address_pmd(struct page *page,
1545 struct mm_struct *mm,
1546 unsigned long address,
1547 enum page_check_address_pmd_flag flag,
1548 spinlock_t **ptl)
1549 {
1550 pgd_t *pgd;
1551 pud_t *pud;
1552 pmd_t *pmd;
1553
1554 if (address & ~HPAGE_PMD_MASK)
1555 return NULL;
1556
1557 pgd = pgd_offset(mm, address);
1558 if (!pgd_present(*pgd))
1559 return NULL;
1560 pud = pud_offset(pgd, address);
1561 if (!pud_present(*pud))
1562 return NULL;
1563 pmd = pmd_offset(pud, address);
1564
1565 *ptl = pmd_lock(mm, pmd);
1566 if (!pmd_present(*pmd))
1567 goto unlock;
1568 if (pmd_page(*pmd) != page)
1569 goto unlock;
1570 /*
1571 * split_vma() may create temporary aliased mappings. There is
1572 * no risk as long as all huge pmd are found and have their
1573 * splitting bit set before __split_huge_page_refcount
1574 * runs. Finding the same huge pmd more than once during the
1575 * same rmap walk is not a problem.
1576 */
1577 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1578 pmd_trans_splitting(*pmd))
1579 goto unlock;
1580 if (pmd_trans_huge(*pmd)) {
1581 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1582 !pmd_trans_splitting(*pmd));
1583 return pmd;
1584 }
1585 unlock:
1586 spin_unlock(*ptl);
1587 return NULL;
1588 }
1589
1590 static int __split_huge_page_splitting(struct page *page,
1591 struct vm_area_struct *vma,
1592 unsigned long address)
1593 {
1594 struct mm_struct *mm = vma->vm_mm;
1595 spinlock_t *ptl;
1596 pmd_t *pmd;
1597 int ret = 0;
1598 /* For mmu_notifiers */
1599 const unsigned long mmun_start = address;
1600 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1601
1602 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1603 pmd = page_check_address_pmd(page, mm, address,
1604 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1605 if (pmd) {
1606 /*
1607 * We can't temporarily set the pmd to null in order
1608 * to split it, the pmd must remain marked huge at all
1609 * times or the VM won't take the pmd_trans_huge paths
1610 * and it won't wait on the anon_vma->root->rwsem to
1611 * serialize against split_huge_page*.
1612 */
1613 pmdp_splitting_flush(vma, address, pmd);
1614
1615 ret = 1;
1616 spin_unlock(ptl);
1617 }
1618 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1619
1620 return ret;
1621 }
1622
1623 static void __split_huge_page_refcount(struct page *page,
1624 struct list_head *list)
1625 {
1626 int i;
1627 struct zone *zone = page_zone(page);
1628 struct lruvec *lruvec;
1629 int tail_count = 0;
1630
1631 /* prevent PageLRU to go away from under us, and freeze lru stats */
1632 spin_lock_irq(&zone->lru_lock);
1633 lruvec = mem_cgroup_page_lruvec(page, zone);
1634
1635 compound_lock(page);
1636 /* complete memcg works before add pages to LRU */
1637 mem_cgroup_split_huge_fixup(page);
1638
1639 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1640 struct page *page_tail = page + i;
1641
1642 /* tail_page->_mapcount cannot change */
1643 BUG_ON(page_mapcount(page_tail) < 0);
1644 tail_count += page_mapcount(page_tail);
1645 /* check for overflow */
1646 BUG_ON(tail_count < 0);
1647 BUG_ON(atomic_read(&page_tail->_count) != 0);
1648 /*
1649 * tail_page->_count is zero and not changing from
1650 * under us. But get_page_unless_zero() may be running
1651 * from under us on the tail_page. If we used
1652 * atomic_set() below instead of atomic_add(), we
1653 * would then run atomic_set() concurrently with
1654 * get_page_unless_zero(), and atomic_set() is
1655 * implemented in C not using locked ops. spin_unlock
1656 * on x86 sometime uses locked ops because of PPro
1657 * errata 66, 92, so unless somebody can guarantee
1658 * atomic_set() here would be safe on all archs (and
1659 * not only on x86), it's safer to use atomic_add().
1660 */
1661 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1662 &page_tail->_count);
1663
1664 /* after clearing PageTail the gup refcount can be released */
1665 smp_mb__after_atomic();
1666
1667 /*
1668 * retain hwpoison flag of the poisoned tail page:
1669 * fix for the unsuitable process killed on Guest Machine(KVM)
1670 * by the memory-failure.
1671 */
1672 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1673 page_tail->flags |= (page->flags &
1674 ((1L << PG_referenced) |
1675 (1L << PG_swapbacked) |
1676 (1L << PG_mlocked) |
1677 (1L << PG_uptodate) |
1678 (1L << PG_active) |
1679 (1L << PG_unevictable)));
1680 page_tail->flags |= (1L << PG_dirty);
1681
1682 /* clear PageTail before overwriting first_page */
1683 smp_wmb();
1684
1685 /*
1686 * __split_huge_page_splitting() already set the
1687 * splitting bit in all pmd that could map this
1688 * hugepage, that will ensure no CPU can alter the
1689 * mapcount on the head page. The mapcount is only
1690 * accounted in the head page and it has to be
1691 * transferred to all tail pages in the below code. So
1692 * for this code to be safe, the split the mapcount
1693 * can't change. But that doesn't mean userland can't
1694 * keep changing and reading the page contents while
1695 * we transfer the mapcount, so the pmd splitting
1696 * status is achieved setting a reserved bit in the
1697 * pmd, not by clearing the present bit.
1698 */
1699 page_tail->_mapcount = page->_mapcount;
1700
1701 BUG_ON(page_tail->mapping);
1702 page_tail->mapping = page->mapping;
1703
1704 page_tail->index = page->index + i;
1705 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1706
1707 BUG_ON(!PageAnon(page_tail));
1708 BUG_ON(!PageUptodate(page_tail));
1709 BUG_ON(!PageDirty(page_tail));
1710 BUG_ON(!PageSwapBacked(page_tail));
1711
1712 lru_add_page_tail(page, page_tail, lruvec, list);
1713 }
1714 atomic_sub(tail_count, &page->_count);
1715 BUG_ON(atomic_read(&page->_count) <= 0);
1716
1717 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1718
1719 ClearPageCompound(page);
1720 compound_unlock(page);
1721 spin_unlock_irq(&zone->lru_lock);
1722
1723 for (i = 1; i < HPAGE_PMD_NR; i++) {
1724 struct page *page_tail = page + i;
1725 BUG_ON(page_count(page_tail) <= 0);
1726 /*
1727 * Tail pages may be freed if there wasn't any mapping
1728 * like if add_to_swap() is running on a lru page that
1729 * had its mapping zapped. And freeing these pages
1730 * requires taking the lru_lock so we do the put_page
1731 * of the tail pages after the split is complete.
1732 */
1733 put_page(page_tail);
1734 }
1735
1736 /*
1737 * Only the head page (now become a regular page) is required
1738 * to be pinned by the caller.
1739 */
1740 BUG_ON(page_count(page) <= 0);
1741 }
1742
1743 static int __split_huge_page_map(struct page *page,
1744 struct vm_area_struct *vma,
1745 unsigned long address)
1746 {
1747 struct mm_struct *mm = vma->vm_mm;
1748 spinlock_t *ptl;
1749 pmd_t *pmd, _pmd;
1750 int ret = 0, i;
1751 pgtable_t pgtable;
1752 unsigned long haddr;
1753
1754 pmd = page_check_address_pmd(page, mm, address,
1755 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1756 if (pmd) {
1757 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1758 pmd_populate(mm, &_pmd, pgtable);
1759 if (pmd_write(*pmd))
1760 BUG_ON(page_mapcount(page) != 1);
1761
1762 haddr = address;
1763 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1764 pte_t *pte, entry;
1765 BUG_ON(PageCompound(page+i));
1766 /*
1767 * Note that NUMA hinting access restrictions are not
1768 * transferred to avoid any possibility of altering
1769 * permissions across VMAs.
1770 */
1771 entry = mk_pte(page + i, vma->vm_page_prot);
1772 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1773 if (!pmd_write(*pmd))
1774 entry = pte_wrprotect(entry);
1775 if (!pmd_young(*pmd))
1776 entry = pte_mkold(entry);
1777 pte = pte_offset_map(&_pmd, haddr);
1778 BUG_ON(!pte_none(*pte));
1779 set_pte_at(mm, haddr, pte, entry);
1780 pte_unmap(pte);
1781 }
1782
1783 smp_wmb(); /* make pte visible before pmd */
1784 /*
1785 * Up to this point the pmd is present and huge and
1786 * userland has the whole access to the hugepage
1787 * during the split (which happens in place). If we
1788 * overwrite the pmd with the not-huge version
1789 * pointing to the pte here (which of course we could
1790 * if all CPUs were bug free), userland could trigger
1791 * a small page size TLB miss on the small sized TLB
1792 * while the hugepage TLB entry is still established
1793 * in the huge TLB. Some CPU doesn't like that. See
1794 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1795 * Erratum 383 on page 93. Intel should be safe but is
1796 * also warns that it's only safe if the permission
1797 * and cache attributes of the two entries loaded in
1798 * the two TLB is identical (which should be the case
1799 * here). But it is generally safer to never allow
1800 * small and huge TLB entries for the same virtual
1801 * address to be loaded simultaneously. So instead of
1802 * doing "pmd_populate(); flush_tlb_range();" we first
1803 * mark the current pmd notpresent (atomically because
1804 * here the pmd_trans_huge and pmd_trans_splitting
1805 * must remain set at all times on the pmd until the
1806 * split is complete for this pmd), then we flush the
1807 * SMP TLB and finally we write the non-huge version
1808 * of the pmd entry with pmd_populate.
1809 */
1810 pmdp_invalidate(vma, address, pmd);
1811 pmd_populate(mm, pmd, pgtable);
1812 ret = 1;
1813 spin_unlock(ptl);
1814 }
1815
1816 return ret;
1817 }
1818
1819 /* must be called with anon_vma->root->rwsem held */
1820 static void __split_huge_page(struct page *page,
1821 struct anon_vma *anon_vma,
1822 struct list_head *list)
1823 {
1824 int mapcount, mapcount2;
1825 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1826 struct anon_vma_chain *avc;
1827
1828 BUG_ON(!PageHead(page));
1829 BUG_ON(PageTail(page));
1830
1831 mapcount = 0;
1832 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1833 struct vm_area_struct *vma = avc->vma;
1834 unsigned long addr = vma_address(page, vma);
1835 BUG_ON(is_vma_temporary_stack(vma));
1836 mapcount += __split_huge_page_splitting(page, vma, addr);
1837 }
1838 /*
1839 * It is critical that new vmas are added to the tail of the
1840 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1841 * and establishes a child pmd before
1842 * __split_huge_page_splitting() freezes the parent pmd (so if
1843 * we fail to prevent copy_huge_pmd() from running until the
1844 * whole __split_huge_page() is complete), we will still see
1845 * the newly established pmd of the child later during the
1846 * walk, to be able to set it as pmd_trans_splitting too.
1847 */
1848 if (mapcount != page_mapcount(page)) {
1849 pr_err("mapcount %d page_mapcount %d\n",
1850 mapcount, page_mapcount(page));
1851 BUG();
1852 }
1853
1854 __split_huge_page_refcount(page, list);
1855
1856 mapcount2 = 0;
1857 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1858 struct vm_area_struct *vma = avc->vma;
1859 unsigned long addr = vma_address(page, vma);
1860 BUG_ON(is_vma_temporary_stack(vma));
1861 mapcount2 += __split_huge_page_map(page, vma, addr);
1862 }
1863 if (mapcount != mapcount2) {
1864 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1865 mapcount, mapcount2, page_mapcount(page));
1866 BUG();
1867 }
1868 }
1869
1870 /*
1871 * Split a hugepage into normal pages. This doesn't change the position of head
1872 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1873 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1874 * from the hugepage.
1875 * Return 0 if the hugepage is split successfully otherwise return 1.
1876 */
1877 int split_huge_page_to_list(struct page *page, struct list_head *list)
1878 {
1879 struct anon_vma *anon_vma;
1880 int ret = 1;
1881
1882 BUG_ON(is_huge_zero_page(page));
1883 BUG_ON(!PageAnon(page));
1884
1885 /*
1886 * The caller does not necessarily hold an mmap_sem that would prevent
1887 * the anon_vma disappearing so we first we take a reference to it
1888 * and then lock the anon_vma for write. This is similar to
1889 * page_lock_anon_vma_read except the write lock is taken to serialise
1890 * against parallel split or collapse operations.
1891 */
1892 anon_vma = page_get_anon_vma(page);
1893 if (!anon_vma)
1894 goto out;
1895 anon_vma_lock_write(anon_vma);
1896
1897 ret = 0;
1898 if (!PageCompound(page))
1899 goto out_unlock;
1900
1901 BUG_ON(!PageSwapBacked(page));
1902 __split_huge_page(page, anon_vma, list);
1903 count_vm_event(THP_SPLIT);
1904
1905 BUG_ON(PageCompound(page));
1906 out_unlock:
1907 anon_vma_unlock_write(anon_vma);
1908 put_anon_vma(anon_vma);
1909 out:
1910 return ret;
1911 }
1912
1913 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1914
1915 int hugepage_madvise(struct vm_area_struct *vma,
1916 unsigned long *vm_flags, int advice)
1917 {
1918 switch (advice) {
1919 case MADV_HUGEPAGE:
1920 #ifdef CONFIG_S390
1921 /*
1922 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1923 * can't handle this properly after s390_enable_sie, so we simply
1924 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1925 */
1926 if (mm_has_pgste(vma->vm_mm))
1927 return 0;
1928 #endif
1929 /*
1930 * Be somewhat over-protective like KSM for now!
1931 */
1932 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1933 return -EINVAL;
1934 *vm_flags &= ~VM_NOHUGEPAGE;
1935 *vm_flags |= VM_HUGEPAGE;
1936 /*
1937 * If the vma become good for khugepaged to scan,
1938 * register it here without waiting a page fault that
1939 * may not happen any time soon.
1940 */
1941 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1942 return -ENOMEM;
1943 break;
1944 case MADV_NOHUGEPAGE:
1945 /*
1946 * Be somewhat over-protective like KSM for now!
1947 */
1948 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1949 return -EINVAL;
1950 *vm_flags &= ~VM_HUGEPAGE;
1951 *vm_flags |= VM_NOHUGEPAGE;
1952 /*
1953 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1954 * this vma even if we leave the mm registered in khugepaged if
1955 * it got registered before VM_NOHUGEPAGE was set.
1956 */
1957 break;
1958 }
1959
1960 return 0;
1961 }
1962
1963 static int __init khugepaged_slab_init(void)
1964 {
1965 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1966 sizeof(struct mm_slot),
1967 __alignof__(struct mm_slot), 0, NULL);
1968 if (!mm_slot_cache)
1969 return -ENOMEM;
1970
1971 return 0;
1972 }
1973
1974 static inline struct mm_slot *alloc_mm_slot(void)
1975 {
1976 if (!mm_slot_cache) /* initialization failed */
1977 return NULL;
1978 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1979 }
1980
1981 static inline void free_mm_slot(struct mm_slot *mm_slot)
1982 {
1983 kmem_cache_free(mm_slot_cache, mm_slot);
1984 }
1985
1986 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1987 {
1988 struct mm_slot *mm_slot;
1989
1990 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1991 if (mm == mm_slot->mm)
1992 return mm_slot;
1993
1994 return NULL;
1995 }
1996
1997 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1998 struct mm_slot *mm_slot)
1999 {
2000 mm_slot->mm = mm;
2001 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2002 }
2003
2004 static inline int khugepaged_test_exit(struct mm_struct *mm)
2005 {
2006 return atomic_read(&mm->mm_users) == 0;
2007 }
2008
2009 int __khugepaged_enter(struct mm_struct *mm)
2010 {
2011 struct mm_slot *mm_slot;
2012 int wakeup;
2013
2014 mm_slot = alloc_mm_slot();
2015 if (!mm_slot)
2016 return -ENOMEM;
2017
2018 /* __khugepaged_exit() must not run from under us */
2019 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2020 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2021 free_mm_slot(mm_slot);
2022 return 0;
2023 }
2024
2025 spin_lock(&khugepaged_mm_lock);
2026 insert_to_mm_slots_hash(mm, mm_slot);
2027 /*
2028 * Insert just behind the scanning cursor, to let the area settle
2029 * down a little.
2030 */
2031 wakeup = list_empty(&khugepaged_scan.mm_head);
2032 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2033 spin_unlock(&khugepaged_mm_lock);
2034
2035 atomic_inc(&mm->mm_count);
2036 if (wakeup)
2037 wake_up_interruptible(&khugepaged_wait);
2038
2039 return 0;
2040 }
2041
2042 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2043 unsigned long vm_flags)
2044 {
2045 unsigned long hstart, hend;
2046 if (!vma->anon_vma)
2047 /*
2048 * Not yet faulted in so we will register later in the
2049 * page fault if needed.
2050 */
2051 return 0;
2052 if (vma->vm_ops)
2053 /* khugepaged not yet working on file or special mappings */
2054 return 0;
2055 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2056 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2057 hend = vma->vm_end & HPAGE_PMD_MASK;
2058 if (hstart < hend)
2059 return khugepaged_enter(vma, vm_flags);
2060 return 0;
2061 }
2062
2063 void __khugepaged_exit(struct mm_struct *mm)
2064 {
2065 struct mm_slot *mm_slot;
2066 int free = 0;
2067
2068 spin_lock(&khugepaged_mm_lock);
2069 mm_slot = get_mm_slot(mm);
2070 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2071 hash_del(&mm_slot->hash);
2072 list_del(&mm_slot->mm_node);
2073 free = 1;
2074 }
2075 spin_unlock(&khugepaged_mm_lock);
2076
2077 if (free) {
2078 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2079 free_mm_slot(mm_slot);
2080 mmdrop(mm);
2081 } else if (mm_slot) {
2082 /*
2083 * This is required to serialize against
2084 * khugepaged_test_exit() (which is guaranteed to run
2085 * under mmap sem read mode). Stop here (after we
2086 * return all pagetables will be destroyed) until
2087 * khugepaged has finished working on the pagetables
2088 * under the mmap_sem.
2089 */
2090 down_write(&mm->mmap_sem);
2091 up_write(&mm->mmap_sem);
2092 }
2093 }
2094
2095 static void release_pte_page(struct page *page)
2096 {
2097 /* 0 stands for page_is_file_cache(page) == false */
2098 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2099 unlock_page(page);
2100 putback_lru_page(page);
2101 }
2102
2103 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2104 {
2105 while (--_pte >= pte) {
2106 pte_t pteval = *_pte;
2107 if (!pte_none(pteval))
2108 release_pte_page(pte_page(pteval));
2109 }
2110 }
2111
2112 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2113 unsigned long address,
2114 pte_t *pte)
2115 {
2116 struct page *page;
2117 pte_t *_pte;
2118 int none = 0;
2119 bool referenced = false, writable = false;
2120 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2121 _pte++, address += PAGE_SIZE) {
2122 pte_t pteval = *_pte;
2123 if (pte_none(pteval)) {
2124 if (++none <= khugepaged_max_ptes_none)
2125 continue;
2126 else
2127 goto out;
2128 }
2129 if (!pte_present(pteval))
2130 goto out;
2131 page = vm_normal_page(vma, address, pteval);
2132 if (unlikely(!page))
2133 goto out;
2134
2135 VM_BUG_ON_PAGE(PageCompound(page), page);
2136 VM_BUG_ON_PAGE(!PageAnon(page), page);
2137 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2138
2139 /*
2140 * We can do it before isolate_lru_page because the
2141 * page can't be freed from under us. NOTE: PG_lock
2142 * is needed to serialize against split_huge_page
2143 * when invoked from the VM.
2144 */
2145 if (!trylock_page(page))
2146 goto out;
2147
2148 /*
2149 * cannot use mapcount: can't collapse if there's a gup pin.
2150 * The page must only be referenced by the scanned process
2151 * and page swap cache.
2152 */
2153 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2154 unlock_page(page);
2155 goto out;
2156 }
2157 if (pte_write(pteval)) {
2158 writable = true;
2159 } else {
2160 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2161 unlock_page(page);
2162 goto out;
2163 }
2164 /*
2165 * Page is not in the swap cache. It can be collapsed
2166 * into a THP.
2167 */
2168 }
2169
2170 /*
2171 * Isolate the page to avoid collapsing an hugepage
2172 * currently in use by the VM.
2173 */
2174 if (isolate_lru_page(page)) {
2175 unlock_page(page);
2176 goto out;
2177 }
2178 /* 0 stands for page_is_file_cache(page) == false */
2179 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2180 VM_BUG_ON_PAGE(!PageLocked(page), page);
2181 VM_BUG_ON_PAGE(PageLRU(page), page);
2182
2183 /* If there is no mapped pte young don't collapse the page */
2184 if (pte_young(pteval) || PageReferenced(page) ||
2185 mmu_notifier_test_young(vma->vm_mm, address))
2186 referenced = true;
2187 }
2188 if (likely(referenced && writable))
2189 return 1;
2190 out:
2191 release_pte_pages(pte, _pte);
2192 return 0;
2193 }
2194
2195 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2196 struct vm_area_struct *vma,
2197 unsigned long address,
2198 spinlock_t *ptl)
2199 {
2200 pte_t *_pte;
2201 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2202 pte_t pteval = *_pte;
2203 struct page *src_page;
2204
2205 if (pte_none(pteval)) {
2206 clear_user_highpage(page, address);
2207 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2208 } else {
2209 src_page = pte_page(pteval);
2210 copy_user_highpage(page, src_page, address, vma);
2211 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2212 release_pte_page(src_page);
2213 /*
2214 * ptl mostly unnecessary, but preempt has to
2215 * be disabled to update the per-cpu stats
2216 * inside page_remove_rmap().
2217 */
2218 spin_lock(ptl);
2219 /*
2220 * paravirt calls inside pte_clear here are
2221 * superfluous.
2222 */
2223 pte_clear(vma->vm_mm, address, _pte);
2224 page_remove_rmap(src_page);
2225 spin_unlock(ptl);
2226 free_page_and_swap_cache(src_page);
2227 }
2228
2229 address += PAGE_SIZE;
2230 page++;
2231 }
2232 }
2233
2234 static void khugepaged_alloc_sleep(void)
2235 {
2236 wait_event_freezable_timeout(khugepaged_wait, false,
2237 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2238 }
2239
2240 static int khugepaged_node_load[MAX_NUMNODES];
2241
2242 static bool khugepaged_scan_abort(int nid)
2243 {
2244 int i;
2245
2246 /*
2247 * If zone_reclaim_mode is disabled, then no extra effort is made to
2248 * allocate memory locally.
2249 */
2250 if (!zone_reclaim_mode)
2251 return false;
2252
2253 /* If there is a count for this node already, it must be acceptable */
2254 if (khugepaged_node_load[nid])
2255 return false;
2256
2257 for (i = 0; i < MAX_NUMNODES; i++) {
2258 if (!khugepaged_node_load[i])
2259 continue;
2260 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2261 return true;
2262 }
2263 return false;
2264 }
2265
2266 #ifdef CONFIG_NUMA
2267 static int khugepaged_find_target_node(void)
2268 {
2269 static int last_khugepaged_target_node = NUMA_NO_NODE;
2270 int nid, target_node = 0, max_value = 0;
2271
2272 /* find first node with max normal pages hit */
2273 for (nid = 0; nid < MAX_NUMNODES; nid++)
2274 if (khugepaged_node_load[nid] > max_value) {
2275 max_value = khugepaged_node_load[nid];
2276 target_node = nid;
2277 }
2278
2279 /* do some balance if several nodes have the same hit record */
2280 if (target_node <= last_khugepaged_target_node)
2281 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2282 nid++)
2283 if (max_value == khugepaged_node_load[nid]) {
2284 target_node = nid;
2285 break;
2286 }
2287
2288 last_khugepaged_target_node = target_node;
2289 return target_node;
2290 }
2291
2292 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2293 {
2294 if (IS_ERR(*hpage)) {
2295 if (!*wait)
2296 return false;
2297
2298 *wait = false;
2299 *hpage = NULL;
2300 khugepaged_alloc_sleep();
2301 } else if (*hpage) {
2302 put_page(*hpage);
2303 *hpage = NULL;
2304 }
2305
2306 return true;
2307 }
2308
2309 static struct page
2310 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2311 struct vm_area_struct *vma, unsigned long address,
2312 int node)
2313 {
2314 VM_BUG_ON_PAGE(*hpage, *hpage);
2315
2316 /*
2317 * Before allocating the hugepage, release the mmap_sem read lock.
2318 * The allocation can take potentially a long time if it involves
2319 * sync compaction, and we do not need to hold the mmap_sem during
2320 * that. We will recheck the vma after taking it again in write mode.
2321 */
2322 up_read(&mm->mmap_sem);
2323
2324 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2325 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2326 if (unlikely(!*hpage)) {
2327 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2328 *hpage = ERR_PTR(-ENOMEM);
2329 return NULL;
2330 }
2331
2332 count_vm_event(THP_COLLAPSE_ALLOC);
2333 return *hpage;
2334 }
2335 #else
2336 static int khugepaged_find_target_node(void)
2337 {
2338 return 0;
2339 }
2340
2341 static inline struct page *alloc_hugepage(int defrag)
2342 {
2343 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2344 HPAGE_PMD_ORDER);
2345 }
2346
2347 static struct page *khugepaged_alloc_hugepage(bool *wait)
2348 {
2349 struct page *hpage;
2350
2351 do {
2352 hpage = alloc_hugepage(khugepaged_defrag());
2353 if (!hpage) {
2354 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2355 if (!*wait)
2356 return NULL;
2357
2358 *wait = false;
2359 khugepaged_alloc_sleep();
2360 } else
2361 count_vm_event(THP_COLLAPSE_ALLOC);
2362 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2363
2364 return hpage;
2365 }
2366
2367 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2368 {
2369 if (!*hpage)
2370 *hpage = khugepaged_alloc_hugepage(wait);
2371
2372 if (unlikely(!*hpage))
2373 return false;
2374
2375 return true;
2376 }
2377
2378 static struct page
2379 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2380 struct vm_area_struct *vma, unsigned long address,
2381 int node)
2382 {
2383 up_read(&mm->mmap_sem);
2384 VM_BUG_ON(!*hpage);
2385 return *hpage;
2386 }
2387 #endif
2388
2389 static bool hugepage_vma_check(struct vm_area_struct *vma)
2390 {
2391 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2392 (vma->vm_flags & VM_NOHUGEPAGE))
2393 return false;
2394
2395 if (!vma->anon_vma || vma->vm_ops)
2396 return false;
2397 if (is_vma_temporary_stack(vma))
2398 return false;
2399 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2400 return true;
2401 }
2402
2403 static void collapse_huge_page(struct mm_struct *mm,
2404 unsigned long address,
2405 struct page **hpage,
2406 struct vm_area_struct *vma,
2407 int node)
2408 {
2409 pmd_t *pmd, _pmd;
2410 pte_t *pte;
2411 pgtable_t pgtable;
2412 struct page *new_page;
2413 spinlock_t *pmd_ptl, *pte_ptl;
2414 int isolated;
2415 unsigned long hstart, hend;
2416 struct mem_cgroup *memcg;
2417 unsigned long mmun_start; /* For mmu_notifiers */
2418 unsigned long mmun_end; /* For mmu_notifiers */
2419
2420 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2421
2422 /* release the mmap_sem read lock. */
2423 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2424 if (!new_page)
2425 return;
2426
2427 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2428 GFP_TRANSHUGE, &memcg)))
2429 return;
2430
2431 /*
2432 * Prevent all access to pagetables with the exception of
2433 * gup_fast later hanlded by the ptep_clear_flush and the VM
2434 * handled by the anon_vma lock + PG_lock.
2435 */
2436 down_write(&mm->mmap_sem);
2437 if (unlikely(khugepaged_test_exit(mm)))
2438 goto out;
2439
2440 vma = find_vma(mm, address);
2441 if (!vma)
2442 goto out;
2443 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2444 hend = vma->vm_end & HPAGE_PMD_MASK;
2445 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2446 goto out;
2447 if (!hugepage_vma_check(vma))
2448 goto out;
2449 pmd = mm_find_pmd(mm, address);
2450 if (!pmd)
2451 goto out;
2452
2453 anon_vma_lock_write(vma->anon_vma);
2454
2455 pte = pte_offset_map(pmd, address);
2456 pte_ptl = pte_lockptr(mm, pmd);
2457
2458 mmun_start = address;
2459 mmun_end = address + HPAGE_PMD_SIZE;
2460 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2461 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2462 /*
2463 * After this gup_fast can't run anymore. This also removes
2464 * any huge TLB entry from the CPU so we won't allow
2465 * huge and small TLB entries for the same virtual address
2466 * to avoid the risk of CPU bugs in that area.
2467 */
2468 _pmd = pmdp_clear_flush(vma, address, pmd);
2469 spin_unlock(pmd_ptl);
2470 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2471
2472 spin_lock(pte_ptl);
2473 isolated = __collapse_huge_page_isolate(vma, address, pte);
2474 spin_unlock(pte_ptl);
2475
2476 if (unlikely(!isolated)) {
2477 pte_unmap(pte);
2478 spin_lock(pmd_ptl);
2479 BUG_ON(!pmd_none(*pmd));
2480 /*
2481 * We can only use set_pmd_at when establishing
2482 * hugepmds and never for establishing regular pmds that
2483 * points to regular pagetables. Use pmd_populate for that
2484 */
2485 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2486 spin_unlock(pmd_ptl);
2487 anon_vma_unlock_write(vma->anon_vma);
2488 goto out;
2489 }
2490
2491 /*
2492 * All pages are isolated and locked so anon_vma rmap
2493 * can't run anymore.
2494 */
2495 anon_vma_unlock_write(vma->anon_vma);
2496
2497 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2498 pte_unmap(pte);
2499 __SetPageUptodate(new_page);
2500 pgtable = pmd_pgtable(_pmd);
2501
2502 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2503 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2504
2505 /*
2506 * spin_lock() below is not the equivalent of smp_wmb(), so
2507 * this is needed to avoid the copy_huge_page writes to become
2508 * visible after the set_pmd_at() write.
2509 */
2510 smp_wmb();
2511
2512 spin_lock(pmd_ptl);
2513 BUG_ON(!pmd_none(*pmd));
2514 page_add_new_anon_rmap(new_page, vma, address);
2515 mem_cgroup_commit_charge(new_page, memcg, false);
2516 lru_cache_add_active_or_unevictable(new_page, vma);
2517 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2518 set_pmd_at(mm, address, pmd, _pmd);
2519 update_mmu_cache_pmd(vma, address, pmd);
2520 spin_unlock(pmd_ptl);
2521
2522 *hpage = NULL;
2523
2524 khugepaged_pages_collapsed++;
2525 out_up_write:
2526 up_write(&mm->mmap_sem);
2527 return;
2528
2529 out:
2530 mem_cgroup_cancel_charge(new_page, memcg);
2531 goto out_up_write;
2532 }
2533
2534 static int khugepaged_scan_pmd(struct mm_struct *mm,
2535 struct vm_area_struct *vma,
2536 unsigned long address,
2537 struct page **hpage)
2538 {
2539 pmd_t *pmd;
2540 pte_t *pte, *_pte;
2541 int ret = 0, none = 0;
2542 struct page *page;
2543 unsigned long _address;
2544 spinlock_t *ptl;
2545 int node = NUMA_NO_NODE;
2546 bool writable = false, referenced = false;
2547
2548 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2549
2550 pmd = mm_find_pmd(mm, address);
2551 if (!pmd)
2552 goto out;
2553
2554 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2555 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2556 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2557 _pte++, _address += PAGE_SIZE) {
2558 pte_t pteval = *_pte;
2559 if (pte_none(pteval)) {
2560 if (++none <= khugepaged_max_ptes_none)
2561 continue;
2562 else
2563 goto out_unmap;
2564 }
2565 if (!pte_present(pteval))
2566 goto out_unmap;
2567 if (pte_write(pteval))
2568 writable = true;
2569
2570 page = vm_normal_page(vma, _address, pteval);
2571 if (unlikely(!page))
2572 goto out_unmap;
2573 /*
2574 * Record which node the original page is from and save this
2575 * information to khugepaged_node_load[].
2576 * Khupaged will allocate hugepage from the node has the max
2577 * hit record.
2578 */
2579 node = page_to_nid(page);
2580 if (khugepaged_scan_abort(node))
2581 goto out_unmap;
2582 khugepaged_node_load[node]++;
2583 VM_BUG_ON_PAGE(PageCompound(page), page);
2584 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2585 goto out_unmap;
2586 /*
2587 * cannot use mapcount: can't collapse if there's a gup pin.
2588 * The page must only be referenced by the scanned process
2589 * and page swap cache.
2590 */
2591 if (page_count(page) != 1 + !!PageSwapCache(page))
2592 goto out_unmap;
2593 if (pte_young(pteval) || PageReferenced(page) ||
2594 mmu_notifier_test_young(vma->vm_mm, address))
2595 referenced = true;
2596 }
2597 if (referenced && writable)
2598 ret = 1;
2599 out_unmap:
2600 pte_unmap_unlock(pte, ptl);
2601 if (ret) {
2602 node = khugepaged_find_target_node();
2603 /* collapse_huge_page will return with the mmap_sem released */
2604 collapse_huge_page(mm, address, hpage, vma, node);
2605 }
2606 out:
2607 return ret;
2608 }
2609
2610 static void collect_mm_slot(struct mm_slot *mm_slot)
2611 {
2612 struct mm_struct *mm = mm_slot->mm;
2613
2614 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2615
2616 if (khugepaged_test_exit(mm)) {
2617 /* free mm_slot */
2618 hash_del(&mm_slot->hash);
2619 list_del(&mm_slot->mm_node);
2620
2621 /*
2622 * Not strictly needed because the mm exited already.
2623 *
2624 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2625 */
2626
2627 /* khugepaged_mm_lock actually not necessary for the below */
2628 free_mm_slot(mm_slot);
2629 mmdrop(mm);
2630 }
2631 }
2632
2633 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2634 struct page **hpage)
2635 __releases(&khugepaged_mm_lock)
2636 __acquires(&khugepaged_mm_lock)
2637 {
2638 struct mm_slot *mm_slot;
2639 struct mm_struct *mm;
2640 struct vm_area_struct *vma;
2641 int progress = 0;
2642
2643 VM_BUG_ON(!pages);
2644 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2645
2646 if (khugepaged_scan.mm_slot)
2647 mm_slot = khugepaged_scan.mm_slot;
2648 else {
2649 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2650 struct mm_slot, mm_node);
2651 khugepaged_scan.address = 0;
2652 khugepaged_scan.mm_slot = mm_slot;
2653 }
2654 spin_unlock(&khugepaged_mm_lock);
2655
2656 mm = mm_slot->mm;
2657 down_read(&mm->mmap_sem);
2658 if (unlikely(khugepaged_test_exit(mm)))
2659 vma = NULL;
2660 else
2661 vma = find_vma(mm, khugepaged_scan.address);
2662
2663 progress++;
2664 for (; vma; vma = vma->vm_next) {
2665 unsigned long hstart, hend;
2666
2667 cond_resched();
2668 if (unlikely(khugepaged_test_exit(mm))) {
2669 progress++;
2670 break;
2671 }
2672 if (!hugepage_vma_check(vma)) {
2673 skip:
2674 progress++;
2675 continue;
2676 }
2677 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2678 hend = vma->vm_end & HPAGE_PMD_MASK;
2679 if (hstart >= hend)
2680 goto skip;
2681 if (khugepaged_scan.address > hend)
2682 goto skip;
2683 if (khugepaged_scan.address < hstart)
2684 khugepaged_scan.address = hstart;
2685 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2686
2687 while (khugepaged_scan.address < hend) {
2688 int ret;
2689 cond_resched();
2690 if (unlikely(khugepaged_test_exit(mm)))
2691 goto breakouterloop;
2692
2693 VM_BUG_ON(khugepaged_scan.address < hstart ||
2694 khugepaged_scan.address + HPAGE_PMD_SIZE >
2695 hend);
2696 ret = khugepaged_scan_pmd(mm, vma,
2697 khugepaged_scan.address,
2698 hpage);
2699 /* move to next address */
2700 khugepaged_scan.address += HPAGE_PMD_SIZE;
2701 progress += HPAGE_PMD_NR;
2702 if (ret)
2703 /* we released mmap_sem so break loop */
2704 goto breakouterloop_mmap_sem;
2705 if (progress >= pages)
2706 goto breakouterloop;
2707 }
2708 }
2709 breakouterloop:
2710 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2711 breakouterloop_mmap_sem:
2712
2713 spin_lock(&khugepaged_mm_lock);
2714 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2715 /*
2716 * Release the current mm_slot if this mm is about to die, or
2717 * if we scanned all vmas of this mm.
2718 */
2719 if (khugepaged_test_exit(mm) || !vma) {
2720 /*
2721 * Make sure that if mm_users is reaching zero while
2722 * khugepaged runs here, khugepaged_exit will find
2723 * mm_slot not pointing to the exiting mm.
2724 */
2725 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2726 khugepaged_scan.mm_slot = list_entry(
2727 mm_slot->mm_node.next,
2728 struct mm_slot, mm_node);
2729 khugepaged_scan.address = 0;
2730 } else {
2731 khugepaged_scan.mm_slot = NULL;
2732 khugepaged_full_scans++;
2733 }
2734
2735 collect_mm_slot(mm_slot);
2736 }
2737
2738 return progress;
2739 }
2740
2741 static int khugepaged_has_work(void)
2742 {
2743 return !list_empty(&khugepaged_scan.mm_head) &&
2744 khugepaged_enabled();
2745 }
2746
2747 static int khugepaged_wait_event(void)
2748 {
2749 return !list_empty(&khugepaged_scan.mm_head) ||
2750 kthread_should_stop();
2751 }
2752
2753 static void khugepaged_do_scan(void)
2754 {
2755 struct page *hpage = NULL;
2756 unsigned int progress = 0, pass_through_head = 0;
2757 unsigned int pages = khugepaged_pages_to_scan;
2758 bool wait = true;
2759
2760 barrier(); /* write khugepaged_pages_to_scan to local stack */
2761
2762 while (progress < pages) {
2763 if (!khugepaged_prealloc_page(&hpage, &wait))
2764 break;
2765
2766 cond_resched();
2767
2768 if (unlikely(kthread_should_stop() || freezing(current)))
2769 break;
2770
2771 spin_lock(&khugepaged_mm_lock);
2772 if (!khugepaged_scan.mm_slot)
2773 pass_through_head++;
2774 if (khugepaged_has_work() &&
2775 pass_through_head < 2)
2776 progress += khugepaged_scan_mm_slot(pages - progress,
2777 &hpage);
2778 else
2779 progress = pages;
2780 spin_unlock(&khugepaged_mm_lock);
2781 }
2782
2783 if (!IS_ERR_OR_NULL(hpage))
2784 put_page(hpage);
2785 }
2786
2787 static void khugepaged_wait_work(void)
2788 {
2789 try_to_freeze();
2790
2791 if (khugepaged_has_work()) {
2792 if (!khugepaged_scan_sleep_millisecs)
2793 return;
2794
2795 wait_event_freezable_timeout(khugepaged_wait,
2796 kthread_should_stop(),
2797 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2798 return;
2799 }
2800
2801 if (khugepaged_enabled())
2802 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2803 }
2804
2805 static int khugepaged(void *none)
2806 {
2807 struct mm_slot *mm_slot;
2808
2809 set_freezable();
2810 set_user_nice(current, MAX_NICE);
2811
2812 while (!kthread_should_stop()) {
2813 khugepaged_do_scan();
2814 khugepaged_wait_work();
2815 }
2816
2817 spin_lock(&khugepaged_mm_lock);
2818 mm_slot = khugepaged_scan.mm_slot;
2819 khugepaged_scan.mm_slot = NULL;
2820 if (mm_slot)
2821 collect_mm_slot(mm_slot);
2822 spin_unlock(&khugepaged_mm_lock);
2823 return 0;
2824 }
2825
2826 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2827 unsigned long haddr, pmd_t *pmd)
2828 {
2829 struct mm_struct *mm = vma->vm_mm;
2830 pgtable_t pgtable;
2831 pmd_t _pmd;
2832 int i;
2833
2834 pmdp_clear_flush_notify(vma, haddr, pmd);
2835 /* leave pmd empty until pte is filled */
2836
2837 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2838 pmd_populate(mm, &_pmd, pgtable);
2839
2840 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2841 pte_t *pte, entry;
2842 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2843 entry = pte_mkspecial(entry);
2844 pte = pte_offset_map(&_pmd, haddr);
2845 VM_BUG_ON(!pte_none(*pte));
2846 set_pte_at(mm, haddr, pte, entry);
2847 pte_unmap(pte);
2848 }
2849 smp_wmb(); /* make pte visible before pmd */
2850 pmd_populate(mm, pmd, pgtable);
2851 put_huge_zero_page();
2852 }
2853
2854 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2855 pmd_t *pmd)
2856 {
2857 spinlock_t *ptl;
2858 struct page *page;
2859 struct mm_struct *mm = vma->vm_mm;
2860 unsigned long haddr = address & HPAGE_PMD_MASK;
2861 unsigned long mmun_start; /* For mmu_notifiers */
2862 unsigned long mmun_end; /* For mmu_notifiers */
2863
2864 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2865
2866 mmun_start = haddr;
2867 mmun_end = haddr + HPAGE_PMD_SIZE;
2868 again:
2869 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2870 ptl = pmd_lock(mm, pmd);
2871 if (unlikely(!pmd_trans_huge(*pmd))) {
2872 spin_unlock(ptl);
2873 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2874 return;
2875 }
2876 if (is_huge_zero_pmd(*pmd)) {
2877 __split_huge_zero_page_pmd(vma, haddr, pmd);
2878 spin_unlock(ptl);
2879 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2880 return;
2881 }
2882 page = pmd_page(*pmd);
2883 VM_BUG_ON_PAGE(!page_count(page), page);
2884 get_page(page);
2885 spin_unlock(ptl);
2886 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2887
2888 split_huge_page(page);
2889
2890 put_page(page);
2891
2892 /*
2893 * We don't always have down_write of mmap_sem here: a racing
2894 * do_huge_pmd_wp_page() might have copied-on-write to another
2895 * huge page before our split_huge_page() got the anon_vma lock.
2896 */
2897 if (unlikely(pmd_trans_huge(*pmd)))
2898 goto again;
2899 }
2900
2901 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2902 pmd_t *pmd)
2903 {
2904 struct vm_area_struct *vma;
2905
2906 vma = find_vma(mm, address);
2907 BUG_ON(vma == NULL);
2908 split_huge_page_pmd(vma, address, pmd);
2909 }
2910
2911 static void split_huge_page_address(struct mm_struct *mm,
2912 unsigned long address)
2913 {
2914 pgd_t *pgd;
2915 pud_t *pud;
2916 pmd_t *pmd;
2917
2918 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2919
2920 pgd = pgd_offset(mm, address);
2921 if (!pgd_present(*pgd))
2922 return;
2923
2924 pud = pud_offset(pgd, address);
2925 if (!pud_present(*pud))
2926 return;
2927
2928 pmd = pmd_offset(pud, address);
2929 if (!pmd_present(*pmd))
2930 return;
2931 /*
2932 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2933 * materialize from under us.
2934 */
2935 split_huge_page_pmd_mm(mm, address, pmd);
2936 }
2937
2938 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2939 unsigned long start,
2940 unsigned long end,
2941 long adjust_next)
2942 {
2943 /*
2944 * If the new start address isn't hpage aligned and it could
2945 * previously contain an hugepage: check if we need to split
2946 * an huge pmd.
2947 */
2948 if (start & ~HPAGE_PMD_MASK &&
2949 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2950 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2951 split_huge_page_address(vma->vm_mm, start);
2952
2953 /*
2954 * If the new end address isn't hpage aligned and it could
2955 * previously contain an hugepage: check if we need to split
2956 * an huge pmd.
2957 */
2958 if (end & ~HPAGE_PMD_MASK &&
2959 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2960 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2961 split_huge_page_address(vma->vm_mm, end);
2962
2963 /*
2964 * If we're also updating the vma->vm_next->vm_start, if the new
2965 * vm_next->vm_start isn't page aligned and it could previously
2966 * contain an hugepage: check if we need to split an huge pmd.
2967 */
2968 if (adjust_next > 0) {
2969 struct vm_area_struct *next = vma->vm_next;
2970 unsigned long nstart = next->vm_start;
2971 nstart += adjust_next << PAGE_SHIFT;
2972 if (nstart & ~HPAGE_PMD_MASK &&
2973 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2974 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2975 split_huge_page_address(next->vm_mm, nstart);
2976 }
2977 }