]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/huge_memory.c
mm, dax, gpu: convert vm_insert_mixed to pfn_t
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/debugfs.h>
27 #include <linux/migrate.h>
28 #include <linux/hashtable.h>
29 #include <linux/userfaultfd_k.h>
30 #include <linux/page_idle.h>
31
32 #include <asm/tlb.h>
33 #include <asm/pgalloc.h>
34 #include "internal.h"
35
36 enum scan_result {
37 SCAN_FAIL,
38 SCAN_SUCCEED,
39 SCAN_PMD_NULL,
40 SCAN_EXCEED_NONE_PTE,
41 SCAN_PTE_NON_PRESENT,
42 SCAN_PAGE_RO,
43 SCAN_NO_REFERENCED_PAGE,
44 SCAN_PAGE_NULL,
45 SCAN_SCAN_ABORT,
46 SCAN_PAGE_COUNT,
47 SCAN_PAGE_LRU,
48 SCAN_PAGE_LOCK,
49 SCAN_PAGE_ANON,
50 SCAN_PAGE_COMPOUND,
51 SCAN_ANY_PROCESS,
52 SCAN_VMA_NULL,
53 SCAN_VMA_CHECK,
54 SCAN_ADDRESS_RANGE,
55 SCAN_SWAP_CACHE_PAGE,
56 SCAN_DEL_PAGE_LRU,
57 SCAN_ALLOC_HUGE_PAGE_FAIL,
58 SCAN_CGROUP_CHARGE_FAIL
59 };
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/huge_memory.h>
63
64 /*
65 * By default transparent hugepage support is disabled in order that avoid
66 * to risk increase the memory footprint of applications without a guaranteed
67 * benefit. When transparent hugepage support is enabled, is for all mappings,
68 * and khugepaged scans all mappings.
69 * Defrag is invoked by khugepaged hugepage allocations and by page faults
70 * for all hugepage allocations.
71 */
72 unsigned long transparent_hugepage_flags __read_mostly =
73 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
74 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
75 #endif
76 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
77 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
78 #endif
79 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
80 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
81 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
82
83 /* default scan 8*512 pte (or vmas) every 30 second */
84 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
85 static unsigned int khugepaged_pages_collapsed;
86 static unsigned int khugepaged_full_scans;
87 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
88 /* during fragmentation poll the hugepage allocator once every minute */
89 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
90 static struct task_struct *khugepaged_thread __read_mostly;
91 static DEFINE_MUTEX(khugepaged_mutex);
92 static DEFINE_SPINLOCK(khugepaged_mm_lock);
93 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
94 /*
95 * default collapse hugepages if there is at least one pte mapped like
96 * it would have happened if the vma was large enough during page
97 * fault.
98 */
99 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
100
101 static int khugepaged(void *none);
102 static int khugepaged_slab_init(void);
103 static void khugepaged_slab_exit(void);
104
105 #define MM_SLOTS_HASH_BITS 10
106 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
107
108 static struct kmem_cache *mm_slot_cache __read_mostly;
109
110 /**
111 * struct mm_slot - hash lookup from mm to mm_slot
112 * @hash: hash collision list
113 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
114 * @mm: the mm that this information is valid for
115 */
116 struct mm_slot {
117 struct hlist_node hash;
118 struct list_head mm_node;
119 struct mm_struct *mm;
120 };
121
122 /**
123 * struct khugepaged_scan - cursor for scanning
124 * @mm_head: the head of the mm list to scan
125 * @mm_slot: the current mm_slot we are scanning
126 * @address: the next address inside that to be scanned
127 *
128 * There is only the one khugepaged_scan instance of this cursor structure.
129 */
130 struct khugepaged_scan {
131 struct list_head mm_head;
132 struct mm_slot *mm_slot;
133 unsigned long address;
134 };
135 static struct khugepaged_scan khugepaged_scan = {
136 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
137 };
138
139 static DEFINE_SPINLOCK(split_queue_lock);
140 static LIST_HEAD(split_queue);
141 static unsigned long split_queue_len;
142 static struct shrinker deferred_split_shrinker;
143
144 static void set_recommended_min_free_kbytes(void)
145 {
146 struct zone *zone;
147 int nr_zones = 0;
148 unsigned long recommended_min;
149
150 for_each_populated_zone(zone)
151 nr_zones++;
152
153 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
154 recommended_min = pageblock_nr_pages * nr_zones * 2;
155
156 /*
157 * Make sure that on average at least two pageblocks are almost free
158 * of another type, one for a migratetype to fall back to and a
159 * second to avoid subsequent fallbacks of other types There are 3
160 * MIGRATE_TYPES we care about.
161 */
162 recommended_min += pageblock_nr_pages * nr_zones *
163 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
164
165 /* don't ever allow to reserve more than 5% of the lowmem */
166 recommended_min = min(recommended_min,
167 (unsigned long) nr_free_buffer_pages() / 20);
168 recommended_min <<= (PAGE_SHIFT-10);
169
170 if (recommended_min > min_free_kbytes) {
171 if (user_min_free_kbytes >= 0)
172 pr_info("raising min_free_kbytes from %d to %lu "
173 "to help transparent hugepage allocations\n",
174 min_free_kbytes, recommended_min);
175
176 min_free_kbytes = recommended_min;
177 }
178 setup_per_zone_wmarks();
179 }
180
181 static int start_stop_khugepaged(void)
182 {
183 int err = 0;
184 if (khugepaged_enabled()) {
185 if (!khugepaged_thread)
186 khugepaged_thread = kthread_run(khugepaged, NULL,
187 "khugepaged");
188 if (IS_ERR(khugepaged_thread)) {
189 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
190 err = PTR_ERR(khugepaged_thread);
191 khugepaged_thread = NULL;
192 goto fail;
193 }
194
195 if (!list_empty(&khugepaged_scan.mm_head))
196 wake_up_interruptible(&khugepaged_wait);
197
198 set_recommended_min_free_kbytes();
199 } else if (khugepaged_thread) {
200 kthread_stop(khugepaged_thread);
201 khugepaged_thread = NULL;
202 }
203 fail:
204 return err;
205 }
206
207 static atomic_t huge_zero_refcount;
208 struct page *huge_zero_page __read_mostly;
209
210 struct page *get_huge_zero_page(void)
211 {
212 struct page *zero_page;
213 retry:
214 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
215 return READ_ONCE(huge_zero_page);
216
217 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
218 HPAGE_PMD_ORDER);
219 if (!zero_page) {
220 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
221 return NULL;
222 }
223 count_vm_event(THP_ZERO_PAGE_ALLOC);
224 preempt_disable();
225 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
226 preempt_enable();
227 __free_pages(zero_page, compound_order(zero_page));
228 goto retry;
229 }
230
231 /* We take additional reference here. It will be put back by shrinker */
232 atomic_set(&huge_zero_refcount, 2);
233 preempt_enable();
234 return READ_ONCE(huge_zero_page);
235 }
236
237 static void put_huge_zero_page(void)
238 {
239 /*
240 * Counter should never go to zero here. Only shrinker can put
241 * last reference.
242 */
243 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
244 }
245
246 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
247 struct shrink_control *sc)
248 {
249 /* we can free zero page only if last reference remains */
250 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
251 }
252
253 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
254 struct shrink_control *sc)
255 {
256 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
257 struct page *zero_page = xchg(&huge_zero_page, NULL);
258 BUG_ON(zero_page == NULL);
259 __free_pages(zero_page, compound_order(zero_page));
260 return HPAGE_PMD_NR;
261 }
262
263 return 0;
264 }
265
266 static struct shrinker huge_zero_page_shrinker = {
267 .count_objects = shrink_huge_zero_page_count,
268 .scan_objects = shrink_huge_zero_page_scan,
269 .seeks = DEFAULT_SEEKS,
270 };
271
272 #ifdef CONFIG_SYSFS
273
274 static ssize_t double_flag_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf,
276 enum transparent_hugepage_flag enabled,
277 enum transparent_hugepage_flag req_madv)
278 {
279 if (test_bit(enabled, &transparent_hugepage_flags)) {
280 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
281 return sprintf(buf, "[always] madvise never\n");
282 } else if (test_bit(req_madv, &transparent_hugepage_flags))
283 return sprintf(buf, "always [madvise] never\n");
284 else
285 return sprintf(buf, "always madvise [never]\n");
286 }
287 static ssize_t double_flag_store(struct kobject *kobj,
288 struct kobj_attribute *attr,
289 const char *buf, size_t count,
290 enum transparent_hugepage_flag enabled,
291 enum transparent_hugepage_flag req_madv)
292 {
293 if (!memcmp("always", buf,
294 min(sizeof("always")-1, count))) {
295 set_bit(enabled, &transparent_hugepage_flags);
296 clear_bit(req_madv, &transparent_hugepage_flags);
297 } else if (!memcmp("madvise", buf,
298 min(sizeof("madvise")-1, count))) {
299 clear_bit(enabled, &transparent_hugepage_flags);
300 set_bit(req_madv, &transparent_hugepage_flags);
301 } else if (!memcmp("never", buf,
302 min(sizeof("never")-1, count))) {
303 clear_bit(enabled, &transparent_hugepage_flags);
304 clear_bit(req_madv, &transparent_hugepage_flags);
305 } else
306 return -EINVAL;
307
308 return count;
309 }
310
311 static ssize_t enabled_show(struct kobject *kobj,
312 struct kobj_attribute *attr, char *buf)
313 {
314 return double_flag_show(kobj, attr, buf,
315 TRANSPARENT_HUGEPAGE_FLAG,
316 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
317 }
318 static ssize_t enabled_store(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 const char *buf, size_t count)
321 {
322 ssize_t ret;
323
324 ret = double_flag_store(kobj, attr, buf, count,
325 TRANSPARENT_HUGEPAGE_FLAG,
326 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
327
328 if (ret > 0) {
329 int err;
330
331 mutex_lock(&khugepaged_mutex);
332 err = start_stop_khugepaged();
333 mutex_unlock(&khugepaged_mutex);
334
335 if (err)
336 ret = err;
337 }
338
339 return ret;
340 }
341 static struct kobj_attribute enabled_attr =
342 __ATTR(enabled, 0644, enabled_show, enabled_store);
343
344 static ssize_t single_flag_show(struct kobject *kobj,
345 struct kobj_attribute *attr, char *buf,
346 enum transparent_hugepage_flag flag)
347 {
348 return sprintf(buf, "%d\n",
349 !!test_bit(flag, &transparent_hugepage_flags));
350 }
351
352 static ssize_t single_flag_store(struct kobject *kobj,
353 struct kobj_attribute *attr,
354 const char *buf, size_t count,
355 enum transparent_hugepage_flag flag)
356 {
357 unsigned long value;
358 int ret;
359
360 ret = kstrtoul(buf, 10, &value);
361 if (ret < 0)
362 return ret;
363 if (value > 1)
364 return -EINVAL;
365
366 if (value)
367 set_bit(flag, &transparent_hugepage_flags);
368 else
369 clear_bit(flag, &transparent_hugepage_flags);
370
371 return count;
372 }
373
374 /*
375 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
376 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
377 * memory just to allocate one more hugepage.
378 */
379 static ssize_t defrag_show(struct kobject *kobj,
380 struct kobj_attribute *attr, char *buf)
381 {
382 return double_flag_show(kobj, attr, buf,
383 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
384 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
385 }
386 static ssize_t defrag_store(struct kobject *kobj,
387 struct kobj_attribute *attr,
388 const char *buf, size_t count)
389 {
390 return double_flag_store(kobj, attr, buf, count,
391 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
392 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
393 }
394 static struct kobj_attribute defrag_attr =
395 __ATTR(defrag, 0644, defrag_show, defrag_store);
396
397 static ssize_t use_zero_page_show(struct kobject *kobj,
398 struct kobj_attribute *attr, char *buf)
399 {
400 return single_flag_show(kobj, attr, buf,
401 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
402 }
403 static ssize_t use_zero_page_store(struct kobject *kobj,
404 struct kobj_attribute *attr, const char *buf, size_t count)
405 {
406 return single_flag_store(kobj, attr, buf, count,
407 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
408 }
409 static struct kobj_attribute use_zero_page_attr =
410 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
411 #ifdef CONFIG_DEBUG_VM
412 static ssize_t debug_cow_show(struct kobject *kobj,
413 struct kobj_attribute *attr, char *buf)
414 {
415 return single_flag_show(kobj, attr, buf,
416 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
417 }
418 static ssize_t debug_cow_store(struct kobject *kobj,
419 struct kobj_attribute *attr,
420 const char *buf, size_t count)
421 {
422 return single_flag_store(kobj, attr, buf, count,
423 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
424 }
425 static struct kobj_attribute debug_cow_attr =
426 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
427 #endif /* CONFIG_DEBUG_VM */
428
429 static struct attribute *hugepage_attr[] = {
430 &enabled_attr.attr,
431 &defrag_attr.attr,
432 &use_zero_page_attr.attr,
433 #ifdef CONFIG_DEBUG_VM
434 &debug_cow_attr.attr,
435 #endif
436 NULL,
437 };
438
439 static struct attribute_group hugepage_attr_group = {
440 .attrs = hugepage_attr,
441 };
442
443 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
444 struct kobj_attribute *attr,
445 char *buf)
446 {
447 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
448 }
449
450 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
451 struct kobj_attribute *attr,
452 const char *buf, size_t count)
453 {
454 unsigned long msecs;
455 int err;
456
457 err = kstrtoul(buf, 10, &msecs);
458 if (err || msecs > UINT_MAX)
459 return -EINVAL;
460
461 khugepaged_scan_sleep_millisecs = msecs;
462 wake_up_interruptible(&khugepaged_wait);
463
464 return count;
465 }
466 static struct kobj_attribute scan_sleep_millisecs_attr =
467 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
468 scan_sleep_millisecs_store);
469
470 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
471 struct kobj_attribute *attr,
472 char *buf)
473 {
474 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
475 }
476
477 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
478 struct kobj_attribute *attr,
479 const char *buf, size_t count)
480 {
481 unsigned long msecs;
482 int err;
483
484 err = kstrtoul(buf, 10, &msecs);
485 if (err || msecs > UINT_MAX)
486 return -EINVAL;
487
488 khugepaged_alloc_sleep_millisecs = msecs;
489 wake_up_interruptible(&khugepaged_wait);
490
491 return count;
492 }
493 static struct kobj_attribute alloc_sleep_millisecs_attr =
494 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
495 alloc_sleep_millisecs_store);
496
497 static ssize_t pages_to_scan_show(struct kobject *kobj,
498 struct kobj_attribute *attr,
499 char *buf)
500 {
501 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
502 }
503 static ssize_t pages_to_scan_store(struct kobject *kobj,
504 struct kobj_attribute *attr,
505 const char *buf, size_t count)
506 {
507 int err;
508 unsigned long pages;
509
510 err = kstrtoul(buf, 10, &pages);
511 if (err || !pages || pages > UINT_MAX)
512 return -EINVAL;
513
514 khugepaged_pages_to_scan = pages;
515
516 return count;
517 }
518 static struct kobj_attribute pages_to_scan_attr =
519 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
520 pages_to_scan_store);
521
522 static ssize_t pages_collapsed_show(struct kobject *kobj,
523 struct kobj_attribute *attr,
524 char *buf)
525 {
526 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
527 }
528 static struct kobj_attribute pages_collapsed_attr =
529 __ATTR_RO(pages_collapsed);
530
531 static ssize_t full_scans_show(struct kobject *kobj,
532 struct kobj_attribute *attr,
533 char *buf)
534 {
535 return sprintf(buf, "%u\n", khugepaged_full_scans);
536 }
537 static struct kobj_attribute full_scans_attr =
538 __ATTR_RO(full_scans);
539
540 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
541 struct kobj_attribute *attr, char *buf)
542 {
543 return single_flag_show(kobj, attr, buf,
544 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
545 }
546 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
547 struct kobj_attribute *attr,
548 const char *buf, size_t count)
549 {
550 return single_flag_store(kobj, attr, buf, count,
551 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
552 }
553 static struct kobj_attribute khugepaged_defrag_attr =
554 __ATTR(defrag, 0644, khugepaged_defrag_show,
555 khugepaged_defrag_store);
556
557 /*
558 * max_ptes_none controls if khugepaged should collapse hugepages over
559 * any unmapped ptes in turn potentially increasing the memory
560 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
561 * reduce the available free memory in the system as it
562 * runs. Increasing max_ptes_none will instead potentially reduce the
563 * free memory in the system during the khugepaged scan.
564 */
565 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
566 struct kobj_attribute *attr,
567 char *buf)
568 {
569 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
570 }
571 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
572 struct kobj_attribute *attr,
573 const char *buf, size_t count)
574 {
575 int err;
576 unsigned long max_ptes_none;
577
578 err = kstrtoul(buf, 10, &max_ptes_none);
579 if (err || max_ptes_none > HPAGE_PMD_NR-1)
580 return -EINVAL;
581
582 khugepaged_max_ptes_none = max_ptes_none;
583
584 return count;
585 }
586 static struct kobj_attribute khugepaged_max_ptes_none_attr =
587 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
588 khugepaged_max_ptes_none_store);
589
590 static struct attribute *khugepaged_attr[] = {
591 &khugepaged_defrag_attr.attr,
592 &khugepaged_max_ptes_none_attr.attr,
593 &pages_to_scan_attr.attr,
594 &pages_collapsed_attr.attr,
595 &full_scans_attr.attr,
596 &scan_sleep_millisecs_attr.attr,
597 &alloc_sleep_millisecs_attr.attr,
598 NULL,
599 };
600
601 static struct attribute_group khugepaged_attr_group = {
602 .attrs = khugepaged_attr,
603 .name = "khugepaged",
604 };
605
606 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
607 {
608 int err;
609
610 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
611 if (unlikely(!*hugepage_kobj)) {
612 pr_err("failed to create transparent hugepage kobject\n");
613 return -ENOMEM;
614 }
615
616 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
617 if (err) {
618 pr_err("failed to register transparent hugepage group\n");
619 goto delete_obj;
620 }
621
622 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
623 if (err) {
624 pr_err("failed to register transparent hugepage group\n");
625 goto remove_hp_group;
626 }
627
628 return 0;
629
630 remove_hp_group:
631 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
632 delete_obj:
633 kobject_put(*hugepage_kobj);
634 return err;
635 }
636
637 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
638 {
639 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
640 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
641 kobject_put(hugepage_kobj);
642 }
643 #else
644 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
645 {
646 return 0;
647 }
648
649 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
650 {
651 }
652 #endif /* CONFIG_SYSFS */
653
654 static int __init hugepage_init(void)
655 {
656 int err;
657 struct kobject *hugepage_kobj;
658
659 if (!has_transparent_hugepage()) {
660 transparent_hugepage_flags = 0;
661 return -EINVAL;
662 }
663
664 err = hugepage_init_sysfs(&hugepage_kobj);
665 if (err)
666 goto err_sysfs;
667
668 err = khugepaged_slab_init();
669 if (err)
670 goto err_slab;
671
672 err = register_shrinker(&huge_zero_page_shrinker);
673 if (err)
674 goto err_hzp_shrinker;
675 err = register_shrinker(&deferred_split_shrinker);
676 if (err)
677 goto err_split_shrinker;
678
679 /*
680 * By default disable transparent hugepages on smaller systems,
681 * where the extra memory used could hurt more than TLB overhead
682 * is likely to save. The admin can still enable it through /sys.
683 */
684 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
685 transparent_hugepage_flags = 0;
686 return 0;
687 }
688
689 err = start_stop_khugepaged();
690 if (err)
691 goto err_khugepaged;
692
693 return 0;
694 err_khugepaged:
695 unregister_shrinker(&deferred_split_shrinker);
696 err_split_shrinker:
697 unregister_shrinker(&huge_zero_page_shrinker);
698 err_hzp_shrinker:
699 khugepaged_slab_exit();
700 err_slab:
701 hugepage_exit_sysfs(hugepage_kobj);
702 err_sysfs:
703 return err;
704 }
705 subsys_initcall(hugepage_init);
706
707 static int __init setup_transparent_hugepage(char *str)
708 {
709 int ret = 0;
710 if (!str)
711 goto out;
712 if (!strcmp(str, "always")) {
713 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
714 &transparent_hugepage_flags);
715 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
716 &transparent_hugepage_flags);
717 ret = 1;
718 } else if (!strcmp(str, "madvise")) {
719 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
720 &transparent_hugepage_flags);
721 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
722 &transparent_hugepage_flags);
723 ret = 1;
724 } else if (!strcmp(str, "never")) {
725 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
726 &transparent_hugepage_flags);
727 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
728 &transparent_hugepage_flags);
729 ret = 1;
730 }
731 out:
732 if (!ret)
733 pr_warn("transparent_hugepage= cannot parse, ignored\n");
734 return ret;
735 }
736 __setup("transparent_hugepage=", setup_transparent_hugepage);
737
738 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
739 {
740 if (likely(vma->vm_flags & VM_WRITE))
741 pmd = pmd_mkwrite(pmd);
742 return pmd;
743 }
744
745 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
746 {
747 pmd_t entry;
748 entry = mk_pmd(page, prot);
749 entry = pmd_mkhuge(entry);
750 return entry;
751 }
752
753 static inline struct list_head *page_deferred_list(struct page *page)
754 {
755 /*
756 * ->lru in the tail pages is occupied by compound_head.
757 * Let's use ->mapping + ->index in the second tail page as list_head.
758 */
759 return (struct list_head *)&page[2].mapping;
760 }
761
762 void prep_transhuge_page(struct page *page)
763 {
764 /*
765 * we use page->mapping and page->indexlru in second tail page
766 * as list_head: assuming THP order >= 2
767 */
768 BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
769
770 INIT_LIST_HEAD(page_deferred_list(page));
771 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
772 }
773
774 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
775 struct vm_area_struct *vma,
776 unsigned long address, pmd_t *pmd,
777 struct page *page, gfp_t gfp,
778 unsigned int flags)
779 {
780 struct mem_cgroup *memcg;
781 pgtable_t pgtable;
782 spinlock_t *ptl;
783 unsigned long haddr = address & HPAGE_PMD_MASK;
784
785 VM_BUG_ON_PAGE(!PageCompound(page), page);
786
787 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
788 put_page(page);
789 count_vm_event(THP_FAULT_FALLBACK);
790 return VM_FAULT_FALLBACK;
791 }
792
793 pgtable = pte_alloc_one(mm, haddr);
794 if (unlikely(!pgtable)) {
795 mem_cgroup_cancel_charge(page, memcg, true);
796 put_page(page);
797 return VM_FAULT_OOM;
798 }
799
800 clear_huge_page(page, haddr, HPAGE_PMD_NR);
801 /*
802 * The memory barrier inside __SetPageUptodate makes sure that
803 * clear_huge_page writes become visible before the set_pmd_at()
804 * write.
805 */
806 __SetPageUptodate(page);
807
808 ptl = pmd_lock(mm, pmd);
809 if (unlikely(!pmd_none(*pmd))) {
810 spin_unlock(ptl);
811 mem_cgroup_cancel_charge(page, memcg, true);
812 put_page(page);
813 pte_free(mm, pgtable);
814 } else {
815 pmd_t entry;
816
817 /* Deliver the page fault to userland */
818 if (userfaultfd_missing(vma)) {
819 int ret;
820
821 spin_unlock(ptl);
822 mem_cgroup_cancel_charge(page, memcg, true);
823 put_page(page);
824 pte_free(mm, pgtable);
825 ret = handle_userfault(vma, address, flags,
826 VM_UFFD_MISSING);
827 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
828 return ret;
829 }
830
831 entry = mk_huge_pmd(page, vma->vm_page_prot);
832 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
833 page_add_new_anon_rmap(page, vma, haddr, true);
834 mem_cgroup_commit_charge(page, memcg, false, true);
835 lru_cache_add_active_or_unevictable(page, vma);
836 pgtable_trans_huge_deposit(mm, pmd, pgtable);
837 set_pmd_at(mm, haddr, pmd, entry);
838 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
839 atomic_long_inc(&mm->nr_ptes);
840 spin_unlock(ptl);
841 count_vm_event(THP_FAULT_ALLOC);
842 }
843
844 return 0;
845 }
846
847 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
848 {
849 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
850 }
851
852 /* Caller must hold page table lock. */
853 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
854 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
855 struct page *zero_page)
856 {
857 pmd_t entry;
858 if (!pmd_none(*pmd))
859 return false;
860 entry = mk_pmd(zero_page, vma->vm_page_prot);
861 entry = pmd_mkhuge(entry);
862 pgtable_trans_huge_deposit(mm, pmd, pgtable);
863 set_pmd_at(mm, haddr, pmd, entry);
864 atomic_long_inc(&mm->nr_ptes);
865 return true;
866 }
867
868 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
869 unsigned long address, pmd_t *pmd,
870 unsigned int flags)
871 {
872 gfp_t gfp;
873 struct page *page;
874 unsigned long haddr = address & HPAGE_PMD_MASK;
875
876 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
877 return VM_FAULT_FALLBACK;
878 if (unlikely(anon_vma_prepare(vma)))
879 return VM_FAULT_OOM;
880 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
881 return VM_FAULT_OOM;
882 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
883 transparent_hugepage_use_zero_page()) {
884 spinlock_t *ptl;
885 pgtable_t pgtable;
886 struct page *zero_page;
887 bool set;
888 int ret;
889 pgtable = pte_alloc_one(mm, haddr);
890 if (unlikely(!pgtable))
891 return VM_FAULT_OOM;
892 zero_page = get_huge_zero_page();
893 if (unlikely(!zero_page)) {
894 pte_free(mm, pgtable);
895 count_vm_event(THP_FAULT_FALLBACK);
896 return VM_FAULT_FALLBACK;
897 }
898 ptl = pmd_lock(mm, pmd);
899 ret = 0;
900 set = false;
901 if (pmd_none(*pmd)) {
902 if (userfaultfd_missing(vma)) {
903 spin_unlock(ptl);
904 ret = handle_userfault(vma, address, flags,
905 VM_UFFD_MISSING);
906 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
907 } else {
908 set_huge_zero_page(pgtable, mm, vma,
909 haddr, pmd,
910 zero_page);
911 spin_unlock(ptl);
912 set = true;
913 }
914 } else
915 spin_unlock(ptl);
916 if (!set) {
917 pte_free(mm, pgtable);
918 put_huge_zero_page();
919 }
920 return ret;
921 }
922 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
923 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
924 if (unlikely(!page)) {
925 count_vm_event(THP_FAULT_FALLBACK);
926 return VM_FAULT_FALLBACK;
927 }
928 prep_transhuge_page(page);
929 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
930 flags);
931 }
932
933 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
934 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
935 {
936 struct mm_struct *mm = vma->vm_mm;
937 pmd_t entry;
938 spinlock_t *ptl;
939
940 ptl = pmd_lock(mm, pmd);
941 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
942 if (write) {
943 entry = pmd_mkyoung(pmd_mkdirty(entry));
944 entry = maybe_pmd_mkwrite(entry, vma);
945 }
946 set_pmd_at(mm, addr, pmd, entry);
947 update_mmu_cache_pmd(vma, addr, pmd);
948 spin_unlock(ptl);
949 }
950
951 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
952 pmd_t *pmd, unsigned long pfn, bool write)
953 {
954 pgprot_t pgprot = vma->vm_page_prot;
955 /*
956 * If we had pmd_special, we could avoid all these restrictions,
957 * but we need to be consistent with PTEs and architectures that
958 * can't support a 'special' bit.
959 */
960 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
961 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
962 (VM_PFNMAP|VM_MIXEDMAP));
963 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
964 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
965
966 if (addr < vma->vm_start || addr >= vma->vm_end)
967 return VM_FAULT_SIGBUS;
968 if (track_pfn_insert(vma, &pgprot, pfn))
969 return VM_FAULT_SIGBUS;
970 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
971 return VM_FAULT_NOPAGE;
972 }
973
974 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
975 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
976 struct vm_area_struct *vma)
977 {
978 spinlock_t *dst_ptl, *src_ptl;
979 struct page *src_page;
980 pmd_t pmd;
981 pgtable_t pgtable;
982 int ret;
983
984 ret = -ENOMEM;
985 pgtable = pte_alloc_one(dst_mm, addr);
986 if (unlikely(!pgtable))
987 goto out;
988
989 dst_ptl = pmd_lock(dst_mm, dst_pmd);
990 src_ptl = pmd_lockptr(src_mm, src_pmd);
991 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
992
993 ret = -EAGAIN;
994 pmd = *src_pmd;
995 if (unlikely(!pmd_trans_huge(pmd))) {
996 pte_free(dst_mm, pgtable);
997 goto out_unlock;
998 }
999 /*
1000 * When page table lock is held, the huge zero pmd should not be
1001 * under splitting since we don't split the page itself, only pmd to
1002 * a page table.
1003 */
1004 if (is_huge_zero_pmd(pmd)) {
1005 struct page *zero_page;
1006 /*
1007 * get_huge_zero_page() will never allocate a new page here,
1008 * since we already have a zero page to copy. It just takes a
1009 * reference.
1010 */
1011 zero_page = get_huge_zero_page();
1012 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1013 zero_page);
1014 ret = 0;
1015 goto out_unlock;
1016 }
1017
1018 src_page = pmd_page(pmd);
1019 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1020 get_page(src_page);
1021 page_dup_rmap(src_page, true);
1022 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1023
1024 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1025 pmd = pmd_mkold(pmd_wrprotect(pmd));
1026 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1027 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1028 atomic_long_inc(&dst_mm->nr_ptes);
1029
1030 ret = 0;
1031 out_unlock:
1032 spin_unlock(src_ptl);
1033 spin_unlock(dst_ptl);
1034 out:
1035 return ret;
1036 }
1037
1038 void huge_pmd_set_accessed(struct mm_struct *mm,
1039 struct vm_area_struct *vma,
1040 unsigned long address,
1041 pmd_t *pmd, pmd_t orig_pmd,
1042 int dirty)
1043 {
1044 spinlock_t *ptl;
1045 pmd_t entry;
1046 unsigned long haddr;
1047
1048 ptl = pmd_lock(mm, pmd);
1049 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1050 goto unlock;
1051
1052 entry = pmd_mkyoung(orig_pmd);
1053 haddr = address & HPAGE_PMD_MASK;
1054 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1055 update_mmu_cache_pmd(vma, address, pmd);
1056
1057 unlock:
1058 spin_unlock(ptl);
1059 }
1060
1061 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1062 struct vm_area_struct *vma,
1063 unsigned long address,
1064 pmd_t *pmd, pmd_t orig_pmd,
1065 struct page *page,
1066 unsigned long haddr)
1067 {
1068 struct mem_cgroup *memcg;
1069 spinlock_t *ptl;
1070 pgtable_t pgtable;
1071 pmd_t _pmd;
1072 int ret = 0, i;
1073 struct page **pages;
1074 unsigned long mmun_start; /* For mmu_notifiers */
1075 unsigned long mmun_end; /* For mmu_notifiers */
1076
1077 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1078 GFP_KERNEL);
1079 if (unlikely(!pages)) {
1080 ret |= VM_FAULT_OOM;
1081 goto out;
1082 }
1083
1084 for (i = 0; i < HPAGE_PMD_NR; i++) {
1085 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1086 __GFP_OTHER_NODE,
1087 vma, address, page_to_nid(page));
1088 if (unlikely(!pages[i] ||
1089 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1090 &memcg, false))) {
1091 if (pages[i])
1092 put_page(pages[i]);
1093 while (--i >= 0) {
1094 memcg = (void *)page_private(pages[i]);
1095 set_page_private(pages[i], 0);
1096 mem_cgroup_cancel_charge(pages[i], memcg,
1097 false);
1098 put_page(pages[i]);
1099 }
1100 kfree(pages);
1101 ret |= VM_FAULT_OOM;
1102 goto out;
1103 }
1104 set_page_private(pages[i], (unsigned long)memcg);
1105 }
1106
1107 for (i = 0; i < HPAGE_PMD_NR; i++) {
1108 copy_user_highpage(pages[i], page + i,
1109 haddr + PAGE_SIZE * i, vma);
1110 __SetPageUptodate(pages[i]);
1111 cond_resched();
1112 }
1113
1114 mmun_start = haddr;
1115 mmun_end = haddr + HPAGE_PMD_SIZE;
1116 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1117
1118 ptl = pmd_lock(mm, pmd);
1119 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1120 goto out_free_pages;
1121 VM_BUG_ON_PAGE(!PageHead(page), page);
1122
1123 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1124 /* leave pmd empty until pte is filled */
1125
1126 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1127 pmd_populate(mm, &_pmd, pgtable);
1128
1129 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1130 pte_t *pte, entry;
1131 entry = mk_pte(pages[i], vma->vm_page_prot);
1132 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1133 memcg = (void *)page_private(pages[i]);
1134 set_page_private(pages[i], 0);
1135 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1136 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1137 lru_cache_add_active_or_unevictable(pages[i], vma);
1138 pte = pte_offset_map(&_pmd, haddr);
1139 VM_BUG_ON(!pte_none(*pte));
1140 set_pte_at(mm, haddr, pte, entry);
1141 pte_unmap(pte);
1142 }
1143 kfree(pages);
1144
1145 smp_wmb(); /* make pte visible before pmd */
1146 pmd_populate(mm, pmd, pgtable);
1147 page_remove_rmap(page, true);
1148 spin_unlock(ptl);
1149
1150 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1151
1152 ret |= VM_FAULT_WRITE;
1153 put_page(page);
1154
1155 out:
1156 return ret;
1157
1158 out_free_pages:
1159 spin_unlock(ptl);
1160 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1161 for (i = 0; i < HPAGE_PMD_NR; i++) {
1162 memcg = (void *)page_private(pages[i]);
1163 set_page_private(pages[i], 0);
1164 mem_cgroup_cancel_charge(pages[i], memcg, false);
1165 put_page(pages[i]);
1166 }
1167 kfree(pages);
1168 goto out;
1169 }
1170
1171 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1172 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1173 {
1174 spinlock_t *ptl;
1175 int ret = 0;
1176 struct page *page = NULL, *new_page;
1177 struct mem_cgroup *memcg;
1178 unsigned long haddr;
1179 unsigned long mmun_start; /* For mmu_notifiers */
1180 unsigned long mmun_end; /* For mmu_notifiers */
1181 gfp_t huge_gfp; /* for allocation and charge */
1182
1183 ptl = pmd_lockptr(mm, pmd);
1184 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1185 haddr = address & HPAGE_PMD_MASK;
1186 if (is_huge_zero_pmd(orig_pmd))
1187 goto alloc;
1188 spin_lock(ptl);
1189 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1190 goto out_unlock;
1191
1192 page = pmd_page(orig_pmd);
1193 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1194 /*
1195 * We can only reuse the page if nobody else maps the huge page or it's
1196 * part. We can do it by checking page_mapcount() on each sub-page, but
1197 * it's expensive.
1198 * The cheaper way is to check page_count() to be equal 1: every
1199 * mapcount takes page reference reference, so this way we can
1200 * guarantee, that the PMD is the only mapping.
1201 * This can give false negative if somebody pinned the page, but that's
1202 * fine.
1203 */
1204 if (page_mapcount(page) == 1 && page_count(page) == 1) {
1205 pmd_t entry;
1206 entry = pmd_mkyoung(orig_pmd);
1207 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1208 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1209 update_mmu_cache_pmd(vma, address, pmd);
1210 ret |= VM_FAULT_WRITE;
1211 goto out_unlock;
1212 }
1213 get_page(page);
1214 spin_unlock(ptl);
1215 alloc:
1216 if (transparent_hugepage_enabled(vma) &&
1217 !transparent_hugepage_debug_cow()) {
1218 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1219 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1220 } else
1221 new_page = NULL;
1222
1223 if (likely(new_page)) {
1224 prep_transhuge_page(new_page);
1225 } else {
1226 if (!page) {
1227 split_huge_pmd(vma, pmd, address);
1228 ret |= VM_FAULT_FALLBACK;
1229 } else {
1230 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1231 pmd, orig_pmd, page, haddr);
1232 if (ret & VM_FAULT_OOM) {
1233 split_huge_pmd(vma, pmd, address);
1234 ret |= VM_FAULT_FALLBACK;
1235 }
1236 put_page(page);
1237 }
1238 count_vm_event(THP_FAULT_FALLBACK);
1239 goto out;
1240 }
1241
1242 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1243 true))) {
1244 put_page(new_page);
1245 if (page) {
1246 split_huge_pmd(vma, pmd, address);
1247 put_page(page);
1248 } else
1249 split_huge_pmd(vma, pmd, address);
1250 ret |= VM_FAULT_FALLBACK;
1251 count_vm_event(THP_FAULT_FALLBACK);
1252 goto out;
1253 }
1254
1255 count_vm_event(THP_FAULT_ALLOC);
1256
1257 if (!page)
1258 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1259 else
1260 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1261 __SetPageUptodate(new_page);
1262
1263 mmun_start = haddr;
1264 mmun_end = haddr + HPAGE_PMD_SIZE;
1265 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1266
1267 spin_lock(ptl);
1268 if (page)
1269 put_page(page);
1270 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1271 spin_unlock(ptl);
1272 mem_cgroup_cancel_charge(new_page, memcg, true);
1273 put_page(new_page);
1274 goto out_mn;
1275 } else {
1276 pmd_t entry;
1277 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1278 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1279 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1280 page_add_new_anon_rmap(new_page, vma, haddr, true);
1281 mem_cgroup_commit_charge(new_page, memcg, false, true);
1282 lru_cache_add_active_or_unevictable(new_page, vma);
1283 set_pmd_at(mm, haddr, pmd, entry);
1284 update_mmu_cache_pmd(vma, address, pmd);
1285 if (!page) {
1286 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1287 put_huge_zero_page();
1288 } else {
1289 VM_BUG_ON_PAGE(!PageHead(page), page);
1290 page_remove_rmap(page, true);
1291 put_page(page);
1292 }
1293 ret |= VM_FAULT_WRITE;
1294 }
1295 spin_unlock(ptl);
1296 out_mn:
1297 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1298 out:
1299 return ret;
1300 out_unlock:
1301 spin_unlock(ptl);
1302 return ret;
1303 }
1304
1305 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1306 unsigned long addr,
1307 pmd_t *pmd,
1308 unsigned int flags)
1309 {
1310 struct mm_struct *mm = vma->vm_mm;
1311 struct page *page = NULL;
1312
1313 assert_spin_locked(pmd_lockptr(mm, pmd));
1314
1315 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1316 goto out;
1317
1318 /* Avoid dumping huge zero page */
1319 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1320 return ERR_PTR(-EFAULT);
1321
1322 /* Full NUMA hinting faults to serialise migration in fault paths */
1323 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1324 goto out;
1325
1326 page = pmd_page(*pmd);
1327 VM_BUG_ON_PAGE(!PageHead(page), page);
1328 if (flags & FOLL_TOUCH) {
1329 pmd_t _pmd;
1330 /*
1331 * We should set the dirty bit only for FOLL_WRITE but
1332 * for now the dirty bit in the pmd is meaningless.
1333 * And if the dirty bit will become meaningful and
1334 * we'll only set it with FOLL_WRITE, an atomic
1335 * set_bit will be required on the pmd to set the
1336 * young bit, instead of the current set_pmd_at.
1337 */
1338 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1339 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1340 pmd, _pmd, 1))
1341 update_mmu_cache_pmd(vma, addr, pmd);
1342 }
1343 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1344 /*
1345 * We don't mlock() pte-mapped THPs. This way we can avoid
1346 * leaking mlocked pages into non-VM_LOCKED VMAs.
1347 *
1348 * In most cases the pmd is the only mapping of the page as we
1349 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1350 * writable private mappings in populate_vma_page_range().
1351 *
1352 * The only scenario when we have the page shared here is if we
1353 * mlocking read-only mapping shared over fork(). We skip
1354 * mlocking such pages.
1355 */
1356 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1357 page->mapping && trylock_page(page)) {
1358 lru_add_drain();
1359 if (page->mapping)
1360 mlock_vma_page(page);
1361 unlock_page(page);
1362 }
1363 }
1364 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1365 VM_BUG_ON_PAGE(!PageCompound(page), page);
1366 if (flags & FOLL_GET)
1367 get_page(page);
1368
1369 out:
1370 return page;
1371 }
1372
1373 /* NUMA hinting page fault entry point for trans huge pmds */
1374 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1375 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1376 {
1377 spinlock_t *ptl;
1378 struct anon_vma *anon_vma = NULL;
1379 struct page *page;
1380 unsigned long haddr = addr & HPAGE_PMD_MASK;
1381 int page_nid = -1, this_nid = numa_node_id();
1382 int target_nid, last_cpupid = -1;
1383 bool page_locked;
1384 bool migrated = false;
1385 bool was_writable;
1386 int flags = 0;
1387
1388 /* A PROT_NONE fault should not end up here */
1389 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1390
1391 ptl = pmd_lock(mm, pmdp);
1392 if (unlikely(!pmd_same(pmd, *pmdp)))
1393 goto out_unlock;
1394
1395 /*
1396 * If there are potential migrations, wait for completion and retry
1397 * without disrupting NUMA hinting information. Do not relock and
1398 * check_same as the page may no longer be mapped.
1399 */
1400 if (unlikely(pmd_trans_migrating(*pmdp))) {
1401 page = pmd_page(*pmdp);
1402 spin_unlock(ptl);
1403 wait_on_page_locked(page);
1404 goto out;
1405 }
1406
1407 page = pmd_page(pmd);
1408 BUG_ON(is_huge_zero_page(page));
1409 page_nid = page_to_nid(page);
1410 last_cpupid = page_cpupid_last(page);
1411 count_vm_numa_event(NUMA_HINT_FAULTS);
1412 if (page_nid == this_nid) {
1413 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1414 flags |= TNF_FAULT_LOCAL;
1415 }
1416
1417 /* See similar comment in do_numa_page for explanation */
1418 if (!(vma->vm_flags & VM_WRITE))
1419 flags |= TNF_NO_GROUP;
1420
1421 /*
1422 * Acquire the page lock to serialise THP migrations but avoid dropping
1423 * page_table_lock if at all possible
1424 */
1425 page_locked = trylock_page(page);
1426 target_nid = mpol_misplaced(page, vma, haddr);
1427 if (target_nid == -1) {
1428 /* If the page was locked, there are no parallel migrations */
1429 if (page_locked)
1430 goto clear_pmdnuma;
1431 }
1432
1433 /* Migration could have started since the pmd_trans_migrating check */
1434 if (!page_locked) {
1435 spin_unlock(ptl);
1436 wait_on_page_locked(page);
1437 page_nid = -1;
1438 goto out;
1439 }
1440
1441 /*
1442 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1443 * to serialises splits
1444 */
1445 get_page(page);
1446 spin_unlock(ptl);
1447 anon_vma = page_lock_anon_vma_read(page);
1448
1449 /* Confirm the PMD did not change while page_table_lock was released */
1450 spin_lock(ptl);
1451 if (unlikely(!pmd_same(pmd, *pmdp))) {
1452 unlock_page(page);
1453 put_page(page);
1454 page_nid = -1;
1455 goto out_unlock;
1456 }
1457
1458 /* Bail if we fail to protect against THP splits for any reason */
1459 if (unlikely(!anon_vma)) {
1460 put_page(page);
1461 page_nid = -1;
1462 goto clear_pmdnuma;
1463 }
1464
1465 /*
1466 * Migrate the THP to the requested node, returns with page unlocked
1467 * and access rights restored.
1468 */
1469 spin_unlock(ptl);
1470 migrated = migrate_misplaced_transhuge_page(mm, vma,
1471 pmdp, pmd, addr, page, target_nid);
1472 if (migrated) {
1473 flags |= TNF_MIGRATED;
1474 page_nid = target_nid;
1475 } else
1476 flags |= TNF_MIGRATE_FAIL;
1477
1478 goto out;
1479 clear_pmdnuma:
1480 BUG_ON(!PageLocked(page));
1481 was_writable = pmd_write(pmd);
1482 pmd = pmd_modify(pmd, vma->vm_page_prot);
1483 pmd = pmd_mkyoung(pmd);
1484 if (was_writable)
1485 pmd = pmd_mkwrite(pmd);
1486 set_pmd_at(mm, haddr, pmdp, pmd);
1487 update_mmu_cache_pmd(vma, addr, pmdp);
1488 unlock_page(page);
1489 out_unlock:
1490 spin_unlock(ptl);
1491
1492 out:
1493 if (anon_vma)
1494 page_unlock_anon_vma_read(anon_vma);
1495
1496 if (page_nid != -1)
1497 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1498
1499 return 0;
1500 }
1501
1502 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1503 pmd_t *pmd, unsigned long addr, unsigned long next)
1504
1505 {
1506 spinlock_t *ptl;
1507 pmd_t orig_pmd;
1508 struct page *page;
1509 struct mm_struct *mm = tlb->mm;
1510 int ret = 0;
1511
1512 if (!pmd_trans_huge_lock(pmd, vma, &ptl))
1513 goto out;
1514
1515 orig_pmd = *pmd;
1516 if (is_huge_zero_pmd(orig_pmd)) {
1517 ret = 1;
1518 goto out;
1519 }
1520
1521 page = pmd_page(orig_pmd);
1522 /*
1523 * If other processes are mapping this page, we couldn't discard
1524 * the page unless they all do MADV_FREE so let's skip the page.
1525 */
1526 if (page_mapcount(page) != 1)
1527 goto out;
1528
1529 if (!trylock_page(page))
1530 goto out;
1531
1532 /*
1533 * If user want to discard part-pages of THP, split it so MADV_FREE
1534 * will deactivate only them.
1535 */
1536 if (next - addr != HPAGE_PMD_SIZE) {
1537 get_page(page);
1538 spin_unlock(ptl);
1539 if (split_huge_page(page)) {
1540 put_page(page);
1541 unlock_page(page);
1542 goto out_unlocked;
1543 }
1544 put_page(page);
1545 unlock_page(page);
1546 ret = 1;
1547 goto out_unlocked;
1548 }
1549
1550 if (PageDirty(page))
1551 ClearPageDirty(page);
1552 unlock_page(page);
1553
1554 if (PageActive(page))
1555 deactivate_page(page);
1556
1557 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1558 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1559 tlb->fullmm);
1560 orig_pmd = pmd_mkold(orig_pmd);
1561 orig_pmd = pmd_mkclean(orig_pmd);
1562
1563 set_pmd_at(mm, addr, pmd, orig_pmd);
1564 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1565 }
1566 ret = 1;
1567 out:
1568 spin_unlock(ptl);
1569 out_unlocked:
1570 return ret;
1571 }
1572
1573 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1574 pmd_t *pmd, unsigned long addr)
1575 {
1576 pmd_t orig_pmd;
1577 spinlock_t *ptl;
1578
1579 if (!__pmd_trans_huge_lock(pmd, vma, &ptl))
1580 return 0;
1581 /*
1582 * For architectures like ppc64 we look at deposited pgtable
1583 * when calling pmdp_huge_get_and_clear. So do the
1584 * pgtable_trans_huge_withdraw after finishing pmdp related
1585 * operations.
1586 */
1587 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1588 tlb->fullmm);
1589 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1590 if (vma_is_dax(vma)) {
1591 spin_unlock(ptl);
1592 if (is_huge_zero_pmd(orig_pmd))
1593 put_huge_zero_page();
1594 } else if (is_huge_zero_pmd(orig_pmd)) {
1595 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1596 atomic_long_dec(&tlb->mm->nr_ptes);
1597 spin_unlock(ptl);
1598 put_huge_zero_page();
1599 } else {
1600 struct page *page = pmd_page(orig_pmd);
1601 page_remove_rmap(page, true);
1602 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1603 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1604 VM_BUG_ON_PAGE(!PageHead(page), page);
1605 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1606 atomic_long_dec(&tlb->mm->nr_ptes);
1607 spin_unlock(ptl);
1608 tlb_remove_page(tlb, page);
1609 }
1610 return 1;
1611 }
1612
1613 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1614 unsigned long old_addr,
1615 unsigned long new_addr, unsigned long old_end,
1616 pmd_t *old_pmd, pmd_t *new_pmd)
1617 {
1618 spinlock_t *old_ptl, *new_ptl;
1619 pmd_t pmd;
1620
1621 struct mm_struct *mm = vma->vm_mm;
1622
1623 if ((old_addr & ~HPAGE_PMD_MASK) ||
1624 (new_addr & ~HPAGE_PMD_MASK) ||
1625 old_end - old_addr < HPAGE_PMD_SIZE ||
1626 (new_vma->vm_flags & VM_NOHUGEPAGE))
1627 return false;
1628
1629 /*
1630 * The destination pmd shouldn't be established, free_pgtables()
1631 * should have release it.
1632 */
1633 if (WARN_ON(!pmd_none(*new_pmd))) {
1634 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1635 return false;
1636 }
1637
1638 /*
1639 * We don't have to worry about the ordering of src and dst
1640 * ptlocks because exclusive mmap_sem prevents deadlock.
1641 */
1642 if (__pmd_trans_huge_lock(old_pmd, vma, &old_ptl)) {
1643 new_ptl = pmd_lockptr(mm, new_pmd);
1644 if (new_ptl != old_ptl)
1645 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1646 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1647 VM_BUG_ON(!pmd_none(*new_pmd));
1648
1649 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1650 pgtable_t pgtable;
1651 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1652 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1653 }
1654 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1655 if (new_ptl != old_ptl)
1656 spin_unlock(new_ptl);
1657 spin_unlock(old_ptl);
1658 return true;
1659 }
1660 return false;
1661 }
1662
1663 /*
1664 * Returns
1665 * - 0 if PMD could not be locked
1666 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1667 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1668 */
1669 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1670 unsigned long addr, pgprot_t newprot, int prot_numa)
1671 {
1672 struct mm_struct *mm = vma->vm_mm;
1673 spinlock_t *ptl;
1674 int ret = 0;
1675
1676 if (__pmd_trans_huge_lock(pmd, vma, &ptl)) {
1677 pmd_t entry;
1678 bool preserve_write = prot_numa && pmd_write(*pmd);
1679 ret = 1;
1680
1681 /*
1682 * Avoid trapping faults against the zero page. The read-only
1683 * data is likely to be read-cached on the local CPU and
1684 * local/remote hits to the zero page are not interesting.
1685 */
1686 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1687 spin_unlock(ptl);
1688 return ret;
1689 }
1690
1691 if (!prot_numa || !pmd_protnone(*pmd)) {
1692 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1693 entry = pmd_modify(entry, newprot);
1694 if (preserve_write)
1695 entry = pmd_mkwrite(entry);
1696 ret = HPAGE_PMD_NR;
1697 set_pmd_at(mm, addr, pmd, entry);
1698 BUG_ON(!preserve_write && pmd_write(entry));
1699 }
1700 spin_unlock(ptl);
1701 }
1702
1703 return ret;
1704 }
1705
1706 /*
1707 * Returns true if a given pmd maps a thp, false otherwise.
1708 *
1709 * Note that if it returns true, this routine returns without unlocking page
1710 * table lock. So callers must unlock it.
1711 */
1712 bool __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1713 spinlock_t **ptl)
1714 {
1715 *ptl = pmd_lock(vma->vm_mm, pmd);
1716 if (likely(pmd_trans_huge(*pmd)))
1717 return true;
1718 spin_unlock(*ptl);
1719 return false;
1720 }
1721
1722 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1723
1724 int hugepage_madvise(struct vm_area_struct *vma,
1725 unsigned long *vm_flags, int advice)
1726 {
1727 switch (advice) {
1728 case MADV_HUGEPAGE:
1729 #ifdef CONFIG_S390
1730 /*
1731 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1732 * can't handle this properly after s390_enable_sie, so we simply
1733 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1734 */
1735 if (mm_has_pgste(vma->vm_mm))
1736 return 0;
1737 #endif
1738 /*
1739 * Be somewhat over-protective like KSM for now!
1740 */
1741 if (*vm_flags & VM_NO_THP)
1742 return -EINVAL;
1743 *vm_flags &= ~VM_NOHUGEPAGE;
1744 *vm_flags |= VM_HUGEPAGE;
1745 /*
1746 * If the vma become good for khugepaged to scan,
1747 * register it here without waiting a page fault that
1748 * may not happen any time soon.
1749 */
1750 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1751 return -ENOMEM;
1752 break;
1753 case MADV_NOHUGEPAGE:
1754 /*
1755 * Be somewhat over-protective like KSM for now!
1756 */
1757 if (*vm_flags & VM_NO_THP)
1758 return -EINVAL;
1759 *vm_flags &= ~VM_HUGEPAGE;
1760 *vm_flags |= VM_NOHUGEPAGE;
1761 /*
1762 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1763 * this vma even if we leave the mm registered in khugepaged if
1764 * it got registered before VM_NOHUGEPAGE was set.
1765 */
1766 break;
1767 }
1768
1769 return 0;
1770 }
1771
1772 static int __init khugepaged_slab_init(void)
1773 {
1774 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1775 sizeof(struct mm_slot),
1776 __alignof__(struct mm_slot), 0, NULL);
1777 if (!mm_slot_cache)
1778 return -ENOMEM;
1779
1780 return 0;
1781 }
1782
1783 static void __init khugepaged_slab_exit(void)
1784 {
1785 kmem_cache_destroy(mm_slot_cache);
1786 }
1787
1788 static inline struct mm_slot *alloc_mm_slot(void)
1789 {
1790 if (!mm_slot_cache) /* initialization failed */
1791 return NULL;
1792 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1793 }
1794
1795 static inline void free_mm_slot(struct mm_slot *mm_slot)
1796 {
1797 kmem_cache_free(mm_slot_cache, mm_slot);
1798 }
1799
1800 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1801 {
1802 struct mm_slot *mm_slot;
1803
1804 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1805 if (mm == mm_slot->mm)
1806 return mm_slot;
1807
1808 return NULL;
1809 }
1810
1811 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1812 struct mm_slot *mm_slot)
1813 {
1814 mm_slot->mm = mm;
1815 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1816 }
1817
1818 static inline int khugepaged_test_exit(struct mm_struct *mm)
1819 {
1820 return atomic_read(&mm->mm_users) == 0;
1821 }
1822
1823 int __khugepaged_enter(struct mm_struct *mm)
1824 {
1825 struct mm_slot *mm_slot;
1826 int wakeup;
1827
1828 mm_slot = alloc_mm_slot();
1829 if (!mm_slot)
1830 return -ENOMEM;
1831
1832 /* __khugepaged_exit() must not run from under us */
1833 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1834 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1835 free_mm_slot(mm_slot);
1836 return 0;
1837 }
1838
1839 spin_lock(&khugepaged_mm_lock);
1840 insert_to_mm_slots_hash(mm, mm_slot);
1841 /*
1842 * Insert just behind the scanning cursor, to let the area settle
1843 * down a little.
1844 */
1845 wakeup = list_empty(&khugepaged_scan.mm_head);
1846 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1847 spin_unlock(&khugepaged_mm_lock);
1848
1849 atomic_inc(&mm->mm_count);
1850 if (wakeup)
1851 wake_up_interruptible(&khugepaged_wait);
1852
1853 return 0;
1854 }
1855
1856 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1857 unsigned long vm_flags)
1858 {
1859 unsigned long hstart, hend;
1860 if (!vma->anon_vma)
1861 /*
1862 * Not yet faulted in so we will register later in the
1863 * page fault if needed.
1864 */
1865 return 0;
1866 if (vma->vm_ops)
1867 /* khugepaged not yet working on file or special mappings */
1868 return 0;
1869 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1870 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1871 hend = vma->vm_end & HPAGE_PMD_MASK;
1872 if (hstart < hend)
1873 return khugepaged_enter(vma, vm_flags);
1874 return 0;
1875 }
1876
1877 void __khugepaged_exit(struct mm_struct *mm)
1878 {
1879 struct mm_slot *mm_slot;
1880 int free = 0;
1881
1882 spin_lock(&khugepaged_mm_lock);
1883 mm_slot = get_mm_slot(mm);
1884 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1885 hash_del(&mm_slot->hash);
1886 list_del(&mm_slot->mm_node);
1887 free = 1;
1888 }
1889 spin_unlock(&khugepaged_mm_lock);
1890
1891 if (free) {
1892 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1893 free_mm_slot(mm_slot);
1894 mmdrop(mm);
1895 } else if (mm_slot) {
1896 /*
1897 * This is required to serialize against
1898 * khugepaged_test_exit() (which is guaranteed to run
1899 * under mmap sem read mode). Stop here (after we
1900 * return all pagetables will be destroyed) until
1901 * khugepaged has finished working on the pagetables
1902 * under the mmap_sem.
1903 */
1904 down_write(&mm->mmap_sem);
1905 up_write(&mm->mmap_sem);
1906 }
1907 }
1908
1909 static void release_pte_page(struct page *page)
1910 {
1911 /* 0 stands for page_is_file_cache(page) == false */
1912 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1913 unlock_page(page);
1914 putback_lru_page(page);
1915 }
1916
1917 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1918 {
1919 while (--_pte >= pte) {
1920 pte_t pteval = *_pte;
1921 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
1922 release_pte_page(pte_page(pteval));
1923 }
1924 }
1925
1926 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1927 unsigned long address,
1928 pte_t *pte)
1929 {
1930 struct page *page = NULL;
1931 pte_t *_pte;
1932 int none_or_zero = 0, result = 0;
1933 bool referenced = false, writable = false;
1934
1935 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1936 _pte++, address += PAGE_SIZE) {
1937 pte_t pteval = *_pte;
1938 if (pte_none(pteval) || (pte_present(pteval) &&
1939 is_zero_pfn(pte_pfn(pteval)))) {
1940 if (!userfaultfd_armed(vma) &&
1941 ++none_or_zero <= khugepaged_max_ptes_none) {
1942 continue;
1943 } else {
1944 result = SCAN_EXCEED_NONE_PTE;
1945 goto out;
1946 }
1947 }
1948 if (!pte_present(pteval)) {
1949 result = SCAN_PTE_NON_PRESENT;
1950 goto out;
1951 }
1952 page = vm_normal_page(vma, address, pteval);
1953 if (unlikely(!page)) {
1954 result = SCAN_PAGE_NULL;
1955 goto out;
1956 }
1957
1958 VM_BUG_ON_PAGE(PageCompound(page), page);
1959 VM_BUG_ON_PAGE(!PageAnon(page), page);
1960 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1961
1962 /*
1963 * We can do it before isolate_lru_page because the
1964 * page can't be freed from under us. NOTE: PG_lock
1965 * is needed to serialize against split_huge_page
1966 * when invoked from the VM.
1967 */
1968 if (!trylock_page(page)) {
1969 result = SCAN_PAGE_LOCK;
1970 goto out;
1971 }
1972
1973 /*
1974 * cannot use mapcount: can't collapse if there's a gup pin.
1975 * The page must only be referenced by the scanned process
1976 * and page swap cache.
1977 */
1978 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1979 unlock_page(page);
1980 result = SCAN_PAGE_COUNT;
1981 goto out;
1982 }
1983 if (pte_write(pteval)) {
1984 writable = true;
1985 } else {
1986 if (PageSwapCache(page) && !reuse_swap_page(page)) {
1987 unlock_page(page);
1988 result = SCAN_SWAP_CACHE_PAGE;
1989 goto out;
1990 }
1991 /*
1992 * Page is not in the swap cache. It can be collapsed
1993 * into a THP.
1994 */
1995 }
1996
1997 /*
1998 * Isolate the page to avoid collapsing an hugepage
1999 * currently in use by the VM.
2000 */
2001 if (isolate_lru_page(page)) {
2002 unlock_page(page);
2003 result = SCAN_DEL_PAGE_LRU;
2004 goto out;
2005 }
2006 /* 0 stands for page_is_file_cache(page) == false */
2007 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2008 VM_BUG_ON_PAGE(!PageLocked(page), page);
2009 VM_BUG_ON_PAGE(PageLRU(page), page);
2010
2011 /* If there is no mapped pte young don't collapse the page */
2012 if (pte_young(pteval) ||
2013 page_is_young(page) || PageReferenced(page) ||
2014 mmu_notifier_test_young(vma->vm_mm, address))
2015 referenced = true;
2016 }
2017 if (likely(writable)) {
2018 if (likely(referenced)) {
2019 result = SCAN_SUCCEED;
2020 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2021 referenced, writable, result);
2022 return 1;
2023 }
2024 } else {
2025 result = SCAN_PAGE_RO;
2026 }
2027
2028 out:
2029 release_pte_pages(pte, _pte);
2030 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2031 referenced, writable, result);
2032 return 0;
2033 }
2034
2035 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2036 struct vm_area_struct *vma,
2037 unsigned long address,
2038 spinlock_t *ptl)
2039 {
2040 pte_t *_pte;
2041 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2042 pte_t pteval = *_pte;
2043 struct page *src_page;
2044
2045 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2046 clear_user_highpage(page, address);
2047 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2048 if (is_zero_pfn(pte_pfn(pteval))) {
2049 /*
2050 * ptl mostly unnecessary.
2051 */
2052 spin_lock(ptl);
2053 /*
2054 * paravirt calls inside pte_clear here are
2055 * superfluous.
2056 */
2057 pte_clear(vma->vm_mm, address, _pte);
2058 spin_unlock(ptl);
2059 }
2060 } else {
2061 src_page = pte_page(pteval);
2062 copy_user_highpage(page, src_page, address, vma);
2063 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2064 release_pte_page(src_page);
2065 /*
2066 * ptl mostly unnecessary, but preempt has to
2067 * be disabled to update the per-cpu stats
2068 * inside page_remove_rmap().
2069 */
2070 spin_lock(ptl);
2071 /*
2072 * paravirt calls inside pte_clear here are
2073 * superfluous.
2074 */
2075 pte_clear(vma->vm_mm, address, _pte);
2076 page_remove_rmap(src_page, false);
2077 spin_unlock(ptl);
2078 free_page_and_swap_cache(src_page);
2079 }
2080
2081 address += PAGE_SIZE;
2082 page++;
2083 }
2084 }
2085
2086 static void khugepaged_alloc_sleep(void)
2087 {
2088 DEFINE_WAIT(wait);
2089
2090 add_wait_queue(&khugepaged_wait, &wait);
2091 freezable_schedule_timeout_interruptible(
2092 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2093 remove_wait_queue(&khugepaged_wait, &wait);
2094 }
2095
2096 static int khugepaged_node_load[MAX_NUMNODES];
2097
2098 static bool khugepaged_scan_abort(int nid)
2099 {
2100 int i;
2101
2102 /*
2103 * If zone_reclaim_mode is disabled, then no extra effort is made to
2104 * allocate memory locally.
2105 */
2106 if (!zone_reclaim_mode)
2107 return false;
2108
2109 /* If there is a count for this node already, it must be acceptable */
2110 if (khugepaged_node_load[nid])
2111 return false;
2112
2113 for (i = 0; i < MAX_NUMNODES; i++) {
2114 if (!khugepaged_node_load[i])
2115 continue;
2116 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2117 return true;
2118 }
2119 return false;
2120 }
2121
2122 #ifdef CONFIG_NUMA
2123 static int khugepaged_find_target_node(void)
2124 {
2125 static int last_khugepaged_target_node = NUMA_NO_NODE;
2126 int nid, target_node = 0, max_value = 0;
2127
2128 /* find first node with max normal pages hit */
2129 for (nid = 0; nid < MAX_NUMNODES; nid++)
2130 if (khugepaged_node_load[nid] > max_value) {
2131 max_value = khugepaged_node_load[nid];
2132 target_node = nid;
2133 }
2134
2135 /* do some balance if several nodes have the same hit record */
2136 if (target_node <= last_khugepaged_target_node)
2137 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2138 nid++)
2139 if (max_value == khugepaged_node_load[nid]) {
2140 target_node = nid;
2141 break;
2142 }
2143
2144 last_khugepaged_target_node = target_node;
2145 return target_node;
2146 }
2147
2148 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2149 {
2150 if (IS_ERR(*hpage)) {
2151 if (!*wait)
2152 return false;
2153
2154 *wait = false;
2155 *hpage = NULL;
2156 khugepaged_alloc_sleep();
2157 } else if (*hpage) {
2158 put_page(*hpage);
2159 *hpage = NULL;
2160 }
2161
2162 return true;
2163 }
2164
2165 static struct page *
2166 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2167 unsigned long address, int node)
2168 {
2169 VM_BUG_ON_PAGE(*hpage, *hpage);
2170
2171 /*
2172 * Before allocating the hugepage, release the mmap_sem read lock.
2173 * The allocation can take potentially a long time if it involves
2174 * sync compaction, and we do not need to hold the mmap_sem during
2175 * that. We will recheck the vma after taking it again in write mode.
2176 */
2177 up_read(&mm->mmap_sem);
2178
2179 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2180 if (unlikely(!*hpage)) {
2181 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2182 *hpage = ERR_PTR(-ENOMEM);
2183 return NULL;
2184 }
2185
2186 prep_transhuge_page(*hpage);
2187 count_vm_event(THP_COLLAPSE_ALLOC);
2188 return *hpage;
2189 }
2190 #else
2191 static int khugepaged_find_target_node(void)
2192 {
2193 return 0;
2194 }
2195
2196 static inline struct page *alloc_hugepage(int defrag)
2197 {
2198 struct page *page;
2199
2200 page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2201 if (page)
2202 prep_transhuge_page(page);
2203 return page;
2204 }
2205
2206 static struct page *khugepaged_alloc_hugepage(bool *wait)
2207 {
2208 struct page *hpage;
2209
2210 do {
2211 hpage = alloc_hugepage(khugepaged_defrag());
2212 if (!hpage) {
2213 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2214 if (!*wait)
2215 return NULL;
2216
2217 *wait = false;
2218 khugepaged_alloc_sleep();
2219 } else
2220 count_vm_event(THP_COLLAPSE_ALLOC);
2221 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2222
2223 return hpage;
2224 }
2225
2226 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2227 {
2228 if (!*hpage)
2229 *hpage = khugepaged_alloc_hugepage(wait);
2230
2231 if (unlikely(!*hpage))
2232 return false;
2233
2234 return true;
2235 }
2236
2237 static struct page *
2238 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2239 unsigned long address, int node)
2240 {
2241 up_read(&mm->mmap_sem);
2242 VM_BUG_ON(!*hpage);
2243
2244 return *hpage;
2245 }
2246 #endif
2247
2248 static bool hugepage_vma_check(struct vm_area_struct *vma)
2249 {
2250 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2251 (vma->vm_flags & VM_NOHUGEPAGE))
2252 return false;
2253 if (!vma->anon_vma || vma->vm_ops)
2254 return false;
2255 if (is_vma_temporary_stack(vma))
2256 return false;
2257 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2258 return true;
2259 }
2260
2261 static void collapse_huge_page(struct mm_struct *mm,
2262 unsigned long address,
2263 struct page **hpage,
2264 struct vm_area_struct *vma,
2265 int node)
2266 {
2267 pmd_t *pmd, _pmd;
2268 pte_t *pte;
2269 pgtable_t pgtable;
2270 struct page *new_page;
2271 spinlock_t *pmd_ptl, *pte_ptl;
2272 int isolated, result = 0;
2273 unsigned long hstart, hend;
2274 struct mem_cgroup *memcg;
2275 unsigned long mmun_start; /* For mmu_notifiers */
2276 unsigned long mmun_end; /* For mmu_notifiers */
2277 gfp_t gfp;
2278
2279 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2280
2281 /* Only allocate from the target node */
2282 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2283 __GFP_THISNODE;
2284
2285 /* release the mmap_sem read lock. */
2286 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2287 if (!new_page) {
2288 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2289 goto out_nolock;
2290 }
2291
2292 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2293 result = SCAN_CGROUP_CHARGE_FAIL;
2294 goto out_nolock;
2295 }
2296
2297 /*
2298 * Prevent all access to pagetables with the exception of
2299 * gup_fast later hanlded by the ptep_clear_flush and the VM
2300 * handled by the anon_vma lock + PG_lock.
2301 */
2302 down_write(&mm->mmap_sem);
2303 if (unlikely(khugepaged_test_exit(mm))) {
2304 result = SCAN_ANY_PROCESS;
2305 goto out;
2306 }
2307
2308 vma = find_vma(mm, address);
2309 if (!vma) {
2310 result = SCAN_VMA_NULL;
2311 goto out;
2312 }
2313 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2314 hend = vma->vm_end & HPAGE_PMD_MASK;
2315 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2316 result = SCAN_ADDRESS_RANGE;
2317 goto out;
2318 }
2319 if (!hugepage_vma_check(vma)) {
2320 result = SCAN_VMA_CHECK;
2321 goto out;
2322 }
2323 pmd = mm_find_pmd(mm, address);
2324 if (!pmd) {
2325 result = SCAN_PMD_NULL;
2326 goto out;
2327 }
2328
2329 anon_vma_lock_write(vma->anon_vma);
2330
2331 pte = pte_offset_map(pmd, address);
2332 pte_ptl = pte_lockptr(mm, pmd);
2333
2334 mmun_start = address;
2335 mmun_end = address + HPAGE_PMD_SIZE;
2336 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2337 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2338 /*
2339 * After this gup_fast can't run anymore. This also removes
2340 * any huge TLB entry from the CPU so we won't allow
2341 * huge and small TLB entries for the same virtual address
2342 * to avoid the risk of CPU bugs in that area.
2343 */
2344 _pmd = pmdp_collapse_flush(vma, address, pmd);
2345 spin_unlock(pmd_ptl);
2346 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2347
2348 spin_lock(pte_ptl);
2349 isolated = __collapse_huge_page_isolate(vma, address, pte);
2350 spin_unlock(pte_ptl);
2351
2352 if (unlikely(!isolated)) {
2353 pte_unmap(pte);
2354 spin_lock(pmd_ptl);
2355 BUG_ON(!pmd_none(*pmd));
2356 /*
2357 * We can only use set_pmd_at when establishing
2358 * hugepmds and never for establishing regular pmds that
2359 * points to regular pagetables. Use pmd_populate for that
2360 */
2361 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2362 spin_unlock(pmd_ptl);
2363 anon_vma_unlock_write(vma->anon_vma);
2364 result = SCAN_FAIL;
2365 goto out;
2366 }
2367
2368 /*
2369 * All pages are isolated and locked so anon_vma rmap
2370 * can't run anymore.
2371 */
2372 anon_vma_unlock_write(vma->anon_vma);
2373
2374 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2375 pte_unmap(pte);
2376 __SetPageUptodate(new_page);
2377 pgtable = pmd_pgtable(_pmd);
2378
2379 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2380 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2381
2382 /*
2383 * spin_lock() below is not the equivalent of smp_wmb(), so
2384 * this is needed to avoid the copy_huge_page writes to become
2385 * visible after the set_pmd_at() write.
2386 */
2387 smp_wmb();
2388
2389 spin_lock(pmd_ptl);
2390 BUG_ON(!pmd_none(*pmd));
2391 page_add_new_anon_rmap(new_page, vma, address, true);
2392 mem_cgroup_commit_charge(new_page, memcg, false, true);
2393 lru_cache_add_active_or_unevictable(new_page, vma);
2394 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2395 set_pmd_at(mm, address, pmd, _pmd);
2396 update_mmu_cache_pmd(vma, address, pmd);
2397 spin_unlock(pmd_ptl);
2398
2399 *hpage = NULL;
2400
2401 khugepaged_pages_collapsed++;
2402 result = SCAN_SUCCEED;
2403 out_up_write:
2404 up_write(&mm->mmap_sem);
2405 trace_mm_collapse_huge_page(mm, isolated, result);
2406 return;
2407
2408 out_nolock:
2409 trace_mm_collapse_huge_page(mm, isolated, result);
2410 return;
2411 out:
2412 mem_cgroup_cancel_charge(new_page, memcg, true);
2413 goto out_up_write;
2414 }
2415
2416 static int khugepaged_scan_pmd(struct mm_struct *mm,
2417 struct vm_area_struct *vma,
2418 unsigned long address,
2419 struct page **hpage)
2420 {
2421 pmd_t *pmd;
2422 pte_t *pte, *_pte;
2423 int ret = 0, none_or_zero = 0, result = 0;
2424 struct page *page = NULL;
2425 unsigned long _address;
2426 spinlock_t *ptl;
2427 int node = NUMA_NO_NODE;
2428 bool writable = false, referenced = false;
2429
2430 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2431
2432 pmd = mm_find_pmd(mm, address);
2433 if (!pmd) {
2434 result = SCAN_PMD_NULL;
2435 goto out;
2436 }
2437
2438 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2439 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2440 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2441 _pte++, _address += PAGE_SIZE) {
2442 pte_t pteval = *_pte;
2443 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2444 if (!userfaultfd_armed(vma) &&
2445 ++none_or_zero <= khugepaged_max_ptes_none) {
2446 continue;
2447 } else {
2448 result = SCAN_EXCEED_NONE_PTE;
2449 goto out_unmap;
2450 }
2451 }
2452 if (!pte_present(pteval)) {
2453 result = SCAN_PTE_NON_PRESENT;
2454 goto out_unmap;
2455 }
2456 if (pte_write(pteval))
2457 writable = true;
2458
2459 page = vm_normal_page(vma, _address, pteval);
2460 if (unlikely(!page)) {
2461 result = SCAN_PAGE_NULL;
2462 goto out_unmap;
2463 }
2464
2465 /* TODO: teach khugepaged to collapse THP mapped with pte */
2466 if (PageCompound(page)) {
2467 result = SCAN_PAGE_COMPOUND;
2468 goto out_unmap;
2469 }
2470
2471 /*
2472 * Record which node the original page is from and save this
2473 * information to khugepaged_node_load[].
2474 * Khupaged will allocate hugepage from the node has the max
2475 * hit record.
2476 */
2477 node = page_to_nid(page);
2478 if (khugepaged_scan_abort(node)) {
2479 result = SCAN_SCAN_ABORT;
2480 goto out_unmap;
2481 }
2482 khugepaged_node_load[node]++;
2483 if (!PageLRU(page)) {
2484 result = SCAN_SCAN_ABORT;
2485 goto out_unmap;
2486 }
2487 if (PageLocked(page)) {
2488 result = SCAN_PAGE_LOCK;
2489 goto out_unmap;
2490 }
2491 if (!PageAnon(page)) {
2492 result = SCAN_PAGE_ANON;
2493 goto out_unmap;
2494 }
2495
2496 /*
2497 * cannot use mapcount: can't collapse if there's a gup pin.
2498 * The page must only be referenced by the scanned process
2499 * and page swap cache.
2500 */
2501 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2502 result = SCAN_PAGE_COUNT;
2503 goto out_unmap;
2504 }
2505 if (pte_young(pteval) ||
2506 page_is_young(page) || PageReferenced(page) ||
2507 mmu_notifier_test_young(vma->vm_mm, address))
2508 referenced = true;
2509 }
2510 if (writable) {
2511 if (referenced) {
2512 result = SCAN_SUCCEED;
2513 ret = 1;
2514 } else {
2515 result = SCAN_NO_REFERENCED_PAGE;
2516 }
2517 } else {
2518 result = SCAN_PAGE_RO;
2519 }
2520 out_unmap:
2521 pte_unmap_unlock(pte, ptl);
2522 if (ret) {
2523 node = khugepaged_find_target_node();
2524 /* collapse_huge_page will return with the mmap_sem released */
2525 collapse_huge_page(mm, address, hpage, vma, node);
2526 }
2527 out:
2528 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2529 none_or_zero, result);
2530 return ret;
2531 }
2532
2533 static void collect_mm_slot(struct mm_slot *mm_slot)
2534 {
2535 struct mm_struct *mm = mm_slot->mm;
2536
2537 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2538
2539 if (khugepaged_test_exit(mm)) {
2540 /* free mm_slot */
2541 hash_del(&mm_slot->hash);
2542 list_del(&mm_slot->mm_node);
2543
2544 /*
2545 * Not strictly needed because the mm exited already.
2546 *
2547 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2548 */
2549
2550 /* khugepaged_mm_lock actually not necessary for the below */
2551 free_mm_slot(mm_slot);
2552 mmdrop(mm);
2553 }
2554 }
2555
2556 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2557 struct page **hpage)
2558 __releases(&khugepaged_mm_lock)
2559 __acquires(&khugepaged_mm_lock)
2560 {
2561 struct mm_slot *mm_slot;
2562 struct mm_struct *mm;
2563 struct vm_area_struct *vma;
2564 int progress = 0;
2565
2566 VM_BUG_ON(!pages);
2567 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2568
2569 if (khugepaged_scan.mm_slot)
2570 mm_slot = khugepaged_scan.mm_slot;
2571 else {
2572 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2573 struct mm_slot, mm_node);
2574 khugepaged_scan.address = 0;
2575 khugepaged_scan.mm_slot = mm_slot;
2576 }
2577 spin_unlock(&khugepaged_mm_lock);
2578
2579 mm = mm_slot->mm;
2580 down_read(&mm->mmap_sem);
2581 if (unlikely(khugepaged_test_exit(mm)))
2582 vma = NULL;
2583 else
2584 vma = find_vma(mm, khugepaged_scan.address);
2585
2586 progress++;
2587 for (; vma; vma = vma->vm_next) {
2588 unsigned long hstart, hend;
2589
2590 cond_resched();
2591 if (unlikely(khugepaged_test_exit(mm))) {
2592 progress++;
2593 break;
2594 }
2595 if (!hugepage_vma_check(vma)) {
2596 skip:
2597 progress++;
2598 continue;
2599 }
2600 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2601 hend = vma->vm_end & HPAGE_PMD_MASK;
2602 if (hstart >= hend)
2603 goto skip;
2604 if (khugepaged_scan.address > hend)
2605 goto skip;
2606 if (khugepaged_scan.address < hstart)
2607 khugepaged_scan.address = hstart;
2608 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2609
2610 while (khugepaged_scan.address < hend) {
2611 int ret;
2612 cond_resched();
2613 if (unlikely(khugepaged_test_exit(mm)))
2614 goto breakouterloop;
2615
2616 VM_BUG_ON(khugepaged_scan.address < hstart ||
2617 khugepaged_scan.address + HPAGE_PMD_SIZE >
2618 hend);
2619 ret = khugepaged_scan_pmd(mm, vma,
2620 khugepaged_scan.address,
2621 hpage);
2622 /* move to next address */
2623 khugepaged_scan.address += HPAGE_PMD_SIZE;
2624 progress += HPAGE_PMD_NR;
2625 if (ret)
2626 /* we released mmap_sem so break loop */
2627 goto breakouterloop_mmap_sem;
2628 if (progress >= pages)
2629 goto breakouterloop;
2630 }
2631 }
2632 breakouterloop:
2633 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2634 breakouterloop_mmap_sem:
2635
2636 spin_lock(&khugepaged_mm_lock);
2637 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2638 /*
2639 * Release the current mm_slot if this mm is about to die, or
2640 * if we scanned all vmas of this mm.
2641 */
2642 if (khugepaged_test_exit(mm) || !vma) {
2643 /*
2644 * Make sure that if mm_users is reaching zero while
2645 * khugepaged runs here, khugepaged_exit will find
2646 * mm_slot not pointing to the exiting mm.
2647 */
2648 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2649 khugepaged_scan.mm_slot = list_entry(
2650 mm_slot->mm_node.next,
2651 struct mm_slot, mm_node);
2652 khugepaged_scan.address = 0;
2653 } else {
2654 khugepaged_scan.mm_slot = NULL;
2655 khugepaged_full_scans++;
2656 }
2657
2658 collect_mm_slot(mm_slot);
2659 }
2660
2661 return progress;
2662 }
2663
2664 static int khugepaged_has_work(void)
2665 {
2666 return !list_empty(&khugepaged_scan.mm_head) &&
2667 khugepaged_enabled();
2668 }
2669
2670 static int khugepaged_wait_event(void)
2671 {
2672 return !list_empty(&khugepaged_scan.mm_head) ||
2673 kthread_should_stop();
2674 }
2675
2676 static void khugepaged_do_scan(void)
2677 {
2678 struct page *hpage = NULL;
2679 unsigned int progress = 0, pass_through_head = 0;
2680 unsigned int pages = khugepaged_pages_to_scan;
2681 bool wait = true;
2682
2683 barrier(); /* write khugepaged_pages_to_scan to local stack */
2684
2685 while (progress < pages) {
2686 if (!khugepaged_prealloc_page(&hpage, &wait))
2687 break;
2688
2689 cond_resched();
2690
2691 if (unlikely(kthread_should_stop() || try_to_freeze()))
2692 break;
2693
2694 spin_lock(&khugepaged_mm_lock);
2695 if (!khugepaged_scan.mm_slot)
2696 pass_through_head++;
2697 if (khugepaged_has_work() &&
2698 pass_through_head < 2)
2699 progress += khugepaged_scan_mm_slot(pages - progress,
2700 &hpage);
2701 else
2702 progress = pages;
2703 spin_unlock(&khugepaged_mm_lock);
2704 }
2705
2706 if (!IS_ERR_OR_NULL(hpage))
2707 put_page(hpage);
2708 }
2709
2710 static void khugepaged_wait_work(void)
2711 {
2712 if (khugepaged_has_work()) {
2713 if (!khugepaged_scan_sleep_millisecs)
2714 return;
2715
2716 wait_event_freezable_timeout(khugepaged_wait,
2717 kthread_should_stop(),
2718 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2719 return;
2720 }
2721
2722 if (khugepaged_enabled())
2723 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2724 }
2725
2726 static int khugepaged(void *none)
2727 {
2728 struct mm_slot *mm_slot;
2729
2730 set_freezable();
2731 set_user_nice(current, MAX_NICE);
2732
2733 while (!kthread_should_stop()) {
2734 khugepaged_do_scan();
2735 khugepaged_wait_work();
2736 }
2737
2738 spin_lock(&khugepaged_mm_lock);
2739 mm_slot = khugepaged_scan.mm_slot;
2740 khugepaged_scan.mm_slot = NULL;
2741 if (mm_slot)
2742 collect_mm_slot(mm_slot);
2743 spin_unlock(&khugepaged_mm_lock);
2744 return 0;
2745 }
2746
2747 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2748 unsigned long haddr, pmd_t *pmd)
2749 {
2750 struct mm_struct *mm = vma->vm_mm;
2751 pgtable_t pgtable;
2752 pmd_t _pmd;
2753 int i;
2754
2755 /* leave pmd empty until pte is filled */
2756 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2757
2758 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2759 pmd_populate(mm, &_pmd, pgtable);
2760
2761 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2762 pte_t *pte, entry;
2763 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2764 entry = pte_mkspecial(entry);
2765 pte = pte_offset_map(&_pmd, haddr);
2766 VM_BUG_ON(!pte_none(*pte));
2767 set_pte_at(mm, haddr, pte, entry);
2768 pte_unmap(pte);
2769 }
2770 smp_wmb(); /* make pte visible before pmd */
2771 pmd_populate(mm, pmd, pgtable);
2772 put_huge_zero_page();
2773 }
2774
2775 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2776 unsigned long haddr, bool freeze)
2777 {
2778 struct mm_struct *mm = vma->vm_mm;
2779 struct page *page;
2780 pgtable_t pgtable;
2781 pmd_t _pmd;
2782 bool young, write, dirty;
2783 int i;
2784
2785 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2786 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2787 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2788 VM_BUG_ON(!pmd_trans_huge(*pmd));
2789
2790 count_vm_event(THP_SPLIT_PMD);
2791
2792 if (vma_is_dax(vma)) {
2793 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2794 if (is_huge_zero_pmd(_pmd))
2795 put_huge_zero_page();
2796 return;
2797 } else if (is_huge_zero_pmd(*pmd)) {
2798 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2799 }
2800
2801 page = pmd_page(*pmd);
2802 VM_BUG_ON_PAGE(!page_count(page), page);
2803 atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2804 write = pmd_write(*pmd);
2805 young = pmd_young(*pmd);
2806 dirty = pmd_dirty(*pmd);
2807
2808 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2809 pmd_populate(mm, &_pmd, pgtable);
2810
2811 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2812 pte_t entry, *pte;
2813 /*
2814 * Note that NUMA hinting access restrictions are not
2815 * transferred to avoid any possibility of altering
2816 * permissions across VMAs.
2817 */
2818 if (freeze) {
2819 swp_entry_t swp_entry;
2820 swp_entry = make_migration_entry(page + i, write);
2821 entry = swp_entry_to_pte(swp_entry);
2822 } else {
2823 entry = mk_pte(page + i, vma->vm_page_prot);
2824 entry = maybe_mkwrite(entry, vma);
2825 if (!write)
2826 entry = pte_wrprotect(entry);
2827 if (!young)
2828 entry = pte_mkold(entry);
2829 }
2830 if (dirty)
2831 SetPageDirty(page + i);
2832 pte = pte_offset_map(&_pmd, haddr);
2833 BUG_ON(!pte_none(*pte));
2834 set_pte_at(mm, haddr, pte, entry);
2835 atomic_inc(&page[i]._mapcount);
2836 pte_unmap(pte);
2837 }
2838
2839 /*
2840 * Set PG_double_map before dropping compound_mapcount to avoid
2841 * false-negative page_mapped().
2842 */
2843 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2844 for (i = 0; i < HPAGE_PMD_NR; i++)
2845 atomic_inc(&page[i]._mapcount);
2846 }
2847
2848 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2849 /* Last compound_mapcount is gone. */
2850 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2851 if (TestClearPageDoubleMap(page)) {
2852 /* No need in mapcount reference anymore */
2853 for (i = 0; i < HPAGE_PMD_NR; i++)
2854 atomic_dec(&page[i]._mapcount);
2855 }
2856 }
2857
2858 smp_wmb(); /* make pte visible before pmd */
2859 /*
2860 * Up to this point the pmd is present and huge and userland has the
2861 * whole access to the hugepage during the split (which happens in
2862 * place). If we overwrite the pmd with the not-huge version pointing
2863 * to the pte here (which of course we could if all CPUs were bug
2864 * free), userland could trigger a small page size TLB miss on the
2865 * small sized TLB while the hugepage TLB entry is still established in
2866 * the huge TLB. Some CPU doesn't like that.
2867 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2868 * 383 on page 93. Intel should be safe but is also warns that it's
2869 * only safe if the permission and cache attributes of the two entries
2870 * loaded in the two TLB is identical (which should be the case here).
2871 * But it is generally safer to never allow small and huge TLB entries
2872 * for the same virtual address to be loaded simultaneously. So instead
2873 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2874 * current pmd notpresent (atomically because here the pmd_trans_huge
2875 * and pmd_trans_splitting must remain set at all times on the pmd
2876 * until the split is complete for this pmd), then we flush the SMP TLB
2877 * and finally we write the non-huge version of the pmd entry with
2878 * pmd_populate.
2879 */
2880 pmdp_invalidate(vma, haddr, pmd);
2881 pmd_populate(mm, pmd, pgtable);
2882
2883 if (freeze) {
2884 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2885 page_remove_rmap(page + i, false);
2886 put_page(page + i);
2887 }
2888 }
2889 }
2890
2891 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2892 unsigned long address)
2893 {
2894 spinlock_t *ptl;
2895 struct mm_struct *mm = vma->vm_mm;
2896 struct page *page = NULL;
2897 unsigned long haddr = address & HPAGE_PMD_MASK;
2898
2899 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2900 ptl = pmd_lock(mm, pmd);
2901 if (unlikely(!pmd_trans_huge(*pmd)))
2902 goto out;
2903 page = pmd_page(*pmd);
2904 __split_huge_pmd_locked(vma, pmd, haddr, false);
2905 if (PageMlocked(page))
2906 get_page(page);
2907 else
2908 page = NULL;
2909 out:
2910 spin_unlock(ptl);
2911 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2912 if (page) {
2913 lock_page(page);
2914 munlock_vma_page(page);
2915 unlock_page(page);
2916 put_page(page);
2917 }
2918 }
2919
2920 static void split_huge_pmd_address(struct vm_area_struct *vma,
2921 unsigned long address)
2922 {
2923 pgd_t *pgd;
2924 pud_t *pud;
2925 pmd_t *pmd;
2926
2927 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2928
2929 pgd = pgd_offset(vma->vm_mm, address);
2930 if (!pgd_present(*pgd))
2931 return;
2932
2933 pud = pud_offset(pgd, address);
2934 if (!pud_present(*pud))
2935 return;
2936
2937 pmd = pmd_offset(pud, address);
2938 if (!pmd_present(*pmd) || !pmd_trans_huge(*pmd))
2939 return;
2940 /*
2941 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2942 * materialize from under us.
2943 */
2944 split_huge_pmd(vma, pmd, address);
2945 }
2946
2947 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2948 unsigned long start,
2949 unsigned long end,
2950 long adjust_next)
2951 {
2952 /*
2953 * If the new start address isn't hpage aligned and it could
2954 * previously contain an hugepage: check if we need to split
2955 * an huge pmd.
2956 */
2957 if (start & ~HPAGE_PMD_MASK &&
2958 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2959 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2960 split_huge_pmd_address(vma, start);
2961
2962 /*
2963 * If the new end address isn't hpage aligned and it could
2964 * previously contain an hugepage: check if we need to split
2965 * an huge pmd.
2966 */
2967 if (end & ~HPAGE_PMD_MASK &&
2968 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2969 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2970 split_huge_pmd_address(vma, end);
2971
2972 /*
2973 * If we're also updating the vma->vm_next->vm_start, if the new
2974 * vm_next->vm_start isn't page aligned and it could previously
2975 * contain an hugepage: check if we need to split an huge pmd.
2976 */
2977 if (adjust_next > 0) {
2978 struct vm_area_struct *next = vma->vm_next;
2979 unsigned long nstart = next->vm_start;
2980 nstart += adjust_next << PAGE_SHIFT;
2981 if (nstart & ~HPAGE_PMD_MASK &&
2982 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2983 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2984 split_huge_pmd_address(next, nstart);
2985 }
2986 }
2987
2988 static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
2989 unsigned long address)
2990 {
2991 unsigned long haddr = address & HPAGE_PMD_MASK;
2992 spinlock_t *ptl;
2993 pgd_t *pgd;
2994 pud_t *pud;
2995 pmd_t *pmd;
2996 pte_t *pte;
2997 int i, nr = HPAGE_PMD_NR;
2998
2999 /* Skip pages which doesn't belong to the VMA */
3000 if (address < vma->vm_start) {
3001 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3002 page += off;
3003 nr -= off;
3004 address = vma->vm_start;
3005 }
3006
3007 pgd = pgd_offset(vma->vm_mm, address);
3008 if (!pgd_present(*pgd))
3009 return;
3010 pud = pud_offset(pgd, address);
3011 if (!pud_present(*pud))
3012 return;
3013 pmd = pmd_offset(pud, address);
3014 ptl = pmd_lock(vma->vm_mm, pmd);
3015 if (!pmd_present(*pmd)) {
3016 spin_unlock(ptl);
3017 return;
3018 }
3019 if (pmd_trans_huge(*pmd)) {
3020 if (page == pmd_page(*pmd))
3021 __split_huge_pmd_locked(vma, pmd, haddr, true);
3022 spin_unlock(ptl);
3023 return;
3024 }
3025 spin_unlock(ptl);
3026
3027 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3028 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3029 pte_t entry, swp_pte;
3030 swp_entry_t swp_entry;
3031
3032 /*
3033 * We've just crossed page table boundary: need to map next one.
3034 * It can happen if THP was mremaped to non PMD-aligned address.
3035 */
3036 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3037 pte_unmap_unlock(pte - 1, ptl);
3038 pmd = mm_find_pmd(vma->vm_mm, address);
3039 if (!pmd)
3040 return;
3041 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3042 address, &ptl);
3043 }
3044
3045 if (!pte_present(*pte))
3046 continue;
3047 if (page_to_pfn(page) != pte_pfn(*pte))
3048 continue;
3049 flush_cache_page(vma, address, page_to_pfn(page));
3050 entry = ptep_clear_flush(vma, address, pte);
3051 if (pte_dirty(entry))
3052 SetPageDirty(page);
3053 swp_entry = make_migration_entry(page, pte_write(entry));
3054 swp_pte = swp_entry_to_pte(swp_entry);
3055 if (pte_soft_dirty(entry))
3056 swp_pte = pte_swp_mksoft_dirty(swp_pte);
3057 set_pte_at(vma->vm_mm, address, pte, swp_pte);
3058 page_remove_rmap(page, false);
3059 put_page(page);
3060 }
3061 pte_unmap_unlock(pte - 1, ptl);
3062 }
3063
3064 static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3065 {
3066 struct anon_vma_chain *avc;
3067 pgoff_t pgoff = page_to_pgoff(page);
3068
3069 VM_BUG_ON_PAGE(!PageHead(page), page);
3070
3071 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3072 pgoff + HPAGE_PMD_NR - 1) {
3073 unsigned long address = __vma_address(page, avc->vma);
3074
3075 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3076 address, address + HPAGE_PMD_SIZE);
3077 freeze_page_vma(avc->vma, page, address);
3078 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3079 address, address + HPAGE_PMD_SIZE);
3080 }
3081 }
3082
3083 static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3084 unsigned long address)
3085 {
3086 spinlock_t *ptl;
3087 pmd_t *pmd;
3088 pte_t *pte, entry;
3089 swp_entry_t swp_entry;
3090 unsigned long haddr = address & HPAGE_PMD_MASK;
3091 int i, nr = HPAGE_PMD_NR;
3092
3093 /* Skip pages which doesn't belong to the VMA */
3094 if (address < vma->vm_start) {
3095 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3096 page += off;
3097 nr -= off;
3098 address = vma->vm_start;
3099 }
3100
3101 pmd = mm_find_pmd(vma->vm_mm, address);
3102 if (!pmd)
3103 return;
3104
3105 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3106 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3107 /*
3108 * We've just crossed page table boundary: need to map next one.
3109 * It can happen if THP was mremaped to non-PMD aligned address.
3110 */
3111 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3112 pte_unmap_unlock(pte - 1, ptl);
3113 pmd = mm_find_pmd(vma->vm_mm, address);
3114 if (!pmd)
3115 return;
3116 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3117 address, &ptl);
3118 }
3119
3120 if (!is_swap_pte(*pte))
3121 continue;
3122
3123 swp_entry = pte_to_swp_entry(*pte);
3124 if (!is_migration_entry(swp_entry))
3125 continue;
3126 if (migration_entry_to_page(swp_entry) != page)
3127 continue;
3128
3129 get_page(page);
3130 page_add_anon_rmap(page, vma, address, false);
3131
3132 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3133 if (PageDirty(page))
3134 entry = pte_mkdirty(entry);
3135 if (is_write_migration_entry(swp_entry))
3136 entry = maybe_mkwrite(entry, vma);
3137
3138 flush_dcache_page(page);
3139 set_pte_at(vma->vm_mm, address, pte, entry);
3140
3141 /* No need to invalidate - it was non-present before */
3142 update_mmu_cache(vma, address, pte);
3143 }
3144 pte_unmap_unlock(pte - 1, ptl);
3145 }
3146
3147 static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3148 {
3149 struct anon_vma_chain *avc;
3150 pgoff_t pgoff = page_to_pgoff(page);
3151
3152 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3153 pgoff, pgoff + HPAGE_PMD_NR - 1) {
3154 unsigned long address = __vma_address(page, avc->vma);
3155
3156 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3157 address, address + HPAGE_PMD_SIZE);
3158 unfreeze_page_vma(avc->vma, page, address);
3159 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3160 address, address + HPAGE_PMD_SIZE);
3161 }
3162 }
3163
3164 static int __split_huge_page_tail(struct page *head, int tail,
3165 struct lruvec *lruvec, struct list_head *list)
3166 {
3167 int mapcount;
3168 struct page *page_tail = head + tail;
3169
3170 mapcount = atomic_read(&page_tail->_mapcount) + 1;
3171 VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3172
3173 /*
3174 * tail_page->_count is zero and not changing from under us. But
3175 * get_page_unless_zero() may be running from under us on the
3176 * tail_page. If we used atomic_set() below instead of atomic_add(), we
3177 * would then run atomic_set() concurrently with
3178 * get_page_unless_zero(), and atomic_set() is implemented in C not
3179 * using locked ops. spin_unlock on x86 sometime uses locked ops
3180 * because of PPro errata 66, 92, so unless somebody can guarantee
3181 * atomic_set() here would be safe on all archs (and not only on x86),
3182 * it's safer to use atomic_add().
3183 */
3184 atomic_add(mapcount + 1, &page_tail->_count);
3185
3186
3187 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3188 page_tail->flags |= (head->flags &
3189 ((1L << PG_referenced) |
3190 (1L << PG_swapbacked) |
3191 (1L << PG_mlocked) |
3192 (1L << PG_uptodate) |
3193 (1L << PG_active) |
3194 (1L << PG_locked) |
3195 (1L << PG_unevictable) |
3196 (1L << PG_dirty)));
3197
3198 /*
3199 * After clearing PageTail the gup refcount can be released.
3200 * Page flags also must be visible before we make the page non-compound.
3201 */
3202 smp_wmb();
3203
3204 clear_compound_head(page_tail);
3205
3206 if (page_is_young(head))
3207 set_page_young(page_tail);
3208 if (page_is_idle(head))
3209 set_page_idle(page_tail);
3210
3211 /* ->mapping in first tail page is compound_mapcount */
3212 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3213 page_tail);
3214 page_tail->mapping = head->mapping;
3215
3216 page_tail->index = head->index + tail;
3217 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3218 lru_add_page_tail(head, page_tail, lruvec, list);
3219
3220 return mapcount;
3221 }
3222
3223 static void __split_huge_page(struct page *page, struct list_head *list)
3224 {
3225 struct page *head = compound_head(page);
3226 struct zone *zone = page_zone(head);
3227 struct lruvec *lruvec;
3228 int i, tail_mapcount;
3229
3230 /* prevent PageLRU to go away from under us, and freeze lru stats */
3231 spin_lock_irq(&zone->lru_lock);
3232 lruvec = mem_cgroup_page_lruvec(head, zone);
3233
3234 /* complete memcg works before add pages to LRU */
3235 mem_cgroup_split_huge_fixup(head);
3236
3237 tail_mapcount = 0;
3238 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3239 tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
3240 atomic_sub(tail_mapcount, &head->_count);
3241
3242 ClearPageCompound(head);
3243 spin_unlock_irq(&zone->lru_lock);
3244
3245 unfreeze_page(page_anon_vma(head), head);
3246
3247 for (i = 0; i < HPAGE_PMD_NR; i++) {
3248 struct page *subpage = head + i;
3249 if (subpage == page)
3250 continue;
3251 unlock_page(subpage);
3252
3253 /*
3254 * Subpages may be freed if there wasn't any mapping
3255 * like if add_to_swap() is running on a lru page that
3256 * had its mapping zapped. And freeing these pages
3257 * requires taking the lru_lock so we do the put_page
3258 * of the tail pages after the split is complete.
3259 */
3260 put_page(subpage);
3261 }
3262 }
3263
3264 int total_mapcount(struct page *page)
3265 {
3266 int i, ret;
3267
3268 VM_BUG_ON_PAGE(PageTail(page), page);
3269
3270 if (likely(!PageCompound(page)))
3271 return atomic_read(&page->_mapcount) + 1;
3272
3273 ret = compound_mapcount(page);
3274 if (PageHuge(page))
3275 return ret;
3276 for (i = 0; i < HPAGE_PMD_NR; i++)
3277 ret += atomic_read(&page[i]._mapcount) + 1;
3278 if (PageDoubleMap(page))
3279 ret -= HPAGE_PMD_NR;
3280 return ret;
3281 }
3282
3283 /*
3284 * This function splits huge page into normal pages. @page can point to any
3285 * subpage of huge page to split. Split doesn't change the position of @page.
3286 *
3287 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3288 * The huge page must be locked.
3289 *
3290 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3291 *
3292 * Both head page and tail pages will inherit mapping, flags, and so on from
3293 * the hugepage.
3294 *
3295 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3296 * they are not mapped.
3297 *
3298 * Returns 0 if the hugepage is split successfully.
3299 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3300 * us.
3301 */
3302 int split_huge_page_to_list(struct page *page, struct list_head *list)
3303 {
3304 struct page *head = compound_head(page);
3305 struct anon_vma *anon_vma;
3306 int count, mapcount, ret;
3307 bool mlocked;
3308
3309 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3310 VM_BUG_ON_PAGE(!PageAnon(page), page);
3311 VM_BUG_ON_PAGE(!PageLocked(page), page);
3312 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3313 VM_BUG_ON_PAGE(!PageCompound(page), page);
3314
3315 /*
3316 * The caller does not necessarily hold an mmap_sem that would prevent
3317 * the anon_vma disappearing so we first we take a reference to it
3318 * and then lock the anon_vma for write. This is similar to
3319 * page_lock_anon_vma_read except the write lock is taken to serialise
3320 * against parallel split or collapse operations.
3321 */
3322 anon_vma = page_get_anon_vma(head);
3323 if (!anon_vma) {
3324 ret = -EBUSY;
3325 goto out;
3326 }
3327 anon_vma_lock_write(anon_vma);
3328
3329 /*
3330 * Racy check if we can split the page, before freeze_page() will
3331 * split PMDs
3332 */
3333 if (total_mapcount(head) != page_count(head) - 1) {
3334 ret = -EBUSY;
3335 goto out_unlock;
3336 }
3337
3338 mlocked = PageMlocked(page);
3339 freeze_page(anon_vma, head);
3340 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3341
3342 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3343 if (mlocked)
3344 lru_add_drain();
3345
3346 /* Prevent deferred_split_scan() touching ->_count */
3347 spin_lock(&split_queue_lock);
3348 count = page_count(head);
3349 mapcount = total_mapcount(head);
3350 if (!mapcount && count == 1) {
3351 if (!list_empty(page_deferred_list(head))) {
3352 split_queue_len--;
3353 list_del(page_deferred_list(head));
3354 }
3355 spin_unlock(&split_queue_lock);
3356 __split_huge_page(page, list);
3357 ret = 0;
3358 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3359 spin_unlock(&split_queue_lock);
3360 pr_alert("total_mapcount: %u, page_count(): %u\n",
3361 mapcount, count);
3362 if (PageTail(page))
3363 dump_page(head, NULL);
3364 dump_page(page, "total_mapcount(head) > 0");
3365 BUG();
3366 } else {
3367 spin_unlock(&split_queue_lock);
3368 unfreeze_page(anon_vma, head);
3369 ret = -EBUSY;
3370 }
3371
3372 out_unlock:
3373 anon_vma_unlock_write(anon_vma);
3374 put_anon_vma(anon_vma);
3375 out:
3376 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3377 return ret;
3378 }
3379
3380 void free_transhuge_page(struct page *page)
3381 {
3382 unsigned long flags;
3383
3384 spin_lock_irqsave(&split_queue_lock, flags);
3385 if (!list_empty(page_deferred_list(page))) {
3386 split_queue_len--;
3387 list_del(page_deferred_list(page));
3388 }
3389 spin_unlock_irqrestore(&split_queue_lock, flags);
3390 free_compound_page(page);
3391 }
3392
3393 void deferred_split_huge_page(struct page *page)
3394 {
3395 unsigned long flags;
3396
3397 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3398
3399 spin_lock_irqsave(&split_queue_lock, flags);
3400 if (list_empty(page_deferred_list(page))) {
3401 list_add_tail(page_deferred_list(page), &split_queue);
3402 split_queue_len++;
3403 }
3404 spin_unlock_irqrestore(&split_queue_lock, flags);
3405 }
3406
3407 static unsigned long deferred_split_count(struct shrinker *shrink,
3408 struct shrink_control *sc)
3409 {
3410 /*
3411 * Split a page from split_queue will free up at least one page,
3412 * at most HPAGE_PMD_NR - 1. We don't track exact number.
3413 * Let's use HPAGE_PMD_NR / 2 as ballpark.
3414 */
3415 return ACCESS_ONCE(split_queue_len) * HPAGE_PMD_NR / 2;
3416 }
3417
3418 static unsigned long deferred_split_scan(struct shrinker *shrink,
3419 struct shrink_control *sc)
3420 {
3421 unsigned long flags;
3422 LIST_HEAD(list), *pos, *next;
3423 struct page *page;
3424 int split = 0;
3425
3426 spin_lock_irqsave(&split_queue_lock, flags);
3427 list_splice_init(&split_queue, &list);
3428
3429 /* Take pin on all head pages to avoid freeing them under us */
3430 list_for_each_safe(pos, next, &list) {
3431 page = list_entry((void *)pos, struct page, mapping);
3432 page = compound_head(page);
3433 /* race with put_compound_page() */
3434 if (!get_page_unless_zero(page)) {
3435 list_del_init(page_deferred_list(page));
3436 split_queue_len--;
3437 }
3438 }
3439 spin_unlock_irqrestore(&split_queue_lock, flags);
3440
3441 list_for_each_safe(pos, next, &list) {
3442 page = list_entry((void *)pos, struct page, mapping);
3443 lock_page(page);
3444 /* split_huge_page() removes page from list on success */
3445 if (!split_huge_page(page))
3446 split++;
3447 unlock_page(page);
3448 put_page(page);
3449 }
3450
3451 spin_lock_irqsave(&split_queue_lock, flags);
3452 list_splice_tail(&list, &split_queue);
3453 spin_unlock_irqrestore(&split_queue_lock, flags);
3454
3455 return split * HPAGE_PMD_NR / 2;
3456 }
3457
3458 static struct shrinker deferred_split_shrinker = {
3459 .count_objects = deferred_split_count,
3460 .scan_objects = deferred_split_scan,
3461 .seeks = DEFAULT_SEEKS,
3462 };
3463
3464 #ifdef CONFIG_DEBUG_FS
3465 static int split_huge_pages_set(void *data, u64 val)
3466 {
3467 struct zone *zone;
3468 struct page *page;
3469 unsigned long pfn, max_zone_pfn;
3470 unsigned long total = 0, split = 0;
3471
3472 if (val != 1)
3473 return -EINVAL;
3474
3475 for_each_populated_zone(zone) {
3476 max_zone_pfn = zone_end_pfn(zone);
3477 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3478 if (!pfn_valid(pfn))
3479 continue;
3480
3481 page = pfn_to_page(pfn);
3482 if (!get_page_unless_zero(page))
3483 continue;
3484
3485 if (zone != page_zone(page))
3486 goto next;
3487
3488 if (!PageHead(page) || !PageAnon(page) ||
3489 PageHuge(page))
3490 goto next;
3491
3492 total++;
3493 lock_page(page);
3494 if (!split_huge_page(page))
3495 split++;
3496 unlock_page(page);
3497 next:
3498 put_page(page);
3499 }
3500 }
3501
3502 pr_info("%lu of %lu THP split", split, total);
3503
3504 return 0;
3505 }
3506 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3507 "%llu\n");
3508
3509 static int __init split_huge_pages_debugfs(void)
3510 {
3511 void *ret;
3512
3513 ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3514 &split_huge_pages_fops);
3515 if (!ret)
3516 pr_warn("Failed to create split_huge_pages in debugfs");
3517 return 0;
3518 }
3519 late_initcall(split_huge_pages_debugfs);
3520 #endif