]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/huge_memory.c
mm: numa: do not clear PTE for pte_numa update
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28
29 /*
30 * By default transparent hugepage support is disabled in order that avoid
31 * to risk increase the memory footprint of applications without a guaranteed
32 * benefit. When transparent hugepage support is enabled, is for all mappings,
33 * and khugepaged scans all mappings.
34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
35 * for all hugepage allocations.
36 */
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 /*
60 * default collapse hugepages if there is at least one pte mapped like
61 * it would have happened if the vma was large enough during page
62 * fault.
63 */
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
68
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73
74 /**
75 * struct mm_slot - hash lookup from mm to mm_slot
76 * @hash: hash collision list
77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78 * @mm: the mm that this information is valid for
79 */
80 struct mm_slot {
81 struct hlist_node hash;
82 struct list_head mm_node;
83 struct mm_struct *mm;
84 };
85
86 /**
87 * struct khugepaged_scan - cursor for scanning
88 * @mm_head: the head of the mm list to scan
89 * @mm_slot: the current mm_slot we are scanning
90 * @address: the next address inside that to be scanned
91 *
92 * There is only the one khugepaged_scan instance of this cursor structure.
93 */
94 struct khugepaged_scan {
95 struct list_head mm_head;
96 struct mm_slot *mm_slot;
97 unsigned long address;
98 };
99 static struct khugepaged_scan khugepaged_scan = {
100 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101 };
102
103
104 static int set_recommended_min_free_kbytes(void)
105 {
106 struct zone *zone;
107 int nr_zones = 0;
108 unsigned long recommended_min;
109
110 if (!khugepaged_enabled())
111 return 0;
112
113 for_each_populated_zone(zone)
114 nr_zones++;
115
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min = pageblock_nr_pages * nr_zones * 2;
118
119 /*
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
124 */
125 recommended_min += pageblock_nr_pages * nr_zones *
126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min = min(recommended_min,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min <<= (PAGE_SHIFT-10);
132
133 if (recommended_min > min_free_kbytes)
134 min_free_kbytes = recommended_min;
135 setup_per_zone_wmarks();
136 return 0;
137 }
138 late_initcall(set_recommended_min_free_kbytes);
139
140 static int start_khugepaged(void)
141 {
142 int err = 0;
143 if (khugepaged_enabled()) {
144 if (!khugepaged_thread)
145 khugepaged_thread = kthread_run(khugepaged, NULL,
146 "khugepaged");
147 if (unlikely(IS_ERR(khugepaged_thread))) {
148 printk(KERN_ERR
149 "khugepaged: kthread_run(khugepaged) failed\n");
150 err = PTR_ERR(khugepaged_thread);
151 khugepaged_thread = NULL;
152 }
153
154 if (!list_empty(&khugepaged_scan.mm_head))
155 wake_up_interruptible(&khugepaged_wait);
156
157 set_recommended_min_free_kbytes();
158 } else if (khugepaged_thread) {
159 kthread_stop(khugepaged_thread);
160 khugepaged_thread = NULL;
161 }
162
163 return err;
164 }
165
166 static atomic_t huge_zero_refcount;
167 static struct page *huge_zero_page __read_mostly;
168
169 static inline bool is_huge_zero_page(struct page *page)
170 {
171 return ACCESS_ONCE(huge_zero_page) == page;
172 }
173
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
175 {
176 return is_huge_zero_page(pmd_page(pmd));
177 }
178
179 static struct page *get_huge_zero_page(void)
180 {
181 struct page *zero_page;
182 retry:
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 return ACCESS_ONCE(huge_zero_page);
185
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187 HPAGE_PMD_ORDER);
188 if (!zero_page) {
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190 return NULL;
191 }
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
193 preempt_disable();
194 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
195 preempt_enable();
196 __free_page(zero_page);
197 goto retry;
198 }
199
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
202 preempt_enable();
203 return ACCESS_ONCE(huge_zero_page);
204 }
205
206 static void put_huge_zero_page(void)
207 {
208 /*
209 * Counter should never go to zero here. Only shrinker can put
210 * last reference.
211 */
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
213 }
214
215 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216 struct shrink_control *sc)
217 {
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220 }
221
222 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223 struct shrink_control *sc)
224 {
225 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
226 struct page *zero_page = xchg(&huge_zero_page, NULL);
227 BUG_ON(zero_page == NULL);
228 __free_page(zero_page);
229 return HPAGE_PMD_NR;
230 }
231
232 return 0;
233 }
234
235 static struct shrinker huge_zero_page_shrinker = {
236 .count_objects = shrink_huge_zero_page_count,
237 .scan_objects = shrink_huge_zero_page_scan,
238 .seeks = DEFAULT_SEEKS,
239 };
240
241 #ifdef CONFIG_SYSFS
242
243 static ssize_t double_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag enabled,
246 enum transparent_hugepage_flag req_madv)
247 {
248 if (test_bit(enabled, &transparent_hugepage_flags)) {
249 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250 return sprintf(buf, "[always] madvise never\n");
251 } else if (test_bit(req_madv, &transparent_hugepage_flags))
252 return sprintf(buf, "always [madvise] never\n");
253 else
254 return sprintf(buf, "always madvise [never]\n");
255 }
256 static ssize_t double_flag_store(struct kobject *kobj,
257 struct kobj_attribute *attr,
258 const char *buf, size_t count,
259 enum transparent_hugepage_flag enabled,
260 enum transparent_hugepage_flag req_madv)
261 {
262 if (!memcmp("always", buf,
263 min(sizeof("always")-1, count))) {
264 set_bit(enabled, &transparent_hugepage_flags);
265 clear_bit(req_madv, &transparent_hugepage_flags);
266 } else if (!memcmp("madvise", buf,
267 min(sizeof("madvise")-1, count))) {
268 clear_bit(enabled, &transparent_hugepage_flags);
269 set_bit(req_madv, &transparent_hugepage_flags);
270 } else if (!memcmp("never", buf,
271 min(sizeof("never")-1, count))) {
272 clear_bit(enabled, &transparent_hugepage_flags);
273 clear_bit(req_madv, &transparent_hugepage_flags);
274 } else
275 return -EINVAL;
276
277 return count;
278 }
279
280 static ssize_t enabled_show(struct kobject *kobj,
281 struct kobj_attribute *attr, char *buf)
282 {
283 return double_flag_show(kobj, attr, buf,
284 TRANSPARENT_HUGEPAGE_FLAG,
285 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
286 }
287 static ssize_t enabled_store(struct kobject *kobj,
288 struct kobj_attribute *attr,
289 const char *buf, size_t count)
290 {
291 ssize_t ret;
292
293 ret = double_flag_store(kobj, attr, buf, count,
294 TRANSPARENT_HUGEPAGE_FLAG,
295 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
296
297 if (ret > 0) {
298 int err;
299
300 mutex_lock(&khugepaged_mutex);
301 err = start_khugepaged();
302 mutex_unlock(&khugepaged_mutex);
303
304 if (err)
305 ret = err;
306 }
307
308 return ret;
309 }
310 static struct kobj_attribute enabled_attr =
311 __ATTR(enabled, 0644, enabled_show, enabled_store);
312
313 static ssize_t single_flag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf,
315 enum transparent_hugepage_flag flag)
316 {
317 return sprintf(buf, "%d\n",
318 !!test_bit(flag, &transparent_hugepage_flags));
319 }
320
321 static ssize_t single_flag_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count,
324 enum transparent_hugepage_flag flag)
325 {
326 unsigned long value;
327 int ret;
328
329 ret = kstrtoul(buf, 10, &value);
330 if (ret < 0)
331 return ret;
332 if (value > 1)
333 return -EINVAL;
334
335 if (value)
336 set_bit(flag, &transparent_hugepage_flags);
337 else
338 clear_bit(flag, &transparent_hugepage_flags);
339
340 return count;
341 }
342
343 /*
344 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346 * memory just to allocate one more hugepage.
347 */
348 static ssize_t defrag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf)
350 {
351 return double_flag_show(kobj, attr, buf,
352 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
354 }
355 static ssize_t defrag_store(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 const char *buf, size_t count)
358 {
359 return double_flag_store(kobj, attr, buf, count,
360 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
362 }
363 static struct kobj_attribute defrag_attr =
364 __ATTR(defrag, 0644, defrag_show, defrag_store);
365
366 static ssize_t use_zero_page_show(struct kobject *kobj,
367 struct kobj_attribute *attr, char *buf)
368 {
369 return single_flag_show(kobj, attr, buf,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371 }
372 static ssize_t use_zero_page_store(struct kobject *kobj,
373 struct kobj_attribute *attr, const char *buf, size_t count)
374 {
375 return single_flag_store(kobj, attr, buf, count,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static struct kobj_attribute use_zero_page_attr =
379 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
380 #ifdef CONFIG_DEBUG_VM
381 static ssize_t debug_cow_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
383 {
384 return single_flag_show(kobj, attr, buf,
385 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
386 }
387 static ssize_t debug_cow_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
390 {
391 return single_flag_store(kobj, attr, buf, count,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 }
394 static struct kobj_attribute debug_cow_attr =
395 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396 #endif /* CONFIG_DEBUG_VM */
397
398 static struct attribute *hugepage_attr[] = {
399 &enabled_attr.attr,
400 &defrag_attr.attr,
401 &use_zero_page_attr.attr,
402 #ifdef CONFIG_DEBUG_VM
403 &debug_cow_attr.attr,
404 #endif
405 NULL,
406 };
407
408 static struct attribute_group hugepage_attr_group = {
409 .attrs = hugepage_attr,
410 };
411
412 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413 struct kobj_attribute *attr,
414 char *buf)
415 {
416 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
417 }
418
419 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 const char *buf, size_t count)
422 {
423 unsigned long msecs;
424 int err;
425
426 err = kstrtoul(buf, 10, &msecs);
427 if (err || msecs > UINT_MAX)
428 return -EINVAL;
429
430 khugepaged_scan_sleep_millisecs = msecs;
431 wake_up_interruptible(&khugepaged_wait);
432
433 return count;
434 }
435 static struct kobj_attribute scan_sleep_millisecs_attr =
436 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437 scan_sleep_millisecs_store);
438
439 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
441 char *buf)
442 {
443 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
444 }
445
446 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 const char *buf, size_t count)
449 {
450 unsigned long msecs;
451 int err;
452
453 err = kstrtoul(buf, 10, &msecs);
454 if (err || msecs > UINT_MAX)
455 return -EINVAL;
456
457 khugepaged_alloc_sleep_millisecs = msecs;
458 wake_up_interruptible(&khugepaged_wait);
459
460 return count;
461 }
462 static struct kobj_attribute alloc_sleep_millisecs_attr =
463 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464 alloc_sleep_millisecs_store);
465
466 static ssize_t pages_to_scan_show(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 char *buf)
469 {
470 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
471 }
472 static ssize_t pages_to_scan_store(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 const char *buf, size_t count)
475 {
476 int err;
477 unsigned long pages;
478
479 err = kstrtoul(buf, 10, &pages);
480 if (err || !pages || pages > UINT_MAX)
481 return -EINVAL;
482
483 khugepaged_pages_to_scan = pages;
484
485 return count;
486 }
487 static struct kobj_attribute pages_to_scan_attr =
488 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
489 pages_to_scan_store);
490
491 static ssize_t pages_collapsed_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
493 char *buf)
494 {
495 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
496 }
497 static struct kobj_attribute pages_collapsed_attr =
498 __ATTR_RO(pages_collapsed);
499
500 static ssize_t full_scans_show(struct kobject *kobj,
501 struct kobj_attribute *attr,
502 char *buf)
503 {
504 return sprintf(buf, "%u\n", khugepaged_full_scans);
505 }
506 static struct kobj_attribute full_scans_attr =
507 __ATTR_RO(full_scans);
508
509 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510 struct kobj_attribute *attr, char *buf)
511 {
512 return single_flag_show(kobj, attr, buf,
513 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
514 }
515 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 const char *buf, size_t count)
518 {
519 return single_flag_store(kobj, attr, buf, count,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 }
522 static struct kobj_attribute khugepaged_defrag_attr =
523 __ATTR(defrag, 0644, khugepaged_defrag_show,
524 khugepaged_defrag_store);
525
526 /*
527 * max_ptes_none controls if khugepaged should collapse hugepages over
528 * any unmapped ptes in turn potentially increasing the memory
529 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530 * reduce the available free memory in the system as it
531 * runs. Increasing max_ptes_none will instead potentially reduce the
532 * free memory in the system during the khugepaged scan.
533 */
534 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 char *buf)
537 {
538 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
539 }
540 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
543 {
544 int err;
545 unsigned long max_ptes_none;
546
547 err = kstrtoul(buf, 10, &max_ptes_none);
548 if (err || max_ptes_none > HPAGE_PMD_NR-1)
549 return -EINVAL;
550
551 khugepaged_max_ptes_none = max_ptes_none;
552
553 return count;
554 }
555 static struct kobj_attribute khugepaged_max_ptes_none_attr =
556 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557 khugepaged_max_ptes_none_store);
558
559 static struct attribute *khugepaged_attr[] = {
560 &khugepaged_defrag_attr.attr,
561 &khugepaged_max_ptes_none_attr.attr,
562 &pages_to_scan_attr.attr,
563 &pages_collapsed_attr.attr,
564 &full_scans_attr.attr,
565 &scan_sleep_millisecs_attr.attr,
566 &alloc_sleep_millisecs_attr.attr,
567 NULL,
568 };
569
570 static struct attribute_group khugepaged_attr_group = {
571 .attrs = khugepaged_attr,
572 .name = "khugepaged",
573 };
574
575 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
576 {
577 int err;
578
579 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580 if (unlikely(!*hugepage_kobj)) {
581 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
582 return -ENOMEM;
583 }
584
585 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
586 if (err) {
587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
588 goto delete_obj;
589 }
590
591 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
592 if (err) {
593 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 goto remove_hp_group;
595 }
596
597 return 0;
598
599 remove_hp_group:
600 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
601 delete_obj:
602 kobject_put(*hugepage_kobj);
603 return err;
604 }
605
606 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
607 {
608 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610 kobject_put(hugepage_kobj);
611 }
612 #else
613 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
614 {
615 return 0;
616 }
617
618 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
619 {
620 }
621 #endif /* CONFIG_SYSFS */
622
623 static int __init hugepage_init(void)
624 {
625 int err;
626 struct kobject *hugepage_kobj;
627
628 if (!has_transparent_hugepage()) {
629 transparent_hugepage_flags = 0;
630 return -EINVAL;
631 }
632
633 err = hugepage_init_sysfs(&hugepage_kobj);
634 if (err)
635 return err;
636
637 err = khugepaged_slab_init();
638 if (err)
639 goto out;
640
641 register_shrinker(&huge_zero_page_shrinker);
642
643 /*
644 * By default disable transparent hugepages on smaller systems,
645 * where the extra memory used could hurt more than TLB overhead
646 * is likely to save. The admin can still enable it through /sys.
647 */
648 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
649 transparent_hugepage_flags = 0;
650
651 start_khugepaged();
652
653 return 0;
654 out:
655 hugepage_exit_sysfs(hugepage_kobj);
656 return err;
657 }
658 module_init(hugepage_init)
659
660 static int __init setup_transparent_hugepage(char *str)
661 {
662 int ret = 0;
663 if (!str)
664 goto out;
665 if (!strcmp(str, "always")) {
666 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
670 ret = 1;
671 } else if (!strcmp(str, "madvise")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 } else if (!strcmp(str, "never")) {
678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
683 }
684 out:
685 if (!ret)
686 printk(KERN_WARNING
687 "transparent_hugepage= cannot parse, ignored\n");
688 return ret;
689 }
690 __setup("transparent_hugepage=", setup_transparent_hugepage);
691
692 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
693 {
694 if (likely(vma->vm_flags & VM_WRITE))
695 pmd = pmd_mkwrite(pmd);
696 return pmd;
697 }
698
699 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
700 {
701 pmd_t entry;
702 entry = mk_pmd(page, prot);
703 entry = pmd_mkhuge(entry);
704 return entry;
705 }
706
707 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708 struct vm_area_struct *vma,
709 unsigned long haddr, pmd_t *pmd,
710 struct page *page)
711 {
712 pgtable_t pgtable;
713 spinlock_t *ptl;
714
715 VM_BUG_ON(!PageCompound(page));
716 pgtable = pte_alloc_one(mm, haddr);
717 if (unlikely(!pgtable))
718 return VM_FAULT_OOM;
719
720 clear_huge_page(page, haddr, HPAGE_PMD_NR);
721 /*
722 * The memory barrier inside __SetPageUptodate makes sure that
723 * clear_huge_page writes become visible before the set_pmd_at()
724 * write.
725 */
726 __SetPageUptodate(page);
727
728 ptl = pmd_lock(mm, pmd);
729 if (unlikely(!pmd_none(*pmd))) {
730 spin_unlock(ptl);
731 mem_cgroup_uncharge_page(page);
732 put_page(page);
733 pte_free(mm, pgtable);
734 } else {
735 pmd_t entry;
736 entry = mk_huge_pmd(page, vma->vm_page_prot);
737 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
738 page_add_new_anon_rmap(page, vma, haddr);
739 pgtable_trans_huge_deposit(mm, pmd, pgtable);
740 set_pmd_at(mm, haddr, pmd, entry);
741 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
742 atomic_long_inc(&mm->nr_ptes);
743 spin_unlock(ptl);
744 }
745
746 return 0;
747 }
748
749 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
750 {
751 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
752 }
753
754 static inline struct page *alloc_hugepage_vma(int defrag,
755 struct vm_area_struct *vma,
756 unsigned long haddr, int nd,
757 gfp_t extra_gfp)
758 {
759 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
760 HPAGE_PMD_ORDER, vma, haddr, nd);
761 }
762
763 /* Caller must hold page table lock. */
764 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 struct page *zero_page)
767 {
768 pmd_t entry;
769 if (!pmd_none(*pmd))
770 return false;
771 entry = mk_pmd(zero_page, vma->vm_page_prot);
772 entry = pmd_wrprotect(entry);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
776 atomic_long_inc(&mm->nr_ptes);
777 return true;
778 }
779
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
783 {
784 struct page *page;
785 unsigned long haddr = address & HPAGE_PMD_MASK;
786
787 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
788 return VM_FAULT_FALLBACK;
789 if (unlikely(anon_vma_prepare(vma)))
790 return VM_FAULT_OOM;
791 if (unlikely(khugepaged_enter(vma)))
792 return VM_FAULT_OOM;
793 if (!(flags & FAULT_FLAG_WRITE) &&
794 transparent_hugepage_use_zero_page()) {
795 spinlock_t *ptl;
796 pgtable_t pgtable;
797 struct page *zero_page;
798 bool set;
799 pgtable = pte_alloc_one(mm, haddr);
800 if (unlikely(!pgtable))
801 return VM_FAULT_OOM;
802 zero_page = get_huge_zero_page();
803 if (unlikely(!zero_page)) {
804 pte_free(mm, pgtable);
805 count_vm_event(THP_FAULT_FALLBACK);
806 return VM_FAULT_FALLBACK;
807 }
808 ptl = pmd_lock(mm, pmd);
809 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
810 zero_page);
811 spin_unlock(ptl);
812 if (!set) {
813 pte_free(mm, pgtable);
814 put_huge_zero_page();
815 }
816 return 0;
817 }
818 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
819 vma, haddr, numa_node_id(), 0);
820 if (unlikely(!page)) {
821 count_vm_event(THP_FAULT_FALLBACK);
822 return VM_FAULT_FALLBACK;
823 }
824 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
825 put_page(page);
826 count_vm_event(THP_FAULT_FALLBACK);
827 return VM_FAULT_FALLBACK;
828 }
829 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
830 mem_cgroup_uncharge_page(page);
831 put_page(page);
832 count_vm_event(THP_FAULT_FALLBACK);
833 return VM_FAULT_FALLBACK;
834 }
835
836 count_vm_event(THP_FAULT_ALLOC);
837 return 0;
838 }
839
840 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
842 struct vm_area_struct *vma)
843 {
844 spinlock_t *dst_ptl, *src_ptl;
845 struct page *src_page;
846 pmd_t pmd;
847 pgtable_t pgtable;
848 int ret;
849
850 ret = -ENOMEM;
851 pgtable = pte_alloc_one(dst_mm, addr);
852 if (unlikely(!pgtable))
853 goto out;
854
855 dst_ptl = pmd_lock(dst_mm, dst_pmd);
856 src_ptl = pmd_lockptr(src_mm, src_pmd);
857 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
858
859 ret = -EAGAIN;
860 pmd = *src_pmd;
861 if (unlikely(!pmd_trans_huge(pmd))) {
862 pte_free(dst_mm, pgtable);
863 goto out_unlock;
864 }
865 /*
866 * When page table lock is held, the huge zero pmd should not be
867 * under splitting since we don't split the page itself, only pmd to
868 * a page table.
869 */
870 if (is_huge_zero_pmd(pmd)) {
871 struct page *zero_page;
872 bool set;
873 /*
874 * get_huge_zero_page() will never allocate a new page here,
875 * since we already have a zero page to copy. It just takes a
876 * reference.
877 */
878 zero_page = get_huge_zero_page();
879 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
880 zero_page);
881 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
882 ret = 0;
883 goto out_unlock;
884 }
885 if (unlikely(pmd_trans_splitting(pmd))) {
886 /* split huge page running from under us */
887 spin_unlock(src_ptl);
888 spin_unlock(dst_ptl);
889 pte_free(dst_mm, pgtable);
890
891 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
892 goto out;
893 }
894 src_page = pmd_page(pmd);
895 VM_BUG_ON(!PageHead(src_page));
896 get_page(src_page);
897 page_dup_rmap(src_page);
898 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
899
900 pmdp_set_wrprotect(src_mm, addr, src_pmd);
901 pmd = pmd_mkold(pmd_wrprotect(pmd));
902 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
903 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
904 atomic_long_inc(&dst_mm->nr_ptes);
905
906 ret = 0;
907 out_unlock:
908 spin_unlock(src_ptl);
909 spin_unlock(dst_ptl);
910 out:
911 return ret;
912 }
913
914 void huge_pmd_set_accessed(struct mm_struct *mm,
915 struct vm_area_struct *vma,
916 unsigned long address,
917 pmd_t *pmd, pmd_t orig_pmd,
918 int dirty)
919 {
920 spinlock_t *ptl;
921 pmd_t entry;
922 unsigned long haddr;
923
924 ptl = pmd_lock(mm, pmd);
925 if (unlikely(!pmd_same(*pmd, orig_pmd)))
926 goto unlock;
927
928 entry = pmd_mkyoung(orig_pmd);
929 haddr = address & HPAGE_PMD_MASK;
930 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
931 update_mmu_cache_pmd(vma, address, pmd);
932
933 unlock:
934 spin_unlock(ptl);
935 }
936
937 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
938 struct vm_area_struct *vma, unsigned long address,
939 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
940 {
941 spinlock_t *ptl;
942 pgtable_t pgtable;
943 pmd_t _pmd;
944 struct page *page;
945 int i, ret = 0;
946 unsigned long mmun_start; /* For mmu_notifiers */
947 unsigned long mmun_end; /* For mmu_notifiers */
948
949 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
950 if (!page) {
951 ret |= VM_FAULT_OOM;
952 goto out;
953 }
954
955 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
956 put_page(page);
957 ret |= VM_FAULT_OOM;
958 goto out;
959 }
960
961 clear_user_highpage(page, address);
962 __SetPageUptodate(page);
963
964 mmun_start = haddr;
965 mmun_end = haddr + HPAGE_PMD_SIZE;
966 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
967
968 ptl = pmd_lock(mm, pmd);
969 if (unlikely(!pmd_same(*pmd, orig_pmd)))
970 goto out_free_page;
971
972 pmdp_clear_flush(vma, haddr, pmd);
973 /* leave pmd empty until pte is filled */
974
975 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
976 pmd_populate(mm, &_pmd, pgtable);
977
978 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
979 pte_t *pte, entry;
980 if (haddr == (address & PAGE_MASK)) {
981 entry = mk_pte(page, vma->vm_page_prot);
982 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
983 page_add_new_anon_rmap(page, vma, haddr);
984 } else {
985 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
986 entry = pte_mkspecial(entry);
987 }
988 pte = pte_offset_map(&_pmd, haddr);
989 VM_BUG_ON(!pte_none(*pte));
990 set_pte_at(mm, haddr, pte, entry);
991 pte_unmap(pte);
992 }
993 smp_wmb(); /* make pte visible before pmd */
994 pmd_populate(mm, pmd, pgtable);
995 spin_unlock(ptl);
996 put_huge_zero_page();
997 inc_mm_counter(mm, MM_ANONPAGES);
998
999 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1000
1001 ret |= VM_FAULT_WRITE;
1002 out:
1003 return ret;
1004 out_free_page:
1005 spin_unlock(ptl);
1006 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007 mem_cgroup_uncharge_page(page);
1008 put_page(page);
1009 goto out;
1010 }
1011
1012 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1013 struct vm_area_struct *vma,
1014 unsigned long address,
1015 pmd_t *pmd, pmd_t orig_pmd,
1016 struct page *page,
1017 unsigned long haddr)
1018 {
1019 spinlock_t *ptl;
1020 pgtable_t pgtable;
1021 pmd_t _pmd;
1022 int ret = 0, i;
1023 struct page **pages;
1024 unsigned long mmun_start; /* For mmu_notifiers */
1025 unsigned long mmun_end; /* For mmu_notifiers */
1026
1027 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1028 GFP_KERNEL);
1029 if (unlikely(!pages)) {
1030 ret |= VM_FAULT_OOM;
1031 goto out;
1032 }
1033
1034 for (i = 0; i < HPAGE_PMD_NR; i++) {
1035 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1036 __GFP_OTHER_NODE,
1037 vma, address, page_to_nid(page));
1038 if (unlikely(!pages[i] ||
1039 mem_cgroup_newpage_charge(pages[i], mm,
1040 GFP_KERNEL))) {
1041 if (pages[i])
1042 put_page(pages[i]);
1043 mem_cgroup_uncharge_start();
1044 while (--i >= 0) {
1045 mem_cgroup_uncharge_page(pages[i]);
1046 put_page(pages[i]);
1047 }
1048 mem_cgroup_uncharge_end();
1049 kfree(pages);
1050 ret |= VM_FAULT_OOM;
1051 goto out;
1052 }
1053 }
1054
1055 for (i = 0; i < HPAGE_PMD_NR; i++) {
1056 copy_user_highpage(pages[i], page + i,
1057 haddr + PAGE_SIZE * i, vma);
1058 __SetPageUptodate(pages[i]);
1059 cond_resched();
1060 }
1061
1062 mmun_start = haddr;
1063 mmun_end = haddr + HPAGE_PMD_SIZE;
1064 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1065
1066 ptl = pmd_lock(mm, pmd);
1067 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1068 goto out_free_pages;
1069 VM_BUG_ON(!PageHead(page));
1070
1071 pmdp_clear_flush(vma, haddr, pmd);
1072 /* leave pmd empty until pte is filled */
1073
1074 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1075 pmd_populate(mm, &_pmd, pgtable);
1076
1077 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1078 pte_t *pte, entry;
1079 entry = mk_pte(pages[i], vma->vm_page_prot);
1080 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1081 page_add_new_anon_rmap(pages[i], vma, haddr);
1082 pte = pte_offset_map(&_pmd, haddr);
1083 VM_BUG_ON(!pte_none(*pte));
1084 set_pte_at(mm, haddr, pte, entry);
1085 pte_unmap(pte);
1086 }
1087 kfree(pages);
1088
1089 smp_wmb(); /* make pte visible before pmd */
1090 pmd_populate(mm, pmd, pgtable);
1091 page_remove_rmap(page);
1092 spin_unlock(ptl);
1093
1094 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1095
1096 ret |= VM_FAULT_WRITE;
1097 put_page(page);
1098
1099 out:
1100 return ret;
1101
1102 out_free_pages:
1103 spin_unlock(ptl);
1104 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1105 mem_cgroup_uncharge_start();
1106 for (i = 0; i < HPAGE_PMD_NR; i++) {
1107 mem_cgroup_uncharge_page(pages[i]);
1108 put_page(pages[i]);
1109 }
1110 mem_cgroup_uncharge_end();
1111 kfree(pages);
1112 goto out;
1113 }
1114
1115 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1116 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1117 {
1118 spinlock_t *ptl;
1119 int ret = 0;
1120 struct page *page = NULL, *new_page;
1121 unsigned long haddr;
1122 unsigned long mmun_start; /* For mmu_notifiers */
1123 unsigned long mmun_end; /* For mmu_notifiers */
1124
1125 ptl = pmd_lockptr(mm, pmd);
1126 VM_BUG_ON(!vma->anon_vma);
1127 haddr = address & HPAGE_PMD_MASK;
1128 if (is_huge_zero_pmd(orig_pmd))
1129 goto alloc;
1130 spin_lock(ptl);
1131 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1132 goto out_unlock;
1133
1134 page = pmd_page(orig_pmd);
1135 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1136 if (page_mapcount(page) == 1) {
1137 pmd_t entry;
1138 entry = pmd_mkyoung(orig_pmd);
1139 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1141 update_mmu_cache_pmd(vma, address, pmd);
1142 ret |= VM_FAULT_WRITE;
1143 goto out_unlock;
1144 }
1145 get_page(page);
1146 spin_unlock(ptl);
1147 alloc:
1148 if (transparent_hugepage_enabled(vma) &&
1149 !transparent_hugepage_debug_cow())
1150 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1151 vma, haddr, numa_node_id(), 0);
1152 else
1153 new_page = NULL;
1154
1155 if (unlikely(!new_page)) {
1156 if (is_huge_zero_pmd(orig_pmd)) {
1157 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1158 address, pmd, orig_pmd, haddr);
1159 } else {
1160 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1161 pmd, orig_pmd, page, haddr);
1162 if (ret & VM_FAULT_OOM)
1163 split_huge_page(page);
1164 put_page(page);
1165 }
1166 count_vm_event(THP_FAULT_FALLBACK);
1167 goto out;
1168 }
1169
1170 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1171 put_page(new_page);
1172 if (page) {
1173 split_huge_page(page);
1174 put_page(page);
1175 }
1176 count_vm_event(THP_FAULT_FALLBACK);
1177 ret |= VM_FAULT_OOM;
1178 goto out;
1179 }
1180
1181 count_vm_event(THP_FAULT_ALLOC);
1182
1183 if (is_huge_zero_pmd(orig_pmd))
1184 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1185 else
1186 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1187 __SetPageUptodate(new_page);
1188
1189 mmun_start = haddr;
1190 mmun_end = haddr + HPAGE_PMD_SIZE;
1191 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1192
1193 spin_lock(ptl);
1194 if (page)
1195 put_page(page);
1196 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1197 spin_unlock(ptl);
1198 mem_cgroup_uncharge_page(new_page);
1199 put_page(new_page);
1200 goto out_mn;
1201 } else {
1202 pmd_t entry;
1203 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1204 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1205 pmdp_clear_flush(vma, haddr, pmd);
1206 page_add_new_anon_rmap(new_page, vma, haddr);
1207 set_pmd_at(mm, haddr, pmd, entry);
1208 update_mmu_cache_pmd(vma, address, pmd);
1209 if (is_huge_zero_pmd(orig_pmd)) {
1210 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1211 put_huge_zero_page();
1212 } else {
1213 VM_BUG_ON(!PageHead(page));
1214 page_remove_rmap(page);
1215 put_page(page);
1216 }
1217 ret |= VM_FAULT_WRITE;
1218 }
1219 spin_unlock(ptl);
1220 out_mn:
1221 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1222 out:
1223 return ret;
1224 out_unlock:
1225 spin_unlock(ptl);
1226 return ret;
1227 }
1228
1229 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1230 unsigned long addr,
1231 pmd_t *pmd,
1232 unsigned int flags)
1233 {
1234 struct mm_struct *mm = vma->vm_mm;
1235 struct page *page = NULL;
1236
1237 assert_spin_locked(pmd_lockptr(mm, pmd));
1238
1239 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1240 goto out;
1241
1242 /* Avoid dumping huge zero page */
1243 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1244 return ERR_PTR(-EFAULT);
1245
1246 /* Full NUMA hinting faults to serialise migration in fault paths */
1247 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1248 goto out;
1249
1250 page = pmd_page(*pmd);
1251 VM_BUG_ON(!PageHead(page));
1252 if (flags & FOLL_TOUCH) {
1253 pmd_t _pmd;
1254 /*
1255 * We should set the dirty bit only for FOLL_WRITE but
1256 * for now the dirty bit in the pmd is meaningless.
1257 * And if the dirty bit will become meaningful and
1258 * we'll only set it with FOLL_WRITE, an atomic
1259 * set_bit will be required on the pmd to set the
1260 * young bit, instead of the current set_pmd_at.
1261 */
1262 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1263 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1264 pmd, _pmd, 1))
1265 update_mmu_cache_pmd(vma, addr, pmd);
1266 }
1267 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1268 if (page->mapping && trylock_page(page)) {
1269 lru_add_drain();
1270 if (page->mapping)
1271 mlock_vma_page(page);
1272 unlock_page(page);
1273 }
1274 }
1275 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1276 VM_BUG_ON(!PageCompound(page));
1277 if (flags & FOLL_GET)
1278 get_page_foll(page);
1279
1280 out:
1281 return page;
1282 }
1283
1284 /* NUMA hinting page fault entry point for trans huge pmds */
1285 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1286 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1287 {
1288 spinlock_t *ptl;
1289 struct anon_vma *anon_vma = NULL;
1290 struct page *page;
1291 unsigned long haddr = addr & HPAGE_PMD_MASK;
1292 int page_nid = -1, this_nid = numa_node_id();
1293 int target_nid, last_cpupid = -1;
1294 bool page_locked;
1295 bool migrated = false;
1296 int flags = 0;
1297
1298 ptl = pmd_lock(mm, pmdp);
1299 if (unlikely(!pmd_same(pmd, *pmdp)))
1300 goto out_unlock;
1301
1302 page = pmd_page(pmd);
1303 BUG_ON(is_huge_zero_page(page));
1304 page_nid = page_to_nid(page);
1305 last_cpupid = page_cpupid_last(page);
1306 count_vm_numa_event(NUMA_HINT_FAULTS);
1307 if (page_nid == this_nid) {
1308 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1309 flags |= TNF_FAULT_LOCAL;
1310 }
1311
1312 /*
1313 * Avoid grouping on DSO/COW pages in specific and RO pages
1314 * in general, RO pages shouldn't hurt as much anyway since
1315 * they can be in shared cache state.
1316 */
1317 if (!pmd_write(pmd))
1318 flags |= TNF_NO_GROUP;
1319
1320 /*
1321 * Acquire the page lock to serialise THP migrations but avoid dropping
1322 * page_table_lock if at all possible
1323 */
1324 page_locked = trylock_page(page);
1325 target_nid = mpol_misplaced(page, vma, haddr);
1326 if (target_nid == -1) {
1327 /* If the page was locked, there are no parallel migrations */
1328 if (page_locked)
1329 goto clear_pmdnuma;
1330 }
1331
1332 /*
1333 * If there are potential migrations, wait for completion and retry. We
1334 * do not relock and check_same as the page may no longer be mapped.
1335 * Furtermore, even if the page is currently misplaced, there is no
1336 * guarantee it is still misplaced after the migration completes.
1337 */
1338 if (!page_locked) {
1339 spin_unlock(ptl);
1340 wait_on_page_locked(page);
1341 page_nid = -1;
1342 goto out;
1343 }
1344
1345 /*
1346 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1347 * to serialises splits
1348 */
1349 get_page(page);
1350 spin_unlock(ptl);
1351 anon_vma = page_lock_anon_vma_read(page);
1352
1353 /* Confirm the PMD did not change while page_table_lock was released */
1354 spin_lock(ptl);
1355 if (unlikely(!pmd_same(pmd, *pmdp))) {
1356 unlock_page(page);
1357 put_page(page);
1358 page_nid = -1;
1359 goto out_unlock;
1360 }
1361
1362 /*
1363 * Migrate the THP to the requested node, returns with page unlocked
1364 * and pmd_numa cleared.
1365 */
1366 spin_unlock(ptl);
1367 migrated = migrate_misplaced_transhuge_page(mm, vma,
1368 pmdp, pmd, addr, page, target_nid);
1369 if (migrated) {
1370 flags |= TNF_MIGRATED;
1371 page_nid = target_nid;
1372 }
1373
1374 goto out;
1375 clear_pmdnuma:
1376 BUG_ON(!PageLocked(page));
1377 pmd = pmd_mknonnuma(pmd);
1378 set_pmd_at(mm, haddr, pmdp, pmd);
1379 VM_BUG_ON(pmd_numa(*pmdp));
1380 update_mmu_cache_pmd(vma, addr, pmdp);
1381 unlock_page(page);
1382 out_unlock:
1383 spin_unlock(ptl);
1384
1385 out:
1386 if (anon_vma)
1387 page_unlock_anon_vma_read(anon_vma);
1388
1389 if (page_nid != -1)
1390 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1391
1392 return 0;
1393 }
1394
1395 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1396 pmd_t *pmd, unsigned long addr)
1397 {
1398 spinlock_t *ptl;
1399 int ret = 0;
1400
1401 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1402 struct page *page;
1403 pgtable_t pgtable;
1404 pmd_t orig_pmd;
1405 /*
1406 * For architectures like ppc64 we look at deposited pgtable
1407 * when calling pmdp_get_and_clear. So do the
1408 * pgtable_trans_huge_withdraw after finishing pmdp related
1409 * operations.
1410 */
1411 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1412 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1413 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1414 if (is_huge_zero_pmd(orig_pmd)) {
1415 atomic_long_dec(&tlb->mm->nr_ptes);
1416 spin_unlock(ptl);
1417 put_huge_zero_page();
1418 } else {
1419 page = pmd_page(orig_pmd);
1420 page_remove_rmap(page);
1421 VM_BUG_ON(page_mapcount(page) < 0);
1422 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1423 VM_BUG_ON(!PageHead(page));
1424 atomic_long_dec(&tlb->mm->nr_ptes);
1425 spin_unlock(ptl);
1426 tlb_remove_page(tlb, page);
1427 }
1428 pte_free(tlb->mm, pgtable);
1429 ret = 1;
1430 }
1431 return ret;
1432 }
1433
1434 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1435 unsigned long addr, unsigned long end,
1436 unsigned char *vec)
1437 {
1438 spinlock_t *ptl;
1439 int ret = 0;
1440
1441 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1442 /*
1443 * All logical pages in the range are present
1444 * if backed by a huge page.
1445 */
1446 spin_unlock(ptl);
1447 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1448 ret = 1;
1449 }
1450
1451 return ret;
1452 }
1453
1454 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1455 unsigned long old_addr,
1456 unsigned long new_addr, unsigned long old_end,
1457 pmd_t *old_pmd, pmd_t *new_pmd)
1458 {
1459 spinlock_t *old_ptl, *new_ptl;
1460 int ret = 0;
1461 pmd_t pmd;
1462
1463 struct mm_struct *mm = vma->vm_mm;
1464
1465 if ((old_addr & ~HPAGE_PMD_MASK) ||
1466 (new_addr & ~HPAGE_PMD_MASK) ||
1467 old_end - old_addr < HPAGE_PMD_SIZE ||
1468 (new_vma->vm_flags & VM_NOHUGEPAGE))
1469 goto out;
1470
1471 /*
1472 * The destination pmd shouldn't be established, free_pgtables()
1473 * should have release it.
1474 */
1475 if (WARN_ON(!pmd_none(*new_pmd))) {
1476 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1477 goto out;
1478 }
1479
1480 /*
1481 * We don't have to worry about the ordering of src and dst
1482 * ptlocks because exclusive mmap_sem prevents deadlock.
1483 */
1484 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1485 if (ret == 1) {
1486 new_ptl = pmd_lockptr(mm, new_pmd);
1487 if (new_ptl != old_ptl)
1488 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1489 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1490 VM_BUG_ON(!pmd_none(*new_pmd));
1491 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1492 if (new_ptl != old_ptl) {
1493 pgtable_t pgtable;
1494
1495 /*
1496 * Move preallocated PTE page table if new_pmd is on
1497 * different PMD page table.
1498 */
1499 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1500 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1501
1502 spin_unlock(new_ptl);
1503 }
1504 spin_unlock(old_ptl);
1505 }
1506 out:
1507 return ret;
1508 }
1509
1510 /*
1511 * Returns
1512 * - 0 if PMD could not be locked
1513 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1514 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1515 */
1516 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1517 unsigned long addr, pgprot_t newprot, int prot_numa)
1518 {
1519 struct mm_struct *mm = vma->vm_mm;
1520 spinlock_t *ptl;
1521 int ret = 0;
1522
1523 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1524 pmd_t entry;
1525 ret = 1;
1526 if (!prot_numa) {
1527 entry = pmdp_get_and_clear(mm, addr, pmd);
1528 entry = pmd_modify(entry, newprot);
1529 ret = HPAGE_PMD_NR;
1530 BUG_ON(pmd_write(entry));
1531 } else {
1532 struct page *page = pmd_page(*pmd);
1533
1534 /*
1535 * Do not trap faults against the zero page. The
1536 * read-only data is likely to be read-cached on the
1537 * local CPU cache and it is less useful to know about
1538 * local vs remote hits on the zero page.
1539 */
1540 if (!is_huge_zero_page(page) &&
1541 !pmd_numa(*pmd)) {
1542 entry = *pmd;
1543 entry = pmd_mknuma(entry);
1544 ret = HPAGE_PMD_NR;
1545 }
1546 }
1547
1548 /* Set PMD if cleared earlier */
1549 if (ret == HPAGE_PMD_NR)
1550 set_pmd_at(mm, addr, pmd, entry);
1551
1552 spin_unlock(ptl);
1553 }
1554
1555 return ret;
1556 }
1557
1558 /*
1559 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1560 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1561 *
1562 * Note that if it returns 1, this routine returns without unlocking page
1563 * table locks. So callers must unlock them.
1564 */
1565 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1566 spinlock_t **ptl)
1567 {
1568 *ptl = pmd_lock(vma->vm_mm, pmd);
1569 if (likely(pmd_trans_huge(*pmd))) {
1570 if (unlikely(pmd_trans_splitting(*pmd))) {
1571 spin_unlock(*ptl);
1572 wait_split_huge_page(vma->anon_vma, pmd);
1573 return -1;
1574 } else {
1575 /* Thp mapped by 'pmd' is stable, so we can
1576 * handle it as it is. */
1577 return 1;
1578 }
1579 }
1580 spin_unlock(*ptl);
1581 return 0;
1582 }
1583
1584 /*
1585 * This function returns whether a given @page is mapped onto the @address
1586 * in the virtual space of @mm.
1587 *
1588 * When it's true, this function returns *pmd with holding the page table lock
1589 * and passing it back to the caller via @ptl.
1590 * If it's false, returns NULL without holding the page table lock.
1591 */
1592 pmd_t *page_check_address_pmd(struct page *page,
1593 struct mm_struct *mm,
1594 unsigned long address,
1595 enum page_check_address_pmd_flag flag,
1596 spinlock_t **ptl)
1597 {
1598 pmd_t *pmd;
1599
1600 if (address & ~HPAGE_PMD_MASK)
1601 return NULL;
1602
1603 pmd = mm_find_pmd(mm, address);
1604 if (!pmd)
1605 return NULL;
1606 *ptl = pmd_lock(mm, pmd);
1607 if (pmd_none(*pmd))
1608 goto unlock;
1609 if (pmd_page(*pmd) != page)
1610 goto unlock;
1611 /*
1612 * split_vma() may create temporary aliased mappings. There is
1613 * no risk as long as all huge pmd are found and have their
1614 * splitting bit set before __split_huge_page_refcount
1615 * runs. Finding the same huge pmd more than once during the
1616 * same rmap walk is not a problem.
1617 */
1618 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1619 pmd_trans_splitting(*pmd))
1620 goto unlock;
1621 if (pmd_trans_huge(*pmd)) {
1622 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1623 !pmd_trans_splitting(*pmd));
1624 return pmd;
1625 }
1626 unlock:
1627 spin_unlock(*ptl);
1628 return NULL;
1629 }
1630
1631 static int __split_huge_page_splitting(struct page *page,
1632 struct vm_area_struct *vma,
1633 unsigned long address)
1634 {
1635 struct mm_struct *mm = vma->vm_mm;
1636 spinlock_t *ptl;
1637 pmd_t *pmd;
1638 int ret = 0;
1639 /* For mmu_notifiers */
1640 const unsigned long mmun_start = address;
1641 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1642
1643 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1644 pmd = page_check_address_pmd(page, mm, address,
1645 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1646 if (pmd) {
1647 /*
1648 * We can't temporarily set the pmd to null in order
1649 * to split it, the pmd must remain marked huge at all
1650 * times or the VM won't take the pmd_trans_huge paths
1651 * and it won't wait on the anon_vma->root->rwsem to
1652 * serialize against split_huge_page*.
1653 */
1654 pmdp_splitting_flush(vma, address, pmd);
1655 ret = 1;
1656 spin_unlock(ptl);
1657 }
1658 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1659
1660 return ret;
1661 }
1662
1663 static void __split_huge_page_refcount(struct page *page,
1664 struct list_head *list)
1665 {
1666 int i;
1667 struct zone *zone = page_zone(page);
1668 struct lruvec *lruvec;
1669 int tail_count = 0;
1670
1671 /* prevent PageLRU to go away from under us, and freeze lru stats */
1672 spin_lock_irq(&zone->lru_lock);
1673 lruvec = mem_cgroup_page_lruvec(page, zone);
1674
1675 compound_lock(page);
1676 /* complete memcg works before add pages to LRU */
1677 mem_cgroup_split_huge_fixup(page);
1678
1679 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1680 struct page *page_tail = page + i;
1681
1682 /* tail_page->_mapcount cannot change */
1683 BUG_ON(page_mapcount(page_tail) < 0);
1684 tail_count += page_mapcount(page_tail);
1685 /* check for overflow */
1686 BUG_ON(tail_count < 0);
1687 BUG_ON(atomic_read(&page_tail->_count) != 0);
1688 /*
1689 * tail_page->_count is zero and not changing from
1690 * under us. But get_page_unless_zero() may be running
1691 * from under us on the tail_page. If we used
1692 * atomic_set() below instead of atomic_add(), we
1693 * would then run atomic_set() concurrently with
1694 * get_page_unless_zero(), and atomic_set() is
1695 * implemented in C not using locked ops. spin_unlock
1696 * on x86 sometime uses locked ops because of PPro
1697 * errata 66, 92, so unless somebody can guarantee
1698 * atomic_set() here would be safe on all archs (and
1699 * not only on x86), it's safer to use atomic_add().
1700 */
1701 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1702 &page_tail->_count);
1703
1704 /* after clearing PageTail the gup refcount can be released */
1705 smp_mb();
1706
1707 /*
1708 * retain hwpoison flag of the poisoned tail page:
1709 * fix for the unsuitable process killed on Guest Machine(KVM)
1710 * by the memory-failure.
1711 */
1712 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1713 page_tail->flags |= (page->flags &
1714 ((1L << PG_referenced) |
1715 (1L << PG_swapbacked) |
1716 (1L << PG_mlocked) |
1717 (1L << PG_uptodate) |
1718 (1L << PG_active) |
1719 (1L << PG_unevictable)));
1720 page_tail->flags |= (1L << PG_dirty);
1721
1722 /* clear PageTail before overwriting first_page */
1723 smp_wmb();
1724
1725 /*
1726 * __split_huge_page_splitting() already set the
1727 * splitting bit in all pmd that could map this
1728 * hugepage, that will ensure no CPU can alter the
1729 * mapcount on the head page. The mapcount is only
1730 * accounted in the head page and it has to be
1731 * transferred to all tail pages in the below code. So
1732 * for this code to be safe, the split the mapcount
1733 * can't change. But that doesn't mean userland can't
1734 * keep changing and reading the page contents while
1735 * we transfer the mapcount, so the pmd splitting
1736 * status is achieved setting a reserved bit in the
1737 * pmd, not by clearing the present bit.
1738 */
1739 page_tail->_mapcount = page->_mapcount;
1740
1741 BUG_ON(page_tail->mapping);
1742 page_tail->mapping = page->mapping;
1743
1744 page_tail->index = page->index + i;
1745 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1746
1747 BUG_ON(!PageAnon(page_tail));
1748 BUG_ON(!PageUptodate(page_tail));
1749 BUG_ON(!PageDirty(page_tail));
1750 BUG_ON(!PageSwapBacked(page_tail));
1751
1752 lru_add_page_tail(page, page_tail, lruvec, list);
1753 }
1754 atomic_sub(tail_count, &page->_count);
1755 BUG_ON(atomic_read(&page->_count) <= 0);
1756
1757 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1758
1759 ClearPageCompound(page);
1760 compound_unlock(page);
1761 spin_unlock_irq(&zone->lru_lock);
1762
1763 for (i = 1; i < HPAGE_PMD_NR; i++) {
1764 struct page *page_tail = page + i;
1765 BUG_ON(page_count(page_tail) <= 0);
1766 /*
1767 * Tail pages may be freed if there wasn't any mapping
1768 * like if add_to_swap() is running on a lru page that
1769 * had its mapping zapped. And freeing these pages
1770 * requires taking the lru_lock so we do the put_page
1771 * of the tail pages after the split is complete.
1772 */
1773 put_page(page_tail);
1774 }
1775
1776 /*
1777 * Only the head page (now become a regular page) is required
1778 * to be pinned by the caller.
1779 */
1780 BUG_ON(page_count(page) <= 0);
1781 }
1782
1783 static int __split_huge_page_map(struct page *page,
1784 struct vm_area_struct *vma,
1785 unsigned long address)
1786 {
1787 struct mm_struct *mm = vma->vm_mm;
1788 spinlock_t *ptl;
1789 pmd_t *pmd, _pmd;
1790 int ret = 0, i;
1791 pgtable_t pgtable;
1792 unsigned long haddr;
1793
1794 pmd = page_check_address_pmd(page, mm, address,
1795 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1796 if (pmd) {
1797 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1798 pmd_populate(mm, &_pmd, pgtable);
1799
1800 haddr = address;
1801 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1802 pte_t *pte, entry;
1803 BUG_ON(PageCompound(page+i));
1804 entry = mk_pte(page + i, vma->vm_page_prot);
1805 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1806 if (!pmd_write(*pmd))
1807 entry = pte_wrprotect(entry);
1808 else
1809 BUG_ON(page_mapcount(page) != 1);
1810 if (!pmd_young(*pmd))
1811 entry = pte_mkold(entry);
1812 if (pmd_numa(*pmd))
1813 entry = pte_mknuma(entry);
1814 pte = pte_offset_map(&_pmd, haddr);
1815 BUG_ON(!pte_none(*pte));
1816 set_pte_at(mm, haddr, pte, entry);
1817 pte_unmap(pte);
1818 }
1819
1820 smp_wmb(); /* make pte visible before pmd */
1821 /*
1822 * Up to this point the pmd is present and huge and
1823 * userland has the whole access to the hugepage
1824 * during the split (which happens in place). If we
1825 * overwrite the pmd with the not-huge version
1826 * pointing to the pte here (which of course we could
1827 * if all CPUs were bug free), userland could trigger
1828 * a small page size TLB miss on the small sized TLB
1829 * while the hugepage TLB entry is still established
1830 * in the huge TLB. Some CPU doesn't like that. See
1831 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1832 * Erratum 383 on page 93. Intel should be safe but is
1833 * also warns that it's only safe if the permission
1834 * and cache attributes of the two entries loaded in
1835 * the two TLB is identical (which should be the case
1836 * here). But it is generally safer to never allow
1837 * small and huge TLB entries for the same virtual
1838 * address to be loaded simultaneously. So instead of
1839 * doing "pmd_populate(); flush_tlb_range();" we first
1840 * mark the current pmd notpresent (atomically because
1841 * here the pmd_trans_huge and pmd_trans_splitting
1842 * must remain set at all times on the pmd until the
1843 * split is complete for this pmd), then we flush the
1844 * SMP TLB and finally we write the non-huge version
1845 * of the pmd entry with pmd_populate.
1846 */
1847 pmdp_invalidate(vma, address, pmd);
1848 pmd_populate(mm, pmd, pgtable);
1849 ret = 1;
1850 spin_unlock(ptl);
1851 }
1852
1853 return ret;
1854 }
1855
1856 /* must be called with anon_vma->root->rwsem held */
1857 static void __split_huge_page(struct page *page,
1858 struct anon_vma *anon_vma,
1859 struct list_head *list)
1860 {
1861 int mapcount, mapcount2;
1862 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1863 struct anon_vma_chain *avc;
1864
1865 BUG_ON(!PageHead(page));
1866 BUG_ON(PageTail(page));
1867
1868 mapcount = 0;
1869 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1870 struct vm_area_struct *vma = avc->vma;
1871 unsigned long addr = vma_address(page, vma);
1872 BUG_ON(is_vma_temporary_stack(vma));
1873 mapcount += __split_huge_page_splitting(page, vma, addr);
1874 }
1875 /*
1876 * It is critical that new vmas are added to the tail of the
1877 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1878 * and establishes a child pmd before
1879 * __split_huge_page_splitting() freezes the parent pmd (so if
1880 * we fail to prevent copy_huge_pmd() from running until the
1881 * whole __split_huge_page() is complete), we will still see
1882 * the newly established pmd of the child later during the
1883 * walk, to be able to set it as pmd_trans_splitting too.
1884 */
1885 if (mapcount != page_mapcount(page))
1886 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1887 mapcount, page_mapcount(page));
1888 BUG_ON(mapcount != page_mapcount(page));
1889
1890 __split_huge_page_refcount(page, list);
1891
1892 mapcount2 = 0;
1893 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1894 struct vm_area_struct *vma = avc->vma;
1895 unsigned long addr = vma_address(page, vma);
1896 BUG_ON(is_vma_temporary_stack(vma));
1897 mapcount2 += __split_huge_page_map(page, vma, addr);
1898 }
1899 if (mapcount != mapcount2)
1900 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1901 mapcount, mapcount2, page_mapcount(page));
1902 BUG_ON(mapcount != mapcount2);
1903 }
1904
1905 /*
1906 * Split a hugepage into normal pages. This doesn't change the position of head
1907 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1908 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1909 * from the hugepage.
1910 * Return 0 if the hugepage is split successfully otherwise return 1.
1911 */
1912 int split_huge_page_to_list(struct page *page, struct list_head *list)
1913 {
1914 struct anon_vma *anon_vma;
1915 int ret = 1;
1916
1917 BUG_ON(is_huge_zero_page(page));
1918 BUG_ON(!PageAnon(page));
1919
1920 /*
1921 * The caller does not necessarily hold an mmap_sem that would prevent
1922 * the anon_vma disappearing so we first we take a reference to it
1923 * and then lock the anon_vma for write. This is similar to
1924 * page_lock_anon_vma_read except the write lock is taken to serialise
1925 * against parallel split or collapse operations.
1926 */
1927 anon_vma = page_get_anon_vma(page);
1928 if (!anon_vma)
1929 goto out;
1930 anon_vma_lock_write(anon_vma);
1931
1932 ret = 0;
1933 if (!PageCompound(page))
1934 goto out_unlock;
1935
1936 BUG_ON(!PageSwapBacked(page));
1937 __split_huge_page(page, anon_vma, list);
1938 count_vm_event(THP_SPLIT);
1939
1940 BUG_ON(PageCompound(page));
1941 out_unlock:
1942 anon_vma_unlock_write(anon_vma);
1943 put_anon_vma(anon_vma);
1944 out:
1945 return ret;
1946 }
1947
1948 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1949
1950 int hugepage_madvise(struct vm_area_struct *vma,
1951 unsigned long *vm_flags, int advice)
1952 {
1953 struct mm_struct *mm = vma->vm_mm;
1954
1955 switch (advice) {
1956 case MADV_HUGEPAGE:
1957 /*
1958 * Be somewhat over-protective like KSM for now!
1959 */
1960 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1961 return -EINVAL;
1962 if (mm->def_flags & VM_NOHUGEPAGE)
1963 return -EINVAL;
1964 *vm_flags &= ~VM_NOHUGEPAGE;
1965 *vm_flags |= VM_HUGEPAGE;
1966 /*
1967 * If the vma become good for khugepaged to scan,
1968 * register it here without waiting a page fault that
1969 * may not happen any time soon.
1970 */
1971 if (unlikely(khugepaged_enter_vma_merge(vma)))
1972 return -ENOMEM;
1973 break;
1974 case MADV_NOHUGEPAGE:
1975 /*
1976 * Be somewhat over-protective like KSM for now!
1977 */
1978 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1979 return -EINVAL;
1980 *vm_flags &= ~VM_HUGEPAGE;
1981 *vm_flags |= VM_NOHUGEPAGE;
1982 /*
1983 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1984 * this vma even if we leave the mm registered in khugepaged if
1985 * it got registered before VM_NOHUGEPAGE was set.
1986 */
1987 break;
1988 }
1989
1990 return 0;
1991 }
1992
1993 static int __init khugepaged_slab_init(void)
1994 {
1995 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1996 sizeof(struct mm_slot),
1997 __alignof__(struct mm_slot), 0, NULL);
1998 if (!mm_slot_cache)
1999 return -ENOMEM;
2000
2001 return 0;
2002 }
2003
2004 static inline struct mm_slot *alloc_mm_slot(void)
2005 {
2006 if (!mm_slot_cache) /* initialization failed */
2007 return NULL;
2008 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2009 }
2010
2011 static inline void free_mm_slot(struct mm_slot *mm_slot)
2012 {
2013 kmem_cache_free(mm_slot_cache, mm_slot);
2014 }
2015
2016 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2017 {
2018 struct mm_slot *mm_slot;
2019
2020 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2021 if (mm == mm_slot->mm)
2022 return mm_slot;
2023
2024 return NULL;
2025 }
2026
2027 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2028 struct mm_slot *mm_slot)
2029 {
2030 mm_slot->mm = mm;
2031 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2032 }
2033
2034 static inline int khugepaged_test_exit(struct mm_struct *mm)
2035 {
2036 return atomic_read(&mm->mm_users) == 0;
2037 }
2038
2039 int __khugepaged_enter(struct mm_struct *mm)
2040 {
2041 struct mm_slot *mm_slot;
2042 int wakeup;
2043
2044 mm_slot = alloc_mm_slot();
2045 if (!mm_slot)
2046 return -ENOMEM;
2047
2048 /* __khugepaged_exit() must not run from under us */
2049 VM_BUG_ON(khugepaged_test_exit(mm));
2050 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2051 free_mm_slot(mm_slot);
2052 return 0;
2053 }
2054
2055 spin_lock(&khugepaged_mm_lock);
2056 insert_to_mm_slots_hash(mm, mm_slot);
2057 /*
2058 * Insert just behind the scanning cursor, to let the area settle
2059 * down a little.
2060 */
2061 wakeup = list_empty(&khugepaged_scan.mm_head);
2062 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2063 spin_unlock(&khugepaged_mm_lock);
2064
2065 atomic_inc(&mm->mm_count);
2066 if (wakeup)
2067 wake_up_interruptible(&khugepaged_wait);
2068
2069 return 0;
2070 }
2071
2072 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2073 {
2074 unsigned long hstart, hend;
2075 if (!vma->anon_vma)
2076 /*
2077 * Not yet faulted in so we will register later in the
2078 * page fault if needed.
2079 */
2080 return 0;
2081 if (vma->vm_ops)
2082 /* khugepaged not yet working on file or special mappings */
2083 return 0;
2084 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2085 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2086 hend = vma->vm_end & HPAGE_PMD_MASK;
2087 if (hstart < hend)
2088 return khugepaged_enter(vma);
2089 return 0;
2090 }
2091
2092 void __khugepaged_exit(struct mm_struct *mm)
2093 {
2094 struct mm_slot *mm_slot;
2095 int free = 0;
2096
2097 spin_lock(&khugepaged_mm_lock);
2098 mm_slot = get_mm_slot(mm);
2099 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2100 hash_del(&mm_slot->hash);
2101 list_del(&mm_slot->mm_node);
2102 free = 1;
2103 }
2104 spin_unlock(&khugepaged_mm_lock);
2105
2106 if (free) {
2107 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2108 free_mm_slot(mm_slot);
2109 mmdrop(mm);
2110 } else if (mm_slot) {
2111 /*
2112 * This is required to serialize against
2113 * khugepaged_test_exit() (which is guaranteed to run
2114 * under mmap sem read mode). Stop here (after we
2115 * return all pagetables will be destroyed) until
2116 * khugepaged has finished working on the pagetables
2117 * under the mmap_sem.
2118 */
2119 down_write(&mm->mmap_sem);
2120 up_write(&mm->mmap_sem);
2121 }
2122 }
2123
2124 static void release_pte_page(struct page *page)
2125 {
2126 /* 0 stands for page_is_file_cache(page) == false */
2127 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2128 unlock_page(page);
2129 putback_lru_page(page);
2130 }
2131
2132 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2133 {
2134 while (--_pte >= pte) {
2135 pte_t pteval = *_pte;
2136 if (!pte_none(pteval))
2137 release_pte_page(pte_page(pteval));
2138 }
2139 }
2140
2141 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2142 unsigned long address,
2143 pte_t *pte)
2144 {
2145 struct page *page;
2146 pte_t *_pte;
2147 int referenced = 0, none = 0;
2148 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2149 _pte++, address += PAGE_SIZE) {
2150 pte_t pteval = *_pte;
2151 if (pte_none(pteval)) {
2152 if (++none <= khugepaged_max_ptes_none)
2153 continue;
2154 else
2155 goto out;
2156 }
2157 if (!pte_present(pteval) || !pte_write(pteval))
2158 goto out;
2159 page = vm_normal_page(vma, address, pteval);
2160 if (unlikely(!page))
2161 goto out;
2162
2163 VM_BUG_ON(PageCompound(page));
2164 BUG_ON(!PageAnon(page));
2165 VM_BUG_ON(!PageSwapBacked(page));
2166
2167 /* cannot use mapcount: can't collapse if there's a gup pin */
2168 if (page_count(page) != 1)
2169 goto out;
2170 /*
2171 * We can do it before isolate_lru_page because the
2172 * page can't be freed from under us. NOTE: PG_lock
2173 * is needed to serialize against split_huge_page
2174 * when invoked from the VM.
2175 */
2176 if (!trylock_page(page))
2177 goto out;
2178 /*
2179 * Isolate the page to avoid collapsing an hugepage
2180 * currently in use by the VM.
2181 */
2182 if (isolate_lru_page(page)) {
2183 unlock_page(page);
2184 goto out;
2185 }
2186 /* 0 stands for page_is_file_cache(page) == false */
2187 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2188 VM_BUG_ON(!PageLocked(page));
2189 VM_BUG_ON(PageLRU(page));
2190
2191 /* If there is no mapped pte young don't collapse the page */
2192 if (pte_young(pteval) || PageReferenced(page) ||
2193 mmu_notifier_test_young(vma->vm_mm, address))
2194 referenced = 1;
2195 }
2196 if (likely(referenced))
2197 return 1;
2198 out:
2199 release_pte_pages(pte, _pte);
2200 return 0;
2201 }
2202
2203 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2204 struct vm_area_struct *vma,
2205 unsigned long address,
2206 spinlock_t *ptl)
2207 {
2208 pte_t *_pte;
2209 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2210 pte_t pteval = *_pte;
2211 struct page *src_page;
2212
2213 if (pte_none(pteval)) {
2214 clear_user_highpage(page, address);
2215 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2216 } else {
2217 src_page = pte_page(pteval);
2218 copy_user_highpage(page, src_page, address, vma);
2219 VM_BUG_ON(page_mapcount(src_page) != 1);
2220 release_pte_page(src_page);
2221 /*
2222 * ptl mostly unnecessary, but preempt has to
2223 * be disabled to update the per-cpu stats
2224 * inside page_remove_rmap().
2225 */
2226 spin_lock(ptl);
2227 /*
2228 * paravirt calls inside pte_clear here are
2229 * superfluous.
2230 */
2231 pte_clear(vma->vm_mm, address, _pte);
2232 page_remove_rmap(src_page);
2233 spin_unlock(ptl);
2234 free_page_and_swap_cache(src_page);
2235 }
2236
2237 address += PAGE_SIZE;
2238 page++;
2239 }
2240 }
2241
2242 static void khugepaged_alloc_sleep(void)
2243 {
2244 wait_event_freezable_timeout(khugepaged_wait, false,
2245 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2246 }
2247
2248 static int khugepaged_node_load[MAX_NUMNODES];
2249
2250 #ifdef CONFIG_NUMA
2251 static int khugepaged_find_target_node(void)
2252 {
2253 static int last_khugepaged_target_node = NUMA_NO_NODE;
2254 int nid, target_node = 0, max_value = 0;
2255
2256 /* find first node with max normal pages hit */
2257 for (nid = 0; nid < MAX_NUMNODES; nid++)
2258 if (khugepaged_node_load[nid] > max_value) {
2259 max_value = khugepaged_node_load[nid];
2260 target_node = nid;
2261 }
2262
2263 /* do some balance if several nodes have the same hit record */
2264 if (target_node <= last_khugepaged_target_node)
2265 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2266 nid++)
2267 if (max_value == khugepaged_node_load[nid]) {
2268 target_node = nid;
2269 break;
2270 }
2271
2272 last_khugepaged_target_node = target_node;
2273 return target_node;
2274 }
2275
2276 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2277 {
2278 if (IS_ERR(*hpage)) {
2279 if (!*wait)
2280 return false;
2281
2282 *wait = false;
2283 *hpage = NULL;
2284 khugepaged_alloc_sleep();
2285 } else if (*hpage) {
2286 put_page(*hpage);
2287 *hpage = NULL;
2288 }
2289
2290 return true;
2291 }
2292
2293 static struct page
2294 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2295 struct vm_area_struct *vma, unsigned long address,
2296 int node)
2297 {
2298 VM_BUG_ON(*hpage);
2299 /*
2300 * Allocate the page while the vma is still valid and under
2301 * the mmap_sem read mode so there is no memory allocation
2302 * later when we take the mmap_sem in write mode. This is more
2303 * friendly behavior (OTOH it may actually hide bugs) to
2304 * filesystems in userland with daemons allocating memory in
2305 * the userland I/O paths. Allocating memory with the
2306 * mmap_sem in read mode is good idea also to allow greater
2307 * scalability.
2308 */
2309 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2310 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2311 /*
2312 * After allocating the hugepage, release the mmap_sem read lock in
2313 * preparation for taking it in write mode.
2314 */
2315 up_read(&mm->mmap_sem);
2316 if (unlikely(!*hpage)) {
2317 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2318 *hpage = ERR_PTR(-ENOMEM);
2319 return NULL;
2320 }
2321
2322 count_vm_event(THP_COLLAPSE_ALLOC);
2323 return *hpage;
2324 }
2325 #else
2326 static int khugepaged_find_target_node(void)
2327 {
2328 return 0;
2329 }
2330
2331 static inline struct page *alloc_hugepage(int defrag)
2332 {
2333 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2334 HPAGE_PMD_ORDER);
2335 }
2336
2337 static struct page *khugepaged_alloc_hugepage(bool *wait)
2338 {
2339 struct page *hpage;
2340
2341 do {
2342 hpage = alloc_hugepage(khugepaged_defrag());
2343 if (!hpage) {
2344 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2345 if (!*wait)
2346 return NULL;
2347
2348 *wait = false;
2349 khugepaged_alloc_sleep();
2350 } else
2351 count_vm_event(THP_COLLAPSE_ALLOC);
2352 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2353
2354 return hpage;
2355 }
2356
2357 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2358 {
2359 if (!*hpage)
2360 *hpage = khugepaged_alloc_hugepage(wait);
2361
2362 if (unlikely(!*hpage))
2363 return false;
2364
2365 return true;
2366 }
2367
2368 static struct page
2369 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2370 struct vm_area_struct *vma, unsigned long address,
2371 int node)
2372 {
2373 up_read(&mm->mmap_sem);
2374 VM_BUG_ON(!*hpage);
2375 return *hpage;
2376 }
2377 #endif
2378
2379 static bool hugepage_vma_check(struct vm_area_struct *vma)
2380 {
2381 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2382 (vma->vm_flags & VM_NOHUGEPAGE))
2383 return false;
2384
2385 if (!vma->anon_vma || vma->vm_ops)
2386 return false;
2387 if (is_vma_temporary_stack(vma))
2388 return false;
2389 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2390 return true;
2391 }
2392
2393 static void collapse_huge_page(struct mm_struct *mm,
2394 unsigned long address,
2395 struct page **hpage,
2396 struct vm_area_struct *vma,
2397 int node)
2398 {
2399 pmd_t *pmd, _pmd;
2400 pte_t *pte;
2401 pgtable_t pgtable;
2402 struct page *new_page;
2403 spinlock_t *pmd_ptl, *pte_ptl;
2404 int isolated;
2405 unsigned long hstart, hend;
2406 unsigned long mmun_start; /* For mmu_notifiers */
2407 unsigned long mmun_end; /* For mmu_notifiers */
2408
2409 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2410
2411 /* release the mmap_sem read lock. */
2412 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2413 if (!new_page)
2414 return;
2415
2416 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2417 return;
2418
2419 /*
2420 * Prevent all access to pagetables with the exception of
2421 * gup_fast later hanlded by the ptep_clear_flush and the VM
2422 * handled by the anon_vma lock + PG_lock.
2423 */
2424 down_write(&mm->mmap_sem);
2425 if (unlikely(khugepaged_test_exit(mm)))
2426 goto out;
2427
2428 vma = find_vma(mm, address);
2429 if (!vma)
2430 goto out;
2431 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2432 hend = vma->vm_end & HPAGE_PMD_MASK;
2433 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2434 goto out;
2435 if (!hugepage_vma_check(vma))
2436 goto out;
2437 pmd = mm_find_pmd(mm, address);
2438 if (!pmd)
2439 goto out;
2440 if (pmd_trans_huge(*pmd))
2441 goto out;
2442
2443 anon_vma_lock_write(vma->anon_vma);
2444
2445 pte = pte_offset_map(pmd, address);
2446 pte_ptl = pte_lockptr(mm, pmd);
2447
2448 mmun_start = address;
2449 mmun_end = address + HPAGE_PMD_SIZE;
2450 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2451 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2452 /*
2453 * After this gup_fast can't run anymore. This also removes
2454 * any huge TLB entry from the CPU so we won't allow
2455 * huge and small TLB entries for the same virtual address
2456 * to avoid the risk of CPU bugs in that area.
2457 */
2458 _pmd = pmdp_clear_flush(vma, address, pmd);
2459 spin_unlock(pmd_ptl);
2460 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2461
2462 spin_lock(pte_ptl);
2463 isolated = __collapse_huge_page_isolate(vma, address, pte);
2464 spin_unlock(pte_ptl);
2465
2466 if (unlikely(!isolated)) {
2467 pte_unmap(pte);
2468 spin_lock(pmd_ptl);
2469 BUG_ON(!pmd_none(*pmd));
2470 /*
2471 * We can only use set_pmd_at when establishing
2472 * hugepmds and never for establishing regular pmds that
2473 * points to regular pagetables. Use pmd_populate for that
2474 */
2475 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2476 spin_unlock(pmd_ptl);
2477 anon_vma_unlock_write(vma->anon_vma);
2478 goto out;
2479 }
2480
2481 /*
2482 * All pages are isolated and locked so anon_vma rmap
2483 * can't run anymore.
2484 */
2485 anon_vma_unlock_write(vma->anon_vma);
2486
2487 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2488 pte_unmap(pte);
2489 __SetPageUptodate(new_page);
2490 pgtable = pmd_pgtable(_pmd);
2491
2492 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2493 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2494
2495 /*
2496 * spin_lock() below is not the equivalent of smp_wmb(), so
2497 * this is needed to avoid the copy_huge_page writes to become
2498 * visible after the set_pmd_at() write.
2499 */
2500 smp_wmb();
2501
2502 spin_lock(pmd_ptl);
2503 BUG_ON(!pmd_none(*pmd));
2504 page_add_new_anon_rmap(new_page, vma, address);
2505 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2506 set_pmd_at(mm, address, pmd, _pmd);
2507 update_mmu_cache_pmd(vma, address, pmd);
2508 spin_unlock(pmd_ptl);
2509
2510 *hpage = NULL;
2511
2512 khugepaged_pages_collapsed++;
2513 out_up_write:
2514 up_write(&mm->mmap_sem);
2515 return;
2516
2517 out:
2518 mem_cgroup_uncharge_page(new_page);
2519 goto out_up_write;
2520 }
2521
2522 static int khugepaged_scan_pmd(struct mm_struct *mm,
2523 struct vm_area_struct *vma,
2524 unsigned long address,
2525 struct page **hpage)
2526 {
2527 pmd_t *pmd;
2528 pte_t *pte, *_pte;
2529 int ret = 0, referenced = 0, none = 0;
2530 struct page *page;
2531 unsigned long _address;
2532 spinlock_t *ptl;
2533 int node = NUMA_NO_NODE;
2534
2535 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2536
2537 pmd = mm_find_pmd(mm, address);
2538 if (!pmd)
2539 goto out;
2540 if (pmd_trans_huge(*pmd))
2541 goto out;
2542
2543 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2544 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2545 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2546 _pte++, _address += PAGE_SIZE) {
2547 pte_t pteval = *_pte;
2548 if (pte_none(pteval)) {
2549 if (++none <= khugepaged_max_ptes_none)
2550 continue;
2551 else
2552 goto out_unmap;
2553 }
2554 if (!pte_present(pteval) || !pte_write(pteval))
2555 goto out_unmap;
2556 page = vm_normal_page(vma, _address, pteval);
2557 if (unlikely(!page))
2558 goto out_unmap;
2559 /*
2560 * Record which node the original page is from and save this
2561 * information to khugepaged_node_load[].
2562 * Khupaged will allocate hugepage from the node has the max
2563 * hit record.
2564 */
2565 node = page_to_nid(page);
2566 khugepaged_node_load[node]++;
2567 VM_BUG_ON(PageCompound(page));
2568 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2569 goto out_unmap;
2570 /* cannot use mapcount: can't collapse if there's a gup pin */
2571 if (page_count(page) != 1)
2572 goto out_unmap;
2573 if (pte_young(pteval) || PageReferenced(page) ||
2574 mmu_notifier_test_young(vma->vm_mm, address))
2575 referenced = 1;
2576 }
2577 if (referenced)
2578 ret = 1;
2579 out_unmap:
2580 pte_unmap_unlock(pte, ptl);
2581 if (ret) {
2582 node = khugepaged_find_target_node();
2583 /* collapse_huge_page will return with the mmap_sem released */
2584 collapse_huge_page(mm, address, hpage, vma, node);
2585 }
2586 out:
2587 return ret;
2588 }
2589
2590 static void collect_mm_slot(struct mm_slot *mm_slot)
2591 {
2592 struct mm_struct *mm = mm_slot->mm;
2593
2594 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2595
2596 if (khugepaged_test_exit(mm)) {
2597 /* free mm_slot */
2598 hash_del(&mm_slot->hash);
2599 list_del(&mm_slot->mm_node);
2600
2601 /*
2602 * Not strictly needed because the mm exited already.
2603 *
2604 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2605 */
2606
2607 /* khugepaged_mm_lock actually not necessary for the below */
2608 free_mm_slot(mm_slot);
2609 mmdrop(mm);
2610 }
2611 }
2612
2613 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2614 struct page **hpage)
2615 __releases(&khugepaged_mm_lock)
2616 __acquires(&khugepaged_mm_lock)
2617 {
2618 struct mm_slot *mm_slot;
2619 struct mm_struct *mm;
2620 struct vm_area_struct *vma;
2621 int progress = 0;
2622
2623 VM_BUG_ON(!pages);
2624 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2625
2626 if (khugepaged_scan.mm_slot)
2627 mm_slot = khugepaged_scan.mm_slot;
2628 else {
2629 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2630 struct mm_slot, mm_node);
2631 khugepaged_scan.address = 0;
2632 khugepaged_scan.mm_slot = mm_slot;
2633 }
2634 spin_unlock(&khugepaged_mm_lock);
2635
2636 mm = mm_slot->mm;
2637 down_read(&mm->mmap_sem);
2638 if (unlikely(khugepaged_test_exit(mm)))
2639 vma = NULL;
2640 else
2641 vma = find_vma(mm, khugepaged_scan.address);
2642
2643 progress++;
2644 for (; vma; vma = vma->vm_next) {
2645 unsigned long hstart, hend;
2646
2647 cond_resched();
2648 if (unlikely(khugepaged_test_exit(mm))) {
2649 progress++;
2650 break;
2651 }
2652 if (!hugepage_vma_check(vma)) {
2653 skip:
2654 progress++;
2655 continue;
2656 }
2657 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2658 hend = vma->vm_end & HPAGE_PMD_MASK;
2659 if (hstart >= hend)
2660 goto skip;
2661 if (khugepaged_scan.address > hend)
2662 goto skip;
2663 if (khugepaged_scan.address < hstart)
2664 khugepaged_scan.address = hstart;
2665 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2666
2667 while (khugepaged_scan.address < hend) {
2668 int ret;
2669 cond_resched();
2670 if (unlikely(khugepaged_test_exit(mm)))
2671 goto breakouterloop;
2672
2673 VM_BUG_ON(khugepaged_scan.address < hstart ||
2674 khugepaged_scan.address + HPAGE_PMD_SIZE >
2675 hend);
2676 ret = khugepaged_scan_pmd(mm, vma,
2677 khugepaged_scan.address,
2678 hpage);
2679 /* move to next address */
2680 khugepaged_scan.address += HPAGE_PMD_SIZE;
2681 progress += HPAGE_PMD_NR;
2682 if (ret)
2683 /* we released mmap_sem so break loop */
2684 goto breakouterloop_mmap_sem;
2685 if (progress >= pages)
2686 goto breakouterloop;
2687 }
2688 }
2689 breakouterloop:
2690 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2691 breakouterloop_mmap_sem:
2692
2693 spin_lock(&khugepaged_mm_lock);
2694 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2695 /*
2696 * Release the current mm_slot if this mm is about to die, or
2697 * if we scanned all vmas of this mm.
2698 */
2699 if (khugepaged_test_exit(mm) || !vma) {
2700 /*
2701 * Make sure that if mm_users is reaching zero while
2702 * khugepaged runs here, khugepaged_exit will find
2703 * mm_slot not pointing to the exiting mm.
2704 */
2705 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2706 khugepaged_scan.mm_slot = list_entry(
2707 mm_slot->mm_node.next,
2708 struct mm_slot, mm_node);
2709 khugepaged_scan.address = 0;
2710 } else {
2711 khugepaged_scan.mm_slot = NULL;
2712 khugepaged_full_scans++;
2713 }
2714
2715 collect_mm_slot(mm_slot);
2716 }
2717
2718 return progress;
2719 }
2720
2721 static int khugepaged_has_work(void)
2722 {
2723 return !list_empty(&khugepaged_scan.mm_head) &&
2724 khugepaged_enabled();
2725 }
2726
2727 static int khugepaged_wait_event(void)
2728 {
2729 return !list_empty(&khugepaged_scan.mm_head) ||
2730 kthread_should_stop();
2731 }
2732
2733 static void khugepaged_do_scan(void)
2734 {
2735 struct page *hpage = NULL;
2736 unsigned int progress = 0, pass_through_head = 0;
2737 unsigned int pages = khugepaged_pages_to_scan;
2738 bool wait = true;
2739
2740 barrier(); /* write khugepaged_pages_to_scan to local stack */
2741
2742 while (progress < pages) {
2743 if (!khugepaged_prealloc_page(&hpage, &wait))
2744 break;
2745
2746 cond_resched();
2747
2748 if (unlikely(kthread_should_stop() || freezing(current)))
2749 break;
2750
2751 spin_lock(&khugepaged_mm_lock);
2752 if (!khugepaged_scan.mm_slot)
2753 pass_through_head++;
2754 if (khugepaged_has_work() &&
2755 pass_through_head < 2)
2756 progress += khugepaged_scan_mm_slot(pages - progress,
2757 &hpage);
2758 else
2759 progress = pages;
2760 spin_unlock(&khugepaged_mm_lock);
2761 }
2762
2763 if (!IS_ERR_OR_NULL(hpage))
2764 put_page(hpage);
2765 }
2766
2767 static void khugepaged_wait_work(void)
2768 {
2769 try_to_freeze();
2770
2771 if (khugepaged_has_work()) {
2772 if (!khugepaged_scan_sleep_millisecs)
2773 return;
2774
2775 wait_event_freezable_timeout(khugepaged_wait,
2776 kthread_should_stop(),
2777 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2778 return;
2779 }
2780
2781 if (khugepaged_enabled())
2782 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2783 }
2784
2785 static int khugepaged(void *none)
2786 {
2787 struct mm_slot *mm_slot;
2788
2789 set_freezable();
2790 set_user_nice(current, 19);
2791
2792 while (!kthread_should_stop()) {
2793 khugepaged_do_scan();
2794 khugepaged_wait_work();
2795 }
2796
2797 spin_lock(&khugepaged_mm_lock);
2798 mm_slot = khugepaged_scan.mm_slot;
2799 khugepaged_scan.mm_slot = NULL;
2800 if (mm_slot)
2801 collect_mm_slot(mm_slot);
2802 spin_unlock(&khugepaged_mm_lock);
2803 return 0;
2804 }
2805
2806 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2807 unsigned long haddr, pmd_t *pmd)
2808 {
2809 struct mm_struct *mm = vma->vm_mm;
2810 pgtable_t pgtable;
2811 pmd_t _pmd;
2812 int i;
2813
2814 pmdp_clear_flush(vma, haddr, pmd);
2815 /* leave pmd empty until pte is filled */
2816
2817 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2818 pmd_populate(mm, &_pmd, pgtable);
2819
2820 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2821 pte_t *pte, entry;
2822 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2823 entry = pte_mkspecial(entry);
2824 pte = pte_offset_map(&_pmd, haddr);
2825 VM_BUG_ON(!pte_none(*pte));
2826 set_pte_at(mm, haddr, pte, entry);
2827 pte_unmap(pte);
2828 }
2829 smp_wmb(); /* make pte visible before pmd */
2830 pmd_populate(mm, pmd, pgtable);
2831 put_huge_zero_page();
2832 }
2833
2834 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2835 pmd_t *pmd)
2836 {
2837 spinlock_t *ptl;
2838 struct page *page;
2839 struct mm_struct *mm = vma->vm_mm;
2840 unsigned long haddr = address & HPAGE_PMD_MASK;
2841 unsigned long mmun_start; /* For mmu_notifiers */
2842 unsigned long mmun_end; /* For mmu_notifiers */
2843
2844 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2845
2846 mmun_start = haddr;
2847 mmun_end = haddr + HPAGE_PMD_SIZE;
2848 again:
2849 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2850 ptl = pmd_lock(mm, pmd);
2851 if (unlikely(!pmd_trans_huge(*pmd))) {
2852 spin_unlock(ptl);
2853 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2854 return;
2855 }
2856 if (is_huge_zero_pmd(*pmd)) {
2857 __split_huge_zero_page_pmd(vma, haddr, pmd);
2858 spin_unlock(ptl);
2859 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2860 return;
2861 }
2862 page = pmd_page(*pmd);
2863 VM_BUG_ON(!page_count(page));
2864 get_page(page);
2865 spin_unlock(ptl);
2866 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2867
2868 split_huge_page(page);
2869
2870 put_page(page);
2871
2872 /*
2873 * We don't always have down_write of mmap_sem here: a racing
2874 * do_huge_pmd_wp_page() might have copied-on-write to another
2875 * huge page before our split_huge_page() got the anon_vma lock.
2876 */
2877 if (unlikely(pmd_trans_huge(*pmd)))
2878 goto again;
2879 }
2880
2881 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2882 pmd_t *pmd)
2883 {
2884 struct vm_area_struct *vma;
2885
2886 vma = find_vma(mm, address);
2887 BUG_ON(vma == NULL);
2888 split_huge_page_pmd(vma, address, pmd);
2889 }
2890
2891 static void split_huge_page_address(struct mm_struct *mm,
2892 unsigned long address)
2893 {
2894 pmd_t *pmd;
2895
2896 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2897
2898 pmd = mm_find_pmd(mm, address);
2899 if (!pmd)
2900 return;
2901 /*
2902 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2903 * materialize from under us.
2904 */
2905 split_huge_page_pmd_mm(mm, address, pmd);
2906 }
2907
2908 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2909 unsigned long start,
2910 unsigned long end,
2911 long adjust_next)
2912 {
2913 /*
2914 * If the new start address isn't hpage aligned and it could
2915 * previously contain an hugepage: check if we need to split
2916 * an huge pmd.
2917 */
2918 if (start & ~HPAGE_PMD_MASK &&
2919 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2920 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2921 split_huge_page_address(vma->vm_mm, start);
2922
2923 /*
2924 * If the new end address isn't hpage aligned and it could
2925 * previously contain an hugepage: check if we need to split
2926 * an huge pmd.
2927 */
2928 if (end & ~HPAGE_PMD_MASK &&
2929 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2930 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2931 split_huge_page_address(vma->vm_mm, end);
2932
2933 /*
2934 * If we're also updating the vma->vm_next->vm_start, if the new
2935 * vm_next->vm_start isn't page aligned and it could previously
2936 * contain an hugepage: check if we need to split an huge pmd.
2937 */
2938 if (adjust_next > 0) {
2939 struct vm_area_struct *next = vma->vm_next;
2940 unsigned long nstart = next->vm_start;
2941 nstart += adjust_next << PAGE_SHIFT;
2942 if (nstart & ~HPAGE_PMD_MASK &&
2943 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2944 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2945 split_huge_page_address(next->vm_mm, nstart);
2946 }
2947 }