]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/huge_memory.c
mm: introduce do_set_pmd()
[mirror_ubuntu-zesty-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
52 SCAN_PAGE_COMPOUND,
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL,
61 SCAN_EXCEED_SWAP_PTE
62 };
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
66
67 /*
68 * By default transparent hugepage support is disabled in order that avoid
69 * to risk increase the memory footprint of applications without a guaranteed
70 * benefit. When transparent hugepage support is enabled, is for all mappings,
71 * and khugepaged scans all mappings.
72 * Defrag is invoked by khugepaged hugepage allocations and by page faults
73 * for all hugepage allocations.
74 */
75 unsigned long transparent_hugepage_flags __read_mostly =
76 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
77 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
78 #endif
79 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
80 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
81 #endif
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
84 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
85
86 /* default scan 8*512 pte (or vmas) every 30 second */
87 static unsigned int khugepaged_pages_to_scan __read_mostly;
88 static unsigned int khugepaged_pages_collapsed;
89 static unsigned int khugepaged_full_scans;
90 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
91 /* during fragmentation poll the hugepage allocator once every minute */
92 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
93 static unsigned long khugepaged_sleep_expire;
94 static struct task_struct *khugepaged_thread __read_mostly;
95 static DEFINE_MUTEX(khugepaged_mutex);
96 static DEFINE_SPINLOCK(khugepaged_mm_lock);
97 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
98 /*
99 * default collapse hugepages if there is at least one pte mapped like
100 * it would have happened if the vma was large enough during page
101 * fault.
102 */
103 static unsigned int khugepaged_max_ptes_none __read_mostly;
104 static unsigned int khugepaged_max_ptes_swap __read_mostly;
105
106 static int khugepaged(void *none);
107 static int khugepaged_slab_init(void);
108 static void khugepaged_slab_exit(void);
109
110 #define MM_SLOTS_HASH_BITS 10
111 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
112
113 static struct kmem_cache *mm_slot_cache __read_mostly;
114
115 /**
116 * struct mm_slot - hash lookup from mm to mm_slot
117 * @hash: hash collision list
118 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
119 * @mm: the mm that this information is valid for
120 */
121 struct mm_slot {
122 struct hlist_node hash;
123 struct list_head mm_node;
124 struct mm_struct *mm;
125 };
126
127 /**
128 * struct khugepaged_scan - cursor for scanning
129 * @mm_head: the head of the mm list to scan
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 *
133 * There is only the one khugepaged_scan instance of this cursor structure.
134 */
135 struct khugepaged_scan {
136 struct list_head mm_head;
137 struct mm_slot *mm_slot;
138 unsigned long address;
139 };
140 static struct khugepaged_scan khugepaged_scan = {
141 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
142 };
143
144 static struct shrinker deferred_split_shrinker;
145
146 static void set_recommended_min_free_kbytes(void)
147 {
148 struct zone *zone;
149 int nr_zones = 0;
150 unsigned long recommended_min;
151
152 for_each_populated_zone(zone)
153 nr_zones++;
154
155 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
156 recommended_min = pageblock_nr_pages * nr_zones * 2;
157
158 /*
159 * Make sure that on average at least two pageblocks are almost free
160 * of another type, one for a migratetype to fall back to and a
161 * second to avoid subsequent fallbacks of other types There are 3
162 * MIGRATE_TYPES we care about.
163 */
164 recommended_min += pageblock_nr_pages * nr_zones *
165 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
166
167 /* don't ever allow to reserve more than 5% of the lowmem */
168 recommended_min = min(recommended_min,
169 (unsigned long) nr_free_buffer_pages() / 20);
170 recommended_min <<= (PAGE_SHIFT-10);
171
172 if (recommended_min > min_free_kbytes) {
173 if (user_min_free_kbytes >= 0)
174 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
175 min_free_kbytes, recommended_min);
176
177 min_free_kbytes = recommended_min;
178 }
179 setup_per_zone_wmarks();
180 }
181
182 static int start_stop_khugepaged(void)
183 {
184 int err = 0;
185 if (khugepaged_enabled()) {
186 if (!khugepaged_thread)
187 khugepaged_thread = kthread_run(khugepaged, NULL,
188 "khugepaged");
189 if (IS_ERR(khugepaged_thread)) {
190 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
191 err = PTR_ERR(khugepaged_thread);
192 khugepaged_thread = NULL;
193 goto fail;
194 }
195
196 if (!list_empty(&khugepaged_scan.mm_head))
197 wake_up_interruptible(&khugepaged_wait);
198
199 set_recommended_min_free_kbytes();
200 } else if (khugepaged_thread) {
201 kthread_stop(khugepaged_thread);
202 khugepaged_thread = NULL;
203 }
204 fail:
205 return err;
206 }
207
208 static atomic_t huge_zero_refcount;
209 struct page *huge_zero_page __read_mostly;
210
211 struct page *get_huge_zero_page(void)
212 {
213 struct page *zero_page;
214 retry:
215 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
216 return READ_ONCE(huge_zero_page);
217
218 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
219 HPAGE_PMD_ORDER);
220 if (!zero_page) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 return NULL;
223 }
224 count_vm_event(THP_ZERO_PAGE_ALLOC);
225 preempt_disable();
226 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
227 preempt_enable();
228 __free_pages(zero_page, compound_order(zero_page));
229 goto retry;
230 }
231
232 /* We take additional reference here. It will be put back by shrinker */
233 atomic_set(&huge_zero_refcount, 2);
234 preempt_enable();
235 return READ_ONCE(huge_zero_page);
236 }
237
238 void put_huge_zero_page(void)
239 {
240 /*
241 * Counter should never go to zero here. Only shrinker can put
242 * last reference.
243 */
244 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
245 }
246
247 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
248 struct shrink_control *sc)
249 {
250 /* we can free zero page only if last reference remains */
251 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
252 }
253
254 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
255 struct shrink_control *sc)
256 {
257 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
258 struct page *zero_page = xchg(&huge_zero_page, NULL);
259 BUG_ON(zero_page == NULL);
260 __free_pages(zero_page, compound_order(zero_page));
261 return HPAGE_PMD_NR;
262 }
263
264 return 0;
265 }
266
267 static struct shrinker huge_zero_page_shrinker = {
268 .count_objects = shrink_huge_zero_page_count,
269 .scan_objects = shrink_huge_zero_page_scan,
270 .seeks = DEFAULT_SEEKS,
271 };
272
273 #ifdef CONFIG_SYSFS
274
275 static ssize_t triple_flag_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count,
278 enum transparent_hugepage_flag enabled,
279 enum transparent_hugepage_flag deferred,
280 enum transparent_hugepage_flag req_madv)
281 {
282 if (!memcmp("defer", buf,
283 min(sizeof("defer")-1, count))) {
284 if (enabled == deferred)
285 return -EINVAL;
286 clear_bit(enabled, &transparent_hugepage_flags);
287 clear_bit(req_madv, &transparent_hugepage_flags);
288 set_bit(deferred, &transparent_hugepage_flags);
289 } else if (!memcmp("always", buf,
290 min(sizeof("always")-1, count))) {
291 clear_bit(deferred, &transparent_hugepage_flags);
292 clear_bit(req_madv, &transparent_hugepage_flags);
293 set_bit(enabled, &transparent_hugepage_flags);
294 } else if (!memcmp("madvise", buf,
295 min(sizeof("madvise")-1, count))) {
296 clear_bit(enabled, &transparent_hugepage_flags);
297 clear_bit(deferred, &transparent_hugepage_flags);
298 set_bit(req_madv, &transparent_hugepage_flags);
299 } else if (!memcmp("never", buf,
300 min(sizeof("never")-1, count))) {
301 clear_bit(enabled, &transparent_hugepage_flags);
302 clear_bit(req_madv, &transparent_hugepage_flags);
303 clear_bit(deferred, &transparent_hugepage_flags);
304 } else
305 return -EINVAL;
306
307 return count;
308 }
309
310 static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312 {
313 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
314 return sprintf(buf, "[always] madvise never\n");
315 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
316 return sprintf(buf, "always [madvise] never\n");
317 else
318 return sprintf(buf, "always madvise [never]\n");
319 }
320
321 static ssize_t enabled_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count)
324 {
325 ssize_t ret;
326
327 ret = triple_flag_store(kobj, attr, buf, count,
328 TRANSPARENT_HUGEPAGE_FLAG,
329 TRANSPARENT_HUGEPAGE_FLAG,
330 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
331
332 if (ret > 0) {
333 int err;
334
335 mutex_lock(&khugepaged_mutex);
336 err = start_stop_khugepaged();
337 mutex_unlock(&khugepaged_mutex);
338
339 if (err)
340 ret = err;
341 }
342
343 return ret;
344 }
345 static struct kobj_attribute enabled_attr =
346 __ATTR(enabled, 0644, enabled_show, enabled_store);
347
348 static ssize_t single_flag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf,
350 enum transparent_hugepage_flag flag)
351 {
352 return sprintf(buf, "%d\n",
353 !!test_bit(flag, &transparent_hugepage_flags));
354 }
355
356 static ssize_t single_flag_store(struct kobject *kobj,
357 struct kobj_attribute *attr,
358 const char *buf, size_t count,
359 enum transparent_hugepage_flag flag)
360 {
361 unsigned long value;
362 int ret;
363
364 ret = kstrtoul(buf, 10, &value);
365 if (ret < 0)
366 return ret;
367 if (value > 1)
368 return -EINVAL;
369
370 if (value)
371 set_bit(flag, &transparent_hugepage_flags);
372 else
373 clear_bit(flag, &transparent_hugepage_flags);
374
375 return count;
376 }
377
378 /*
379 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
380 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
381 * memory just to allocate one more hugepage.
382 */
383 static ssize_t defrag_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385 {
386 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
387 return sprintf(buf, "[always] defer madvise never\n");
388 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
389 return sprintf(buf, "always [defer] madvise never\n");
390 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
391 return sprintf(buf, "always defer [madvise] never\n");
392 else
393 return sprintf(buf, "always defer madvise [never]\n");
394
395 }
396 static ssize_t defrag_store(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 const char *buf, size_t count)
399 {
400 return triple_flag_store(kobj, attr, buf, count,
401 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
402 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
403 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
404 }
405 static struct kobj_attribute defrag_attr =
406 __ATTR(defrag, 0644, defrag_show, defrag_store);
407
408 static ssize_t use_zero_page_show(struct kobject *kobj,
409 struct kobj_attribute *attr, char *buf)
410 {
411 return single_flag_show(kobj, attr, buf,
412 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
413 }
414 static ssize_t use_zero_page_store(struct kobject *kobj,
415 struct kobj_attribute *attr, const char *buf, size_t count)
416 {
417 return single_flag_store(kobj, attr, buf, count,
418 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
419 }
420 static struct kobj_attribute use_zero_page_attr =
421 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
422 #ifdef CONFIG_DEBUG_VM
423 static ssize_t debug_cow_show(struct kobject *kobj,
424 struct kobj_attribute *attr, char *buf)
425 {
426 return single_flag_show(kobj, attr, buf,
427 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
428 }
429 static ssize_t debug_cow_store(struct kobject *kobj,
430 struct kobj_attribute *attr,
431 const char *buf, size_t count)
432 {
433 return single_flag_store(kobj, attr, buf, count,
434 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
435 }
436 static struct kobj_attribute debug_cow_attr =
437 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
438 #endif /* CONFIG_DEBUG_VM */
439
440 static struct attribute *hugepage_attr[] = {
441 &enabled_attr.attr,
442 &defrag_attr.attr,
443 &use_zero_page_attr.attr,
444 #ifdef CONFIG_DEBUG_VM
445 &debug_cow_attr.attr,
446 #endif
447 NULL,
448 };
449
450 static struct attribute_group hugepage_attr_group = {
451 .attrs = hugepage_attr,
452 };
453
454 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
455 struct kobj_attribute *attr,
456 char *buf)
457 {
458 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
459 }
460
461 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 const char *buf, size_t count)
464 {
465 unsigned long msecs;
466 int err;
467
468 err = kstrtoul(buf, 10, &msecs);
469 if (err || msecs > UINT_MAX)
470 return -EINVAL;
471
472 khugepaged_scan_sleep_millisecs = msecs;
473 khugepaged_sleep_expire = 0;
474 wake_up_interruptible(&khugepaged_wait);
475
476 return count;
477 }
478 static struct kobj_attribute scan_sleep_millisecs_attr =
479 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
480 scan_sleep_millisecs_store);
481
482 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
483 struct kobj_attribute *attr,
484 char *buf)
485 {
486 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
487 }
488
489 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
490 struct kobj_attribute *attr,
491 const char *buf, size_t count)
492 {
493 unsigned long msecs;
494 int err;
495
496 err = kstrtoul(buf, 10, &msecs);
497 if (err || msecs > UINT_MAX)
498 return -EINVAL;
499
500 khugepaged_alloc_sleep_millisecs = msecs;
501 khugepaged_sleep_expire = 0;
502 wake_up_interruptible(&khugepaged_wait);
503
504 return count;
505 }
506 static struct kobj_attribute alloc_sleep_millisecs_attr =
507 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
508 alloc_sleep_millisecs_store);
509
510 static ssize_t pages_to_scan_show(struct kobject *kobj,
511 struct kobj_attribute *attr,
512 char *buf)
513 {
514 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
515 }
516 static ssize_t pages_to_scan_store(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 const char *buf, size_t count)
519 {
520 int err;
521 unsigned long pages;
522
523 err = kstrtoul(buf, 10, &pages);
524 if (err || !pages || pages > UINT_MAX)
525 return -EINVAL;
526
527 khugepaged_pages_to_scan = pages;
528
529 return count;
530 }
531 static struct kobj_attribute pages_to_scan_attr =
532 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
533 pages_to_scan_store);
534
535 static ssize_t pages_collapsed_show(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 char *buf)
538 {
539 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
540 }
541 static struct kobj_attribute pages_collapsed_attr =
542 __ATTR_RO(pages_collapsed);
543
544 static ssize_t full_scans_show(struct kobject *kobj,
545 struct kobj_attribute *attr,
546 char *buf)
547 {
548 return sprintf(buf, "%u\n", khugepaged_full_scans);
549 }
550 static struct kobj_attribute full_scans_attr =
551 __ATTR_RO(full_scans);
552
553 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
554 struct kobj_attribute *attr, char *buf)
555 {
556 return single_flag_show(kobj, attr, buf,
557 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
558 }
559 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
560 struct kobj_attribute *attr,
561 const char *buf, size_t count)
562 {
563 return single_flag_store(kobj, attr, buf, count,
564 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
565 }
566 static struct kobj_attribute khugepaged_defrag_attr =
567 __ATTR(defrag, 0644, khugepaged_defrag_show,
568 khugepaged_defrag_store);
569
570 /*
571 * max_ptes_none controls if khugepaged should collapse hugepages over
572 * any unmapped ptes in turn potentially increasing the memory
573 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
574 * reduce the available free memory in the system as it
575 * runs. Increasing max_ptes_none will instead potentially reduce the
576 * free memory in the system during the khugepaged scan.
577 */
578 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
579 struct kobj_attribute *attr,
580 char *buf)
581 {
582 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
583 }
584 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
585 struct kobj_attribute *attr,
586 const char *buf, size_t count)
587 {
588 int err;
589 unsigned long max_ptes_none;
590
591 err = kstrtoul(buf, 10, &max_ptes_none);
592 if (err || max_ptes_none > HPAGE_PMD_NR-1)
593 return -EINVAL;
594
595 khugepaged_max_ptes_none = max_ptes_none;
596
597 return count;
598 }
599 static struct kobj_attribute khugepaged_max_ptes_none_attr =
600 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
601 khugepaged_max_ptes_none_store);
602
603 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
604 struct kobj_attribute *attr,
605 char *buf)
606 {
607 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
608 }
609
610 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
611 struct kobj_attribute *attr,
612 const char *buf, size_t count)
613 {
614 int err;
615 unsigned long max_ptes_swap;
616
617 err = kstrtoul(buf, 10, &max_ptes_swap);
618 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
619 return -EINVAL;
620
621 khugepaged_max_ptes_swap = max_ptes_swap;
622
623 return count;
624 }
625
626 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
627 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
628 khugepaged_max_ptes_swap_store);
629
630 static struct attribute *khugepaged_attr[] = {
631 &khugepaged_defrag_attr.attr,
632 &khugepaged_max_ptes_none_attr.attr,
633 &pages_to_scan_attr.attr,
634 &pages_collapsed_attr.attr,
635 &full_scans_attr.attr,
636 &scan_sleep_millisecs_attr.attr,
637 &alloc_sleep_millisecs_attr.attr,
638 &khugepaged_max_ptes_swap_attr.attr,
639 NULL,
640 };
641
642 static struct attribute_group khugepaged_attr_group = {
643 .attrs = khugepaged_attr,
644 .name = "khugepaged",
645 };
646
647 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
648 {
649 int err;
650
651 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
652 if (unlikely(!*hugepage_kobj)) {
653 pr_err("failed to create transparent hugepage kobject\n");
654 return -ENOMEM;
655 }
656
657 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
658 if (err) {
659 pr_err("failed to register transparent hugepage group\n");
660 goto delete_obj;
661 }
662
663 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
664 if (err) {
665 pr_err("failed to register transparent hugepage group\n");
666 goto remove_hp_group;
667 }
668
669 return 0;
670
671 remove_hp_group:
672 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
673 delete_obj:
674 kobject_put(*hugepage_kobj);
675 return err;
676 }
677
678 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
679 {
680 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
681 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
682 kobject_put(hugepage_kobj);
683 }
684 #else
685 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
686 {
687 return 0;
688 }
689
690 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
691 {
692 }
693 #endif /* CONFIG_SYSFS */
694
695 static int __init hugepage_init(void)
696 {
697 int err;
698 struct kobject *hugepage_kobj;
699
700 if (!has_transparent_hugepage()) {
701 transparent_hugepage_flags = 0;
702 return -EINVAL;
703 }
704
705 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
706 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
707 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
708 /*
709 * hugepages can't be allocated by the buddy allocator
710 */
711 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
712 /*
713 * we use page->mapping and page->index in second tail page
714 * as list_head: assuming THP order >= 2
715 */
716 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
717
718 err = hugepage_init_sysfs(&hugepage_kobj);
719 if (err)
720 goto err_sysfs;
721
722 err = khugepaged_slab_init();
723 if (err)
724 goto err_slab;
725
726 err = register_shrinker(&huge_zero_page_shrinker);
727 if (err)
728 goto err_hzp_shrinker;
729 err = register_shrinker(&deferred_split_shrinker);
730 if (err)
731 goto err_split_shrinker;
732
733 /*
734 * By default disable transparent hugepages on smaller systems,
735 * where the extra memory used could hurt more than TLB overhead
736 * is likely to save. The admin can still enable it through /sys.
737 */
738 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
739 transparent_hugepage_flags = 0;
740 return 0;
741 }
742
743 err = start_stop_khugepaged();
744 if (err)
745 goto err_khugepaged;
746
747 return 0;
748 err_khugepaged:
749 unregister_shrinker(&deferred_split_shrinker);
750 err_split_shrinker:
751 unregister_shrinker(&huge_zero_page_shrinker);
752 err_hzp_shrinker:
753 khugepaged_slab_exit();
754 err_slab:
755 hugepage_exit_sysfs(hugepage_kobj);
756 err_sysfs:
757 return err;
758 }
759 subsys_initcall(hugepage_init);
760
761 static int __init setup_transparent_hugepage(char *str)
762 {
763 int ret = 0;
764 if (!str)
765 goto out;
766 if (!strcmp(str, "always")) {
767 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
768 &transparent_hugepage_flags);
769 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
770 &transparent_hugepage_flags);
771 ret = 1;
772 } else if (!strcmp(str, "madvise")) {
773 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
774 &transparent_hugepage_flags);
775 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
776 &transparent_hugepage_flags);
777 ret = 1;
778 } else if (!strcmp(str, "never")) {
779 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
780 &transparent_hugepage_flags);
781 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
782 &transparent_hugepage_flags);
783 ret = 1;
784 }
785 out:
786 if (!ret)
787 pr_warn("transparent_hugepage= cannot parse, ignored\n");
788 return ret;
789 }
790 __setup("transparent_hugepage=", setup_transparent_hugepage);
791
792 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
793 {
794 if (likely(vma->vm_flags & VM_WRITE))
795 pmd = pmd_mkwrite(pmd);
796 return pmd;
797 }
798
799 static inline struct list_head *page_deferred_list(struct page *page)
800 {
801 /*
802 * ->lru in the tail pages is occupied by compound_head.
803 * Let's use ->mapping + ->index in the second tail page as list_head.
804 */
805 return (struct list_head *)&page[2].mapping;
806 }
807
808 void prep_transhuge_page(struct page *page)
809 {
810 /*
811 * we use page->mapping and page->indexlru in second tail page
812 * as list_head: assuming THP order >= 2
813 */
814
815 INIT_LIST_HEAD(page_deferred_list(page));
816 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
817 }
818
819 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
820 gfp_t gfp)
821 {
822 struct vm_area_struct *vma = fe->vma;
823 struct mem_cgroup *memcg;
824 pgtable_t pgtable;
825 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
826
827 VM_BUG_ON_PAGE(!PageCompound(page), page);
828
829 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
830 put_page(page);
831 count_vm_event(THP_FAULT_FALLBACK);
832 return VM_FAULT_FALLBACK;
833 }
834
835 pgtable = pte_alloc_one(vma->vm_mm, haddr);
836 if (unlikely(!pgtable)) {
837 mem_cgroup_cancel_charge(page, memcg, true);
838 put_page(page);
839 return VM_FAULT_OOM;
840 }
841
842 clear_huge_page(page, haddr, HPAGE_PMD_NR);
843 /*
844 * The memory barrier inside __SetPageUptodate makes sure that
845 * clear_huge_page writes become visible before the set_pmd_at()
846 * write.
847 */
848 __SetPageUptodate(page);
849
850 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
851 if (unlikely(!pmd_none(*fe->pmd))) {
852 spin_unlock(fe->ptl);
853 mem_cgroup_cancel_charge(page, memcg, true);
854 put_page(page);
855 pte_free(vma->vm_mm, pgtable);
856 } else {
857 pmd_t entry;
858
859 /* Deliver the page fault to userland */
860 if (userfaultfd_missing(vma)) {
861 int ret;
862
863 spin_unlock(fe->ptl);
864 mem_cgroup_cancel_charge(page, memcg, true);
865 put_page(page);
866 pte_free(vma->vm_mm, pgtable);
867 ret = handle_userfault(fe, VM_UFFD_MISSING);
868 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
869 return ret;
870 }
871
872 entry = mk_huge_pmd(page, vma->vm_page_prot);
873 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
874 page_add_new_anon_rmap(page, vma, haddr, true);
875 mem_cgroup_commit_charge(page, memcg, false, true);
876 lru_cache_add_active_or_unevictable(page, vma);
877 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
878 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
879 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
880 atomic_long_inc(&vma->vm_mm->nr_ptes);
881 spin_unlock(fe->ptl);
882 count_vm_event(THP_FAULT_ALLOC);
883 }
884
885 return 0;
886 }
887
888 /*
889 * If THP is set to always then directly reclaim/compact as necessary
890 * If set to defer then do no reclaim and defer to khugepaged
891 * If set to madvise and the VMA is flagged then directly reclaim/compact
892 */
893 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
894 {
895 gfp_t reclaim_flags = 0;
896
897 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
898 (vma->vm_flags & VM_HUGEPAGE))
899 reclaim_flags = __GFP_DIRECT_RECLAIM;
900 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
901 reclaim_flags = __GFP_KSWAPD_RECLAIM;
902 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
903 reclaim_flags = __GFP_DIRECT_RECLAIM;
904
905 return GFP_TRANSHUGE | reclaim_flags;
906 }
907
908 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
909 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
910 {
911 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
912 }
913
914 /* Caller must hold page table lock. */
915 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
916 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
917 struct page *zero_page)
918 {
919 pmd_t entry;
920 if (!pmd_none(*pmd))
921 return false;
922 entry = mk_pmd(zero_page, vma->vm_page_prot);
923 entry = pmd_mkhuge(entry);
924 if (pgtable)
925 pgtable_trans_huge_deposit(mm, pmd, pgtable);
926 set_pmd_at(mm, haddr, pmd, entry);
927 atomic_long_inc(&mm->nr_ptes);
928 return true;
929 }
930
931 int do_huge_pmd_anonymous_page(struct fault_env *fe)
932 {
933 struct vm_area_struct *vma = fe->vma;
934 gfp_t gfp;
935 struct page *page;
936 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
937
938 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
939 return VM_FAULT_FALLBACK;
940 if (unlikely(anon_vma_prepare(vma)))
941 return VM_FAULT_OOM;
942 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
943 return VM_FAULT_OOM;
944 if (!(fe->flags & FAULT_FLAG_WRITE) &&
945 !mm_forbids_zeropage(vma->vm_mm) &&
946 transparent_hugepage_use_zero_page()) {
947 pgtable_t pgtable;
948 struct page *zero_page;
949 bool set;
950 int ret;
951 pgtable = pte_alloc_one(vma->vm_mm, haddr);
952 if (unlikely(!pgtable))
953 return VM_FAULT_OOM;
954 zero_page = get_huge_zero_page();
955 if (unlikely(!zero_page)) {
956 pte_free(vma->vm_mm, pgtable);
957 count_vm_event(THP_FAULT_FALLBACK);
958 return VM_FAULT_FALLBACK;
959 }
960 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
961 ret = 0;
962 set = false;
963 if (pmd_none(*fe->pmd)) {
964 if (userfaultfd_missing(vma)) {
965 spin_unlock(fe->ptl);
966 ret = handle_userfault(fe, VM_UFFD_MISSING);
967 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
968 } else {
969 set_huge_zero_page(pgtable, vma->vm_mm, vma,
970 haddr, fe->pmd, zero_page);
971 spin_unlock(fe->ptl);
972 set = true;
973 }
974 } else
975 spin_unlock(fe->ptl);
976 if (!set) {
977 pte_free(vma->vm_mm, pgtable);
978 put_huge_zero_page();
979 }
980 return ret;
981 }
982 gfp = alloc_hugepage_direct_gfpmask(vma);
983 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
984 if (unlikely(!page)) {
985 count_vm_event(THP_FAULT_FALLBACK);
986 return VM_FAULT_FALLBACK;
987 }
988 prep_transhuge_page(page);
989 return __do_huge_pmd_anonymous_page(fe, page, gfp);
990 }
991
992 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
993 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
994 {
995 struct mm_struct *mm = vma->vm_mm;
996 pmd_t entry;
997 spinlock_t *ptl;
998
999 ptl = pmd_lock(mm, pmd);
1000 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1001 if (pfn_t_devmap(pfn))
1002 entry = pmd_mkdevmap(entry);
1003 if (write) {
1004 entry = pmd_mkyoung(pmd_mkdirty(entry));
1005 entry = maybe_pmd_mkwrite(entry, vma);
1006 }
1007 set_pmd_at(mm, addr, pmd, entry);
1008 update_mmu_cache_pmd(vma, addr, pmd);
1009 spin_unlock(ptl);
1010 }
1011
1012 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1013 pmd_t *pmd, pfn_t pfn, bool write)
1014 {
1015 pgprot_t pgprot = vma->vm_page_prot;
1016 /*
1017 * If we had pmd_special, we could avoid all these restrictions,
1018 * but we need to be consistent with PTEs and architectures that
1019 * can't support a 'special' bit.
1020 */
1021 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1022 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1023 (VM_PFNMAP|VM_MIXEDMAP));
1024 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1025 BUG_ON(!pfn_t_devmap(pfn));
1026
1027 if (addr < vma->vm_start || addr >= vma->vm_end)
1028 return VM_FAULT_SIGBUS;
1029 if (track_pfn_insert(vma, &pgprot, pfn))
1030 return VM_FAULT_SIGBUS;
1031 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1032 return VM_FAULT_NOPAGE;
1033 }
1034 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1035
1036 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1037 pmd_t *pmd)
1038 {
1039 pmd_t _pmd;
1040
1041 /*
1042 * We should set the dirty bit only for FOLL_WRITE but for now
1043 * the dirty bit in the pmd is meaningless. And if the dirty
1044 * bit will become meaningful and we'll only set it with
1045 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1046 * set the young bit, instead of the current set_pmd_at.
1047 */
1048 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1049 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1050 pmd, _pmd, 1))
1051 update_mmu_cache_pmd(vma, addr, pmd);
1052 }
1053
1054 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1055 pmd_t *pmd, int flags)
1056 {
1057 unsigned long pfn = pmd_pfn(*pmd);
1058 struct mm_struct *mm = vma->vm_mm;
1059 struct dev_pagemap *pgmap;
1060 struct page *page;
1061
1062 assert_spin_locked(pmd_lockptr(mm, pmd));
1063
1064 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1065 return NULL;
1066
1067 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1068 /* pass */;
1069 else
1070 return NULL;
1071
1072 if (flags & FOLL_TOUCH)
1073 touch_pmd(vma, addr, pmd);
1074
1075 /*
1076 * device mapped pages can only be returned if the
1077 * caller will manage the page reference count.
1078 */
1079 if (!(flags & FOLL_GET))
1080 return ERR_PTR(-EEXIST);
1081
1082 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1083 pgmap = get_dev_pagemap(pfn, NULL);
1084 if (!pgmap)
1085 return ERR_PTR(-EFAULT);
1086 page = pfn_to_page(pfn);
1087 get_page(page);
1088 put_dev_pagemap(pgmap);
1089
1090 return page;
1091 }
1092
1093 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1094 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1095 struct vm_area_struct *vma)
1096 {
1097 spinlock_t *dst_ptl, *src_ptl;
1098 struct page *src_page;
1099 pmd_t pmd;
1100 pgtable_t pgtable = NULL;
1101 int ret;
1102
1103 if (!vma_is_dax(vma)) {
1104 ret = -ENOMEM;
1105 pgtable = pte_alloc_one(dst_mm, addr);
1106 if (unlikely(!pgtable))
1107 goto out;
1108 }
1109
1110 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1111 src_ptl = pmd_lockptr(src_mm, src_pmd);
1112 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1113
1114 ret = -EAGAIN;
1115 pmd = *src_pmd;
1116 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1117 pte_free(dst_mm, pgtable);
1118 goto out_unlock;
1119 }
1120 /*
1121 * When page table lock is held, the huge zero pmd should not be
1122 * under splitting since we don't split the page itself, only pmd to
1123 * a page table.
1124 */
1125 if (is_huge_zero_pmd(pmd)) {
1126 struct page *zero_page;
1127 /*
1128 * get_huge_zero_page() will never allocate a new page here,
1129 * since we already have a zero page to copy. It just takes a
1130 * reference.
1131 */
1132 zero_page = get_huge_zero_page();
1133 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1134 zero_page);
1135 ret = 0;
1136 goto out_unlock;
1137 }
1138
1139 if (!vma_is_dax(vma)) {
1140 /* thp accounting separate from pmd_devmap accounting */
1141 src_page = pmd_page(pmd);
1142 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1143 get_page(src_page);
1144 page_dup_rmap(src_page, true);
1145 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146 atomic_long_inc(&dst_mm->nr_ptes);
1147 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1148 }
1149
1150 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1151 pmd = pmd_mkold(pmd_wrprotect(pmd));
1152 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1153
1154 ret = 0;
1155 out_unlock:
1156 spin_unlock(src_ptl);
1157 spin_unlock(dst_ptl);
1158 out:
1159 return ret;
1160 }
1161
1162 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
1163 {
1164 pmd_t entry;
1165 unsigned long haddr;
1166
1167 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
1168 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1169 goto unlock;
1170
1171 entry = pmd_mkyoung(orig_pmd);
1172 haddr = fe->address & HPAGE_PMD_MASK;
1173 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
1174 fe->flags & FAULT_FLAG_WRITE))
1175 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
1176
1177 unlock:
1178 spin_unlock(fe->ptl);
1179 }
1180
1181 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
1182 struct page *page)
1183 {
1184 struct vm_area_struct *vma = fe->vma;
1185 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1186 struct mem_cgroup *memcg;
1187 pgtable_t pgtable;
1188 pmd_t _pmd;
1189 int ret = 0, i;
1190 struct page **pages;
1191 unsigned long mmun_start; /* For mmu_notifiers */
1192 unsigned long mmun_end; /* For mmu_notifiers */
1193
1194 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1195 GFP_KERNEL);
1196 if (unlikely(!pages)) {
1197 ret |= VM_FAULT_OOM;
1198 goto out;
1199 }
1200
1201 for (i = 0; i < HPAGE_PMD_NR; i++) {
1202 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1203 __GFP_OTHER_NODE, vma,
1204 fe->address, page_to_nid(page));
1205 if (unlikely(!pages[i] ||
1206 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1207 GFP_KERNEL, &memcg, false))) {
1208 if (pages[i])
1209 put_page(pages[i]);
1210 while (--i >= 0) {
1211 memcg = (void *)page_private(pages[i]);
1212 set_page_private(pages[i], 0);
1213 mem_cgroup_cancel_charge(pages[i], memcg,
1214 false);
1215 put_page(pages[i]);
1216 }
1217 kfree(pages);
1218 ret |= VM_FAULT_OOM;
1219 goto out;
1220 }
1221 set_page_private(pages[i], (unsigned long)memcg);
1222 }
1223
1224 for (i = 0; i < HPAGE_PMD_NR; i++) {
1225 copy_user_highpage(pages[i], page + i,
1226 haddr + PAGE_SIZE * i, vma);
1227 __SetPageUptodate(pages[i]);
1228 cond_resched();
1229 }
1230
1231 mmun_start = haddr;
1232 mmun_end = haddr + HPAGE_PMD_SIZE;
1233 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1234
1235 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1236 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1237 goto out_free_pages;
1238 VM_BUG_ON_PAGE(!PageHead(page), page);
1239
1240 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1241 /* leave pmd empty until pte is filled */
1242
1243 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
1244 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1245
1246 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1247 pte_t entry;
1248 entry = mk_pte(pages[i], vma->vm_page_prot);
1249 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1250 memcg = (void *)page_private(pages[i]);
1251 set_page_private(pages[i], 0);
1252 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
1253 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1254 lru_cache_add_active_or_unevictable(pages[i], vma);
1255 fe->pte = pte_offset_map(&_pmd, haddr);
1256 VM_BUG_ON(!pte_none(*fe->pte));
1257 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
1258 pte_unmap(fe->pte);
1259 }
1260 kfree(pages);
1261
1262 smp_wmb(); /* make pte visible before pmd */
1263 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
1264 page_remove_rmap(page, true);
1265 spin_unlock(fe->ptl);
1266
1267 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1268
1269 ret |= VM_FAULT_WRITE;
1270 put_page(page);
1271
1272 out:
1273 return ret;
1274
1275 out_free_pages:
1276 spin_unlock(fe->ptl);
1277 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1278 for (i = 0; i < HPAGE_PMD_NR; i++) {
1279 memcg = (void *)page_private(pages[i]);
1280 set_page_private(pages[i], 0);
1281 mem_cgroup_cancel_charge(pages[i], memcg, false);
1282 put_page(pages[i]);
1283 }
1284 kfree(pages);
1285 goto out;
1286 }
1287
1288 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
1289 {
1290 struct vm_area_struct *vma = fe->vma;
1291 struct page *page = NULL, *new_page;
1292 struct mem_cgroup *memcg;
1293 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1294 unsigned long mmun_start; /* For mmu_notifiers */
1295 unsigned long mmun_end; /* For mmu_notifiers */
1296 gfp_t huge_gfp; /* for allocation and charge */
1297 int ret = 0;
1298
1299 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1300 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1301 if (is_huge_zero_pmd(orig_pmd))
1302 goto alloc;
1303 spin_lock(fe->ptl);
1304 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1305 goto out_unlock;
1306
1307 page = pmd_page(orig_pmd);
1308 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1309 /*
1310 * We can only reuse the page if nobody else maps the huge page or it's
1311 * part.
1312 */
1313 if (page_trans_huge_mapcount(page, NULL) == 1) {
1314 pmd_t entry;
1315 entry = pmd_mkyoung(orig_pmd);
1316 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1317 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1318 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1319 ret |= VM_FAULT_WRITE;
1320 goto out_unlock;
1321 }
1322 get_page(page);
1323 spin_unlock(fe->ptl);
1324 alloc:
1325 if (transparent_hugepage_enabled(vma) &&
1326 !transparent_hugepage_debug_cow()) {
1327 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1328 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1329 } else
1330 new_page = NULL;
1331
1332 if (likely(new_page)) {
1333 prep_transhuge_page(new_page);
1334 } else {
1335 if (!page) {
1336 split_huge_pmd(vma, fe->pmd, fe->address);
1337 ret |= VM_FAULT_FALLBACK;
1338 } else {
1339 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1340 if (ret & VM_FAULT_OOM) {
1341 split_huge_pmd(vma, fe->pmd, fe->address);
1342 ret |= VM_FAULT_FALLBACK;
1343 }
1344 put_page(page);
1345 }
1346 count_vm_event(THP_FAULT_FALLBACK);
1347 goto out;
1348 }
1349
1350 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1351 huge_gfp, &memcg, true))) {
1352 put_page(new_page);
1353 split_huge_pmd(vma, fe->pmd, fe->address);
1354 if (page)
1355 put_page(page);
1356 ret |= VM_FAULT_FALLBACK;
1357 count_vm_event(THP_FAULT_FALLBACK);
1358 goto out;
1359 }
1360
1361 count_vm_event(THP_FAULT_ALLOC);
1362
1363 if (!page)
1364 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1365 else
1366 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1367 __SetPageUptodate(new_page);
1368
1369 mmun_start = haddr;
1370 mmun_end = haddr + HPAGE_PMD_SIZE;
1371 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1372
1373 spin_lock(fe->ptl);
1374 if (page)
1375 put_page(page);
1376 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1377 spin_unlock(fe->ptl);
1378 mem_cgroup_cancel_charge(new_page, memcg, true);
1379 put_page(new_page);
1380 goto out_mn;
1381 } else {
1382 pmd_t entry;
1383 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1384 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1385 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1386 page_add_new_anon_rmap(new_page, vma, haddr, true);
1387 mem_cgroup_commit_charge(new_page, memcg, false, true);
1388 lru_cache_add_active_or_unevictable(new_page, vma);
1389 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1390 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1391 if (!page) {
1392 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1393 put_huge_zero_page();
1394 } else {
1395 VM_BUG_ON_PAGE(!PageHead(page), page);
1396 page_remove_rmap(page, true);
1397 put_page(page);
1398 }
1399 ret |= VM_FAULT_WRITE;
1400 }
1401 spin_unlock(fe->ptl);
1402 out_mn:
1403 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1404 out:
1405 return ret;
1406 out_unlock:
1407 spin_unlock(fe->ptl);
1408 return ret;
1409 }
1410
1411 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1412 unsigned long addr,
1413 pmd_t *pmd,
1414 unsigned int flags)
1415 {
1416 struct mm_struct *mm = vma->vm_mm;
1417 struct page *page = NULL;
1418
1419 assert_spin_locked(pmd_lockptr(mm, pmd));
1420
1421 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1422 goto out;
1423
1424 /* Avoid dumping huge zero page */
1425 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1426 return ERR_PTR(-EFAULT);
1427
1428 /* Full NUMA hinting faults to serialise migration in fault paths */
1429 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1430 goto out;
1431
1432 page = pmd_page(*pmd);
1433 VM_BUG_ON_PAGE(!PageHead(page), page);
1434 if (flags & FOLL_TOUCH)
1435 touch_pmd(vma, addr, pmd);
1436 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1437 /*
1438 * We don't mlock() pte-mapped THPs. This way we can avoid
1439 * leaking mlocked pages into non-VM_LOCKED VMAs.
1440 *
1441 * In most cases the pmd is the only mapping of the page as we
1442 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1443 * writable private mappings in populate_vma_page_range().
1444 *
1445 * The only scenario when we have the page shared here is if we
1446 * mlocking read-only mapping shared over fork(). We skip
1447 * mlocking such pages.
1448 */
1449 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1450 page->mapping && trylock_page(page)) {
1451 lru_add_drain();
1452 if (page->mapping)
1453 mlock_vma_page(page);
1454 unlock_page(page);
1455 }
1456 }
1457 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1458 VM_BUG_ON_PAGE(!PageCompound(page), page);
1459 if (flags & FOLL_GET)
1460 get_page(page);
1461
1462 out:
1463 return page;
1464 }
1465
1466 /* NUMA hinting page fault entry point for trans huge pmds */
1467 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1468 {
1469 struct vm_area_struct *vma = fe->vma;
1470 struct anon_vma *anon_vma = NULL;
1471 struct page *page;
1472 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1473 int page_nid = -1, this_nid = numa_node_id();
1474 int target_nid, last_cpupid = -1;
1475 bool page_locked;
1476 bool migrated = false;
1477 bool was_writable;
1478 int flags = 0;
1479
1480 /* A PROT_NONE fault should not end up here */
1481 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1482
1483 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1484 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1485 goto out_unlock;
1486
1487 /*
1488 * If there are potential migrations, wait for completion and retry
1489 * without disrupting NUMA hinting information. Do not relock and
1490 * check_same as the page may no longer be mapped.
1491 */
1492 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1493 page = pmd_page(*fe->pmd);
1494 spin_unlock(fe->ptl);
1495 wait_on_page_locked(page);
1496 goto out;
1497 }
1498
1499 page = pmd_page(pmd);
1500 BUG_ON(is_huge_zero_page(page));
1501 page_nid = page_to_nid(page);
1502 last_cpupid = page_cpupid_last(page);
1503 count_vm_numa_event(NUMA_HINT_FAULTS);
1504 if (page_nid == this_nid) {
1505 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1506 flags |= TNF_FAULT_LOCAL;
1507 }
1508
1509 /* See similar comment in do_numa_page for explanation */
1510 if (!(vma->vm_flags & VM_WRITE))
1511 flags |= TNF_NO_GROUP;
1512
1513 /*
1514 * Acquire the page lock to serialise THP migrations but avoid dropping
1515 * page_table_lock if at all possible
1516 */
1517 page_locked = trylock_page(page);
1518 target_nid = mpol_misplaced(page, vma, haddr);
1519 if (target_nid == -1) {
1520 /* If the page was locked, there are no parallel migrations */
1521 if (page_locked)
1522 goto clear_pmdnuma;
1523 }
1524
1525 /* Migration could have started since the pmd_trans_migrating check */
1526 if (!page_locked) {
1527 spin_unlock(fe->ptl);
1528 wait_on_page_locked(page);
1529 page_nid = -1;
1530 goto out;
1531 }
1532
1533 /*
1534 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1535 * to serialises splits
1536 */
1537 get_page(page);
1538 spin_unlock(fe->ptl);
1539 anon_vma = page_lock_anon_vma_read(page);
1540
1541 /* Confirm the PMD did not change while page_table_lock was released */
1542 spin_lock(fe->ptl);
1543 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1544 unlock_page(page);
1545 put_page(page);
1546 page_nid = -1;
1547 goto out_unlock;
1548 }
1549
1550 /* Bail if we fail to protect against THP splits for any reason */
1551 if (unlikely(!anon_vma)) {
1552 put_page(page);
1553 page_nid = -1;
1554 goto clear_pmdnuma;
1555 }
1556
1557 /*
1558 * Migrate the THP to the requested node, returns with page unlocked
1559 * and access rights restored.
1560 */
1561 spin_unlock(fe->ptl);
1562 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1563 fe->pmd, pmd, fe->address, page, target_nid);
1564 if (migrated) {
1565 flags |= TNF_MIGRATED;
1566 page_nid = target_nid;
1567 } else
1568 flags |= TNF_MIGRATE_FAIL;
1569
1570 goto out;
1571 clear_pmdnuma:
1572 BUG_ON(!PageLocked(page));
1573 was_writable = pmd_write(pmd);
1574 pmd = pmd_modify(pmd, vma->vm_page_prot);
1575 pmd = pmd_mkyoung(pmd);
1576 if (was_writable)
1577 pmd = pmd_mkwrite(pmd);
1578 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1579 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1580 unlock_page(page);
1581 out_unlock:
1582 spin_unlock(fe->ptl);
1583
1584 out:
1585 if (anon_vma)
1586 page_unlock_anon_vma_read(anon_vma);
1587
1588 if (page_nid != -1)
1589 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1590
1591 return 0;
1592 }
1593
1594 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1595 pmd_t *pmd, unsigned long addr, unsigned long next)
1596
1597 {
1598 spinlock_t *ptl;
1599 pmd_t orig_pmd;
1600 struct page *page;
1601 struct mm_struct *mm = tlb->mm;
1602 int ret = 0;
1603
1604 ptl = pmd_trans_huge_lock(pmd, vma);
1605 if (!ptl)
1606 goto out_unlocked;
1607
1608 orig_pmd = *pmd;
1609 if (is_huge_zero_pmd(orig_pmd)) {
1610 ret = 1;
1611 goto out;
1612 }
1613
1614 page = pmd_page(orig_pmd);
1615 /*
1616 * If other processes are mapping this page, we couldn't discard
1617 * the page unless they all do MADV_FREE so let's skip the page.
1618 */
1619 if (page_mapcount(page) != 1)
1620 goto out;
1621
1622 if (!trylock_page(page))
1623 goto out;
1624
1625 /*
1626 * If user want to discard part-pages of THP, split it so MADV_FREE
1627 * will deactivate only them.
1628 */
1629 if (next - addr != HPAGE_PMD_SIZE) {
1630 get_page(page);
1631 spin_unlock(ptl);
1632 split_huge_page(page);
1633 put_page(page);
1634 unlock_page(page);
1635 goto out_unlocked;
1636 }
1637
1638 if (PageDirty(page))
1639 ClearPageDirty(page);
1640 unlock_page(page);
1641
1642 if (PageActive(page))
1643 deactivate_page(page);
1644
1645 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1646 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1647 tlb->fullmm);
1648 orig_pmd = pmd_mkold(orig_pmd);
1649 orig_pmd = pmd_mkclean(orig_pmd);
1650
1651 set_pmd_at(mm, addr, pmd, orig_pmd);
1652 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1653 }
1654 ret = 1;
1655 out:
1656 spin_unlock(ptl);
1657 out_unlocked:
1658 return ret;
1659 }
1660
1661 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1662 pmd_t *pmd, unsigned long addr)
1663 {
1664 pmd_t orig_pmd;
1665 spinlock_t *ptl;
1666
1667 ptl = __pmd_trans_huge_lock(pmd, vma);
1668 if (!ptl)
1669 return 0;
1670 /*
1671 * For architectures like ppc64 we look at deposited pgtable
1672 * when calling pmdp_huge_get_and_clear. So do the
1673 * pgtable_trans_huge_withdraw after finishing pmdp related
1674 * operations.
1675 */
1676 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1677 tlb->fullmm);
1678 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1679 if (vma_is_dax(vma)) {
1680 spin_unlock(ptl);
1681 if (is_huge_zero_pmd(orig_pmd))
1682 tlb_remove_page(tlb, pmd_page(orig_pmd));
1683 } else if (is_huge_zero_pmd(orig_pmd)) {
1684 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1685 atomic_long_dec(&tlb->mm->nr_ptes);
1686 spin_unlock(ptl);
1687 tlb_remove_page(tlb, pmd_page(orig_pmd));
1688 } else {
1689 struct page *page = pmd_page(orig_pmd);
1690 page_remove_rmap(page, true);
1691 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1692 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1693 VM_BUG_ON_PAGE(!PageHead(page), page);
1694 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1695 atomic_long_dec(&tlb->mm->nr_ptes);
1696 spin_unlock(ptl);
1697 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1698 }
1699 return 1;
1700 }
1701
1702 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1703 unsigned long new_addr, unsigned long old_end,
1704 pmd_t *old_pmd, pmd_t *new_pmd)
1705 {
1706 spinlock_t *old_ptl, *new_ptl;
1707 pmd_t pmd;
1708 struct mm_struct *mm = vma->vm_mm;
1709
1710 if ((old_addr & ~HPAGE_PMD_MASK) ||
1711 (new_addr & ~HPAGE_PMD_MASK) ||
1712 old_end - old_addr < HPAGE_PMD_SIZE)
1713 return false;
1714
1715 /*
1716 * The destination pmd shouldn't be established, free_pgtables()
1717 * should have release it.
1718 */
1719 if (WARN_ON(!pmd_none(*new_pmd))) {
1720 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1721 return false;
1722 }
1723
1724 /*
1725 * We don't have to worry about the ordering of src and dst
1726 * ptlocks because exclusive mmap_sem prevents deadlock.
1727 */
1728 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1729 if (old_ptl) {
1730 new_ptl = pmd_lockptr(mm, new_pmd);
1731 if (new_ptl != old_ptl)
1732 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1733 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1734 VM_BUG_ON(!pmd_none(*new_pmd));
1735
1736 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1737 vma_is_anonymous(vma)) {
1738 pgtable_t pgtable;
1739 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1740 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1741 }
1742 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1743 if (new_ptl != old_ptl)
1744 spin_unlock(new_ptl);
1745 spin_unlock(old_ptl);
1746 return true;
1747 }
1748 return false;
1749 }
1750
1751 /*
1752 * Returns
1753 * - 0 if PMD could not be locked
1754 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1755 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1756 */
1757 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1758 unsigned long addr, pgprot_t newprot, int prot_numa)
1759 {
1760 struct mm_struct *mm = vma->vm_mm;
1761 spinlock_t *ptl;
1762 int ret = 0;
1763
1764 ptl = __pmd_trans_huge_lock(pmd, vma);
1765 if (ptl) {
1766 pmd_t entry;
1767 bool preserve_write = prot_numa && pmd_write(*pmd);
1768 ret = 1;
1769
1770 /*
1771 * Avoid trapping faults against the zero page. The read-only
1772 * data is likely to be read-cached on the local CPU and
1773 * local/remote hits to the zero page are not interesting.
1774 */
1775 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1776 spin_unlock(ptl);
1777 return ret;
1778 }
1779
1780 if (!prot_numa || !pmd_protnone(*pmd)) {
1781 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1782 entry = pmd_modify(entry, newprot);
1783 if (preserve_write)
1784 entry = pmd_mkwrite(entry);
1785 ret = HPAGE_PMD_NR;
1786 set_pmd_at(mm, addr, pmd, entry);
1787 BUG_ON(!preserve_write && pmd_write(entry));
1788 }
1789 spin_unlock(ptl);
1790 }
1791
1792 return ret;
1793 }
1794
1795 /*
1796 * Returns true if a given pmd maps a thp, false otherwise.
1797 *
1798 * Note that if it returns true, this routine returns without unlocking page
1799 * table lock. So callers must unlock it.
1800 */
1801 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1802 {
1803 spinlock_t *ptl;
1804 ptl = pmd_lock(vma->vm_mm, pmd);
1805 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1806 return ptl;
1807 spin_unlock(ptl);
1808 return NULL;
1809 }
1810
1811 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1812
1813 int hugepage_madvise(struct vm_area_struct *vma,
1814 unsigned long *vm_flags, int advice)
1815 {
1816 switch (advice) {
1817 case MADV_HUGEPAGE:
1818 #ifdef CONFIG_S390
1819 /*
1820 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1821 * can't handle this properly after s390_enable_sie, so we simply
1822 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1823 */
1824 if (mm_has_pgste(vma->vm_mm))
1825 return 0;
1826 #endif
1827 /*
1828 * Be somewhat over-protective like KSM for now!
1829 */
1830 if (*vm_flags & VM_NO_THP)
1831 return -EINVAL;
1832 *vm_flags &= ~VM_NOHUGEPAGE;
1833 *vm_flags |= VM_HUGEPAGE;
1834 /*
1835 * If the vma become good for khugepaged to scan,
1836 * register it here without waiting a page fault that
1837 * may not happen any time soon.
1838 */
1839 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1840 return -ENOMEM;
1841 break;
1842 case MADV_NOHUGEPAGE:
1843 /*
1844 * Be somewhat over-protective like KSM for now!
1845 */
1846 if (*vm_flags & VM_NO_THP)
1847 return -EINVAL;
1848 *vm_flags &= ~VM_HUGEPAGE;
1849 *vm_flags |= VM_NOHUGEPAGE;
1850 /*
1851 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1852 * this vma even if we leave the mm registered in khugepaged if
1853 * it got registered before VM_NOHUGEPAGE was set.
1854 */
1855 break;
1856 }
1857
1858 return 0;
1859 }
1860
1861 static int __init khugepaged_slab_init(void)
1862 {
1863 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1864 sizeof(struct mm_slot),
1865 __alignof__(struct mm_slot), 0, NULL);
1866 if (!mm_slot_cache)
1867 return -ENOMEM;
1868
1869 return 0;
1870 }
1871
1872 static void __init khugepaged_slab_exit(void)
1873 {
1874 kmem_cache_destroy(mm_slot_cache);
1875 }
1876
1877 static inline struct mm_slot *alloc_mm_slot(void)
1878 {
1879 if (!mm_slot_cache) /* initialization failed */
1880 return NULL;
1881 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1882 }
1883
1884 static inline void free_mm_slot(struct mm_slot *mm_slot)
1885 {
1886 kmem_cache_free(mm_slot_cache, mm_slot);
1887 }
1888
1889 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1890 {
1891 struct mm_slot *mm_slot;
1892
1893 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1894 if (mm == mm_slot->mm)
1895 return mm_slot;
1896
1897 return NULL;
1898 }
1899
1900 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1901 struct mm_slot *mm_slot)
1902 {
1903 mm_slot->mm = mm;
1904 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1905 }
1906
1907 static inline int khugepaged_test_exit(struct mm_struct *mm)
1908 {
1909 return atomic_read(&mm->mm_users) == 0;
1910 }
1911
1912 int __khugepaged_enter(struct mm_struct *mm)
1913 {
1914 struct mm_slot *mm_slot;
1915 int wakeup;
1916
1917 mm_slot = alloc_mm_slot();
1918 if (!mm_slot)
1919 return -ENOMEM;
1920
1921 /* __khugepaged_exit() must not run from under us */
1922 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1923 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1924 free_mm_slot(mm_slot);
1925 return 0;
1926 }
1927
1928 spin_lock(&khugepaged_mm_lock);
1929 insert_to_mm_slots_hash(mm, mm_slot);
1930 /*
1931 * Insert just behind the scanning cursor, to let the area settle
1932 * down a little.
1933 */
1934 wakeup = list_empty(&khugepaged_scan.mm_head);
1935 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1936 spin_unlock(&khugepaged_mm_lock);
1937
1938 atomic_inc(&mm->mm_count);
1939 if (wakeup)
1940 wake_up_interruptible(&khugepaged_wait);
1941
1942 return 0;
1943 }
1944
1945 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1946 unsigned long vm_flags)
1947 {
1948 unsigned long hstart, hend;
1949 if (!vma->anon_vma)
1950 /*
1951 * Not yet faulted in so we will register later in the
1952 * page fault if needed.
1953 */
1954 return 0;
1955 if (vma->vm_ops || (vm_flags & VM_NO_THP))
1956 /* khugepaged not yet working on file or special mappings */
1957 return 0;
1958 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1959 hend = vma->vm_end & HPAGE_PMD_MASK;
1960 if (hstart < hend)
1961 return khugepaged_enter(vma, vm_flags);
1962 return 0;
1963 }
1964
1965 void __khugepaged_exit(struct mm_struct *mm)
1966 {
1967 struct mm_slot *mm_slot;
1968 int free = 0;
1969
1970 spin_lock(&khugepaged_mm_lock);
1971 mm_slot = get_mm_slot(mm);
1972 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1973 hash_del(&mm_slot->hash);
1974 list_del(&mm_slot->mm_node);
1975 free = 1;
1976 }
1977 spin_unlock(&khugepaged_mm_lock);
1978
1979 if (free) {
1980 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1981 free_mm_slot(mm_slot);
1982 mmdrop(mm);
1983 } else if (mm_slot) {
1984 /*
1985 * This is required to serialize against
1986 * khugepaged_test_exit() (which is guaranteed to run
1987 * under mmap sem read mode). Stop here (after we
1988 * return all pagetables will be destroyed) until
1989 * khugepaged has finished working on the pagetables
1990 * under the mmap_sem.
1991 */
1992 down_write(&mm->mmap_sem);
1993 up_write(&mm->mmap_sem);
1994 }
1995 }
1996
1997 static void release_pte_page(struct page *page)
1998 {
1999 /* 0 stands for page_is_file_cache(page) == false */
2000 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2001 unlock_page(page);
2002 putback_lru_page(page);
2003 }
2004
2005 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2006 {
2007 while (--_pte >= pte) {
2008 pte_t pteval = *_pte;
2009 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2010 release_pte_page(pte_page(pteval));
2011 }
2012 }
2013
2014 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2015 unsigned long address,
2016 pte_t *pte)
2017 {
2018 struct page *page = NULL;
2019 pte_t *_pte;
2020 int none_or_zero = 0, result = 0;
2021 bool referenced = false, writable = false;
2022
2023 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2024 _pte++, address += PAGE_SIZE) {
2025 pte_t pteval = *_pte;
2026 if (pte_none(pteval) || (pte_present(pteval) &&
2027 is_zero_pfn(pte_pfn(pteval)))) {
2028 if (!userfaultfd_armed(vma) &&
2029 ++none_or_zero <= khugepaged_max_ptes_none) {
2030 continue;
2031 } else {
2032 result = SCAN_EXCEED_NONE_PTE;
2033 goto out;
2034 }
2035 }
2036 if (!pte_present(pteval)) {
2037 result = SCAN_PTE_NON_PRESENT;
2038 goto out;
2039 }
2040 page = vm_normal_page(vma, address, pteval);
2041 if (unlikely(!page)) {
2042 result = SCAN_PAGE_NULL;
2043 goto out;
2044 }
2045
2046 VM_BUG_ON_PAGE(PageCompound(page), page);
2047 VM_BUG_ON_PAGE(!PageAnon(page), page);
2048 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2049
2050 /*
2051 * We can do it before isolate_lru_page because the
2052 * page can't be freed from under us. NOTE: PG_lock
2053 * is needed to serialize against split_huge_page
2054 * when invoked from the VM.
2055 */
2056 if (!trylock_page(page)) {
2057 result = SCAN_PAGE_LOCK;
2058 goto out;
2059 }
2060
2061 /*
2062 * cannot use mapcount: can't collapse if there's a gup pin.
2063 * The page must only be referenced by the scanned process
2064 * and page swap cache.
2065 */
2066 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2067 unlock_page(page);
2068 result = SCAN_PAGE_COUNT;
2069 goto out;
2070 }
2071 if (pte_write(pteval)) {
2072 writable = true;
2073 } else {
2074 if (PageSwapCache(page) &&
2075 !reuse_swap_page(page, NULL)) {
2076 unlock_page(page);
2077 result = SCAN_SWAP_CACHE_PAGE;
2078 goto out;
2079 }
2080 /*
2081 * Page is not in the swap cache. It can be collapsed
2082 * into a THP.
2083 */
2084 }
2085
2086 /*
2087 * Isolate the page to avoid collapsing an hugepage
2088 * currently in use by the VM.
2089 */
2090 if (isolate_lru_page(page)) {
2091 unlock_page(page);
2092 result = SCAN_DEL_PAGE_LRU;
2093 goto out;
2094 }
2095 /* 0 stands for page_is_file_cache(page) == false */
2096 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2097 VM_BUG_ON_PAGE(!PageLocked(page), page);
2098 VM_BUG_ON_PAGE(PageLRU(page), page);
2099
2100 /* If there is no mapped pte young don't collapse the page */
2101 if (pte_young(pteval) ||
2102 page_is_young(page) || PageReferenced(page) ||
2103 mmu_notifier_test_young(vma->vm_mm, address))
2104 referenced = true;
2105 }
2106 if (likely(writable)) {
2107 if (likely(referenced)) {
2108 result = SCAN_SUCCEED;
2109 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2110 referenced, writable, result);
2111 return 1;
2112 }
2113 } else {
2114 result = SCAN_PAGE_RO;
2115 }
2116
2117 out:
2118 release_pte_pages(pte, _pte);
2119 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2120 referenced, writable, result);
2121 return 0;
2122 }
2123
2124 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2125 struct vm_area_struct *vma,
2126 unsigned long address,
2127 spinlock_t *ptl)
2128 {
2129 pte_t *_pte;
2130 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2131 pte_t pteval = *_pte;
2132 struct page *src_page;
2133
2134 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2135 clear_user_highpage(page, address);
2136 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2137 if (is_zero_pfn(pte_pfn(pteval))) {
2138 /*
2139 * ptl mostly unnecessary.
2140 */
2141 spin_lock(ptl);
2142 /*
2143 * paravirt calls inside pte_clear here are
2144 * superfluous.
2145 */
2146 pte_clear(vma->vm_mm, address, _pte);
2147 spin_unlock(ptl);
2148 }
2149 } else {
2150 src_page = pte_page(pteval);
2151 copy_user_highpage(page, src_page, address, vma);
2152 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2153 release_pte_page(src_page);
2154 /*
2155 * ptl mostly unnecessary, but preempt has to
2156 * be disabled to update the per-cpu stats
2157 * inside page_remove_rmap().
2158 */
2159 spin_lock(ptl);
2160 /*
2161 * paravirt calls inside pte_clear here are
2162 * superfluous.
2163 */
2164 pte_clear(vma->vm_mm, address, _pte);
2165 page_remove_rmap(src_page, false);
2166 spin_unlock(ptl);
2167 free_page_and_swap_cache(src_page);
2168 }
2169
2170 address += PAGE_SIZE;
2171 page++;
2172 }
2173 }
2174
2175 static void khugepaged_alloc_sleep(void)
2176 {
2177 DEFINE_WAIT(wait);
2178
2179 add_wait_queue(&khugepaged_wait, &wait);
2180 freezable_schedule_timeout_interruptible(
2181 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2182 remove_wait_queue(&khugepaged_wait, &wait);
2183 }
2184
2185 static int khugepaged_node_load[MAX_NUMNODES];
2186
2187 static bool khugepaged_scan_abort(int nid)
2188 {
2189 int i;
2190
2191 /*
2192 * If zone_reclaim_mode is disabled, then no extra effort is made to
2193 * allocate memory locally.
2194 */
2195 if (!zone_reclaim_mode)
2196 return false;
2197
2198 /* If there is a count for this node already, it must be acceptable */
2199 if (khugepaged_node_load[nid])
2200 return false;
2201
2202 for (i = 0; i < MAX_NUMNODES; i++) {
2203 if (!khugepaged_node_load[i])
2204 continue;
2205 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2206 return true;
2207 }
2208 return false;
2209 }
2210
2211 #ifdef CONFIG_NUMA
2212 static int khugepaged_find_target_node(void)
2213 {
2214 static int last_khugepaged_target_node = NUMA_NO_NODE;
2215 int nid, target_node = 0, max_value = 0;
2216
2217 /* find first node with max normal pages hit */
2218 for (nid = 0; nid < MAX_NUMNODES; nid++)
2219 if (khugepaged_node_load[nid] > max_value) {
2220 max_value = khugepaged_node_load[nid];
2221 target_node = nid;
2222 }
2223
2224 /* do some balance if several nodes have the same hit record */
2225 if (target_node <= last_khugepaged_target_node)
2226 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2227 nid++)
2228 if (max_value == khugepaged_node_load[nid]) {
2229 target_node = nid;
2230 break;
2231 }
2232
2233 last_khugepaged_target_node = target_node;
2234 return target_node;
2235 }
2236
2237 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2238 {
2239 if (IS_ERR(*hpage)) {
2240 if (!*wait)
2241 return false;
2242
2243 *wait = false;
2244 *hpage = NULL;
2245 khugepaged_alloc_sleep();
2246 } else if (*hpage) {
2247 put_page(*hpage);
2248 *hpage = NULL;
2249 }
2250
2251 return true;
2252 }
2253
2254 static struct page *
2255 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2256 unsigned long address, int node)
2257 {
2258 VM_BUG_ON_PAGE(*hpage, *hpage);
2259
2260 /*
2261 * Before allocating the hugepage, release the mmap_sem read lock.
2262 * The allocation can take potentially a long time if it involves
2263 * sync compaction, and we do not need to hold the mmap_sem during
2264 * that. We will recheck the vma after taking it again in write mode.
2265 */
2266 up_read(&mm->mmap_sem);
2267
2268 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2269 if (unlikely(!*hpage)) {
2270 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2271 *hpage = ERR_PTR(-ENOMEM);
2272 return NULL;
2273 }
2274
2275 prep_transhuge_page(*hpage);
2276 count_vm_event(THP_COLLAPSE_ALLOC);
2277 return *hpage;
2278 }
2279 #else
2280 static int khugepaged_find_target_node(void)
2281 {
2282 return 0;
2283 }
2284
2285 static inline struct page *alloc_khugepaged_hugepage(void)
2286 {
2287 struct page *page;
2288
2289 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2290 HPAGE_PMD_ORDER);
2291 if (page)
2292 prep_transhuge_page(page);
2293 return page;
2294 }
2295
2296 static struct page *khugepaged_alloc_hugepage(bool *wait)
2297 {
2298 struct page *hpage;
2299
2300 do {
2301 hpage = alloc_khugepaged_hugepage();
2302 if (!hpage) {
2303 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2304 if (!*wait)
2305 return NULL;
2306
2307 *wait = false;
2308 khugepaged_alloc_sleep();
2309 } else
2310 count_vm_event(THP_COLLAPSE_ALLOC);
2311 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2312
2313 return hpage;
2314 }
2315
2316 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2317 {
2318 if (!*hpage)
2319 *hpage = khugepaged_alloc_hugepage(wait);
2320
2321 if (unlikely(!*hpage))
2322 return false;
2323
2324 return true;
2325 }
2326
2327 static struct page *
2328 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2329 unsigned long address, int node)
2330 {
2331 up_read(&mm->mmap_sem);
2332 VM_BUG_ON(!*hpage);
2333
2334 return *hpage;
2335 }
2336 #endif
2337
2338 static bool hugepage_vma_check(struct vm_area_struct *vma)
2339 {
2340 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2341 (vma->vm_flags & VM_NOHUGEPAGE))
2342 return false;
2343 if (!vma->anon_vma || vma->vm_ops)
2344 return false;
2345 if (is_vma_temporary_stack(vma))
2346 return false;
2347 return !(vma->vm_flags & VM_NO_THP);
2348 }
2349
2350 /*
2351 * If mmap_sem temporarily dropped, revalidate vma
2352 * before taking mmap_sem.
2353 * Return 0 if succeeds, otherwise return none-zero
2354 * value (scan code).
2355 */
2356
2357 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2358 {
2359 struct vm_area_struct *vma;
2360 unsigned long hstart, hend;
2361
2362 if (unlikely(khugepaged_test_exit(mm)))
2363 return SCAN_ANY_PROCESS;
2364
2365 vma = find_vma(mm, address);
2366 if (!vma)
2367 return SCAN_VMA_NULL;
2368
2369 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2370 hend = vma->vm_end & HPAGE_PMD_MASK;
2371 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2372 return SCAN_ADDRESS_RANGE;
2373 if (!hugepage_vma_check(vma))
2374 return SCAN_VMA_CHECK;
2375 return 0;
2376 }
2377
2378 /*
2379 * Bring missing pages in from swap, to complete THP collapse.
2380 * Only done if khugepaged_scan_pmd believes it is worthwhile.
2381 *
2382 * Called and returns without pte mapped or spinlocks held,
2383 * but with mmap_sem held to protect against vma changes.
2384 */
2385
2386 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
2387 struct vm_area_struct *vma,
2388 unsigned long address, pmd_t *pmd)
2389 {
2390 pte_t pteval;
2391 int swapped_in = 0, ret = 0;
2392 struct fault_env fe = {
2393 .vma = vma,
2394 .address = address,
2395 .flags = FAULT_FLAG_ALLOW_RETRY,
2396 .pmd = pmd,
2397 };
2398
2399 fe.pte = pte_offset_map(pmd, address);
2400 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
2401 fe.pte++, fe.address += PAGE_SIZE) {
2402 pteval = *fe.pte;
2403 if (!is_swap_pte(pteval))
2404 continue;
2405 swapped_in++;
2406 ret = do_swap_page(&fe, pteval);
2407 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2408 if (ret & VM_FAULT_RETRY) {
2409 down_read(&mm->mmap_sem);
2410 /* vma is no longer available, don't continue to swapin */
2411 if (hugepage_vma_revalidate(mm, address))
2412 return false;
2413 /* check if the pmd is still valid */
2414 if (mm_find_pmd(mm, address) != pmd)
2415 return false;
2416 }
2417 if (ret & VM_FAULT_ERROR) {
2418 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
2419 return false;
2420 }
2421 /* pte is unmapped now, we need to map it */
2422 fe.pte = pte_offset_map(pmd, fe.address);
2423 }
2424 fe.pte--;
2425 pte_unmap(fe.pte);
2426 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
2427 return true;
2428 }
2429
2430 static void collapse_huge_page(struct mm_struct *mm,
2431 unsigned long address,
2432 struct page **hpage,
2433 struct vm_area_struct *vma,
2434 int node)
2435 {
2436 pmd_t *pmd, _pmd;
2437 pte_t *pte;
2438 pgtable_t pgtable;
2439 struct page *new_page;
2440 spinlock_t *pmd_ptl, *pte_ptl;
2441 int isolated = 0, result = 0;
2442 struct mem_cgroup *memcg;
2443 unsigned long mmun_start; /* For mmu_notifiers */
2444 unsigned long mmun_end; /* For mmu_notifiers */
2445 gfp_t gfp;
2446
2447 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2448
2449 /* Only allocate from the target node */
2450 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2451
2452 /* release the mmap_sem read lock. */
2453 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2454 if (!new_page) {
2455 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2456 goto out_nolock;
2457 }
2458
2459 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2460 result = SCAN_CGROUP_CHARGE_FAIL;
2461 goto out_nolock;
2462 }
2463
2464 down_read(&mm->mmap_sem);
2465 result = hugepage_vma_revalidate(mm, address);
2466 if (result) {
2467 mem_cgroup_cancel_charge(new_page, memcg, true);
2468 up_read(&mm->mmap_sem);
2469 goto out_nolock;
2470 }
2471
2472 pmd = mm_find_pmd(mm, address);
2473 if (!pmd) {
2474 result = SCAN_PMD_NULL;
2475 mem_cgroup_cancel_charge(new_page, memcg, true);
2476 up_read(&mm->mmap_sem);
2477 goto out_nolock;
2478 }
2479
2480 /*
2481 * __collapse_huge_page_swapin always returns with mmap_sem locked.
2482 * If it fails, release mmap_sem and jump directly out.
2483 * Continuing to collapse causes inconsistency.
2484 */
2485 if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
2486 mem_cgroup_cancel_charge(new_page, memcg, true);
2487 up_read(&mm->mmap_sem);
2488 goto out_nolock;
2489 }
2490
2491 up_read(&mm->mmap_sem);
2492 /*
2493 * Prevent all access to pagetables with the exception of
2494 * gup_fast later handled by the ptep_clear_flush and the VM
2495 * handled by the anon_vma lock + PG_lock.
2496 */
2497 down_write(&mm->mmap_sem);
2498 result = hugepage_vma_revalidate(mm, address);
2499 if (result)
2500 goto out;
2501 /* check if the pmd is still valid */
2502 if (mm_find_pmd(mm, address) != pmd)
2503 goto out;
2504
2505 anon_vma_lock_write(vma->anon_vma);
2506
2507 pte = pte_offset_map(pmd, address);
2508 pte_ptl = pte_lockptr(mm, pmd);
2509
2510 mmun_start = address;
2511 mmun_end = address + HPAGE_PMD_SIZE;
2512 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2513 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2514 /*
2515 * After this gup_fast can't run anymore. This also removes
2516 * any huge TLB entry from the CPU so we won't allow
2517 * huge and small TLB entries for the same virtual address
2518 * to avoid the risk of CPU bugs in that area.
2519 */
2520 _pmd = pmdp_collapse_flush(vma, address, pmd);
2521 spin_unlock(pmd_ptl);
2522 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2523
2524 spin_lock(pte_ptl);
2525 isolated = __collapse_huge_page_isolate(vma, address, pte);
2526 spin_unlock(pte_ptl);
2527
2528 if (unlikely(!isolated)) {
2529 pte_unmap(pte);
2530 spin_lock(pmd_ptl);
2531 BUG_ON(!pmd_none(*pmd));
2532 /*
2533 * We can only use set_pmd_at when establishing
2534 * hugepmds and never for establishing regular pmds that
2535 * points to regular pagetables. Use pmd_populate for that
2536 */
2537 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2538 spin_unlock(pmd_ptl);
2539 anon_vma_unlock_write(vma->anon_vma);
2540 result = SCAN_FAIL;
2541 goto out;
2542 }
2543
2544 /*
2545 * All pages are isolated and locked so anon_vma rmap
2546 * can't run anymore.
2547 */
2548 anon_vma_unlock_write(vma->anon_vma);
2549
2550 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2551 pte_unmap(pte);
2552 __SetPageUptodate(new_page);
2553 pgtable = pmd_pgtable(_pmd);
2554
2555 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2556 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2557
2558 /*
2559 * spin_lock() below is not the equivalent of smp_wmb(), so
2560 * this is needed to avoid the copy_huge_page writes to become
2561 * visible after the set_pmd_at() write.
2562 */
2563 smp_wmb();
2564
2565 spin_lock(pmd_ptl);
2566 BUG_ON(!pmd_none(*pmd));
2567 page_add_new_anon_rmap(new_page, vma, address, true);
2568 mem_cgroup_commit_charge(new_page, memcg, false, true);
2569 lru_cache_add_active_or_unevictable(new_page, vma);
2570 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2571 set_pmd_at(mm, address, pmd, _pmd);
2572 update_mmu_cache_pmd(vma, address, pmd);
2573 spin_unlock(pmd_ptl);
2574
2575 *hpage = NULL;
2576
2577 khugepaged_pages_collapsed++;
2578 result = SCAN_SUCCEED;
2579 out_up_write:
2580 up_write(&mm->mmap_sem);
2581 out_nolock:
2582 trace_mm_collapse_huge_page(mm, isolated, result);
2583 return;
2584 out:
2585 mem_cgroup_cancel_charge(new_page, memcg, true);
2586 goto out_up_write;
2587 }
2588
2589 static int khugepaged_scan_pmd(struct mm_struct *mm,
2590 struct vm_area_struct *vma,
2591 unsigned long address,
2592 struct page **hpage)
2593 {
2594 pmd_t *pmd;
2595 pte_t *pte, *_pte;
2596 int ret = 0, none_or_zero = 0, result = 0;
2597 struct page *page = NULL;
2598 unsigned long _address;
2599 spinlock_t *ptl;
2600 int node = NUMA_NO_NODE, unmapped = 0;
2601 bool writable = false, referenced = false;
2602
2603 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2604
2605 pmd = mm_find_pmd(mm, address);
2606 if (!pmd) {
2607 result = SCAN_PMD_NULL;
2608 goto out;
2609 }
2610
2611 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2612 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2613 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2614 _pte++, _address += PAGE_SIZE) {
2615 pte_t pteval = *_pte;
2616 if (is_swap_pte(pteval)) {
2617 if (++unmapped <= khugepaged_max_ptes_swap) {
2618 continue;
2619 } else {
2620 result = SCAN_EXCEED_SWAP_PTE;
2621 goto out_unmap;
2622 }
2623 }
2624 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2625 if (!userfaultfd_armed(vma) &&
2626 ++none_or_zero <= khugepaged_max_ptes_none) {
2627 continue;
2628 } else {
2629 result = SCAN_EXCEED_NONE_PTE;
2630 goto out_unmap;
2631 }
2632 }
2633 if (!pte_present(pteval)) {
2634 result = SCAN_PTE_NON_PRESENT;
2635 goto out_unmap;
2636 }
2637 if (pte_write(pteval))
2638 writable = true;
2639
2640 page = vm_normal_page(vma, _address, pteval);
2641 if (unlikely(!page)) {
2642 result = SCAN_PAGE_NULL;
2643 goto out_unmap;
2644 }
2645
2646 /* TODO: teach khugepaged to collapse THP mapped with pte */
2647 if (PageCompound(page)) {
2648 result = SCAN_PAGE_COMPOUND;
2649 goto out_unmap;
2650 }
2651
2652 /*
2653 * Record which node the original page is from and save this
2654 * information to khugepaged_node_load[].
2655 * Khupaged will allocate hugepage from the node has the max
2656 * hit record.
2657 */
2658 node = page_to_nid(page);
2659 if (khugepaged_scan_abort(node)) {
2660 result = SCAN_SCAN_ABORT;
2661 goto out_unmap;
2662 }
2663 khugepaged_node_load[node]++;
2664 if (!PageLRU(page)) {
2665 result = SCAN_PAGE_LRU;
2666 goto out_unmap;
2667 }
2668 if (PageLocked(page)) {
2669 result = SCAN_PAGE_LOCK;
2670 goto out_unmap;
2671 }
2672 if (!PageAnon(page)) {
2673 result = SCAN_PAGE_ANON;
2674 goto out_unmap;
2675 }
2676
2677 /*
2678 * cannot use mapcount: can't collapse if there's a gup pin.
2679 * The page must only be referenced by the scanned process
2680 * and page swap cache.
2681 */
2682 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2683 result = SCAN_PAGE_COUNT;
2684 goto out_unmap;
2685 }
2686 if (pte_young(pteval) ||
2687 page_is_young(page) || PageReferenced(page) ||
2688 mmu_notifier_test_young(vma->vm_mm, address))
2689 referenced = true;
2690 }
2691 if (writable) {
2692 if (referenced) {
2693 result = SCAN_SUCCEED;
2694 ret = 1;
2695 } else {
2696 result = SCAN_NO_REFERENCED_PAGE;
2697 }
2698 } else {
2699 result = SCAN_PAGE_RO;
2700 }
2701 out_unmap:
2702 pte_unmap_unlock(pte, ptl);
2703 if (ret) {
2704 node = khugepaged_find_target_node();
2705 /* collapse_huge_page will return with the mmap_sem released */
2706 collapse_huge_page(mm, address, hpage, vma, node);
2707 }
2708 out:
2709 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2710 none_or_zero, result, unmapped);
2711 return ret;
2712 }
2713
2714 static void collect_mm_slot(struct mm_slot *mm_slot)
2715 {
2716 struct mm_struct *mm = mm_slot->mm;
2717
2718 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2719
2720 if (khugepaged_test_exit(mm)) {
2721 /* free mm_slot */
2722 hash_del(&mm_slot->hash);
2723 list_del(&mm_slot->mm_node);
2724
2725 /*
2726 * Not strictly needed because the mm exited already.
2727 *
2728 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2729 */
2730
2731 /* khugepaged_mm_lock actually not necessary for the below */
2732 free_mm_slot(mm_slot);
2733 mmdrop(mm);
2734 }
2735 }
2736
2737 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2738 struct page **hpage)
2739 __releases(&khugepaged_mm_lock)
2740 __acquires(&khugepaged_mm_lock)
2741 {
2742 struct mm_slot *mm_slot;
2743 struct mm_struct *mm;
2744 struct vm_area_struct *vma;
2745 int progress = 0;
2746
2747 VM_BUG_ON(!pages);
2748 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2749
2750 if (khugepaged_scan.mm_slot)
2751 mm_slot = khugepaged_scan.mm_slot;
2752 else {
2753 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2754 struct mm_slot, mm_node);
2755 khugepaged_scan.address = 0;
2756 khugepaged_scan.mm_slot = mm_slot;
2757 }
2758 spin_unlock(&khugepaged_mm_lock);
2759
2760 mm = mm_slot->mm;
2761 down_read(&mm->mmap_sem);
2762 if (unlikely(khugepaged_test_exit(mm)))
2763 vma = NULL;
2764 else
2765 vma = find_vma(mm, khugepaged_scan.address);
2766
2767 progress++;
2768 for (; vma; vma = vma->vm_next) {
2769 unsigned long hstart, hend;
2770
2771 cond_resched();
2772 if (unlikely(khugepaged_test_exit(mm))) {
2773 progress++;
2774 break;
2775 }
2776 if (!hugepage_vma_check(vma)) {
2777 skip:
2778 progress++;
2779 continue;
2780 }
2781 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2782 hend = vma->vm_end & HPAGE_PMD_MASK;
2783 if (hstart >= hend)
2784 goto skip;
2785 if (khugepaged_scan.address > hend)
2786 goto skip;
2787 if (khugepaged_scan.address < hstart)
2788 khugepaged_scan.address = hstart;
2789 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2790
2791 while (khugepaged_scan.address < hend) {
2792 int ret;
2793 cond_resched();
2794 if (unlikely(khugepaged_test_exit(mm)))
2795 goto breakouterloop;
2796
2797 VM_BUG_ON(khugepaged_scan.address < hstart ||
2798 khugepaged_scan.address + HPAGE_PMD_SIZE >
2799 hend);
2800 ret = khugepaged_scan_pmd(mm, vma,
2801 khugepaged_scan.address,
2802 hpage);
2803 /* move to next address */
2804 khugepaged_scan.address += HPAGE_PMD_SIZE;
2805 progress += HPAGE_PMD_NR;
2806 if (ret)
2807 /* we released mmap_sem so break loop */
2808 goto breakouterloop_mmap_sem;
2809 if (progress >= pages)
2810 goto breakouterloop;
2811 }
2812 }
2813 breakouterloop:
2814 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2815 breakouterloop_mmap_sem:
2816
2817 spin_lock(&khugepaged_mm_lock);
2818 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2819 /*
2820 * Release the current mm_slot if this mm is about to die, or
2821 * if we scanned all vmas of this mm.
2822 */
2823 if (khugepaged_test_exit(mm) || !vma) {
2824 /*
2825 * Make sure that if mm_users is reaching zero while
2826 * khugepaged runs here, khugepaged_exit will find
2827 * mm_slot not pointing to the exiting mm.
2828 */
2829 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2830 khugepaged_scan.mm_slot = list_entry(
2831 mm_slot->mm_node.next,
2832 struct mm_slot, mm_node);
2833 khugepaged_scan.address = 0;
2834 } else {
2835 khugepaged_scan.mm_slot = NULL;
2836 khugepaged_full_scans++;
2837 }
2838
2839 collect_mm_slot(mm_slot);
2840 }
2841
2842 return progress;
2843 }
2844
2845 static int khugepaged_has_work(void)
2846 {
2847 return !list_empty(&khugepaged_scan.mm_head) &&
2848 khugepaged_enabled();
2849 }
2850
2851 static int khugepaged_wait_event(void)
2852 {
2853 return !list_empty(&khugepaged_scan.mm_head) ||
2854 kthread_should_stop();
2855 }
2856
2857 static void khugepaged_do_scan(void)
2858 {
2859 struct page *hpage = NULL;
2860 unsigned int progress = 0, pass_through_head = 0;
2861 unsigned int pages = khugepaged_pages_to_scan;
2862 bool wait = true;
2863
2864 barrier(); /* write khugepaged_pages_to_scan to local stack */
2865
2866 while (progress < pages) {
2867 if (!khugepaged_prealloc_page(&hpage, &wait))
2868 break;
2869
2870 cond_resched();
2871
2872 if (unlikely(kthread_should_stop() || try_to_freeze()))
2873 break;
2874
2875 spin_lock(&khugepaged_mm_lock);
2876 if (!khugepaged_scan.mm_slot)
2877 pass_through_head++;
2878 if (khugepaged_has_work() &&
2879 pass_through_head < 2)
2880 progress += khugepaged_scan_mm_slot(pages - progress,
2881 &hpage);
2882 else
2883 progress = pages;
2884 spin_unlock(&khugepaged_mm_lock);
2885 }
2886
2887 if (!IS_ERR_OR_NULL(hpage))
2888 put_page(hpage);
2889 }
2890
2891 static bool khugepaged_should_wakeup(void)
2892 {
2893 return kthread_should_stop() ||
2894 time_after_eq(jiffies, khugepaged_sleep_expire);
2895 }
2896
2897 static void khugepaged_wait_work(void)
2898 {
2899 if (khugepaged_has_work()) {
2900 const unsigned long scan_sleep_jiffies =
2901 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2902
2903 if (!scan_sleep_jiffies)
2904 return;
2905
2906 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2907 wait_event_freezable_timeout(khugepaged_wait,
2908 khugepaged_should_wakeup(),
2909 scan_sleep_jiffies);
2910 return;
2911 }
2912
2913 if (khugepaged_enabled())
2914 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2915 }
2916
2917 static int khugepaged(void *none)
2918 {
2919 struct mm_slot *mm_slot;
2920
2921 set_freezable();
2922 set_user_nice(current, MAX_NICE);
2923
2924 while (!kthread_should_stop()) {
2925 khugepaged_do_scan();
2926 khugepaged_wait_work();
2927 }
2928
2929 spin_lock(&khugepaged_mm_lock);
2930 mm_slot = khugepaged_scan.mm_slot;
2931 khugepaged_scan.mm_slot = NULL;
2932 if (mm_slot)
2933 collect_mm_slot(mm_slot);
2934 spin_unlock(&khugepaged_mm_lock);
2935 return 0;
2936 }
2937
2938 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2939 unsigned long haddr, pmd_t *pmd)
2940 {
2941 struct mm_struct *mm = vma->vm_mm;
2942 pgtable_t pgtable;
2943 pmd_t _pmd;
2944 int i;
2945
2946 /* leave pmd empty until pte is filled */
2947 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2948
2949 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2950 pmd_populate(mm, &_pmd, pgtable);
2951
2952 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2953 pte_t *pte, entry;
2954 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2955 entry = pte_mkspecial(entry);
2956 pte = pte_offset_map(&_pmd, haddr);
2957 VM_BUG_ON(!pte_none(*pte));
2958 set_pte_at(mm, haddr, pte, entry);
2959 pte_unmap(pte);
2960 }
2961 smp_wmb(); /* make pte visible before pmd */
2962 pmd_populate(mm, pmd, pgtable);
2963 put_huge_zero_page();
2964 }
2965
2966 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2967 unsigned long haddr, bool freeze)
2968 {
2969 struct mm_struct *mm = vma->vm_mm;
2970 struct page *page;
2971 pgtable_t pgtable;
2972 pmd_t _pmd;
2973 bool young, write, dirty;
2974 unsigned long addr;
2975 int i;
2976
2977 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2978 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2979 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2980 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2981
2982 count_vm_event(THP_SPLIT_PMD);
2983
2984 if (vma_is_dax(vma)) {
2985 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2986 if (is_huge_zero_pmd(_pmd))
2987 put_huge_zero_page();
2988 return;
2989 } else if (is_huge_zero_pmd(*pmd)) {
2990 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2991 }
2992
2993 page = pmd_page(*pmd);
2994 VM_BUG_ON_PAGE(!page_count(page), page);
2995 page_ref_add(page, HPAGE_PMD_NR - 1);
2996 write = pmd_write(*pmd);
2997 young = pmd_young(*pmd);
2998 dirty = pmd_dirty(*pmd);
2999
3000 pmdp_huge_split_prepare(vma, haddr, pmd);
3001 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3002 pmd_populate(mm, &_pmd, pgtable);
3003
3004 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3005 pte_t entry, *pte;
3006 /*
3007 * Note that NUMA hinting access restrictions are not
3008 * transferred to avoid any possibility of altering
3009 * permissions across VMAs.
3010 */
3011 if (freeze) {
3012 swp_entry_t swp_entry;
3013 swp_entry = make_migration_entry(page + i, write);
3014 entry = swp_entry_to_pte(swp_entry);
3015 } else {
3016 entry = mk_pte(page + i, vma->vm_page_prot);
3017 entry = maybe_mkwrite(entry, vma);
3018 if (!write)
3019 entry = pte_wrprotect(entry);
3020 if (!young)
3021 entry = pte_mkold(entry);
3022 }
3023 if (dirty)
3024 SetPageDirty(page + i);
3025 pte = pte_offset_map(&_pmd, addr);
3026 BUG_ON(!pte_none(*pte));
3027 set_pte_at(mm, addr, pte, entry);
3028 atomic_inc(&page[i]._mapcount);
3029 pte_unmap(pte);
3030 }
3031
3032 /*
3033 * Set PG_double_map before dropping compound_mapcount to avoid
3034 * false-negative page_mapped().
3035 */
3036 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3037 for (i = 0; i < HPAGE_PMD_NR; i++)
3038 atomic_inc(&page[i]._mapcount);
3039 }
3040
3041 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3042 /* Last compound_mapcount is gone. */
3043 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3044 if (TestClearPageDoubleMap(page)) {
3045 /* No need in mapcount reference anymore */
3046 for (i = 0; i < HPAGE_PMD_NR; i++)
3047 atomic_dec(&page[i]._mapcount);
3048 }
3049 }
3050
3051 smp_wmb(); /* make pte visible before pmd */
3052 /*
3053 * Up to this point the pmd is present and huge and userland has the
3054 * whole access to the hugepage during the split (which happens in
3055 * place). If we overwrite the pmd with the not-huge version pointing
3056 * to the pte here (which of course we could if all CPUs were bug
3057 * free), userland could trigger a small page size TLB miss on the
3058 * small sized TLB while the hugepage TLB entry is still established in
3059 * the huge TLB. Some CPU doesn't like that.
3060 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3061 * 383 on page 93. Intel should be safe but is also warns that it's
3062 * only safe if the permission and cache attributes of the two entries
3063 * loaded in the two TLB is identical (which should be the case here).
3064 * But it is generally safer to never allow small and huge TLB entries
3065 * for the same virtual address to be loaded simultaneously. So instead
3066 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3067 * current pmd notpresent (atomically because here the pmd_trans_huge
3068 * and pmd_trans_splitting must remain set at all times on the pmd
3069 * until the split is complete for this pmd), then we flush the SMP TLB
3070 * and finally we write the non-huge version of the pmd entry with
3071 * pmd_populate.
3072 */
3073 pmdp_invalidate(vma, haddr, pmd);
3074 pmd_populate(mm, pmd, pgtable);
3075
3076 if (freeze) {
3077 for (i = 0; i < HPAGE_PMD_NR; i++) {
3078 page_remove_rmap(page + i, false);
3079 put_page(page + i);
3080 }
3081 }
3082 }
3083
3084 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3085 unsigned long address, bool freeze, struct page *page)
3086 {
3087 spinlock_t *ptl;
3088 struct mm_struct *mm = vma->vm_mm;
3089 unsigned long haddr = address & HPAGE_PMD_MASK;
3090
3091 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3092 ptl = pmd_lock(mm, pmd);
3093
3094 /*
3095 * If caller asks to setup a migration entries, we need a page to check
3096 * pmd against. Otherwise we can end up replacing wrong page.
3097 */
3098 VM_BUG_ON(freeze && !page);
3099 if (page && page != pmd_page(*pmd))
3100 goto out;
3101
3102 if (pmd_trans_huge(*pmd)) {
3103 page = pmd_page(*pmd);
3104 if (PageMlocked(page))
3105 clear_page_mlock(page);
3106 } else if (!pmd_devmap(*pmd))
3107 goto out;
3108 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
3109 out:
3110 spin_unlock(ptl);
3111 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3112 }
3113
3114 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3115 bool freeze, struct page *page)
3116 {
3117 pgd_t *pgd;
3118 pud_t *pud;
3119 pmd_t *pmd;
3120
3121 pgd = pgd_offset(vma->vm_mm, address);
3122 if (!pgd_present(*pgd))
3123 return;
3124
3125 pud = pud_offset(pgd, address);
3126 if (!pud_present(*pud))
3127 return;
3128
3129 pmd = pmd_offset(pud, address);
3130
3131 __split_huge_pmd(vma, pmd, address, freeze, page);
3132 }
3133
3134 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3135 unsigned long start,
3136 unsigned long end,
3137 long adjust_next)
3138 {
3139 /*
3140 * If the new start address isn't hpage aligned and it could
3141 * previously contain an hugepage: check if we need to split
3142 * an huge pmd.
3143 */
3144 if (start & ~HPAGE_PMD_MASK &&
3145 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3146 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3147 split_huge_pmd_address(vma, start, false, NULL);
3148
3149 /*
3150 * If the new end address isn't hpage aligned and it could
3151 * previously contain an hugepage: check if we need to split
3152 * an huge pmd.
3153 */
3154 if (end & ~HPAGE_PMD_MASK &&
3155 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3156 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3157 split_huge_pmd_address(vma, end, false, NULL);
3158
3159 /*
3160 * If we're also updating the vma->vm_next->vm_start, if the new
3161 * vm_next->vm_start isn't page aligned and it could previously
3162 * contain an hugepage: check if we need to split an huge pmd.
3163 */
3164 if (adjust_next > 0) {
3165 struct vm_area_struct *next = vma->vm_next;
3166 unsigned long nstart = next->vm_start;
3167 nstart += adjust_next << PAGE_SHIFT;
3168 if (nstart & ~HPAGE_PMD_MASK &&
3169 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3170 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3171 split_huge_pmd_address(next, nstart, false, NULL);
3172 }
3173 }
3174
3175 static void freeze_page(struct page *page)
3176 {
3177 enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3178 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3179 int i, ret;
3180
3181 VM_BUG_ON_PAGE(!PageHead(page), page);
3182
3183 /* We only need TTU_SPLIT_HUGE_PMD once */
3184 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3185 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3186 /* Cut short if the page is unmapped */
3187 if (page_count(page) == 1)
3188 return;
3189
3190 ret = try_to_unmap(page + i, ttu_flags);
3191 }
3192 VM_BUG_ON(ret);
3193 }
3194
3195 static void unfreeze_page(struct page *page)
3196 {
3197 int i;
3198
3199 for (i = 0; i < HPAGE_PMD_NR; i++)
3200 remove_migration_ptes(page + i, page + i, true);
3201 }
3202
3203 static void __split_huge_page_tail(struct page *head, int tail,
3204 struct lruvec *lruvec, struct list_head *list)
3205 {
3206 struct page *page_tail = head + tail;
3207
3208 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3209 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3210
3211 /*
3212 * tail_page->_refcount is zero and not changing from under us. But
3213 * get_page_unless_zero() may be running from under us on the
3214 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3215 * would then run atomic_set() concurrently with
3216 * get_page_unless_zero(), and atomic_set() is implemented in C not
3217 * using locked ops. spin_unlock on x86 sometime uses locked ops
3218 * because of PPro errata 66, 92, so unless somebody can guarantee
3219 * atomic_set() here would be safe on all archs (and not only on x86),
3220 * it's safer to use atomic_inc().
3221 */
3222 page_ref_inc(page_tail);
3223
3224 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3225 page_tail->flags |= (head->flags &
3226 ((1L << PG_referenced) |
3227 (1L << PG_swapbacked) |
3228 (1L << PG_mlocked) |
3229 (1L << PG_uptodate) |
3230 (1L << PG_active) |
3231 (1L << PG_locked) |
3232 (1L << PG_unevictable) |
3233 (1L << PG_dirty)));
3234
3235 /*
3236 * After clearing PageTail the gup refcount can be released.
3237 * Page flags also must be visible before we make the page non-compound.
3238 */
3239 smp_wmb();
3240
3241 clear_compound_head(page_tail);
3242
3243 if (page_is_young(head))
3244 set_page_young(page_tail);
3245 if (page_is_idle(head))
3246 set_page_idle(page_tail);
3247
3248 /* ->mapping in first tail page is compound_mapcount */
3249 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3250 page_tail);
3251 page_tail->mapping = head->mapping;
3252
3253 page_tail->index = head->index + tail;
3254 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3255 lru_add_page_tail(head, page_tail, lruvec, list);
3256 }
3257
3258 static void __split_huge_page(struct page *page, struct list_head *list)
3259 {
3260 struct page *head = compound_head(page);
3261 struct zone *zone = page_zone(head);
3262 struct lruvec *lruvec;
3263 int i;
3264
3265 /* prevent PageLRU to go away from under us, and freeze lru stats */
3266 spin_lock_irq(&zone->lru_lock);
3267 lruvec = mem_cgroup_page_lruvec(head, zone);
3268
3269 /* complete memcg works before add pages to LRU */
3270 mem_cgroup_split_huge_fixup(head);
3271
3272 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3273 __split_huge_page_tail(head, i, lruvec, list);
3274
3275 ClearPageCompound(head);
3276 spin_unlock_irq(&zone->lru_lock);
3277
3278 unfreeze_page(head);
3279
3280 for (i = 0; i < HPAGE_PMD_NR; i++) {
3281 struct page *subpage = head + i;
3282 if (subpage == page)
3283 continue;
3284 unlock_page(subpage);
3285
3286 /*
3287 * Subpages may be freed if there wasn't any mapping
3288 * like if add_to_swap() is running on a lru page that
3289 * had its mapping zapped. And freeing these pages
3290 * requires taking the lru_lock so we do the put_page
3291 * of the tail pages after the split is complete.
3292 */
3293 put_page(subpage);
3294 }
3295 }
3296
3297 int total_mapcount(struct page *page)
3298 {
3299 int i, compound, ret;
3300
3301 VM_BUG_ON_PAGE(PageTail(page), page);
3302
3303 if (likely(!PageCompound(page)))
3304 return atomic_read(&page->_mapcount) + 1;
3305
3306 compound = compound_mapcount(page);
3307 if (PageHuge(page))
3308 return compound;
3309 ret = compound;
3310 for (i = 0; i < HPAGE_PMD_NR; i++)
3311 ret += atomic_read(&page[i]._mapcount) + 1;
3312 /* File pages has compound_mapcount included in _mapcount */
3313 if (!PageAnon(page))
3314 return ret - compound * HPAGE_PMD_NR;
3315 if (PageDoubleMap(page))
3316 ret -= HPAGE_PMD_NR;
3317 return ret;
3318 }
3319
3320 /*
3321 * This calculates accurately how many mappings a transparent hugepage
3322 * has (unlike page_mapcount() which isn't fully accurate). This full
3323 * accuracy is primarily needed to know if copy-on-write faults can
3324 * reuse the page and change the mapping to read-write instead of
3325 * copying them. At the same time this returns the total_mapcount too.
3326 *
3327 * The function returns the highest mapcount any one of the subpages
3328 * has. If the return value is one, even if different processes are
3329 * mapping different subpages of the transparent hugepage, they can
3330 * all reuse it, because each process is reusing a different subpage.
3331 *
3332 * The total_mapcount is instead counting all virtual mappings of the
3333 * subpages. If the total_mapcount is equal to "one", it tells the
3334 * caller all mappings belong to the same "mm" and in turn the
3335 * anon_vma of the transparent hugepage can become the vma->anon_vma
3336 * local one as no other process may be mapping any of the subpages.
3337 *
3338 * It would be more accurate to replace page_mapcount() with
3339 * page_trans_huge_mapcount(), however we only use
3340 * page_trans_huge_mapcount() in the copy-on-write faults where we
3341 * need full accuracy to avoid breaking page pinning, because
3342 * page_trans_huge_mapcount() is slower than page_mapcount().
3343 */
3344 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3345 {
3346 int i, ret, _total_mapcount, mapcount;
3347
3348 /* hugetlbfs shouldn't call it */
3349 VM_BUG_ON_PAGE(PageHuge(page), page);
3350
3351 if (likely(!PageTransCompound(page))) {
3352 mapcount = atomic_read(&page->_mapcount) + 1;
3353 if (total_mapcount)
3354 *total_mapcount = mapcount;
3355 return mapcount;
3356 }
3357
3358 page = compound_head(page);
3359
3360 _total_mapcount = ret = 0;
3361 for (i = 0; i < HPAGE_PMD_NR; i++) {
3362 mapcount = atomic_read(&page[i]._mapcount) + 1;
3363 ret = max(ret, mapcount);
3364 _total_mapcount += mapcount;
3365 }
3366 if (PageDoubleMap(page)) {
3367 ret -= 1;
3368 _total_mapcount -= HPAGE_PMD_NR;
3369 }
3370 mapcount = compound_mapcount(page);
3371 ret += mapcount;
3372 _total_mapcount += mapcount;
3373 if (total_mapcount)
3374 *total_mapcount = _total_mapcount;
3375 return ret;
3376 }
3377
3378 /*
3379 * This function splits huge page into normal pages. @page can point to any
3380 * subpage of huge page to split. Split doesn't change the position of @page.
3381 *
3382 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3383 * The huge page must be locked.
3384 *
3385 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3386 *
3387 * Both head page and tail pages will inherit mapping, flags, and so on from
3388 * the hugepage.
3389 *
3390 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3391 * they are not mapped.
3392 *
3393 * Returns 0 if the hugepage is split successfully.
3394 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3395 * us.
3396 */
3397 int split_huge_page_to_list(struct page *page, struct list_head *list)
3398 {
3399 struct page *head = compound_head(page);
3400 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3401 struct anon_vma *anon_vma;
3402 int count, mapcount, ret;
3403 bool mlocked;
3404 unsigned long flags;
3405
3406 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3407 VM_BUG_ON_PAGE(!PageAnon(page), page);
3408 VM_BUG_ON_PAGE(!PageLocked(page), page);
3409 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3410 VM_BUG_ON_PAGE(!PageCompound(page), page);
3411
3412 /*
3413 * The caller does not necessarily hold an mmap_sem that would prevent
3414 * the anon_vma disappearing so we first we take a reference to it
3415 * and then lock the anon_vma for write. This is similar to
3416 * page_lock_anon_vma_read except the write lock is taken to serialise
3417 * against parallel split or collapse operations.
3418 */
3419 anon_vma = page_get_anon_vma(head);
3420 if (!anon_vma) {
3421 ret = -EBUSY;
3422 goto out;
3423 }
3424 anon_vma_lock_write(anon_vma);
3425
3426 /*
3427 * Racy check if we can split the page, before freeze_page() will
3428 * split PMDs
3429 */
3430 if (total_mapcount(head) != page_count(head) - 1) {
3431 ret = -EBUSY;
3432 goto out_unlock;
3433 }
3434
3435 mlocked = PageMlocked(page);
3436 freeze_page(head);
3437 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3438
3439 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3440 if (mlocked)
3441 lru_add_drain();
3442
3443 /* Prevent deferred_split_scan() touching ->_refcount */
3444 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3445 count = page_count(head);
3446 mapcount = total_mapcount(head);
3447 if (!mapcount && count == 1) {
3448 if (!list_empty(page_deferred_list(head))) {
3449 pgdata->split_queue_len--;
3450 list_del(page_deferred_list(head));
3451 }
3452 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3453 __split_huge_page(page, list);
3454 ret = 0;
3455 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3456 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3457 pr_alert("total_mapcount: %u, page_count(): %u\n",
3458 mapcount, count);
3459 if (PageTail(page))
3460 dump_page(head, NULL);
3461 dump_page(page, "total_mapcount(head) > 0");
3462 BUG();
3463 } else {
3464 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3465 unfreeze_page(head);
3466 ret = -EBUSY;
3467 }
3468
3469 out_unlock:
3470 anon_vma_unlock_write(anon_vma);
3471 put_anon_vma(anon_vma);
3472 out:
3473 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3474 return ret;
3475 }
3476
3477 void free_transhuge_page(struct page *page)
3478 {
3479 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3480 unsigned long flags;
3481
3482 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3483 if (!list_empty(page_deferred_list(page))) {
3484 pgdata->split_queue_len--;
3485 list_del(page_deferred_list(page));
3486 }
3487 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3488 free_compound_page(page);
3489 }
3490
3491 void deferred_split_huge_page(struct page *page)
3492 {
3493 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3494 unsigned long flags;
3495
3496 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3497
3498 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3499 if (list_empty(page_deferred_list(page))) {
3500 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3501 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3502 pgdata->split_queue_len++;
3503 }
3504 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3505 }
3506
3507 static unsigned long deferred_split_count(struct shrinker *shrink,
3508 struct shrink_control *sc)
3509 {
3510 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3511 return ACCESS_ONCE(pgdata->split_queue_len);
3512 }
3513
3514 static unsigned long deferred_split_scan(struct shrinker *shrink,
3515 struct shrink_control *sc)
3516 {
3517 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3518 unsigned long flags;
3519 LIST_HEAD(list), *pos, *next;
3520 struct page *page;
3521 int split = 0;
3522
3523 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3524 /* Take pin on all head pages to avoid freeing them under us */
3525 list_for_each_safe(pos, next, &pgdata->split_queue) {
3526 page = list_entry((void *)pos, struct page, mapping);
3527 page = compound_head(page);
3528 if (get_page_unless_zero(page)) {
3529 list_move(page_deferred_list(page), &list);
3530 } else {
3531 /* We lost race with put_compound_page() */
3532 list_del_init(page_deferred_list(page));
3533 pgdata->split_queue_len--;
3534 }
3535 if (!--sc->nr_to_scan)
3536 break;
3537 }
3538 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3539
3540 list_for_each_safe(pos, next, &list) {
3541 page = list_entry((void *)pos, struct page, mapping);
3542 lock_page(page);
3543 /* split_huge_page() removes page from list on success */
3544 if (!split_huge_page(page))
3545 split++;
3546 unlock_page(page);
3547 put_page(page);
3548 }
3549
3550 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3551 list_splice_tail(&list, &pgdata->split_queue);
3552 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3553
3554 /*
3555 * Stop shrinker if we didn't split any page, but the queue is empty.
3556 * This can happen if pages were freed under us.
3557 */
3558 if (!split && list_empty(&pgdata->split_queue))
3559 return SHRINK_STOP;
3560 return split;
3561 }
3562
3563 static struct shrinker deferred_split_shrinker = {
3564 .count_objects = deferred_split_count,
3565 .scan_objects = deferred_split_scan,
3566 .seeks = DEFAULT_SEEKS,
3567 .flags = SHRINKER_NUMA_AWARE,
3568 };
3569
3570 #ifdef CONFIG_DEBUG_FS
3571 static int split_huge_pages_set(void *data, u64 val)
3572 {
3573 struct zone *zone;
3574 struct page *page;
3575 unsigned long pfn, max_zone_pfn;
3576 unsigned long total = 0, split = 0;
3577
3578 if (val != 1)
3579 return -EINVAL;
3580
3581 for_each_populated_zone(zone) {
3582 max_zone_pfn = zone_end_pfn(zone);
3583 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3584 if (!pfn_valid(pfn))
3585 continue;
3586
3587 page = pfn_to_page(pfn);
3588 if (!get_page_unless_zero(page))
3589 continue;
3590
3591 if (zone != page_zone(page))
3592 goto next;
3593
3594 if (!PageHead(page) || !PageAnon(page) ||
3595 PageHuge(page))
3596 goto next;
3597
3598 total++;
3599 lock_page(page);
3600 if (!split_huge_page(page))
3601 split++;
3602 unlock_page(page);
3603 next:
3604 put_page(page);
3605 }
3606 }
3607
3608 pr_info("%lu of %lu THP split\n", split, total);
3609
3610 return 0;
3611 }
3612 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3613 "%llu\n");
3614
3615 static int __init split_huge_pages_debugfs(void)
3616 {
3617 void *ret;
3618
3619 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3620 &split_huge_pages_fops);
3621 if (!ret)
3622 pr_warn("Failed to create split_huge_pages in debugfs");
3623 return 0;
3624 }
3625 late_initcall(split_huge_pages_debugfs);
3626 #endif