]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/huge_memory.c
Merge branch 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 /*
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
45 */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56
57 static struct shrinker deferred_split_shrinker;
58
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61
62 static struct page *get_huge_zero_page(void)
63 {
64 struct page *zero_page;
65 retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
87 }
88
89 static void put_huge_zero_page(void)
90 {
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110 }
111
112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116 }
117
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127 {
128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
131 __free_pages(zero_page, compound_order(zero_page));
132 return HPAGE_PMD_NR;
133 }
134
135 return 0;
136 }
137
138 static struct shrinker huge_zero_page_shrinker = {
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
141 .seeks = DEFAULT_SEEKS,
142 };
143
144 #ifdef CONFIG_SYSFS
145
146 static ssize_t triple_flag_store(struct kobject *kobj,
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
150 enum transparent_hugepage_flag deferred,
151 enum transparent_hugepage_flag req_madv)
152 {
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
161 min(sizeof("always")-1, count))) {
162 clear_bit(deferred, &transparent_hugepage_flags);
163 clear_bit(req_madv, &transparent_hugepage_flags);
164 set_bit(enabled, &transparent_hugepage_flags);
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
168 clear_bit(deferred, &transparent_hugepage_flags);
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
174 clear_bit(deferred, &transparent_hugepage_flags);
175 } else
176 return -EINVAL;
177
178 return count;
179 }
180
181 static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
183 {
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
190 }
191
192 static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195 {
196 ssize_t ret;
197
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202
203 if (ret > 0) {
204 int err = start_stop_khugepaged();
205 if (err)
206 ret = err;
207 }
208
209 return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
213
214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
217 {
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
220 }
221
222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
226 {
227 unsigned long value;
228 int ret;
229
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
235
236 if (value)
237 set_bit(flag, &transparent_hugepage_flags);
238 else
239 clear_bit(flag, &transparent_hugepage_flags);
240
241 return count;
242 }
243
244 /*
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
248 */
249 static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
251 {
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
260
261 }
262 static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265 {
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270 }
271 static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
273
274 static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276 {
277 return single_hugepage_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279 }
280 static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
282 {
283 return single_hugepage_flag_store(kobj, attr, buf, count,
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285 }
286 static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288
289 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291 {
292 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
293 }
294 static struct kobj_attribute hpage_pmd_size_attr =
295 __ATTR_RO(hpage_pmd_size);
296
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300 {
301 return single_hugepage_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
307 {
308 return single_hugepage_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314
315 static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318 &use_zero_page_attr.attr,
319 &hpage_pmd_size_attr.attr,
320 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
321 &shmem_enabled_attr.attr,
322 #endif
323 #ifdef CONFIG_DEBUG_VM
324 &debug_cow_attr.attr,
325 #endif
326 NULL,
327 };
328
329 static struct attribute_group hugepage_attr_group = {
330 .attrs = hugepage_attr,
331 };
332
333 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
334 {
335 int err;
336
337 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
338 if (unlikely(!*hugepage_kobj)) {
339 pr_err("failed to create transparent hugepage kobject\n");
340 return -ENOMEM;
341 }
342
343 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
344 if (err) {
345 pr_err("failed to register transparent hugepage group\n");
346 goto delete_obj;
347 }
348
349 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
350 if (err) {
351 pr_err("failed to register transparent hugepage group\n");
352 goto remove_hp_group;
353 }
354
355 return 0;
356
357 remove_hp_group:
358 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
359 delete_obj:
360 kobject_put(*hugepage_kobj);
361 return err;
362 }
363
364 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
367 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
368 kobject_put(hugepage_kobj);
369 }
370 #else
371 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
372 {
373 return 0;
374 }
375
376 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377 {
378 }
379 #endif /* CONFIG_SYSFS */
380
381 static int __init hugepage_init(void)
382 {
383 int err;
384 struct kobject *hugepage_kobj;
385
386 if (!has_transparent_hugepage()) {
387 transparent_hugepage_flags = 0;
388 return -EINVAL;
389 }
390
391 /*
392 * hugepages can't be allocated by the buddy allocator
393 */
394 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
395 /*
396 * we use page->mapping and page->index in second tail page
397 * as list_head: assuming THP order >= 2
398 */
399 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
400
401 err = hugepage_init_sysfs(&hugepage_kobj);
402 if (err)
403 goto err_sysfs;
404
405 err = khugepaged_init();
406 if (err)
407 goto err_slab;
408
409 err = register_shrinker(&huge_zero_page_shrinker);
410 if (err)
411 goto err_hzp_shrinker;
412 err = register_shrinker(&deferred_split_shrinker);
413 if (err)
414 goto err_split_shrinker;
415
416 /*
417 * By default disable transparent hugepages on smaller systems,
418 * where the extra memory used could hurt more than TLB overhead
419 * is likely to save. The admin can still enable it through /sys.
420 */
421 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
422 transparent_hugepage_flags = 0;
423 return 0;
424 }
425
426 err = start_stop_khugepaged();
427 if (err)
428 goto err_khugepaged;
429
430 return 0;
431 err_khugepaged:
432 unregister_shrinker(&deferred_split_shrinker);
433 err_split_shrinker:
434 unregister_shrinker(&huge_zero_page_shrinker);
435 err_hzp_shrinker:
436 khugepaged_destroy();
437 err_slab:
438 hugepage_exit_sysfs(hugepage_kobj);
439 err_sysfs:
440 return err;
441 }
442 subsys_initcall(hugepage_init);
443
444 static int __init setup_transparent_hugepage(char *str)
445 {
446 int ret = 0;
447 if (!str)
448 goto out;
449 if (!strcmp(str, "always")) {
450 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 } else if (!strcmp(str, "madvise")) {
456 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 &transparent_hugepage_flags);
458 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 &transparent_hugepage_flags);
460 ret = 1;
461 } else if (!strcmp(str, "never")) {
462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
467 }
468 out:
469 if (!ret)
470 pr_warn("transparent_hugepage= cannot parse, ignored\n");
471 return ret;
472 }
473 __setup("transparent_hugepage=", setup_transparent_hugepage);
474
475 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
476 {
477 if (likely(vma->vm_flags & VM_WRITE))
478 pmd = pmd_mkwrite(pmd);
479 return pmd;
480 }
481
482 static inline struct list_head *page_deferred_list(struct page *page)
483 {
484 /*
485 * ->lru in the tail pages is occupied by compound_head.
486 * Let's use ->mapping + ->index in the second tail page as list_head.
487 */
488 return (struct list_head *)&page[2].mapping;
489 }
490
491 void prep_transhuge_page(struct page *page)
492 {
493 /*
494 * we use page->mapping and page->indexlru in second tail page
495 * as list_head: assuming THP order >= 2
496 */
497
498 INIT_LIST_HEAD(page_deferred_list(page));
499 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
500 }
501
502 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
503 loff_t off, unsigned long flags, unsigned long size)
504 {
505 unsigned long addr;
506 loff_t off_end = off + len;
507 loff_t off_align = round_up(off, size);
508 unsigned long len_pad;
509
510 if (off_end <= off_align || (off_end - off_align) < size)
511 return 0;
512
513 len_pad = len + size;
514 if (len_pad < len || (off + len_pad) < off)
515 return 0;
516
517 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
518 off >> PAGE_SHIFT, flags);
519 if (IS_ERR_VALUE(addr))
520 return 0;
521
522 addr += (off - addr) & (size - 1);
523 return addr;
524 }
525
526 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
527 unsigned long len, unsigned long pgoff, unsigned long flags)
528 {
529 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
530
531 if (addr)
532 goto out;
533 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
534 goto out;
535
536 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
537 if (addr)
538 return addr;
539
540 out:
541 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
542 }
543 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
544
545 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
546 gfp_t gfp)
547 {
548 struct vm_area_struct *vma = vmf->vma;
549 struct mem_cgroup *memcg;
550 pgtable_t pgtable;
551 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
552
553 VM_BUG_ON_PAGE(!PageCompound(page), page);
554
555 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
560
561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 if (unlikely(!pgtable)) {
563 mem_cgroup_cancel_charge(page, memcg, true);
564 put_page(page);
565 return VM_FAULT_OOM;
566 }
567
568 clear_huge_page(page, haddr, HPAGE_PMD_NR);
569 /*
570 * The memory barrier inside __SetPageUptodate makes sure that
571 * clear_huge_page writes become visible before the set_pmd_at()
572 * write.
573 */
574 __SetPageUptodate(page);
575
576 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
577 if (unlikely(!pmd_none(*vmf->pmd))) {
578 spin_unlock(vmf->ptl);
579 mem_cgroup_cancel_charge(page, memcg, true);
580 put_page(page);
581 pte_free(vma->vm_mm, pgtable);
582 } else {
583 pmd_t entry;
584
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
587 int ret;
588
589 spin_unlock(vmf->ptl);
590 mem_cgroup_cancel_charge(page, memcg, true);
591 put_page(page);
592 pte_free(vma->vm_mm, pgtable);
593 ret = handle_userfault(vmf, VM_UFFD_MISSING);
594 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
595 return ret;
596 }
597
598 entry = mk_huge_pmd(page, vma->vm_page_prot);
599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 page_add_new_anon_rmap(page, vma, haddr, true);
601 mem_cgroup_commit_charge(page, memcg, false, true);
602 lru_cache_add_active_or_unevictable(page, vma);
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 atomic_long_inc(&vma->vm_mm->nr_ptes);
607 spin_unlock(vmf->ptl);
608 count_vm_event(THP_FAULT_ALLOC);
609 }
610
611 return 0;
612 }
613
614 /*
615 * If THP defrag is set to always then directly reclaim/compact as necessary
616 * If set to defer then do only background reclaim/compact and defer to khugepaged
617 * If set to madvise and the VMA is flagged then directly reclaim/compact
618 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
619 */
620 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
621 {
622 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
623
624 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
625 &transparent_hugepage_flags) && vma_madvised)
626 return GFP_TRANSHUGE;
627 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
628 &transparent_hugepage_flags))
629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
631 &transparent_hugepage_flags))
632 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
633
634 return GFP_TRANSHUGE_LIGHT;
635 }
636
637 /* Caller must hold page table lock. */
638 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
639 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
640 struct page *zero_page)
641 {
642 pmd_t entry;
643 if (!pmd_none(*pmd))
644 return false;
645 entry = mk_pmd(zero_page, vma->vm_page_prot);
646 entry = pmd_mkhuge(entry);
647 if (pgtable)
648 pgtable_trans_huge_deposit(mm, pmd, pgtable);
649 set_pmd_at(mm, haddr, pmd, entry);
650 atomic_long_inc(&mm->nr_ptes);
651 return true;
652 }
653
654 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
655 {
656 struct vm_area_struct *vma = vmf->vma;
657 gfp_t gfp;
658 struct page *page;
659 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
660
661 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
662 return VM_FAULT_FALLBACK;
663 if (unlikely(anon_vma_prepare(vma)))
664 return VM_FAULT_OOM;
665 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
666 return VM_FAULT_OOM;
667 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
668 !mm_forbids_zeropage(vma->vm_mm) &&
669 transparent_hugepage_use_zero_page()) {
670 pgtable_t pgtable;
671 struct page *zero_page;
672 bool set;
673 int ret;
674 pgtable = pte_alloc_one(vma->vm_mm, haddr);
675 if (unlikely(!pgtable))
676 return VM_FAULT_OOM;
677 zero_page = mm_get_huge_zero_page(vma->vm_mm);
678 if (unlikely(!zero_page)) {
679 pte_free(vma->vm_mm, pgtable);
680 count_vm_event(THP_FAULT_FALLBACK);
681 return VM_FAULT_FALLBACK;
682 }
683 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
684 ret = 0;
685 set = false;
686 if (pmd_none(*vmf->pmd)) {
687 if (userfaultfd_missing(vma)) {
688 spin_unlock(vmf->ptl);
689 ret = handle_userfault(vmf, VM_UFFD_MISSING);
690 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
691 } else {
692 set_huge_zero_page(pgtable, vma->vm_mm, vma,
693 haddr, vmf->pmd, zero_page);
694 spin_unlock(vmf->ptl);
695 set = true;
696 }
697 } else
698 spin_unlock(vmf->ptl);
699 if (!set)
700 pte_free(vma->vm_mm, pgtable);
701 return ret;
702 }
703 gfp = alloc_hugepage_direct_gfpmask(vma);
704 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
705 if (unlikely(!page)) {
706 count_vm_event(THP_FAULT_FALLBACK);
707 return VM_FAULT_FALLBACK;
708 }
709 prep_transhuge_page(page);
710 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
711 }
712
713 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
714 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
715 {
716 struct mm_struct *mm = vma->vm_mm;
717 pmd_t entry;
718 spinlock_t *ptl;
719
720 ptl = pmd_lock(mm, pmd);
721 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
722 if (pfn_t_devmap(pfn))
723 entry = pmd_mkdevmap(entry);
724 if (write) {
725 entry = pmd_mkyoung(pmd_mkdirty(entry));
726 entry = maybe_pmd_mkwrite(entry, vma);
727 }
728 set_pmd_at(mm, addr, pmd, entry);
729 update_mmu_cache_pmd(vma, addr, pmd);
730 spin_unlock(ptl);
731 }
732
733 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
734 pmd_t *pmd, pfn_t pfn, bool write)
735 {
736 pgprot_t pgprot = vma->vm_page_prot;
737 /*
738 * If we had pmd_special, we could avoid all these restrictions,
739 * but we need to be consistent with PTEs and architectures that
740 * can't support a 'special' bit.
741 */
742 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
743 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
744 (VM_PFNMAP|VM_MIXEDMAP));
745 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
746 BUG_ON(!pfn_t_devmap(pfn));
747
748 if (addr < vma->vm_start || addr >= vma->vm_end)
749 return VM_FAULT_SIGBUS;
750
751 track_pfn_insert(vma, &pgprot, pfn);
752
753 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
754 return VM_FAULT_NOPAGE;
755 }
756 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
757
758 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
759 pmd_t *pmd)
760 {
761 pmd_t _pmd;
762
763 /*
764 * We should set the dirty bit only for FOLL_WRITE but for now
765 * the dirty bit in the pmd is meaningless. And if the dirty
766 * bit will become meaningful and we'll only set it with
767 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
768 * set the young bit, instead of the current set_pmd_at.
769 */
770 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
771 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
772 pmd, _pmd, 1))
773 update_mmu_cache_pmd(vma, addr, pmd);
774 }
775
776 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
777 pmd_t *pmd, int flags)
778 {
779 unsigned long pfn = pmd_pfn(*pmd);
780 struct mm_struct *mm = vma->vm_mm;
781 struct dev_pagemap *pgmap;
782 struct page *page;
783
784 assert_spin_locked(pmd_lockptr(mm, pmd));
785
786 if (flags & FOLL_WRITE && !pmd_write(*pmd))
787 return NULL;
788
789 if (pmd_present(*pmd) && pmd_devmap(*pmd))
790 /* pass */;
791 else
792 return NULL;
793
794 if (flags & FOLL_TOUCH)
795 touch_pmd(vma, addr, pmd);
796
797 /*
798 * device mapped pages can only be returned if the
799 * caller will manage the page reference count.
800 */
801 if (!(flags & FOLL_GET))
802 return ERR_PTR(-EEXIST);
803
804 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
805 pgmap = get_dev_pagemap(pfn, NULL);
806 if (!pgmap)
807 return ERR_PTR(-EFAULT);
808 page = pfn_to_page(pfn);
809 get_page(page);
810 put_dev_pagemap(pgmap);
811
812 return page;
813 }
814
815 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
816 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
817 struct vm_area_struct *vma)
818 {
819 spinlock_t *dst_ptl, *src_ptl;
820 struct page *src_page;
821 pmd_t pmd;
822 pgtable_t pgtable = NULL;
823 int ret = -ENOMEM;
824
825 /* Skip if can be re-fill on fault */
826 if (!vma_is_anonymous(vma))
827 return 0;
828
829 pgtable = pte_alloc_one(dst_mm, addr);
830 if (unlikely(!pgtable))
831 goto out;
832
833 dst_ptl = pmd_lock(dst_mm, dst_pmd);
834 src_ptl = pmd_lockptr(src_mm, src_pmd);
835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
836
837 ret = -EAGAIN;
838 pmd = *src_pmd;
839 if (unlikely(!pmd_trans_huge(pmd))) {
840 pte_free(dst_mm, pgtable);
841 goto out_unlock;
842 }
843 /*
844 * When page table lock is held, the huge zero pmd should not be
845 * under splitting since we don't split the page itself, only pmd to
846 * a page table.
847 */
848 if (is_huge_zero_pmd(pmd)) {
849 struct page *zero_page;
850 /*
851 * get_huge_zero_page() will never allocate a new page here,
852 * since we already have a zero page to copy. It just takes a
853 * reference.
854 */
855 zero_page = mm_get_huge_zero_page(dst_mm);
856 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
857 zero_page);
858 ret = 0;
859 goto out_unlock;
860 }
861
862 src_page = pmd_page(pmd);
863 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
864 get_page(src_page);
865 page_dup_rmap(src_page, true);
866 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
867 atomic_long_inc(&dst_mm->nr_ptes);
868 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
869
870 pmdp_set_wrprotect(src_mm, addr, src_pmd);
871 pmd = pmd_mkold(pmd_wrprotect(pmd));
872 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
873
874 ret = 0;
875 out_unlock:
876 spin_unlock(src_ptl);
877 spin_unlock(dst_ptl);
878 out:
879 return ret;
880 }
881
882 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
883 {
884 pmd_t entry;
885 unsigned long haddr;
886 bool write = vmf->flags & FAULT_FLAG_WRITE;
887
888 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
889 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
890 goto unlock;
891
892 entry = pmd_mkyoung(orig_pmd);
893 if (write)
894 entry = pmd_mkdirty(entry);
895 haddr = vmf->address & HPAGE_PMD_MASK;
896 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
897 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
898
899 unlock:
900 spin_unlock(vmf->ptl);
901 }
902
903 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
904 struct page *page)
905 {
906 struct vm_area_struct *vma = vmf->vma;
907 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
908 struct mem_cgroup *memcg;
909 pgtable_t pgtable;
910 pmd_t _pmd;
911 int ret = 0, i;
912 struct page **pages;
913 unsigned long mmun_start; /* For mmu_notifiers */
914 unsigned long mmun_end; /* For mmu_notifiers */
915
916 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
917 GFP_KERNEL);
918 if (unlikely(!pages)) {
919 ret |= VM_FAULT_OOM;
920 goto out;
921 }
922
923 for (i = 0; i < HPAGE_PMD_NR; i++) {
924 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
925 vmf->address, page_to_nid(page));
926 if (unlikely(!pages[i] ||
927 mem_cgroup_try_charge(pages[i], vma->vm_mm,
928 GFP_KERNEL, &memcg, false))) {
929 if (pages[i])
930 put_page(pages[i]);
931 while (--i >= 0) {
932 memcg = (void *)page_private(pages[i]);
933 set_page_private(pages[i], 0);
934 mem_cgroup_cancel_charge(pages[i], memcg,
935 false);
936 put_page(pages[i]);
937 }
938 kfree(pages);
939 ret |= VM_FAULT_OOM;
940 goto out;
941 }
942 set_page_private(pages[i], (unsigned long)memcg);
943 }
944
945 for (i = 0; i < HPAGE_PMD_NR; i++) {
946 copy_user_highpage(pages[i], page + i,
947 haddr + PAGE_SIZE * i, vma);
948 __SetPageUptodate(pages[i]);
949 cond_resched();
950 }
951
952 mmun_start = haddr;
953 mmun_end = haddr + HPAGE_PMD_SIZE;
954 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
955
956 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
957 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
958 goto out_free_pages;
959 VM_BUG_ON_PAGE(!PageHead(page), page);
960
961 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
962 /* leave pmd empty until pte is filled */
963
964 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
965 pmd_populate(vma->vm_mm, &_pmd, pgtable);
966
967 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
968 pte_t entry;
969 entry = mk_pte(pages[i], vma->vm_page_prot);
970 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
971 memcg = (void *)page_private(pages[i]);
972 set_page_private(pages[i], 0);
973 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
974 mem_cgroup_commit_charge(pages[i], memcg, false, false);
975 lru_cache_add_active_or_unevictable(pages[i], vma);
976 vmf->pte = pte_offset_map(&_pmd, haddr);
977 VM_BUG_ON(!pte_none(*vmf->pte));
978 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
979 pte_unmap(vmf->pte);
980 }
981 kfree(pages);
982
983 smp_wmb(); /* make pte visible before pmd */
984 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
985 page_remove_rmap(page, true);
986 spin_unlock(vmf->ptl);
987
988 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
989
990 ret |= VM_FAULT_WRITE;
991 put_page(page);
992
993 out:
994 return ret;
995
996 out_free_pages:
997 spin_unlock(vmf->ptl);
998 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
999 for (i = 0; i < HPAGE_PMD_NR; i++) {
1000 memcg = (void *)page_private(pages[i]);
1001 set_page_private(pages[i], 0);
1002 mem_cgroup_cancel_charge(pages[i], memcg, false);
1003 put_page(pages[i]);
1004 }
1005 kfree(pages);
1006 goto out;
1007 }
1008
1009 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1010 {
1011 struct vm_area_struct *vma = vmf->vma;
1012 struct page *page = NULL, *new_page;
1013 struct mem_cgroup *memcg;
1014 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1015 unsigned long mmun_start; /* For mmu_notifiers */
1016 unsigned long mmun_end; /* For mmu_notifiers */
1017 gfp_t huge_gfp; /* for allocation and charge */
1018 int ret = 0;
1019
1020 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1021 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1022 if (is_huge_zero_pmd(orig_pmd))
1023 goto alloc;
1024 spin_lock(vmf->ptl);
1025 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1026 goto out_unlock;
1027
1028 page = pmd_page(orig_pmd);
1029 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1030 /*
1031 * We can only reuse the page if nobody else maps the huge page or it's
1032 * part.
1033 */
1034 if (page_trans_huge_mapcount(page, NULL) == 1) {
1035 pmd_t entry;
1036 entry = pmd_mkyoung(orig_pmd);
1037 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1038 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1039 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1040 ret |= VM_FAULT_WRITE;
1041 goto out_unlock;
1042 }
1043 get_page(page);
1044 spin_unlock(vmf->ptl);
1045 alloc:
1046 if (transparent_hugepage_enabled(vma) &&
1047 !transparent_hugepage_debug_cow()) {
1048 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1049 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1050 } else
1051 new_page = NULL;
1052
1053 if (likely(new_page)) {
1054 prep_transhuge_page(new_page);
1055 } else {
1056 if (!page) {
1057 split_huge_pmd(vma, vmf->pmd, vmf->address);
1058 ret |= VM_FAULT_FALLBACK;
1059 } else {
1060 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1061 if (ret & VM_FAULT_OOM) {
1062 split_huge_pmd(vma, vmf->pmd, vmf->address);
1063 ret |= VM_FAULT_FALLBACK;
1064 }
1065 put_page(page);
1066 }
1067 count_vm_event(THP_FAULT_FALLBACK);
1068 goto out;
1069 }
1070
1071 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1072 huge_gfp, &memcg, true))) {
1073 put_page(new_page);
1074 split_huge_pmd(vma, vmf->pmd, vmf->address);
1075 if (page)
1076 put_page(page);
1077 ret |= VM_FAULT_FALLBACK;
1078 count_vm_event(THP_FAULT_FALLBACK);
1079 goto out;
1080 }
1081
1082 count_vm_event(THP_FAULT_ALLOC);
1083
1084 if (!page)
1085 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1086 else
1087 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1088 __SetPageUptodate(new_page);
1089
1090 mmun_start = haddr;
1091 mmun_end = haddr + HPAGE_PMD_SIZE;
1092 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1093
1094 spin_lock(vmf->ptl);
1095 if (page)
1096 put_page(page);
1097 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1098 spin_unlock(vmf->ptl);
1099 mem_cgroup_cancel_charge(new_page, memcg, true);
1100 put_page(new_page);
1101 goto out_mn;
1102 } else {
1103 pmd_t entry;
1104 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1105 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1106 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1107 page_add_new_anon_rmap(new_page, vma, haddr, true);
1108 mem_cgroup_commit_charge(new_page, memcg, false, true);
1109 lru_cache_add_active_or_unevictable(new_page, vma);
1110 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1111 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1112 if (!page) {
1113 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1114 } else {
1115 VM_BUG_ON_PAGE(!PageHead(page), page);
1116 page_remove_rmap(page, true);
1117 put_page(page);
1118 }
1119 ret |= VM_FAULT_WRITE;
1120 }
1121 spin_unlock(vmf->ptl);
1122 out_mn:
1123 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1124 out:
1125 return ret;
1126 out_unlock:
1127 spin_unlock(vmf->ptl);
1128 return ret;
1129 }
1130
1131 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1132 unsigned long addr,
1133 pmd_t *pmd,
1134 unsigned int flags)
1135 {
1136 struct mm_struct *mm = vma->vm_mm;
1137 struct page *page = NULL;
1138
1139 assert_spin_locked(pmd_lockptr(mm, pmd));
1140
1141 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1142 goto out;
1143
1144 /* Avoid dumping huge zero page */
1145 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1146 return ERR_PTR(-EFAULT);
1147
1148 /* Full NUMA hinting faults to serialise migration in fault paths */
1149 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1150 goto out;
1151
1152 page = pmd_page(*pmd);
1153 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1154 if (flags & FOLL_TOUCH)
1155 touch_pmd(vma, addr, pmd);
1156 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1157 /*
1158 * We don't mlock() pte-mapped THPs. This way we can avoid
1159 * leaking mlocked pages into non-VM_LOCKED VMAs.
1160 *
1161 * For anon THP:
1162 *
1163 * In most cases the pmd is the only mapping of the page as we
1164 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1165 * writable private mappings in populate_vma_page_range().
1166 *
1167 * The only scenario when we have the page shared here is if we
1168 * mlocking read-only mapping shared over fork(). We skip
1169 * mlocking such pages.
1170 *
1171 * For file THP:
1172 *
1173 * We can expect PageDoubleMap() to be stable under page lock:
1174 * for file pages we set it in page_add_file_rmap(), which
1175 * requires page to be locked.
1176 */
1177
1178 if (PageAnon(page) && compound_mapcount(page) != 1)
1179 goto skip_mlock;
1180 if (PageDoubleMap(page) || !page->mapping)
1181 goto skip_mlock;
1182 if (!trylock_page(page))
1183 goto skip_mlock;
1184 lru_add_drain();
1185 if (page->mapping && !PageDoubleMap(page))
1186 mlock_vma_page(page);
1187 unlock_page(page);
1188 }
1189 skip_mlock:
1190 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1191 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1192 if (flags & FOLL_GET)
1193 get_page(page);
1194
1195 out:
1196 return page;
1197 }
1198
1199 /* NUMA hinting page fault entry point for trans huge pmds */
1200 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1201 {
1202 struct vm_area_struct *vma = vmf->vma;
1203 struct anon_vma *anon_vma = NULL;
1204 struct page *page;
1205 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1206 int page_nid = -1, this_nid = numa_node_id();
1207 int target_nid, last_cpupid = -1;
1208 bool page_locked;
1209 bool migrated = false;
1210 bool was_writable;
1211 int flags = 0;
1212
1213 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1214 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1215 goto out_unlock;
1216
1217 /*
1218 * If there are potential migrations, wait for completion and retry
1219 * without disrupting NUMA hinting information. Do not relock and
1220 * check_same as the page may no longer be mapped.
1221 */
1222 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1223 page = pmd_page(*vmf->pmd);
1224 spin_unlock(vmf->ptl);
1225 wait_on_page_locked(page);
1226 goto out;
1227 }
1228
1229 page = pmd_page(pmd);
1230 BUG_ON(is_huge_zero_page(page));
1231 page_nid = page_to_nid(page);
1232 last_cpupid = page_cpupid_last(page);
1233 count_vm_numa_event(NUMA_HINT_FAULTS);
1234 if (page_nid == this_nid) {
1235 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1236 flags |= TNF_FAULT_LOCAL;
1237 }
1238
1239 /* See similar comment in do_numa_page for explanation */
1240 if (!pmd_write(pmd))
1241 flags |= TNF_NO_GROUP;
1242
1243 /*
1244 * Acquire the page lock to serialise THP migrations but avoid dropping
1245 * page_table_lock if at all possible
1246 */
1247 page_locked = trylock_page(page);
1248 target_nid = mpol_misplaced(page, vma, haddr);
1249 if (target_nid == -1) {
1250 /* If the page was locked, there are no parallel migrations */
1251 if (page_locked)
1252 goto clear_pmdnuma;
1253 }
1254
1255 /* Migration could have started since the pmd_trans_migrating check */
1256 if (!page_locked) {
1257 spin_unlock(vmf->ptl);
1258 wait_on_page_locked(page);
1259 page_nid = -1;
1260 goto out;
1261 }
1262
1263 /*
1264 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1265 * to serialises splits
1266 */
1267 get_page(page);
1268 spin_unlock(vmf->ptl);
1269 anon_vma = page_lock_anon_vma_read(page);
1270
1271 /* Confirm the PMD did not change while page_table_lock was released */
1272 spin_lock(vmf->ptl);
1273 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1274 unlock_page(page);
1275 put_page(page);
1276 page_nid = -1;
1277 goto out_unlock;
1278 }
1279
1280 /* Bail if we fail to protect against THP splits for any reason */
1281 if (unlikely(!anon_vma)) {
1282 put_page(page);
1283 page_nid = -1;
1284 goto clear_pmdnuma;
1285 }
1286
1287 /*
1288 * Migrate the THP to the requested node, returns with page unlocked
1289 * and access rights restored.
1290 */
1291 spin_unlock(vmf->ptl);
1292 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1293 vmf->pmd, pmd, vmf->address, page, target_nid);
1294 if (migrated) {
1295 flags |= TNF_MIGRATED;
1296 page_nid = target_nid;
1297 } else
1298 flags |= TNF_MIGRATE_FAIL;
1299
1300 goto out;
1301 clear_pmdnuma:
1302 BUG_ON(!PageLocked(page));
1303 was_writable = pmd_write(pmd);
1304 pmd = pmd_modify(pmd, vma->vm_page_prot);
1305 pmd = pmd_mkyoung(pmd);
1306 if (was_writable)
1307 pmd = pmd_mkwrite(pmd);
1308 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1309 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1310 unlock_page(page);
1311 out_unlock:
1312 spin_unlock(vmf->ptl);
1313
1314 out:
1315 if (anon_vma)
1316 page_unlock_anon_vma_read(anon_vma);
1317
1318 if (page_nid != -1)
1319 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1320 vmf->flags);
1321
1322 return 0;
1323 }
1324
1325 /*
1326 * Return true if we do MADV_FREE successfully on entire pmd page.
1327 * Otherwise, return false.
1328 */
1329 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1330 pmd_t *pmd, unsigned long addr, unsigned long next)
1331 {
1332 spinlock_t *ptl;
1333 pmd_t orig_pmd;
1334 struct page *page;
1335 struct mm_struct *mm = tlb->mm;
1336 bool ret = false;
1337
1338 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1339
1340 ptl = pmd_trans_huge_lock(pmd, vma);
1341 if (!ptl)
1342 goto out_unlocked;
1343
1344 orig_pmd = *pmd;
1345 if (is_huge_zero_pmd(orig_pmd))
1346 goto out;
1347
1348 page = pmd_page(orig_pmd);
1349 /*
1350 * If other processes are mapping this page, we couldn't discard
1351 * the page unless they all do MADV_FREE so let's skip the page.
1352 */
1353 if (page_mapcount(page) != 1)
1354 goto out;
1355
1356 if (!trylock_page(page))
1357 goto out;
1358
1359 /*
1360 * If user want to discard part-pages of THP, split it so MADV_FREE
1361 * will deactivate only them.
1362 */
1363 if (next - addr != HPAGE_PMD_SIZE) {
1364 get_page(page);
1365 spin_unlock(ptl);
1366 split_huge_page(page);
1367 put_page(page);
1368 unlock_page(page);
1369 goto out_unlocked;
1370 }
1371
1372 if (PageDirty(page))
1373 ClearPageDirty(page);
1374 unlock_page(page);
1375
1376 if (PageActive(page))
1377 deactivate_page(page);
1378
1379 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1380 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1381 tlb->fullmm);
1382 orig_pmd = pmd_mkold(orig_pmd);
1383 orig_pmd = pmd_mkclean(orig_pmd);
1384
1385 set_pmd_at(mm, addr, pmd, orig_pmd);
1386 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1387 }
1388 ret = true;
1389 out:
1390 spin_unlock(ptl);
1391 out_unlocked:
1392 return ret;
1393 }
1394
1395 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1396 {
1397 pgtable_t pgtable;
1398
1399 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1400 pte_free(mm, pgtable);
1401 atomic_long_dec(&mm->nr_ptes);
1402 }
1403
1404 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1405 pmd_t *pmd, unsigned long addr)
1406 {
1407 pmd_t orig_pmd;
1408 spinlock_t *ptl;
1409
1410 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1411
1412 ptl = __pmd_trans_huge_lock(pmd, vma);
1413 if (!ptl)
1414 return 0;
1415 /*
1416 * For architectures like ppc64 we look at deposited pgtable
1417 * when calling pmdp_huge_get_and_clear. So do the
1418 * pgtable_trans_huge_withdraw after finishing pmdp related
1419 * operations.
1420 */
1421 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1422 tlb->fullmm);
1423 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1424 if (vma_is_dax(vma)) {
1425 spin_unlock(ptl);
1426 if (is_huge_zero_pmd(orig_pmd))
1427 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1428 } else if (is_huge_zero_pmd(orig_pmd)) {
1429 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1430 atomic_long_dec(&tlb->mm->nr_ptes);
1431 spin_unlock(ptl);
1432 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1433 } else {
1434 struct page *page = pmd_page(orig_pmd);
1435 page_remove_rmap(page, true);
1436 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1437 VM_BUG_ON_PAGE(!PageHead(page), page);
1438 if (PageAnon(page)) {
1439 pgtable_t pgtable;
1440 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1441 pte_free(tlb->mm, pgtable);
1442 atomic_long_dec(&tlb->mm->nr_ptes);
1443 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1444 } else {
1445 if (arch_needs_pgtable_deposit())
1446 zap_deposited_table(tlb->mm, pmd);
1447 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1448 }
1449 spin_unlock(ptl);
1450 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1451 }
1452 return 1;
1453 }
1454
1455 #ifndef pmd_move_must_withdraw
1456 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1457 spinlock_t *old_pmd_ptl,
1458 struct vm_area_struct *vma)
1459 {
1460 /*
1461 * With split pmd lock we also need to move preallocated
1462 * PTE page table if new_pmd is on different PMD page table.
1463 *
1464 * We also don't deposit and withdraw tables for file pages.
1465 */
1466 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1467 }
1468 #endif
1469
1470 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1471 unsigned long new_addr, unsigned long old_end,
1472 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1473 {
1474 spinlock_t *old_ptl, *new_ptl;
1475 pmd_t pmd;
1476 struct mm_struct *mm = vma->vm_mm;
1477 bool force_flush = false;
1478
1479 if ((old_addr & ~HPAGE_PMD_MASK) ||
1480 (new_addr & ~HPAGE_PMD_MASK) ||
1481 old_end - old_addr < HPAGE_PMD_SIZE)
1482 return false;
1483
1484 /*
1485 * The destination pmd shouldn't be established, free_pgtables()
1486 * should have release it.
1487 */
1488 if (WARN_ON(!pmd_none(*new_pmd))) {
1489 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1490 return false;
1491 }
1492
1493 /*
1494 * We don't have to worry about the ordering of src and dst
1495 * ptlocks because exclusive mmap_sem prevents deadlock.
1496 */
1497 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1498 if (old_ptl) {
1499 new_ptl = pmd_lockptr(mm, new_pmd);
1500 if (new_ptl != old_ptl)
1501 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1502 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1503 if (pmd_present(pmd) && pmd_dirty(pmd))
1504 force_flush = true;
1505 VM_BUG_ON(!pmd_none(*new_pmd));
1506
1507 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1508 pgtable_t pgtable;
1509 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1510 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1511 }
1512 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1513 if (new_ptl != old_ptl)
1514 spin_unlock(new_ptl);
1515 if (force_flush)
1516 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1517 else
1518 *need_flush = true;
1519 spin_unlock(old_ptl);
1520 return true;
1521 }
1522 return false;
1523 }
1524
1525 /*
1526 * Returns
1527 * - 0 if PMD could not be locked
1528 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1529 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1530 */
1531 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1532 unsigned long addr, pgprot_t newprot, int prot_numa)
1533 {
1534 struct mm_struct *mm = vma->vm_mm;
1535 spinlock_t *ptl;
1536 int ret = 0;
1537
1538 ptl = __pmd_trans_huge_lock(pmd, vma);
1539 if (ptl) {
1540 pmd_t entry;
1541 bool preserve_write = prot_numa && pmd_write(*pmd);
1542 ret = 1;
1543
1544 /*
1545 * Avoid trapping faults against the zero page. The read-only
1546 * data is likely to be read-cached on the local CPU and
1547 * local/remote hits to the zero page are not interesting.
1548 */
1549 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1550 spin_unlock(ptl);
1551 return ret;
1552 }
1553
1554 if (!prot_numa || !pmd_protnone(*pmd)) {
1555 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1556 entry = pmd_modify(entry, newprot);
1557 if (preserve_write)
1558 entry = pmd_mkwrite(entry);
1559 ret = HPAGE_PMD_NR;
1560 set_pmd_at(mm, addr, pmd, entry);
1561 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1562 pmd_write(entry));
1563 }
1564 spin_unlock(ptl);
1565 }
1566
1567 return ret;
1568 }
1569
1570 /*
1571 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1572 *
1573 * Note that if it returns page table lock pointer, this routine returns without
1574 * unlocking page table lock. So callers must unlock it.
1575 */
1576 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1577 {
1578 spinlock_t *ptl;
1579 ptl = pmd_lock(vma->vm_mm, pmd);
1580 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1581 return ptl;
1582 spin_unlock(ptl);
1583 return NULL;
1584 }
1585
1586 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1587 unsigned long haddr, pmd_t *pmd)
1588 {
1589 struct mm_struct *mm = vma->vm_mm;
1590 pgtable_t pgtable;
1591 pmd_t _pmd;
1592 int i;
1593
1594 /* leave pmd empty until pte is filled */
1595 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1596
1597 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1598 pmd_populate(mm, &_pmd, pgtable);
1599
1600 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1601 pte_t *pte, entry;
1602 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1603 entry = pte_mkspecial(entry);
1604 pte = pte_offset_map(&_pmd, haddr);
1605 VM_BUG_ON(!pte_none(*pte));
1606 set_pte_at(mm, haddr, pte, entry);
1607 pte_unmap(pte);
1608 }
1609 smp_wmb(); /* make pte visible before pmd */
1610 pmd_populate(mm, pmd, pgtable);
1611 }
1612
1613 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1614 unsigned long haddr, bool freeze)
1615 {
1616 struct mm_struct *mm = vma->vm_mm;
1617 struct page *page;
1618 pgtable_t pgtable;
1619 pmd_t _pmd;
1620 bool young, write, dirty, soft_dirty;
1621 unsigned long addr;
1622 int i;
1623
1624 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1625 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1626 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1627 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1628
1629 count_vm_event(THP_SPLIT_PMD);
1630
1631 if (!vma_is_anonymous(vma)) {
1632 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1633 /*
1634 * We are going to unmap this huge page. So
1635 * just go ahead and zap it
1636 */
1637 if (arch_needs_pgtable_deposit())
1638 zap_deposited_table(mm, pmd);
1639 if (vma_is_dax(vma))
1640 return;
1641 page = pmd_page(_pmd);
1642 if (!PageReferenced(page) && pmd_young(_pmd))
1643 SetPageReferenced(page);
1644 page_remove_rmap(page, true);
1645 put_page(page);
1646 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1647 return;
1648 } else if (is_huge_zero_pmd(*pmd)) {
1649 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1650 }
1651
1652 page = pmd_page(*pmd);
1653 VM_BUG_ON_PAGE(!page_count(page), page);
1654 page_ref_add(page, HPAGE_PMD_NR - 1);
1655 write = pmd_write(*pmd);
1656 young = pmd_young(*pmd);
1657 dirty = pmd_dirty(*pmd);
1658 soft_dirty = pmd_soft_dirty(*pmd);
1659
1660 pmdp_huge_split_prepare(vma, haddr, pmd);
1661 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1662 pmd_populate(mm, &_pmd, pgtable);
1663
1664 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1665 pte_t entry, *pte;
1666 /*
1667 * Note that NUMA hinting access restrictions are not
1668 * transferred to avoid any possibility of altering
1669 * permissions across VMAs.
1670 */
1671 if (freeze) {
1672 swp_entry_t swp_entry;
1673 swp_entry = make_migration_entry(page + i, write);
1674 entry = swp_entry_to_pte(swp_entry);
1675 if (soft_dirty)
1676 entry = pte_swp_mksoft_dirty(entry);
1677 } else {
1678 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1679 entry = maybe_mkwrite(entry, vma);
1680 if (!write)
1681 entry = pte_wrprotect(entry);
1682 if (!young)
1683 entry = pte_mkold(entry);
1684 if (soft_dirty)
1685 entry = pte_mksoft_dirty(entry);
1686 }
1687 if (dirty)
1688 SetPageDirty(page + i);
1689 pte = pte_offset_map(&_pmd, addr);
1690 BUG_ON(!pte_none(*pte));
1691 set_pte_at(mm, addr, pte, entry);
1692 atomic_inc(&page[i]._mapcount);
1693 pte_unmap(pte);
1694 }
1695
1696 /*
1697 * Set PG_double_map before dropping compound_mapcount to avoid
1698 * false-negative page_mapped().
1699 */
1700 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1701 for (i = 0; i < HPAGE_PMD_NR; i++)
1702 atomic_inc(&page[i]._mapcount);
1703 }
1704
1705 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1706 /* Last compound_mapcount is gone. */
1707 __dec_node_page_state(page, NR_ANON_THPS);
1708 if (TestClearPageDoubleMap(page)) {
1709 /* No need in mapcount reference anymore */
1710 for (i = 0; i < HPAGE_PMD_NR; i++)
1711 atomic_dec(&page[i]._mapcount);
1712 }
1713 }
1714
1715 smp_wmb(); /* make pte visible before pmd */
1716 /*
1717 * Up to this point the pmd is present and huge and userland has the
1718 * whole access to the hugepage during the split (which happens in
1719 * place). If we overwrite the pmd with the not-huge version pointing
1720 * to the pte here (which of course we could if all CPUs were bug
1721 * free), userland could trigger a small page size TLB miss on the
1722 * small sized TLB while the hugepage TLB entry is still established in
1723 * the huge TLB. Some CPU doesn't like that.
1724 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1725 * 383 on page 93. Intel should be safe but is also warns that it's
1726 * only safe if the permission and cache attributes of the two entries
1727 * loaded in the two TLB is identical (which should be the case here).
1728 * But it is generally safer to never allow small and huge TLB entries
1729 * for the same virtual address to be loaded simultaneously. So instead
1730 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1731 * current pmd notpresent (atomically because here the pmd_trans_huge
1732 * and pmd_trans_splitting must remain set at all times on the pmd
1733 * until the split is complete for this pmd), then we flush the SMP TLB
1734 * and finally we write the non-huge version of the pmd entry with
1735 * pmd_populate.
1736 */
1737 pmdp_invalidate(vma, haddr, pmd);
1738 pmd_populate(mm, pmd, pgtable);
1739
1740 if (freeze) {
1741 for (i = 0; i < HPAGE_PMD_NR; i++) {
1742 page_remove_rmap(page + i, false);
1743 put_page(page + i);
1744 }
1745 }
1746 }
1747
1748 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1749 unsigned long address, bool freeze, struct page *page)
1750 {
1751 spinlock_t *ptl;
1752 struct mm_struct *mm = vma->vm_mm;
1753 unsigned long haddr = address & HPAGE_PMD_MASK;
1754
1755 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1756 ptl = pmd_lock(mm, pmd);
1757
1758 /*
1759 * If caller asks to setup a migration entries, we need a page to check
1760 * pmd against. Otherwise we can end up replacing wrong page.
1761 */
1762 VM_BUG_ON(freeze && !page);
1763 if (page && page != pmd_page(*pmd))
1764 goto out;
1765
1766 if (pmd_trans_huge(*pmd)) {
1767 page = pmd_page(*pmd);
1768 if (PageMlocked(page))
1769 clear_page_mlock(page);
1770 } else if (!pmd_devmap(*pmd))
1771 goto out;
1772 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1773 out:
1774 spin_unlock(ptl);
1775 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1776 }
1777
1778 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1779 bool freeze, struct page *page)
1780 {
1781 pgd_t *pgd;
1782 pud_t *pud;
1783 pmd_t *pmd;
1784
1785 pgd = pgd_offset(vma->vm_mm, address);
1786 if (!pgd_present(*pgd))
1787 return;
1788
1789 pud = pud_offset(pgd, address);
1790 if (!pud_present(*pud))
1791 return;
1792
1793 pmd = pmd_offset(pud, address);
1794
1795 __split_huge_pmd(vma, pmd, address, freeze, page);
1796 }
1797
1798 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1799 unsigned long start,
1800 unsigned long end,
1801 long adjust_next)
1802 {
1803 /*
1804 * If the new start address isn't hpage aligned and it could
1805 * previously contain an hugepage: check if we need to split
1806 * an huge pmd.
1807 */
1808 if (start & ~HPAGE_PMD_MASK &&
1809 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1810 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1811 split_huge_pmd_address(vma, start, false, NULL);
1812
1813 /*
1814 * If the new end address isn't hpage aligned and it could
1815 * previously contain an hugepage: check if we need to split
1816 * an huge pmd.
1817 */
1818 if (end & ~HPAGE_PMD_MASK &&
1819 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1820 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1821 split_huge_pmd_address(vma, end, false, NULL);
1822
1823 /*
1824 * If we're also updating the vma->vm_next->vm_start, if the new
1825 * vm_next->vm_start isn't page aligned and it could previously
1826 * contain an hugepage: check if we need to split an huge pmd.
1827 */
1828 if (adjust_next > 0) {
1829 struct vm_area_struct *next = vma->vm_next;
1830 unsigned long nstart = next->vm_start;
1831 nstart += adjust_next << PAGE_SHIFT;
1832 if (nstart & ~HPAGE_PMD_MASK &&
1833 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1834 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1835 split_huge_pmd_address(next, nstart, false, NULL);
1836 }
1837 }
1838
1839 static void freeze_page(struct page *page)
1840 {
1841 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1842 TTU_RMAP_LOCKED;
1843 int i, ret;
1844
1845 VM_BUG_ON_PAGE(!PageHead(page), page);
1846
1847 if (PageAnon(page))
1848 ttu_flags |= TTU_MIGRATION;
1849
1850 /* We only need TTU_SPLIT_HUGE_PMD once */
1851 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1852 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1853 /* Cut short if the page is unmapped */
1854 if (page_count(page) == 1)
1855 return;
1856
1857 ret = try_to_unmap(page + i, ttu_flags);
1858 }
1859 VM_BUG_ON_PAGE(ret, page + i - 1);
1860 }
1861
1862 static void unfreeze_page(struct page *page)
1863 {
1864 int i;
1865
1866 for (i = 0; i < HPAGE_PMD_NR; i++)
1867 remove_migration_ptes(page + i, page + i, true);
1868 }
1869
1870 static void __split_huge_page_tail(struct page *head, int tail,
1871 struct lruvec *lruvec, struct list_head *list)
1872 {
1873 struct page *page_tail = head + tail;
1874
1875 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1876 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1877
1878 /*
1879 * tail_page->_refcount is zero and not changing from under us. But
1880 * get_page_unless_zero() may be running from under us on the
1881 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1882 * atomic_add(), we would then run atomic_set() concurrently with
1883 * get_page_unless_zero(), and atomic_set() is implemented in C not
1884 * using locked ops. spin_unlock on x86 sometime uses locked ops
1885 * because of PPro errata 66, 92, so unless somebody can guarantee
1886 * atomic_set() here would be safe on all archs (and not only on x86),
1887 * it's safer to use atomic_inc()/atomic_add().
1888 */
1889 if (PageAnon(head)) {
1890 page_ref_inc(page_tail);
1891 } else {
1892 /* Additional pin to radix tree */
1893 page_ref_add(page_tail, 2);
1894 }
1895
1896 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1897 page_tail->flags |= (head->flags &
1898 ((1L << PG_referenced) |
1899 (1L << PG_swapbacked) |
1900 (1L << PG_mlocked) |
1901 (1L << PG_uptodate) |
1902 (1L << PG_active) |
1903 (1L << PG_locked) |
1904 (1L << PG_unevictable) |
1905 (1L << PG_dirty)));
1906
1907 /*
1908 * After clearing PageTail the gup refcount can be released.
1909 * Page flags also must be visible before we make the page non-compound.
1910 */
1911 smp_wmb();
1912
1913 clear_compound_head(page_tail);
1914
1915 if (page_is_young(head))
1916 set_page_young(page_tail);
1917 if (page_is_idle(head))
1918 set_page_idle(page_tail);
1919
1920 /* ->mapping in first tail page is compound_mapcount */
1921 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1922 page_tail);
1923 page_tail->mapping = head->mapping;
1924
1925 page_tail->index = head->index + tail;
1926 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1927 lru_add_page_tail(head, page_tail, lruvec, list);
1928 }
1929
1930 static void __split_huge_page(struct page *page, struct list_head *list,
1931 unsigned long flags)
1932 {
1933 struct page *head = compound_head(page);
1934 struct zone *zone = page_zone(head);
1935 struct lruvec *lruvec;
1936 pgoff_t end = -1;
1937 int i;
1938
1939 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1940
1941 /* complete memcg works before add pages to LRU */
1942 mem_cgroup_split_huge_fixup(head);
1943
1944 if (!PageAnon(page))
1945 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1946
1947 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1948 __split_huge_page_tail(head, i, lruvec, list);
1949 /* Some pages can be beyond i_size: drop them from page cache */
1950 if (head[i].index >= end) {
1951 __ClearPageDirty(head + i);
1952 __delete_from_page_cache(head + i, NULL);
1953 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1954 shmem_uncharge(head->mapping->host, 1);
1955 put_page(head + i);
1956 }
1957 }
1958
1959 ClearPageCompound(head);
1960 /* See comment in __split_huge_page_tail() */
1961 if (PageAnon(head)) {
1962 page_ref_inc(head);
1963 } else {
1964 /* Additional pin to radix tree */
1965 page_ref_add(head, 2);
1966 spin_unlock(&head->mapping->tree_lock);
1967 }
1968
1969 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1970
1971 unfreeze_page(head);
1972
1973 for (i = 0; i < HPAGE_PMD_NR; i++) {
1974 struct page *subpage = head + i;
1975 if (subpage == page)
1976 continue;
1977 unlock_page(subpage);
1978
1979 /*
1980 * Subpages may be freed if there wasn't any mapping
1981 * like if add_to_swap() is running on a lru page that
1982 * had its mapping zapped. And freeing these pages
1983 * requires taking the lru_lock so we do the put_page
1984 * of the tail pages after the split is complete.
1985 */
1986 put_page(subpage);
1987 }
1988 }
1989
1990 int total_mapcount(struct page *page)
1991 {
1992 int i, compound, ret;
1993
1994 VM_BUG_ON_PAGE(PageTail(page), page);
1995
1996 if (likely(!PageCompound(page)))
1997 return atomic_read(&page->_mapcount) + 1;
1998
1999 compound = compound_mapcount(page);
2000 if (PageHuge(page))
2001 return compound;
2002 ret = compound;
2003 for (i = 0; i < HPAGE_PMD_NR; i++)
2004 ret += atomic_read(&page[i]._mapcount) + 1;
2005 /* File pages has compound_mapcount included in _mapcount */
2006 if (!PageAnon(page))
2007 return ret - compound * HPAGE_PMD_NR;
2008 if (PageDoubleMap(page))
2009 ret -= HPAGE_PMD_NR;
2010 return ret;
2011 }
2012
2013 /*
2014 * This calculates accurately how many mappings a transparent hugepage
2015 * has (unlike page_mapcount() which isn't fully accurate). This full
2016 * accuracy is primarily needed to know if copy-on-write faults can
2017 * reuse the page and change the mapping to read-write instead of
2018 * copying them. At the same time this returns the total_mapcount too.
2019 *
2020 * The function returns the highest mapcount any one of the subpages
2021 * has. If the return value is one, even if different processes are
2022 * mapping different subpages of the transparent hugepage, they can
2023 * all reuse it, because each process is reusing a different subpage.
2024 *
2025 * The total_mapcount is instead counting all virtual mappings of the
2026 * subpages. If the total_mapcount is equal to "one", it tells the
2027 * caller all mappings belong to the same "mm" and in turn the
2028 * anon_vma of the transparent hugepage can become the vma->anon_vma
2029 * local one as no other process may be mapping any of the subpages.
2030 *
2031 * It would be more accurate to replace page_mapcount() with
2032 * page_trans_huge_mapcount(), however we only use
2033 * page_trans_huge_mapcount() in the copy-on-write faults where we
2034 * need full accuracy to avoid breaking page pinning, because
2035 * page_trans_huge_mapcount() is slower than page_mapcount().
2036 */
2037 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2038 {
2039 int i, ret, _total_mapcount, mapcount;
2040
2041 /* hugetlbfs shouldn't call it */
2042 VM_BUG_ON_PAGE(PageHuge(page), page);
2043
2044 if (likely(!PageTransCompound(page))) {
2045 mapcount = atomic_read(&page->_mapcount) + 1;
2046 if (total_mapcount)
2047 *total_mapcount = mapcount;
2048 return mapcount;
2049 }
2050
2051 page = compound_head(page);
2052
2053 _total_mapcount = ret = 0;
2054 for (i = 0; i < HPAGE_PMD_NR; i++) {
2055 mapcount = atomic_read(&page[i]._mapcount) + 1;
2056 ret = max(ret, mapcount);
2057 _total_mapcount += mapcount;
2058 }
2059 if (PageDoubleMap(page)) {
2060 ret -= 1;
2061 _total_mapcount -= HPAGE_PMD_NR;
2062 }
2063 mapcount = compound_mapcount(page);
2064 ret += mapcount;
2065 _total_mapcount += mapcount;
2066 if (total_mapcount)
2067 *total_mapcount = _total_mapcount;
2068 return ret;
2069 }
2070
2071 /*
2072 * This function splits huge page into normal pages. @page can point to any
2073 * subpage of huge page to split. Split doesn't change the position of @page.
2074 *
2075 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2076 * The huge page must be locked.
2077 *
2078 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2079 *
2080 * Both head page and tail pages will inherit mapping, flags, and so on from
2081 * the hugepage.
2082 *
2083 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2084 * they are not mapped.
2085 *
2086 * Returns 0 if the hugepage is split successfully.
2087 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2088 * us.
2089 */
2090 int split_huge_page_to_list(struct page *page, struct list_head *list)
2091 {
2092 struct page *head = compound_head(page);
2093 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2094 struct anon_vma *anon_vma = NULL;
2095 struct address_space *mapping = NULL;
2096 int count, mapcount, extra_pins, ret;
2097 bool mlocked;
2098 unsigned long flags;
2099
2100 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2101 VM_BUG_ON_PAGE(!PageLocked(page), page);
2102 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2103 VM_BUG_ON_PAGE(!PageCompound(page), page);
2104
2105 if (PageAnon(head)) {
2106 /*
2107 * The caller does not necessarily hold an mmap_sem that would
2108 * prevent the anon_vma disappearing so we first we take a
2109 * reference to it and then lock the anon_vma for write. This
2110 * is similar to page_lock_anon_vma_read except the write lock
2111 * is taken to serialise against parallel split or collapse
2112 * operations.
2113 */
2114 anon_vma = page_get_anon_vma(head);
2115 if (!anon_vma) {
2116 ret = -EBUSY;
2117 goto out;
2118 }
2119 extra_pins = 0;
2120 mapping = NULL;
2121 anon_vma_lock_write(anon_vma);
2122 } else {
2123 mapping = head->mapping;
2124
2125 /* Truncated ? */
2126 if (!mapping) {
2127 ret = -EBUSY;
2128 goto out;
2129 }
2130
2131 /* Addidional pins from radix tree */
2132 extra_pins = HPAGE_PMD_NR;
2133 anon_vma = NULL;
2134 i_mmap_lock_read(mapping);
2135 }
2136
2137 /*
2138 * Racy check if we can split the page, before freeze_page() will
2139 * split PMDs
2140 */
2141 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2142 ret = -EBUSY;
2143 goto out_unlock;
2144 }
2145
2146 mlocked = PageMlocked(page);
2147 freeze_page(head);
2148 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2149
2150 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2151 if (mlocked)
2152 lru_add_drain();
2153
2154 /* prevent PageLRU to go away from under us, and freeze lru stats */
2155 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2156
2157 if (mapping) {
2158 void **pslot;
2159
2160 spin_lock(&mapping->tree_lock);
2161 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2162 page_index(head));
2163 /*
2164 * Check if the head page is present in radix tree.
2165 * We assume all tail are present too, if head is there.
2166 */
2167 if (radix_tree_deref_slot_protected(pslot,
2168 &mapping->tree_lock) != head)
2169 goto fail;
2170 }
2171
2172 /* Prevent deferred_split_scan() touching ->_refcount */
2173 spin_lock(&pgdata->split_queue_lock);
2174 count = page_count(head);
2175 mapcount = total_mapcount(head);
2176 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2177 if (!list_empty(page_deferred_list(head))) {
2178 pgdata->split_queue_len--;
2179 list_del(page_deferred_list(head));
2180 }
2181 if (mapping)
2182 __dec_node_page_state(page, NR_SHMEM_THPS);
2183 spin_unlock(&pgdata->split_queue_lock);
2184 __split_huge_page(page, list, flags);
2185 ret = 0;
2186 } else {
2187 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2188 pr_alert("total_mapcount: %u, page_count(): %u\n",
2189 mapcount, count);
2190 if (PageTail(page))
2191 dump_page(head, NULL);
2192 dump_page(page, "total_mapcount(head) > 0");
2193 BUG();
2194 }
2195 spin_unlock(&pgdata->split_queue_lock);
2196 fail: if (mapping)
2197 spin_unlock(&mapping->tree_lock);
2198 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2199 unfreeze_page(head);
2200 ret = -EBUSY;
2201 }
2202
2203 out_unlock:
2204 if (anon_vma) {
2205 anon_vma_unlock_write(anon_vma);
2206 put_anon_vma(anon_vma);
2207 }
2208 if (mapping)
2209 i_mmap_unlock_read(mapping);
2210 out:
2211 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2212 return ret;
2213 }
2214
2215 void free_transhuge_page(struct page *page)
2216 {
2217 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2218 unsigned long flags;
2219
2220 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2221 if (!list_empty(page_deferred_list(page))) {
2222 pgdata->split_queue_len--;
2223 list_del(page_deferred_list(page));
2224 }
2225 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2226 free_compound_page(page);
2227 }
2228
2229 void deferred_split_huge_page(struct page *page)
2230 {
2231 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2232 unsigned long flags;
2233
2234 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2235
2236 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2237 if (list_empty(page_deferred_list(page))) {
2238 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2239 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2240 pgdata->split_queue_len++;
2241 }
2242 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2243 }
2244
2245 static unsigned long deferred_split_count(struct shrinker *shrink,
2246 struct shrink_control *sc)
2247 {
2248 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2249 return ACCESS_ONCE(pgdata->split_queue_len);
2250 }
2251
2252 static unsigned long deferred_split_scan(struct shrinker *shrink,
2253 struct shrink_control *sc)
2254 {
2255 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2256 unsigned long flags;
2257 LIST_HEAD(list), *pos, *next;
2258 struct page *page;
2259 int split = 0;
2260
2261 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2262 /* Take pin on all head pages to avoid freeing them under us */
2263 list_for_each_safe(pos, next, &pgdata->split_queue) {
2264 page = list_entry((void *)pos, struct page, mapping);
2265 page = compound_head(page);
2266 if (get_page_unless_zero(page)) {
2267 list_move(page_deferred_list(page), &list);
2268 } else {
2269 /* We lost race with put_compound_page() */
2270 list_del_init(page_deferred_list(page));
2271 pgdata->split_queue_len--;
2272 }
2273 if (!--sc->nr_to_scan)
2274 break;
2275 }
2276 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2277
2278 list_for_each_safe(pos, next, &list) {
2279 page = list_entry((void *)pos, struct page, mapping);
2280 lock_page(page);
2281 /* split_huge_page() removes page from list on success */
2282 if (!split_huge_page(page))
2283 split++;
2284 unlock_page(page);
2285 put_page(page);
2286 }
2287
2288 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2289 list_splice_tail(&list, &pgdata->split_queue);
2290 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2291
2292 /*
2293 * Stop shrinker if we didn't split any page, but the queue is empty.
2294 * This can happen if pages were freed under us.
2295 */
2296 if (!split && list_empty(&pgdata->split_queue))
2297 return SHRINK_STOP;
2298 return split;
2299 }
2300
2301 static struct shrinker deferred_split_shrinker = {
2302 .count_objects = deferred_split_count,
2303 .scan_objects = deferred_split_scan,
2304 .seeks = DEFAULT_SEEKS,
2305 .flags = SHRINKER_NUMA_AWARE,
2306 };
2307
2308 #ifdef CONFIG_DEBUG_FS
2309 static int split_huge_pages_set(void *data, u64 val)
2310 {
2311 struct zone *zone;
2312 struct page *page;
2313 unsigned long pfn, max_zone_pfn;
2314 unsigned long total = 0, split = 0;
2315
2316 if (val != 1)
2317 return -EINVAL;
2318
2319 for_each_populated_zone(zone) {
2320 max_zone_pfn = zone_end_pfn(zone);
2321 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2322 if (!pfn_valid(pfn))
2323 continue;
2324
2325 page = pfn_to_page(pfn);
2326 if (!get_page_unless_zero(page))
2327 continue;
2328
2329 if (zone != page_zone(page))
2330 goto next;
2331
2332 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2333 goto next;
2334
2335 total++;
2336 lock_page(page);
2337 if (!split_huge_page(page))
2338 split++;
2339 unlock_page(page);
2340 next:
2341 put_page(page);
2342 }
2343 }
2344
2345 pr_info("%lu of %lu THP split\n", split, total);
2346
2347 return 0;
2348 }
2349 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2350 "%llu\n");
2351
2352 static int __init split_huge_pages_debugfs(void)
2353 {
2354 void *ret;
2355
2356 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2357 &split_huge_pages_fops);
2358 if (!ret)
2359 pr_warn("Failed to create split_huge_pages in debugfs");
2360 return 0;
2361 }
2362 late_initcall(split_huge_pages_debugfs);
2363 #endif