]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/huge_memory.c
mm/mmu_notifier: contextual information for event triggering invalidation
[mirror_ubuntu-focal-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41
42 /*
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
49 */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60
61 static struct shrinker deferred_split_shrinker;
62
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65
66 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 {
68 if (vma_is_anonymous(vma))
69 return __transparent_hugepage_enabled(vma);
70 if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
71 return __transparent_hugepage_enabled(vma);
72
73 return false;
74 }
75
76 static struct page *get_huge_zero_page(void)
77 {
78 struct page *zero_page;
79 retry:
80 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
81 return READ_ONCE(huge_zero_page);
82
83 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
84 HPAGE_PMD_ORDER);
85 if (!zero_page) {
86 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
87 return NULL;
88 }
89 count_vm_event(THP_ZERO_PAGE_ALLOC);
90 preempt_disable();
91 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
92 preempt_enable();
93 __free_pages(zero_page, compound_order(zero_page));
94 goto retry;
95 }
96
97 /* We take additional reference here. It will be put back by shrinker */
98 atomic_set(&huge_zero_refcount, 2);
99 preempt_enable();
100 return READ_ONCE(huge_zero_page);
101 }
102
103 static void put_huge_zero_page(void)
104 {
105 /*
106 * Counter should never go to zero here. Only shrinker can put
107 * last reference.
108 */
109 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
110 }
111
112 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
113 {
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 return READ_ONCE(huge_zero_page);
116
117 if (!get_huge_zero_page())
118 return NULL;
119
120 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
121 put_huge_zero_page();
122
123 return READ_ONCE(huge_zero_page);
124 }
125
126 void mm_put_huge_zero_page(struct mm_struct *mm)
127 {
128 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
129 put_huge_zero_page();
130 }
131
132 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
133 struct shrink_control *sc)
134 {
135 /* we can free zero page only if last reference remains */
136 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
137 }
138
139 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
140 struct shrink_control *sc)
141 {
142 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
143 struct page *zero_page = xchg(&huge_zero_page, NULL);
144 BUG_ON(zero_page == NULL);
145 __free_pages(zero_page, compound_order(zero_page));
146 return HPAGE_PMD_NR;
147 }
148
149 return 0;
150 }
151
152 static struct shrinker huge_zero_page_shrinker = {
153 .count_objects = shrink_huge_zero_page_count,
154 .scan_objects = shrink_huge_zero_page_scan,
155 .seeks = DEFAULT_SEEKS,
156 };
157
158 #ifdef CONFIG_SYSFS
159 static ssize_t enabled_show(struct kobject *kobj,
160 struct kobj_attribute *attr, char *buf)
161 {
162 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
163 return sprintf(buf, "[always] madvise never\n");
164 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
165 return sprintf(buf, "always [madvise] never\n");
166 else
167 return sprintf(buf, "always madvise [never]\n");
168 }
169
170 static ssize_t enabled_store(struct kobject *kobj,
171 struct kobj_attribute *attr,
172 const char *buf, size_t count)
173 {
174 ssize_t ret = count;
175
176 if (!memcmp("always", buf,
177 min(sizeof("always")-1, count))) {
178 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
179 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
180 } else if (!memcmp("madvise", buf,
181 min(sizeof("madvise")-1, count))) {
182 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
184 } else if (!memcmp("never", buf,
185 min(sizeof("never")-1, count))) {
186 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 } else
189 ret = -EINVAL;
190
191 if (ret > 0) {
192 int err = start_stop_khugepaged();
193 if (err)
194 ret = err;
195 }
196 return ret;
197 }
198 static struct kobj_attribute enabled_attr =
199 __ATTR(enabled, 0644, enabled_show, enabled_store);
200
201 ssize_t single_hugepage_flag_show(struct kobject *kobj,
202 struct kobj_attribute *attr, char *buf,
203 enum transparent_hugepage_flag flag)
204 {
205 return sprintf(buf, "%d\n",
206 !!test_bit(flag, &transparent_hugepage_flags));
207 }
208
209 ssize_t single_hugepage_flag_store(struct kobject *kobj,
210 struct kobj_attribute *attr,
211 const char *buf, size_t count,
212 enum transparent_hugepage_flag flag)
213 {
214 unsigned long value;
215 int ret;
216
217 ret = kstrtoul(buf, 10, &value);
218 if (ret < 0)
219 return ret;
220 if (value > 1)
221 return -EINVAL;
222
223 if (value)
224 set_bit(flag, &transparent_hugepage_flags);
225 else
226 clear_bit(flag, &transparent_hugepage_flags);
227
228 return count;
229 }
230
231 static ssize_t defrag_show(struct kobject *kobj,
232 struct kobj_attribute *attr, char *buf)
233 {
234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
235 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
236 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
237 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
240 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
241 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
242 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
243 }
244
245 static ssize_t defrag_store(struct kobject *kobj,
246 struct kobj_attribute *attr,
247 const char *buf, size_t count)
248 {
249 if (!memcmp("always", buf,
250 min(sizeof("always")-1, count))) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 } else if (!memcmp("defer+madvise", buf,
256 min(sizeof("defer+madvise")-1, count))) {
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
260 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 } else if (!memcmp("defer", buf,
262 min(sizeof("defer")-1, count))) {
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 } else if (!memcmp("madvise", buf,
268 min(sizeof("madvise")-1, count))) {
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 } else if (!memcmp("never", buf,
274 min(sizeof("never")-1, count))) {
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 } else
280 return -EINVAL;
281
282 return count;
283 }
284 static struct kobj_attribute defrag_attr =
285 __ATTR(defrag, 0644, defrag_show, defrag_store);
286
287 static ssize_t use_zero_page_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289 {
290 return single_hugepage_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
292 }
293 static ssize_t use_zero_page_store(struct kobject *kobj,
294 struct kobj_attribute *attr, const char *buf, size_t count)
295 {
296 return single_hugepage_flag_store(kobj, attr, buf, count,
297 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
298 }
299 static struct kobj_attribute use_zero_page_attr =
300 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
301
302 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
303 struct kobj_attribute *attr, char *buf)
304 {
305 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
306 }
307 static struct kobj_attribute hpage_pmd_size_attr =
308 __ATTR_RO(hpage_pmd_size);
309
310 #ifdef CONFIG_DEBUG_VM
311 static ssize_t debug_cow_show(struct kobject *kobj,
312 struct kobj_attribute *attr, char *buf)
313 {
314 return single_hugepage_flag_show(kobj, attr, buf,
315 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
316 }
317 static ssize_t debug_cow_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count)
320 {
321 return single_hugepage_flag_store(kobj, attr, buf, count,
322 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
323 }
324 static struct kobj_attribute debug_cow_attr =
325 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
326 #endif /* CONFIG_DEBUG_VM */
327
328 static struct attribute *hugepage_attr[] = {
329 &enabled_attr.attr,
330 &defrag_attr.attr,
331 &use_zero_page_attr.attr,
332 &hpage_pmd_size_attr.attr,
333 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
334 &shmem_enabled_attr.attr,
335 #endif
336 #ifdef CONFIG_DEBUG_VM
337 &debug_cow_attr.attr,
338 #endif
339 NULL,
340 };
341
342 static const struct attribute_group hugepage_attr_group = {
343 .attrs = hugepage_attr,
344 };
345
346 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
347 {
348 int err;
349
350 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
351 if (unlikely(!*hugepage_kobj)) {
352 pr_err("failed to create transparent hugepage kobject\n");
353 return -ENOMEM;
354 }
355
356 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
357 if (err) {
358 pr_err("failed to register transparent hugepage group\n");
359 goto delete_obj;
360 }
361
362 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
363 if (err) {
364 pr_err("failed to register transparent hugepage group\n");
365 goto remove_hp_group;
366 }
367
368 return 0;
369
370 remove_hp_group:
371 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
372 delete_obj:
373 kobject_put(*hugepage_kobj);
374 return err;
375 }
376
377 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378 {
379 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
380 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
381 kobject_put(hugepage_kobj);
382 }
383 #else
384 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
385 {
386 return 0;
387 }
388
389 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
390 {
391 }
392 #endif /* CONFIG_SYSFS */
393
394 static int __init hugepage_init(void)
395 {
396 int err;
397 struct kobject *hugepage_kobj;
398
399 if (!has_transparent_hugepage()) {
400 transparent_hugepage_flags = 0;
401 return -EINVAL;
402 }
403
404 /*
405 * hugepages can't be allocated by the buddy allocator
406 */
407 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
408 /*
409 * we use page->mapping and page->index in second tail page
410 * as list_head: assuming THP order >= 2
411 */
412 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
413
414 err = hugepage_init_sysfs(&hugepage_kobj);
415 if (err)
416 goto err_sysfs;
417
418 err = khugepaged_init();
419 if (err)
420 goto err_slab;
421
422 err = register_shrinker(&huge_zero_page_shrinker);
423 if (err)
424 goto err_hzp_shrinker;
425 err = register_shrinker(&deferred_split_shrinker);
426 if (err)
427 goto err_split_shrinker;
428
429 /*
430 * By default disable transparent hugepages on smaller systems,
431 * where the extra memory used could hurt more than TLB overhead
432 * is likely to save. The admin can still enable it through /sys.
433 */
434 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
435 transparent_hugepage_flags = 0;
436 return 0;
437 }
438
439 err = start_stop_khugepaged();
440 if (err)
441 goto err_khugepaged;
442
443 return 0;
444 err_khugepaged:
445 unregister_shrinker(&deferred_split_shrinker);
446 err_split_shrinker:
447 unregister_shrinker(&huge_zero_page_shrinker);
448 err_hzp_shrinker:
449 khugepaged_destroy();
450 err_slab:
451 hugepage_exit_sysfs(hugepage_kobj);
452 err_sysfs:
453 return err;
454 }
455 subsys_initcall(hugepage_init);
456
457 static int __init setup_transparent_hugepage(char *str)
458 {
459 int ret = 0;
460 if (!str)
461 goto out;
462 if (!strcmp(str, "always")) {
463 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 &transparent_hugepage_flags);
465 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 &transparent_hugepage_flags);
467 ret = 1;
468 } else if (!strcmp(str, "madvise")) {
469 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
473 ret = 1;
474 } else if (!strcmp(str, "never")) {
475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 &transparent_hugepage_flags);
477 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 &transparent_hugepage_flags);
479 ret = 1;
480 }
481 out:
482 if (!ret)
483 pr_warn("transparent_hugepage= cannot parse, ignored\n");
484 return ret;
485 }
486 __setup("transparent_hugepage=", setup_transparent_hugepage);
487
488 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
489 {
490 if (likely(vma->vm_flags & VM_WRITE))
491 pmd = pmd_mkwrite(pmd);
492 return pmd;
493 }
494
495 static inline struct list_head *page_deferred_list(struct page *page)
496 {
497 /* ->lru in the tail pages is occupied by compound_head. */
498 return &page[2].deferred_list;
499 }
500
501 void prep_transhuge_page(struct page *page)
502 {
503 /*
504 * we use page->mapping and page->indexlru in second tail page
505 * as list_head: assuming THP order >= 2
506 */
507
508 INIT_LIST_HEAD(page_deferred_list(page));
509 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
510 }
511
512 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
513 loff_t off, unsigned long flags, unsigned long size)
514 {
515 unsigned long addr;
516 loff_t off_end = off + len;
517 loff_t off_align = round_up(off, size);
518 unsigned long len_pad;
519
520 if (off_end <= off_align || (off_end - off_align) < size)
521 return 0;
522
523 len_pad = len + size;
524 if (len_pad < len || (off + len_pad) < off)
525 return 0;
526
527 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
528 off >> PAGE_SHIFT, flags);
529 if (IS_ERR_VALUE(addr))
530 return 0;
531
532 addr += (off - addr) & (size - 1);
533 return addr;
534 }
535
536 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
537 unsigned long len, unsigned long pgoff, unsigned long flags)
538 {
539 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
540
541 if (addr)
542 goto out;
543 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
544 goto out;
545
546 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
547 if (addr)
548 return addr;
549
550 out:
551 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
552 }
553 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
554
555 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
556 struct page *page, gfp_t gfp)
557 {
558 struct vm_area_struct *vma = vmf->vma;
559 struct mem_cgroup *memcg;
560 pgtable_t pgtable;
561 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
562 vm_fault_t ret = 0;
563
564 VM_BUG_ON_PAGE(!PageCompound(page), page);
565
566 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
567 put_page(page);
568 count_vm_event(THP_FAULT_FALLBACK);
569 return VM_FAULT_FALLBACK;
570 }
571
572 pgtable = pte_alloc_one(vma->vm_mm);
573 if (unlikely(!pgtable)) {
574 ret = VM_FAULT_OOM;
575 goto release;
576 }
577
578 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
579 /*
580 * The memory barrier inside __SetPageUptodate makes sure that
581 * clear_huge_page writes become visible before the set_pmd_at()
582 * write.
583 */
584 __SetPageUptodate(page);
585
586 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
587 if (unlikely(!pmd_none(*vmf->pmd))) {
588 goto unlock_release;
589 } else {
590 pmd_t entry;
591
592 ret = check_stable_address_space(vma->vm_mm);
593 if (ret)
594 goto unlock_release;
595
596 /* Deliver the page fault to userland */
597 if (userfaultfd_missing(vma)) {
598 vm_fault_t ret2;
599
600 spin_unlock(vmf->ptl);
601 mem_cgroup_cancel_charge(page, memcg, true);
602 put_page(page);
603 pte_free(vma->vm_mm, pgtable);
604 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
605 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
606 return ret2;
607 }
608
609 entry = mk_huge_pmd(page, vma->vm_page_prot);
610 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
611 page_add_new_anon_rmap(page, vma, haddr, true);
612 mem_cgroup_commit_charge(page, memcg, false, true);
613 lru_cache_add_active_or_unevictable(page, vma);
614 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
615 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
616 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
617 mm_inc_nr_ptes(vma->vm_mm);
618 spin_unlock(vmf->ptl);
619 count_vm_event(THP_FAULT_ALLOC);
620 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
621 }
622
623 return 0;
624 unlock_release:
625 spin_unlock(vmf->ptl);
626 release:
627 if (pgtable)
628 pte_free(vma->vm_mm, pgtable);
629 mem_cgroup_cancel_charge(page, memcg, true);
630 put_page(page);
631 return ret;
632
633 }
634
635 /*
636 * always: directly stall for all thp allocations
637 * defer: wake kswapd and fail if not immediately available
638 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
639 * fail if not immediately available
640 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
641 * available
642 * never: never stall for any thp allocation
643 */
644 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
645 {
646 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
647
648 /* Always do synchronous compaction */
649 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
650 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
651
652 /* Kick kcompactd and fail quickly */
653 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
654 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
655
656 /* Synchronous compaction if madvised, otherwise kick kcompactd */
657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
658 return GFP_TRANSHUGE_LIGHT |
659 (vma_madvised ? __GFP_DIRECT_RECLAIM :
660 __GFP_KSWAPD_RECLAIM);
661
662 /* Only do synchronous compaction if madvised */
663 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
664 return GFP_TRANSHUGE_LIGHT |
665 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
666
667 return GFP_TRANSHUGE_LIGHT;
668 }
669
670 /* Caller must hold page table lock. */
671 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
672 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
673 struct page *zero_page)
674 {
675 pmd_t entry;
676 if (!pmd_none(*pmd))
677 return false;
678 entry = mk_pmd(zero_page, vma->vm_page_prot);
679 entry = pmd_mkhuge(entry);
680 if (pgtable)
681 pgtable_trans_huge_deposit(mm, pmd, pgtable);
682 set_pmd_at(mm, haddr, pmd, entry);
683 mm_inc_nr_ptes(mm);
684 return true;
685 }
686
687 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
688 {
689 struct vm_area_struct *vma = vmf->vma;
690 gfp_t gfp;
691 struct page *page;
692 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
693
694 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
695 return VM_FAULT_FALLBACK;
696 if (unlikely(anon_vma_prepare(vma)))
697 return VM_FAULT_OOM;
698 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
699 return VM_FAULT_OOM;
700 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
701 !mm_forbids_zeropage(vma->vm_mm) &&
702 transparent_hugepage_use_zero_page()) {
703 pgtable_t pgtable;
704 struct page *zero_page;
705 bool set;
706 vm_fault_t ret;
707 pgtable = pte_alloc_one(vma->vm_mm);
708 if (unlikely(!pgtable))
709 return VM_FAULT_OOM;
710 zero_page = mm_get_huge_zero_page(vma->vm_mm);
711 if (unlikely(!zero_page)) {
712 pte_free(vma->vm_mm, pgtable);
713 count_vm_event(THP_FAULT_FALLBACK);
714 return VM_FAULT_FALLBACK;
715 }
716 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
717 ret = 0;
718 set = false;
719 if (pmd_none(*vmf->pmd)) {
720 ret = check_stable_address_space(vma->vm_mm);
721 if (ret) {
722 spin_unlock(vmf->ptl);
723 } else if (userfaultfd_missing(vma)) {
724 spin_unlock(vmf->ptl);
725 ret = handle_userfault(vmf, VM_UFFD_MISSING);
726 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
727 } else {
728 set_huge_zero_page(pgtable, vma->vm_mm, vma,
729 haddr, vmf->pmd, zero_page);
730 spin_unlock(vmf->ptl);
731 set = true;
732 }
733 } else
734 spin_unlock(vmf->ptl);
735 if (!set)
736 pte_free(vma->vm_mm, pgtable);
737 return ret;
738 }
739 gfp = alloc_hugepage_direct_gfpmask(vma);
740 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
741 if (unlikely(!page)) {
742 count_vm_event(THP_FAULT_FALLBACK);
743 return VM_FAULT_FALLBACK;
744 }
745 prep_transhuge_page(page);
746 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
747 }
748
749 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
750 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
751 pgtable_t pgtable)
752 {
753 struct mm_struct *mm = vma->vm_mm;
754 pmd_t entry;
755 spinlock_t *ptl;
756
757 ptl = pmd_lock(mm, pmd);
758 if (!pmd_none(*pmd)) {
759 if (write) {
760 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
761 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
762 goto out_unlock;
763 }
764 entry = pmd_mkyoung(*pmd);
765 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
766 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
767 update_mmu_cache_pmd(vma, addr, pmd);
768 }
769
770 goto out_unlock;
771 }
772
773 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
774 if (pfn_t_devmap(pfn))
775 entry = pmd_mkdevmap(entry);
776 if (write) {
777 entry = pmd_mkyoung(pmd_mkdirty(entry));
778 entry = maybe_pmd_mkwrite(entry, vma);
779 }
780
781 if (pgtable) {
782 pgtable_trans_huge_deposit(mm, pmd, pgtable);
783 mm_inc_nr_ptes(mm);
784 pgtable = NULL;
785 }
786
787 set_pmd_at(mm, addr, pmd, entry);
788 update_mmu_cache_pmd(vma, addr, pmd);
789
790 out_unlock:
791 spin_unlock(ptl);
792 if (pgtable)
793 pte_free(mm, pgtable);
794 }
795
796 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
797 {
798 unsigned long addr = vmf->address & PMD_MASK;
799 struct vm_area_struct *vma = vmf->vma;
800 pgprot_t pgprot = vma->vm_page_prot;
801 pgtable_t pgtable = NULL;
802
803 /*
804 * If we had pmd_special, we could avoid all these restrictions,
805 * but we need to be consistent with PTEs and architectures that
806 * can't support a 'special' bit.
807 */
808 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
809 !pfn_t_devmap(pfn));
810 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
811 (VM_PFNMAP|VM_MIXEDMAP));
812 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
813
814 if (addr < vma->vm_start || addr >= vma->vm_end)
815 return VM_FAULT_SIGBUS;
816
817 if (arch_needs_pgtable_deposit()) {
818 pgtable = pte_alloc_one(vma->vm_mm);
819 if (!pgtable)
820 return VM_FAULT_OOM;
821 }
822
823 track_pfn_insert(vma, &pgprot, pfn);
824
825 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
826 return VM_FAULT_NOPAGE;
827 }
828 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
829
830 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
831 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
832 {
833 if (likely(vma->vm_flags & VM_WRITE))
834 pud = pud_mkwrite(pud);
835 return pud;
836 }
837
838 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
839 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
840 {
841 struct mm_struct *mm = vma->vm_mm;
842 pud_t entry;
843 spinlock_t *ptl;
844
845 ptl = pud_lock(mm, pud);
846 if (!pud_none(*pud)) {
847 if (write) {
848 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
849 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
850 goto out_unlock;
851 }
852 entry = pud_mkyoung(*pud);
853 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
854 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
855 update_mmu_cache_pud(vma, addr, pud);
856 }
857 goto out_unlock;
858 }
859
860 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
861 if (pfn_t_devmap(pfn))
862 entry = pud_mkdevmap(entry);
863 if (write) {
864 entry = pud_mkyoung(pud_mkdirty(entry));
865 entry = maybe_pud_mkwrite(entry, vma);
866 }
867 set_pud_at(mm, addr, pud, entry);
868 update_mmu_cache_pud(vma, addr, pud);
869
870 out_unlock:
871 spin_unlock(ptl);
872 }
873
874 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
875 {
876 unsigned long addr = vmf->address & PUD_MASK;
877 struct vm_area_struct *vma = vmf->vma;
878 pgprot_t pgprot = vma->vm_page_prot;
879
880 /*
881 * If we had pud_special, we could avoid all these restrictions,
882 * but we need to be consistent with PTEs and architectures that
883 * can't support a 'special' bit.
884 */
885 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
886 !pfn_t_devmap(pfn));
887 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
888 (VM_PFNMAP|VM_MIXEDMAP));
889 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
890
891 if (addr < vma->vm_start || addr >= vma->vm_end)
892 return VM_FAULT_SIGBUS;
893
894 track_pfn_insert(vma, &pgprot, pfn);
895
896 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
897 return VM_FAULT_NOPAGE;
898 }
899 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
900 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
901
902 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
903 pmd_t *pmd, int flags)
904 {
905 pmd_t _pmd;
906
907 _pmd = pmd_mkyoung(*pmd);
908 if (flags & FOLL_WRITE)
909 _pmd = pmd_mkdirty(_pmd);
910 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
911 pmd, _pmd, flags & FOLL_WRITE))
912 update_mmu_cache_pmd(vma, addr, pmd);
913 }
914
915 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
916 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
917 {
918 unsigned long pfn = pmd_pfn(*pmd);
919 struct mm_struct *mm = vma->vm_mm;
920 struct page *page;
921
922 assert_spin_locked(pmd_lockptr(mm, pmd));
923
924 /*
925 * When we COW a devmap PMD entry, we split it into PTEs, so we should
926 * not be in this function with `flags & FOLL_COW` set.
927 */
928 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
929
930 if (flags & FOLL_WRITE && !pmd_write(*pmd))
931 return NULL;
932
933 if (pmd_present(*pmd) && pmd_devmap(*pmd))
934 /* pass */;
935 else
936 return NULL;
937
938 if (flags & FOLL_TOUCH)
939 touch_pmd(vma, addr, pmd, flags);
940
941 /*
942 * device mapped pages can only be returned if the
943 * caller will manage the page reference count.
944 */
945 if (!(flags & FOLL_GET))
946 return ERR_PTR(-EEXIST);
947
948 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
949 *pgmap = get_dev_pagemap(pfn, *pgmap);
950 if (!*pgmap)
951 return ERR_PTR(-EFAULT);
952 page = pfn_to_page(pfn);
953 get_page(page);
954
955 return page;
956 }
957
958 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
959 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
960 struct vm_area_struct *vma)
961 {
962 spinlock_t *dst_ptl, *src_ptl;
963 struct page *src_page;
964 pmd_t pmd;
965 pgtable_t pgtable = NULL;
966 int ret = -ENOMEM;
967
968 /* Skip if can be re-fill on fault */
969 if (!vma_is_anonymous(vma))
970 return 0;
971
972 pgtable = pte_alloc_one(dst_mm);
973 if (unlikely(!pgtable))
974 goto out;
975
976 dst_ptl = pmd_lock(dst_mm, dst_pmd);
977 src_ptl = pmd_lockptr(src_mm, src_pmd);
978 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
979
980 ret = -EAGAIN;
981 pmd = *src_pmd;
982
983 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
984 if (unlikely(is_swap_pmd(pmd))) {
985 swp_entry_t entry = pmd_to_swp_entry(pmd);
986
987 VM_BUG_ON(!is_pmd_migration_entry(pmd));
988 if (is_write_migration_entry(entry)) {
989 make_migration_entry_read(&entry);
990 pmd = swp_entry_to_pmd(entry);
991 if (pmd_swp_soft_dirty(*src_pmd))
992 pmd = pmd_swp_mksoft_dirty(pmd);
993 set_pmd_at(src_mm, addr, src_pmd, pmd);
994 }
995 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
996 mm_inc_nr_ptes(dst_mm);
997 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
998 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
999 ret = 0;
1000 goto out_unlock;
1001 }
1002 #endif
1003
1004 if (unlikely(!pmd_trans_huge(pmd))) {
1005 pte_free(dst_mm, pgtable);
1006 goto out_unlock;
1007 }
1008 /*
1009 * When page table lock is held, the huge zero pmd should not be
1010 * under splitting since we don't split the page itself, only pmd to
1011 * a page table.
1012 */
1013 if (is_huge_zero_pmd(pmd)) {
1014 struct page *zero_page;
1015 /*
1016 * get_huge_zero_page() will never allocate a new page here,
1017 * since we already have a zero page to copy. It just takes a
1018 * reference.
1019 */
1020 zero_page = mm_get_huge_zero_page(dst_mm);
1021 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1022 zero_page);
1023 ret = 0;
1024 goto out_unlock;
1025 }
1026
1027 src_page = pmd_page(pmd);
1028 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1029 get_page(src_page);
1030 page_dup_rmap(src_page, true);
1031 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1032 mm_inc_nr_ptes(dst_mm);
1033 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1034
1035 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1036 pmd = pmd_mkold(pmd_wrprotect(pmd));
1037 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1038
1039 ret = 0;
1040 out_unlock:
1041 spin_unlock(src_ptl);
1042 spin_unlock(dst_ptl);
1043 out:
1044 return ret;
1045 }
1046
1047 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1048 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1049 pud_t *pud, int flags)
1050 {
1051 pud_t _pud;
1052
1053 _pud = pud_mkyoung(*pud);
1054 if (flags & FOLL_WRITE)
1055 _pud = pud_mkdirty(_pud);
1056 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1057 pud, _pud, flags & FOLL_WRITE))
1058 update_mmu_cache_pud(vma, addr, pud);
1059 }
1060
1061 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1062 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1063 {
1064 unsigned long pfn = pud_pfn(*pud);
1065 struct mm_struct *mm = vma->vm_mm;
1066 struct page *page;
1067
1068 assert_spin_locked(pud_lockptr(mm, pud));
1069
1070 if (flags & FOLL_WRITE && !pud_write(*pud))
1071 return NULL;
1072
1073 if (pud_present(*pud) && pud_devmap(*pud))
1074 /* pass */;
1075 else
1076 return NULL;
1077
1078 if (flags & FOLL_TOUCH)
1079 touch_pud(vma, addr, pud, flags);
1080
1081 /*
1082 * device mapped pages can only be returned if the
1083 * caller will manage the page reference count.
1084 */
1085 if (!(flags & FOLL_GET))
1086 return ERR_PTR(-EEXIST);
1087
1088 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1089 *pgmap = get_dev_pagemap(pfn, *pgmap);
1090 if (!*pgmap)
1091 return ERR_PTR(-EFAULT);
1092 page = pfn_to_page(pfn);
1093 get_page(page);
1094
1095 return page;
1096 }
1097
1098 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1099 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1100 struct vm_area_struct *vma)
1101 {
1102 spinlock_t *dst_ptl, *src_ptl;
1103 pud_t pud;
1104 int ret;
1105
1106 dst_ptl = pud_lock(dst_mm, dst_pud);
1107 src_ptl = pud_lockptr(src_mm, src_pud);
1108 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1109
1110 ret = -EAGAIN;
1111 pud = *src_pud;
1112 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1113 goto out_unlock;
1114
1115 /*
1116 * When page table lock is held, the huge zero pud should not be
1117 * under splitting since we don't split the page itself, only pud to
1118 * a page table.
1119 */
1120 if (is_huge_zero_pud(pud)) {
1121 /* No huge zero pud yet */
1122 }
1123
1124 pudp_set_wrprotect(src_mm, addr, src_pud);
1125 pud = pud_mkold(pud_wrprotect(pud));
1126 set_pud_at(dst_mm, addr, dst_pud, pud);
1127
1128 ret = 0;
1129 out_unlock:
1130 spin_unlock(src_ptl);
1131 spin_unlock(dst_ptl);
1132 return ret;
1133 }
1134
1135 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1136 {
1137 pud_t entry;
1138 unsigned long haddr;
1139 bool write = vmf->flags & FAULT_FLAG_WRITE;
1140
1141 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1142 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1143 goto unlock;
1144
1145 entry = pud_mkyoung(orig_pud);
1146 if (write)
1147 entry = pud_mkdirty(entry);
1148 haddr = vmf->address & HPAGE_PUD_MASK;
1149 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1150 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1151
1152 unlock:
1153 spin_unlock(vmf->ptl);
1154 }
1155 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1156
1157 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1158 {
1159 pmd_t entry;
1160 unsigned long haddr;
1161 bool write = vmf->flags & FAULT_FLAG_WRITE;
1162
1163 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1164 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1165 goto unlock;
1166
1167 entry = pmd_mkyoung(orig_pmd);
1168 if (write)
1169 entry = pmd_mkdirty(entry);
1170 haddr = vmf->address & HPAGE_PMD_MASK;
1171 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1172 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1173
1174 unlock:
1175 spin_unlock(vmf->ptl);
1176 }
1177
1178 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1179 pmd_t orig_pmd, struct page *page)
1180 {
1181 struct vm_area_struct *vma = vmf->vma;
1182 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1183 struct mem_cgroup *memcg;
1184 pgtable_t pgtable;
1185 pmd_t _pmd;
1186 int i;
1187 vm_fault_t ret = 0;
1188 struct page **pages;
1189 struct mmu_notifier_range range;
1190
1191 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1192 GFP_KERNEL);
1193 if (unlikely(!pages)) {
1194 ret |= VM_FAULT_OOM;
1195 goto out;
1196 }
1197
1198 for (i = 0; i < HPAGE_PMD_NR; i++) {
1199 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1200 vmf->address, page_to_nid(page));
1201 if (unlikely(!pages[i] ||
1202 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1203 GFP_KERNEL, &memcg, false))) {
1204 if (pages[i])
1205 put_page(pages[i]);
1206 while (--i >= 0) {
1207 memcg = (void *)page_private(pages[i]);
1208 set_page_private(pages[i], 0);
1209 mem_cgroup_cancel_charge(pages[i], memcg,
1210 false);
1211 put_page(pages[i]);
1212 }
1213 kfree(pages);
1214 ret |= VM_FAULT_OOM;
1215 goto out;
1216 }
1217 set_page_private(pages[i], (unsigned long)memcg);
1218 }
1219
1220 for (i = 0; i < HPAGE_PMD_NR; i++) {
1221 copy_user_highpage(pages[i], page + i,
1222 haddr + PAGE_SIZE * i, vma);
1223 __SetPageUptodate(pages[i]);
1224 cond_resched();
1225 }
1226
1227 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1228 haddr,
1229 haddr + HPAGE_PMD_SIZE);
1230 mmu_notifier_invalidate_range_start(&range);
1231
1232 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1233 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1234 goto out_free_pages;
1235 VM_BUG_ON_PAGE(!PageHead(page), page);
1236
1237 /*
1238 * Leave pmd empty until pte is filled note we must notify here as
1239 * concurrent CPU thread might write to new page before the call to
1240 * mmu_notifier_invalidate_range_end() happens which can lead to a
1241 * device seeing memory write in different order than CPU.
1242 *
1243 * See Documentation/vm/mmu_notifier.rst
1244 */
1245 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1246
1247 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1248 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1249
1250 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1251 pte_t entry;
1252 entry = mk_pte(pages[i], vma->vm_page_prot);
1253 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1254 memcg = (void *)page_private(pages[i]);
1255 set_page_private(pages[i], 0);
1256 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1257 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1258 lru_cache_add_active_or_unevictable(pages[i], vma);
1259 vmf->pte = pte_offset_map(&_pmd, haddr);
1260 VM_BUG_ON(!pte_none(*vmf->pte));
1261 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1262 pte_unmap(vmf->pte);
1263 }
1264 kfree(pages);
1265
1266 smp_wmb(); /* make pte visible before pmd */
1267 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1268 page_remove_rmap(page, true);
1269 spin_unlock(vmf->ptl);
1270
1271 /*
1272 * No need to double call mmu_notifier->invalidate_range() callback as
1273 * the above pmdp_huge_clear_flush_notify() did already call it.
1274 */
1275 mmu_notifier_invalidate_range_only_end(&range);
1276
1277 ret |= VM_FAULT_WRITE;
1278 put_page(page);
1279
1280 out:
1281 return ret;
1282
1283 out_free_pages:
1284 spin_unlock(vmf->ptl);
1285 mmu_notifier_invalidate_range_end(&range);
1286 for (i = 0; i < HPAGE_PMD_NR; i++) {
1287 memcg = (void *)page_private(pages[i]);
1288 set_page_private(pages[i], 0);
1289 mem_cgroup_cancel_charge(pages[i], memcg, false);
1290 put_page(pages[i]);
1291 }
1292 kfree(pages);
1293 goto out;
1294 }
1295
1296 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1297 {
1298 struct vm_area_struct *vma = vmf->vma;
1299 struct page *page = NULL, *new_page;
1300 struct mem_cgroup *memcg;
1301 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1302 struct mmu_notifier_range range;
1303 gfp_t huge_gfp; /* for allocation and charge */
1304 vm_fault_t ret = 0;
1305
1306 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1307 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1308 if (is_huge_zero_pmd(orig_pmd))
1309 goto alloc;
1310 spin_lock(vmf->ptl);
1311 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1312 goto out_unlock;
1313
1314 page = pmd_page(orig_pmd);
1315 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1316 /*
1317 * We can only reuse the page if nobody else maps the huge page or it's
1318 * part.
1319 */
1320 if (!trylock_page(page)) {
1321 get_page(page);
1322 spin_unlock(vmf->ptl);
1323 lock_page(page);
1324 spin_lock(vmf->ptl);
1325 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1326 unlock_page(page);
1327 put_page(page);
1328 goto out_unlock;
1329 }
1330 put_page(page);
1331 }
1332 if (reuse_swap_page(page, NULL)) {
1333 pmd_t entry;
1334 entry = pmd_mkyoung(orig_pmd);
1335 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1336 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1337 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1338 ret |= VM_FAULT_WRITE;
1339 unlock_page(page);
1340 goto out_unlock;
1341 }
1342 unlock_page(page);
1343 get_page(page);
1344 spin_unlock(vmf->ptl);
1345 alloc:
1346 if (__transparent_hugepage_enabled(vma) &&
1347 !transparent_hugepage_debug_cow()) {
1348 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1349 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1350 } else
1351 new_page = NULL;
1352
1353 if (likely(new_page)) {
1354 prep_transhuge_page(new_page);
1355 } else {
1356 if (!page) {
1357 split_huge_pmd(vma, vmf->pmd, vmf->address);
1358 ret |= VM_FAULT_FALLBACK;
1359 } else {
1360 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1361 if (ret & VM_FAULT_OOM) {
1362 split_huge_pmd(vma, vmf->pmd, vmf->address);
1363 ret |= VM_FAULT_FALLBACK;
1364 }
1365 put_page(page);
1366 }
1367 count_vm_event(THP_FAULT_FALLBACK);
1368 goto out;
1369 }
1370
1371 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1372 huge_gfp, &memcg, true))) {
1373 put_page(new_page);
1374 split_huge_pmd(vma, vmf->pmd, vmf->address);
1375 if (page)
1376 put_page(page);
1377 ret |= VM_FAULT_FALLBACK;
1378 count_vm_event(THP_FAULT_FALLBACK);
1379 goto out;
1380 }
1381
1382 count_vm_event(THP_FAULT_ALLOC);
1383 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1384
1385 if (!page)
1386 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1387 else
1388 copy_user_huge_page(new_page, page, vmf->address,
1389 vma, HPAGE_PMD_NR);
1390 __SetPageUptodate(new_page);
1391
1392 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1393 haddr,
1394 haddr + HPAGE_PMD_SIZE);
1395 mmu_notifier_invalidate_range_start(&range);
1396
1397 spin_lock(vmf->ptl);
1398 if (page)
1399 put_page(page);
1400 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1401 spin_unlock(vmf->ptl);
1402 mem_cgroup_cancel_charge(new_page, memcg, true);
1403 put_page(new_page);
1404 goto out_mn;
1405 } else {
1406 pmd_t entry;
1407 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1408 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1409 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1410 page_add_new_anon_rmap(new_page, vma, haddr, true);
1411 mem_cgroup_commit_charge(new_page, memcg, false, true);
1412 lru_cache_add_active_or_unevictable(new_page, vma);
1413 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1414 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1415 if (!page) {
1416 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1417 } else {
1418 VM_BUG_ON_PAGE(!PageHead(page), page);
1419 page_remove_rmap(page, true);
1420 put_page(page);
1421 }
1422 ret |= VM_FAULT_WRITE;
1423 }
1424 spin_unlock(vmf->ptl);
1425 out_mn:
1426 /*
1427 * No need to double call mmu_notifier->invalidate_range() callback as
1428 * the above pmdp_huge_clear_flush_notify() did already call it.
1429 */
1430 mmu_notifier_invalidate_range_only_end(&range);
1431 out:
1432 return ret;
1433 out_unlock:
1434 spin_unlock(vmf->ptl);
1435 return ret;
1436 }
1437
1438 /*
1439 * FOLL_FORCE can write to even unwritable pmd's, but only
1440 * after we've gone through a COW cycle and they are dirty.
1441 */
1442 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1443 {
1444 return pmd_write(pmd) ||
1445 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1446 }
1447
1448 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1449 unsigned long addr,
1450 pmd_t *pmd,
1451 unsigned int flags)
1452 {
1453 struct mm_struct *mm = vma->vm_mm;
1454 struct page *page = NULL;
1455
1456 assert_spin_locked(pmd_lockptr(mm, pmd));
1457
1458 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1459 goto out;
1460
1461 /* Avoid dumping huge zero page */
1462 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1463 return ERR_PTR(-EFAULT);
1464
1465 /* Full NUMA hinting faults to serialise migration in fault paths */
1466 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1467 goto out;
1468
1469 page = pmd_page(*pmd);
1470 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1471 if (flags & FOLL_TOUCH)
1472 touch_pmd(vma, addr, pmd, flags);
1473 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1474 /*
1475 * We don't mlock() pte-mapped THPs. This way we can avoid
1476 * leaking mlocked pages into non-VM_LOCKED VMAs.
1477 *
1478 * For anon THP:
1479 *
1480 * In most cases the pmd is the only mapping of the page as we
1481 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1482 * writable private mappings in populate_vma_page_range().
1483 *
1484 * The only scenario when we have the page shared here is if we
1485 * mlocking read-only mapping shared over fork(). We skip
1486 * mlocking such pages.
1487 *
1488 * For file THP:
1489 *
1490 * We can expect PageDoubleMap() to be stable under page lock:
1491 * for file pages we set it in page_add_file_rmap(), which
1492 * requires page to be locked.
1493 */
1494
1495 if (PageAnon(page) && compound_mapcount(page) != 1)
1496 goto skip_mlock;
1497 if (PageDoubleMap(page) || !page->mapping)
1498 goto skip_mlock;
1499 if (!trylock_page(page))
1500 goto skip_mlock;
1501 lru_add_drain();
1502 if (page->mapping && !PageDoubleMap(page))
1503 mlock_vma_page(page);
1504 unlock_page(page);
1505 }
1506 skip_mlock:
1507 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1508 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1509 if (flags & FOLL_GET)
1510 get_page(page);
1511
1512 out:
1513 return page;
1514 }
1515
1516 /* NUMA hinting page fault entry point for trans huge pmds */
1517 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1518 {
1519 struct vm_area_struct *vma = vmf->vma;
1520 struct anon_vma *anon_vma = NULL;
1521 struct page *page;
1522 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1523 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1524 int target_nid, last_cpupid = -1;
1525 bool page_locked;
1526 bool migrated = false;
1527 bool was_writable;
1528 int flags = 0;
1529
1530 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1531 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1532 goto out_unlock;
1533
1534 /*
1535 * If there are potential migrations, wait for completion and retry
1536 * without disrupting NUMA hinting information. Do not relock and
1537 * check_same as the page may no longer be mapped.
1538 */
1539 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1540 page = pmd_page(*vmf->pmd);
1541 if (!get_page_unless_zero(page))
1542 goto out_unlock;
1543 spin_unlock(vmf->ptl);
1544 put_and_wait_on_page_locked(page);
1545 goto out;
1546 }
1547
1548 page = pmd_page(pmd);
1549 BUG_ON(is_huge_zero_page(page));
1550 page_nid = page_to_nid(page);
1551 last_cpupid = page_cpupid_last(page);
1552 count_vm_numa_event(NUMA_HINT_FAULTS);
1553 if (page_nid == this_nid) {
1554 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1555 flags |= TNF_FAULT_LOCAL;
1556 }
1557
1558 /* See similar comment in do_numa_page for explanation */
1559 if (!pmd_savedwrite(pmd))
1560 flags |= TNF_NO_GROUP;
1561
1562 /*
1563 * Acquire the page lock to serialise THP migrations but avoid dropping
1564 * page_table_lock if at all possible
1565 */
1566 page_locked = trylock_page(page);
1567 target_nid = mpol_misplaced(page, vma, haddr);
1568 if (target_nid == NUMA_NO_NODE) {
1569 /* If the page was locked, there are no parallel migrations */
1570 if (page_locked)
1571 goto clear_pmdnuma;
1572 }
1573
1574 /* Migration could have started since the pmd_trans_migrating check */
1575 if (!page_locked) {
1576 page_nid = NUMA_NO_NODE;
1577 if (!get_page_unless_zero(page))
1578 goto out_unlock;
1579 spin_unlock(vmf->ptl);
1580 put_and_wait_on_page_locked(page);
1581 goto out;
1582 }
1583
1584 /*
1585 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1586 * to serialises splits
1587 */
1588 get_page(page);
1589 spin_unlock(vmf->ptl);
1590 anon_vma = page_lock_anon_vma_read(page);
1591
1592 /* Confirm the PMD did not change while page_table_lock was released */
1593 spin_lock(vmf->ptl);
1594 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1595 unlock_page(page);
1596 put_page(page);
1597 page_nid = NUMA_NO_NODE;
1598 goto out_unlock;
1599 }
1600
1601 /* Bail if we fail to protect against THP splits for any reason */
1602 if (unlikely(!anon_vma)) {
1603 put_page(page);
1604 page_nid = NUMA_NO_NODE;
1605 goto clear_pmdnuma;
1606 }
1607
1608 /*
1609 * Since we took the NUMA fault, we must have observed the !accessible
1610 * bit. Make sure all other CPUs agree with that, to avoid them
1611 * modifying the page we're about to migrate.
1612 *
1613 * Must be done under PTL such that we'll observe the relevant
1614 * inc_tlb_flush_pending().
1615 *
1616 * We are not sure a pending tlb flush here is for a huge page
1617 * mapping or not. Hence use the tlb range variant
1618 */
1619 if (mm_tlb_flush_pending(vma->vm_mm)) {
1620 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1621 /*
1622 * change_huge_pmd() released the pmd lock before
1623 * invalidating the secondary MMUs sharing the primary
1624 * MMU pagetables (with ->invalidate_range()). The
1625 * mmu_notifier_invalidate_range_end() (which
1626 * internally calls ->invalidate_range()) in
1627 * change_pmd_range() will run after us, so we can't
1628 * rely on it here and we need an explicit invalidate.
1629 */
1630 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1631 haddr + HPAGE_PMD_SIZE);
1632 }
1633
1634 /*
1635 * Migrate the THP to the requested node, returns with page unlocked
1636 * and access rights restored.
1637 */
1638 spin_unlock(vmf->ptl);
1639
1640 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1641 vmf->pmd, pmd, vmf->address, page, target_nid);
1642 if (migrated) {
1643 flags |= TNF_MIGRATED;
1644 page_nid = target_nid;
1645 } else
1646 flags |= TNF_MIGRATE_FAIL;
1647
1648 goto out;
1649 clear_pmdnuma:
1650 BUG_ON(!PageLocked(page));
1651 was_writable = pmd_savedwrite(pmd);
1652 pmd = pmd_modify(pmd, vma->vm_page_prot);
1653 pmd = pmd_mkyoung(pmd);
1654 if (was_writable)
1655 pmd = pmd_mkwrite(pmd);
1656 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1657 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1658 unlock_page(page);
1659 out_unlock:
1660 spin_unlock(vmf->ptl);
1661
1662 out:
1663 if (anon_vma)
1664 page_unlock_anon_vma_read(anon_vma);
1665
1666 if (page_nid != NUMA_NO_NODE)
1667 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1668 flags);
1669
1670 return 0;
1671 }
1672
1673 /*
1674 * Return true if we do MADV_FREE successfully on entire pmd page.
1675 * Otherwise, return false.
1676 */
1677 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1678 pmd_t *pmd, unsigned long addr, unsigned long next)
1679 {
1680 spinlock_t *ptl;
1681 pmd_t orig_pmd;
1682 struct page *page;
1683 struct mm_struct *mm = tlb->mm;
1684 bool ret = false;
1685
1686 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1687
1688 ptl = pmd_trans_huge_lock(pmd, vma);
1689 if (!ptl)
1690 goto out_unlocked;
1691
1692 orig_pmd = *pmd;
1693 if (is_huge_zero_pmd(orig_pmd))
1694 goto out;
1695
1696 if (unlikely(!pmd_present(orig_pmd))) {
1697 VM_BUG_ON(thp_migration_supported() &&
1698 !is_pmd_migration_entry(orig_pmd));
1699 goto out;
1700 }
1701
1702 page = pmd_page(orig_pmd);
1703 /*
1704 * If other processes are mapping this page, we couldn't discard
1705 * the page unless they all do MADV_FREE so let's skip the page.
1706 */
1707 if (page_mapcount(page) != 1)
1708 goto out;
1709
1710 if (!trylock_page(page))
1711 goto out;
1712
1713 /*
1714 * If user want to discard part-pages of THP, split it so MADV_FREE
1715 * will deactivate only them.
1716 */
1717 if (next - addr != HPAGE_PMD_SIZE) {
1718 get_page(page);
1719 spin_unlock(ptl);
1720 split_huge_page(page);
1721 unlock_page(page);
1722 put_page(page);
1723 goto out_unlocked;
1724 }
1725
1726 if (PageDirty(page))
1727 ClearPageDirty(page);
1728 unlock_page(page);
1729
1730 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1731 pmdp_invalidate(vma, addr, pmd);
1732 orig_pmd = pmd_mkold(orig_pmd);
1733 orig_pmd = pmd_mkclean(orig_pmd);
1734
1735 set_pmd_at(mm, addr, pmd, orig_pmd);
1736 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1737 }
1738
1739 mark_page_lazyfree(page);
1740 ret = true;
1741 out:
1742 spin_unlock(ptl);
1743 out_unlocked:
1744 return ret;
1745 }
1746
1747 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1748 {
1749 pgtable_t pgtable;
1750
1751 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1752 pte_free(mm, pgtable);
1753 mm_dec_nr_ptes(mm);
1754 }
1755
1756 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1757 pmd_t *pmd, unsigned long addr)
1758 {
1759 pmd_t orig_pmd;
1760 spinlock_t *ptl;
1761
1762 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1763
1764 ptl = __pmd_trans_huge_lock(pmd, vma);
1765 if (!ptl)
1766 return 0;
1767 /*
1768 * For architectures like ppc64 we look at deposited pgtable
1769 * when calling pmdp_huge_get_and_clear. So do the
1770 * pgtable_trans_huge_withdraw after finishing pmdp related
1771 * operations.
1772 */
1773 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1774 tlb->fullmm);
1775 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1776 if (vma_is_dax(vma)) {
1777 if (arch_needs_pgtable_deposit())
1778 zap_deposited_table(tlb->mm, pmd);
1779 spin_unlock(ptl);
1780 if (is_huge_zero_pmd(orig_pmd))
1781 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1782 } else if (is_huge_zero_pmd(orig_pmd)) {
1783 zap_deposited_table(tlb->mm, pmd);
1784 spin_unlock(ptl);
1785 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1786 } else {
1787 struct page *page = NULL;
1788 int flush_needed = 1;
1789
1790 if (pmd_present(orig_pmd)) {
1791 page = pmd_page(orig_pmd);
1792 page_remove_rmap(page, true);
1793 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1794 VM_BUG_ON_PAGE(!PageHead(page), page);
1795 } else if (thp_migration_supported()) {
1796 swp_entry_t entry;
1797
1798 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1799 entry = pmd_to_swp_entry(orig_pmd);
1800 page = pfn_to_page(swp_offset(entry));
1801 flush_needed = 0;
1802 } else
1803 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1804
1805 if (PageAnon(page)) {
1806 zap_deposited_table(tlb->mm, pmd);
1807 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1808 } else {
1809 if (arch_needs_pgtable_deposit())
1810 zap_deposited_table(tlb->mm, pmd);
1811 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1812 }
1813
1814 spin_unlock(ptl);
1815 if (flush_needed)
1816 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1817 }
1818 return 1;
1819 }
1820
1821 #ifndef pmd_move_must_withdraw
1822 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1823 spinlock_t *old_pmd_ptl,
1824 struct vm_area_struct *vma)
1825 {
1826 /*
1827 * With split pmd lock we also need to move preallocated
1828 * PTE page table if new_pmd is on different PMD page table.
1829 *
1830 * We also don't deposit and withdraw tables for file pages.
1831 */
1832 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1833 }
1834 #endif
1835
1836 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1837 {
1838 #ifdef CONFIG_MEM_SOFT_DIRTY
1839 if (unlikely(is_pmd_migration_entry(pmd)))
1840 pmd = pmd_swp_mksoft_dirty(pmd);
1841 else if (pmd_present(pmd))
1842 pmd = pmd_mksoft_dirty(pmd);
1843 #endif
1844 return pmd;
1845 }
1846
1847 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1848 unsigned long new_addr, unsigned long old_end,
1849 pmd_t *old_pmd, pmd_t *new_pmd)
1850 {
1851 spinlock_t *old_ptl, *new_ptl;
1852 pmd_t pmd;
1853 struct mm_struct *mm = vma->vm_mm;
1854 bool force_flush = false;
1855
1856 if ((old_addr & ~HPAGE_PMD_MASK) ||
1857 (new_addr & ~HPAGE_PMD_MASK) ||
1858 old_end - old_addr < HPAGE_PMD_SIZE)
1859 return false;
1860
1861 /*
1862 * The destination pmd shouldn't be established, free_pgtables()
1863 * should have release it.
1864 */
1865 if (WARN_ON(!pmd_none(*new_pmd))) {
1866 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1867 return false;
1868 }
1869
1870 /*
1871 * We don't have to worry about the ordering of src and dst
1872 * ptlocks because exclusive mmap_sem prevents deadlock.
1873 */
1874 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1875 if (old_ptl) {
1876 new_ptl = pmd_lockptr(mm, new_pmd);
1877 if (new_ptl != old_ptl)
1878 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1879 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1880 if (pmd_present(pmd))
1881 force_flush = true;
1882 VM_BUG_ON(!pmd_none(*new_pmd));
1883
1884 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1885 pgtable_t pgtable;
1886 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1887 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1888 }
1889 pmd = move_soft_dirty_pmd(pmd);
1890 set_pmd_at(mm, new_addr, new_pmd, pmd);
1891 if (force_flush)
1892 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1893 if (new_ptl != old_ptl)
1894 spin_unlock(new_ptl);
1895 spin_unlock(old_ptl);
1896 return true;
1897 }
1898 return false;
1899 }
1900
1901 /*
1902 * Returns
1903 * - 0 if PMD could not be locked
1904 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1905 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1906 */
1907 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1908 unsigned long addr, pgprot_t newprot, int prot_numa)
1909 {
1910 struct mm_struct *mm = vma->vm_mm;
1911 spinlock_t *ptl;
1912 pmd_t entry;
1913 bool preserve_write;
1914 int ret;
1915
1916 ptl = __pmd_trans_huge_lock(pmd, vma);
1917 if (!ptl)
1918 return 0;
1919
1920 preserve_write = prot_numa && pmd_write(*pmd);
1921 ret = 1;
1922
1923 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1924 if (is_swap_pmd(*pmd)) {
1925 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1926
1927 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1928 if (is_write_migration_entry(entry)) {
1929 pmd_t newpmd;
1930 /*
1931 * A protection check is difficult so
1932 * just be safe and disable write
1933 */
1934 make_migration_entry_read(&entry);
1935 newpmd = swp_entry_to_pmd(entry);
1936 if (pmd_swp_soft_dirty(*pmd))
1937 newpmd = pmd_swp_mksoft_dirty(newpmd);
1938 set_pmd_at(mm, addr, pmd, newpmd);
1939 }
1940 goto unlock;
1941 }
1942 #endif
1943
1944 /*
1945 * Avoid trapping faults against the zero page. The read-only
1946 * data is likely to be read-cached on the local CPU and
1947 * local/remote hits to the zero page are not interesting.
1948 */
1949 if (prot_numa && is_huge_zero_pmd(*pmd))
1950 goto unlock;
1951
1952 if (prot_numa && pmd_protnone(*pmd))
1953 goto unlock;
1954
1955 /*
1956 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1957 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1958 * which is also under down_read(mmap_sem):
1959 *
1960 * CPU0: CPU1:
1961 * change_huge_pmd(prot_numa=1)
1962 * pmdp_huge_get_and_clear_notify()
1963 * madvise_dontneed()
1964 * zap_pmd_range()
1965 * pmd_trans_huge(*pmd) == 0 (without ptl)
1966 * // skip the pmd
1967 * set_pmd_at();
1968 * // pmd is re-established
1969 *
1970 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1971 * which may break userspace.
1972 *
1973 * pmdp_invalidate() is required to make sure we don't miss
1974 * dirty/young flags set by hardware.
1975 */
1976 entry = pmdp_invalidate(vma, addr, pmd);
1977
1978 entry = pmd_modify(entry, newprot);
1979 if (preserve_write)
1980 entry = pmd_mk_savedwrite(entry);
1981 ret = HPAGE_PMD_NR;
1982 set_pmd_at(mm, addr, pmd, entry);
1983 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1984 unlock:
1985 spin_unlock(ptl);
1986 return ret;
1987 }
1988
1989 /*
1990 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1991 *
1992 * Note that if it returns page table lock pointer, this routine returns without
1993 * unlocking page table lock. So callers must unlock it.
1994 */
1995 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1996 {
1997 spinlock_t *ptl;
1998 ptl = pmd_lock(vma->vm_mm, pmd);
1999 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2000 pmd_devmap(*pmd)))
2001 return ptl;
2002 spin_unlock(ptl);
2003 return NULL;
2004 }
2005
2006 /*
2007 * Returns true if a given pud maps a thp, false otherwise.
2008 *
2009 * Note that if it returns true, this routine returns without unlocking page
2010 * table lock. So callers must unlock it.
2011 */
2012 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2013 {
2014 spinlock_t *ptl;
2015
2016 ptl = pud_lock(vma->vm_mm, pud);
2017 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2018 return ptl;
2019 spin_unlock(ptl);
2020 return NULL;
2021 }
2022
2023 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2024 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2025 pud_t *pud, unsigned long addr)
2026 {
2027 spinlock_t *ptl;
2028
2029 ptl = __pud_trans_huge_lock(pud, vma);
2030 if (!ptl)
2031 return 0;
2032 /*
2033 * For architectures like ppc64 we look at deposited pgtable
2034 * when calling pudp_huge_get_and_clear. So do the
2035 * pgtable_trans_huge_withdraw after finishing pudp related
2036 * operations.
2037 */
2038 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2039 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2040 if (vma_is_dax(vma)) {
2041 spin_unlock(ptl);
2042 /* No zero page support yet */
2043 } else {
2044 /* No support for anonymous PUD pages yet */
2045 BUG();
2046 }
2047 return 1;
2048 }
2049
2050 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2051 unsigned long haddr)
2052 {
2053 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2054 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2055 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2056 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2057
2058 count_vm_event(THP_SPLIT_PUD);
2059
2060 pudp_huge_clear_flush_notify(vma, haddr, pud);
2061 }
2062
2063 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2064 unsigned long address)
2065 {
2066 spinlock_t *ptl;
2067 struct mmu_notifier_range range;
2068
2069 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
2070 address & HPAGE_PUD_MASK,
2071 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2072 mmu_notifier_invalidate_range_start(&range);
2073 ptl = pud_lock(vma->vm_mm, pud);
2074 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2075 goto out;
2076 __split_huge_pud_locked(vma, pud, range.start);
2077
2078 out:
2079 spin_unlock(ptl);
2080 /*
2081 * No need to double call mmu_notifier->invalidate_range() callback as
2082 * the above pudp_huge_clear_flush_notify() did already call it.
2083 */
2084 mmu_notifier_invalidate_range_only_end(&range);
2085 }
2086 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2087
2088 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2089 unsigned long haddr, pmd_t *pmd)
2090 {
2091 struct mm_struct *mm = vma->vm_mm;
2092 pgtable_t pgtable;
2093 pmd_t _pmd;
2094 int i;
2095
2096 /*
2097 * Leave pmd empty until pte is filled note that it is fine to delay
2098 * notification until mmu_notifier_invalidate_range_end() as we are
2099 * replacing a zero pmd write protected page with a zero pte write
2100 * protected page.
2101 *
2102 * See Documentation/vm/mmu_notifier.rst
2103 */
2104 pmdp_huge_clear_flush(vma, haddr, pmd);
2105
2106 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2107 pmd_populate(mm, &_pmd, pgtable);
2108
2109 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2110 pte_t *pte, entry;
2111 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2112 entry = pte_mkspecial(entry);
2113 pte = pte_offset_map(&_pmd, haddr);
2114 VM_BUG_ON(!pte_none(*pte));
2115 set_pte_at(mm, haddr, pte, entry);
2116 pte_unmap(pte);
2117 }
2118 smp_wmb(); /* make pte visible before pmd */
2119 pmd_populate(mm, pmd, pgtable);
2120 }
2121
2122 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2123 unsigned long haddr, bool freeze)
2124 {
2125 struct mm_struct *mm = vma->vm_mm;
2126 struct page *page;
2127 pgtable_t pgtable;
2128 pmd_t old_pmd, _pmd;
2129 bool young, write, soft_dirty, pmd_migration = false;
2130 unsigned long addr;
2131 int i;
2132
2133 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2134 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2135 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2136 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2137 && !pmd_devmap(*pmd));
2138
2139 count_vm_event(THP_SPLIT_PMD);
2140
2141 if (!vma_is_anonymous(vma)) {
2142 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2143 /*
2144 * We are going to unmap this huge page. So
2145 * just go ahead and zap it
2146 */
2147 if (arch_needs_pgtable_deposit())
2148 zap_deposited_table(mm, pmd);
2149 if (vma_is_dax(vma))
2150 return;
2151 page = pmd_page(_pmd);
2152 if (!PageDirty(page) && pmd_dirty(_pmd))
2153 set_page_dirty(page);
2154 if (!PageReferenced(page) && pmd_young(_pmd))
2155 SetPageReferenced(page);
2156 page_remove_rmap(page, true);
2157 put_page(page);
2158 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2159 return;
2160 } else if (is_huge_zero_pmd(*pmd)) {
2161 /*
2162 * FIXME: Do we want to invalidate secondary mmu by calling
2163 * mmu_notifier_invalidate_range() see comments below inside
2164 * __split_huge_pmd() ?
2165 *
2166 * We are going from a zero huge page write protected to zero
2167 * small page also write protected so it does not seems useful
2168 * to invalidate secondary mmu at this time.
2169 */
2170 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2171 }
2172
2173 /*
2174 * Up to this point the pmd is present and huge and userland has the
2175 * whole access to the hugepage during the split (which happens in
2176 * place). If we overwrite the pmd with the not-huge version pointing
2177 * to the pte here (which of course we could if all CPUs were bug
2178 * free), userland could trigger a small page size TLB miss on the
2179 * small sized TLB while the hugepage TLB entry is still established in
2180 * the huge TLB. Some CPU doesn't like that.
2181 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2182 * 383 on page 93. Intel should be safe but is also warns that it's
2183 * only safe if the permission and cache attributes of the two entries
2184 * loaded in the two TLB is identical (which should be the case here).
2185 * But it is generally safer to never allow small and huge TLB entries
2186 * for the same virtual address to be loaded simultaneously. So instead
2187 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2188 * current pmd notpresent (atomically because here the pmd_trans_huge
2189 * must remain set at all times on the pmd until the split is complete
2190 * for this pmd), then we flush the SMP TLB and finally we write the
2191 * non-huge version of the pmd entry with pmd_populate.
2192 */
2193 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2194
2195 pmd_migration = is_pmd_migration_entry(old_pmd);
2196 if (unlikely(pmd_migration)) {
2197 swp_entry_t entry;
2198
2199 entry = pmd_to_swp_entry(old_pmd);
2200 page = pfn_to_page(swp_offset(entry));
2201 write = is_write_migration_entry(entry);
2202 young = false;
2203 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2204 } else {
2205 page = pmd_page(old_pmd);
2206 if (pmd_dirty(old_pmd))
2207 SetPageDirty(page);
2208 write = pmd_write(old_pmd);
2209 young = pmd_young(old_pmd);
2210 soft_dirty = pmd_soft_dirty(old_pmd);
2211 }
2212 VM_BUG_ON_PAGE(!page_count(page), page);
2213 page_ref_add(page, HPAGE_PMD_NR - 1);
2214
2215 /*
2216 * Withdraw the table only after we mark the pmd entry invalid.
2217 * This's critical for some architectures (Power).
2218 */
2219 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2220 pmd_populate(mm, &_pmd, pgtable);
2221
2222 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2223 pte_t entry, *pte;
2224 /*
2225 * Note that NUMA hinting access restrictions are not
2226 * transferred to avoid any possibility of altering
2227 * permissions across VMAs.
2228 */
2229 if (freeze || pmd_migration) {
2230 swp_entry_t swp_entry;
2231 swp_entry = make_migration_entry(page + i, write);
2232 entry = swp_entry_to_pte(swp_entry);
2233 if (soft_dirty)
2234 entry = pte_swp_mksoft_dirty(entry);
2235 } else {
2236 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2237 entry = maybe_mkwrite(entry, vma);
2238 if (!write)
2239 entry = pte_wrprotect(entry);
2240 if (!young)
2241 entry = pte_mkold(entry);
2242 if (soft_dirty)
2243 entry = pte_mksoft_dirty(entry);
2244 }
2245 pte = pte_offset_map(&_pmd, addr);
2246 BUG_ON(!pte_none(*pte));
2247 set_pte_at(mm, addr, pte, entry);
2248 atomic_inc(&page[i]._mapcount);
2249 pte_unmap(pte);
2250 }
2251
2252 /*
2253 * Set PG_double_map before dropping compound_mapcount to avoid
2254 * false-negative page_mapped().
2255 */
2256 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2257 for (i = 0; i < HPAGE_PMD_NR; i++)
2258 atomic_inc(&page[i]._mapcount);
2259 }
2260
2261 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2262 /* Last compound_mapcount is gone. */
2263 __dec_node_page_state(page, NR_ANON_THPS);
2264 if (TestClearPageDoubleMap(page)) {
2265 /* No need in mapcount reference anymore */
2266 for (i = 0; i < HPAGE_PMD_NR; i++)
2267 atomic_dec(&page[i]._mapcount);
2268 }
2269 }
2270
2271 smp_wmb(); /* make pte visible before pmd */
2272 pmd_populate(mm, pmd, pgtable);
2273
2274 if (freeze) {
2275 for (i = 0; i < HPAGE_PMD_NR; i++) {
2276 page_remove_rmap(page + i, false);
2277 put_page(page + i);
2278 }
2279 }
2280 }
2281
2282 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2283 unsigned long address, bool freeze, struct page *page)
2284 {
2285 spinlock_t *ptl;
2286 struct mmu_notifier_range range;
2287
2288 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
2289 address & HPAGE_PMD_MASK,
2290 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2291 mmu_notifier_invalidate_range_start(&range);
2292 ptl = pmd_lock(vma->vm_mm, pmd);
2293
2294 /*
2295 * If caller asks to setup a migration entries, we need a page to check
2296 * pmd against. Otherwise we can end up replacing wrong page.
2297 */
2298 VM_BUG_ON(freeze && !page);
2299 if (page && page != pmd_page(*pmd))
2300 goto out;
2301
2302 if (pmd_trans_huge(*pmd)) {
2303 page = pmd_page(*pmd);
2304 if (PageMlocked(page))
2305 clear_page_mlock(page);
2306 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2307 goto out;
2308 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2309 out:
2310 spin_unlock(ptl);
2311 /*
2312 * No need to double call mmu_notifier->invalidate_range() callback.
2313 * They are 3 cases to consider inside __split_huge_pmd_locked():
2314 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2315 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2316 * fault will trigger a flush_notify before pointing to a new page
2317 * (it is fine if the secondary mmu keeps pointing to the old zero
2318 * page in the meantime)
2319 * 3) Split a huge pmd into pte pointing to the same page. No need
2320 * to invalidate secondary tlb entry they are all still valid.
2321 * any further changes to individual pte will notify. So no need
2322 * to call mmu_notifier->invalidate_range()
2323 */
2324 mmu_notifier_invalidate_range_only_end(&range);
2325 }
2326
2327 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2328 bool freeze, struct page *page)
2329 {
2330 pgd_t *pgd;
2331 p4d_t *p4d;
2332 pud_t *pud;
2333 pmd_t *pmd;
2334
2335 pgd = pgd_offset(vma->vm_mm, address);
2336 if (!pgd_present(*pgd))
2337 return;
2338
2339 p4d = p4d_offset(pgd, address);
2340 if (!p4d_present(*p4d))
2341 return;
2342
2343 pud = pud_offset(p4d, address);
2344 if (!pud_present(*pud))
2345 return;
2346
2347 pmd = pmd_offset(pud, address);
2348
2349 __split_huge_pmd(vma, pmd, address, freeze, page);
2350 }
2351
2352 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2353 unsigned long start,
2354 unsigned long end,
2355 long adjust_next)
2356 {
2357 /*
2358 * If the new start address isn't hpage aligned and it could
2359 * previously contain an hugepage: check if we need to split
2360 * an huge pmd.
2361 */
2362 if (start & ~HPAGE_PMD_MASK &&
2363 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2364 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2365 split_huge_pmd_address(vma, start, false, NULL);
2366
2367 /*
2368 * If the new end address isn't hpage aligned and it could
2369 * previously contain an hugepage: check if we need to split
2370 * an huge pmd.
2371 */
2372 if (end & ~HPAGE_PMD_MASK &&
2373 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2374 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2375 split_huge_pmd_address(vma, end, false, NULL);
2376
2377 /*
2378 * If we're also updating the vma->vm_next->vm_start, if the new
2379 * vm_next->vm_start isn't page aligned and it could previously
2380 * contain an hugepage: check if we need to split an huge pmd.
2381 */
2382 if (adjust_next > 0) {
2383 struct vm_area_struct *next = vma->vm_next;
2384 unsigned long nstart = next->vm_start;
2385 nstart += adjust_next << PAGE_SHIFT;
2386 if (nstart & ~HPAGE_PMD_MASK &&
2387 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2388 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2389 split_huge_pmd_address(next, nstart, false, NULL);
2390 }
2391 }
2392
2393 static void unmap_page(struct page *page)
2394 {
2395 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2396 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2397 bool unmap_success;
2398
2399 VM_BUG_ON_PAGE(!PageHead(page), page);
2400
2401 if (PageAnon(page))
2402 ttu_flags |= TTU_SPLIT_FREEZE;
2403
2404 unmap_success = try_to_unmap(page, ttu_flags);
2405 VM_BUG_ON_PAGE(!unmap_success, page);
2406 }
2407
2408 static void remap_page(struct page *page)
2409 {
2410 int i;
2411 if (PageTransHuge(page)) {
2412 remove_migration_ptes(page, page, true);
2413 } else {
2414 for (i = 0; i < HPAGE_PMD_NR; i++)
2415 remove_migration_ptes(page + i, page + i, true);
2416 }
2417 }
2418
2419 static void __split_huge_page_tail(struct page *head, int tail,
2420 struct lruvec *lruvec, struct list_head *list)
2421 {
2422 struct page *page_tail = head + tail;
2423
2424 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2425
2426 /*
2427 * Clone page flags before unfreezing refcount.
2428 *
2429 * After successful get_page_unless_zero() might follow flags change,
2430 * for exmaple lock_page() which set PG_waiters.
2431 */
2432 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2433 page_tail->flags |= (head->flags &
2434 ((1L << PG_referenced) |
2435 (1L << PG_swapbacked) |
2436 (1L << PG_swapcache) |
2437 (1L << PG_mlocked) |
2438 (1L << PG_uptodate) |
2439 (1L << PG_active) |
2440 (1L << PG_workingset) |
2441 (1L << PG_locked) |
2442 (1L << PG_unevictable) |
2443 (1L << PG_dirty)));
2444
2445 /* ->mapping in first tail page is compound_mapcount */
2446 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2447 page_tail);
2448 page_tail->mapping = head->mapping;
2449 page_tail->index = head->index + tail;
2450
2451 /* Page flags must be visible before we make the page non-compound. */
2452 smp_wmb();
2453
2454 /*
2455 * Clear PageTail before unfreezing page refcount.
2456 *
2457 * After successful get_page_unless_zero() might follow put_page()
2458 * which needs correct compound_head().
2459 */
2460 clear_compound_head(page_tail);
2461
2462 /* Finally unfreeze refcount. Additional reference from page cache. */
2463 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2464 PageSwapCache(head)));
2465
2466 if (page_is_young(head))
2467 set_page_young(page_tail);
2468 if (page_is_idle(head))
2469 set_page_idle(page_tail);
2470
2471 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2472
2473 /*
2474 * always add to the tail because some iterators expect new
2475 * pages to show after the currently processed elements - e.g.
2476 * migrate_pages
2477 */
2478 lru_add_page_tail(head, page_tail, lruvec, list);
2479 }
2480
2481 static void __split_huge_page(struct page *page, struct list_head *list,
2482 pgoff_t end, unsigned long flags)
2483 {
2484 struct page *head = compound_head(page);
2485 pg_data_t *pgdat = page_pgdat(head);
2486 struct lruvec *lruvec;
2487 int i;
2488
2489 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2490
2491 /* complete memcg works before add pages to LRU */
2492 mem_cgroup_split_huge_fixup(head);
2493
2494 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2495 __split_huge_page_tail(head, i, lruvec, list);
2496 /* Some pages can be beyond i_size: drop them from page cache */
2497 if (head[i].index >= end) {
2498 ClearPageDirty(head + i);
2499 __delete_from_page_cache(head + i, NULL);
2500 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2501 shmem_uncharge(head->mapping->host, 1);
2502 put_page(head + i);
2503 } else if (!PageAnon(page)) {
2504 __xa_store(&head->mapping->i_pages, head[i].index,
2505 head + i, 0);
2506 }
2507 }
2508
2509 ClearPageCompound(head);
2510 /* See comment in __split_huge_page_tail() */
2511 if (PageAnon(head)) {
2512 /* Additional pin to swap cache */
2513 if (PageSwapCache(head))
2514 page_ref_add(head, 2);
2515 else
2516 page_ref_inc(head);
2517 } else {
2518 /* Additional pin to page cache */
2519 page_ref_add(head, 2);
2520 xa_unlock(&head->mapping->i_pages);
2521 }
2522
2523 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2524
2525 remap_page(head);
2526
2527 for (i = 0; i < HPAGE_PMD_NR; i++) {
2528 struct page *subpage = head + i;
2529 if (subpage == page)
2530 continue;
2531 unlock_page(subpage);
2532
2533 /*
2534 * Subpages may be freed if there wasn't any mapping
2535 * like if add_to_swap() is running on a lru page that
2536 * had its mapping zapped. And freeing these pages
2537 * requires taking the lru_lock so we do the put_page
2538 * of the tail pages after the split is complete.
2539 */
2540 put_page(subpage);
2541 }
2542 }
2543
2544 int total_mapcount(struct page *page)
2545 {
2546 int i, compound, ret;
2547
2548 VM_BUG_ON_PAGE(PageTail(page), page);
2549
2550 if (likely(!PageCompound(page)))
2551 return atomic_read(&page->_mapcount) + 1;
2552
2553 compound = compound_mapcount(page);
2554 if (PageHuge(page))
2555 return compound;
2556 ret = compound;
2557 for (i = 0; i < HPAGE_PMD_NR; i++)
2558 ret += atomic_read(&page[i]._mapcount) + 1;
2559 /* File pages has compound_mapcount included in _mapcount */
2560 if (!PageAnon(page))
2561 return ret - compound * HPAGE_PMD_NR;
2562 if (PageDoubleMap(page))
2563 ret -= HPAGE_PMD_NR;
2564 return ret;
2565 }
2566
2567 /*
2568 * This calculates accurately how many mappings a transparent hugepage
2569 * has (unlike page_mapcount() which isn't fully accurate). This full
2570 * accuracy is primarily needed to know if copy-on-write faults can
2571 * reuse the page and change the mapping to read-write instead of
2572 * copying them. At the same time this returns the total_mapcount too.
2573 *
2574 * The function returns the highest mapcount any one of the subpages
2575 * has. If the return value is one, even if different processes are
2576 * mapping different subpages of the transparent hugepage, they can
2577 * all reuse it, because each process is reusing a different subpage.
2578 *
2579 * The total_mapcount is instead counting all virtual mappings of the
2580 * subpages. If the total_mapcount is equal to "one", it tells the
2581 * caller all mappings belong to the same "mm" and in turn the
2582 * anon_vma of the transparent hugepage can become the vma->anon_vma
2583 * local one as no other process may be mapping any of the subpages.
2584 *
2585 * It would be more accurate to replace page_mapcount() with
2586 * page_trans_huge_mapcount(), however we only use
2587 * page_trans_huge_mapcount() in the copy-on-write faults where we
2588 * need full accuracy to avoid breaking page pinning, because
2589 * page_trans_huge_mapcount() is slower than page_mapcount().
2590 */
2591 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2592 {
2593 int i, ret, _total_mapcount, mapcount;
2594
2595 /* hugetlbfs shouldn't call it */
2596 VM_BUG_ON_PAGE(PageHuge(page), page);
2597
2598 if (likely(!PageTransCompound(page))) {
2599 mapcount = atomic_read(&page->_mapcount) + 1;
2600 if (total_mapcount)
2601 *total_mapcount = mapcount;
2602 return mapcount;
2603 }
2604
2605 page = compound_head(page);
2606
2607 _total_mapcount = ret = 0;
2608 for (i = 0; i < HPAGE_PMD_NR; i++) {
2609 mapcount = atomic_read(&page[i]._mapcount) + 1;
2610 ret = max(ret, mapcount);
2611 _total_mapcount += mapcount;
2612 }
2613 if (PageDoubleMap(page)) {
2614 ret -= 1;
2615 _total_mapcount -= HPAGE_PMD_NR;
2616 }
2617 mapcount = compound_mapcount(page);
2618 ret += mapcount;
2619 _total_mapcount += mapcount;
2620 if (total_mapcount)
2621 *total_mapcount = _total_mapcount;
2622 return ret;
2623 }
2624
2625 /* Racy check whether the huge page can be split */
2626 bool can_split_huge_page(struct page *page, int *pextra_pins)
2627 {
2628 int extra_pins;
2629
2630 /* Additional pins from page cache */
2631 if (PageAnon(page))
2632 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2633 else
2634 extra_pins = HPAGE_PMD_NR;
2635 if (pextra_pins)
2636 *pextra_pins = extra_pins;
2637 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2638 }
2639
2640 /*
2641 * This function splits huge page into normal pages. @page can point to any
2642 * subpage of huge page to split. Split doesn't change the position of @page.
2643 *
2644 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2645 * The huge page must be locked.
2646 *
2647 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2648 *
2649 * Both head page and tail pages will inherit mapping, flags, and so on from
2650 * the hugepage.
2651 *
2652 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2653 * they are not mapped.
2654 *
2655 * Returns 0 if the hugepage is split successfully.
2656 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2657 * us.
2658 */
2659 int split_huge_page_to_list(struct page *page, struct list_head *list)
2660 {
2661 struct page *head = compound_head(page);
2662 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2663 struct anon_vma *anon_vma = NULL;
2664 struct address_space *mapping = NULL;
2665 int count, mapcount, extra_pins, ret;
2666 bool mlocked;
2667 unsigned long flags;
2668 pgoff_t end;
2669
2670 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2671 VM_BUG_ON_PAGE(!PageLocked(page), page);
2672 VM_BUG_ON_PAGE(!PageCompound(page), page);
2673
2674 if (PageWriteback(page))
2675 return -EBUSY;
2676
2677 if (PageAnon(head)) {
2678 /*
2679 * The caller does not necessarily hold an mmap_sem that would
2680 * prevent the anon_vma disappearing so we first we take a
2681 * reference to it and then lock the anon_vma for write. This
2682 * is similar to page_lock_anon_vma_read except the write lock
2683 * is taken to serialise against parallel split or collapse
2684 * operations.
2685 */
2686 anon_vma = page_get_anon_vma(head);
2687 if (!anon_vma) {
2688 ret = -EBUSY;
2689 goto out;
2690 }
2691 end = -1;
2692 mapping = NULL;
2693 anon_vma_lock_write(anon_vma);
2694 } else {
2695 mapping = head->mapping;
2696
2697 /* Truncated ? */
2698 if (!mapping) {
2699 ret = -EBUSY;
2700 goto out;
2701 }
2702
2703 anon_vma = NULL;
2704 i_mmap_lock_read(mapping);
2705
2706 /*
2707 *__split_huge_page() may need to trim off pages beyond EOF:
2708 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2709 * which cannot be nested inside the page tree lock. So note
2710 * end now: i_size itself may be changed at any moment, but
2711 * head page lock is good enough to serialize the trimming.
2712 */
2713 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2714 }
2715
2716 /*
2717 * Racy check if we can split the page, before unmap_page() will
2718 * split PMDs
2719 */
2720 if (!can_split_huge_page(head, &extra_pins)) {
2721 ret = -EBUSY;
2722 goto out_unlock;
2723 }
2724
2725 mlocked = PageMlocked(page);
2726 unmap_page(head);
2727 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2728
2729 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2730 if (mlocked)
2731 lru_add_drain();
2732
2733 /* prevent PageLRU to go away from under us, and freeze lru stats */
2734 spin_lock_irqsave(&pgdata->lru_lock, flags);
2735
2736 if (mapping) {
2737 XA_STATE(xas, &mapping->i_pages, page_index(head));
2738
2739 /*
2740 * Check if the head page is present in page cache.
2741 * We assume all tail are present too, if head is there.
2742 */
2743 xa_lock(&mapping->i_pages);
2744 if (xas_load(&xas) != head)
2745 goto fail;
2746 }
2747
2748 /* Prevent deferred_split_scan() touching ->_refcount */
2749 spin_lock(&pgdata->split_queue_lock);
2750 count = page_count(head);
2751 mapcount = total_mapcount(head);
2752 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2753 if (!list_empty(page_deferred_list(head))) {
2754 pgdata->split_queue_len--;
2755 list_del(page_deferred_list(head));
2756 }
2757 if (mapping)
2758 __dec_node_page_state(page, NR_SHMEM_THPS);
2759 spin_unlock(&pgdata->split_queue_lock);
2760 __split_huge_page(page, list, end, flags);
2761 if (PageSwapCache(head)) {
2762 swp_entry_t entry = { .val = page_private(head) };
2763
2764 ret = split_swap_cluster(entry);
2765 } else
2766 ret = 0;
2767 } else {
2768 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2769 pr_alert("total_mapcount: %u, page_count(): %u\n",
2770 mapcount, count);
2771 if (PageTail(page))
2772 dump_page(head, NULL);
2773 dump_page(page, "total_mapcount(head) > 0");
2774 BUG();
2775 }
2776 spin_unlock(&pgdata->split_queue_lock);
2777 fail: if (mapping)
2778 xa_unlock(&mapping->i_pages);
2779 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2780 remap_page(head);
2781 ret = -EBUSY;
2782 }
2783
2784 out_unlock:
2785 if (anon_vma) {
2786 anon_vma_unlock_write(anon_vma);
2787 put_anon_vma(anon_vma);
2788 }
2789 if (mapping)
2790 i_mmap_unlock_read(mapping);
2791 out:
2792 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2793 return ret;
2794 }
2795
2796 void free_transhuge_page(struct page *page)
2797 {
2798 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2799 unsigned long flags;
2800
2801 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2802 if (!list_empty(page_deferred_list(page))) {
2803 pgdata->split_queue_len--;
2804 list_del(page_deferred_list(page));
2805 }
2806 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2807 free_compound_page(page);
2808 }
2809
2810 void deferred_split_huge_page(struct page *page)
2811 {
2812 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2813 unsigned long flags;
2814
2815 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2816
2817 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2818 if (list_empty(page_deferred_list(page))) {
2819 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2820 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2821 pgdata->split_queue_len++;
2822 }
2823 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2824 }
2825
2826 static unsigned long deferred_split_count(struct shrinker *shrink,
2827 struct shrink_control *sc)
2828 {
2829 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2830 return READ_ONCE(pgdata->split_queue_len);
2831 }
2832
2833 static unsigned long deferred_split_scan(struct shrinker *shrink,
2834 struct shrink_control *sc)
2835 {
2836 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2837 unsigned long flags;
2838 LIST_HEAD(list), *pos, *next;
2839 struct page *page;
2840 int split = 0;
2841
2842 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2843 /* Take pin on all head pages to avoid freeing them under us */
2844 list_for_each_safe(pos, next, &pgdata->split_queue) {
2845 page = list_entry((void *)pos, struct page, mapping);
2846 page = compound_head(page);
2847 if (get_page_unless_zero(page)) {
2848 list_move(page_deferred_list(page), &list);
2849 } else {
2850 /* We lost race with put_compound_page() */
2851 list_del_init(page_deferred_list(page));
2852 pgdata->split_queue_len--;
2853 }
2854 if (!--sc->nr_to_scan)
2855 break;
2856 }
2857 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2858
2859 list_for_each_safe(pos, next, &list) {
2860 page = list_entry((void *)pos, struct page, mapping);
2861 if (!trylock_page(page))
2862 goto next;
2863 /* split_huge_page() removes page from list on success */
2864 if (!split_huge_page(page))
2865 split++;
2866 unlock_page(page);
2867 next:
2868 put_page(page);
2869 }
2870
2871 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2872 list_splice_tail(&list, &pgdata->split_queue);
2873 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2874
2875 /*
2876 * Stop shrinker if we didn't split any page, but the queue is empty.
2877 * This can happen if pages were freed under us.
2878 */
2879 if (!split && list_empty(&pgdata->split_queue))
2880 return SHRINK_STOP;
2881 return split;
2882 }
2883
2884 static struct shrinker deferred_split_shrinker = {
2885 .count_objects = deferred_split_count,
2886 .scan_objects = deferred_split_scan,
2887 .seeks = DEFAULT_SEEKS,
2888 .flags = SHRINKER_NUMA_AWARE,
2889 };
2890
2891 #ifdef CONFIG_DEBUG_FS
2892 static int split_huge_pages_set(void *data, u64 val)
2893 {
2894 struct zone *zone;
2895 struct page *page;
2896 unsigned long pfn, max_zone_pfn;
2897 unsigned long total = 0, split = 0;
2898
2899 if (val != 1)
2900 return -EINVAL;
2901
2902 for_each_populated_zone(zone) {
2903 max_zone_pfn = zone_end_pfn(zone);
2904 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2905 if (!pfn_valid(pfn))
2906 continue;
2907
2908 page = pfn_to_page(pfn);
2909 if (!get_page_unless_zero(page))
2910 continue;
2911
2912 if (zone != page_zone(page))
2913 goto next;
2914
2915 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2916 goto next;
2917
2918 total++;
2919 lock_page(page);
2920 if (!split_huge_page(page))
2921 split++;
2922 unlock_page(page);
2923 next:
2924 put_page(page);
2925 }
2926 }
2927
2928 pr_info("%lu of %lu THP split\n", split, total);
2929
2930 return 0;
2931 }
2932 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2933 "%llu\n");
2934
2935 static int __init split_huge_pages_debugfs(void)
2936 {
2937 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2938 &split_huge_pages_fops);
2939 return 0;
2940 }
2941 late_initcall(split_huge_pages_debugfs);
2942 #endif
2943
2944 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2945 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2946 struct page *page)
2947 {
2948 struct vm_area_struct *vma = pvmw->vma;
2949 struct mm_struct *mm = vma->vm_mm;
2950 unsigned long address = pvmw->address;
2951 pmd_t pmdval;
2952 swp_entry_t entry;
2953 pmd_t pmdswp;
2954
2955 if (!(pvmw->pmd && !pvmw->pte))
2956 return;
2957
2958 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2959 pmdval = *pvmw->pmd;
2960 pmdp_invalidate(vma, address, pvmw->pmd);
2961 if (pmd_dirty(pmdval))
2962 set_page_dirty(page);
2963 entry = make_migration_entry(page, pmd_write(pmdval));
2964 pmdswp = swp_entry_to_pmd(entry);
2965 if (pmd_soft_dirty(pmdval))
2966 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2967 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2968 page_remove_rmap(page, true);
2969 put_page(page);
2970 }
2971
2972 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2973 {
2974 struct vm_area_struct *vma = pvmw->vma;
2975 struct mm_struct *mm = vma->vm_mm;
2976 unsigned long address = pvmw->address;
2977 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2978 pmd_t pmde;
2979 swp_entry_t entry;
2980
2981 if (!(pvmw->pmd && !pvmw->pte))
2982 return;
2983
2984 entry = pmd_to_swp_entry(*pvmw->pmd);
2985 get_page(new);
2986 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2987 if (pmd_swp_soft_dirty(*pvmw->pmd))
2988 pmde = pmd_mksoft_dirty(pmde);
2989 if (is_write_migration_entry(entry))
2990 pmde = maybe_pmd_mkwrite(pmde, vma);
2991
2992 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2993 if (PageAnon(new))
2994 page_add_anon_rmap(new, vma, mmun_start, true);
2995 else
2996 page_add_file_rmap(new, true);
2997 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2998 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2999 mlock_vma_page(new);
3000 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3001 }
3002 #endif