]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/huge_memory.c
Merge tag 'nfs-for-5.2-4' of git://git.linux-nfs.org/projects/anna/linux-nfs
[mirror_ubuntu-jammy-kernel.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35
36 #include <asm/tlb.h>
37 #include <asm/pgalloc.h>
38 #include "internal.h"
39
40 /*
41 * By default, transparent hugepage support is disabled in order to avoid
42 * risking an increased memory footprint for applications that are not
43 * guaranteed to benefit from it. When transparent hugepage support is
44 * enabled, it is for all mappings, and khugepaged scans all mappings.
45 * Defrag is invoked by khugepaged hugepage allocations and by page faults
46 * for all hugepage allocations.
47 */
48 unsigned long transparent_hugepage_flags __read_mostly =
49 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
50 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
51 #endif
52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
53 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
54 #endif
55 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
58
59 static struct shrinker deferred_split_shrinker;
60
61 static atomic_t huge_zero_refcount;
62 struct page *huge_zero_page __read_mostly;
63
64 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
65 {
66 if (vma_is_anonymous(vma))
67 return __transparent_hugepage_enabled(vma);
68 if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
69 return __transparent_hugepage_enabled(vma);
70
71 return false;
72 }
73
74 static struct page *get_huge_zero_page(void)
75 {
76 struct page *zero_page;
77 retry:
78 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
79 return READ_ONCE(huge_zero_page);
80
81 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
82 HPAGE_PMD_ORDER);
83 if (!zero_page) {
84 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
85 return NULL;
86 }
87 count_vm_event(THP_ZERO_PAGE_ALLOC);
88 preempt_disable();
89 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
90 preempt_enable();
91 __free_pages(zero_page, compound_order(zero_page));
92 goto retry;
93 }
94
95 /* We take additional reference here. It will be put back by shrinker */
96 atomic_set(&huge_zero_refcount, 2);
97 preempt_enable();
98 return READ_ONCE(huge_zero_page);
99 }
100
101 static void put_huge_zero_page(void)
102 {
103 /*
104 * Counter should never go to zero here. Only shrinker can put
105 * last reference.
106 */
107 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
108 }
109
110 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
111 {
112 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
113 return READ_ONCE(huge_zero_page);
114
115 if (!get_huge_zero_page())
116 return NULL;
117
118 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 put_huge_zero_page();
120
121 return READ_ONCE(huge_zero_page);
122 }
123
124 void mm_put_huge_zero_page(struct mm_struct *mm)
125 {
126 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
127 put_huge_zero_page();
128 }
129
130 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
131 struct shrink_control *sc)
132 {
133 /* we can free zero page only if last reference remains */
134 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
135 }
136
137 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
138 struct shrink_control *sc)
139 {
140 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
141 struct page *zero_page = xchg(&huge_zero_page, NULL);
142 BUG_ON(zero_page == NULL);
143 __free_pages(zero_page, compound_order(zero_page));
144 return HPAGE_PMD_NR;
145 }
146
147 return 0;
148 }
149
150 static struct shrinker huge_zero_page_shrinker = {
151 .count_objects = shrink_huge_zero_page_count,
152 .scan_objects = shrink_huge_zero_page_scan,
153 .seeks = DEFAULT_SEEKS,
154 };
155
156 #ifdef CONFIG_SYSFS
157 static ssize_t enabled_show(struct kobject *kobj,
158 struct kobj_attribute *attr, char *buf)
159 {
160 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
161 return sprintf(buf, "[always] madvise never\n");
162 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
163 return sprintf(buf, "always [madvise] never\n");
164 else
165 return sprintf(buf, "always madvise [never]\n");
166 }
167
168 static ssize_t enabled_store(struct kobject *kobj,
169 struct kobj_attribute *attr,
170 const char *buf, size_t count)
171 {
172 ssize_t ret = count;
173
174 if (!memcmp("always", buf,
175 min(sizeof("always")-1, count))) {
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
178 } else if (!memcmp("madvise", buf,
179 min(sizeof("madvise")-1, count))) {
180 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
181 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 } else if (!memcmp("never", buf,
183 min(sizeof("never")-1, count))) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 } else
187 ret = -EINVAL;
188
189 if (ret > 0) {
190 int err = start_stop_khugepaged();
191 if (err)
192 ret = err;
193 }
194 return ret;
195 }
196 static struct kobj_attribute enabled_attr =
197 __ATTR(enabled, 0644, enabled_show, enabled_store);
198
199 ssize_t single_hugepage_flag_show(struct kobject *kobj,
200 struct kobj_attribute *attr, char *buf,
201 enum transparent_hugepage_flag flag)
202 {
203 return sprintf(buf, "%d\n",
204 !!test_bit(flag, &transparent_hugepage_flags));
205 }
206
207 ssize_t single_hugepage_flag_store(struct kobject *kobj,
208 struct kobj_attribute *attr,
209 const char *buf, size_t count,
210 enum transparent_hugepage_flag flag)
211 {
212 unsigned long value;
213 int ret;
214
215 ret = kstrtoul(buf, 10, &value);
216 if (ret < 0)
217 return ret;
218 if (value > 1)
219 return -EINVAL;
220
221 if (value)
222 set_bit(flag, &transparent_hugepage_flags);
223 else
224 clear_bit(flag, &transparent_hugepage_flags);
225
226 return count;
227 }
228
229 static ssize_t defrag_show(struct kobject *kobj,
230 struct kobj_attribute *attr, char *buf)
231 {
232 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
233 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
235 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
236 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
237 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
238 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
239 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
240 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
241 }
242
243 static ssize_t defrag_store(struct kobject *kobj,
244 struct kobj_attribute *attr,
245 const char *buf, size_t count)
246 {
247 if (!memcmp("always", buf,
248 min(sizeof("always")-1, count))) {
249 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
250 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
252 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 } else if (!memcmp("defer+madvise", buf,
254 min(sizeof("defer+madvise")-1, count))) {
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
259 } else if (!memcmp("defer", buf,
260 min(sizeof("defer")-1, count))) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 } else if (!memcmp("madvise", buf,
266 min(sizeof("madvise")-1, count))) {
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
270 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
271 } else if (!memcmp("never", buf,
272 min(sizeof("never")-1, count))) {
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 } else
278 return -EINVAL;
279
280 return count;
281 }
282 static struct kobj_attribute defrag_attr =
283 __ATTR(defrag, 0644, defrag_show, defrag_store);
284
285 static ssize_t use_zero_page_show(struct kobject *kobj,
286 struct kobj_attribute *attr, char *buf)
287 {
288 return single_hugepage_flag_show(kobj, attr, buf,
289 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
290 }
291 static ssize_t use_zero_page_store(struct kobject *kobj,
292 struct kobj_attribute *attr, const char *buf, size_t count)
293 {
294 return single_hugepage_flag_store(kobj, attr, buf, count,
295 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
296 }
297 static struct kobj_attribute use_zero_page_attr =
298 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
299
300 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302 {
303 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
304 }
305 static struct kobj_attribute hpage_pmd_size_attr =
306 __ATTR_RO(hpage_pmd_size);
307
308 #ifdef CONFIG_DEBUG_VM
309 static ssize_t debug_cow_show(struct kobject *kobj,
310 struct kobj_attribute *attr, char *buf)
311 {
312 return single_hugepage_flag_show(kobj, attr, buf,
313 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
314 }
315 static ssize_t debug_cow_store(struct kobject *kobj,
316 struct kobj_attribute *attr,
317 const char *buf, size_t count)
318 {
319 return single_hugepage_flag_store(kobj, attr, buf, count,
320 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
321 }
322 static struct kobj_attribute debug_cow_attr =
323 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
324 #endif /* CONFIG_DEBUG_VM */
325
326 static struct attribute *hugepage_attr[] = {
327 &enabled_attr.attr,
328 &defrag_attr.attr,
329 &use_zero_page_attr.attr,
330 &hpage_pmd_size_attr.attr,
331 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
332 &shmem_enabled_attr.attr,
333 #endif
334 #ifdef CONFIG_DEBUG_VM
335 &debug_cow_attr.attr,
336 #endif
337 NULL,
338 };
339
340 static const struct attribute_group hugepage_attr_group = {
341 .attrs = hugepage_attr,
342 };
343
344 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
345 {
346 int err;
347
348 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
349 if (unlikely(!*hugepage_kobj)) {
350 pr_err("failed to create transparent hugepage kobject\n");
351 return -ENOMEM;
352 }
353
354 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
355 if (err) {
356 pr_err("failed to register transparent hugepage group\n");
357 goto delete_obj;
358 }
359
360 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
361 if (err) {
362 pr_err("failed to register transparent hugepage group\n");
363 goto remove_hp_group;
364 }
365
366 return 0;
367
368 remove_hp_group:
369 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
370 delete_obj:
371 kobject_put(*hugepage_kobj);
372 return err;
373 }
374
375 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
376 {
377 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
378 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
379 kobject_put(hugepage_kobj);
380 }
381 #else
382 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
383 {
384 return 0;
385 }
386
387 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
388 {
389 }
390 #endif /* CONFIG_SYSFS */
391
392 static int __init hugepage_init(void)
393 {
394 int err;
395 struct kobject *hugepage_kobj;
396
397 if (!has_transparent_hugepage()) {
398 transparent_hugepage_flags = 0;
399 return -EINVAL;
400 }
401
402 /*
403 * hugepages can't be allocated by the buddy allocator
404 */
405 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
406 /*
407 * we use page->mapping and page->index in second tail page
408 * as list_head: assuming THP order >= 2
409 */
410 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
411
412 err = hugepage_init_sysfs(&hugepage_kobj);
413 if (err)
414 goto err_sysfs;
415
416 err = khugepaged_init();
417 if (err)
418 goto err_slab;
419
420 err = register_shrinker(&huge_zero_page_shrinker);
421 if (err)
422 goto err_hzp_shrinker;
423 err = register_shrinker(&deferred_split_shrinker);
424 if (err)
425 goto err_split_shrinker;
426
427 /*
428 * By default disable transparent hugepages on smaller systems,
429 * where the extra memory used could hurt more than TLB overhead
430 * is likely to save. The admin can still enable it through /sys.
431 */
432 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
433 transparent_hugepage_flags = 0;
434 return 0;
435 }
436
437 err = start_stop_khugepaged();
438 if (err)
439 goto err_khugepaged;
440
441 return 0;
442 err_khugepaged:
443 unregister_shrinker(&deferred_split_shrinker);
444 err_split_shrinker:
445 unregister_shrinker(&huge_zero_page_shrinker);
446 err_hzp_shrinker:
447 khugepaged_destroy();
448 err_slab:
449 hugepage_exit_sysfs(hugepage_kobj);
450 err_sysfs:
451 return err;
452 }
453 subsys_initcall(hugepage_init);
454
455 static int __init setup_transparent_hugepage(char *str)
456 {
457 int ret = 0;
458 if (!str)
459 goto out;
460 if (!strcmp(str, "always")) {
461 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
462 &transparent_hugepage_flags);
463 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
464 &transparent_hugepage_flags);
465 ret = 1;
466 } else if (!strcmp(str, "madvise")) {
467 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
468 &transparent_hugepage_flags);
469 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
470 &transparent_hugepage_flags);
471 ret = 1;
472 } else if (!strcmp(str, "never")) {
473 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 &transparent_hugepage_flags);
475 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 &transparent_hugepage_flags);
477 ret = 1;
478 }
479 out:
480 if (!ret)
481 pr_warn("transparent_hugepage= cannot parse, ignored\n");
482 return ret;
483 }
484 __setup("transparent_hugepage=", setup_transparent_hugepage);
485
486 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
487 {
488 if (likely(vma->vm_flags & VM_WRITE))
489 pmd = pmd_mkwrite(pmd);
490 return pmd;
491 }
492
493 static inline struct list_head *page_deferred_list(struct page *page)
494 {
495 /* ->lru in the tail pages is occupied by compound_head. */
496 return &page[2].deferred_list;
497 }
498
499 void prep_transhuge_page(struct page *page)
500 {
501 /*
502 * we use page->mapping and page->indexlru in second tail page
503 * as list_head: assuming THP order >= 2
504 */
505
506 INIT_LIST_HEAD(page_deferred_list(page));
507 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
508 }
509
510 static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
511 loff_t off, unsigned long flags, unsigned long size)
512 {
513 unsigned long addr;
514 loff_t off_end = off + len;
515 loff_t off_align = round_up(off, size);
516 unsigned long len_pad;
517
518 if (off_end <= off_align || (off_end - off_align) < size)
519 return 0;
520
521 len_pad = len + size;
522 if (len_pad < len || (off + len_pad) < off)
523 return 0;
524
525 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
526 off >> PAGE_SHIFT, flags);
527 if (IS_ERR_VALUE(addr))
528 return 0;
529
530 addr += (off - addr) & (size - 1);
531 return addr;
532 }
533
534 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
535 unsigned long len, unsigned long pgoff, unsigned long flags)
536 {
537 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
538
539 if (addr)
540 goto out;
541 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
542 goto out;
543
544 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
545 if (addr)
546 return addr;
547
548 out:
549 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
550 }
551 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
552
553 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
554 struct page *page, gfp_t gfp)
555 {
556 struct vm_area_struct *vma = vmf->vma;
557 struct mem_cgroup *memcg;
558 pgtable_t pgtable;
559 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
560 vm_fault_t ret = 0;
561
562 VM_BUG_ON_PAGE(!PageCompound(page), page);
563
564 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
565 put_page(page);
566 count_vm_event(THP_FAULT_FALLBACK);
567 return VM_FAULT_FALLBACK;
568 }
569
570 pgtable = pte_alloc_one(vma->vm_mm);
571 if (unlikely(!pgtable)) {
572 ret = VM_FAULT_OOM;
573 goto release;
574 }
575
576 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
577 /*
578 * The memory barrier inside __SetPageUptodate makes sure that
579 * clear_huge_page writes become visible before the set_pmd_at()
580 * write.
581 */
582 __SetPageUptodate(page);
583
584 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
585 if (unlikely(!pmd_none(*vmf->pmd))) {
586 goto unlock_release;
587 } else {
588 pmd_t entry;
589
590 ret = check_stable_address_space(vma->vm_mm);
591 if (ret)
592 goto unlock_release;
593
594 /* Deliver the page fault to userland */
595 if (userfaultfd_missing(vma)) {
596 vm_fault_t ret2;
597
598 spin_unlock(vmf->ptl);
599 mem_cgroup_cancel_charge(page, memcg, true);
600 put_page(page);
601 pte_free(vma->vm_mm, pgtable);
602 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
603 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
604 return ret2;
605 }
606
607 entry = mk_huge_pmd(page, vma->vm_page_prot);
608 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
609 page_add_new_anon_rmap(page, vma, haddr, true);
610 mem_cgroup_commit_charge(page, memcg, false, true);
611 lru_cache_add_active_or_unevictable(page, vma);
612 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
613 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
614 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
615 mm_inc_nr_ptes(vma->vm_mm);
616 spin_unlock(vmf->ptl);
617 count_vm_event(THP_FAULT_ALLOC);
618 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
619 }
620
621 return 0;
622 unlock_release:
623 spin_unlock(vmf->ptl);
624 release:
625 if (pgtable)
626 pte_free(vma->vm_mm, pgtable);
627 mem_cgroup_cancel_charge(page, memcg, true);
628 put_page(page);
629 return ret;
630
631 }
632
633 /*
634 * always: directly stall for all thp allocations
635 * defer: wake kswapd and fail if not immediately available
636 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
637 * fail if not immediately available
638 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
639 * available
640 * never: never stall for any thp allocation
641 */
642 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
643 {
644 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
645
646 /* Always do synchronous compaction */
647 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
648 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
649
650 /* Kick kcompactd and fail quickly */
651 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
652 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
653
654 /* Synchronous compaction if madvised, otherwise kick kcompactd */
655 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
656 return GFP_TRANSHUGE_LIGHT |
657 (vma_madvised ? __GFP_DIRECT_RECLAIM :
658 __GFP_KSWAPD_RECLAIM);
659
660 /* Only do synchronous compaction if madvised */
661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
662 return GFP_TRANSHUGE_LIGHT |
663 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
664
665 return GFP_TRANSHUGE_LIGHT;
666 }
667
668 /* Caller must hold page table lock. */
669 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
670 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
671 struct page *zero_page)
672 {
673 pmd_t entry;
674 if (!pmd_none(*pmd))
675 return false;
676 entry = mk_pmd(zero_page, vma->vm_page_prot);
677 entry = pmd_mkhuge(entry);
678 if (pgtable)
679 pgtable_trans_huge_deposit(mm, pmd, pgtable);
680 set_pmd_at(mm, haddr, pmd, entry);
681 mm_inc_nr_ptes(mm);
682 return true;
683 }
684
685 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
686 {
687 struct vm_area_struct *vma = vmf->vma;
688 gfp_t gfp;
689 struct page *page;
690 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
691
692 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
693 return VM_FAULT_FALLBACK;
694 if (unlikely(anon_vma_prepare(vma)))
695 return VM_FAULT_OOM;
696 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
697 return VM_FAULT_OOM;
698 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
699 !mm_forbids_zeropage(vma->vm_mm) &&
700 transparent_hugepage_use_zero_page()) {
701 pgtable_t pgtable;
702 struct page *zero_page;
703 bool set;
704 vm_fault_t ret;
705 pgtable = pte_alloc_one(vma->vm_mm);
706 if (unlikely(!pgtable))
707 return VM_FAULT_OOM;
708 zero_page = mm_get_huge_zero_page(vma->vm_mm);
709 if (unlikely(!zero_page)) {
710 pte_free(vma->vm_mm, pgtable);
711 count_vm_event(THP_FAULT_FALLBACK);
712 return VM_FAULT_FALLBACK;
713 }
714 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
715 ret = 0;
716 set = false;
717 if (pmd_none(*vmf->pmd)) {
718 ret = check_stable_address_space(vma->vm_mm);
719 if (ret) {
720 spin_unlock(vmf->ptl);
721 } else if (userfaultfd_missing(vma)) {
722 spin_unlock(vmf->ptl);
723 ret = handle_userfault(vmf, VM_UFFD_MISSING);
724 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
725 } else {
726 set_huge_zero_page(pgtable, vma->vm_mm, vma,
727 haddr, vmf->pmd, zero_page);
728 spin_unlock(vmf->ptl);
729 set = true;
730 }
731 } else
732 spin_unlock(vmf->ptl);
733 if (!set)
734 pte_free(vma->vm_mm, pgtable);
735 return ret;
736 }
737 gfp = alloc_hugepage_direct_gfpmask(vma);
738 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
739 if (unlikely(!page)) {
740 count_vm_event(THP_FAULT_FALLBACK);
741 return VM_FAULT_FALLBACK;
742 }
743 prep_transhuge_page(page);
744 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
745 }
746
747 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
748 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
749 pgtable_t pgtable)
750 {
751 struct mm_struct *mm = vma->vm_mm;
752 pmd_t entry;
753 spinlock_t *ptl;
754
755 ptl = pmd_lock(mm, pmd);
756 if (!pmd_none(*pmd)) {
757 if (write) {
758 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
759 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
760 goto out_unlock;
761 }
762 entry = pmd_mkyoung(*pmd);
763 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
764 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
765 update_mmu_cache_pmd(vma, addr, pmd);
766 }
767
768 goto out_unlock;
769 }
770
771 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
772 if (pfn_t_devmap(pfn))
773 entry = pmd_mkdevmap(entry);
774 if (write) {
775 entry = pmd_mkyoung(pmd_mkdirty(entry));
776 entry = maybe_pmd_mkwrite(entry, vma);
777 }
778
779 if (pgtable) {
780 pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 mm_inc_nr_ptes(mm);
782 pgtable = NULL;
783 }
784
785 set_pmd_at(mm, addr, pmd, entry);
786 update_mmu_cache_pmd(vma, addr, pmd);
787
788 out_unlock:
789 spin_unlock(ptl);
790 if (pgtable)
791 pte_free(mm, pgtable);
792 }
793
794 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
795 {
796 unsigned long addr = vmf->address & PMD_MASK;
797 struct vm_area_struct *vma = vmf->vma;
798 pgprot_t pgprot = vma->vm_page_prot;
799 pgtable_t pgtable = NULL;
800
801 /*
802 * If we had pmd_special, we could avoid all these restrictions,
803 * but we need to be consistent with PTEs and architectures that
804 * can't support a 'special' bit.
805 */
806 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
807 !pfn_t_devmap(pfn));
808 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
809 (VM_PFNMAP|VM_MIXEDMAP));
810 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
811
812 if (addr < vma->vm_start || addr >= vma->vm_end)
813 return VM_FAULT_SIGBUS;
814
815 if (arch_needs_pgtable_deposit()) {
816 pgtable = pte_alloc_one(vma->vm_mm);
817 if (!pgtable)
818 return VM_FAULT_OOM;
819 }
820
821 track_pfn_insert(vma, &pgprot, pfn);
822
823 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
824 return VM_FAULT_NOPAGE;
825 }
826 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
827
828 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
829 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
830 {
831 if (likely(vma->vm_flags & VM_WRITE))
832 pud = pud_mkwrite(pud);
833 return pud;
834 }
835
836 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
837 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
838 {
839 struct mm_struct *mm = vma->vm_mm;
840 pud_t entry;
841 spinlock_t *ptl;
842
843 ptl = pud_lock(mm, pud);
844 if (!pud_none(*pud)) {
845 if (write) {
846 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
847 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
848 goto out_unlock;
849 }
850 entry = pud_mkyoung(*pud);
851 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
852 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
853 update_mmu_cache_pud(vma, addr, pud);
854 }
855 goto out_unlock;
856 }
857
858 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
859 if (pfn_t_devmap(pfn))
860 entry = pud_mkdevmap(entry);
861 if (write) {
862 entry = pud_mkyoung(pud_mkdirty(entry));
863 entry = maybe_pud_mkwrite(entry, vma);
864 }
865 set_pud_at(mm, addr, pud, entry);
866 update_mmu_cache_pud(vma, addr, pud);
867
868 out_unlock:
869 spin_unlock(ptl);
870 }
871
872 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
873 {
874 unsigned long addr = vmf->address & PUD_MASK;
875 struct vm_area_struct *vma = vmf->vma;
876 pgprot_t pgprot = vma->vm_page_prot;
877
878 /*
879 * If we had pud_special, we could avoid all these restrictions,
880 * but we need to be consistent with PTEs and architectures that
881 * can't support a 'special' bit.
882 */
883 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
884 !pfn_t_devmap(pfn));
885 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
886 (VM_PFNMAP|VM_MIXEDMAP));
887 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
888
889 if (addr < vma->vm_start || addr >= vma->vm_end)
890 return VM_FAULT_SIGBUS;
891
892 track_pfn_insert(vma, &pgprot, pfn);
893
894 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
895 return VM_FAULT_NOPAGE;
896 }
897 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
898 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
899
900 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
901 pmd_t *pmd, int flags)
902 {
903 pmd_t _pmd;
904
905 _pmd = pmd_mkyoung(*pmd);
906 if (flags & FOLL_WRITE)
907 _pmd = pmd_mkdirty(_pmd);
908 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
909 pmd, _pmd, flags & FOLL_WRITE))
910 update_mmu_cache_pmd(vma, addr, pmd);
911 }
912
913 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
914 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
915 {
916 unsigned long pfn = pmd_pfn(*pmd);
917 struct mm_struct *mm = vma->vm_mm;
918 struct page *page;
919
920 assert_spin_locked(pmd_lockptr(mm, pmd));
921
922 /*
923 * When we COW a devmap PMD entry, we split it into PTEs, so we should
924 * not be in this function with `flags & FOLL_COW` set.
925 */
926 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
927
928 if (flags & FOLL_WRITE && !pmd_write(*pmd))
929 return NULL;
930
931 if (pmd_present(*pmd) && pmd_devmap(*pmd))
932 /* pass */;
933 else
934 return NULL;
935
936 if (flags & FOLL_TOUCH)
937 touch_pmd(vma, addr, pmd, flags);
938
939 /*
940 * device mapped pages can only be returned if the
941 * caller will manage the page reference count.
942 */
943 if (!(flags & FOLL_GET))
944 return ERR_PTR(-EEXIST);
945
946 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
947 *pgmap = get_dev_pagemap(pfn, *pgmap);
948 if (!*pgmap)
949 return ERR_PTR(-EFAULT);
950 page = pfn_to_page(pfn);
951 get_page(page);
952
953 return page;
954 }
955
956 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
957 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
958 struct vm_area_struct *vma)
959 {
960 spinlock_t *dst_ptl, *src_ptl;
961 struct page *src_page;
962 pmd_t pmd;
963 pgtable_t pgtable = NULL;
964 int ret = -ENOMEM;
965
966 /* Skip if can be re-fill on fault */
967 if (!vma_is_anonymous(vma))
968 return 0;
969
970 pgtable = pte_alloc_one(dst_mm);
971 if (unlikely(!pgtable))
972 goto out;
973
974 dst_ptl = pmd_lock(dst_mm, dst_pmd);
975 src_ptl = pmd_lockptr(src_mm, src_pmd);
976 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
977
978 ret = -EAGAIN;
979 pmd = *src_pmd;
980
981 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
982 if (unlikely(is_swap_pmd(pmd))) {
983 swp_entry_t entry = pmd_to_swp_entry(pmd);
984
985 VM_BUG_ON(!is_pmd_migration_entry(pmd));
986 if (is_write_migration_entry(entry)) {
987 make_migration_entry_read(&entry);
988 pmd = swp_entry_to_pmd(entry);
989 if (pmd_swp_soft_dirty(*src_pmd))
990 pmd = pmd_swp_mksoft_dirty(pmd);
991 set_pmd_at(src_mm, addr, src_pmd, pmd);
992 }
993 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
994 mm_inc_nr_ptes(dst_mm);
995 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
996 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
997 ret = 0;
998 goto out_unlock;
999 }
1000 #endif
1001
1002 if (unlikely(!pmd_trans_huge(pmd))) {
1003 pte_free(dst_mm, pgtable);
1004 goto out_unlock;
1005 }
1006 /*
1007 * When page table lock is held, the huge zero pmd should not be
1008 * under splitting since we don't split the page itself, only pmd to
1009 * a page table.
1010 */
1011 if (is_huge_zero_pmd(pmd)) {
1012 struct page *zero_page;
1013 /*
1014 * get_huge_zero_page() will never allocate a new page here,
1015 * since we already have a zero page to copy. It just takes a
1016 * reference.
1017 */
1018 zero_page = mm_get_huge_zero_page(dst_mm);
1019 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1020 zero_page);
1021 ret = 0;
1022 goto out_unlock;
1023 }
1024
1025 src_page = pmd_page(pmd);
1026 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1027 get_page(src_page);
1028 page_dup_rmap(src_page, true);
1029 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1030 mm_inc_nr_ptes(dst_mm);
1031 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1032
1033 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1034 pmd = pmd_mkold(pmd_wrprotect(pmd));
1035 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1036
1037 ret = 0;
1038 out_unlock:
1039 spin_unlock(src_ptl);
1040 spin_unlock(dst_ptl);
1041 out:
1042 return ret;
1043 }
1044
1045 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1046 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1047 pud_t *pud, int flags)
1048 {
1049 pud_t _pud;
1050
1051 _pud = pud_mkyoung(*pud);
1052 if (flags & FOLL_WRITE)
1053 _pud = pud_mkdirty(_pud);
1054 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1055 pud, _pud, flags & FOLL_WRITE))
1056 update_mmu_cache_pud(vma, addr, pud);
1057 }
1058
1059 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1060 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1061 {
1062 unsigned long pfn = pud_pfn(*pud);
1063 struct mm_struct *mm = vma->vm_mm;
1064 struct page *page;
1065
1066 assert_spin_locked(pud_lockptr(mm, pud));
1067
1068 if (flags & FOLL_WRITE && !pud_write(*pud))
1069 return NULL;
1070
1071 if (pud_present(*pud) && pud_devmap(*pud))
1072 /* pass */;
1073 else
1074 return NULL;
1075
1076 if (flags & FOLL_TOUCH)
1077 touch_pud(vma, addr, pud, flags);
1078
1079 /*
1080 * device mapped pages can only be returned if the
1081 * caller will manage the page reference count.
1082 */
1083 if (!(flags & FOLL_GET))
1084 return ERR_PTR(-EEXIST);
1085
1086 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1087 *pgmap = get_dev_pagemap(pfn, *pgmap);
1088 if (!*pgmap)
1089 return ERR_PTR(-EFAULT);
1090 page = pfn_to_page(pfn);
1091 get_page(page);
1092
1093 return page;
1094 }
1095
1096 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1097 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1098 struct vm_area_struct *vma)
1099 {
1100 spinlock_t *dst_ptl, *src_ptl;
1101 pud_t pud;
1102 int ret;
1103
1104 dst_ptl = pud_lock(dst_mm, dst_pud);
1105 src_ptl = pud_lockptr(src_mm, src_pud);
1106 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1107
1108 ret = -EAGAIN;
1109 pud = *src_pud;
1110 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1111 goto out_unlock;
1112
1113 /*
1114 * When page table lock is held, the huge zero pud should not be
1115 * under splitting since we don't split the page itself, only pud to
1116 * a page table.
1117 */
1118 if (is_huge_zero_pud(pud)) {
1119 /* No huge zero pud yet */
1120 }
1121
1122 pudp_set_wrprotect(src_mm, addr, src_pud);
1123 pud = pud_mkold(pud_wrprotect(pud));
1124 set_pud_at(dst_mm, addr, dst_pud, pud);
1125
1126 ret = 0;
1127 out_unlock:
1128 spin_unlock(src_ptl);
1129 spin_unlock(dst_ptl);
1130 return ret;
1131 }
1132
1133 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1134 {
1135 pud_t entry;
1136 unsigned long haddr;
1137 bool write = vmf->flags & FAULT_FLAG_WRITE;
1138
1139 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1140 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1141 goto unlock;
1142
1143 entry = pud_mkyoung(orig_pud);
1144 if (write)
1145 entry = pud_mkdirty(entry);
1146 haddr = vmf->address & HPAGE_PUD_MASK;
1147 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1148 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1149
1150 unlock:
1151 spin_unlock(vmf->ptl);
1152 }
1153 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1154
1155 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1156 {
1157 pmd_t entry;
1158 unsigned long haddr;
1159 bool write = vmf->flags & FAULT_FLAG_WRITE;
1160
1161 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1162 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1163 goto unlock;
1164
1165 entry = pmd_mkyoung(orig_pmd);
1166 if (write)
1167 entry = pmd_mkdirty(entry);
1168 haddr = vmf->address & HPAGE_PMD_MASK;
1169 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1170 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1171
1172 unlock:
1173 spin_unlock(vmf->ptl);
1174 }
1175
1176 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1177 pmd_t orig_pmd, struct page *page)
1178 {
1179 struct vm_area_struct *vma = vmf->vma;
1180 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1181 struct mem_cgroup *memcg;
1182 pgtable_t pgtable;
1183 pmd_t _pmd;
1184 int i;
1185 vm_fault_t ret = 0;
1186 struct page **pages;
1187 struct mmu_notifier_range range;
1188
1189 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1190 GFP_KERNEL);
1191 if (unlikely(!pages)) {
1192 ret |= VM_FAULT_OOM;
1193 goto out;
1194 }
1195
1196 for (i = 0; i < HPAGE_PMD_NR; i++) {
1197 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1198 vmf->address, page_to_nid(page));
1199 if (unlikely(!pages[i] ||
1200 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1201 GFP_KERNEL, &memcg, false))) {
1202 if (pages[i])
1203 put_page(pages[i]);
1204 while (--i >= 0) {
1205 memcg = (void *)page_private(pages[i]);
1206 set_page_private(pages[i], 0);
1207 mem_cgroup_cancel_charge(pages[i], memcg,
1208 false);
1209 put_page(pages[i]);
1210 }
1211 kfree(pages);
1212 ret |= VM_FAULT_OOM;
1213 goto out;
1214 }
1215 set_page_private(pages[i], (unsigned long)memcg);
1216 }
1217
1218 for (i = 0; i < HPAGE_PMD_NR; i++) {
1219 copy_user_highpage(pages[i], page + i,
1220 haddr + PAGE_SIZE * i, vma);
1221 __SetPageUptodate(pages[i]);
1222 cond_resched();
1223 }
1224
1225 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1226 haddr, haddr + HPAGE_PMD_SIZE);
1227 mmu_notifier_invalidate_range_start(&range);
1228
1229 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1230 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1231 goto out_free_pages;
1232 VM_BUG_ON_PAGE(!PageHead(page), page);
1233
1234 /*
1235 * Leave pmd empty until pte is filled note we must notify here as
1236 * concurrent CPU thread might write to new page before the call to
1237 * mmu_notifier_invalidate_range_end() happens which can lead to a
1238 * device seeing memory write in different order than CPU.
1239 *
1240 * See Documentation/vm/mmu_notifier.rst
1241 */
1242 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1243
1244 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1245 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1246
1247 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1248 pte_t entry;
1249 entry = mk_pte(pages[i], vma->vm_page_prot);
1250 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1251 memcg = (void *)page_private(pages[i]);
1252 set_page_private(pages[i], 0);
1253 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1254 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1255 lru_cache_add_active_or_unevictable(pages[i], vma);
1256 vmf->pte = pte_offset_map(&_pmd, haddr);
1257 VM_BUG_ON(!pte_none(*vmf->pte));
1258 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1259 pte_unmap(vmf->pte);
1260 }
1261 kfree(pages);
1262
1263 smp_wmb(); /* make pte visible before pmd */
1264 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1265 page_remove_rmap(page, true);
1266 spin_unlock(vmf->ptl);
1267
1268 /*
1269 * No need to double call mmu_notifier->invalidate_range() callback as
1270 * the above pmdp_huge_clear_flush_notify() did already call it.
1271 */
1272 mmu_notifier_invalidate_range_only_end(&range);
1273
1274 ret |= VM_FAULT_WRITE;
1275 put_page(page);
1276
1277 out:
1278 return ret;
1279
1280 out_free_pages:
1281 spin_unlock(vmf->ptl);
1282 mmu_notifier_invalidate_range_end(&range);
1283 for (i = 0; i < HPAGE_PMD_NR; i++) {
1284 memcg = (void *)page_private(pages[i]);
1285 set_page_private(pages[i], 0);
1286 mem_cgroup_cancel_charge(pages[i], memcg, false);
1287 put_page(pages[i]);
1288 }
1289 kfree(pages);
1290 goto out;
1291 }
1292
1293 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1294 {
1295 struct vm_area_struct *vma = vmf->vma;
1296 struct page *page = NULL, *new_page;
1297 struct mem_cgroup *memcg;
1298 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1299 struct mmu_notifier_range range;
1300 gfp_t huge_gfp; /* for allocation and charge */
1301 vm_fault_t ret = 0;
1302
1303 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1304 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1305 if (is_huge_zero_pmd(orig_pmd))
1306 goto alloc;
1307 spin_lock(vmf->ptl);
1308 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1309 goto out_unlock;
1310
1311 page = pmd_page(orig_pmd);
1312 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1313 /*
1314 * We can only reuse the page if nobody else maps the huge page or it's
1315 * part.
1316 */
1317 if (!trylock_page(page)) {
1318 get_page(page);
1319 spin_unlock(vmf->ptl);
1320 lock_page(page);
1321 spin_lock(vmf->ptl);
1322 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1323 unlock_page(page);
1324 put_page(page);
1325 goto out_unlock;
1326 }
1327 put_page(page);
1328 }
1329 if (reuse_swap_page(page, NULL)) {
1330 pmd_t entry;
1331 entry = pmd_mkyoung(orig_pmd);
1332 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1333 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1334 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1335 ret |= VM_FAULT_WRITE;
1336 unlock_page(page);
1337 goto out_unlock;
1338 }
1339 unlock_page(page);
1340 get_page(page);
1341 spin_unlock(vmf->ptl);
1342 alloc:
1343 if (__transparent_hugepage_enabled(vma) &&
1344 !transparent_hugepage_debug_cow()) {
1345 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1346 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1347 } else
1348 new_page = NULL;
1349
1350 if (likely(new_page)) {
1351 prep_transhuge_page(new_page);
1352 } else {
1353 if (!page) {
1354 split_huge_pmd(vma, vmf->pmd, vmf->address);
1355 ret |= VM_FAULT_FALLBACK;
1356 } else {
1357 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1358 if (ret & VM_FAULT_OOM) {
1359 split_huge_pmd(vma, vmf->pmd, vmf->address);
1360 ret |= VM_FAULT_FALLBACK;
1361 }
1362 put_page(page);
1363 }
1364 count_vm_event(THP_FAULT_FALLBACK);
1365 goto out;
1366 }
1367
1368 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1369 huge_gfp, &memcg, true))) {
1370 put_page(new_page);
1371 split_huge_pmd(vma, vmf->pmd, vmf->address);
1372 if (page)
1373 put_page(page);
1374 ret |= VM_FAULT_FALLBACK;
1375 count_vm_event(THP_FAULT_FALLBACK);
1376 goto out;
1377 }
1378
1379 count_vm_event(THP_FAULT_ALLOC);
1380 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1381
1382 if (!page)
1383 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1384 else
1385 copy_user_huge_page(new_page, page, vmf->address,
1386 vma, HPAGE_PMD_NR);
1387 __SetPageUptodate(new_page);
1388
1389 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390 haddr, haddr + HPAGE_PMD_SIZE);
1391 mmu_notifier_invalidate_range_start(&range);
1392
1393 spin_lock(vmf->ptl);
1394 if (page)
1395 put_page(page);
1396 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1397 spin_unlock(vmf->ptl);
1398 mem_cgroup_cancel_charge(new_page, memcg, true);
1399 put_page(new_page);
1400 goto out_mn;
1401 } else {
1402 pmd_t entry;
1403 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1404 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1405 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1406 page_add_new_anon_rmap(new_page, vma, haddr, true);
1407 mem_cgroup_commit_charge(new_page, memcg, false, true);
1408 lru_cache_add_active_or_unevictable(new_page, vma);
1409 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1410 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1411 if (!page) {
1412 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1413 } else {
1414 VM_BUG_ON_PAGE(!PageHead(page), page);
1415 page_remove_rmap(page, true);
1416 put_page(page);
1417 }
1418 ret |= VM_FAULT_WRITE;
1419 }
1420 spin_unlock(vmf->ptl);
1421 out_mn:
1422 /*
1423 * No need to double call mmu_notifier->invalidate_range() callback as
1424 * the above pmdp_huge_clear_flush_notify() did already call it.
1425 */
1426 mmu_notifier_invalidate_range_only_end(&range);
1427 out:
1428 return ret;
1429 out_unlock:
1430 spin_unlock(vmf->ptl);
1431 return ret;
1432 }
1433
1434 /*
1435 * FOLL_FORCE can write to even unwritable pmd's, but only
1436 * after we've gone through a COW cycle and they are dirty.
1437 */
1438 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1439 {
1440 return pmd_write(pmd) ||
1441 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1442 }
1443
1444 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1445 unsigned long addr,
1446 pmd_t *pmd,
1447 unsigned int flags)
1448 {
1449 struct mm_struct *mm = vma->vm_mm;
1450 struct page *page = NULL;
1451
1452 assert_spin_locked(pmd_lockptr(mm, pmd));
1453
1454 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1455 goto out;
1456
1457 /* Avoid dumping huge zero page */
1458 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1459 return ERR_PTR(-EFAULT);
1460
1461 /* Full NUMA hinting faults to serialise migration in fault paths */
1462 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1463 goto out;
1464
1465 page = pmd_page(*pmd);
1466 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1467 if (flags & FOLL_TOUCH)
1468 touch_pmd(vma, addr, pmd, flags);
1469 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1470 /*
1471 * We don't mlock() pte-mapped THPs. This way we can avoid
1472 * leaking mlocked pages into non-VM_LOCKED VMAs.
1473 *
1474 * For anon THP:
1475 *
1476 * In most cases the pmd is the only mapping of the page as we
1477 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1478 * writable private mappings in populate_vma_page_range().
1479 *
1480 * The only scenario when we have the page shared here is if we
1481 * mlocking read-only mapping shared over fork(). We skip
1482 * mlocking such pages.
1483 *
1484 * For file THP:
1485 *
1486 * We can expect PageDoubleMap() to be stable under page lock:
1487 * for file pages we set it in page_add_file_rmap(), which
1488 * requires page to be locked.
1489 */
1490
1491 if (PageAnon(page) && compound_mapcount(page) != 1)
1492 goto skip_mlock;
1493 if (PageDoubleMap(page) || !page->mapping)
1494 goto skip_mlock;
1495 if (!trylock_page(page))
1496 goto skip_mlock;
1497 lru_add_drain();
1498 if (page->mapping && !PageDoubleMap(page))
1499 mlock_vma_page(page);
1500 unlock_page(page);
1501 }
1502 skip_mlock:
1503 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1504 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1505 if (flags & FOLL_GET)
1506 get_page(page);
1507
1508 out:
1509 return page;
1510 }
1511
1512 /* NUMA hinting page fault entry point for trans huge pmds */
1513 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1514 {
1515 struct vm_area_struct *vma = vmf->vma;
1516 struct anon_vma *anon_vma = NULL;
1517 struct page *page;
1518 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1519 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1520 int target_nid, last_cpupid = -1;
1521 bool page_locked;
1522 bool migrated = false;
1523 bool was_writable;
1524 int flags = 0;
1525
1526 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1527 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1528 goto out_unlock;
1529
1530 /*
1531 * If there are potential migrations, wait for completion and retry
1532 * without disrupting NUMA hinting information. Do not relock and
1533 * check_same as the page may no longer be mapped.
1534 */
1535 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1536 page = pmd_page(*vmf->pmd);
1537 if (!get_page_unless_zero(page))
1538 goto out_unlock;
1539 spin_unlock(vmf->ptl);
1540 put_and_wait_on_page_locked(page);
1541 goto out;
1542 }
1543
1544 page = pmd_page(pmd);
1545 BUG_ON(is_huge_zero_page(page));
1546 page_nid = page_to_nid(page);
1547 last_cpupid = page_cpupid_last(page);
1548 count_vm_numa_event(NUMA_HINT_FAULTS);
1549 if (page_nid == this_nid) {
1550 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1551 flags |= TNF_FAULT_LOCAL;
1552 }
1553
1554 /* See similar comment in do_numa_page for explanation */
1555 if (!pmd_savedwrite(pmd))
1556 flags |= TNF_NO_GROUP;
1557
1558 /*
1559 * Acquire the page lock to serialise THP migrations but avoid dropping
1560 * page_table_lock if at all possible
1561 */
1562 page_locked = trylock_page(page);
1563 target_nid = mpol_misplaced(page, vma, haddr);
1564 if (target_nid == NUMA_NO_NODE) {
1565 /* If the page was locked, there are no parallel migrations */
1566 if (page_locked)
1567 goto clear_pmdnuma;
1568 }
1569
1570 /* Migration could have started since the pmd_trans_migrating check */
1571 if (!page_locked) {
1572 page_nid = NUMA_NO_NODE;
1573 if (!get_page_unless_zero(page))
1574 goto out_unlock;
1575 spin_unlock(vmf->ptl);
1576 put_and_wait_on_page_locked(page);
1577 goto out;
1578 }
1579
1580 /*
1581 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1582 * to serialises splits
1583 */
1584 get_page(page);
1585 spin_unlock(vmf->ptl);
1586 anon_vma = page_lock_anon_vma_read(page);
1587
1588 /* Confirm the PMD did not change while page_table_lock was released */
1589 spin_lock(vmf->ptl);
1590 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1591 unlock_page(page);
1592 put_page(page);
1593 page_nid = NUMA_NO_NODE;
1594 goto out_unlock;
1595 }
1596
1597 /* Bail if we fail to protect against THP splits for any reason */
1598 if (unlikely(!anon_vma)) {
1599 put_page(page);
1600 page_nid = NUMA_NO_NODE;
1601 goto clear_pmdnuma;
1602 }
1603
1604 /*
1605 * Since we took the NUMA fault, we must have observed the !accessible
1606 * bit. Make sure all other CPUs agree with that, to avoid them
1607 * modifying the page we're about to migrate.
1608 *
1609 * Must be done under PTL such that we'll observe the relevant
1610 * inc_tlb_flush_pending().
1611 *
1612 * We are not sure a pending tlb flush here is for a huge page
1613 * mapping or not. Hence use the tlb range variant
1614 */
1615 if (mm_tlb_flush_pending(vma->vm_mm)) {
1616 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1617 /*
1618 * change_huge_pmd() released the pmd lock before
1619 * invalidating the secondary MMUs sharing the primary
1620 * MMU pagetables (with ->invalidate_range()). The
1621 * mmu_notifier_invalidate_range_end() (which
1622 * internally calls ->invalidate_range()) in
1623 * change_pmd_range() will run after us, so we can't
1624 * rely on it here and we need an explicit invalidate.
1625 */
1626 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1627 haddr + HPAGE_PMD_SIZE);
1628 }
1629
1630 /*
1631 * Migrate the THP to the requested node, returns with page unlocked
1632 * and access rights restored.
1633 */
1634 spin_unlock(vmf->ptl);
1635
1636 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1637 vmf->pmd, pmd, vmf->address, page, target_nid);
1638 if (migrated) {
1639 flags |= TNF_MIGRATED;
1640 page_nid = target_nid;
1641 } else
1642 flags |= TNF_MIGRATE_FAIL;
1643
1644 goto out;
1645 clear_pmdnuma:
1646 BUG_ON(!PageLocked(page));
1647 was_writable = pmd_savedwrite(pmd);
1648 pmd = pmd_modify(pmd, vma->vm_page_prot);
1649 pmd = pmd_mkyoung(pmd);
1650 if (was_writable)
1651 pmd = pmd_mkwrite(pmd);
1652 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1653 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1654 unlock_page(page);
1655 out_unlock:
1656 spin_unlock(vmf->ptl);
1657
1658 out:
1659 if (anon_vma)
1660 page_unlock_anon_vma_read(anon_vma);
1661
1662 if (page_nid != NUMA_NO_NODE)
1663 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1664 flags);
1665
1666 return 0;
1667 }
1668
1669 /*
1670 * Return true if we do MADV_FREE successfully on entire pmd page.
1671 * Otherwise, return false.
1672 */
1673 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1674 pmd_t *pmd, unsigned long addr, unsigned long next)
1675 {
1676 spinlock_t *ptl;
1677 pmd_t orig_pmd;
1678 struct page *page;
1679 struct mm_struct *mm = tlb->mm;
1680 bool ret = false;
1681
1682 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1683
1684 ptl = pmd_trans_huge_lock(pmd, vma);
1685 if (!ptl)
1686 goto out_unlocked;
1687
1688 orig_pmd = *pmd;
1689 if (is_huge_zero_pmd(orig_pmd))
1690 goto out;
1691
1692 if (unlikely(!pmd_present(orig_pmd))) {
1693 VM_BUG_ON(thp_migration_supported() &&
1694 !is_pmd_migration_entry(orig_pmd));
1695 goto out;
1696 }
1697
1698 page = pmd_page(orig_pmd);
1699 /*
1700 * If other processes are mapping this page, we couldn't discard
1701 * the page unless they all do MADV_FREE so let's skip the page.
1702 */
1703 if (page_mapcount(page) != 1)
1704 goto out;
1705
1706 if (!trylock_page(page))
1707 goto out;
1708
1709 /*
1710 * If user want to discard part-pages of THP, split it so MADV_FREE
1711 * will deactivate only them.
1712 */
1713 if (next - addr != HPAGE_PMD_SIZE) {
1714 get_page(page);
1715 spin_unlock(ptl);
1716 split_huge_page(page);
1717 unlock_page(page);
1718 put_page(page);
1719 goto out_unlocked;
1720 }
1721
1722 if (PageDirty(page))
1723 ClearPageDirty(page);
1724 unlock_page(page);
1725
1726 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1727 pmdp_invalidate(vma, addr, pmd);
1728 orig_pmd = pmd_mkold(orig_pmd);
1729 orig_pmd = pmd_mkclean(orig_pmd);
1730
1731 set_pmd_at(mm, addr, pmd, orig_pmd);
1732 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1733 }
1734
1735 mark_page_lazyfree(page);
1736 ret = true;
1737 out:
1738 spin_unlock(ptl);
1739 out_unlocked:
1740 return ret;
1741 }
1742
1743 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1744 {
1745 pgtable_t pgtable;
1746
1747 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1748 pte_free(mm, pgtable);
1749 mm_dec_nr_ptes(mm);
1750 }
1751
1752 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1753 pmd_t *pmd, unsigned long addr)
1754 {
1755 pmd_t orig_pmd;
1756 spinlock_t *ptl;
1757
1758 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1759
1760 ptl = __pmd_trans_huge_lock(pmd, vma);
1761 if (!ptl)
1762 return 0;
1763 /*
1764 * For architectures like ppc64 we look at deposited pgtable
1765 * when calling pmdp_huge_get_and_clear. So do the
1766 * pgtable_trans_huge_withdraw after finishing pmdp related
1767 * operations.
1768 */
1769 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1770 tlb->fullmm);
1771 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1772 if (vma_is_dax(vma)) {
1773 if (arch_needs_pgtable_deposit())
1774 zap_deposited_table(tlb->mm, pmd);
1775 spin_unlock(ptl);
1776 if (is_huge_zero_pmd(orig_pmd))
1777 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1778 } else if (is_huge_zero_pmd(orig_pmd)) {
1779 zap_deposited_table(tlb->mm, pmd);
1780 spin_unlock(ptl);
1781 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1782 } else {
1783 struct page *page = NULL;
1784 int flush_needed = 1;
1785
1786 if (pmd_present(orig_pmd)) {
1787 page = pmd_page(orig_pmd);
1788 page_remove_rmap(page, true);
1789 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1790 VM_BUG_ON_PAGE(!PageHead(page), page);
1791 } else if (thp_migration_supported()) {
1792 swp_entry_t entry;
1793
1794 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1795 entry = pmd_to_swp_entry(orig_pmd);
1796 page = pfn_to_page(swp_offset(entry));
1797 flush_needed = 0;
1798 } else
1799 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1800
1801 if (PageAnon(page)) {
1802 zap_deposited_table(tlb->mm, pmd);
1803 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1804 } else {
1805 if (arch_needs_pgtable_deposit())
1806 zap_deposited_table(tlb->mm, pmd);
1807 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1808 }
1809
1810 spin_unlock(ptl);
1811 if (flush_needed)
1812 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1813 }
1814 return 1;
1815 }
1816
1817 #ifndef pmd_move_must_withdraw
1818 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1819 spinlock_t *old_pmd_ptl,
1820 struct vm_area_struct *vma)
1821 {
1822 /*
1823 * With split pmd lock we also need to move preallocated
1824 * PTE page table if new_pmd is on different PMD page table.
1825 *
1826 * We also don't deposit and withdraw tables for file pages.
1827 */
1828 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1829 }
1830 #endif
1831
1832 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1833 {
1834 #ifdef CONFIG_MEM_SOFT_DIRTY
1835 if (unlikely(is_pmd_migration_entry(pmd)))
1836 pmd = pmd_swp_mksoft_dirty(pmd);
1837 else if (pmd_present(pmd))
1838 pmd = pmd_mksoft_dirty(pmd);
1839 #endif
1840 return pmd;
1841 }
1842
1843 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1844 unsigned long new_addr, unsigned long old_end,
1845 pmd_t *old_pmd, pmd_t *new_pmd)
1846 {
1847 spinlock_t *old_ptl, *new_ptl;
1848 pmd_t pmd;
1849 struct mm_struct *mm = vma->vm_mm;
1850 bool force_flush = false;
1851
1852 if ((old_addr & ~HPAGE_PMD_MASK) ||
1853 (new_addr & ~HPAGE_PMD_MASK) ||
1854 old_end - old_addr < HPAGE_PMD_SIZE)
1855 return false;
1856
1857 /*
1858 * The destination pmd shouldn't be established, free_pgtables()
1859 * should have release it.
1860 */
1861 if (WARN_ON(!pmd_none(*new_pmd))) {
1862 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1863 return false;
1864 }
1865
1866 /*
1867 * We don't have to worry about the ordering of src and dst
1868 * ptlocks because exclusive mmap_sem prevents deadlock.
1869 */
1870 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1871 if (old_ptl) {
1872 new_ptl = pmd_lockptr(mm, new_pmd);
1873 if (new_ptl != old_ptl)
1874 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1875 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1876 if (pmd_present(pmd))
1877 force_flush = true;
1878 VM_BUG_ON(!pmd_none(*new_pmd));
1879
1880 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1881 pgtable_t pgtable;
1882 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1883 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1884 }
1885 pmd = move_soft_dirty_pmd(pmd);
1886 set_pmd_at(mm, new_addr, new_pmd, pmd);
1887 if (force_flush)
1888 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1889 if (new_ptl != old_ptl)
1890 spin_unlock(new_ptl);
1891 spin_unlock(old_ptl);
1892 return true;
1893 }
1894 return false;
1895 }
1896
1897 /*
1898 * Returns
1899 * - 0 if PMD could not be locked
1900 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1901 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1902 */
1903 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1904 unsigned long addr, pgprot_t newprot, int prot_numa)
1905 {
1906 struct mm_struct *mm = vma->vm_mm;
1907 spinlock_t *ptl;
1908 pmd_t entry;
1909 bool preserve_write;
1910 int ret;
1911
1912 ptl = __pmd_trans_huge_lock(pmd, vma);
1913 if (!ptl)
1914 return 0;
1915
1916 preserve_write = prot_numa && pmd_write(*pmd);
1917 ret = 1;
1918
1919 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1920 if (is_swap_pmd(*pmd)) {
1921 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1922
1923 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1924 if (is_write_migration_entry(entry)) {
1925 pmd_t newpmd;
1926 /*
1927 * A protection check is difficult so
1928 * just be safe and disable write
1929 */
1930 make_migration_entry_read(&entry);
1931 newpmd = swp_entry_to_pmd(entry);
1932 if (pmd_swp_soft_dirty(*pmd))
1933 newpmd = pmd_swp_mksoft_dirty(newpmd);
1934 set_pmd_at(mm, addr, pmd, newpmd);
1935 }
1936 goto unlock;
1937 }
1938 #endif
1939
1940 /*
1941 * Avoid trapping faults against the zero page. The read-only
1942 * data is likely to be read-cached on the local CPU and
1943 * local/remote hits to the zero page are not interesting.
1944 */
1945 if (prot_numa && is_huge_zero_pmd(*pmd))
1946 goto unlock;
1947
1948 if (prot_numa && pmd_protnone(*pmd))
1949 goto unlock;
1950
1951 /*
1952 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1953 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1954 * which is also under down_read(mmap_sem):
1955 *
1956 * CPU0: CPU1:
1957 * change_huge_pmd(prot_numa=1)
1958 * pmdp_huge_get_and_clear_notify()
1959 * madvise_dontneed()
1960 * zap_pmd_range()
1961 * pmd_trans_huge(*pmd) == 0 (without ptl)
1962 * // skip the pmd
1963 * set_pmd_at();
1964 * // pmd is re-established
1965 *
1966 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1967 * which may break userspace.
1968 *
1969 * pmdp_invalidate() is required to make sure we don't miss
1970 * dirty/young flags set by hardware.
1971 */
1972 entry = pmdp_invalidate(vma, addr, pmd);
1973
1974 entry = pmd_modify(entry, newprot);
1975 if (preserve_write)
1976 entry = pmd_mk_savedwrite(entry);
1977 ret = HPAGE_PMD_NR;
1978 set_pmd_at(mm, addr, pmd, entry);
1979 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1980 unlock:
1981 spin_unlock(ptl);
1982 return ret;
1983 }
1984
1985 /*
1986 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1987 *
1988 * Note that if it returns page table lock pointer, this routine returns without
1989 * unlocking page table lock. So callers must unlock it.
1990 */
1991 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1992 {
1993 spinlock_t *ptl;
1994 ptl = pmd_lock(vma->vm_mm, pmd);
1995 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1996 pmd_devmap(*pmd)))
1997 return ptl;
1998 spin_unlock(ptl);
1999 return NULL;
2000 }
2001
2002 /*
2003 * Returns true if a given pud maps a thp, false otherwise.
2004 *
2005 * Note that if it returns true, this routine returns without unlocking page
2006 * table lock. So callers must unlock it.
2007 */
2008 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2009 {
2010 spinlock_t *ptl;
2011
2012 ptl = pud_lock(vma->vm_mm, pud);
2013 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2014 return ptl;
2015 spin_unlock(ptl);
2016 return NULL;
2017 }
2018
2019 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2020 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2021 pud_t *pud, unsigned long addr)
2022 {
2023 spinlock_t *ptl;
2024
2025 ptl = __pud_trans_huge_lock(pud, vma);
2026 if (!ptl)
2027 return 0;
2028 /*
2029 * For architectures like ppc64 we look at deposited pgtable
2030 * when calling pudp_huge_get_and_clear. So do the
2031 * pgtable_trans_huge_withdraw after finishing pudp related
2032 * operations.
2033 */
2034 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2035 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2036 if (vma_is_dax(vma)) {
2037 spin_unlock(ptl);
2038 /* No zero page support yet */
2039 } else {
2040 /* No support for anonymous PUD pages yet */
2041 BUG();
2042 }
2043 return 1;
2044 }
2045
2046 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2047 unsigned long haddr)
2048 {
2049 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2050 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2051 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2052 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2053
2054 count_vm_event(THP_SPLIT_PUD);
2055
2056 pudp_huge_clear_flush_notify(vma, haddr, pud);
2057 }
2058
2059 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2060 unsigned long address)
2061 {
2062 spinlock_t *ptl;
2063 struct mmu_notifier_range range;
2064
2065 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2066 address & HPAGE_PUD_MASK,
2067 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2068 mmu_notifier_invalidate_range_start(&range);
2069 ptl = pud_lock(vma->vm_mm, pud);
2070 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2071 goto out;
2072 __split_huge_pud_locked(vma, pud, range.start);
2073
2074 out:
2075 spin_unlock(ptl);
2076 /*
2077 * No need to double call mmu_notifier->invalidate_range() callback as
2078 * the above pudp_huge_clear_flush_notify() did already call it.
2079 */
2080 mmu_notifier_invalidate_range_only_end(&range);
2081 }
2082 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2083
2084 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2085 unsigned long haddr, pmd_t *pmd)
2086 {
2087 struct mm_struct *mm = vma->vm_mm;
2088 pgtable_t pgtable;
2089 pmd_t _pmd;
2090 int i;
2091
2092 /*
2093 * Leave pmd empty until pte is filled note that it is fine to delay
2094 * notification until mmu_notifier_invalidate_range_end() as we are
2095 * replacing a zero pmd write protected page with a zero pte write
2096 * protected page.
2097 *
2098 * See Documentation/vm/mmu_notifier.rst
2099 */
2100 pmdp_huge_clear_flush(vma, haddr, pmd);
2101
2102 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2103 pmd_populate(mm, &_pmd, pgtable);
2104
2105 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2106 pte_t *pte, entry;
2107 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2108 entry = pte_mkspecial(entry);
2109 pte = pte_offset_map(&_pmd, haddr);
2110 VM_BUG_ON(!pte_none(*pte));
2111 set_pte_at(mm, haddr, pte, entry);
2112 pte_unmap(pte);
2113 }
2114 smp_wmb(); /* make pte visible before pmd */
2115 pmd_populate(mm, pmd, pgtable);
2116 }
2117
2118 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2119 unsigned long haddr, bool freeze)
2120 {
2121 struct mm_struct *mm = vma->vm_mm;
2122 struct page *page;
2123 pgtable_t pgtable;
2124 pmd_t old_pmd, _pmd;
2125 bool young, write, soft_dirty, pmd_migration = false;
2126 unsigned long addr;
2127 int i;
2128
2129 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2130 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2131 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2132 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2133 && !pmd_devmap(*pmd));
2134
2135 count_vm_event(THP_SPLIT_PMD);
2136
2137 if (!vma_is_anonymous(vma)) {
2138 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2139 /*
2140 * We are going to unmap this huge page. So
2141 * just go ahead and zap it
2142 */
2143 if (arch_needs_pgtable_deposit())
2144 zap_deposited_table(mm, pmd);
2145 if (vma_is_dax(vma))
2146 return;
2147 page = pmd_page(_pmd);
2148 if (!PageDirty(page) && pmd_dirty(_pmd))
2149 set_page_dirty(page);
2150 if (!PageReferenced(page) && pmd_young(_pmd))
2151 SetPageReferenced(page);
2152 page_remove_rmap(page, true);
2153 put_page(page);
2154 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2155 return;
2156 } else if (is_huge_zero_pmd(*pmd)) {
2157 /*
2158 * FIXME: Do we want to invalidate secondary mmu by calling
2159 * mmu_notifier_invalidate_range() see comments below inside
2160 * __split_huge_pmd() ?
2161 *
2162 * We are going from a zero huge page write protected to zero
2163 * small page also write protected so it does not seems useful
2164 * to invalidate secondary mmu at this time.
2165 */
2166 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2167 }
2168
2169 /*
2170 * Up to this point the pmd is present and huge and userland has the
2171 * whole access to the hugepage during the split (which happens in
2172 * place). If we overwrite the pmd with the not-huge version pointing
2173 * to the pte here (which of course we could if all CPUs were bug
2174 * free), userland could trigger a small page size TLB miss on the
2175 * small sized TLB while the hugepage TLB entry is still established in
2176 * the huge TLB. Some CPU doesn't like that.
2177 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2178 * 383 on page 93. Intel should be safe but is also warns that it's
2179 * only safe if the permission and cache attributes of the two entries
2180 * loaded in the two TLB is identical (which should be the case here).
2181 * But it is generally safer to never allow small and huge TLB entries
2182 * for the same virtual address to be loaded simultaneously. So instead
2183 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2184 * current pmd notpresent (atomically because here the pmd_trans_huge
2185 * must remain set at all times on the pmd until the split is complete
2186 * for this pmd), then we flush the SMP TLB and finally we write the
2187 * non-huge version of the pmd entry with pmd_populate.
2188 */
2189 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2190
2191 pmd_migration = is_pmd_migration_entry(old_pmd);
2192 if (unlikely(pmd_migration)) {
2193 swp_entry_t entry;
2194
2195 entry = pmd_to_swp_entry(old_pmd);
2196 page = pfn_to_page(swp_offset(entry));
2197 write = is_write_migration_entry(entry);
2198 young = false;
2199 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2200 } else {
2201 page = pmd_page(old_pmd);
2202 if (pmd_dirty(old_pmd))
2203 SetPageDirty(page);
2204 write = pmd_write(old_pmd);
2205 young = pmd_young(old_pmd);
2206 soft_dirty = pmd_soft_dirty(old_pmd);
2207 }
2208 VM_BUG_ON_PAGE(!page_count(page), page);
2209 page_ref_add(page, HPAGE_PMD_NR - 1);
2210
2211 /*
2212 * Withdraw the table only after we mark the pmd entry invalid.
2213 * This's critical for some architectures (Power).
2214 */
2215 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2216 pmd_populate(mm, &_pmd, pgtable);
2217
2218 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2219 pte_t entry, *pte;
2220 /*
2221 * Note that NUMA hinting access restrictions are not
2222 * transferred to avoid any possibility of altering
2223 * permissions across VMAs.
2224 */
2225 if (freeze || pmd_migration) {
2226 swp_entry_t swp_entry;
2227 swp_entry = make_migration_entry(page + i, write);
2228 entry = swp_entry_to_pte(swp_entry);
2229 if (soft_dirty)
2230 entry = pte_swp_mksoft_dirty(entry);
2231 } else {
2232 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2233 entry = maybe_mkwrite(entry, vma);
2234 if (!write)
2235 entry = pte_wrprotect(entry);
2236 if (!young)
2237 entry = pte_mkold(entry);
2238 if (soft_dirty)
2239 entry = pte_mksoft_dirty(entry);
2240 }
2241 pte = pte_offset_map(&_pmd, addr);
2242 BUG_ON(!pte_none(*pte));
2243 set_pte_at(mm, addr, pte, entry);
2244 atomic_inc(&page[i]._mapcount);
2245 pte_unmap(pte);
2246 }
2247
2248 /*
2249 * Set PG_double_map before dropping compound_mapcount to avoid
2250 * false-negative page_mapped().
2251 */
2252 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2253 for (i = 0; i < HPAGE_PMD_NR; i++)
2254 atomic_inc(&page[i]._mapcount);
2255 }
2256
2257 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2258 /* Last compound_mapcount is gone. */
2259 __dec_node_page_state(page, NR_ANON_THPS);
2260 if (TestClearPageDoubleMap(page)) {
2261 /* No need in mapcount reference anymore */
2262 for (i = 0; i < HPAGE_PMD_NR; i++)
2263 atomic_dec(&page[i]._mapcount);
2264 }
2265 }
2266
2267 smp_wmb(); /* make pte visible before pmd */
2268 pmd_populate(mm, pmd, pgtable);
2269
2270 if (freeze) {
2271 for (i = 0; i < HPAGE_PMD_NR; i++) {
2272 page_remove_rmap(page + i, false);
2273 put_page(page + i);
2274 }
2275 }
2276 }
2277
2278 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2279 unsigned long address, bool freeze, struct page *page)
2280 {
2281 spinlock_t *ptl;
2282 struct mmu_notifier_range range;
2283
2284 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2285 address & HPAGE_PMD_MASK,
2286 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2287 mmu_notifier_invalidate_range_start(&range);
2288 ptl = pmd_lock(vma->vm_mm, pmd);
2289
2290 /*
2291 * If caller asks to setup a migration entries, we need a page to check
2292 * pmd against. Otherwise we can end up replacing wrong page.
2293 */
2294 VM_BUG_ON(freeze && !page);
2295 if (page && page != pmd_page(*pmd))
2296 goto out;
2297
2298 if (pmd_trans_huge(*pmd)) {
2299 page = pmd_page(*pmd);
2300 if (PageMlocked(page))
2301 clear_page_mlock(page);
2302 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2303 goto out;
2304 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2305 out:
2306 spin_unlock(ptl);
2307 /*
2308 * No need to double call mmu_notifier->invalidate_range() callback.
2309 * They are 3 cases to consider inside __split_huge_pmd_locked():
2310 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2311 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2312 * fault will trigger a flush_notify before pointing to a new page
2313 * (it is fine if the secondary mmu keeps pointing to the old zero
2314 * page in the meantime)
2315 * 3) Split a huge pmd into pte pointing to the same page. No need
2316 * to invalidate secondary tlb entry they are all still valid.
2317 * any further changes to individual pte will notify. So no need
2318 * to call mmu_notifier->invalidate_range()
2319 */
2320 mmu_notifier_invalidate_range_only_end(&range);
2321 }
2322
2323 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2324 bool freeze, struct page *page)
2325 {
2326 pgd_t *pgd;
2327 p4d_t *p4d;
2328 pud_t *pud;
2329 pmd_t *pmd;
2330
2331 pgd = pgd_offset(vma->vm_mm, address);
2332 if (!pgd_present(*pgd))
2333 return;
2334
2335 p4d = p4d_offset(pgd, address);
2336 if (!p4d_present(*p4d))
2337 return;
2338
2339 pud = pud_offset(p4d, address);
2340 if (!pud_present(*pud))
2341 return;
2342
2343 pmd = pmd_offset(pud, address);
2344
2345 __split_huge_pmd(vma, pmd, address, freeze, page);
2346 }
2347
2348 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2349 unsigned long start,
2350 unsigned long end,
2351 long adjust_next)
2352 {
2353 /*
2354 * If the new start address isn't hpage aligned and it could
2355 * previously contain an hugepage: check if we need to split
2356 * an huge pmd.
2357 */
2358 if (start & ~HPAGE_PMD_MASK &&
2359 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2360 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2361 split_huge_pmd_address(vma, start, false, NULL);
2362
2363 /*
2364 * If the new end address isn't hpage aligned and it could
2365 * previously contain an hugepage: check if we need to split
2366 * an huge pmd.
2367 */
2368 if (end & ~HPAGE_PMD_MASK &&
2369 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2370 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2371 split_huge_pmd_address(vma, end, false, NULL);
2372
2373 /*
2374 * If we're also updating the vma->vm_next->vm_start, if the new
2375 * vm_next->vm_start isn't page aligned and it could previously
2376 * contain an hugepage: check if we need to split an huge pmd.
2377 */
2378 if (adjust_next > 0) {
2379 struct vm_area_struct *next = vma->vm_next;
2380 unsigned long nstart = next->vm_start;
2381 nstart += adjust_next << PAGE_SHIFT;
2382 if (nstart & ~HPAGE_PMD_MASK &&
2383 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2384 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2385 split_huge_pmd_address(next, nstart, false, NULL);
2386 }
2387 }
2388
2389 static void unmap_page(struct page *page)
2390 {
2391 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2392 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2393 bool unmap_success;
2394
2395 VM_BUG_ON_PAGE(!PageHead(page), page);
2396
2397 if (PageAnon(page))
2398 ttu_flags |= TTU_SPLIT_FREEZE;
2399
2400 unmap_success = try_to_unmap(page, ttu_flags);
2401 VM_BUG_ON_PAGE(!unmap_success, page);
2402 }
2403
2404 static void remap_page(struct page *page)
2405 {
2406 int i;
2407 if (PageTransHuge(page)) {
2408 remove_migration_ptes(page, page, true);
2409 } else {
2410 for (i = 0; i < HPAGE_PMD_NR; i++)
2411 remove_migration_ptes(page + i, page + i, true);
2412 }
2413 }
2414
2415 static void __split_huge_page_tail(struct page *head, int tail,
2416 struct lruvec *lruvec, struct list_head *list)
2417 {
2418 struct page *page_tail = head + tail;
2419
2420 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2421
2422 /*
2423 * Clone page flags before unfreezing refcount.
2424 *
2425 * After successful get_page_unless_zero() might follow flags change,
2426 * for exmaple lock_page() which set PG_waiters.
2427 */
2428 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2429 page_tail->flags |= (head->flags &
2430 ((1L << PG_referenced) |
2431 (1L << PG_swapbacked) |
2432 (1L << PG_swapcache) |
2433 (1L << PG_mlocked) |
2434 (1L << PG_uptodate) |
2435 (1L << PG_active) |
2436 (1L << PG_workingset) |
2437 (1L << PG_locked) |
2438 (1L << PG_unevictable) |
2439 (1L << PG_dirty)));
2440
2441 /* ->mapping in first tail page is compound_mapcount */
2442 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2443 page_tail);
2444 page_tail->mapping = head->mapping;
2445 page_tail->index = head->index + tail;
2446
2447 /* Page flags must be visible before we make the page non-compound. */
2448 smp_wmb();
2449
2450 /*
2451 * Clear PageTail before unfreezing page refcount.
2452 *
2453 * After successful get_page_unless_zero() might follow put_page()
2454 * which needs correct compound_head().
2455 */
2456 clear_compound_head(page_tail);
2457
2458 /* Finally unfreeze refcount. Additional reference from page cache. */
2459 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2460 PageSwapCache(head)));
2461
2462 if (page_is_young(head))
2463 set_page_young(page_tail);
2464 if (page_is_idle(head))
2465 set_page_idle(page_tail);
2466
2467 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2468
2469 /*
2470 * always add to the tail because some iterators expect new
2471 * pages to show after the currently processed elements - e.g.
2472 * migrate_pages
2473 */
2474 lru_add_page_tail(head, page_tail, lruvec, list);
2475 }
2476
2477 static void __split_huge_page(struct page *page, struct list_head *list,
2478 pgoff_t end, unsigned long flags)
2479 {
2480 struct page *head = compound_head(page);
2481 pg_data_t *pgdat = page_pgdat(head);
2482 struct lruvec *lruvec;
2483 int i;
2484
2485 lruvec = mem_cgroup_page_lruvec(head, pgdat);
2486
2487 /* complete memcg works before add pages to LRU */
2488 mem_cgroup_split_huge_fixup(head);
2489
2490 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2491 __split_huge_page_tail(head, i, lruvec, list);
2492 /* Some pages can be beyond i_size: drop them from page cache */
2493 if (head[i].index >= end) {
2494 ClearPageDirty(head + i);
2495 __delete_from_page_cache(head + i, NULL);
2496 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2497 shmem_uncharge(head->mapping->host, 1);
2498 put_page(head + i);
2499 } else if (!PageAnon(page)) {
2500 __xa_store(&head->mapping->i_pages, head[i].index,
2501 head + i, 0);
2502 }
2503 }
2504
2505 ClearPageCompound(head);
2506 /* See comment in __split_huge_page_tail() */
2507 if (PageAnon(head)) {
2508 /* Additional pin to swap cache */
2509 if (PageSwapCache(head))
2510 page_ref_add(head, 2);
2511 else
2512 page_ref_inc(head);
2513 } else {
2514 /* Additional pin to page cache */
2515 page_ref_add(head, 2);
2516 xa_unlock(&head->mapping->i_pages);
2517 }
2518
2519 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2520
2521 remap_page(head);
2522
2523 for (i = 0; i < HPAGE_PMD_NR; i++) {
2524 struct page *subpage = head + i;
2525 if (subpage == page)
2526 continue;
2527 unlock_page(subpage);
2528
2529 /*
2530 * Subpages may be freed if there wasn't any mapping
2531 * like if add_to_swap() is running on a lru page that
2532 * had its mapping zapped. And freeing these pages
2533 * requires taking the lru_lock so we do the put_page
2534 * of the tail pages after the split is complete.
2535 */
2536 put_page(subpage);
2537 }
2538 }
2539
2540 int total_mapcount(struct page *page)
2541 {
2542 int i, compound, ret;
2543
2544 VM_BUG_ON_PAGE(PageTail(page), page);
2545
2546 if (likely(!PageCompound(page)))
2547 return atomic_read(&page->_mapcount) + 1;
2548
2549 compound = compound_mapcount(page);
2550 if (PageHuge(page))
2551 return compound;
2552 ret = compound;
2553 for (i = 0; i < HPAGE_PMD_NR; i++)
2554 ret += atomic_read(&page[i]._mapcount) + 1;
2555 /* File pages has compound_mapcount included in _mapcount */
2556 if (!PageAnon(page))
2557 return ret - compound * HPAGE_PMD_NR;
2558 if (PageDoubleMap(page))
2559 ret -= HPAGE_PMD_NR;
2560 return ret;
2561 }
2562
2563 /*
2564 * This calculates accurately how many mappings a transparent hugepage
2565 * has (unlike page_mapcount() which isn't fully accurate). This full
2566 * accuracy is primarily needed to know if copy-on-write faults can
2567 * reuse the page and change the mapping to read-write instead of
2568 * copying them. At the same time this returns the total_mapcount too.
2569 *
2570 * The function returns the highest mapcount any one of the subpages
2571 * has. If the return value is one, even if different processes are
2572 * mapping different subpages of the transparent hugepage, they can
2573 * all reuse it, because each process is reusing a different subpage.
2574 *
2575 * The total_mapcount is instead counting all virtual mappings of the
2576 * subpages. If the total_mapcount is equal to "one", it tells the
2577 * caller all mappings belong to the same "mm" and in turn the
2578 * anon_vma of the transparent hugepage can become the vma->anon_vma
2579 * local one as no other process may be mapping any of the subpages.
2580 *
2581 * It would be more accurate to replace page_mapcount() with
2582 * page_trans_huge_mapcount(), however we only use
2583 * page_trans_huge_mapcount() in the copy-on-write faults where we
2584 * need full accuracy to avoid breaking page pinning, because
2585 * page_trans_huge_mapcount() is slower than page_mapcount().
2586 */
2587 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2588 {
2589 int i, ret, _total_mapcount, mapcount;
2590
2591 /* hugetlbfs shouldn't call it */
2592 VM_BUG_ON_PAGE(PageHuge(page), page);
2593
2594 if (likely(!PageTransCompound(page))) {
2595 mapcount = atomic_read(&page->_mapcount) + 1;
2596 if (total_mapcount)
2597 *total_mapcount = mapcount;
2598 return mapcount;
2599 }
2600
2601 page = compound_head(page);
2602
2603 _total_mapcount = ret = 0;
2604 for (i = 0; i < HPAGE_PMD_NR; i++) {
2605 mapcount = atomic_read(&page[i]._mapcount) + 1;
2606 ret = max(ret, mapcount);
2607 _total_mapcount += mapcount;
2608 }
2609 if (PageDoubleMap(page)) {
2610 ret -= 1;
2611 _total_mapcount -= HPAGE_PMD_NR;
2612 }
2613 mapcount = compound_mapcount(page);
2614 ret += mapcount;
2615 _total_mapcount += mapcount;
2616 if (total_mapcount)
2617 *total_mapcount = _total_mapcount;
2618 return ret;
2619 }
2620
2621 /* Racy check whether the huge page can be split */
2622 bool can_split_huge_page(struct page *page, int *pextra_pins)
2623 {
2624 int extra_pins;
2625
2626 /* Additional pins from page cache */
2627 if (PageAnon(page))
2628 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2629 else
2630 extra_pins = HPAGE_PMD_NR;
2631 if (pextra_pins)
2632 *pextra_pins = extra_pins;
2633 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2634 }
2635
2636 /*
2637 * This function splits huge page into normal pages. @page can point to any
2638 * subpage of huge page to split. Split doesn't change the position of @page.
2639 *
2640 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2641 * The huge page must be locked.
2642 *
2643 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2644 *
2645 * Both head page and tail pages will inherit mapping, flags, and so on from
2646 * the hugepage.
2647 *
2648 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2649 * they are not mapped.
2650 *
2651 * Returns 0 if the hugepage is split successfully.
2652 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2653 * us.
2654 */
2655 int split_huge_page_to_list(struct page *page, struct list_head *list)
2656 {
2657 struct page *head = compound_head(page);
2658 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2659 struct anon_vma *anon_vma = NULL;
2660 struct address_space *mapping = NULL;
2661 int count, mapcount, extra_pins, ret;
2662 bool mlocked;
2663 unsigned long flags;
2664 pgoff_t end;
2665
2666 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2667 VM_BUG_ON_PAGE(!PageLocked(page), page);
2668 VM_BUG_ON_PAGE(!PageCompound(page), page);
2669
2670 if (PageWriteback(page))
2671 return -EBUSY;
2672
2673 if (PageAnon(head)) {
2674 /*
2675 * The caller does not necessarily hold an mmap_sem that would
2676 * prevent the anon_vma disappearing so we first we take a
2677 * reference to it and then lock the anon_vma for write. This
2678 * is similar to page_lock_anon_vma_read except the write lock
2679 * is taken to serialise against parallel split or collapse
2680 * operations.
2681 */
2682 anon_vma = page_get_anon_vma(head);
2683 if (!anon_vma) {
2684 ret = -EBUSY;
2685 goto out;
2686 }
2687 end = -1;
2688 mapping = NULL;
2689 anon_vma_lock_write(anon_vma);
2690 } else {
2691 mapping = head->mapping;
2692
2693 /* Truncated ? */
2694 if (!mapping) {
2695 ret = -EBUSY;
2696 goto out;
2697 }
2698
2699 anon_vma = NULL;
2700 i_mmap_lock_read(mapping);
2701
2702 /*
2703 *__split_huge_page() may need to trim off pages beyond EOF:
2704 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2705 * which cannot be nested inside the page tree lock. So note
2706 * end now: i_size itself may be changed at any moment, but
2707 * head page lock is good enough to serialize the trimming.
2708 */
2709 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2710 }
2711
2712 /*
2713 * Racy check if we can split the page, before unmap_page() will
2714 * split PMDs
2715 */
2716 if (!can_split_huge_page(head, &extra_pins)) {
2717 ret = -EBUSY;
2718 goto out_unlock;
2719 }
2720
2721 mlocked = PageMlocked(page);
2722 unmap_page(head);
2723 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2724
2725 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2726 if (mlocked)
2727 lru_add_drain();
2728
2729 /* prevent PageLRU to go away from under us, and freeze lru stats */
2730 spin_lock_irqsave(&pgdata->lru_lock, flags);
2731
2732 if (mapping) {
2733 XA_STATE(xas, &mapping->i_pages, page_index(head));
2734
2735 /*
2736 * Check if the head page is present in page cache.
2737 * We assume all tail are present too, if head is there.
2738 */
2739 xa_lock(&mapping->i_pages);
2740 if (xas_load(&xas) != head)
2741 goto fail;
2742 }
2743
2744 /* Prevent deferred_split_scan() touching ->_refcount */
2745 spin_lock(&pgdata->split_queue_lock);
2746 count = page_count(head);
2747 mapcount = total_mapcount(head);
2748 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2749 if (!list_empty(page_deferred_list(head))) {
2750 pgdata->split_queue_len--;
2751 list_del(page_deferred_list(head));
2752 }
2753 if (mapping)
2754 __dec_node_page_state(page, NR_SHMEM_THPS);
2755 spin_unlock(&pgdata->split_queue_lock);
2756 __split_huge_page(page, list, end, flags);
2757 if (PageSwapCache(head)) {
2758 swp_entry_t entry = { .val = page_private(head) };
2759
2760 ret = split_swap_cluster(entry);
2761 } else
2762 ret = 0;
2763 } else {
2764 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2765 pr_alert("total_mapcount: %u, page_count(): %u\n",
2766 mapcount, count);
2767 if (PageTail(page))
2768 dump_page(head, NULL);
2769 dump_page(page, "total_mapcount(head) > 0");
2770 BUG();
2771 }
2772 spin_unlock(&pgdata->split_queue_lock);
2773 fail: if (mapping)
2774 xa_unlock(&mapping->i_pages);
2775 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2776 remap_page(head);
2777 ret = -EBUSY;
2778 }
2779
2780 out_unlock:
2781 if (anon_vma) {
2782 anon_vma_unlock_write(anon_vma);
2783 put_anon_vma(anon_vma);
2784 }
2785 if (mapping)
2786 i_mmap_unlock_read(mapping);
2787 out:
2788 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2789 return ret;
2790 }
2791
2792 void free_transhuge_page(struct page *page)
2793 {
2794 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2795 unsigned long flags;
2796
2797 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2798 if (!list_empty(page_deferred_list(page))) {
2799 pgdata->split_queue_len--;
2800 list_del(page_deferred_list(page));
2801 }
2802 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2803 free_compound_page(page);
2804 }
2805
2806 void deferred_split_huge_page(struct page *page)
2807 {
2808 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2809 unsigned long flags;
2810
2811 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2812
2813 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2814 if (list_empty(page_deferred_list(page))) {
2815 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2816 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2817 pgdata->split_queue_len++;
2818 }
2819 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2820 }
2821
2822 static unsigned long deferred_split_count(struct shrinker *shrink,
2823 struct shrink_control *sc)
2824 {
2825 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2826 return READ_ONCE(pgdata->split_queue_len);
2827 }
2828
2829 static unsigned long deferred_split_scan(struct shrinker *shrink,
2830 struct shrink_control *sc)
2831 {
2832 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2833 unsigned long flags;
2834 LIST_HEAD(list), *pos, *next;
2835 struct page *page;
2836 int split = 0;
2837
2838 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2839 /* Take pin on all head pages to avoid freeing them under us */
2840 list_for_each_safe(pos, next, &pgdata->split_queue) {
2841 page = list_entry((void *)pos, struct page, mapping);
2842 page = compound_head(page);
2843 if (get_page_unless_zero(page)) {
2844 list_move(page_deferred_list(page), &list);
2845 } else {
2846 /* We lost race with put_compound_page() */
2847 list_del_init(page_deferred_list(page));
2848 pgdata->split_queue_len--;
2849 }
2850 if (!--sc->nr_to_scan)
2851 break;
2852 }
2853 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2854
2855 list_for_each_safe(pos, next, &list) {
2856 page = list_entry((void *)pos, struct page, mapping);
2857 if (!trylock_page(page))
2858 goto next;
2859 /* split_huge_page() removes page from list on success */
2860 if (!split_huge_page(page))
2861 split++;
2862 unlock_page(page);
2863 next:
2864 put_page(page);
2865 }
2866
2867 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2868 list_splice_tail(&list, &pgdata->split_queue);
2869 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2870
2871 /*
2872 * Stop shrinker if we didn't split any page, but the queue is empty.
2873 * This can happen if pages were freed under us.
2874 */
2875 if (!split && list_empty(&pgdata->split_queue))
2876 return SHRINK_STOP;
2877 return split;
2878 }
2879
2880 static struct shrinker deferred_split_shrinker = {
2881 .count_objects = deferred_split_count,
2882 .scan_objects = deferred_split_scan,
2883 .seeks = DEFAULT_SEEKS,
2884 .flags = SHRINKER_NUMA_AWARE,
2885 };
2886
2887 #ifdef CONFIG_DEBUG_FS
2888 static int split_huge_pages_set(void *data, u64 val)
2889 {
2890 struct zone *zone;
2891 struct page *page;
2892 unsigned long pfn, max_zone_pfn;
2893 unsigned long total = 0, split = 0;
2894
2895 if (val != 1)
2896 return -EINVAL;
2897
2898 for_each_populated_zone(zone) {
2899 max_zone_pfn = zone_end_pfn(zone);
2900 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2901 if (!pfn_valid(pfn))
2902 continue;
2903
2904 page = pfn_to_page(pfn);
2905 if (!get_page_unless_zero(page))
2906 continue;
2907
2908 if (zone != page_zone(page))
2909 goto next;
2910
2911 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2912 goto next;
2913
2914 total++;
2915 lock_page(page);
2916 if (!split_huge_page(page))
2917 split++;
2918 unlock_page(page);
2919 next:
2920 put_page(page);
2921 }
2922 }
2923
2924 pr_info("%lu of %lu THP split\n", split, total);
2925
2926 return 0;
2927 }
2928 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2929 "%llu\n");
2930
2931 static int __init split_huge_pages_debugfs(void)
2932 {
2933 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2934 &split_huge_pages_fops);
2935 return 0;
2936 }
2937 late_initcall(split_huge_pages_debugfs);
2938 #endif
2939
2940 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2941 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2942 struct page *page)
2943 {
2944 struct vm_area_struct *vma = pvmw->vma;
2945 struct mm_struct *mm = vma->vm_mm;
2946 unsigned long address = pvmw->address;
2947 pmd_t pmdval;
2948 swp_entry_t entry;
2949 pmd_t pmdswp;
2950
2951 if (!(pvmw->pmd && !pvmw->pte))
2952 return;
2953
2954 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2955 pmdval = *pvmw->pmd;
2956 pmdp_invalidate(vma, address, pvmw->pmd);
2957 if (pmd_dirty(pmdval))
2958 set_page_dirty(page);
2959 entry = make_migration_entry(page, pmd_write(pmdval));
2960 pmdswp = swp_entry_to_pmd(entry);
2961 if (pmd_soft_dirty(pmdval))
2962 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2963 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2964 page_remove_rmap(page, true);
2965 put_page(page);
2966 }
2967
2968 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2969 {
2970 struct vm_area_struct *vma = pvmw->vma;
2971 struct mm_struct *mm = vma->vm_mm;
2972 unsigned long address = pvmw->address;
2973 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2974 pmd_t pmde;
2975 swp_entry_t entry;
2976
2977 if (!(pvmw->pmd && !pvmw->pte))
2978 return;
2979
2980 entry = pmd_to_swp_entry(*pvmw->pmd);
2981 get_page(new);
2982 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2983 if (pmd_swp_soft_dirty(*pvmw->pmd))
2984 pmde = pmd_mksoft_dirty(pmde);
2985 if (is_write_migration_entry(entry))
2986 pmde = maybe_pmd_mkwrite(pmde, vma);
2987
2988 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2989 if (PageAnon(new))
2990 page_add_anon_rmap(new, vma, mmun_start, true);
2991 else
2992 page_add_file_rmap(new, true);
2993 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2994 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2995 mlock_vma_page(new);
2996 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2997 }
2998 #endif