]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/huge_memory.c
Merge tag 'mfd-for-linus-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 /*
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
45 */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56
57 static struct shrinker deferred_split_shrinker;
58
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61
62 static struct page *get_huge_zero_page(void)
63 {
64 struct page *zero_page;
65 retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
87 }
88
89 static void put_huge_zero_page(void)
90 {
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110 }
111
112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116 }
117
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127 {
128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
131 __free_pages(zero_page, compound_order(zero_page));
132 return HPAGE_PMD_NR;
133 }
134
135 return 0;
136 }
137
138 static struct shrinker huge_zero_page_shrinker = {
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
141 .seeks = DEFAULT_SEEKS,
142 };
143
144 #ifdef CONFIG_SYSFS
145 static ssize_t enabled_show(struct kobject *kobj,
146 struct kobj_attribute *attr, char *buf)
147 {
148 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
149 return sprintf(buf, "[always] madvise never\n");
150 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
151 return sprintf(buf, "always [madvise] never\n");
152 else
153 return sprintf(buf, "always madvise [never]\n");
154 }
155
156 static ssize_t enabled_store(struct kobject *kobj,
157 struct kobj_attribute *attr,
158 const char *buf, size_t count)
159 {
160 ssize_t ret = count;
161
162 if (!memcmp("always", buf,
163 min(sizeof("always")-1, count))) {
164 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
165 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
166 } else if (!memcmp("madvise", buf,
167 min(sizeof("madvise")-1, count))) {
168 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
173 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
174 } else
175 ret = -EINVAL;
176
177 if (ret > 0) {
178 int err = start_stop_khugepaged();
179 if (err)
180 ret = err;
181 }
182 return ret;
183 }
184 static struct kobj_attribute enabled_attr =
185 __ATTR(enabled, 0644, enabled_show, enabled_store);
186
187 ssize_t single_hugepage_flag_show(struct kobject *kobj,
188 struct kobj_attribute *attr, char *buf,
189 enum transparent_hugepage_flag flag)
190 {
191 return sprintf(buf, "%d\n",
192 !!test_bit(flag, &transparent_hugepage_flags));
193 }
194
195 ssize_t single_hugepage_flag_store(struct kobject *kobj,
196 struct kobj_attribute *attr,
197 const char *buf, size_t count,
198 enum transparent_hugepage_flag flag)
199 {
200 unsigned long value;
201 int ret;
202
203 ret = kstrtoul(buf, 10, &value);
204 if (ret < 0)
205 return ret;
206 if (value > 1)
207 return -EINVAL;
208
209 if (value)
210 set_bit(flag, &transparent_hugepage_flags);
211 else
212 clear_bit(flag, &transparent_hugepage_flags);
213
214 return count;
215 }
216
217 static ssize_t defrag_show(struct kobject *kobj,
218 struct kobj_attribute *attr, char *buf)
219 {
220 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
221 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
222 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
223 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
224 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
225 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
226 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
227 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
228 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
229 }
230
231 static ssize_t defrag_store(struct kobject *kobj,
232 struct kobj_attribute *attr,
233 const char *buf, size_t count)
234 {
235 if (!memcmp("always", buf,
236 min(sizeof("always")-1, count))) {
237 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
238 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
239 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
240 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
241 } else if (!memcmp("defer", buf,
242 min(sizeof("defer")-1, count))) {
243 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
245 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
246 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
247 } else if (!memcmp("defer+madvise", buf,
248 min(sizeof("defer+madvise")-1, count))) {
249 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
250 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
252 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 } else if (!memcmp("madvise", buf,
254 min(sizeof("madvise")-1, count))) {
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 } else if (!memcmp("never", buf,
260 min(sizeof("never")-1, count))) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
265 } else
266 return -EINVAL;
267
268 return count;
269 }
270 static struct kobj_attribute defrag_attr =
271 __ATTR(defrag, 0644, defrag_show, defrag_store);
272
273 static ssize_t use_zero_page_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf)
275 {
276 return single_hugepage_flag_show(kobj, attr, buf,
277 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
278 }
279 static ssize_t use_zero_page_store(struct kobject *kobj,
280 struct kobj_attribute *attr, const char *buf, size_t count)
281 {
282 return single_hugepage_flag_store(kobj, attr, buf, count,
283 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
284 }
285 static struct kobj_attribute use_zero_page_attr =
286 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
287
288 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
289 struct kobj_attribute *attr, char *buf)
290 {
291 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
292 }
293 static struct kobj_attribute hpage_pmd_size_attr =
294 __ATTR_RO(hpage_pmd_size);
295
296 #ifdef CONFIG_DEBUG_VM
297 static ssize_t debug_cow_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
299 {
300 return single_hugepage_flag_show(kobj, attr, buf,
301 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302 }
303 static ssize_t debug_cow_store(struct kobject *kobj,
304 struct kobj_attribute *attr,
305 const char *buf, size_t count)
306 {
307 return single_hugepage_flag_store(kobj, attr, buf, count,
308 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309 }
310 static struct kobj_attribute debug_cow_attr =
311 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312 #endif /* CONFIG_DEBUG_VM */
313
314 static struct attribute *hugepage_attr[] = {
315 &enabled_attr.attr,
316 &defrag_attr.attr,
317 &use_zero_page_attr.attr,
318 &hpage_pmd_size_attr.attr,
319 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
320 &shmem_enabled_attr.attr,
321 #endif
322 #ifdef CONFIG_DEBUG_VM
323 &debug_cow_attr.attr,
324 #endif
325 NULL,
326 };
327
328 static struct attribute_group hugepage_attr_group = {
329 .attrs = hugepage_attr,
330 };
331
332 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
333 {
334 int err;
335
336 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
337 if (unlikely(!*hugepage_kobj)) {
338 pr_err("failed to create transparent hugepage kobject\n");
339 return -ENOMEM;
340 }
341
342 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
343 if (err) {
344 pr_err("failed to register transparent hugepage group\n");
345 goto delete_obj;
346 }
347
348 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
349 if (err) {
350 pr_err("failed to register transparent hugepage group\n");
351 goto remove_hp_group;
352 }
353
354 return 0;
355
356 remove_hp_group:
357 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
358 delete_obj:
359 kobject_put(*hugepage_kobj);
360 return err;
361 }
362
363 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
364 {
365 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
366 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
367 kobject_put(hugepage_kobj);
368 }
369 #else
370 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
371 {
372 return 0;
373 }
374
375 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
376 {
377 }
378 #endif /* CONFIG_SYSFS */
379
380 static int __init hugepage_init(void)
381 {
382 int err;
383 struct kobject *hugepage_kobj;
384
385 if (!has_transparent_hugepage()) {
386 transparent_hugepage_flags = 0;
387 return -EINVAL;
388 }
389
390 /*
391 * hugepages can't be allocated by the buddy allocator
392 */
393 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
394 /*
395 * we use page->mapping and page->index in second tail page
396 * as list_head: assuming THP order >= 2
397 */
398 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
399
400 err = hugepage_init_sysfs(&hugepage_kobj);
401 if (err)
402 goto err_sysfs;
403
404 err = khugepaged_init();
405 if (err)
406 goto err_slab;
407
408 err = register_shrinker(&huge_zero_page_shrinker);
409 if (err)
410 goto err_hzp_shrinker;
411 err = register_shrinker(&deferred_split_shrinker);
412 if (err)
413 goto err_split_shrinker;
414
415 /*
416 * By default disable transparent hugepages on smaller systems,
417 * where the extra memory used could hurt more than TLB overhead
418 * is likely to save. The admin can still enable it through /sys.
419 */
420 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
421 transparent_hugepage_flags = 0;
422 return 0;
423 }
424
425 err = start_stop_khugepaged();
426 if (err)
427 goto err_khugepaged;
428
429 return 0;
430 err_khugepaged:
431 unregister_shrinker(&deferred_split_shrinker);
432 err_split_shrinker:
433 unregister_shrinker(&huge_zero_page_shrinker);
434 err_hzp_shrinker:
435 khugepaged_destroy();
436 err_slab:
437 hugepage_exit_sysfs(hugepage_kobj);
438 err_sysfs:
439 return err;
440 }
441 subsys_initcall(hugepage_init);
442
443 static int __init setup_transparent_hugepage(char *str)
444 {
445 int ret = 0;
446 if (!str)
447 goto out;
448 if (!strcmp(str, "always")) {
449 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
450 &transparent_hugepage_flags);
451 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
452 &transparent_hugepage_flags);
453 ret = 1;
454 } else if (!strcmp(str, "madvise")) {
455 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
456 &transparent_hugepage_flags);
457 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
458 &transparent_hugepage_flags);
459 ret = 1;
460 } else if (!strcmp(str, "never")) {
461 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
462 &transparent_hugepage_flags);
463 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
464 &transparent_hugepage_flags);
465 ret = 1;
466 }
467 out:
468 if (!ret)
469 pr_warn("transparent_hugepage= cannot parse, ignored\n");
470 return ret;
471 }
472 __setup("transparent_hugepage=", setup_transparent_hugepage);
473
474 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
475 {
476 if (likely(vma->vm_flags & VM_WRITE))
477 pmd = pmd_mkwrite(pmd);
478 return pmd;
479 }
480
481 static inline struct list_head *page_deferred_list(struct page *page)
482 {
483 /*
484 * ->lru in the tail pages is occupied by compound_head.
485 * Let's use ->mapping + ->index in the second tail page as list_head.
486 */
487 return (struct list_head *)&page[2].mapping;
488 }
489
490 void prep_transhuge_page(struct page *page)
491 {
492 /*
493 * we use page->mapping and page->indexlru in second tail page
494 * as list_head: assuming THP order >= 2
495 */
496
497 INIT_LIST_HEAD(page_deferred_list(page));
498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500
501 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 loff_t off, unsigned long flags, unsigned long size)
503 {
504 unsigned long addr;
505 loff_t off_end = off + len;
506 loff_t off_align = round_up(off, size);
507 unsigned long len_pad;
508
509 if (off_end <= off_align || (off_end - off_align) < size)
510 return 0;
511
512 len_pad = len + size;
513 if (len_pad < len || (off + len_pad) < off)
514 return 0;
515
516 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 off >> PAGE_SHIFT, flags);
518 if (IS_ERR_VALUE(addr))
519 return 0;
520
521 addr += (off - addr) & (size - 1);
522 return addr;
523 }
524
525 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 unsigned long len, unsigned long pgoff, unsigned long flags)
527 {
528 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529
530 if (addr)
531 goto out;
532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 goto out;
534
535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 if (addr)
537 return addr;
538
539 out:
540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541 }
542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543
544 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
545 gfp_t gfp)
546 {
547 struct vm_area_struct *vma = vmf->vma;
548 struct mem_cgroup *memcg;
549 pgtable_t pgtable;
550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551
552 VM_BUG_ON_PAGE(!PageCompound(page), page);
553
554 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
555 put_page(page);
556 count_vm_event(THP_FAULT_FALLBACK);
557 return VM_FAULT_FALLBACK;
558 }
559
560 pgtable = pte_alloc_one(vma->vm_mm, haddr);
561 if (unlikely(!pgtable)) {
562 mem_cgroup_cancel_charge(page, memcg, true);
563 put_page(page);
564 return VM_FAULT_OOM;
565 }
566
567 clear_huge_page(page, haddr, HPAGE_PMD_NR);
568 /*
569 * The memory barrier inside __SetPageUptodate makes sure that
570 * clear_huge_page writes become visible before the set_pmd_at()
571 * write.
572 */
573 __SetPageUptodate(page);
574
575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 if (unlikely(!pmd_none(*vmf->pmd))) {
577 spin_unlock(vmf->ptl);
578 mem_cgroup_cancel_charge(page, memcg, true);
579 put_page(page);
580 pte_free(vma->vm_mm, pgtable);
581 } else {
582 pmd_t entry;
583
584 /* Deliver the page fault to userland */
585 if (userfaultfd_missing(vma)) {
586 int ret;
587
588 spin_unlock(vmf->ptl);
589 mem_cgroup_cancel_charge(page, memcg, true);
590 put_page(page);
591 pte_free(vma->vm_mm, pgtable);
592 ret = handle_userfault(vmf, VM_UFFD_MISSING);
593 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
594 return ret;
595 }
596
597 entry = mk_huge_pmd(page, vma->vm_page_prot);
598 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
599 page_add_new_anon_rmap(page, vma, haddr, true);
600 mem_cgroup_commit_charge(page, memcg, false, true);
601 lru_cache_add_active_or_unevictable(page, vma);
602 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
603 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
604 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
605 atomic_long_inc(&vma->vm_mm->nr_ptes);
606 spin_unlock(vmf->ptl);
607 count_vm_event(THP_FAULT_ALLOC);
608 }
609
610 return 0;
611 }
612
613 /*
614 * always: directly stall for all thp allocations
615 * defer: wake kswapd and fail if not immediately available
616 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
617 * fail if not immediately available
618 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
619 * available
620 * never: never stall for any thp allocation
621 */
622 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
623 {
624 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
625
626 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
627 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
628 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
631 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
632 __GFP_KSWAPD_RECLAIM);
633 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
634 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
635 0);
636 return GFP_TRANSHUGE_LIGHT;
637 }
638
639 /* Caller must hold page table lock. */
640 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
641 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
642 struct page *zero_page)
643 {
644 pmd_t entry;
645 if (!pmd_none(*pmd))
646 return false;
647 entry = mk_pmd(zero_page, vma->vm_page_prot);
648 entry = pmd_mkhuge(entry);
649 if (pgtable)
650 pgtable_trans_huge_deposit(mm, pmd, pgtable);
651 set_pmd_at(mm, haddr, pmd, entry);
652 atomic_long_inc(&mm->nr_ptes);
653 return true;
654 }
655
656 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
657 {
658 struct vm_area_struct *vma = vmf->vma;
659 gfp_t gfp;
660 struct page *page;
661 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
662
663 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
664 return VM_FAULT_FALLBACK;
665 if (unlikely(anon_vma_prepare(vma)))
666 return VM_FAULT_OOM;
667 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
668 return VM_FAULT_OOM;
669 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
670 !mm_forbids_zeropage(vma->vm_mm) &&
671 transparent_hugepage_use_zero_page()) {
672 pgtable_t pgtable;
673 struct page *zero_page;
674 bool set;
675 int ret;
676 pgtable = pte_alloc_one(vma->vm_mm, haddr);
677 if (unlikely(!pgtable))
678 return VM_FAULT_OOM;
679 zero_page = mm_get_huge_zero_page(vma->vm_mm);
680 if (unlikely(!zero_page)) {
681 pte_free(vma->vm_mm, pgtable);
682 count_vm_event(THP_FAULT_FALLBACK);
683 return VM_FAULT_FALLBACK;
684 }
685 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
686 ret = 0;
687 set = false;
688 if (pmd_none(*vmf->pmd)) {
689 if (userfaultfd_missing(vma)) {
690 spin_unlock(vmf->ptl);
691 ret = handle_userfault(vmf, VM_UFFD_MISSING);
692 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
693 } else {
694 set_huge_zero_page(pgtable, vma->vm_mm, vma,
695 haddr, vmf->pmd, zero_page);
696 spin_unlock(vmf->ptl);
697 set = true;
698 }
699 } else
700 spin_unlock(vmf->ptl);
701 if (!set)
702 pte_free(vma->vm_mm, pgtable);
703 return ret;
704 }
705 gfp = alloc_hugepage_direct_gfpmask(vma);
706 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
707 if (unlikely(!page)) {
708 count_vm_event(THP_FAULT_FALLBACK);
709 return VM_FAULT_FALLBACK;
710 }
711 prep_transhuge_page(page);
712 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
713 }
714
715 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
716 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
717 {
718 struct mm_struct *mm = vma->vm_mm;
719 pmd_t entry;
720 spinlock_t *ptl;
721
722 ptl = pmd_lock(mm, pmd);
723 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
724 if (pfn_t_devmap(pfn))
725 entry = pmd_mkdevmap(entry);
726 if (write) {
727 entry = pmd_mkyoung(pmd_mkdirty(entry));
728 entry = maybe_pmd_mkwrite(entry, vma);
729 }
730 set_pmd_at(mm, addr, pmd, entry);
731 update_mmu_cache_pmd(vma, addr, pmd);
732 spin_unlock(ptl);
733 }
734
735 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
736 pmd_t *pmd, pfn_t pfn, bool write)
737 {
738 pgprot_t pgprot = vma->vm_page_prot;
739 /*
740 * If we had pmd_special, we could avoid all these restrictions,
741 * but we need to be consistent with PTEs and architectures that
742 * can't support a 'special' bit.
743 */
744 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
745 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
746 (VM_PFNMAP|VM_MIXEDMAP));
747 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
748 BUG_ON(!pfn_t_devmap(pfn));
749
750 if (addr < vma->vm_start || addr >= vma->vm_end)
751 return VM_FAULT_SIGBUS;
752
753 track_pfn_insert(vma, &pgprot, pfn);
754
755 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
756 return VM_FAULT_NOPAGE;
757 }
758 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
759
760 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
761 pmd_t *pmd)
762 {
763 pmd_t _pmd;
764
765 /*
766 * We should set the dirty bit only for FOLL_WRITE but for now
767 * the dirty bit in the pmd is meaningless. And if the dirty
768 * bit will become meaningful and we'll only set it with
769 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
770 * set the young bit, instead of the current set_pmd_at.
771 */
772 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
773 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
774 pmd, _pmd, 1))
775 update_mmu_cache_pmd(vma, addr, pmd);
776 }
777
778 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
779 pmd_t *pmd, int flags)
780 {
781 unsigned long pfn = pmd_pfn(*pmd);
782 struct mm_struct *mm = vma->vm_mm;
783 struct dev_pagemap *pgmap;
784 struct page *page;
785
786 assert_spin_locked(pmd_lockptr(mm, pmd));
787
788 /*
789 * When we COW a devmap PMD entry, we split it into PTEs, so we should
790 * not be in this function with `flags & FOLL_COW` set.
791 */
792 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
793
794 if (flags & FOLL_WRITE && !pmd_write(*pmd))
795 return NULL;
796
797 if (pmd_present(*pmd) && pmd_devmap(*pmd))
798 /* pass */;
799 else
800 return NULL;
801
802 if (flags & FOLL_TOUCH)
803 touch_pmd(vma, addr, pmd);
804
805 /*
806 * device mapped pages can only be returned if the
807 * caller will manage the page reference count.
808 */
809 if (!(flags & FOLL_GET))
810 return ERR_PTR(-EEXIST);
811
812 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
813 pgmap = get_dev_pagemap(pfn, NULL);
814 if (!pgmap)
815 return ERR_PTR(-EFAULT);
816 page = pfn_to_page(pfn);
817 get_page(page);
818 put_dev_pagemap(pgmap);
819
820 return page;
821 }
822
823 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
824 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
825 struct vm_area_struct *vma)
826 {
827 spinlock_t *dst_ptl, *src_ptl;
828 struct page *src_page;
829 pmd_t pmd;
830 pgtable_t pgtable = NULL;
831 int ret = -ENOMEM;
832
833 /* Skip if can be re-fill on fault */
834 if (!vma_is_anonymous(vma))
835 return 0;
836
837 pgtable = pte_alloc_one(dst_mm, addr);
838 if (unlikely(!pgtable))
839 goto out;
840
841 dst_ptl = pmd_lock(dst_mm, dst_pmd);
842 src_ptl = pmd_lockptr(src_mm, src_pmd);
843 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
844
845 ret = -EAGAIN;
846 pmd = *src_pmd;
847 if (unlikely(!pmd_trans_huge(pmd))) {
848 pte_free(dst_mm, pgtable);
849 goto out_unlock;
850 }
851 /*
852 * When page table lock is held, the huge zero pmd should not be
853 * under splitting since we don't split the page itself, only pmd to
854 * a page table.
855 */
856 if (is_huge_zero_pmd(pmd)) {
857 struct page *zero_page;
858 /*
859 * get_huge_zero_page() will never allocate a new page here,
860 * since we already have a zero page to copy. It just takes a
861 * reference.
862 */
863 zero_page = mm_get_huge_zero_page(dst_mm);
864 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
865 zero_page);
866 ret = 0;
867 goto out_unlock;
868 }
869
870 src_page = pmd_page(pmd);
871 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
872 get_page(src_page);
873 page_dup_rmap(src_page, true);
874 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
875 atomic_long_inc(&dst_mm->nr_ptes);
876 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
877
878 pmdp_set_wrprotect(src_mm, addr, src_pmd);
879 pmd = pmd_mkold(pmd_wrprotect(pmd));
880 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
881
882 ret = 0;
883 out_unlock:
884 spin_unlock(src_ptl);
885 spin_unlock(dst_ptl);
886 out:
887 return ret;
888 }
889
890 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
891 {
892 pmd_t entry;
893 unsigned long haddr;
894 bool write = vmf->flags & FAULT_FLAG_WRITE;
895
896 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
897 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
898 goto unlock;
899
900 entry = pmd_mkyoung(orig_pmd);
901 if (write)
902 entry = pmd_mkdirty(entry);
903 haddr = vmf->address & HPAGE_PMD_MASK;
904 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
905 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
906
907 unlock:
908 spin_unlock(vmf->ptl);
909 }
910
911 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
912 struct page *page)
913 {
914 struct vm_area_struct *vma = vmf->vma;
915 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
916 struct mem_cgroup *memcg;
917 pgtable_t pgtable;
918 pmd_t _pmd;
919 int ret = 0, i;
920 struct page **pages;
921 unsigned long mmun_start; /* For mmu_notifiers */
922 unsigned long mmun_end; /* For mmu_notifiers */
923
924 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
925 GFP_KERNEL);
926 if (unlikely(!pages)) {
927 ret |= VM_FAULT_OOM;
928 goto out;
929 }
930
931 for (i = 0; i < HPAGE_PMD_NR; i++) {
932 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
933 vmf->address, page_to_nid(page));
934 if (unlikely(!pages[i] ||
935 mem_cgroup_try_charge(pages[i], vma->vm_mm,
936 GFP_KERNEL, &memcg, false))) {
937 if (pages[i])
938 put_page(pages[i]);
939 while (--i >= 0) {
940 memcg = (void *)page_private(pages[i]);
941 set_page_private(pages[i], 0);
942 mem_cgroup_cancel_charge(pages[i], memcg,
943 false);
944 put_page(pages[i]);
945 }
946 kfree(pages);
947 ret |= VM_FAULT_OOM;
948 goto out;
949 }
950 set_page_private(pages[i], (unsigned long)memcg);
951 }
952
953 for (i = 0; i < HPAGE_PMD_NR; i++) {
954 copy_user_highpage(pages[i], page + i,
955 haddr + PAGE_SIZE * i, vma);
956 __SetPageUptodate(pages[i]);
957 cond_resched();
958 }
959
960 mmun_start = haddr;
961 mmun_end = haddr + HPAGE_PMD_SIZE;
962 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
963
964 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
965 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
966 goto out_free_pages;
967 VM_BUG_ON_PAGE(!PageHead(page), page);
968
969 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
970 /* leave pmd empty until pte is filled */
971
972 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
973 pmd_populate(vma->vm_mm, &_pmd, pgtable);
974
975 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
976 pte_t entry;
977 entry = mk_pte(pages[i], vma->vm_page_prot);
978 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
979 memcg = (void *)page_private(pages[i]);
980 set_page_private(pages[i], 0);
981 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
982 mem_cgroup_commit_charge(pages[i], memcg, false, false);
983 lru_cache_add_active_or_unevictable(pages[i], vma);
984 vmf->pte = pte_offset_map(&_pmd, haddr);
985 VM_BUG_ON(!pte_none(*vmf->pte));
986 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
987 pte_unmap(vmf->pte);
988 }
989 kfree(pages);
990
991 smp_wmb(); /* make pte visible before pmd */
992 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
993 page_remove_rmap(page, true);
994 spin_unlock(vmf->ptl);
995
996 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
997
998 ret |= VM_FAULT_WRITE;
999 put_page(page);
1000
1001 out:
1002 return ret;
1003
1004 out_free_pages:
1005 spin_unlock(vmf->ptl);
1006 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1007 for (i = 0; i < HPAGE_PMD_NR; i++) {
1008 memcg = (void *)page_private(pages[i]);
1009 set_page_private(pages[i], 0);
1010 mem_cgroup_cancel_charge(pages[i], memcg, false);
1011 put_page(pages[i]);
1012 }
1013 kfree(pages);
1014 goto out;
1015 }
1016
1017 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1018 {
1019 struct vm_area_struct *vma = vmf->vma;
1020 struct page *page = NULL, *new_page;
1021 struct mem_cgroup *memcg;
1022 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1023 unsigned long mmun_start; /* For mmu_notifiers */
1024 unsigned long mmun_end; /* For mmu_notifiers */
1025 gfp_t huge_gfp; /* for allocation and charge */
1026 int ret = 0;
1027
1028 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1029 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1030 if (is_huge_zero_pmd(orig_pmd))
1031 goto alloc;
1032 spin_lock(vmf->ptl);
1033 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1034 goto out_unlock;
1035
1036 page = pmd_page(orig_pmd);
1037 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1038 /*
1039 * We can only reuse the page if nobody else maps the huge page or it's
1040 * part.
1041 */
1042 if (page_trans_huge_mapcount(page, NULL) == 1) {
1043 pmd_t entry;
1044 entry = pmd_mkyoung(orig_pmd);
1045 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1046 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1047 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1048 ret |= VM_FAULT_WRITE;
1049 goto out_unlock;
1050 }
1051 get_page(page);
1052 spin_unlock(vmf->ptl);
1053 alloc:
1054 if (transparent_hugepage_enabled(vma) &&
1055 !transparent_hugepage_debug_cow()) {
1056 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1057 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1058 } else
1059 new_page = NULL;
1060
1061 if (likely(new_page)) {
1062 prep_transhuge_page(new_page);
1063 } else {
1064 if (!page) {
1065 split_huge_pmd(vma, vmf->pmd, vmf->address);
1066 ret |= VM_FAULT_FALLBACK;
1067 } else {
1068 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1069 if (ret & VM_FAULT_OOM) {
1070 split_huge_pmd(vma, vmf->pmd, vmf->address);
1071 ret |= VM_FAULT_FALLBACK;
1072 }
1073 put_page(page);
1074 }
1075 count_vm_event(THP_FAULT_FALLBACK);
1076 goto out;
1077 }
1078
1079 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1080 huge_gfp, &memcg, true))) {
1081 put_page(new_page);
1082 split_huge_pmd(vma, vmf->pmd, vmf->address);
1083 if (page)
1084 put_page(page);
1085 ret |= VM_FAULT_FALLBACK;
1086 count_vm_event(THP_FAULT_FALLBACK);
1087 goto out;
1088 }
1089
1090 count_vm_event(THP_FAULT_ALLOC);
1091
1092 if (!page)
1093 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1094 else
1095 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1096 __SetPageUptodate(new_page);
1097
1098 mmun_start = haddr;
1099 mmun_end = haddr + HPAGE_PMD_SIZE;
1100 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1101
1102 spin_lock(vmf->ptl);
1103 if (page)
1104 put_page(page);
1105 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1106 spin_unlock(vmf->ptl);
1107 mem_cgroup_cancel_charge(new_page, memcg, true);
1108 put_page(new_page);
1109 goto out_mn;
1110 } else {
1111 pmd_t entry;
1112 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1113 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1114 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1115 page_add_new_anon_rmap(new_page, vma, haddr, true);
1116 mem_cgroup_commit_charge(new_page, memcg, false, true);
1117 lru_cache_add_active_or_unevictable(new_page, vma);
1118 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1119 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1120 if (!page) {
1121 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1122 } else {
1123 VM_BUG_ON_PAGE(!PageHead(page), page);
1124 page_remove_rmap(page, true);
1125 put_page(page);
1126 }
1127 ret |= VM_FAULT_WRITE;
1128 }
1129 spin_unlock(vmf->ptl);
1130 out_mn:
1131 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1132 out:
1133 return ret;
1134 out_unlock:
1135 spin_unlock(vmf->ptl);
1136 return ret;
1137 }
1138
1139 /*
1140 * FOLL_FORCE can write to even unwritable pmd's, but only
1141 * after we've gone through a COW cycle and they are dirty.
1142 */
1143 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1144 {
1145 return pmd_write(pmd) ||
1146 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1147 }
1148
1149 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1150 unsigned long addr,
1151 pmd_t *pmd,
1152 unsigned int flags)
1153 {
1154 struct mm_struct *mm = vma->vm_mm;
1155 struct page *page = NULL;
1156
1157 assert_spin_locked(pmd_lockptr(mm, pmd));
1158
1159 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1160 goto out;
1161
1162 /* Avoid dumping huge zero page */
1163 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1164 return ERR_PTR(-EFAULT);
1165
1166 /* Full NUMA hinting faults to serialise migration in fault paths */
1167 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1168 goto out;
1169
1170 page = pmd_page(*pmd);
1171 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1172 if (flags & FOLL_TOUCH)
1173 touch_pmd(vma, addr, pmd);
1174 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1175 /*
1176 * We don't mlock() pte-mapped THPs. This way we can avoid
1177 * leaking mlocked pages into non-VM_LOCKED VMAs.
1178 *
1179 * For anon THP:
1180 *
1181 * In most cases the pmd is the only mapping of the page as we
1182 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1183 * writable private mappings in populate_vma_page_range().
1184 *
1185 * The only scenario when we have the page shared here is if we
1186 * mlocking read-only mapping shared over fork(). We skip
1187 * mlocking such pages.
1188 *
1189 * For file THP:
1190 *
1191 * We can expect PageDoubleMap() to be stable under page lock:
1192 * for file pages we set it in page_add_file_rmap(), which
1193 * requires page to be locked.
1194 */
1195
1196 if (PageAnon(page) && compound_mapcount(page) != 1)
1197 goto skip_mlock;
1198 if (PageDoubleMap(page) || !page->mapping)
1199 goto skip_mlock;
1200 if (!trylock_page(page))
1201 goto skip_mlock;
1202 lru_add_drain();
1203 if (page->mapping && !PageDoubleMap(page))
1204 mlock_vma_page(page);
1205 unlock_page(page);
1206 }
1207 skip_mlock:
1208 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1209 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1210 if (flags & FOLL_GET)
1211 get_page(page);
1212
1213 out:
1214 return page;
1215 }
1216
1217 /* NUMA hinting page fault entry point for trans huge pmds */
1218 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1219 {
1220 struct vm_area_struct *vma = vmf->vma;
1221 struct anon_vma *anon_vma = NULL;
1222 struct page *page;
1223 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1224 int page_nid = -1, this_nid = numa_node_id();
1225 int target_nid, last_cpupid = -1;
1226 bool page_locked;
1227 bool migrated = false;
1228 bool was_writable;
1229 int flags = 0;
1230
1231 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1232 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1233 goto out_unlock;
1234
1235 /*
1236 * If there are potential migrations, wait for completion and retry
1237 * without disrupting NUMA hinting information. Do not relock and
1238 * check_same as the page may no longer be mapped.
1239 */
1240 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1241 page = pmd_page(*vmf->pmd);
1242 spin_unlock(vmf->ptl);
1243 wait_on_page_locked(page);
1244 goto out;
1245 }
1246
1247 page = pmd_page(pmd);
1248 BUG_ON(is_huge_zero_page(page));
1249 page_nid = page_to_nid(page);
1250 last_cpupid = page_cpupid_last(page);
1251 count_vm_numa_event(NUMA_HINT_FAULTS);
1252 if (page_nid == this_nid) {
1253 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1254 flags |= TNF_FAULT_LOCAL;
1255 }
1256
1257 /* See similar comment in do_numa_page for explanation */
1258 if (!pmd_write(pmd))
1259 flags |= TNF_NO_GROUP;
1260
1261 /*
1262 * Acquire the page lock to serialise THP migrations but avoid dropping
1263 * page_table_lock if at all possible
1264 */
1265 page_locked = trylock_page(page);
1266 target_nid = mpol_misplaced(page, vma, haddr);
1267 if (target_nid == -1) {
1268 /* If the page was locked, there are no parallel migrations */
1269 if (page_locked)
1270 goto clear_pmdnuma;
1271 }
1272
1273 /* Migration could have started since the pmd_trans_migrating check */
1274 if (!page_locked) {
1275 spin_unlock(vmf->ptl);
1276 wait_on_page_locked(page);
1277 page_nid = -1;
1278 goto out;
1279 }
1280
1281 /*
1282 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1283 * to serialises splits
1284 */
1285 get_page(page);
1286 spin_unlock(vmf->ptl);
1287 anon_vma = page_lock_anon_vma_read(page);
1288
1289 /* Confirm the PMD did not change while page_table_lock was released */
1290 spin_lock(vmf->ptl);
1291 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1292 unlock_page(page);
1293 put_page(page);
1294 page_nid = -1;
1295 goto out_unlock;
1296 }
1297
1298 /* Bail if we fail to protect against THP splits for any reason */
1299 if (unlikely(!anon_vma)) {
1300 put_page(page);
1301 page_nid = -1;
1302 goto clear_pmdnuma;
1303 }
1304
1305 /*
1306 * Migrate the THP to the requested node, returns with page unlocked
1307 * and access rights restored.
1308 */
1309 spin_unlock(vmf->ptl);
1310 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1311 vmf->pmd, pmd, vmf->address, page, target_nid);
1312 if (migrated) {
1313 flags |= TNF_MIGRATED;
1314 page_nid = target_nid;
1315 } else
1316 flags |= TNF_MIGRATE_FAIL;
1317
1318 goto out;
1319 clear_pmdnuma:
1320 BUG_ON(!PageLocked(page));
1321 was_writable = pmd_write(pmd);
1322 pmd = pmd_modify(pmd, vma->vm_page_prot);
1323 pmd = pmd_mkyoung(pmd);
1324 if (was_writable)
1325 pmd = pmd_mkwrite(pmd);
1326 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1327 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1328 unlock_page(page);
1329 out_unlock:
1330 spin_unlock(vmf->ptl);
1331
1332 out:
1333 if (anon_vma)
1334 page_unlock_anon_vma_read(anon_vma);
1335
1336 if (page_nid != -1)
1337 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1338 vmf->flags);
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * Return true if we do MADV_FREE successfully on entire pmd page.
1345 * Otherwise, return false.
1346 */
1347 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1348 pmd_t *pmd, unsigned long addr, unsigned long next)
1349 {
1350 spinlock_t *ptl;
1351 pmd_t orig_pmd;
1352 struct page *page;
1353 struct mm_struct *mm = tlb->mm;
1354 bool ret = false;
1355
1356 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1357
1358 ptl = pmd_trans_huge_lock(pmd, vma);
1359 if (!ptl)
1360 goto out_unlocked;
1361
1362 orig_pmd = *pmd;
1363 if (is_huge_zero_pmd(orig_pmd))
1364 goto out;
1365
1366 page = pmd_page(orig_pmd);
1367 /*
1368 * If other processes are mapping this page, we couldn't discard
1369 * the page unless they all do MADV_FREE so let's skip the page.
1370 */
1371 if (page_mapcount(page) != 1)
1372 goto out;
1373
1374 if (!trylock_page(page))
1375 goto out;
1376
1377 /*
1378 * If user want to discard part-pages of THP, split it so MADV_FREE
1379 * will deactivate only them.
1380 */
1381 if (next - addr != HPAGE_PMD_SIZE) {
1382 get_page(page);
1383 spin_unlock(ptl);
1384 split_huge_page(page);
1385 put_page(page);
1386 unlock_page(page);
1387 goto out_unlocked;
1388 }
1389
1390 if (PageDirty(page))
1391 ClearPageDirty(page);
1392 unlock_page(page);
1393
1394 if (PageActive(page))
1395 deactivate_page(page);
1396
1397 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1398 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1399 tlb->fullmm);
1400 orig_pmd = pmd_mkold(orig_pmd);
1401 orig_pmd = pmd_mkclean(orig_pmd);
1402
1403 set_pmd_at(mm, addr, pmd, orig_pmd);
1404 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1405 }
1406 ret = true;
1407 out:
1408 spin_unlock(ptl);
1409 out_unlocked:
1410 return ret;
1411 }
1412
1413 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1414 {
1415 pgtable_t pgtable;
1416
1417 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1418 pte_free(mm, pgtable);
1419 atomic_long_dec(&mm->nr_ptes);
1420 }
1421
1422 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1423 pmd_t *pmd, unsigned long addr)
1424 {
1425 pmd_t orig_pmd;
1426 spinlock_t *ptl;
1427
1428 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1429
1430 ptl = __pmd_trans_huge_lock(pmd, vma);
1431 if (!ptl)
1432 return 0;
1433 /*
1434 * For architectures like ppc64 we look at deposited pgtable
1435 * when calling pmdp_huge_get_and_clear. So do the
1436 * pgtable_trans_huge_withdraw after finishing pmdp related
1437 * operations.
1438 */
1439 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1440 tlb->fullmm);
1441 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1442 if (vma_is_dax(vma)) {
1443 spin_unlock(ptl);
1444 if (is_huge_zero_pmd(orig_pmd))
1445 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1446 } else if (is_huge_zero_pmd(orig_pmd)) {
1447 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1448 atomic_long_dec(&tlb->mm->nr_ptes);
1449 spin_unlock(ptl);
1450 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1451 } else {
1452 struct page *page = pmd_page(orig_pmd);
1453 page_remove_rmap(page, true);
1454 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1455 VM_BUG_ON_PAGE(!PageHead(page), page);
1456 if (PageAnon(page)) {
1457 pgtable_t pgtable;
1458 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1459 pte_free(tlb->mm, pgtable);
1460 atomic_long_dec(&tlb->mm->nr_ptes);
1461 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1462 } else {
1463 if (arch_needs_pgtable_deposit())
1464 zap_deposited_table(tlb->mm, pmd);
1465 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1466 }
1467 spin_unlock(ptl);
1468 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1469 }
1470 return 1;
1471 }
1472
1473 #ifndef pmd_move_must_withdraw
1474 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1475 spinlock_t *old_pmd_ptl,
1476 struct vm_area_struct *vma)
1477 {
1478 /*
1479 * With split pmd lock we also need to move preallocated
1480 * PTE page table if new_pmd is on different PMD page table.
1481 *
1482 * We also don't deposit and withdraw tables for file pages.
1483 */
1484 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1485 }
1486 #endif
1487
1488 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1489 unsigned long new_addr, unsigned long old_end,
1490 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1491 {
1492 spinlock_t *old_ptl, *new_ptl;
1493 pmd_t pmd;
1494 struct mm_struct *mm = vma->vm_mm;
1495 bool force_flush = false;
1496
1497 if ((old_addr & ~HPAGE_PMD_MASK) ||
1498 (new_addr & ~HPAGE_PMD_MASK) ||
1499 old_end - old_addr < HPAGE_PMD_SIZE)
1500 return false;
1501
1502 /*
1503 * The destination pmd shouldn't be established, free_pgtables()
1504 * should have release it.
1505 */
1506 if (WARN_ON(!pmd_none(*new_pmd))) {
1507 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1508 return false;
1509 }
1510
1511 /*
1512 * We don't have to worry about the ordering of src and dst
1513 * ptlocks because exclusive mmap_sem prevents deadlock.
1514 */
1515 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1516 if (old_ptl) {
1517 new_ptl = pmd_lockptr(mm, new_pmd);
1518 if (new_ptl != old_ptl)
1519 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1520 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1521 if (pmd_present(pmd) && pmd_dirty(pmd))
1522 force_flush = true;
1523 VM_BUG_ON(!pmd_none(*new_pmd));
1524
1525 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1526 pgtable_t pgtable;
1527 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1528 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1529 }
1530 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1531 if (new_ptl != old_ptl)
1532 spin_unlock(new_ptl);
1533 if (force_flush)
1534 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1535 else
1536 *need_flush = true;
1537 spin_unlock(old_ptl);
1538 return true;
1539 }
1540 return false;
1541 }
1542
1543 /*
1544 * Returns
1545 * - 0 if PMD could not be locked
1546 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1547 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1548 */
1549 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1550 unsigned long addr, pgprot_t newprot, int prot_numa)
1551 {
1552 struct mm_struct *mm = vma->vm_mm;
1553 spinlock_t *ptl;
1554 int ret = 0;
1555
1556 ptl = __pmd_trans_huge_lock(pmd, vma);
1557 if (ptl) {
1558 pmd_t entry;
1559 bool preserve_write = prot_numa && pmd_write(*pmd);
1560 ret = 1;
1561
1562 /*
1563 * Avoid trapping faults against the zero page. The read-only
1564 * data is likely to be read-cached on the local CPU and
1565 * local/remote hits to the zero page are not interesting.
1566 */
1567 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1568 spin_unlock(ptl);
1569 return ret;
1570 }
1571
1572 if (!prot_numa || !pmd_protnone(*pmd)) {
1573 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1574 entry = pmd_modify(entry, newprot);
1575 if (preserve_write)
1576 entry = pmd_mkwrite(entry);
1577 ret = HPAGE_PMD_NR;
1578 set_pmd_at(mm, addr, pmd, entry);
1579 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1580 pmd_write(entry));
1581 }
1582 spin_unlock(ptl);
1583 }
1584
1585 return ret;
1586 }
1587
1588 /*
1589 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1590 *
1591 * Note that if it returns page table lock pointer, this routine returns without
1592 * unlocking page table lock. So callers must unlock it.
1593 */
1594 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1595 {
1596 spinlock_t *ptl;
1597 ptl = pmd_lock(vma->vm_mm, pmd);
1598 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1599 return ptl;
1600 spin_unlock(ptl);
1601 return NULL;
1602 }
1603
1604 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1605 unsigned long haddr, pmd_t *pmd)
1606 {
1607 struct mm_struct *mm = vma->vm_mm;
1608 pgtable_t pgtable;
1609 pmd_t _pmd;
1610 int i;
1611
1612 /* leave pmd empty until pte is filled */
1613 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1614
1615 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1616 pmd_populate(mm, &_pmd, pgtable);
1617
1618 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1619 pte_t *pte, entry;
1620 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1621 entry = pte_mkspecial(entry);
1622 pte = pte_offset_map(&_pmd, haddr);
1623 VM_BUG_ON(!pte_none(*pte));
1624 set_pte_at(mm, haddr, pte, entry);
1625 pte_unmap(pte);
1626 }
1627 smp_wmb(); /* make pte visible before pmd */
1628 pmd_populate(mm, pmd, pgtable);
1629 }
1630
1631 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1632 unsigned long haddr, bool freeze)
1633 {
1634 struct mm_struct *mm = vma->vm_mm;
1635 struct page *page;
1636 pgtable_t pgtable;
1637 pmd_t _pmd;
1638 bool young, write, dirty, soft_dirty;
1639 unsigned long addr;
1640 int i;
1641
1642 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1643 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1644 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1645 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1646
1647 count_vm_event(THP_SPLIT_PMD);
1648
1649 if (!vma_is_anonymous(vma)) {
1650 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1651 /*
1652 * We are going to unmap this huge page. So
1653 * just go ahead and zap it
1654 */
1655 if (arch_needs_pgtable_deposit())
1656 zap_deposited_table(mm, pmd);
1657 if (vma_is_dax(vma))
1658 return;
1659 page = pmd_page(_pmd);
1660 if (!PageReferenced(page) && pmd_young(_pmd))
1661 SetPageReferenced(page);
1662 page_remove_rmap(page, true);
1663 put_page(page);
1664 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1665 return;
1666 } else if (is_huge_zero_pmd(*pmd)) {
1667 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1668 }
1669
1670 page = pmd_page(*pmd);
1671 VM_BUG_ON_PAGE(!page_count(page), page);
1672 page_ref_add(page, HPAGE_PMD_NR - 1);
1673 write = pmd_write(*pmd);
1674 young = pmd_young(*pmd);
1675 dirty = pmd_dirty(*pmd);
1676 soft_dirty = pmd_soft_dirty(*pmd);
1677
1678 pmdp_huge_split_prepare(vma, haddr, pmd);
1679 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1680 pmd_populate(mm, &_pmd, pgtable);
1681
1682 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1683 pte_t entry, *pte;
1684 /*
1685 * Note that NUMA hinting access restrictions are not
1686 * transferred to avoid any possibility of altering
1687 * permissions across VMAs.
1688 */
1689 if (freeze) {
1690 swp_entry_t swp_entry;
1691 swp_entry = make_migration_entry(page + i, write);
1692 entry = swp_entry_to_pte(swp_entry);
1693 if (soft_dirty)
1694 entry = pte_swp_mksoft_dirty(entry);
1695 } else {
1696 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1697 entry = maybe_mkwrite(entry, vma);
1698 if (!write)
1699 entry = pte_wrprotect(entry);
1700 if (!young)
1701 entry = pte_mkold(entry);
1702 if (soft_dirty)
1703 entry = pte_mksoft_dirty(entry);
1704 }
1705 if (dirty)
1706 SetPageDirty(page + i);
1707 pte = pte_offset_map(&_pmd, addr);
1708 BUG_ON(!pte_none(*pte));
1709 set_pte_at(mm, addr, pte, entry);
1710 atomic_inc(&page[i]._mapcount);
1711 pte_unmap(pte);
1712 }
1713
1714 /*
1715 * Set PG_double_map before dropping compound_mapcount to avoid
1716 * false-negative page_mapped().
1717 */
1718 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1719 for (i = 0; i < HPAGE_PMD_NR; i++)
1720 atomic_inc(&page[i]._mapcount);
1721 }
1722
1723 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1724 /* Last compound_mapcount is gone. */
1725 __dec_node_page_state(page, NR_ANON_THPS);
1726 if (TestClearPageDoubleMap(page)) {
1727 /* No need in mapcount reference anymore */
1728 for (i = 0; i < HPAGE_PMD_NR; i++)
1729 atomic_dec(&page[i]._mapcount);
1730 }
1731 }
1732
1733 smp_wmb(); /* make pte visible before pmd */
1734 /*
1735 * Up to this point the pmd is present and huge and userland has the
1736 * whole access to the hugepage during the split (which happens in
1737 * place). If we overwrite the pmd with the not-huge version pointing
1738 * to the pte here (which of course we could if all CPUs were bug
1739 * free), userland could trigger a small page size TLB miss on the
1740 * small sized TLB while the hugepage TLB entry is still established in
1741 * the huge TLB. Some CPU doesn't like that.
1742 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1743 * 383 on page 93. Intel should be safe but is also warns that it's
1744 * only safe if the permission and cache attributes of the two entries
1745 * loaded in the two TLB is identical (which should be the case here).
1746 * But it is generally safer to never allow small and huge TLB entries
1747 * for the same virtual address to be loaded simultaneously. So instead
1748 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1749 * current pmd notpresent (atomically because here the pmd_trans_huge
1750 * and pmd_trans_splitting must remain set at all times on the pmd
1751 * until the split is complete for this pmd), then we flush the SMP TLB
1752 * and finally we write the non-huge version of the pmd entry with
1753 * pmd_populate.
1754 */
1755 pmdp_invalidate(vma, haddr, pmd);
1756 pmd_populate(mm, pmd, pgtable);
1757
1758 if (freeze) {
1759 for (i = 0; i < HPAGE_PMD_NR; i++) {
1760 page_remove_rmap(page + i, false);
1761 put_page(page + i);
1762 }
1763 }
1764 }
1765
1766 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1767 unsigned long address, bool freeze, struct page *page)
1768 {
1769 spinlock_t *ptl;
1770 struct mm_struct *mm = vma->vm_mm;
1771 unsigned long haddr = address & HPAGE_PMD_MASK;
1772
1773 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1774 ptl = pmd_lock(mm, pmd);
1775
1776 /*
1777 * If caller asks to setup a migration entries, we need a page to check
1778 * pmd against. Otherwise we can end up replacing wrong page.
1779 */
1780 VM_BUG_ON(freeze && !page);
1781 if (page && page != pmd_page(*pmd))
1782 goto out;
1783
1784 if (pmd_trans_huge(*pmd)) {
1785 page = pmd_page(*pmd);
1786 if (PageMlocked(page))
1787 clear_page_mlock(page);
1788 } else if (!pmd_devmap(*pmd))
1789 goto out;
1790 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1791 out:
1792 spin_unlock(ptl);
1793 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1794 }
1795
1796 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1797 bool freeze, struct page *page)
1798 {
1799 pgd_t *pgd;
1800 pud_t *pud;
1801 pmd_t *pmd;
1802
1803 pgd = pgd_offset(vma->vm_mm, address);
1804 if (!pgd_present(*pgd))
1805 return;
1806
1807 pud = pud_offset(pgd, address);
1808 if (!pud_present(*pud))
1809 return;
1810
1811 pmd = pmd_offset(pud, address);
1812
1813 __split_huge_pmd(vma, pmd, address, freeze, page);
1814 }
1815
1816 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1817 unsigned long start,
1818 unsigned long end,
1819 long adjust_next)
1820 {
1821 /*
1822 * If the new start address isn't hpage aligned and it could
1823 * previously contain an hugepage: check if we need to split
1824 * an huge pmd.
1825 */
1826 if (start & ~HPAGE_PMD_MASK &&
1827 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1828 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1829 split_huge_pmd_address(vma, start, false, NULL);
1830
1831 /*
1832 * If the new end address isn't hpage aligned and it could
1833 * previously contain an hugepage: check if we need to split
1834 * an huge pmd.
1835 */
1836 if (end & ~HPAGE_PMD_MASK &&
1837 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1838 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1839 split_huge_pmd_address(vma, end, false, NULL);
1840
1841 /*
1842 * If we're also updating the vma->vm_next->vm_start, if the new
1843 * vm_next->vm_start isn't page aligned and it could previously
1844 * contain an hugepage: check if we need to split an huge pmd.
1845 */
1846 if (adjust_next > 0) {
1847 struct vm_area_struct *next = vma->vm_next;
1848 unsigned long nstart = next->vm_start;
1849 nstart += adjust_next << PAGE_SHIFT;
1850 if (nstart & ~HPAGE_PMD_MASK &&
1851 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1852 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1853 split_huge_pmd_address(next, nstart, false, NULL);
1854 }
1855 }
1856
1857 static void freeze_page(struct page *page)
1858 {
1859 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1860 TTU_RMAP_LOCKED;
1861 int i, ret;
1862
1863 VM_BUG_ON_PAGE(!PageHead(page), page);
1864
1865 if (PageAnon(page))
1866 ttu_flags |= TTU_MIGRATION;
1867
1868 /* We only need TTU_SPLIT_HUGE_PMD once */
1869 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1870 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1871 /* Cut short if the page is unmapped */
1872 if (page_count(page) == 1)
1873 return;
1874
1875 ret = try_to_unmap(page + i, ttu_flags);
1876 }
1877 VM_BUG_ON_PAGE(ret, page + i - 1);
1878 }
1879
1880 static void unfreeze_page(struct page *page)
1881 {
1882 int i;
1883
1884 for (i = 0; i < HPAGE_PMD_NR; i++)
1885 remove_migration_ptes(page + i, page + i, true);
1886 }
1887
1888 static void __split_huge_page_tail(struct page *head, int tail,
1889 struct lruvec *lruvec, struct list_head *list)
1890 {
1891 struct page *page_tail = head + tail;
1892
1893 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1894 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1895
1896 /*
1897 * tail_page->_refcount is zero and not changing from under us. But
1898 * get_page_unless_zero() may be running from under us on the
1899 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1900 * atomic_add(), we would then run atomic_set() concurrently with
1901 * get_page_unless_zero(), and atomic_set() is implemented in C not
1902 * using locked ops. spin_unlock on x86 sometime uses locked ops
1903 * because of PPro errata 66, 92, so unless somebody can guarantee
1904 * atomic_set() here would be safe on all archs (and not only on x86),
1905 * it's safer to use atomic_inc()/atomic_add().
1906 */
1907 if (PageAnon(head)) {
1908 page_ref_inc(page_tail);
1909 } else {
1910 /* Additional pin to radix tree */
1911 page_ref_add(page_tail, 2);
1912 }
1913
1914 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1915 page_tail->flags |= (head->flags &
1916 ((1L << PG_referenced) |
1917 (1L << PG_swapbacked) |
1918 (1L << PG_mlocked) |
1919 (1L << PG_uptodate) |
1920 (1L << PG_active) |
1921 (1L << PG_locked) |
1922 (1L << PG_unevictable) |
1923 (1L << PG_dirty)));
1924
1925 /*
1926 * After clearing PageTail the gup refcount can be released.
1927 * Page flags also must be visible before we make the page non-compound.
1928 */
1929 smp_wmb();
1930
1931 clear_compound_head(page_tail);
1932
1933 if (page_is_young(head))
1934 set_page_young(page_tail);
1935 if (page_is_idle(head))
1936 set_page_idle(page_tail);
1937
1938 /* ->mapping in first tail page is compound_mapcount */
1939 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1940 page_tail);
1941 page_tail->mapping = head->mapping;
1942
1943 page_tail->index = head->index + tail;
1944 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1945 lru_add_page_tail(head, page_tail, lruvec, list);
1946 }
1947
1948 static void __split_huge_page(struct page *page, struct list_head *list,
1949 unsigned long flags)
1950 {
1951 struct page *head = compound_head(page);
1952 struct zone *zone = page_zone(head);
1953 struct lruvec *lruvec;
1954 pgoff_t end = -1;
1955 int i;
1956
1957 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1958
1959 /* complete memcg works before add pages to LRU */
1960 mem_cgroup_split_huge_fixup(head);
1961
1962 if (!PageAnon(page))
1963 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1964
1965 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1966 __split_huge_page_tail(head, i, lruvec, list);
1967 /* Some pages can be beyond i_size: drop them from page cache */
1968 if (head[i].index >= end) {
1969 __ClearPageDirty(head + i);
1970 __delete_from_page_cache(head + i, NULL);
1971 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1972 shmem_uncharge(head->mapping->host, 1);
1973 put_page(head + i);
1974 }
1975 }
1976
1977 ClearPageCompound(head);
1978 /* See comment in __split_huge_page_tail() */
1979 if (PageAnon(head)) {
1980 page_ref_inc(head);
1981 } else {
1982 /* Additional pin to radix tree */
1983 page_ref_add(head, 2);
1984 spin_unlock(&head->mapping->tree_lock);
1985 }
1986
1987 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1988
1989 unfreeze_page(head);
1990
1991 for (i = 0; i < HPAGE_PMD_NR; i++) {
1992 struct page *subpage = head + i;
1993 if (subpage == page)
1994 continue;
1995 unlock_page(subpage);
1996
1997 /*
1998 * Subpages may be freed if there wasn't any mapping
1999 * like if add_to_swap() is running on a lru page that
2000 * had its mapping zapped. And freeing these pages
2001 * requires taking the lru_lock so we do the put_page
2002 * of the tail pages after the split is complete.
2003 */
2004 put_page(subpage);
2005 }
2006 }
2007
2008 int total_mapcount(struct page *page)
2009 {
2010 int i, compound, ret;
2011
2012 VM_BUG_ON_PAGE(PageTail(page), page);
2013
2014 if (likely(!PageCompound(page)))
2015 return atomic_read(&page->_mapcount) + 1;
2016
2017 compound = compound_mapcount(page);
2018 if (PageHuge(page))
2019 return compound;
2020 ret = compound;
2021 for (i = 0; i < HPAGE_PMD_NR; i++)
2022 ret += atomic_read(&page[i]._mapcount) + 1;
2023 /* File pages has compound_mapcount included in _mapcount */
2024 if (!PageAnon(page))
2025 return ret - compound * HPAGE_PMD_NR;
2026 if (PageDoubleMap(page))
2027 ret -= HPAGE_PMD_NR;
2028 return ret;
2029 }
2030
2031 /*
2032 * This calculates accurately how many mappings a transparent hugepage
2033 * has (unlike page_mapcount() which isn't fully accurate). This full
2034 * accuracy is primarily needed to know if copy-on-write faults can
2035 * reuse the page and change the mapping to read-write instead of
2036 * copying them. At the same time this returns the total_mapcount too.
2037 *
2038 * The function returns the highest mapcount any one of the subpages
2039 * has. If the return value is one, even if different processes are
2040 * mapping different subpages of the transparent hugepage, they can
2041 * all reuse it, because each process is reusing a different subpage.
2042 *
2043 * The total_mapcount is instead counting all virtual mappings of the
2044 * subpages. If the total_mapcount is equal to "one", it tells the
2045 * caller all mappings belong to the same "mm" and in turn the
2046 * anon_vma of the transparent hugepage can become the vma->anon_vma
2047 * local one as no other process may be mapping any of the subpages.
2048 *
2049 * It would be more accurate to replace page_mapcount() with
2050 * page_trans_huge_mapcount(), however we only use
2051 * page_trans_huge_mapcount() in the copy-on-write faults where we
2052 * need full accuracy to avoid breaking page pinning, because
2053 * page_trans_huge_mapcount() is slower than page_mapcount().
2054 */
2055 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2056 {
2057 int i, ret, _total_mapcount, mapcount;
2058
2059 /* hugetlbfs shouldn't call it */
2060 VM_BUG_ON_PAGE(PageHuge(page), page);
2061
2062 if (likely(!PageTransCompound(page))) {
2063 mapcount = atomic_read(&page->_mapcount) + 1;
2064 if (total_mapcount)
2065 *total_mapcount = mapcount;
2066 return mapcount;
2067 }
2068
2069 page = compound_head(page);
2070
2071 _total_mapcount = ret = 0;
2072 for (i = 0; i < HPAGE_PMD_NR; i++) {
2073 mapcount = atomic_read(&page[i]._mapcount) + 1;
2074 ret = max(ret, mapcount);
2075 _total_mapcount += mapcount;
2076 }
2077 if (PageDoubleMap(page)) {
2078 ret -= 1;
2079 _total_mapcount -= HPAGE_PMD_NR;
2080 }
2081 mapcount = compound_mapcount(page);
2082 ret += mapcount;
2083 _total_mapcount += mapcount;
2084 if (total_mapcount)
2085 *total_mapcount = _total_mapcount;
2086 return ret;
2087 }
2088
2089 /*
2090 * This function splits huge page into normal pages. @page can point to any
2091 * subpage of huge page to split. Split doesn't change the position of @page.
2092 *
2093 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2094 * The huge page must be locked.
2095 *
2096 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2097 *
2098 * Both head page and tail pages will inherit mapping, flags, and so on from
2099 * the hugepage.
2100 *
2101 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2102 * they are not mapped.
2103 *
2104 * Returns 0 if the hugepage is split successfully.
2105 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2106 * us.
2107 */
2108 int split_huge_page_to_list(struct page *page, struct list_head *list)
2109 {
2110 struct page *head = compound_head(page);
2111 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2112 struct anon_vma *anon_vma = NULL;
2113 struct address_space *mapping = NULL;
2114 int count, mapcount, extra_pins, ret;
2115 bool mlocked;
2116 unsigned long flags;
2117
2118 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2119 VM_BUG_ON_PAGE(!PageLocked(page), page);
2120 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2121 VM_BUG_ON_PAGE(!PageCompound(page), page);
2122
2123 if (PageAnon(head)) {
2124 /*
2125 * The caller does not necessarily hold an mmap_sem that would
2126 * prevent the anon_vma disappearing so we first we take a
2127 * reference to it and then lock the anon_vma for write. This
2128 * is similar to page_lock_anon_vma_read except the write lock
2129 * is taken to serialise against parallel split or collapse
2130 * operations.
2131 */
2132 anon_vma = page_get_anon_vma(head);
2133 if (!anon_vma) {
2134 ret = -EBUSY;
2135 goto out;
2136 }
2137 extra_pins = 0;
2138 mapping = NULL;
2139 anon_vma_lock_write(anon_vma);
2140 } else {
2141 mapping = head->mapping;
2142
2143 /* Truncated ? */
2144 if (!mapping) {
2145 ret = -EBUSY;
2146 goto out;
2147 }
2148
2149 /* Addidional pins from radix tree */
2150 extra_pins = HPAGE_PMD_NR;
2151 anon_vma = NULL;
2152 i_mmap_lock_read(mapping);
2153 }
2154
2155 /*
2156 * Racy check if we can split the page, before freeze_page() will
2157 * split PMDs
2158 */
2159 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2160 ret = -EBUSY;
2161 goto out_unlock;
2162 }
2163
2164 mlocked = PageMlocked(page);
2165 freeze_page(head);
2166 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2167
2168 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2169 if (mlocked)
2170 lru_add_drain();
2171
2172 /* prevent PageLRU to go away from under us, and freeze lru stats */
2173 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2174
2175 if (mapping) {
2176 void **pslot;
2177
2178 spin_lock(&mapping->tree_lock);
2179 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2180 page_index(head));
2181 /*
2182 * Check if the head page is present in radix tree.
2183 * We assume all tail are present too, if head is there.
2184 */
2185 if (radix_tree_deref_slot_protected(pslot,
2186 &mapping->tree_lock) != head)
2187 goto fail;
2188 }
2189
2190 /* Prevent deferred_split_scan() touching ->_refcount */
2191 spin_lock(&pgdata->split_queue_lock);
2192 count = page_count(head);
2193 mapcount = total_mapcount(head);
2194 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2195 if (!list_empty(page_deferred_list(head))) {
2196 pgdata->split_queue_len--;
2197 list_del(page_deferred_list(head));
2198 }
2199 if (mapping)
2200 __dec_node_page_state(page, NR_SHMEM_THPS);
2201 spin_unlock(&pgdata->split_queue_lock);
2202 __split_huge_page(page, list, flags);
2203 ret = 0;
2204 } else {
2205 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2206 pr_alert("total_mapcount: %u, page_count(): %u\n",
2207 mapcount, count);
2208 if (PageTail(page))
2209 dump_page(head, NULL);
2210 dump_page(page, "total_mapcount(head) > 0");
2211 BUG();
2212 }
2213 spin_unlock(&pgdata->split_queue_lock);
2214 fail: if (mapping)
2215 spin_unlock(&mapping->tree_lock);
2216 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2217 unfreeze_page(head);
2218 ret = -EBUSY;
2219 }
2220
2221 out_unlock:
2222 if (anon_vma) {
2223 anon_vma_unlock_write(anon_vma);
2224 put_anon_vma(anon_vma);
2225 }
2226 if (mapping)
2227 i_mmap_unlock_read(mapping);
2228 out:
2229 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2230 return ret;
2231 }
2232
2233 void free_transhuge_page(struct page *page)
2234 {
2235 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2236 unsigned long flags;
2237
2238 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2239 if (!list_empty(page_deferred_list(page))) {
2240 pgdata->split_queue_len--;
2241 list_del(page_deferred_list(page));
2242 }
2243 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2244 free_compound_page(page);
2245 }
2246
2247 void deferred_split_huge_page(struct page *page)
2248 {
2249 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2250 unsigned long flags;
2251
2252 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2253
2254 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2255 if (list_empty(page_deferred_list(page))) {
2256 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2257 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2258 pgdata->split_queue_len++;
2259 }
2260 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2261 }
2262
2263 static unsigned long deferred_split_count(struct shrinker *shrink,
2264 struct shrink_control *sc)
2265 {
2266 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2267 return ACCESS_ONCE(pgdata->split_queue_len);
2268 }
2269
2270 static unsigned long deferred_split_scan(struct shrinker *shrink,
2271 struct shrink_control *sc)
2272 {
2273 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2274 unsigned long flags;
2275 LIST_HEAD(list), *pos, *next;
2276 struct page *page;
2277 int split = 0;
2278
2279 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2280 /* Take pin on all head pages to avoid freeing them under us */
2281 list_for_each_safe(pos, next, &pgdata->split_queue) {
2282 page = list_entry((void *)pos, struct page, mapping);
2283 page = compound_head(page);
2284 if (get_page_unless_zero(page)) {
2285 list_move(page_deferred_list(page), &list);
2286 } else {
2287 /* We lost race with put_compound_page() */
2288 list_del_init(page_deferred_list(page));
2289 pgdata->split_queue_len--;
2290 }
2291 if (!--sc->nr_to_scan)
2292 break;
2293 }
2294 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2295
2296 list_for_each_safe(pos, next, &list) {
2297 page = list_entry((void *)pos, struct page, mapping);
2298 lock_page(page);
2299 /* split_huge_page() removes page from list on success */
2300 if (!split_huge_page(page))
2301 split++;
2302 unlock_page(page);
2303 put_page(page);
2304 }
2305
2306 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2307 list_splice_tail(&list, &pgdata->split_queue);
2308 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2309
2310 /*
2311 * Stop shrinker if we didn't split any page, but the queue is empty.
2312 * This can happen if pages were freed under us.
2313 */
2314 if (!split && list_empty(&pgdata->split_queue))
2315 return SHRINK_STOP;
2316 return split;
2317 }
2318
2319 static struct shrinker deferred_split_shrinker = {
2320 .count_objects = deferred_split_count,
2321 .scan_objects = deferred_split_scan,
2322 .seeks = DEFAULT_SEEKS,
2323 .flags = SHRINKER_NUMA_AWARE,
2324 };
2325
2326 #ifdef CONFIG_DEBUG_FS
2327 static int split_huge_pages_set(void *data, u64 val)
2328 {
2329 struct zone *zone;
2330 struct page *page;
2331 unsigned long pfn, max_zone_pfn;
2332 unsigned long total = 0, split = 0;
2333
2334 if (val != 1)
2335 return -EINVAL;
2336
2337 for_each_populated_zone(zone) {
2338 max_zone_pfn = zone_end_pfn(zone);
2339 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2340 if (!pfn_valid(pfn))
2341 continue;
2342
2343 page = pfn_to_page(pfn);
2344 if (!get_page_unless_zero(page))
2345 continue;
2346
2347 if (zone != page_zone(page))
2348 goto next;
2349
2350 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2351 goto next;
2352
2353 total++;
2354 lock_page(page);
2355 if (!split_huge_page(page))
2356 split++;
2357 unlock_page(page);
2358 next:
2359 put_page(page);
2360 }
2361 }
2362
2363 pr_info("%lu of %lu THP split\n", split, total);
2364
2365 return 0;
2366 }
2367 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2368 "%llu\n");
2369
2370 static int __init split_huge_pages_debugfs(void)
2371 {
2372 void *ret;
2373
2374 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2375 &split_huge_pages_fops);
2376 if (!ret)
2377 pr_warn("Failed to create split_huge_pages in debugfs");
2378 return 0;
2379 }
2380 late_initcall(split_huge_pages_debugfs);
2381 #endif