]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/huge_memory.c
Merge branch 'for-4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[mirror_ubuntu-zesty-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 /*
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
45 */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56
57 static struct shrinker deferred_split_shrinker;
58
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61
62 static struct page *get_huge_zero_page(void)
63 {
64 struct page *zero_page;
65 retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
87 }
88
89 static void put_huge_zero_page(void)
90 {
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110 }
111
112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116 }
117
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127 {
128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
131 __free_pages(zero_page, compound_order(zero_page));
132 return HPAGE_PMD_NR;
133 }
134
135 return 0;
136 }
137
138 static struct shrinker huge_zero_page_shrinker = {
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
141 .seeks = DEFAULT_SEEKS,
142 };
143
144 #ifdef CONFIG_SYSFS
145
146 static ssize_t triple_flag_store(struct kobject *kobj,
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
150 enum transparent_hugepage_flag deferred,
151 enum transparent_hugepage_flag req_madv)
152 {
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
161 min(sizeof("always")-1, count))) {
162 clear_bit(deferred, &transparent_hugepage_flags);
163 clear_bit(req_madv, &transparent_hugepage_flags);
164 set_bit(enabled, &transparent_hugepage_flags);
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
168 clear_bit(deferred, &transparent_hugepage_flags);
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
174 clear_bit(deferred, &transparent_hugepage_flags);
175 } else
176 return -EINVAL;
177
178 return count;
179 }
180
181 static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
183 {
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
190 }
191
192 static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195 {
196 ssize_t ret;
197
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202
203 if (ret > 0) {
204 int err = start_stop_khugepaged();
205 if (err)
206 ret = err;
207 }
208
209 return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
213
214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
217 {
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
220 }
221
222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
226 {
227 unsigned long value;
228 int ret;
229
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
235
236 if (value)
237 set_bit(flag, &transparent_hugepage_flags);
238 else
239 clear_bit(flag, &transparent_hugepage_flags);
240
241 return count;
242 }
243
244 /*
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
248 */
249 static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
251 {
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
260
261 }
262 static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265 {
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270 }
271 static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
273
274 static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276 {
277 return single_hugepage_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279 }
280 static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
282 {
283 return single_hugepage_flag_store(kobj, attr, buf, count,
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285 }
286 static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288 #ifdef CONFIG_DEBUG_VM
289 static ssize_t debug_cow_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291 {
292 return single_hugepage_flag_show(kobj, attr, buf,
293 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
294 }
295 static ssize_t debug_cow_store(struct kobject *kobj,
296 struct kobj_attribute *attr,
297 const char *buf, size_t count)
298 {
299 return single_hugepage_flag_store(kobj, attr, buf, count,
300 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
301 }
302 static struct kobj_attribute debug_cow_attr =
303 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
304 #endif /* CONFIG_DEBUG_VM */
305
306 static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
309 &use_zero_page_attr.attr,
310 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
311 &shmem_enabled_attr.attr,
312 #endif
313 #ifdef CONFIG_DEBUG_VM
314 &debug_cow_attr.attr,
315 #endif
316 NULL,
317 };
318
319 static struct attribute_group hugepage_attr_group = {
320 .attrs = hugepage_attr,
321 };
322
323 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
324 {
325 int err;
326
327 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
328 if (unlikely(!*hugepage_kobj)) {
329 pr_err("failed to create transparent hugepage kobject\n");
330 return -ENOMEM;
331 }
332
333 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
334 if (err) {
335 pr_err("failed to register transparent hugepage group\n");
336 goto delete_obj;
337 }
338
339 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
340 if (err) {
341 pr_err("failed to register transparent hugepage group\n");
342 goto remove_hp_group;
343 }
344
345 return 0;
346
347 remove_hp_group:
348 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
349 delete_obj:
350 kobject_put(*hugepage_kobj);
351 return err;
352 }
353
354 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
355 {
356 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
357 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
358 kobject_put(hugepage_kobj);
359 }
360 #else
361 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
362 {
363 return 0;
364 }
365
366 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 }
369 #endif /* CONFIG_SYSFS */
370
371 static int __init hugepage_init(void)
372 {
373 int err;
374 struct kobject *hugepage_kobj;
375
376 if (!has_transparent_hugepage()) {
377 transparent_hugepage_flags = 0;
378 return -EINVAL;
379 }
380
381 /*
382 * hugepages can't be allocated by the buddy allocator
383 */
384 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
385 /*
386 * we use page->mapping and page->index in second tail page
387 * as list_head: assuming THP order >= 2
388 */
389 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
390
391 err = hugepage_init_sysfs(&hugepage_kobj);
392 if (err)
393 goto err_sysfs;
394
395 err = khugepaged_init();
396 if (err)
397 goto err_slab;
398
399 err = register_shrinker(&huge_zero_page_shrinker);
400 if (err)
401 goto err_hzp_shrinker;
402 err = register_shrinker(&deferred_split_shrinker);
403 if (err)
404 goto err_split_shrinker;
405
406 /*
407 * By default disable transparent hugepages on smaller systems,
408 * where the extra memory used could hurt more than TLB overhead
409 * is likely to save. The admin can still enable it through /sys.
410 */
411 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
412 transparent_hugepage_flags = 0;
413 return 0;
414 }
415
416 err = start_stop_khugepaged();
417 if (err)
418 goto err_khugepaged;
419
420 return 0;
421 err_khugepaged:
422 unregister_shrinker(&deferred_split_shrinker);
423 err_split_shrinker:
424 unregister_shrinker(&huge_zero_page_shrinker);
425 err_hzp_shrinker:
426 khugepaged_destroy();
427 err_slab:
428 hugepage_exit_sysfs(hugepage_kobj);
429 err_sysfs:
430 return err;
431 }
432 subsys_initcall(hugepage_init);
433
434 static int __init setup_transparent_hugepage(char *str)
435 {
436 int ret = 0;
437 if (!str)
438 goto out;
439 if (!strcmp(str, "always")) {
440 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
441 &transparent_hugepage_flags);
442 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
443 &transparent_hugepage_flags);
444 ret = 1;
445 } else if (!strcmp(str, "madvise")) {
446 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
447 &transparent_hugepage_flags);
448 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
449 &transparent_hugepage_flags);
450 ret = 1;
451 } else if (!strcmp(str, "never")) {
452 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 }
458 out:
459 if (!ret)
460 pr_warn("transparent_hugepage= cannot parse, ignored\n");
461 return ret;
462 }
463 __setup("transparent_hugepage=", setup_transparent_hugepage);
464
465 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
466 {
467 if (likely(vma->vm_flags & VM_WRITE))
468 pmd = pmd_mkwrite(pmd);
469 return pmd;
470 }
471
472 static inline struct list_head *page_deferred_list(struct page *page)
473 {
474 /*
475 * ->lru in the tail pages is occupied by compound_head.
476 * Let's use ->mapping + ->index in the second tail page as list_head.
477 */
478 return (struct list_head *)&page[2].mapping;
479 }
480
481 void prep_transhuge_page(struct page *page)
482 {
483 /*
484 * we use page->mapping and page->indexlru in second tail page
485 * as list_head: assuming THP order >= 2
486 */
487
488 INIT_LIST_HEAD(page_deferred_list(page));
489 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
490 }
491
492 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
493 loff_t off, unsigned long flags, unsigned long size)
494 {
495 unsigned long addr;
496 loff_t off_end = off + len;
497 loff_t off_align = round_up(off, size);
498 unsigned long len_pad;
499
500 if (off_end <= off_align || (off_end - off_align) < size)
501 return 0;
502
503 len_pad = len + size;
504 if (len_pad < len || (off + len_pad) < off)
505 return 0;
506
507 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
508 off >> PAGE_SHIFT, flags);
509 if (IS_ERR_VALUE(addr))
510 return 0;
511
512 addr += (off - addr) & (size - 1);
513 return addr;
514 }
515
516 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
517 unsigned long len, unsigned long pgoff, unsigned long flags)
518 {
519 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
520
521 if (addr)
522 goto out;
523 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
524 goto out;
525
526 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
527 if (addr)
528 return addr;
529
530 out:
531 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
532 }
533 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
534
535 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
536 gfp_t gfp)
537 {
538 struct vm_area_struct *vma = fe->vma;
539 struct mem_cgroup *memcg;
540 pgtable_t pgtable;
541 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
542
543 VM_BUG_ON_PAGE(!PageCompound(page), page);
544
545 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
546 put_page(page);
547 count_vm_event(THP_FAULT_FALLBACK);
548 return VM_FAULT_FALLBACK;
549 }
550
551 pgtable = pte_alloc_one(vma->vm_mm, haddr);
552 if (unlikely(!pgtable)) {
553 mem_cgroup_cancel_charge(page, memcg, true);
554 put_page(page);
555 return VM_FAULT_OOM;
556 }
557
558 clear_huge_page(page, haddr, HPAGE_PMD_NR);
559 /*
560 * The memory barrier inside __SetPageUptodate makes sure that
561 * clear_huge_page writes become visible before the set_pmd_at()
562 * write.
563 */
564 __SetPageUptodate(page);
565
566 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
567 if (unlikely(!pmd_none(*fe->pmd))) {
568 spin_unlock(fe->ptl);
569 mem_cgroup_cancel_charge(page, memcg, true);
570 put_page(page);
571 pte_free(vma->vm_mm, pgtable);
572 } else {
573 pmd_t entry;
574
575 /* Deliver the page fault to userland */
576 if (userfaultfd_missing(vma)) {
577 int ret;
578
579 spin_unlock(fe->ptl);
580 mem_cgroup_cancel_charge(page, memcg, true);
581 put_page(page);
582 pte_free(vma->vm_mm, pgtable);
583 ret = handle_userfault(fe, VM_UFFD_MISSING);
584 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
585 return ret;
586 }
587
588 entry = mk_huge_pmd(page, vma->vm_page_prot);
589 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
590 page_add_new_anon_rmap(page, vma, haddr, true);
591 mem_cgroup_commit_charge(page, memcg, false, true);
592 lru_cache_add_active_or_unevictable(page, vma);
593 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
594 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
595 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
596 atomic_long_inc(&vma->vm_mm->nr_ptes);
597 spin_unlock(fe->ptl);
598 count_vm_event(THP_FAULT_ALLOC);
599 }
600
601 return 0;
602 }
603
604 /*
605 * If THP defrag is set to always then directly reclaim/compact as necessary
606 * If set to defer then do only background reclaim/compact and defer to khugepaged
607 * If set to madvise and the VMA is flagged then directly reclaim/compact
608 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
609 */
610 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
611 {
612 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
613
614 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
615 &transparent_hugepage_flags) && vma_madvised)
616 return GFP_TRANSHUGE;
617 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
618 &transparent_hugepage_flags))
619 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
620 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
621 &transparent_hugepage_flags))
622 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
623
624 return GFP_TRANSHUGE_LIGHT;
625 }
626
627 /* Caller must hold page table lock. */
628 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
629 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
630 struct page *zero_page)
631 {
632 pmd_t entry;
633 if (!pmd_none(*pmd))
634 return false;
635 entry = mk_pmd(zero_page, vma->vm_page_prot);
636 entry = pmd_mkhuge(entry);
637 if (pgtable)
638 pgtable_trans_huge_deposit(mm, pmd, pgtable);
639 set_pmd_at(mm, haddr, pmd, entry);
640 atomic_long_inc(&mm->nr_ptes);
641 return true;
642 }
643
644 int do_huge_pmd_anonymous_page(struct fault_env *fe)
645 {
646 struct vm_area_struct *vma = fe->vma;
647 gfp_t gfp;
648 struct page *page;
649 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
650
651 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
652 return VM_FAULT_FALLBACK;
653 if (unlikely(anon_vma_prepare(vma)))
654 return VM_FAULT_OOM;
655 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
656 return VM_FAULT_OOM;
657 if (!(fe->flags & FAULT_FLAG_WRITE) &&
658 !mm_forbids_zeropage(vma->vm_mm) &&
659 transparent_hugepage_use_zero_page()) {
660 pgtable_t pgtable;
661 struct page *zero_page;
662 bool set;
663 int ret;
664 pgtable = pte_alloc_one(vma->vm_mm, haddr);
665 if (unlikely(!pgtable))
666 return VM_FAULT_OOM;
667 zero_page = mm_get_huge_zero_page(vma->vm_mm);
668 if (unlikely(!zero_page)) {
669 pte_free(vma->vm_mm, pgtable);
670 count_vm_event(THP_FAULT_FALLBACK);
671 return VM_FAULT_FALLBACK;
672 }
673 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
674 ret = 0;
675 set = false;
676 if (pmd_none(*fe->pmd)) {
677 if (userfaultfd_missing(vma)) {
678 spin_unlock(fe->ptl);
679 ret = handle_userfault(fe, VM_UFFD_MISSING);
680 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
681 } else {
682 set_huge_zero_page(pgtable, vma->vm_mm, vma,
683 haddr, fe->pmd, zero_page);
684 spin_unlock(fe->ptl);
685 set = true;
686 }
687 } else
688 spin_unlock(fe->ptl);
689 if (!set)
690 pte_free(vma->vm_mm, pgtable);
691 return ret;
692 }
693 gfp = alloc_hugepage_direct_gfpmask(vma);
694 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
695 if (unlikely(!page)) {
696 count_vm_event(THP_FAULT_FALLBACK);
697 return VM_FAULT_FALLBACK;
698 }
699 prep_transhuge_page(page);
700 return __do_huge_pmd_anonymous_page(fe, page, gfp);
701 }
702
703 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
704 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
705 {
706 struct mm_struct *mm = vma->vm_mm;
707 pmd_t entry;
708 spinlock_t *ptl;
709
710 ptl = pmd_lock(mm, pmd);
711 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
712 if (pfn_t_devmap(pfn))
713 entry = pmd_mkdevmap(entry);
714 if (write) {
715 entry = pmd_mkyoung(pmd_mkdirty(entry));
716 entry = maybe_pmd_mkwrite(entry, vma);
717 }
718 set_pmd_at(mm, addr, pmd, entry);
719 update_mmu_cache_pmd(vma, addr, pmd);
720 spin_unlock(ptl);
721 }
722
723 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
724 pmd_t *pmd, pfn_t pfn, bool write)
725 {
726 pgprot_t pgprot = vma->vm_page_prot;
727 /*
728 * If we had pmd_special, we could avoid all these restrictions,
729 * but we need to be consistent with PTEs and architectures that
730 * can't support a 'special' bit.
731 */
732 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
733 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
734 (VM_PFNMAP|VM_MIXEDMAP));
735 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
736 BUG_ON(!pfn_t_devmap(pfn));
737
738 if (addr < vma->vm_start || addr >= vma->vm_end)
739 return VM_FAULT_SIGBUS;
740 if (track_pfn_insert(vma, &pgprot, pfn))
741 return VM_FAULT_SIGBUS;
742 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
743 return VM_FAULT_NOPAGE;
744 }
745 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
746
747 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
748 pmd_t *pmd)
749 {
750 pmd_t _pmd;
751
752 /*
753 * We should set the dirty bit only for FOLL_WRITE but for now
754 * the dirty bit in the pmd is meaningless. And if the dirty
755 * bit will become meaningful and we'll only set it with
756 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
757 * set the young bit, instead of the current set_pmd_at.
758 */
759 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
760 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
761 pmd, _pmd, 1))
762 update_mmu_cache_pmd(vma, addr, pmd);
763 }
764
765 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
766 pmd_t *pmd, int flags)
767 {
768 unsigned long pfn = pmd_pfn(*pmd);
769 struct mm_struct *mm = vma->vm_mm;
770 struct dev_pagemap *pgmap;
771 struct page *page;
772
773 assert_spin_locked(pmd_lockptr(mm, pmd));
774
775 if (flags & FOLL_WRITE && !pmd_write(*pmd))
776 return NULL;
777
778 if (pmd_present(*pmd) && pmd_devmap(*pmd))
779 /* pass */;
780 else
781 return NULL;
782
783 if (flags & FOLL_TOUCH)
784 touch_pmd(vma, addr, pmd);
785
786 /*
787 * device mapped pages can only be returned if the
788 * caller will manage the page reference count.
789 */
790 if (!(flags & FOLL_GET))
791 return ERR_PTR(-EEXIST);
792
793 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
794 pgmap = get_dev_pagemap(pfn, NULL);
795 if (!pgmap)
796 return ERR_PTR(-EFAULT);
797 page = pfn_to_page(pfn);
798 get_page(page);
799 put_dev_pagemap(pgmap);
800
801 return page;
802 }
803
804 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
805 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
806 struct vm_area_struct *vma)
807 {
808 spinlock_t *dst_ptl, *src_ptl;
809 struct page *src_page;
810 pmd_t pmd;
811 pgtable_t pgtable = NULL;
812 int ret = -ENOMEM;
813
814 /* Skip if can be re-fill on fault */
815 if (!vma_is_anonymous(vma))
816 return 0;
817
818 pgtable = pte_alloc_one(dst_mm, addr);
819 if (unlikely(!pgtable))
820 goto out;
821
822 dst_ptl = pmd_lock(dst_mm, dst_pmd);
823 src_ptl = pmd_lockptr(src_mm, src_pmd);
824 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
825
826 ret = -EAGAIN;
827 pmd = *src_pmd;
828 if (unlikely(!pmd_trans_huge(pmd))) {
829 pte_free(dst_mm, pgtable);
830 goto out_unlock;
831 }
832 /*
833 * When page table lock is held, the huge zero pmd should not be
834 * under splitting since we don't split the page itself, only pmd to
835 * a page table.
836 */
837 if (is_huge_zero_pmd(pmd)) {
838 struct page *zero_page;
839 /*
840 * get_huge_zero_page() will never allocate a new page here,
841 * since we already have a zero page to copy. It just takes a
842 * reference.
843 */
844 zero_page = mm_get_huge_zero_page(dst_mm);
845 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
846 zero_page);
847 ret = 0;
848 goto out_unlock;
849 }
850
851 src_page = pmd_page(pmd);
852 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
853 get_page(src_page);
854 page_dup_rmap(src_page, true);
855 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
856 atomic_long_inc(&dst_mm->nr_ptes);
857 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
858
859 pmdp_set_wrprotect(src_mm, addr, src_pmd);
860 pmd = pmd_mkold(pmd_wrprotect(pmd));
861 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
862
863 ret = 0;
864 out_unlock:
865 spin_unlock(src_ptl);
866 spin_unlock(dst_ptl);
867 out:
868 return ret;
869 }
870
871 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
872 {
873 pmd_t entry;
874 unsigned long haddr;
875
876 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
877 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
878 goto unlock;
879
880 entry = pmd_mkyoung(orig_pmd);
881 haddr = fe->address & HPAGE_PMD_MASK;
882 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
883 fe->flags & FAULT_FLAG_WRITE))
884 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
885
886 unlock:
887 spin_unlock(fe->ptl);
888 }
889
890 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
891 struct page *page)
892 {
893 struct vm_area_struct *vma = fe->vma;
894 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
895 struct mem_cgroup *memcg;
896 pgtable_t pgtable;
897 pmd_t _pmd;
898 int ret = 0, i;
899 struct page **pages;
900 unsigned long mmun_start; /* For mmu_notifiers */
901 unsigned long mmun_end; /* For mmu_notifiers */
902
903 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
904 GFP_KERNEL);
905 if (unlikely(!pages)) {
906 ret |= VM_FAULT_OOM;
907 goto out;
908 }
909
910 for (i = 0; i < HPAGE_PMD_NR; i++) {
911 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
912 __GFP_OTHER_NODE, vma,
913 fe->address, page_to_nid(page));
914 if (unlikely(!pages[i] ||
915 mem_cgroup_try_charge(pages[i], vma->vm_mm,
916 GFP_KERNEL, &memcg, false))) {
917 if (pages[i])
918 put_page(pages[i]);
919 while (--i >= 0) {
920 memcg = (void *)page_private(pages[i]);
921 set_page_private(pages[i], 0);
922 mem_cgroup_cancel_charge(pages[i], memcg,
923 false);
924 put_page(pages[i]);
925 }
926 kfree(pages);
927 ret |= VM_FAULT_OOM;
928 goto out;
929 }
930 set_page_private(pages[i], (unsigned long)memcg);
931 }
932
933 for (i = 0; i < HPAGE_PMD_NR; i++) {
934 copy_user_highpage(pages[i], page + i,
935 haddr + PAGE_SIZE * i, vma);
936 __SetPageUptodate(pages[i]);
937 cond_resched();
938 }
939
940 mmun_start = haddr;
941 mmun_end = haddr + HPAGE_PMD_SIZE;
942 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
943
944 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
945 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
946 goto out_free_pages;
947 VM_BUG_ON_PAGE(!PageHead(page), page);
948
949 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
950 /* leave pmd empty until pte is filled */
951
952 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
953 pmd_populate(vma->vm_mm, &_pmd, pgtable);
954
955 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
956 pte_t entry;
957 entry = mk_pte(pages[i], vma->vm_page_prot);
958 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
959 memcg = (void *)page_private(pages[i]);
960 set_page_private(pages[i], 0);
961 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
962 mem_cgroup_commit_charge(pages[i], memcg, false, false);
963 lru_cache_add_active_or_unevictable(pages[i], vma);
964 fe->pte = pte_offset_map(&_pmd, haddr);
965 VM_BUG_ON(!pte_none(*fe->pte));
966 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
967 pte_unmap(fe->pte);
968 }
969 kfree(pages);
970
971 smp_wmb(); /* make pte visible before pmd */
972 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
973 page_remove_rmap(page, true);
974 spin_unlock(fe->ptl);
975
976 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
977
978 ret |= VM_FAULT_WRITE;
979 put_page(page);
980
981 out:
982 return ret;
983
984 out_free_pages:
985 spin_unlock(fe->ptl);
986 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
987 for (i = 0; i < HPAGE_PMD_NR; i++) {
988 memcg = (void *)page_private(pages[i]);
989 set_page_private(pages[i], 0);
990 mem_cgroup_cancel_charge(pages[i], memcg, false);
991 put_page(pages[i]);
992 }
993 kfree(pages);
994 goto out;
995 }
996
997 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
998 {
999 struct vm_area_struct *vma = fe->vma;
1000 struct page *page = NULL, *new_page;
1001 struct mem_cgroup *memcg;
1002 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1003 unsigned long mmun_start; /* For mmu_notifiers */
1004 unsigned long mmun_end; /* For mmu_notifiers */
1005 gfp_t huge_gfp; /* for allocation and charge */
1006 int ret = 0;
1007
1008 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1009 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1010 if (is_huge_zero_pmd(orig_pmd))
1011 goto alloc;
1012 spin_lock(fe->ptl);
1013 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1014 goto out_unlock;
1015
1016 page = pmd_page(orig_pmd);
1017 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1018 /*
1019 * We can only reuse the page if nobody else maps the huge page or it's
1020 * part.
1021 */
1022 if (page_trans_huge_mapcount(page, NULL) == 1) {
1023 pmd_t entry;
1024 entry = pmd_mkyoung(orig_pmd);
1025 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1026 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1027 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1028 ret |= VM_FAULT_WRITE;
1029 goto out_unlock;
1030 }
1031 get_page(page);
1032 spin_unlock(fe->ptl);
1033 alloc:
1034 if (transparent_hugepage_enabled(vma) &&
1035 !transparent_hugepage_debug_cow()) {
1036 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1037 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1038 } else
1039 new_page = NULL;
1040
1041 if (likely(new_page)) {
1042 prep_transhuge_page(new_page);
1043 } else {
1044 if (!page) {
1045 split_huge_pmd(vma, fe->pmd, fe->address);
1046 ret |= VM_FAULT_FALLBACK;
1047 } else {
1048 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1049 if (ret & VM_FAULT_OOM) {
1050 split_huge_pmd(vma, fe->pmd, fe->address);
1051 ret |= VM_FAULT_FALLBACK;
1052 }
1053 put_page(page);
1054 }
1055 count_vm_event(THP_FAULT_FALLBACK);
1056 goto out;
1057 }
1058
1059 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1060 huge_gfp, &memcg, true))) {
1061 put_page(new_page);
1062 split_huge_pmd(vma, fe->pmd, fe->address);
1063 if (page)
1064 put_page(page);
1065 ret |= VM_FAULT_FALLBACK;
1066 count_vm_event(THP_FAULT_FALLBACK);
1067 goto out;
1068 }
1069
1070 count_vm_event(THP_FAULT_ALLOC);
1071
1072 if (!page)
1073 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1074 else
1075 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1076 __SetPageUptodate(new_page);
1077
1078 mmun_start = haddr;
1079 mmun_end = haddr + HPAGE_PMD_SIZE;
1080 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1081
1082 spin_lock(fe->ptl);
1083 if (page)
1084 put_page(page);
1085 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1086 spin_unlock(fe->ptl);
1087 mem_cgroup_cancel_charge(new_page, memcg, true);
1088 put_page(new_page);
1089 goto out_mn;
1090 } else {
1091 pmd_t entry;
1092 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1093 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1094 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1095 page_add_new_anon_rmap(new_page, vma, haddr, true);
1096 mem_cgroup_commit_charge(new_page, memcg, false, true);
1097 lru_cache_add_active_or_unevictable(new_page, vma);
1098 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1099 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1100 if (!page) {
1101 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1102 } else {
1103 VM_BUG_ON_PAGE(!PageHead(page), page);
1104 page_remove_rmap(page, true);
1105 put_page(page);
1106 }
1107 ret |= VM_FAULT_WRITE;
1108 }
1109 spin_unlock(fe->ptl);
1110 out_mn:
1111 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1112 out:
1113 return ret;
1114 out_unlock:
1115 spin_unlock(fe->ptl);
1116 return ret;
1117 }
1118
1119 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1120 unsigned long addr,
1121 pmd_t *pmd,
1122 unsigned int flags)
1123 {
1124 struct mm_struct *mm = vma->vm_mm;
1125 struct page *page = NULL;
1126
1127 assert_spin_locked(pmd_lockptr(mm, pmd));
1128
1129 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1130 goto out;
1131
1132 /* Avoid dumping huge zero page */
1133 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1134 return ERR_PTR(-EFAULT);
1135
1136 /* Full NUMA hinting faults to serialise migration in fault paths */
1137 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1138 goto out;
1139
1140 page = pmd_page(*pmd);
1141 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1142 if (flags & FOLL_TOUCH)
1143 touch_pmd(vma, addr, pmd);
1144 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1145 /*
1146 * We don't mlock() pte-mapped THPs. This way we can avoid
1147 * leaking mlocked pages into non-VM_LOCKED VMAs.
1148 *
1149 * For anon THP:
1150 *
1151 * In most cases the pmd is the only mapping of the page as we
1152 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1153 * writable private mappings in populate_vma_page_range().
1154 *
1155 * The only scenario when we have the page shared here is if we
1156 * mlocking read-only mapping shared over fork(). We skip
1157 * mlocking such pages.
1158 *
1159 * For file THP:
1160 *
1161 * We can expect PageDoubleMap() to be stable under page lock:
1162 * for file pages we set it in page_add_file_rmap(), which
1163 * requires page to be locked.
1164 */
1165
1166 if (PageAnon(page) && compound_mapcount(page) != 1)
1167 goto skip_mlock;
1168 if (PageDoubleMap(page) || !page->mapping)
1169 goto skip_mlock;
1170 if (!trylock_page(page))
1171 goto skip_mlock;
1172 lru_add_drain();
1173 if (page->mapping && !PageDoubleMap(page))
1174 mlock_vma_page(page);
1175 unlock_page(page);
1176 }
1177 skip_mlock:
1178 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1179 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1180 if (flags & FOLL_GET)
1181 get_page(page);
1182
1183 out:
1184 return page;
1185 }
1186
1187 /* NUMA hinting page fault entry point for trans huge pmds */
1188 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1189 {
1190 struct vm_area_struct *vma = fe->vma;
1191 struct anon_vma *anon_vma = NULL;
1192 struct page *page;
1193 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1194 int page_nid = -1, this_nid = numa_node_id();
1195 int target_nid, last_cpupid = -1;
1196 bool page_locked;
1197 bool migrated = false;
1198 bool was_writable;
1199 int flags = 0;
1200
1201 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1202 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1203 goto out_unlock;
1204
1205 /*
1206 * If there are potential migrations, wait for completion and retry
1207 * without disrupting NUMA hinting information. Do not relock and
1208 * check_same as the page may no longer be mapped.
1209 */
1210 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1211 page = pmd_page(*fe->pmd);
1212 spin_unlock(fe->ptl);
1213 wait_on_page_locked(page);
1214 goto out;
1215 }
1216
1217 page = pmd_page(pmd);
1218 BUG_ON(is_huge_zero_page(page));
1219 page_nid = page_to_nid(page);
1220 last_cpupid = page_cpupid_last(page);
1221 count_vm_numa_event(NUMA_HINT_FAULTS);
1222 if (page_nid == this_nid) {
1223 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1224 flags |= TNF_FAULT_LOCAL;
1225 }
1226
1227 /* See similar comment in do_numa_page for explanation */
1228 if (!pmd_write(pmd))
1229 flags |= TNF_NO_GROUP;
1230
1231 /*
1232 * Acquire the page lock to serialise THP migrations but avoid dropping
1233 * page_table_lock if at all possible
1234 */
1235 page_locked = trylock_page(page);
1236 target_nid = mpol_misplaced(page, vma, haddr);
1237 if (target_nid == -1) {
1238 /* If the page was locked, there are no parallel migrations */
1239 if (page_locked)
1240 goto clear_pmdnuma;
1241 }
1242
1243 /* Migration could have started since the pmd_trans_migrating check */
1244 if (!page_locked) {
1245 spin_unlock(fe->ptl);
1246 wait_on_page_locked(page);
1247 page_nid = -1;
1248 goto out;
1249 }
1250
1251 /*
1252 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1253 * to serialises splits
1254 */
1255 get_page(page);
1256 spin_unlock(fe->ptl);
1257 anon_vma = page_lock_anon_vma_read(page);
1258
1259 /* Confirm the PMD did not change while page_table_lock was released */
1260 spin_lock(fe->ptl);
1261 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1262 unlock_page(page);
1263 put_page(page);
1264 page_nid = -1;
1265 goto out_unlock;
1266 }
1267
1268 /* Bail if we fail to protect against THP splits for any reason */
1269 if (unlikely(!anon_vma)) {
1270 put_page(page);
1271 page_nid = -1;
1272 goto clear_pmdnuma;
1273 }
1274
1275 /*
1276 * Migrate the THP to the requested node, returns with page unlocked
1277 * and access rights restored.
1278 */
1279 spin_unlock(fe->ptl);
1280 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1281 fe->pmd, pmd, fe->address, page, target_nid);
1282 if (migrated) {
1283 flags |= TNF_MIGRATED;
1284 page_nid = target_nid;
1285 } else
1286 flags |= TNF_MIGRATE_FAIL;
1287
1288 goto out;
1289 clear_pmdnuma:
1290 BUG_ON(!PageLocked(page));
1291 was_writable = pmd_write(pmd);
1292 pmd = pmd_modify(pmd, vma->vm_page_prot);
1293 pmd = pmd_mkyoung(pmd);
1294 if (was_writable)
1295 pmd = pmd_mkwrite(pmd);
1296 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1297 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1298 unlock_page(page);
1299 out_unlock:
1300 spin_unlock(fe->ptl);
1301
1302 out:
1303 if (anon_vma)
1304 page_unlock_anon_vma_read(anon_vma);
1305
1306 if (page_nid != -1)
1307 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1308
1309 return 0;
1310 }
1311
1312 /*
1313 * Return true if we do MADV_FREE successfully on entire pmd page.
1314 * Otherwise, return false.
1315 */
1316 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1317 pmd_t *pmd, unsigned long addr, unsigned long next)
1318 {
1319 spinlock_t *ptl;
1320 pmd_t orig_pmd;
1321 struct page *page;
1322 struct mm_struct *mm = tlb->mm;
1323 bool ret = false;
1324
1325 ptl = pmd_trans_huge_lock(pmd, vma);
1326 if (!ptl)
1327 goto out_unlocked;
1328
1329 orig_pmd = *pmd;
1330 if (is_huge_zero_pmd(orig_pmd))
1331 goto out;
1332
1333 page = pmd_page(orig_pmd);
1334 /*
1335 * If other processes are mapping this page, we couldn't discard
1336 * the page unless they all do MADV_FREE so let's skip the page.
1337 */
1338 if (page_mapcount(page) != 1)
1339 goto out;
1340
1341 if (!trylock_page(page))
1342 goto out;
1343
1344 /*
1345 * If user want to discard part-pages of THP, split it so MADV_FREE
1346 * will deactivate only them.
1347 */
1348 if (next - addr != HPAGE_PMD_SIZE) {
1349 get_page(page);
1350 spin_unlock(ptl);
1351 split_huge_page(page);
1352 put_page(page);
1353 unlock_page(page);
1354 goto out_unlocked;
1355 }
1356
1357 if (PageDirty(page))
1358 ClearPageDirty(page);
1359 unlock_page(page);
1360
1361 if (PageActive(page))
1362 deactivate_page(page);
1363
1364 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1365 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1366 tlb->fullmm);
1367 orig_pmd = pmd_mkold(orig_pmd);
1368 orig_pmd = pmd_mkclean(orig_pmd);
1369
1370 set_pmd_at(mm, addr, pmd, orig_pmd);
1371 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1372 }
1373 ret = true;
1374 out:
1375 spin_unlock(ptl);
1376 out_unlocked:
1377 return ret;
1378 }
1379
1380 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1381 pmd_t *pmd, unsigned long addr)
1382 {
1383 pmd_t orig_pmd;
1384 spinlock_t *ptl;
1385
1386 ptl = __pmd_trans_huge_lock(pmd, vma);
1387 if (!ptl)
1388 return 0;
1389 /*
1390 * For architectures like ppc64 we look at deposited pgtable
1391 * when calling pmdp_huge_get_and_clear. So do the
1392 * pgtable_trans_huge_withdraw after finishing pmdp related
1393 * operations.
1394 */
1395 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1396 tlb->fullmm);
1397 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1398 if (vma_is_dax(vma)) {
1399 spin_unlock(ptl);
1400 if (is_huge_zero_pmd(orig_pmd))
1401 tlb_remove_page(tlb, pmd_page(orig_pmd));
1402 } else if (is_huge_zero_pmd(orig_pmd)) {
1403 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1404 atomic_long_dec(&tlb->mm->nr_ptes);
1405 spin_unlock(ptl);
1406 tlb_remove_page(tlb, pmd_page(orig_pmd));
1407 } else {
1408 struct page *page = pmd_page(orig_pmd);
1409 page_remove_rmap(page, true);
1410 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1411 VM_BUG_ON_PAGE(!PageHead(page), page);
1412 if (PageAnon(page)) {
1413 pgtable_t pgtable;
1414 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1415 pte_free(tlb->mm, pgtable);
1416 atomic_long_dec(&tlb->mm->nr_ptes);
1417 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1418 } else {
1419 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1420 }
1421 spin_unlock(ptl);
1422 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1423 }
1424 return 1;
1425 }
1426
1427 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1428 unsigned long new_addr, unsigned long old_end,
1429 pmd_t *old_pmd, pmd_t *new_pmd)
1430 {
1431 spinlock_t *old_ptl, *new_ptl;
1432 pmd_t pmd;
1433 struct mm_struct *mm = vma->vm_mm;
1434
1435 if ((old_addr & ~HPAGE_PMD_MASK) ||
1436 (new_addr & ~HPAGE_PMD_MASK) ||
1437 old_end - old_addr < HPAGE_PMD_SIZE)
1438 return false;
1439
1440 /*
1441 * The destination pmd shouldn't be established, free_pgtables()
1442 * should have release it.
1443 */
1444 if (WARN_ON(!pmd_none(*new_pmd))) {
1445 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1446 return false;
1447 }
1448
1449 /*
1450 * We don't have to worry about the ordering of src and dst
1451 * ptlocks because exclusive mmap_sem prevents deadlock.
1452 */
1453 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1454 if (old_ptl) {
1455 new_ptl = pmd_lockptr(mm, new_pmd);
1456 if (new_ptl != old_ptl)
1457 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1458 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1459 VM_BUG_ON(!pmd_none(*new_pmd));
1460
1461 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1462 vma_is_anonymous(vma)) {
1463 pgtable_t pgtable;
1464 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1465 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1466 }
1467 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1468 if (new_ptl != old_ptl)
1469 spin_unlock(new_ptl);
1470 spin_unlock(old_ptl);
1471 return true;
1472 }
1473 return false;
1474 }
1475
1476 /*
1477 * Returns
1478 * - 0 if PMD could not be locked
1479 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1480 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1481 */
1482 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1483 unsigned long addr, pgprot_t newprot, int prot_numa)
1484 {
1485 struct mm_struct *mm = vma->vm_mm;
1486 spinlock_t *ptl;
1487 int ret = 0;
1488
1489 ptl = __pmd_trans_huge_lock(pmd, vma);
1490 if (ptl) {
1491 pmd_t entry;
1492 bool preserve_write = prot_numa && pmd_write(*pmd);
1493 ret = 1;
1494
1495 /*
1496 * Avoid trapping faults against the zero page. The read-only
1497 * data is likely to be read-cached on the local CPU and
1498 * local/remote hits to the zero page are not interesting.
1499 */
1500 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1501 spin_unlock(ptl);
1502 return ret;
1503 }
1504
1505 if (!prot_numa || !pmd_protnone(*pmd)) {
1506 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1507 entry = pmd_modify(entry, newprot);
1508 if (preserve_write)
1509 entry = pmd_mkwrite(entry);
1510 ret = HPAGE_PMD_NR;
1511 set_pmd_at(mm, addr, pmd, entry);
1512 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1513 pmd_write(entry));
1514 }
1515 spin_unlock(ptl);
1516 }
1517
1518 return ret;
1519 }
1520
1521 /*
1522 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1523 *
1524 * Note that if it returns page table lock pointer, this routine returns without
1525 * unlocking page table lock. So callers must unlock it.
1526 */
1527 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1528 {
1529 spinlock_t *ptl;
1530 ptl = pmd_lock(vma->vm_mm, pmd);
1531 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1532 return ptl;
1533 spin_unlock(ptl);
1534 return NULL;
1535 }
1536
1537 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1538 unsigned long haddr, pmd_t *pmd)
1539 {
1540 struct mm_struct *mm = vma->vm_mm;
1541 pgtable_t pgtable;
1542 pmd_t _pmd;
1543 int i;
1544
1545 /* leave pmd empty until pte is filled */
1546 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1547
1548 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1549 pmd_populate(mm, &_pmd, pgtable);
1550
1551 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1552 pte_t *pte, entry;
1553 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1554 entry = pte_mkspecial(entry);
1555 pte = pte_offset_map(&_pmd, haddr);
1556 VM_BUG_ON(!pte_none(*pte));
1557 set_pte_at(mm, haddr, pte, entry);
1558 pte_unmap(pte);
1559 }
1560 smp_wmb(); /* make pte visible before pmd */
1561 pmd_populate(mm, pmd, pgtable);
1562 }
1563
1564 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1565 unsigned long haddr, bool freeze)
1566 {
1567 struct mm_struct *mm = vma->vm_mm;
1568 struct page *page;
1569 pgtable_t pgtable;
1570 pmd_t _pmd;
1571 bool young, write, dirty, soft_dirty;
1572 unsigned long addr;
1573 int i;
1574
1575 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1576 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1577 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1578 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1579
1580 count_vm_event(THP_SPLIT_PMD);
1581
1582 if (!vma_is_anonymous(vma)) {
1583 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1584 if (vma_is_dax(vma))
1585 return;
1586 page = pmd_page(_pmd);
1587 if (!PageReferenced(page) && pmd_young(_pmd))
1588 SetPageReferenced(page);
1589 page_remove_rmap(page, true);
1590 put_page(page);
1591 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1592 return;
1593 } else if (is_huge_zero_pmd(*pmd)) {
1594 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1595 }
1596
1597 page = pmd_page(*pmd);
1598 VM_BUG_ON_PAGE(!page_count(page), page);
1599 page_ref_add(page, HPAGE_PMD_NR - 1);
1600 write = pmd_write(*pmd);
1601 young = pmd_young(*pmd);
1602 dirty = pmd_dirty(*pmd);
1603 soft_dirty = pmd_soft_dirty(*pmd);
1604
1605 pmdp_huge_split_prepare(vma, haddr, pmd);
1606 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1607 pmd_populate(mm, &_pmd, pgtable);
1608
1609 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1610 pte_t entry, *pte;
1611 /*
1612 * Note that NUMA hinting access restrictions are not
1613 * transferred to avoid any possibility of altering
1614 * permissions across VMAs.
1615 */
1616 if (freeze) {
1617 swp_entry_t swp_entry;
1618 swp_entry = make_migration_entry(page + i, write);
1619 entry = swp_entry_to_pte(swp_entry);
1620 if (soft_dirty)
1621 entry = pte_swp_mksoft_dirty(entry);
1622 } else {
1623 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1624 entry = maybe_mkwrite(entry, vma);
1625 if (!write)
1626 entry = pte_wrprotect(entry);
1627 if (!young)
1628 entry = pte_mkold(entry);
1629 if (soft_dirty)
1630 entry = pte_mksoft_dirty(entry);
1631 }
1632 if (dirty)
1633 SetPageDirty(page + i);
1634 pte = pte_offset_map(&_pmd, addr);
1635 BUG_ON(!pte_none(*pte));
1636 set_pte_at(mm, addr, pte, entry);
1637 atomic_inc(&page[i]._mapcount);
1638 pte_unmap(pte);
1639 }
1640
1641 /*
1642 * Set PG_double_map before dropping compound_mapcount to avoid
1643 * false-negative page_mapped().
1644 */
1645 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1646 for (i = 0; i < HPAGE_PMD_NR; i++)
1647 atomic_inc(&page[i]._mapcount);
1648 }
1649
1650 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1651 /* Last compound_mapcount is gone. */
1652 __dec_node_page_state(page, NR_ANON_THPS);
1653 if (TestClearPageDoubleMap(page)) {
1654 /* No need in mapcount reference anymore */
1655 for (i = 0; i < HPAGE_PMD_NR; i++)
1656 atomic_dec(&page[i]._mapcount);
1657 }
1658 }
1659
1660 smp_wmb(); /* make pte visible before pmd */
1661 /*
1662 * Up to this point the pmd is present and huge and userland has the
1663 * whole access to the hugepage during the split (which happens in
1664 * place). If we overwrite the pmd with the not-huge version pointing
1665 * to the pte here (which of course we could if all CPUs were bug
1666 * free), userland could trigger a small page size TLB miss on the
1667 * small sized TLB while the hugepage TLB entry is still established in
1668 * the huge TLB. Some CPU doesn't like that.
1669 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1670 * 383 on page 93. Intel should be safe but is also warns that it's
1671 * only safe if the permission and cache attributes of the two entries
1672 * loaded in the two TLB is identical (which should be the case here).
1673 * But it is generally safer to never allow small and huge TLB entries
1674 * for the same virtual address to be loaded simultaneously. So instead
1675 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1676 * current pmd notpresent (atomically because here the pmd_trans_huge
1677 * and pmd_trans_splitting must remain set at all times on the pmd
1678 * until the split is complete for this pmd), then we flush the SMP TLB
1679 * and finally we write the non-huge version of the pmd entry with
1680 * pmd_populate.
1681 */
1682 pmdp_invalidate(vma, haddr, pmd);
1683 pmd_populate(mm, pmd, pgtable);
1684
1685 if (freeze) {
1686 for (i = 0; i < HPAGE_PMD_NR; i++) {
1687 page_remove_rmap(page + i, false);
1688 put_page(page + i);
1689 }
1690 }
1691 }
1692
1693 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1694 unsigned long address, bool freeze, struct page *page)
1695 {
1696 spinlock_t *ptl;
1697 struct mm_struct *mm = vma->vm_mm;
1698 unsigned long haddr = address & HPAGE_PMD_MASK;
1699
1700 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1701 ptl = pmd_lock(mm, pmd);
1702
1703 /*
1704 * If caller asks to setup a migration entries, we need a page to check
1705 * pmd against. Otherwise we can end up replacing wrong page.
1706 */
1707 VM_BUG_ON(freeze && !page);
1708 if (page && page != pmd_page(*pmd))
1709 goto out;
1710
1711 if (pmd_trans_huge(*pmd)) {
1712 page = pmd_page(*pmd);
1713 if (PageMlocked(page))
1714 clear_page_mlock(page);
1715 } else if (!pmd_devmap(*pmd))
1716 goto out;
1717 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1718 out:
1719 spin_unlock(ptl);
1720 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1721 }
1722
1723 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1724 bool freeze, struct page *page)
1725 {
1726 pgd_t *pgd;
1727 pud_t *pud;
1728 pmd_t *pmd;
1729
1730 pgd = pgd_offset(vma->vm_mm, address);
1731 if (!pgd_present(*pgd))
1732 return;
1733
1734 pud = pud_offset(pgd, address);
1735 if (!pud_present(*pud))
1736 return;
1737
1738 pmd = pmd_offset(pud, address);
1739
1740 __split_huge_pmd(vma, pmd, address, freeze, page);
1741 }
1742
1743 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1744 unsigned long start,
1745 unsigned long end,
1746 long adjust_next)
1747 {
1748 /*
1749 * If the new start address isn't hpage aligned and it could
1750 * previously contain an hugepage: check if we need to split
1751 * an huge pmd.
1752 */
1753 if (start & ~HPAGE_PMD_MASK &&
1754 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1755 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1756 split_huge_pmd_address(vma, start, false, NULL);
1757
1758 /*
1759 * If the new end address isn't hpage aligned and it could
1760 * previously contain an hugepage: check if we need to split
1761 * an huge pmd.
1762 */
1763 if (end & ~HPAGE_PMD_MASK &&
1764 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1765 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1766 split_huge_pmd_address(vma, end, false, NULL);
1767
1768 /*
1769 * If we're also updating the vma->vm_next->vm_start, if the new
1770 * vm_next->vm_start isn't page aligned and it could previously
1771 * contain an hugepage: check if we need to split an huge pmd.
1772 */
1773 if (adjust_next > 0) {
1774 struct vm_area_struct *next = vma->vm_next;
1775 unsigned long nstart = next->vm_start;
1776 nstart += adjust_next << PAGE_SHIFT;
1777 if (nstart & ~HPAGE_PMD_MASK &&
1778 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1779 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1780 split_huge_pmd_address(next, nstart, false, NULL);
1781 }
1782 }
1783
1784 static void freeze_page(struct page *page)
1785 {
1786 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1787 TTU_RMAP_LOCKED;
1788 int i, ret;
1789
1790 VM_BUG_ON_PAGE(!PageHead(page), page);
1791
1792 if (PageAnon(page))
1793 ttu_flags |= TTU_MIGRATION;
1794
1795 /* We only need TTU_SPLIT_HUGE_PMD once */
1796 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1797 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1798 /* Cut short if the page is unmapped */
1799 if (page_count(page) == 1)
1800 return;
1801
1802 ret = try_to_unmap(page + i, ttu_flags);
1803 }
1804 VM_BUG_ON_PAGE(ret, page + i - 1);
1805 }
1806
1807 static void unfreeze_page(struct page *page)
1808 {
1809 int i;
1810
1811 for (i = 0; i < HPAGE_PMD_NR; i++)
1812 remove_migration_ptes(page + i, page + i, true);
1813 }
1814
1815 static void __split_huge_page_tail(struct page *head, int tail,
1816 struct lruvec *lruvec, struct list_head *list)
1817 {
1818 struct page *page_tail = head + tail;
1819
1820 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1821 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1822
1823 /*
1824 * tail_page->_refcount is zero and not changing from under us. But
1825 * get_page_unless_zero() may be running from under us on the
1826 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1827 * atomic_add(), we would then run atomic_set() concurrently with
1828 * get_page_unless_zero(), and atomic_set() is implemented in C not
1829 * using locked ops. spin_unlock on x86 sometime uses locked ops
1830 * because of PPro errata 66, 92, so unless somebody can guarantee
1831 * atomic_set() here would be safe on all archs (and not only on x86),
1832 * it's safer to use atomic_inc()/atomic_add().
1833 */
1834 if (PageAnon(head)) {
1835 page_ref_inc(page_tail);
1836 } else {
1837 /* Additional pin to radix tree */
1838 page_ref_add(page_tail, 2);
1839 }
1840
1841 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1842 page_tail->flags |= (head->flags &
1843 ((1L << PG_referenced) |
1844 (1L << PG_swapbacked) |
1845 (1L << PG_mlocked) |
1846 (1L << PG_uptodate) |
1847 (1L << PG_active) |
1848 (1L << PG_locked) |
1849 (1L << PG_unevictable) |
1850 (1L << PG_dirty)));
1851
1852 /*
1853 * After clearing PageTail the gup refcount can be released.
1854 * Page flags also must be visible before we make the page non-compound.
1855 */
1856 smp_wmb();
1857
1858 clear_compound_head(page_tail);
1859
1860 if (page_is_young(head))
1861 set_page_young(page_tail);
1862 if (page_is_idle(head))
1863 set_page_idle(page_tail);
1864
1865 /* ->mapping in first tail page is compound_mapcount */
1866 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1867 page_tail);
1868 page_tail->mapping = head->mapping;
1869
1870 page_tail->index = head->index + tail;
1871 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1872 lru_add_page_tail(head, page_tail, lruvec, list);
1873 }
1874
1875 static void __split_huge_page(struct page *page, struct list_head *list,
1876 unsigned long flags)
1877 {
1878 struct page *head = compound_head(page);
1879 struct zone *zone = page_zone(head);
1880 struct lruvec *lruvec;
1881 pgoff_t end = -1;
1882 int i;
1883
1884 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1885
1886 /* complete memcg works before add pages to LRU */
1887 mem_cgroup_split_huge_fixup(head);
1888
1889 if (!PageAnon(page))
1890 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1891
1892 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1893 __split_huge_page_tail(head, i, lruvec, list);
1894 /* Some pages can be beyond i_size: drop them from page cache */
1895 if (head[i].index >= end) {
1896 __ClearPageDirty(head + i);
1897 __delete_from_page_cache(head + i, NULL);
1898 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1899 shmem_uncharge(head->mapping->host, 1);
1900 put_page(head + i);
1901 }
1902 }
1903
1904 ClearPageCompound(head);
1905 /* See comment in __split_huge_page_tail() */
1906 if (PageAnon(head)) {
1907 page_ref_inc(head);
1908 } else {
1909 /* Additional pin to radix tree */
1910 page_ref_add(head, 2);
1911 spin_unlock(&head->mapping->tree_lock);
1912 }
1913
1914 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1915
1916 unfreeze_page(head);
1917
1918 for (i = 0; i < HPAGE_PMD_NR; i++) {
1919 struct page *subpage = head + i;
1920 if (subpage == page)
1921 continue;
1922 unlock_page(subpage);
1923
1924 /*
1925 * Subpages may be freed if there wasn't any mapping
1926 * like if add_to_swap() is running on a lru page that
1927 * had its mapping zapped. And freeing these pages
1928 * requires taking the lru_lock so we do the put_page
1929 * of the tail pages after the split is complete.
1930 */
1931 put_page(subpage);
1932 }
1933 }
1934
1935 int total_mapcount(struct page *page)
1936 {
1937 int i, compound, ret;
1938
1939 VM_BUG_ON_PAGE(PageTail(page), page);
1940
1941 if (likely(!PageCompound(page)))
1942 return atomic_read(&page->_mapcount) + 1;
1943
1944 compound = compound_mapcount(page);
1945 if (PageHuge(page))
1946 return compound;
1947 ret = compound;
1948 for (i = 0; i < HPAGE_PMD_NR; i++)
1949 ret += atomic_read(&page[i]._mapcount) + 1;
1950 /* File pages has compound_mapcount included in _mapcount */
1951 if (!PageAnon(page))
1952 return ret - compound * HPAGE_PMD_NR;
1953 if (PageDoubleMap(page))
1954 ret -= HPAGE_PMD_NR;
1955 return ret;
1956 }
1957
1958 /*
1959 * This calculates accurately how many mappings a transparent hugepage
1960 * has (unlike page_mapcount() which isn't fully accurate). This full
1961 * accuracy is primarily needed to know if copy-on-write faults can
1962 * reuse the page and change the mapping to read-write instead of
1963 * copying them. At the same time this returns the total_mapcount too.
1964 *
1965 * The function returns the highest mapcount any one of the subpages
1966 * has. If the return value is one, even if different processes are
1967 * mapping different subpages of the transparent hugepage, they can
1968 * all reuse it, because each process is reusing a different subpage.
1969 *
1970 * The total_mapcount is instead counting all virtual mappings of the
1971 * subpages. If the total_mapcount is equal to "one", it tells the
1972 * caller all mappings belong to the same "mm" and in turn the
1973 * anon_vma of the transparent hugepage can become the vma->anon_vma
1974 * local one as no other process may be mapping any of the subpages.
1975 *
1976 * It would be more accurate to replace page_mapcount() with
1977 * page_trans_huge_mapcount(), however we only use
1978 * page_trans_huge_mapcount() in the copy-on-write faults where we
1979 * need full accuracy to avoid breaking page pinning, because
1980 * page_trans_huge_mapcount() is slower than page_mapcount().
1981 */
1982 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1983 {
1984 int i, ret, _total_mapcount, mapcount;
1985
1986 /* hugetlbfs shouldn't call it */
1987 VM_BUG_ON_PAGE(PageHuge(page), page);
1988
1989 if (likely(!PageTransCompound(page))) {
1990 mapcount = atomic_read(&page->_mapcount) + 1;
1991 if (total_mapcount)
1992 *total_mapcount = mapcount;
1993 return mapcount;
1994 }
1995
1996 page = compound_head(page);
1997
1998 _total_mapcount = ret = 0;
1999 for (i = 0; i < HPAGE_PMD_NR; i++) {
2000 mapcount = atomic_read(&page[i]._mapcount) + 1;
2001 ret = max(ret, mapcount);
2002 _total_mapcount += mapcount;
2003 }
2004 if (PageDoubleMap(page)) {
2005 ret -= 1;
2006 _total_mapcount -= HPAGE_PMD_NR;
2007 }
2008 mapcount = compound_mapcount(page);
2009 ret += mapcount;
2010 _total_mapcount += mapcount;
2011 if (total_mapcount)
2012 *total_mapcount = _total_mapcount;
2013 return ret;
2014 }
2015
2016 /*
2017 * This function splits huge page into normal pages. @page can point to any
2018 * subpage of huge page to split. Split doesn't change the position of @page.
2019 *
2020 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2021 * The huge page must be locked.
2022 *
2023 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2024 *
2025 * Both head page and tail pages will inherit mapping, flags, and so on from
2026 * the hugepage.
2027 *
2028 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2029 * they are not mapped.
2030 *
2031 * Returns 0 if the hugepage is split successfully.
2032 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2033 * us.
2034 */
2035 int split_huge_page_to_list(struct page *page, struct list_head *list)
2036 {
2037 struct page *head = compound_head(page);
2038 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2039 struct anon_vma *anon_vma = NULL;
2040 struct address_space *mapping = NULL;
2041 int count, mapcount, extra_pins, ret;
2042 bool mlocked;
2043 unsigned long flags;
2044
2045 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2046 VM_BUG_ON_PAGE(!PageLocked(page), page);
2047 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2048 VM_BUG_ON_PAGE(!PageCompound(page), page);
2049
2050 if (PageAnon(head)) {
2051 /*
2052 * The caller does not necessarily hold an mmap_sem that would
2053 * prevent the anon_vma disappearing so we first we take a
2054 * reference to it and then lock the anon_vma for write. This
2055 * is similar to page_lock_anon_vma_read except the write lock
2056 * is taken to serialise against parallel split or collapse
2057 * operations.
2058 */
2059 anon_vma = page_get_anon_vma(head);
2060 if (!anon_vma) {
2061 ret = -EBUSY;
2062 goto out;
2063 }
2064 extra_pins = 0;
2065 mapping = NULL;
2066 anon_vma_lock_write(anon_vma);
2067 } else {
2068 mapping = head->mapping;
2069
2070 /* Truncated ? */
2071 if (!mapping) {
2072 ret = -EBUSY;
2073 goto out;
2074 }
2075
2076 /* Addidional pins from radix tree */
2077 extra_pins = HPAGE_PMD_NR;
2078 anon_vma = NULL;
2079 i_mmap_lock_read(mapping);
2080 }
2081
2082 /*
2083 * Racy check if we can split the page, before freeze_page() will
2084 * split PMDs
2085 */
2086 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2087 ret = -EBUSY;
2088 goto out_unlock;
2089 }
2090
2091 mlocked = PageMlocked(page);
2092 freeze_page(head);
2093 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2094
2095 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2096 if (mlocked)
2097 lru_add_drain();
2098
2099 /* prevent PageLRU to go away from under us, and freeze lru stats */
2100 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2101
2102 if (mapping) {
2103 void **pslot;
2104
2105 spin_lock(&mapping->tree_lock);
2106 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2107 page_index(head));
2108 /*
2109 * Check if the head page is present in radix tree.
2110 * We assume all tail are present too, if head is there.
2111 */
2112 if (radix_tree_deref_slot_protected(pslot,
2113 &mapping->tree_lock) != head)
2114 goto fail;
2115 }
2116
2117 /* Prevent deferred_split_scan() touching ->_refcount */
2118 spin_lock(&pgdata->split_queue_lock);
2119 count = page_count(head);
2120 mapcount = total_mapcount(head);
2121 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2122 if (!list_empty(page_deferred_list(head))) {
2123 pgdata->split_queue_len--;
2124 list_del(page_deferred_list(head));
2125 }
2126 if (mapping)
2127 __dec_node_page_state(page, NR_SHMEM_THPS);
2128 spin_unlock(&pgdata->split_queue_lock);
2129 __split_huge_page(page, list, flags);
2130 ret = 0;
2131 } else {
2132 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2133 pr_alert("total_mapcount: %u, page_count(): %u\n",
2134 mapcount, count);
2135 if (PageTail(page))
2136 dump_page(head, NULL);
2137 dump_page(page, "total_mapcount(head) > 0");
2138 BUG();
2139 }
2140 spin_unlock(&pgdata->split_queue_lock);
2141 fail: if (mapping)
2142 spin_unlock(&mapping->tree_lock);
2143 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2144 unfreeze_page(head);
2145 ret = -EBUSY;
2146 }
2147
2148 out_unlock:
2149 if (anon_vma) {
2150 anon_vma_unlock_write(anon_vma);
2151 put_anon_vma(anon_vma);
2152 }
2153 if (mapping)
2154 i_mmap_unlock_read(mapping);
2155 out:
2156 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2157 return ret;
2158 }
2159
2160 void free_transhuge_page(struct page *page)
2161 {
2162 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2163 unsigned long flags;
2164
2165 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2166 if (!list_empty(page_deferred_list(page))) {
2167 pgdata->split_queue_len--;
2168 list_del(page_deferred_list(page));
2169 }
2170 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2171 free_compound_page(page);
2172 }
2173
2174 void deferred_split_huge_page(struct page *page)
2175 {
2176 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2177 unsigned long flags;
2178
2179 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2180
2181 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2182 if (list_empty(page_deferred_list(page))) {
2183 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2184 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2185 pgdata->split_queue_len++;
2186 }
2187 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2188 }
2189
2190 static unsigned long deferred_split_count(struct shrinker *shrink,
2191 struct shrink_control *sc)
2192 {
2193 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2194 return ACCESS_ONCE(pgdata->split_queue_len);
2195 }
2196
2197 static unsigned long deferred_split_scan(struct shrinker *shrink,
2198 struct shrink_control *sc)
2199 {
2200 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2201 unsigned long flags;
2202 LIST_HEAD(list), *pos, *next;
2203 struct page *page;
2204 int split = 0;
2205
2206 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2207 /* Take pin on all head pages to avoid freeing them under us */
2208 list_for_each_safe(pos, next, &pgdata->split_queue) {
2209 page = list_entry((void *)pos, struct page, mapping);
2210 page = compound_head(page);
2211 if (get_page_unless_zero(page)) {
2212 list_move(page_deferred_list(page), &list);
2213 } else {
2214 /* We lost race with put_compound_page() */
2215 list_del_init(page_deferred_list(page));
2216 pgdata->split_queue_len--;
2217 }
2218 if (!--sc->nr_to_scan)
2219 break;
2220 }
2221 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2222
2223 list_for_each_safe(pos, next, &list) {
2224 page = list_entry((void *)pos, struct page, mapping);
2225 lock_page(page);
2226 /* split_huge_page() removes page from list on success */
2227 if (!split_huge_page(page))
2228 split++;
2229 unlock_page(page);
2230 put_page(page);
2231 }
2232
2233 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2234 list_splice_tail(&list, &pgdata->split_queue);
2235 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2236
2237 /*
2238 * Stop shrinker if we didn't split any page, but the queue is empty.
2239 * This can happen if pages were freed under us.
2240 */
2241 if (!split && list_empty(&pgdata->split_queue))
2242 return SHRINK_STOP;
2243 return split;
2244 }
2245
2246 static struct shrinker deferred_split_shrinker = {
2247 .count_objects = deferred_split_count,
2248 .scan_objects = deferred_split_scan,
2249 .seeks = DEFAULT_SEEKS,
2250 .flags = SHRINKER_NUMA_AWARE,
2251 };
2252
2253 #ifdef CONFIG_DEBUG_FS
2254 static int split_huge_pages_set(void *data, u64 val)
2255 {
2256 struct zone *zone;
2257 struct page *page;
2258 unsigned long pfn, max_zone_pfn;
2259 unsigned long total = 0, split = 0;
2260
2261 if (val != 1)
2262 return -EINVAL;
2263
2264 for_each_populated_zone(zone) {
2265 max_zone_pfn = zone_end_pfn(zone);
2266 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2267 if (!pfn_valid(pfn))
2268 continue;
2269
2270 page = pfn_to_page(pfn);
2271 if (!get_page_unless_zero(page))
2272 continue;
2273
2274 if (zone != page_zone(page))
2275 goto next;
2276
2277 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2278 goto next;
2279
2280 total++;
2281 lock_page(page);
2282 if (!split_huge_page(page))
2283 split++;
2284 unlock_page(page);
2285 next:
2286 put_page(page);
2287 }
2288 }
2289
2290 pr_info("%lu of %lu THP split\n", split, total);
2291
2292 return 0;
2293 }
2294 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2295 "%llu\n");
2296
2297 static int __init split_huge_pages_debugfs(void)
2298 {
2299 void *ret;
2300
2301 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2302 &split_huge_pages_fops);
2303 if (!ret)
2304 pr_warn("Failed to create split_huge_pages in debugfs");
2305 return 0;
2306 }
2307 late_initcall(split_huge_pages_debugfs);
2308 #endif