]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/hugetlb.c
btrfs: cleaner_kthread() doesn't need explicit freeze
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36
37 int hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42 /*
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
45 */
46 static unsigned int minimum_order __read_mostly = UINT_MAX;
47
48 __initdata LIST_HEAD(huge_boot_pages);
49
50 /* for command line parsing */
51 static struct hstate * __initdata parsed_hstate;
52 static unsigned long __initdata default_hstate_max_huge_pages;
53 static unsigned long __initdata default_hstate_size;
54
55 /*
56 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
57 * free_huge_pages, and surplus_huge_pages.
58 */
59 DEFINE_SPINLOCK(hugetlb_lock);
60
61 /*
62 * Serializes faults on the same logical page. This is used to
63 * prevent spurious OOMs when the hugepage pool is fully utilized.
64 */
65 static int num_fault_mutexes;
66 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
67
68 /* Forward declaration */
69 static int hugetlb_acct_memory(struct hstate *h, long delta);
70
71 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
72 {
73 bool free = (spool->count == 0) && (spool->used_hpages == 0);
74
75 spin_unlock(&spool->lock);
76
77 /* If no pages are used, and no other handles to the subpool
78 * remain, give up any reservations mased on minimum size and
79 * free the subpool */
80 if (free) {
81 if (spool->min_hpages != -1)
82 hugetlb_acct_memory(spool->hstate,
83 -spool->min_hpages);
84 kfree(spool);
85 }
86 }
87
88 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
89 long min_hpages)
90 {
91 struct hugepage_subpool *spool;
92
93 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
94 if (!spool)
95 return NULL;
96
97 spin_lock_init(&spool->lock);
98 spool->count = 1;
99 spool->max_hpages = max_hpages;
100 spool->hstate = h;
101 spool->min_hpages = min_hpages;
102
103 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
104 kfree(spool);
105 return NULL;
106 }
107 spool->rsv_hpages = min_hpages;
108
109 return spool;
110 }
111
112 void hugepage_put_subpool(struct hugepage_subpool *spool)
113 {
114 spin_lock(&spool->lock);
115 BUG_ON(!spool->count);
116 spool->count--;
117 unlock_or_release_subpool(spool);
118 }
119
120 /*
121 * Subpool accounting for allocating and reserving pages.
122 * Return -ENOMEM if there are not enough resources to satisfy the
123 * the request. Otherwise, return the number of pages by which the
124 * global pools must be adjusted (upward). The returned value may
125 * only be different than the passed value (delta) in the case where
126 * a subpool minimum size must be manitained.
127 */
128 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
129 long delta)
130 {
131 long ret = delta;
132
133 if (!spool)
134 return ret;
135
136 spin_lock(&spool->lock);
137
138 if (spool->max_hpages != -1) { /* maximum size accounting */
139 if ((spool->used_hpages + delta) <= spool->max_hpages)
140 spool->used_hpages += delta;
141 else {
142 ret = -ENOMEM;
143 goto unlock_ret;
144 }
145 }
146
147 if (spool->min_hpages != -1) { /* minimum size accounting */
148 if (delta > spool->rsv_hpages) {
149 /*
150 * Asking for more reserves than those already taken on
151 * behalf of subpool. Return difference.
152 */
153 ret = delta - spool->rsv_hpages;
154 spool->rsv_hpages = 0;
155 } else {
156 ret = 0; /* reserves already accounted for */
157 spool->rsv_hpages -= delta;
158 }
159 }
160
161 unlock_ret:
162 spin_unlock(&spool->lock);
163 return ret;
164 }
165
166 /*
167 * Subpool accounting for freeing and unreserving pages.
168 * Return the number of global page reservations that must be dropped.
169 * The return value may only be different than the passed value (delta)
170 * in the case where a subpool minimum size must be maintained.
171 */
172 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
173 long delta)
174 {
175 long ret = delta;
176
177 if (!spool)
178 return delta;
179
180 spin_lock(&spool->lock);
181
182 if (spool->max_hpages != -1) /* maximum size accounting */
183 spool->used_hpages -= delta;
184
185 if (spool->min_hpages != -1) { /* minimum size accounting */
186 if (spool->rsv_hpages + delta <= spool->min_hpages)
187 ret = 0;
188 else
189 ret = spool->rsv_hpages + delta - spool->min_hpages;
190
191 spool->rsv_hpages += delta;
192 if (spool->rsv_hpages > spool->min_hpages)
193 spool->rsv_hpages = spool->min_hpages;
194 }
195
196 /*
197 * If hugetlbfs_put_super couldn't free spool due to an outstanding
198 * quota reference, free it now.
199 */
200 unlock_or_release_subpool(spool);
201
202 return ret;
203 }
204
205 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
206 {
207 return HUGETLBFS_SB(inode->i_sb)->spool;
208 }
209
210 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
211 {
212 return subpool_inode(file_inode(vma->vm_file));
213 }
214
215 /*
216 * Region tracking -- allows tracking of reservations and instantiated pages
217 * across the pages in a mapping.
218 *
219 * The region data structures are embedded into a resv_map and protected
220 * by a resv_map's lock. The set of regions within the resv_map represent
221 * reservations for huge pages, or huge pages that have already been
222 * instantiated within the map. The from and to elements are huge page
223 * indicies into the associated mapping. from indicates the starting index
224 * of the region. to represents the first index past the end of the region.
225 *
226 * For example, a file region structure with from == 0 and to == 4 represents
227 * four huge pages in a mapping. It is important to note that the to element
228 * represents the first element past the end of the region. This is used in
229 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
230 *
231 * Interval notation of the form [from, to) will be used to indicate that
232 * the endpoint from is inclusive and to is exclusive.
233 */
234 struct file_region {
235 struct list_head link;
236 long from;
237 long to;
238 };
239
240 /*
241 * Add the huge page range represented by [f, t) to the reserve
242 * map. In the normal case, existing regions will be expanded
243 * to accommodate the specified range. Sufficient regions should
244 * exist for expansion due to the previous call to region_chg
245 * with the same range. However, it is possible that region_del
246 * could have been called after region_chg and modifed the map
247 * in such a way that no region exists to be expanded. In this
248 * case, pull a region descriptor from the cache associated with
249 * the map and use that for the new range.
250 *
251 * Return the number of new huge pages added to the map. This
252 * number is greater than or equal to zero.
253 */
254 static long region_add(struct resv_map *resv, long f, long t)
255 {
256 struct list_head *head = &resv->regions;
257 struct file_region *rg, *nrg, *trg;
258 long add = 0;
259
260 spin_lock(&resv->lock);
261 /* Locate the region we are either in or before. */
262 list_for_each_entry(rg, head, link)
263 if (f <= rg->to)
264 break;
265
266 /*
267 * If no region exists which can be expanded to include the
268 * specified range, the list must have been modified by an
269 * interleving call to region_del(). Pull a region descriptor
270 * from the cache and use it for this range.
271 */
272 if (&rg->link == head || t < rg->from) {
273 VM_BUG_ON(resv->region_cache_count <= 0);
274
275 resv->region_cache_count--;
276 nrg = list_first_entry(&resv->region_cache, struct file_region,
277 link);
278 list_del(&nrg->link);
279
280 nrg->from = f;
281 nrg->to = t;
282 list_add(&nrg->link, rg->link.prev);
283
284 add += t - f;
285 goto out_locked;
286 }
287
288 /* Round our left edge to the current segment if it encloses us. */
289 if (f > rg->from)
290 f = rg->from;
291
292 /* Check for and consume any regions we now overlap with. */
293 nrg = rg;
294 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
295 if (&rg->link == head)
296 break;
297 if (rg->from > t)
298 break;
299
300 /* If this area reaches higher then extend our area to
301 * include it completely. If this is not the first area
302 * which we intend to reuse, free it. */
303 if (rg->to > t)
304 t = rg->to;
305 if (rg != nrg) {
306 /* Decrement return value by the deleted range.
307 * Another range will span this area so that by
308 * end of routine add will be >= zero
309 */
310 add -= (rg->to - rg->from);
311 list_del(&rg->link);
312 kfree(rg);
313 }
314 }
315
316 add += (nrg->from - f); /* Added to beginning of region */
317 nrg->from = f;
318 add += t - nrg->to; /* Added to end of region */
319 nrg->to = t;
320
321 out_locked:
322 resv->adds_in_progress--;
323 spin_unlock(&resv->lock);
324 VM_BUG_ON(add < 0);
325 return add;
326 }
327
328 /*
329 * Examine the existing reserve map and determine how many
330 * huge pages in the specified range [f, t) are NOT currently
331 * represented. This routine is called before a subsequent
332 * call to region_add that will actually modify the reserve
333 * map to add the specified range [f, t). region_chg does
334 * not change the number of huge pages represented by the
335 * map. However, if the existing regions in the map can not
336 * be expanded to represent the new range, a new file_region
337 * structure is added to the map as a placeholder. This is
338 * so that the subsequent region_add call will have all the
339 * regions it needs and will not fail.
340 *
341 * Upon entry, region_chg will also examine the cache of region descriptors
342 * associated with the map. If there are not enough descriptors cached, one
343 * will be allocated for the in progress add operation.
344 *
345 * Returns the number of huge pages that need to be added to the existing
346 * reservation map for the range [f, t). This number is greater or equal to
347 * zero. -ENOMEM is returned if a new file_region structure or cache entry
348 * is needed and can not be allocated.
349 */
350 static long region_chg(struct resv_map *resv, long f, long t)
351 {
352 struct list_head *head = &resv->regions;
353 struct file_region *rg, *nrg = NULL;
354 long chg = 0;
355
356 retry:
357 spin_lock(&resv->lock);
358 retry_locked:
359 resv->adds_in_progress++;
360
361 /*
362 * Check for sufficient descriptors in the cache to accommodate
363 * the number of in progress add operations.
364 */
365 if (resv->adds_in_progress > resv->region_cache_count) {
366 struct file_region *trg;
367
368 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
369 /* Must drop lock to allocate a new descriptor. */
370 resv->adds_in_progress--;
371 spin_unlock(&resv->lock);
372
373 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
374 if (!trg) {
375 kfree(nrg);
376 return -ENOMEM;
377 }
378
379 spin_lock(&resv->lock);
380 list_add(&trg->link, &resv->region_cache);
381 resv->region_cache_count++;
382 goto retry_locked;
383 }
384
385 /* Locate the region we are before or in. */
386 list_for_each_entry(rg, head, link)
387 if (f <= rg->to)
388 break;
389
390 /* If we are below the current region then a new region is required.
391 * Subtle, allocate a new region at the position but make it zero
392 * size such that we can guarantee to record the reservation. */
393 if (&rg->link == head || t < rg->from) {
394 if (!nrg) {
395 resv->adds_in_progress--;
396 spin_unlock(&resv->lock);
397 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
398 if (!nrg)
399 return -ENOMEM;
400
401 nrg->from = f;
402 nrg->to = f;
403 INIT_LIST_HEAD(&nrg->link);
404 goto retry;
405 }
406
407 list_add(&nrg->link, rg->link.prev);
408 chg = t - f;
409 goto out_nrg;
410 }
411
412 /* Round our left edge to the current segment if it encloses us. */
413 if (f > rg->from)
414 f = rg->from;
415 chg = t - f;
416
417 /* Check for and consume any regions we now overlap with. */
418 list_for_each_entry(rg, rg->link.prev, link) {
419 if (&rg->link == head)
420 break;
421 if (rg->from > t)
422 goto out;
423
424 /* We overlap with this area, if it extends further than
425 * us then we must extend ourselves. Account for its
426 * existing reservation. */
427 if (rg->to > t) {
428 chg += rg->to - t;
429 t = rg->to;
430 }
431 chg -= rg->to - rg->from;
432 }
433
434 out:
435 spin_unlock(&resv->lock);
436 /* We already know we raced and no longer need the new region */
437 kfree(nrg);
438 return chg;
439 out_nrg:
440 spin_unlock(&resv->lock);
441 return chg;
442 }
443
444 /*
445 * Abort the in progress add operation. The adds_in_progress field
446 * of the resv_map keeps track of the operations in progress between
447 * calls to region_chg and region_add. Operations are sometimes
448 * aborted after the call to region_chg. In such cases, region_abort
449 * is called to decrement the adds_in_progress counter.
450 *
451 * NOTE: The range arguments [f, t) are not needed or used in this
452 * routine. They are kept to make reading the calling code easier as
453 * arguments will match the associated region_chg call.
454 */
455 static void region_abort(struct resv_map *resv, long f, long t)
456 {
457 spin_lock(&resv->lock);
458 VM_BUG_ON(!resv->region_cache_count);
459 resv->adds_in_progress--;
460 spin_unlock(&resv->lock);
461 }
462
463 /*
464 * Delete the specified range [f, t) from the reserve map. If the
465 * t parameter is LONG_MAX, this indicates that ALL regions after f
466 * should be deleted. Locate the regions which intersect [f, t)
467 * and either trim, delete or split the existing regions.
468 *
469 * Returns the number of huge pages deleted from the reserve map.
470 * In the normal case, the return value is zero or more. In the
471 * case where a region must be split, a new region descriptor must
472 * be allocated. If the allocation fails, -ENOMEM will be returned.
473 * NOTE: If the parameter t == LONG_MAX, then we will never split
474 * a region and possibly return -ENOMEM. Callers specifying
475 * t == LONG_MAX do not need to check for -ENOMEM error.
476 */
477 static long region_del(struct resv_map *resv, long f, long t)
478 {
479 struct list_head *head = &resv->regions;
480 struct file_region *rg, *trg;
481 struct file_region *nrg = NULL;
482 long del = 0;
483
484 retry:
485 spin_lock(&resv->lock);
486 list_for_each_entry_safe(rg, trg, head, link) {
487 /*
488 * Skip regions before the range to be deleted. file_region
489 * ranges are normally of the form [from, to). However, there
490 * may be a "placeholder" entry in the map which is of the form
491 * (from, to) with from == to. Check for placeholder entries
492 * at the beginning of the range to be deleted.
493 */
494 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
495 continue;
496
497 if (rg->from >= t)
498 break;
499
500 if (f > rg->from && t < rg->to) { /* Must split region */
501 /*
502 * Check for an entry in the cache before dropping
503 * lock and attempting allocation.
504 */
505 if (!nrg &&
506 resv->region_cache_count > resv->adds_in_progress) {
507 nrg = list_first_entry(&resv->region_cache,
508 struct file_region,
509 link);
510 list_del(&nrg->link);
511 resv->region_cache_count--;
512 }
513
514 if (!nrg) {
515 spin_unlock(&resv->lock);
516 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
517 if (!nrg)
518 return -ENOMEM;
519 goto retry;
520 }
521
522 del += t - f;
523
524 /* New entry for end of split region */
525 nrg->from = t;
526 nrg->to = rg->to;
527 INIT_LIST_HEAD(&nrg->link);
528
529 /* Original entry is trimmed */
530 rg->to = f;
531
532 list_add(&nrg->link, &rg->link);
533 nrg = NULL;
534 break;
535 }
536
537 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
538 del += rg->to - rg->from;
539 list_del(&rg->link);
540 kfree(rg);
541 continue;
542 }
543
544 if (f <= rg->from) { /* Trim beginning of region */
545 del += t - rg->from;
546 rg->from = t;
547 } else { /* Trim end of region */
548 del += rg->to - f;
549 rg->to = f;
550 }
551 }
552
553 spin_unlock(&resv->lock);
554 kfree(nrg);
555 return del;
556 }
557
558 /*
559 * A rare out of memory error was encountered which prevented removal of
560 * the reserve map region for a page. The huge page itself was free'ed
561 * and removed from the page cache. This routine will adjust the subpool
562 * usage count, and the global reserve count if needed. By incrementing
563 * these counts, the reserve map entry which could not be deleted will
564 * appear as a "reserved" entry instead of simply dangling with incorrect
565 * counts.
566 */
567 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
568 {
569 struct hugepage_subpool *spool = subpool_inode(inode);
570 long rsv_adjust;
571
572 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
573 if (restore_reserve && rsv_adjust) {
574 struct hstate *h = hstate_inode(inode);
575
576 hugetlb_acct_memory(h, 1);
577 }
578 }
579
580 /*
581 * Count and return the number of huge pages in the reserve map
582 * that intersect with the range [f, t).
583 */
584 static long region_count(struct resv_map *resv, long f, long t)
585 {
586 struct list_head *head = &resv->regions;
587 struct file_region *rg;
588 long chg = 0;
589
590 spin_lock(&resv->lock);
591 /* Locate each segment we overlap with, and count that overlap. */
592 list_for_each_entry(rg, head, link) {
593 long seg_from;
594 long seg_to;
595
596 if (rg->to <= f)
597 continue;
598 if (rg->from >= t)
599 break;
600
601 seg_from = max(rg->from, f);
602 seg_to = min(rg->to, t);
603
604 chg += seg_to - seg_from;
605 }
606 spin_unlock(&resv->lock);
607
608 return chg;
609 }
610
611 /*
612 * Convert the address within this vma to the page offset within
613 * the mapping, in pagecache page units; huge pages here.
614 */
615 static pgoff_t vma_hugecache_offset(struct hstate *h,
616 struct vm_area_struct *vma, unsigned long address)
617 {
618 return ((address - vma->vm_start) >> huge_page_shift(h)) +
619 (vma->vm_pgoff >> huge_page_order(h));
620 }
621
622 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
623 unsigned long address)
624 {
625 return vma_hugecache_offset(hstate_vma(vma), vma, address);
626 }
627
628 /*
629 * Return the size of the pages allocated when backing a VMA. In the majority
630 * cases this will be same size as used by the page table entries.
631 */
632 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
633 {
634 struct hstate *hstate;
635
636 if (!is_vm_hugetlb_page(vma))
637 return PAGE_SIZE;
638
639 hstate = hstate_vma(vma);
640
641 return 1UL << huge_page_shift(hstate);
642 }
643 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
644
645 /*
646 * Return the page size being used by the MMU to back a VMA. In the majority
647 * of cases, the page size used by the kernel matches the MMU size. On
648 * architectures where it differs, an architecture-specific version of this
649 * function is required.
650 */
651 #ifndef vma_mmu_pagesize
652 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653 {
654 return vma_kernel_pagesize(vma);
655 }
656 #endif
657
658 /*
659 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
660 * bits of the reservation map pointer, which are always clear due to
661 * alignment.
662 */
663 #define HPAGE_RESV_OWNER (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666
667 /*
668 * These helpers are used to track how many pages are reserved for
669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670 * is guaranteed to have their future faults succeed.
671 *
672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673 * the reserve counters are updated with the hugetlb_lock held. It is safe
674 * to reset the VMA at fork() time as it is not in use yet and there is no
675 * chance of the global counters getting corrupted as a result of the values.
676 *
677 * The private mapping reservation is represented in a subtly different
678 * manner to a shared mapping. A shared mapping has a region map associated
679 * with the underlying file, this region map represents the backing file
680 * pages which have ever had a reservation assigned which this persists even
681 * after the page is instantiated. A private mapping has a region map
682 * associated with the original mmap which is attached to all VMAs which
683 * reference it, this region map represents those offsets which have consumed
684 * reservation ie. where pages have been instantiated.
685 */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688 return (unsigned long)vma->vm_private_data;
689 }
690
691 static void set_vma_private_data(struct vm_area_struct *vma,
692 unsigned long value)
693 {
694 vma->vm_private_data = (void *)value;
695 }
696
697 struct resv_map *resv_map_alloc(void)
698 {
699 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702 if (!resv_map || !rg) {
703 kfree(resv_map);
704 kfree(rg);
705 return NULL;
706 }
707
708 kref_init(&resv_map->refs);
709 spin_lock_init(&resv_map->lock);
710 INIT_LIST_HEAD(&resv_map->regions);
711
712 resv_map->adds_in_progress = 0;
713
714 INIT_LIST_HEAD(&resv_map->region_cache);
715 list_add(&rg->link, &resv_map->region_cache);
716 resv_map->region_cache_count = 1;
717
718 return resv_map;
719 }
720
721 void resv_map_release(struct kref *ref)
722 {
723 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724 struct list_head *head = &resv_map->region_cache;
725 struct file_region *rg, *trg;
726
727 /* Clear out any active regions before we release the map. */
728 region_del(resv_map, 0, LONG_MAX);
729
730 /* ... and any entries left in the cache */
731 list_for_each_entry_safe(rg, trg, head, link) {
732 list_del(&rg->link);
733 kfree(rg);
734 }
735
736 VM_BUG_ON(resv_map->adds_in_progress);
737
738 kfree(resv_map);
739 }
740
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743 return inode->i_mapping->private_data;
744 }
745
746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 {
748 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749 if (vma->vm_flags & VM_MAYSHARE) {
750 struct address_space *mapping = vma->vm_file->f_mapping;
751 struct inode *inode = mapping->host;
752
753 return inode_resv_map(inode);
754
755 } else {
756 return (struct resv_map *)(get_vma_private_data(vma) &
757 ~HPAGE_RESV_MASK);
758 }
759 }
760
761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 {
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766 set_vma_private_data(vma, (get_vma_private_data(vma) &
767 HPAGE_RESV_MASK) | (unsigned long)map);
768 }
769
770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 {
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 }
777
778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 {
780 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781
782 return (get_vma_private_data(vma) & flag) != 0;
783 }
784
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 {
788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 if (!(vma->vm_flags & VM_MAYSHARE))
790 vma->vm_private_data = (void *)0;
791 }
792
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 {
796 if (vma->vm_flags & VM_NORESERVE) {
797 /*
798 * This address is already reserved by other process(chg == 0),
799 * so, we should decrement reserved count. Without decrementing,
800 * reserve count remains after releasing inode, because this
801 * allocated page will go into page cache and is regarded as
802 * coming from reserved pool in releasing step. Currently, we
803 * don't have any other solution to deal with this situation
804 * properly, so add work-around here.
805 */
806 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807 return true;
808 else
809 return false;
810 }
811
812 /* Shared mappings always use reserves */
813 if (vma->vm_flags & VM_MAYSHARE) {
814 /*
815 * We know VM_NORESERVE is not set. Therefore, there SHOULD
816 * be a region map for all pages. The only situation where
817 * there is no region map is if a hole was punched via
818 * fallocate. In this case, there really are no reverves to
819 * use. This situation is indicated if chg != 0.
820 */
821 if (chg)
822 return false;
823 else
824 return true;
825 }
826
827 /*
828 * Only the process that called mmap() has reserves for
829 * private mappings.
830 */
831 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
832 return true;
833
834 return false;
835 }
836
837 static void enqueue_huge_page(struct hstate *h, struct page *page)
838 {
839 int nid = page_to_nid(page);
840 list_move(&page->lru, &h->hugepage_freelists[nid]);
841 h->free_huge_pages++;
842 h->free_huge_pages_node[nid]++;
843 }
844
845 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
846 {
847 struct page *page;
848
849 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
850 if (!is_migrate_isolate_page(page))
851 break;
852 /*
853 * if 'non-isolated free hugepage' not found on the list,
854 * the allocation fails.
855 */
856 if (&h->hugepage_freelists[nid] == &page->lru)
857 return NULL;
858 list_move(&page->lru, &h->hugepage_activelist);
859 set_page_refcounted(page);
860 h->free_huge_pages--;
861 h->free_huge_pages_node[nid]--;
862 return page;
863 }
864
865 /* Movability of hugepages depends on migration support. */
866 static inline gfp_t htlb_alloc_mask(struct hstate *h)
867 {
868 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
869 return GFP_HIGHUSER_MOVABLE;
870 else
871 return GFP_HIGHUSER;
872 }
873
874 static struct page *dequeue_huge_page_vma(struct hstate *h,
875 struct vm_area_struct *vma,
876 unsigned long address, int avoid_reserve,
877 long chg)
878 {
879 struct page *page = NULL;
880 struct mempolicy *mpol;
881 nodemask_t *nodemask;
882 struct zonelist *zonelist;
883 struct zone *zone;
884 struct zoneref *z;
885 unsigned int cpuset_mems_cookie;
886
887 /*
888 * A child process with MAP_PRIVATE mappings created by their parent
889 * have no page reserves. This check ensures that reservations are
890 * not "stolen". The child may still get SIGKILLed
891 */
892 if (!vma_has_reserves(vma, chg) &&
893 h->free_huge_pages - h->resv_huge_pages == 0)
894 goto err;
895
896 /* If reserves cannot be used, ensure enough pages are in the pool */
897 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
898 goto err;
899
900 retry_cpuset:
901 cpuset_mems_cookie = read_mems_allowed_begin();
902 zonelist = huge_zonelist(vma, address,
903 htlb_alloc_mask(h), &mpol, &nodemask);
904
905 for_each_zone_zonelist_nodemask(zone, z, zonelist,
906 MAX_NR_ZONES - 1, nodemask) {
907 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
908 page = dequeue_huge_page_node(h, zone_to_nid(zone));
909 if (page) {
910 if (avoid_reserve)
911 break;
912 if (!vma_has_reserves(vma, chg))
913 break;
914
915 SetPagePrivate(page);
916 h->resv_huge_pages--;
917 break;
918 }
919 }
920 }
921
922 mpol_cond_put(mpol);
923 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
924 goto retry_cpuset;
925 return page;
926
927 err:
928 return NULL;
929 }
930
931 /*
932 * common helper functions for hstate_next_node_to_{alloc|free}.
933 * We may have allocated or freed a huge page based on a different
934 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
935 * be outside of *nodes_allowed. Ensure that we use an allowed
936 * node for alloc or free.
937 */
938 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
939 {
940 nid = next_node(nid, *nodes_allowed);
941 if (nid == MAX_NUMNODES)
942 nid = first_node(*nodes_allowed);
943 VM_BUG_ON(nid >= MAX_NUMNODES);
944
945 return nid;
946 }
947
948 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
949 {
950 if (!node_isset(nid, *nodes_allowed))
951 nid = next_node_allowed(nid, nodes_allowed);
952 return nid;
953 }
954
955 /*
956 * returns the previously saved node ["this node"] from which to
957 * allocate a persistent huge page for the pool and advance the
958 * next node from which to allocate, handling wrap at end of node
959 * mask.
960 */
961 static int hstate_next_node_to_alloc(struct hstate *h,
962 nodemask_t *nodes_allowed)
963 {
964 int nid;
965
966 VM_BUG_ON(!nodes_allowed);
967
968 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
969 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
970
971 return nid;
972 }
973
974 /*
975 * helper for free_pool_huge_page() - return the previously saved
976 * node ["this node"] from which to free a huge page. Advance the
977 * next node id whether or not we find a free huge page to free so
978 * that the next attempt to free addresses the next node.
979 */
980 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
981 {
982 int nid;
983
984 VM_BUG_ON(!nodes_allowed);
985
986 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
987 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
988
989 return nid;
990 }
991
992 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
993 for (nr_nodes = nodes_weight(*mask); \
994 nr_nodes > 0 && \
995 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
996 nr_nodes--)
997
998 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
999 for (nr_nodes = nodes_weight(*mask); \
1000 nr_nodes > 0 && \
1001 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1002 nr_nodes--)
1003
1004 #if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1005 static void destroy_compound_gigantic_page(struct page *page,
1006 unsigned int order)
1007 {
1008 int i;
1009 int nr_pages = 1 << order;
1010 struct page *p = page + 1;
1011
1012 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1013 clear_compound_head(p);
1014 set_page_refcounted(p);
1015 }
1016
1017 set_compound_order(page, 0);
1018 __ClearPageHead(page);
1019 }
1020
1021 static void free_gigantic_page(struct page *page, unsigned int order)
1022 {
1023 free_contig_range(page_to_pfn(page), 1 << order);
1024 }
1025
1026 static int __alloc_gigantic_page(unsigned long start_pfn,
1027 unsigned long nr_pages)
1028 {
1029 unsigned long end_pfn = start_pfn + nr_pages;
1030 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1031 }
1032
1033 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1034 unsigned long nr_pages)
1035 {
1036 unsigned long i, end_pfn = start_pfn + nr_pages;
1037 struct page *page;
1038
1039 for (i = start_pfn; i < end_pfn; i++) {
1040 if (!pfn_valid(i))
1041 return false;
1042
1043 page = pfn_to_page(i);
1044
1045 if (PageReserved(page))
1046 return false;
1047
1048 if (page_count(page) > 0)
1049 return false;
1050
1051 if (PageHuge(page))
1052 return false;
1053 }
1054
1055 return true;
1056 }
1057
1058 static bool zone_spans_last_pfn(const struct zone *zone,
1059 unsigned long start_pfn, unsigned long nr_pages)
1060 {
1061 unsigned long last_pfn = start_pfn + nr_pages - 1;
1062 return zone_spans_pfn(zone, last_pfn);
1063 }
1064
1065 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1066 {
1067 unsigned long nr_pages = 1 << order;
1068 unsigned long ret, pfn, flags;
1069 struct zone *z;
1070
1071 z = NODE_DATA(nid)->node_zones;
1072 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1073 spin_lock_irqsave(&z->lock, flags);
1074
1075 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1076 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1077 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1078 /*
1079 * We release the zone lock here because
1080 * alloc_contig_range() will also lock the zone
1081 * at some point. If there's an allocation
1082 * spinning on this lock, it may win the race
1083 * and cause alloc_contig_range() to fail...
1084 */
1085 spin_unlock_irqrestore(&z->lock, flags);
1086 ret = __alloc_gigantic_page(pfn, nr_pages);
1087 if (!ret)
1088 return pfn_to_page(pfn);
1089 spin_lock_irqsave(&z->lock, flags);
1090 }
1091 pfn += nr_pages;
1092 }
1093
1094 spin_unlock_irqrestore(&z->lock, flags);
1095 }
1096
1097 return NULL;
1098 }
1099
1100 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1101 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1102
1103 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1104 {
1105 struct page *page;
1106
1107 page = alloc_gigantic_page(nid, huge_page_order(h));
1108 if (page) {
1109 prep_compound_gigantic_page(page, huge_page_order(h));
1110 prep_new_huge_page(h, page, nid);
1111 }
1112
1113 return page;
1114 }
1115
1116 static int alloc_fresh_gigantic_page(struct hstate *h,
1117 nodemask_t *nodes_allowed)
1118 {
1119 struct page *page = NULL;
1120 int nr_nodes, node;
1121
1122 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1123 page = alloc_fresh_gigantic_page_node(h, node);
1124 if (page)
1125 return 1;
1126 }
1127
1128 return 0;
1129 }
1130
1131 static inline bool gigantic_page_supported(void) { return true; }
1132 #else
1133 static inline bool gigantic_page_supported(void) { return false; }
1134 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1135 static inline void destroy_compound_gigantic_page(struct page *page,
1136 unsigned int order) { }
1137 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1138 nodemask_t *nodes_allowed) { return 0; }
1139 #endif
1140
1141 static void update_and_free_page(struct hstate *h, struct page *page)
1142 {
1143 int i;
1144
1145 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1146 return;
1147
1148 h->nr_huge_pages--;
1149 h->nr_huge_pages_node[page_to_nid(page)]--;
1150 for (i = 0; i < pages_per_huge_page(h); i++) {
1151 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1152 1 << PG_referenced | 1 << PG_dirty |
1153 1 << PG_active | 1 << PG_private |
1154 1 << PG_writeback);
1155 }
1156 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1157 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1158 set_page_refcounted(page);
1159 if (hstate_is_gigantic(h)) {
1160 destroy_compound_gigantic_page(page, huge_page_order(h));
1161 free_gigantic_page(page, huge_page_order(h));
1162 } else {
1163 __free_pages(page, huge_page_order(h));
1164 }
1165 }
1166
1167 struct hstate *size_to_hstate(unsigned long size)
1168 {
1169 struct hstate *h;
1170
1171 for_each_hstate(h) {
1172 if (huge_page_size(h) == size)
1173 return h;
1174 }
1175 return NULL;
1176 }
1177
1178 /*
1179 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1180 * to hstate->hugepage_activelist.)
1181 *
1182 * This function can be called for tail pages, but never returns true for them.
1183 */
1184 bool page_huge_active(struct page *page)
1185 {
1186 VM_BUG_ON_PAGE(!PageHuge(page), page);
1187 return PageHead(page) && PagePrivate(&page[1]);
1188 }
1189
1190 /* never called for tail page */
1191 static void set_page_huge_active(struct page *page)
1192 {
1193 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1194 SetPagePrivate(&page[1]);
1195 }
1196
1197 static void clear_page_huge_active(struct page *page)
1198 {
1199 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1200 ClearPagePrivate(&page[1]);
1201 }
1202
1203 void free_huge_page(struct page *page)
1204 {
1205 /*
1206 * Can't pass hstate in here because it is called from the
1207 * compound page destructor.
1208 */
1209 struct hstate *h = page_hstate(page);
1210 int nid = page_to_nid(page);
1211 struct hugepage_subpool *spool =
1212 (struct hugepage_subpool *)page_private(page);
1213 bool restore_reserve;
1214
1215 set_page_private(page, 0);
1216 page->mapping = NULL;
1217 VM_BUG_ON_PAGE(page_count(page), page);
1218 VM_BUG_ON_PAGE(page_mapcount(page), page);
1219 restore_reserve = PagePrivate(page);
1220 ClearPagePrivate(page);
1221
1222 /*
1223 * A return code of zero implies that the subpool will be under its
1224 * minimum size if the reservation is not restored after page is free.
1225 * Therefore, force restore_reserve operation.
1226 */
1227 if (hugepage_subpool_put_pages(spool, 1) == 0)
1228 restore_reserve = true;
1229
1230 spin_lock(&hugetlb_lock);
1231 clear_page_huge_active(page);
1232 hugetlb_cgroup_uncharge_page(hstate_index(h),
1233 pages_per_huge_page(h), page);
1234 if (restore_reserve)
1235 h->resv_huge_pages++;
1236
1237 if (h->surplus_huge_pages_node[nid]) {
1238 /* remove the page from active list */
1239 list_del(&page->lru);
1240 update_and_free_page(h, page);
1241 h->surplus_huge_pages--;
1242 h->surplus_huge_pages_node[nid]--;
1243 } else {
1244 arch_clear_hugepage_flags(page);
1245 enqueue_huge_page(h, page);
1246 }
1247 spin_unlock(&hugetlb_lock);
1248 }
1249
1250 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1251 {
1252 INIT_LIST_HEAD(&page->lru);
1253 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1254 spin_lock(&hugetlb_lock);
1255 set_hugetlb_cgroup(page, NULL);
1256 h->nr_huge_pages++;
1257 h->nr_huge_pages_node[nid]++;
1258 spin_unlock(&hugetlb_lock);
1259 put_page(page); /* free it into the hugepage allocator */
1260 }
1261
1262 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1263 {
1264 int i;
1265 int nr_pages = 1 << order;
1266 struct page *p = page + 1;
1267
1268 /* we rely on prep_new_huge_page to set the destructor */
1269 set_compound_order(page, order);
1270 __ClearPageReserved(page);
1271 __SetPageHead(page);
1272 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1273 /*
1274 * For gigantic hugepages allocated through bootmem at
1275 * boot, it's safer to be consistent with the not-gigantic
1276 * hugepages and clear the PG_reserved bit from all tail pages
1277 * too. Otherwse drivers using get_user_pages() to access tail
1278 * pages may get the reference counting wrong if they see
1279 * PG_reserved set on a tail page (despite the head page not
1280 * having PG_reserved set). Enforcing this consistency between
1281 * head and tail pages allows drivers to optimize away a check
1282 * on the head page when they need know if put_page() is needed
1283 * after get_user_pages().
1284 */
1285 __ClearPageReserved(p);
1286 set_page_count(p, 0);
1287 set_compound_head(p, page);
1288 }
1289 atomic_set(compound_mapcount_ptr(page), -1);
1290 }
1291
1292 /*
1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294 * transparent huge pages. See the PageTransHuge() documentation for more
1295 * details.
1296 */
1297 int PageHuge(struct page *page)
1298 {
1299 if (!PageCompound(page))
1300 return 0;
1301
1302 page = compound_head(page);
1303 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304 }
1305 EXPORT_SYMBOL_GPL(PageHuge);
1306
1307 /*
1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309 * normal or transparent huge pages.
1310 */
1311 int PageHeadHuge(struct page *page_head)
1312 {
1313 if (!PageHead(page_head))
1314 return 0;
1315
1316 return get_compound_page_dtor(page_head) == free_huge_page;
1317 }
1318
1319 pgoff_t __basepage_index(struct page *page)
1320 {
1321 struct page *page_head = compound_head(page);
1322 pgoff_t index = page_index(page_head);
1323 unsigned long compound_idx;
1324
1325 if (!PageHuge(page_head))
1326 return page_index(page);
1327
1328 if (compound_order(page_head) >= MAX_ORDER)
1329 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330 else
1331 compound_idx = page - page_head;
1332
1333 return (index << compound_order(page_head)) + compound_idx;
1334 }
1335
1336 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1337 {
1338 struct page *page;
1339
1340 page = __alloc_pages_node(nid,
1341 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342 __GFP_REPEAT|__GFP_NOWARN,
1343 huge_page_order(h));
1344 if (page) {
1345 prep_new_huge_page(h, page, nid);
1346 }
1347
1348 return page;
1349 }
1350
1351 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352 {
1353 struct page *page;
1354 int nr_nodes, node;
1355 int ret = 0;
1356
1357 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358 page = alloc_fresh_huge_page_node(h, node);
1359 if (page) {
1360 ret = 1;
1361 break;
1362 }
1363 }
1364
1365 if (ret)
1366 count_vm_event(HTLB_BUDDY_PGALLOC);
1367 else
1368 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370 return ret;
1371 }
1372
1373 /*
1374 * Free huge page from pool from next node to free.
1375 * Attempt to keep persistent huge pages more or less
1376 * balanced over allowed nodes.
1377 * Called with hugetlb_lock locked.
1378 */
1379 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380 bool acct_surplus)
1381 {
1382 int nr_nodes, node;
1383 int ret = 0;
1384
1385 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386 /*
1387 * If we're returning unused surplus pages, only examine
1388 * nodes with surplus pages.
1389 */
1390 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391 !list_empty(&h->hugepage_freelists[node])) {
1392 struct page *page =
1393 list_entry(h->hugepage_freelists[node].next,
1394 struct page, lru);
1395 list_del(&page->lru);
1396 h->free_huge_pages--;
1397 h->free_huge_pages_node[node]--;
1398 if (acct_surplus) {
1399 h->surplus_huge_pages--;
1400 h->surplus_huge_pages_node[node]--;
1401 }
1402 update_and_free_page(h, page);
1403 ret = 1;
1404 break;
1405 }
1406 }
1407
1408 return ret;
1409 }
1410
1411 /*
1412 * Dissolve a given free hugepage into free buddy pages. This function does
1413 * nothing for in-use (including surplus) hugepages.
1414 */
1415 static void dissolve_free_huge_page(struct page *page)
1416 {
1417 spin_lock(&hugetlb_lock);
1418 if (PageHuge(page) && !page_count(page)) {
1419 struct hstate *h = page_hstate(page);
1420 int nid = page_to_nid(page);
1421 list_del(&page->lru);
1422 h->free_huge_pages--;
1423 h->free_huge_pages_node[nid]--;
1424 update_and_free_page(h, page);
1425 }
1426 spin_unlock(&hugetlb_lock);
1427 }
1428
1429 /*
1430 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431 * make specified memory blocks removable from the system.
1432 * Note that start_pfn should aligned with (minimum) hugepage size.
1433 */
1434 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1435 {
1436 unsigned long pfn;
1437
1438 if (!hugepages_supported())
1439 return;
1440
1441 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1442 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1443 dissolve_free_huge_page(pfn_to_page(pfn));
1444 }
1445
1446 /*
1447 * There are 3 ways this can get called:
1448 * 1. With vma+addr: we use the VMA's memory policy
1449 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1450 * page from any node, and let the buddy allocator itself figure
1451 * it out.
1452 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1453 * strictly from 'nid'
1454 */
1455 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1456 struct vm_area_struct *vma, unsigned long addr, int nid)
1457 {
1458 int order = huge_page_order(h);
1459 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1460 unsigned int cpuset_mems_cookie;
1461
1462 /*
1463 * We need a VMA to get a memory policy. If we do not
1464 * have one, we use the 'nid' argument.
1465 *
1466 * The mempolicy stuff below has some non-inlined bits
1467 * and calls ->vm_ops. That makes it hard to optimize at
1468 * compile-time, even when NUMA is off and it does
1469 * nothing. This helps the compiler optimize it out.
1470 */
1471 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1472 /*
1473 * If a specific node is requested, make sure to
1474 * get memory from there, but only when a node
1475 * is explicitly specified.
1476 */
1477 if (nid != NUMA_NO_NODE)
1478 gfp |= __GFP_THISNODE;
1479 /*
1480 * Make sure to call something that can handle
1481 * nid=NUMA_NO_NODE
1482 */
1483 return alloc_pages_node(nid, gfp, order);
1484 }
1485
1486 /*
1487 * OK, so we have a VMA. Fetch the mempolicy and try to
1488 * allocate a huge page with it. We will only reach this
1489 * when CONFIG_NUMA=y.
1490 */
1491 do {
1492 struct page *page;
1493 struct mempolicy *mpol;
1494 struct zonelist *zl;
1495 nodemask_t *nodemask;
1496
1497 cpuset_mems_cookie = read_mems_allowed_begin();
1498 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1499 mpol_cond_put(mpol);
1500 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1501 if (page)
1502 return page;
1503 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1504
1505 return NULL;
1506 }
1507
1508 /*
1509 * There are two ways to allocate a huge page:
1510 * 1. When you have a VMA and an address (like a fault)
1511 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1512 *
1513 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1514 * this case which signifies that the allocation should be done with
1515 * respect for the VMA's memory policy.
1516 *
1517 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518 * implies that memory policies will not be taken in to account.
1519 */
1520 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1521 struct vm_area_struct *vma, unsigned long addr, int nid)
1522 {
1523 struct page *page;
1524 unsigned int r_nid;
1525
1526 if (hstate_is_gigantic(h))
1527 return NULL;
1528
1529 /*
1530 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531 * This makes sure the caller is picking _one_ of the modes with which
1532 * we can call this function, not both.
1533 */
1534 if (vma || (addr != -1)) {
1535 VM_WARN_ON_ONCE(addr == -1);
1536 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1537 }
1538 /*
1539 * Assume we will successfully allocate the surplus page to
1540 * prevent racing processes from causing the surplus to exceed
1541 * overcommit
1542 *
1543 * This however introduces a different race, where a process B
1544 * tries to grow the static hugepage pool while alloc_pages() is
1545 * called by process A. B will only examine the per-node
1546 * counters in determining if surplus huge pages can be
1547 * converted to normal huge pages in adjust_pool_surplus(). A
1548 * won't be able to increment the per-node counter, until the
1549 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550 * no more huge pages can be converted from surplus to normal
1551 * state (and doesn't try to convert again). Thus, we have a
1552 * case where a surplus huge page exists, the pool is grown, and
1553 * the surplus huge page still exists after, even though it
1554 * should just have been converted to a normal huge page. This
1555 * does not leak memory, though, as the hugepage will be freed
1556 * once it is out of use. It also does not allow the counters to
1557 * go out of whack in adjust_pool_surplus() as we don't modify
1558 * the node values until we've gotten the hugepage and only the
1559 * per-node value is checked there.
1560 */
1561 spin_lock(&hugetlb_lock);
1562 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1563 spin_unlock(&hugetlb_lock);
1564 return NULL;
1565 } else {
1566 h->nr_huge_pages++;
1567 h->surplus_huge_pages++;
1568 }
1569 spin_unlock(&hugetlb_lock);
1570
1571 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1572
1573 spin_lock(&hugetlb_lock);
1574 if (page) {
1575 INIT_LIST_HEAD(&page->lru);
1576 r_nid = page_to_nid(page);
1577 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1578 set_hugetlb_cgroup(page, NULL);
1579 /*
1580 * We incremented the global counters already
1581 */
1582 h->nr_huge_pages_node[r_nid]++;
1583 h->surplus_huge_pages_node[r_nid]++;
1584 __count_vm_event(HTLB_BUDDY_PGALLOC);
1585 } else {
1586 h->nr_huge_pages--;
1587 h->surplus_huge_pages--;
1588 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1589 }
1590 spin_unlock(&hugetlb_lock);
1591
1592 return page;
1593 }
1594
1595 /*
1596 * Allocate a huge page from 'nid'. Note, 'nid' may be
1597 * NUMA_NO_NODE, which means that it may be allocated
1598 * anywhere.
1599 */
1600 static
1601 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1602 {
1603 unsigned long addr = -1;
1604
1605 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1606 }
1607
1608 /*
1609 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1610 */
1611 static
1612 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1613 struct vm_area_struct *vma, unsigned long addr)
1614 {
1615 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1616 }
1617
1618 /*
1619 * This allocation function is useful in the context where vma is irrelevant.
1620 * E.g. soft-offlining uses this function because it only cares physical
1621 * address of error page.
1622 */
1623 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624 {
1625 struct page *page = NULL;
1626
1627 spin_lock(&hugetlb_lock);
1628 if (h->free_huge_pages - h->resv_huge_pages > 0)
1629 page = dequeue_huge_page_node(h, nid);
1630 spin_unlock(&hugetlb_lock);
1631
1632 if (!page)
1633 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1634
1635 return page;
1636 }
1637
1638 /*
1639 * Increase the hugetlb pool such that it can accommodate a reservation
1640 * of size 'delta'.
1641 */
1642 static int gather_surplus_pages(struct hstate *h, int delta)
1643 {
1644 struct list_head surplus_list;
1645 struct page *page, *tmp;
1646 int ret, i;
1647 int needed, allocated;
1648 bool alloc_ok = true;
1649
1650 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1651 if (needed <= 0) {
1652 h->resv_huge_pages += delta;
1653 return 0;
1654 }
1655
1656 allocated = 0;
1657 INIT_LIST_HEAD(&surplus_list);
1658
1659 ret = -ENOMEM;
1660 retry:
1661 spin_unlock(&hugetlb_lock);
1662 for (i = 0; i < needed; i++) {
1663 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1664 if (!page) {
1665 alloc_ok = false;
1666 break;
1667 }
1668 list_add(&page->lru, &surplus_list);
1669 }
1670 allocated += i;
1671
1672 /*
1673 * After retaking hugetlb_lock, we need to recalculate 'needed'
1674 * because either resv_huge_pages or free_huge_pages may have changed.
1675 */
1676 spin_lock(&hugetlb_lock);
1677 needed = (h->resv_huge_pages + delta) -
1678 (h->free_huge_pages + allocated);
1679 if (needed > 0) {
1680 if (alloc_ok)
1681 goto retry;
1682 /*
1683 * We were not able to allocate enough pages to
1684 * satisfy the entire reservation so we free what
1685 * we've allocated so far.
1686 */
1687 goto free;
1688 }
1689 /*
1690 * The surplus_list now contains _at_least_ the number of extra pages
1691 * needed to accommodate the reservation. Add the appropriate number
1692 * of pages to the hugetlb pool and free the extras back to the buddy
1693 * allocator. Commit the entire reservation here to prevent another
1694 * process from stealing the pages as they are added to the pool but
1695 * before they are reserved.
1696 */
1697 needed += allocated;
1698 h->resv_huge_pages += delta;
1699 ret = 0;
1700
1701 /* Free the needed pages to the hugetlb pool */
1702 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1703 if ((--needed) < 0)
1704 break;
1705 /*
1706 * This page is now managed by the hugetlb allocator and has
1707 * no users -- drop the buddy allocator's reference.
1708 */
1709 put_page_testzero(page);
1710 VM_BUG_ON_PAGE(page_count(page), page);
1711 enqueue_huge_page(h, page);
1712 }
1713 free:
1714 spin_unlock(&hugetlb_lock);
1715
1716 /* Free unnecessary surplus pages to the buddy allocator */
1717 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1718 put_page(page);
1719 spin_lock(&hugetlb_lock);
1720
1721 return ret;
1722 }
1723
1724 /*
1725 * When releasing a hugetlb pool reservation, any surplus pages that were
1726 * allocated to satisfy the reservation must be explicitly freed if they were
1727 * never used.
1728 * Called with hugetlb_lock held.
1729 */
1730 static void return_unused_surplus_pages(struct hstate *h,
1731 unsigned long unused_resv_pages)
1732 {
1733 unsigned long nr_pages;
1734
1735 /* Uncommit the reservation */
1736 h->resv_huge_pages -= unused_resv_pages;
1737
1738 /* Cannot return gigantic pages currently */
1739 if (hstate_is_gigantic(h))
1740 return;
1741
1742 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1743
1744 /*
1745 * We want to release as many surplus pages as possible, spread
1746 * evenly across all nodes with memory. Iterate across these nodes
1747 * until we can no longer free unreserved surplus pages. This occurs
1748 * when the nodes with surplus pages have no free pages.
1749 * free_pool_huge_page() will balance the the freed pages across the
1750 * on-line nodes with memory and will handle the hstate accounting.
1751 */
1752 while (nr_pages--) {
1753 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1754 break;
1755 cond_resched_lock(&hugetlb_lock);
1756 }
1757 }
1758
1759
1760 /*
1761 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762 * are used by the huge page allocation routines to manage reservations.
1763 *
1764 * vma_needs_reservation is called to determine if the huge page at addr
1765 * within the vma has an associated reservation. If a reservation is
1766 * needed, the value 1 is returned. The caller is then responsible for
1767 * managing the global reservation and subpool usage counts. After
1768 * the huge page has been allocated, vma_commit_reservation is called
1769 * to add the page to the reservation map. If the page allocation fails,
1770 * the reservation must be ended instead of committed. vma_end_reservation
1771 * is called in such cases.
1772 *
1773 * In the normal case, vma_commit_reservation returns the same value
1774 * as the preceding vma_needs_reservation call. The only time this
1775 * is not the case is if a reserve map was changed between calls. It
1776 * is the responsibility of the caller to notice the difference and
1777 * take appropriate action.
1778 */
1779 enum vma_resv_mode {
1780 VMA_NEEDS_RESV,
1781 VMA_COMMIT_RESV,
1782 VMA_END_RESV,
1783 };
1784 static long __vma_reservation_common(struct hstate *h,
1785 struct vm_area_struct *vma, unsigned long addr,
1786 enum vma_resv_mode mode)
1787 {
1788 struct resv_map *resv;
1789 pgoff_t idx;
1790 long ret;
1791
1792 resv = vma_resv_map(vma);
1793 if (!resv)
1794 return 1;
1795
1796 idx = vma_hugecache_offset(h, vma, addr);
1797 switch (mode) {
1798 case VMA_NEEDS_RESV:
1799 ret = region_chg(resv, idx, idx + 1);
1800 break;
1801 case VMA_COMMIT_RESV:
1802 ret = region_add(resv, idx, idx + 1);
1803 break;
1804 case VMA_END_RESV:
1805 region_abort(resv, idx, idx + 1);
1806 ret = 0;
1807 break;
1808 default:
1809 BUG();
1810 }
1811
1812 if (vma->vm_flags & VM_MAYSHARE)
1813 return ret;
1814 else
1815 return ret < 0 ? ret : 0;
1816 }
1817
1818 static long vma_needs_reservation(struct hstate *h,
1819 struct vm_area_struct *vma, unsigned long addr)
1820 {
1821 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1822 }
1823
1824 static long vma_commit_reservation(struct hstate *h,
1825 struct vm_area_struct *vma, unsigned long addr)
1826 {
1827 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1828 }
1829
1830 static void vma_end_reservation(struct hstate *h,
1831 struct vm_area_struct *vma, unsigned long addr)
1832 {
1833 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1834 }
1835
1836 struct page *alloc_huge_page(struct vm_area_struct *vma,
1837 unsigned long addr, int avoid_reserve)
1838 {
1839 struct hugepage_subpool *spool = subpool_vma(vma);
1840 struct hstate *h = hstate_vma(vma);
1841 struct page *page;
1842 long map_chg, map_commit;
1843 long gbl_chg;
1844 int ret, idx;
1845 struct hugetlb_cgroup *h_cg;
1846
1847 idx = hstate_index(h);
1848 /*
1849 * Examine the region/reserve map to determine if the process
1850 * has a reservation for the page to be allocated. A return
1851 * code of zero indicates a reservation exists (no change).
1852 */
1853 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1854 if (map_chg < 0)
1855 return ERR_PTR(-ENOMEM);
1856
1857 /*
1858 * Processes that did not create the mapping will have no
1859 * reserves as indicated by the region/reserve map. Check
1860 * that the allocation will not exceed the subpool limit.
1861 * Allocations for MAP_NORESERVE mappings also need to be
1862 * checked against any subpool limit.
1863 */
1864 if (map_chg || avoid_reserve) {
1865 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1866 if (gbl_chg < 0) {
1867 vma_end_reservation(h, vma, addr);
1868 return ERR_PTR(-ENOSPC);
1869 }
1870
1871 /*
1872 * Even though there was no reservation in the region/reserve
1873 * map, there could be reservations associated with the
1874 * subpool that can be used. This would be indicated if the
1875 * return value of hugepage_subpool_get_pages() is zero.
1876 * However, if avoid_reserve is specified we still avoid even
1877 * the subpool reservations.
1878 */
1879 if (avoid_reserve)
1880 gbl_chg = 1;
1881 }
1882
1883 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1884 if (ret)
1885 goto out_subpool_put;
1886
1887 spin_lock(&hugetlb_lock);
1888 /*
1889 * glb_chg is passed to indicate whether or not a page must be taken
1890 * from the global free pool (global change). gbl_chg == 0 indicates
1891 * a reservation exists for the allocation.
1892 */
1893 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1894 if (!page) {
1895 spin_unlock(&hugetlb_lock);
1896 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1897 if (!page)
1898 goto out_uncharge_cgroup;
1899 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1900 SetPagePrivate(page);
1901 h->resv_huge_pages--;
1902 }
1903 spin_lock(&hugetlb_lock);
1904 list_move(&page->lru, &h->hugepage_activelist);
1905 /* Fall through */
1906 }
1907 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1908 spin_unlock(&hugetlb_lock);
1909
1910 set_page_private(page, (unsigned long)spool);
1911
1912 map_commit = vma_commit_reservation(h, vma, addr);
1913 if (unlikely(map_chg > map_commit)) {
1914 /*
1915 * The page was added to the reservation map between
1916 * vma_needs_reservation and vma_commit_reservation.
1917 * This indicates a race with hugetlb_reserve_pages.
1918 * Adjust for the subpool count incremented above AND
1919 * in hugetlb_reserve_pages for the same page. Also,
1920 * the reservation count added in hugetlb_reserve_pages
1921 * no longer applies.
1922 */
1923 long rsv_adjust;
1924
1925 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1926 hugetlb_acct_memory(h, -rsv_adjust);
1927 }
1928 return page;
1929
1930 out_uncharge_cgroup:
1931 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1932 out_subpool_put:
1933 if (map_chg || avoid_reserve)
1934 hugepage_subpool_put_pages(spool, 1);
1935 vma_end_reservation(h, vma, addr);
1936 return ERR_PTR(-ENOSPC);
1937 }
1938
1939 /*
1940 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942 * where no ERR_VALUE is expected to be returned.
1943 */
1944 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1945 unsigned long addr, int avoid_reserve)
1946 {
1947 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1948 if (IS_ERR(page))
1949 page = NULL;
1950 return page;
1951 }
1952
1953 int __weak alloc_bootmem_huge_page(struct hstate *h)
1954 {
1955 struct huge_bootmem_page *m;
1956 int nr_nodes, node;
1957
1958 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1959 void *addr;
1960
1961 addr = memblock_virt_alloc_try_nid_nopanic(
1962 huge_page_size(h), huge_page_size(h),
1963 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1964 if (addr) {
1965 /*
1966 * Use the beginning of the huge page to store the
1967 * huge_bootmem_page struct (until gather_bootmem
1968 * puts them into the mem_map).
1969 */
1970 m = addr;
1971 goto found;
1972 }
1973 }
1974 return 0;
1975
1976 found:
1977 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1978 /* Put them into a private list first because mem_map is not up yet */
1979 list_add(&m->list, &huge_boot_pages);
1980 m->hstate = h;
1981 return 1;
1982 }
1983
1984 static void __init prep_compound_huge_page(struct page *page,
1985 unsigned int order)
1986 {
1987 if (unlikely(order > (MAX_ORDER - 1)))
1988 prep_compound_gigantic_page(page, order);
1989 else
1990 prep_compound_page(page, order);
1991 }
1992
1993 /* Put bootmem huge pages into the standard lists after mem_map is up */
1994 static void __init gather_bootmem_prealloc(void)
1995 {
1996 struct huge_bootmem_page *m;
1997
1998 list_for_each_entry(m, &huge_boot_pages, list) {
1999 struct hstate *h = m->hstate;
2000 struct page *page;
2001
2002 #ifdef CONFIG_HIGHMEM
2003 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2004 memblock_free_late(__pa(m),
2005 sizeof(struct huge_bootmem_page));
2006 #else
2007 page = virt_to_page(m);
2008 #endif
2009 WARN_ON(page_count(page) != 1);
2010 prep_compound_huge_page(page, h->order);
2011 WARN_ON(PageReserved(page));
2012 prep_new_huge_page(h, page, page_to_nid(page));
2013 /*
2014 * If we had gigantic hugepages allocated at boot time, we need
2015 * to restore the 'stolen' pages to totalram_pages in order to
2016 * fix confusing memory reports from free(1) and another
2017 * side-effects, like CommitLimit going negative.
2018 */
2019 if (hstate_is_gigantic(h))
2020 adjust_managed_page_count(page, 1 << h->order);
2021 }
2022 }
2023
2024 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2025 {
2026 unsigned long i;
2027
2028 for (i = 0; i < h->max_huge_pages; ++i) {
2029 if (hstate_is_gigantic(h)) {
2030 if (!alloc_bootmem_huge_page(h))
2031 break;
2032 } else if (!alloc_fresh_huge_page(h,
2033 &node_states[N_MEMORY]))
2034 break;
2035 }
2036 h->max_huge_pages = i;
2037 }
2038
2039 static void __init hugetlb_init_hstates(void)
2040 {
2041 struct hstate *h;
2042
2043 for_each_hstate(h) {
2044 if (minimum_order > huge_page_order(h))
2045 minimum_order = huge_page_order(h);
2046
2047 /* oversize hugepages were init'ed in early boot */
2048 if (!hstate_is_gigantic(h))
2049 hugetlb_hstate_alloc_pages(h);
2050 }
2051 VM_BUG_ON(minimum_order == UINT_MAX);
2052 }
2053
2054 static char * __init memfmt(char *buf, unsigned long n)
2055 {
2056 if (n >= (1UL << 30))
2057 sprintf(buf, "%lu GB", n >> 30);
2058 else if (n >= (1UL << 20))
2059 sprintf(buf, "%lu MB", n >> 20);
2060 else
2061 sprintf(buf, "%lu KB", n >> 10);
2062 return buf;
2063 }
2064
2065 static void __init report_hugepages(void)
2066 {
2067 struct hstate *h;
2068
2069 for_each_hstate(h) {
2070 char buf[32];
2071 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2072 memfmt(buf, huge_page_size(h)),
2073 h->free_huge_pages);
2074 }
2075 }
2076
2077 #ifdef CONFIG_HIGHMEM
2078 static void try_to_free_low(struct hstate *h, unsigned long count,
2079 nodemask_t *nodes_allowed)
2080 {
2081 int i;
2082
2083 if (hstate_is_gigantic(h))
2084 return;
2085
2086 for_each_node_mask(i, *nodes_allowed) {
2087 struct page *page, *next;
2088 struct list_head *freel = &h->hugepage_freelists[i];
2089 list_for_each_entry_safe(page, next, freel, lru) {
2090 if (count >= h->nr_huge_pages)
2091 return;
2092 if (PageHighMem(page))
2093 continue;
2094 list_del(&page->lru);
2095 update_and_free_page(h, page);
2096 h->free_huge_pages--;
2097 h->free_huge_pages_node[page_to_nid(page)]--;
2098 }
2099 }
2100 }
2101 #else
2102 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2103 nodemask_t *nodes_allowed)
2104 {
2105 }
2106 #endif
2107
2108 /*
2109 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2110 * balanced by operating on them in a round-robin fashion.
2111 * Returns 1 if an adjustment was made.
2112 */
2113 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2114 int delta)
2115 {
2116 int nr_nodes, node;
2117
2118 VM_BUG_ON(delta != -1 && delta != 1);
2119
2120 if (delta < 0) {
2121 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2122 if (h->surplus_huge_pages_node[node])
2123 goto found;
2124 }
2125 } else {
2126 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2127 if (h->surplus_huge_pages_node[node] <
2128 h->nr_huge_pages_node[node])
2129 goto found;
2130 }
2131 }
2132 return 0;
2133
2134 found:
2135 h->surplus_huge_pages += delta;
2136 h->surplus_huge_pages_node[node] += delta;
2137 return 1;
2138 }
2139
2140 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2142 nodemask_t *nodes_allowed)
2143 {
2144 unsigned long min_count, ret;
2145
2146 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2147 return h->max_huge_pages;
2148
2149 /*
2150 * Increase the pool size
2151 * First take pages out of surplus state. Then make up the
2152 * remaining difference by allocating fresh huge pages.
2153 *
2154 * We might race with __alloc_buddy_huge_page() here and be unable
2155 * to convert a surplus huge page to a normal huge page. That is
2156 * not critical, though, it just means the overall size of the
2157 * pool might be one hugepage larger than it needs to be, but
2158 * within all the constraints specified by the sysctls.
2159 */
2160 spin_lock(&hugetlb_lock);
2161 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2162 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2163 break;
2164 }
2165
2166 while (count > persistent_huge_pages(h)) {
2167 /*
2168 * If this allocation races such that we no longer need the
2169 * page, free_huge_page will handle it by freeing the page
2170 * and reducing the surplus.
2171 */
2172 spin_unlock(&hugetlb_lock);
2173 if (hstate_is_gigantic(h))
2174 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2175 else
2176 ret = alloc_fresh_huge_page(h, nodes_allowed);
2177 spin_lock(&hugetlb_lock);
2178 if (!ret)
2179 goto out;
2180
2181 /* Bail for signals. Probably ctrl-c from user */
2182 if (signal_pending(current))
2183 goto out;
2184 }
2185
2186 /*
2187 * Decrease the pool size
2188 * First return free pages to the buddy allocator (being careful
2189 * to keep enough around to satisfy reservations). Then place
2190 * pages into surplus state as needed so the pool will shrink
2191 * to the desired size as pages become free.
2192 *
2193 * By placing pages into the surplus state independent of the
2194 * overcommit value, we are allowing the surplus pool size to
2195 * exceed overcommit. There are few sane options here. Since
2196 * __alloc_buddy_huge_page() is checking the global counter,
2197 * though, we'll note that we're not allowed to exceed surplus
2198 * and won't grow the pool anywhere else. Not until one of the
2199 * sysctls are changed, or the surplus pages go out of use.
2200 */
2201 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2202 min_count = max(count, min_count);
2203 try_to_free_low(h, min_count, nodes_allowed);
2204 while (min_count < persistent_huge_pages(h)) {
2205 if (!free_pool_huge_page(h, nodes_allowed, 0))
2206 break;
2207 cond_resched_lock(&hugetlb_lock);
2208 }
2209 while (count < persistent_huge_pages(h)) {
2210 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2211 break;
2212 }
2213 out:
2214 ret = persistent_huge_pages(h);
2215 spin_unlock(&hugetlb_lock);
2216 return ret;
2217 }
2218
2219 #define HSTATE_ATTR_RO(_name) \
2220 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2221
2222 #define HSTATE_ATTR(_name) \
2223 static struct kobj_attribute _name##_attr = \
2224 __ATTR(_name, 0644, _name##_show, _name##_store)
2225
2226 static struct kobject *hugepages_kobj;
2227 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2228
2229 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2230
2231 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2232 {
2233 int i;
2234
2235 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2236 if (hstate_kobjs[i] == kobj) {
2237 if (nidp)
2238 *nidp = NUMA_NO_NODE;
2239 return &hstates[i];
2240 }
2241
2242 return kobj_to_node_hstate(kobj, nidp);
2243 }
2244
2245 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2246 struct kobj_attribute *attr, char *buf)
2247 {
2248 struct hstate *h;
2249 unsigned long nr_huge_pages;
2250 int nid;
2251
2252 h = kobj_to_hstate(kobj, &nid);
2253 if (nid == NUMA_NO_NODE)
2254 nr_huge_pages = h->nr_huge_pages;
2255 else
2256 nr_huge_pages = h->nr_huge_pages_node[nid];
2257
2258 return sprintf(buf, "%lu\n", nr_huge_pages);
2259 }
2260
2261 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2262 struct hstate *h, int nid,
2263 unsigned long count, size_t len)
2264 {
2265 int err;
2266 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2267
2268 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2269 err = -EINVAL;
2270 goto out;
2271 }
2272
2273 if (nid == NUMA_NO_NODE) {
2274 /*
2275 * global hstate attribute
2276 */
2277 if (!(obey_mempolicy &&
2278 init_nodemask_of_mempolicy(nodes_allowed))) {
2279 NODEMASK_FREE(nodes_allowed);
2280 nodes_allowed = &node_states[N_MEMORY];
2281 }
2282 } else if (nodes_allowed) {
2283 /*
2284 * per node hstate attribute: adjust count to global,
2285 * but restrict alloc/free to the specified node.
2286 */
2287 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2288 init_nodemask_of_node(nodes_allowed, nid);
2289 } else
2290 nodes_allowed = &node_states[N_MEMORY];
2291
2292 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2293
2294 if (nodes_allowed != &node_states[N_MEMORY])
2295 NODEMASK_FREE(nodes_allowed);
2296
2297 return len;
2298 out:
2299 NODEMASK_FREE(nodes_allowed);
2300 return err;
2301 }
2302
2303 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2304 struct kobject *kobj, const char *buf,
2305 size_t len)
2306 {
2307 struct hstate *h;
2308 unsigned long count;
2309 int nid;
2310 int err;
2311
2312 err = kstrtoul(buf, 10, &count);
2313 if (err)
2314 return err;
2315
2316 h = kobj_to_hstate(kobj, &nid);
2317 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2318 }
2319
2320 static ssize_t nr_hugepages_show(struct kobject *kobj,
2321 struct kobj_attribute *attr, char *buf)
2322 {
2323 return nr_hugepages_show_common(kobj, attr, buf);
2324 }
2325
2326 static ssize_t nr_hugepages_store(struct kobject *kobj,
2327 struct kobj_attribute *attr, const char *buf, size_t len)
2328 {
2329 return nr_hugepages_store_common(false, kobj, buf, len);
2330 }
2331 HSTATE_ATTR(nr_hugepages);
2332
2333 #ifdef CONFIG_NUMA
2334
2335 /*
2336 * hstate attribute for optionally mempolicy-based constraint on persistent
2337 * huge page alloc/free.
2338 */
2339 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2340 struct kobj_attribute *attr, char *buf)
2341 {
2342 return nr_hugepages_show_common(kobj, attr, buf);
2343 }
2344
2345 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2346 struct kobj_attribute *attr, const char *buf, size_t len)
2347 {
2348 return nr_hugepages_store_common(true, kobj, buf, len);
2349 }
2350 HSTATE_ATTR(nr_hugepages_mempolicy);
2351 #endif
2352
2353
2354 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2355 struct kobj_attribute *attr, char *buf)
2356 {
2357 struct hstate *h = kobj_to_hstate(kobj, NULL);
2358 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2359 }
2360
2361 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2362 struct kobj_attribute *attr, const char *buf, size_t count)
2363 {
2364 int err;
2365 unsigned long input;
2366 struct hstate *h = kobj_to_hstate(kobj, NULL);
2367
2368 if (hstate_is_gigantic(h))
2369 return -EINVAL;
2370
2371 err = kstrtoul(buf, 10, &input);
2372 if (err)
2373 return err;
2374
2375 spin_lock(&hugetlb_lock);
2376 h->nr_overcommit_huge_pages = input;
2377 spin_unlock(&hugetlb_lock);
2378
2379 return count;
2380 }
2381 HSTATE_ATTR(nr_overcommit_hugepages);
2382
2383 static ssize_t free_hugepages_show(struct kobject *kobj,
2384 struct kobj_attribute *attr, char *buf)
2385 {
2386 struct hstate *h;
2387 unsigned long free_huge_pages;
2388 int nid;
2389
2390 h = kobj_to_hstate(kobj, &nid);
2391 if (nid == NUMA_NO_NODE)
2392 free_huge_pages = h->free_huge_pages;
2393 else
2394 free_huge_pages = h->free_huge_pages_node[nid];
2395
2396 return sprintf(buf, "%lu\n", free_huge_pages);
2397 }
2398 HSTATE_ATTR_RO(free_hugepages);
2399
2400 static ssize_t resv_hugepages_show(struct kobject *kobj,
2401 struct kobj_attribute *attr, char *buf)
2402 {
2403 struct hstate *h = kobj_to_hstate(kobj, NULL);
2404 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2405 }
2406 HSTATE_ATTR_RO(resv_hugepages);
2407
2408 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2409 struct kobj_attribute *attr, char *buf)
2410 {
2411 struct hstate *h;
2412 unsigned long surplus_huge_pages;
2413 int nid;
2414
2415 h = kobj_to_hstate(kobj, &nid);
2416 if (nid == NUMA_NO_NODE)
2417 surplus_huge_pages = h->surplus_huge_pages;
2418 else
2419 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2420
2421 return sprintf(buf, "%lu\n", surplus_huge_pages);
2422 }
2423 HSTATE_ATTR_RO(surplus_hugepages);
2424
2425 static struct attribute *hstate_attrs[] = {
2426 &nr_hugepages_attr.attr,
2427 &nr_overcommit_hugepages_attr.attr,
2428 &free_hugepages_attr.attr,
2429 &resv_hugepages_attr.attr,
2430 &surplus_hugepages_attr.attr,
2431 #ifdef CONFIG_NUMA
2432 &nr_hugepages_mempolicy_attr.attr,
2433 #endif
2434 NULL,
2435 };
2436
2437 static struct attribute_group hstate_attr_group = {
2438 .attrs = hstate_attrs,
2439 };
2440
2441 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2442 struct kobject **hstate_kobjs,
2443 struct attribute_group *hstate_attr_group)
2444 {
2445 int retval;
2446 int hi = hstate_index(h);
2447
2448 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2449 if (!hstate_kobjs[hi])
2450 return -ENOMEM;
2451
2452 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2453 if (retval)
2454 kobject_put(hstate_kobjs[hi]);
2455
2456 return retval;
2457 }
2458
2459 static void __init hugetlb_sysfs_init(void)
2460 {
2461 struct hstate *h;
2462 int err;
2463
2464 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2465 if (!hugepages_kobj)
2466 return;
2467
2468 for_each_hstate(h) {
2469 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2470 hstate_kobjs, &hstate_attr_group);
2471 if (err)
2472 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2473 }
2474 }
2475
2476 #ifdef CONFIG_NUMA
2477
2478 /*
2479 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2480 * with node devices in node_devices[] using a parallel array. The array
2481 * index of a node device or _hstate == node id.
2482 * This is here to avoid any static dependency of the node device driver, in
2483 * the base kernel, on the hugetlb module.
2484 */
2485 struct node_hstate {
2486 struct kobject *hugepages_kobj;
2487 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2488 };
2489 static struct node_hstate node_hstates[MAX_NUMNODES];
2490
2491 /*
2492 * A subset of global hstate attributes for node devices
2493 */
2494 static struct attribute *per_node_hstate_attrs[] = {
2495 &nr_hugepages_attr.attr,
2496 &free_hugepages_attr.attr,
2497 &surplus_hugepages_attr.attr,
2498 NULL,
2499 };
2500
2501 static struct attribute_group per_node_hstate_attr_group = {
2502 .attrs = per_node_hstate_attrs,
2503 };
2504
2505 /*
2506 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2507 * Returns node id via non-NULL nidp.
2508 */
2509 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2510 {
2511 int nid;
2512
2513 for (nid = 0; nid < nr_node_ids; nid++) {
2514 struct node_hstate *nhs = &node_hstates[nid];
2515 int i;
2516 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2517 if (nhs->hstate_kobjs[i] == kobj) {
2518 if (nidp)
2519 *nidp = nid;
2520 return &hstates[i];
2521 }
2522 }
2523
2524 BUG();
2525 return NULL;
2526 }
2527
2528 /*
2529 * Unregister hstate attributes from a single node device.
2530 * No-op if no hstate attributes attached.
2531 */
2532 static void hugetlb_unregister_node(struct node *node)
2533 {
2534 struct hstate *h;
2535 struct node_hstate *nhs = &node_hstates[node->dev.id];
2536
2537 if (!nhs->hugepages_kobj)
2538 return; /* no hstate attributes */
2539
2540 for_each_hstate(h) {
2541 int idx = hstate_index(h);
2542 if (nhs->hstate_kobjs[idx]) {
2543 kobject_put(nhs->hstate_kobjs[idx]);
2544 nhs->hstate_kobjs[idx] = NULL;
2545 }
2546 }
2547
2548 kobject_put(nhs->hugepages_kobj);
2549 nhs->hugepages_kobj = NULL;
2550 }
2551
2552
2553 /*
2554 * Register hstate attributes for a single node device.
2555 * No-op if attributes already registered.
2556 */
2557 static void hugetlb_register_node(struct node *node)
2558 {
2559 struct hstate *h;
2560 struct node_hstate *nhs = &node_hstates[node->dev.id];
2561 int err;
2562
2563 if (nhs->hugepages_kobj)
2564 return; /* already allocated */
2565
2566 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2567 &node->dev.kobj);
2568 if (!nhs->hugepages_kobj)
2569 return;
2570
2571 for_each_hstate(h) {
2572 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2573 nhs->hstate_kobjs,
2574 &per_node_hstate_attr_group);
2575 if (err) {
2576 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2577 h->name, node->dev.id);
2578 hugetlb_unregister_node(node);
2579 break;
2580 }
2581 }
2582 }
2583
2584 /*
2585 * hugetlb init time: register hstate attributes for all registered node
2586 * devices of nodes that have memory. All on-line nodes should have
2587 * registered their associated device by this time.
2588 */
2589 static void __init hugetlb_register_all_nodes(void)
2590 {
2591 int nid;
2592
2593 for_each_node_state(nid, N_MEMORY) {
2594 struct node *node = node_devices[nid];
2595 if (node->dev.id == nid)
2596 hugetlb_register_node(node);
2597 }
2598
2599 /*
2600 * Let the node device driver know we're here so it can
2601 * [un]register hstate attributes on node hotplug.
2602 */
2603 register_hugetlbfs_with_node(hugetlb_register_node,
2604 hugetlb_unregister_node);
2605 }
2606 #else /* !CONFIG_NUMA */
2607
2608 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2609 {
2610 BUG();
2611 if (nidp)
2612 *nidp = -1;
2613 return NULL;
2614 }
2615
2616 static void hugetlb_register_all_nodes(void) { }
2617
2618 #endif
2619
2620 static int __init hugetlb_init(void)
2621 {
2622 int i;
2623
2624 if (!hugepages_supported())
2625 return 0;
2626
2627 if (!size_to_hstate(default_hstate_size)) {
2628 default_hstate_size = HPAGE_SIZE;
2629 if (!size_to_hstate(default_hstate_size))
2630 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2631 }
2632 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2633 if (default_hstate_max_huge_pages) {
2634 if (!default_hstate.max_huge_pages)
2635 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2636 }
2637
2638 hugetlb_init_hstates();
2639 gather_bootmem_prealloc();
2640 report_hugepages();
2641
2642 hugetlb_sysfs_init();
2643 hugetlb_register_all_nodes();
2644 hugetlb_cgroup_file_init();
2645
2646 #ifdef CONFIG_SMP
2647 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2648 #else
2649 num_fault_mutexes = 1;
2650 #endif
2651 hugetlb_fault_mutex_table =
2652 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2653 BUG_ON(!hugetlb_fault_mutex_table);
2654
2655 for (i = 0; i < num_fault_mutexes; i++)
2656 mutex_init(&hugetlb_fault_mutex_table[i]);
2657 return 0;
2658 }
2659 subsys_initcall(hugetlb_init);
2660
2661 /* Should be called on processing a hugepagesz=... option */
2662 void __init hugetlb_add_hstate(unsigned int order)
2663 {
2664 struct hstate *h;
2665 unsigned long i;
2666
2667 if (size_to_hstate(PAGE_SIZE << order)) {
2668 pr_warning("hugepagesz= specified twice, ignoring\n");
2669 return;
2670 }
2671 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2672 BUG_ON(order == 0);
2673 h = &hstates[hugetlb_max_hstate++];
2674 h->order = order;
2675 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2676 h->nr_huge_pages = 0;
2677 h->free_huge_pages = 0;
2678 for (i = 0; i < MAX_NUMNODES; ++i)
2679 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2680 INIT_LIST_HEAD(&h->hugepage_activelist);
2681 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2682 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2683 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2684 huge_page_size(h)/1024);
2685
2686 parsed_hstate = h;
2687 }
2688
2689 static int __init hugetlb_nrpages_setup(char *s)
2690 {
2691 unsigned long *mhp;
2692 static unsigned long *last_mhp;
2693
2694 /*
2695 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2696 * so this hugepages= parameter goes to the "default hstate".
2697 */
2698 if (!hugetlb_max_hstate)
2699 mhp = &default_hstate_max_huge_pages;
2700 else
2701 mhp = &parsed_hstate->max_huge_pages;
2702
2703 if (mhp == last_mhp) {
2704 pr_warning("hugepages= specified twice without "
2705 "interleaving hugepagesz=, ignoring\n");
2706 return 1;
2707 }
2708
2709 if (sscanf(s, "%lu", mhp) <= 0)
2710 *mhp = 0;
2711
2712 /*
2713 * Global state is always initialized later in hugetlb_init.
2714 * But we need to allocate >= MAX_ORDER hstates here early to still
2715 * use the bootmem allocator.
2716 */
2717 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2718 hugetlb_hstate_alloc_pages(parsed_hstate);
2719
2720 last_mhp = mhp;
2721
2722 return 1;
2723 }
2724 __setup("hugepages=", hugetlb_nrpages_setup);
2725
2726 static int __init hugetlb_default_setup(char *s)
2727 {
2728 default_hstate_size = memparse(s, &s);
2729 return 1;
2730 }
2731 __setup("default_hugepagesz=", hugetlb_default_setup);
2732
2733 static unsigned int cpuset_mems_nr(unsigned int *array)
2734 {
2735 int node;
2736 unsigned int nr = 0;
2737
2738 for_each_node_mask(node, cpuset_current_mems_allowed)
2739 nr += array[node];
2740
2741 return nr;
2742 }
2743
2744 #ifdef CONFIG_SYSCTL
2745 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2746 struct ctl_table *table, int write,
2747 void __user *buffer, size_t *length, loff_t *ppos)
2748 {
2749 struct hstate *h = &default_hstate;
2750 unsigned long tmp = h->max_huge_pages;
2751 int ret;
2752
2753 if (!hugepages_supported())
2754 return -ENOTSUPP;
2755
2756 table->data = &tmp;
2757 table->maxlen = sizeof(unsigned long);
2758 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2759 if (ret)
2760 goto out;
2761
2762 if (write)
2763 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2764 NUMA_NO_NODE, tmp, *length);
2765 out:
2766 return ret;
2767 }
2768
2769 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2770 void __user *buffer, size_t *length, loff_t *ppos)
2771 {
2772
2773 return hugetlb_sysctl_handler_common(false, table, write,
2774 buffer, length, ppos);
2775 }
2776
2777 #ifdef CONFIG_NUMA
2778 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2779 void __user *buffer, size_t *length, loff_t *ppos)
2780 {
2781 return hugetlb_sysctl_handler_common(true, table, write,
2782 buffer, length, ppos);
2783 }
2784 #endif /* CONFIG_NUMA */
2785
2786 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2787 void __user *buffer,
2788 size_t *length, loff_t *ppos)
2789 {
2790 struct hstate *h = &default_hstate;
2791 unsigned long tmp;
2792 int ret;
2793
2794 if (!hugepages_supported())
2795 return -ENOTSUPP;
2796
2797 tmp = h->nr_overcommit_huge_pages;
2798
2799 if (write && hstate_is_gigantic(h))
2800 return -EINVAL;
2801
2802 table->data = &tmp;
2803 table->maxlen = sizeof(unsigned long);
2804 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2805 if (ret)
2806 goto out;
2807
2808 if (write) {
2809 spin_lock(&hugetlb_lock);
2810 h->nr_overcommit_huge_pages = tmp;
2811 spin_unlock(&hugetlb_lock);
2812 }
2813 out:
2814 return ret;
2815 }
2816
2817 #endif /* CONFIG_SYSCTL */
2818
2819 void hugetlb_report_meminfo(struct seq_file *m)
2820 {
2821 struct hstate *h = &default_hstate;
2822 if (!hugepages_supported())
2823 return;
2824 seq_printf(m,
2825 "HugePages_Total: %5lu\n"
2826 "HugePages_Free: %5lu\n"
2827 "HugePages_Rsvd: %5lu\n"
2828 "HugePages_Surp: %5lu\n"
2829 "Hugepagesize: %8lu kB\n",
2830 h->nr_huge_pages,
2831 h->free_huge_pages,
2832 h->resv_huge_pages,
2833 h->surplus_huge_pages,
2834 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2835 }
2836
2837 int hugetlb_report_node_meminfo(int nid, char *buf)
2838 {
2839 struct hstate *h = &default_hstate;
2840 if (!hugepages_supported())
2841 return 0;
2842 return sprintf(buf,
2843 "Node %d HugePages_Total: %5u\n"
2844 "Node %d HugePages_Free: %5u\n"
2845 "Node %d HugePages_Surp: %5u\n",
2846 nid, h->nr_huge_pages_node[nid],
2847 nid, h->free_huge_pages_node[nid],
2848 nid, h->surplus_huge_pages_node[nid]);
2849 }
2850
2851 void hugetlb_show_meminfo(void)
2852 {
2853 struct hstate *h;
2854 int nid;
2855
2856 if (!hugepages_supported())
2857 return;
2858
2859 for_each_node_state(nid, N_MEMORY)
2860 for_each_hstate(h)
2861 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2862 nid,
2863 h->nr_huge_pages_node[nid],
2864 h->free_huge_pages_node[nid],
2865 h->surplus_huge_pages_node[nid],
2866 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2867 }
2868
2869 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2870 {
2871 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2872 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2873 }
2874
2875 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2876 unsigned long hugetlb_total_pages(void)
2877 {
2878 struct hstate *h;
2879 unsigned long nr_total_pages = 0;
2880
2881 for_each_hstate(h)
2882 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2883 return nr_total_pages;
2884 }
2885
2886 static int hugetlb_acct_memory(struct hstate *h, long delta)
2887 {
2888 int ret = -ENOMEM;
2889
2890 spin_lock(&hugetlb_lock);
2891 /*
2892 * When cpuset is configured, it breaks the strict hugetlb page
2893 * reservation as the accounting is done on a global variable. Such
2894 * reservation is completely rubbish in the presence of cpuset because
2895 * the reservation is not checked against page availability for the
2896 * current cpuset. Application can still potentially OOM'ed by kernel
2897 * with lack of free htlb page in cpuset that the task is in.
2898 * Attempt to enforce strict accounting with cpuset is almost
2899 * impossible (or too ugly) because cpuset is too fluid that
2900 * task or memory node can be dynamically moved between cpusets.
2901 *
2902 * The change of semantics for shared hugetlb mapping with cpuset is
2903 * undesirable. However, in order to preserve some of the semantics,
2904 * we fall back to check against current free page availability as
2905 * a best attempt and hopefully to minimize the impact of changing
2906 * semantics that cpuset has.
2907 */
2908 if (delta > 0) {
2909 if (gather_surplus_pages(h, delta) < 0)
2910 goto out;
2911
2912 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2913 return_unused_surplus_pages(h, delta);
2914 goto out;
2915 }
2916 }
2917
2918 ret = 0;
2919 if (delta < 0)
2920 return_unused_surplus_pages(h, (unsigned long) -delta);
2921
2922 out:
2923 spin_unlock(&hugetlb_lock);
2924 return ret;
2925 }
2926
2927 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2928 {
2929 struct resv_map *resv = vma_resv_map(vma);
2930
2931 /*
2932 * This new VMA should share its siblings reservation map if present.
2933 * The VMA will only ever have a valid reservation map pointer where
2934 * it is being copied for another still existing VMA. As that VMA
2935 * has a reference to the reservation map it cannot disappear until
2936 * after this open call completes. It is therefore safe to take a
2937 * new reference here without additional locking.
2938 */
2939 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2940 kref_get(&resv->refs);
2941 }
2942
2943 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2944 {
2945 struct hstate *h = hstate_vma(vma);
2946 struct resv_map *resv = vma_resv_map(vma);
2947 struct hugepage_subpool *spool = subpool_vma(vma);
2948 unsigned long reserve, start, end;
2949 long gbl_reserve;
2950
2951 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2952 return;
2953
2954 start = vma_hugecache_offset(h, vma, vma->vm_start);
2955 end = vma_hugecache_offset(h, vma, vma->vm_end);
2956
2957 reserve = (end - start) - region_count(resv, start, end);
2958
2959 kref_put(&resv->refs, resv_map_release);
2960
2961 if (reserve) {
2962 /*
2963 * Decrement reserve counts. The global reserve count may be
2964 * adjusted if the subpool has a minimum size.
2965 */
2966 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2967 hugetlb_acct_memory(h, -gbl_reserve);
2968 }
2969 }
2970
2971 /*
2972 * We cannot handle pagefaults against hugetlb pages at all. They cause
2973 * handle_mm_fault() to try to instantiate regular-sized pages in the
2974 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2975 * this far.
2976 */
2977 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2978 {
2979 BUG();
2980 return 0;
2981 }
2982
2983 const struct vm_operations_struct hugetlb_vm_ops = {
2984 .fault = hugetlb_vm_op_fault,
2985 .open = hugetlb_vm_op_open,
2986 .close = hugetlb_vm_op_close,
2987 };
2988
2989 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2990 int writable)
2991 {
2992 pte_t entry;
2993
2994 if (writable) {
2995 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2996 vma->vm_page_prot)));
2997 } else {
2998 entry = huge_pte_wrprotect(mk_huge_pte(page,
2999 vma->vm_page_prot));
3000 }
3001 entry = pte_mkyoung(entry);
3002 entry = pte_mkhuge(entry);
3003 entry = arch_make_huge_pte(entry, vma, page, writable);
3004
3005 return entry;
3006 }
3007
3008 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3009 unsigned long address, pte_t *ptep)
3010 {
3011 pte_t entry;
3012
3013 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3014 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3015 update_mmu_cache(vma, address, ptep);
3016 }
3017
3018 static int is_hugetlb_entry_migration(pte_t pte)
3019 {
3020 swp_entry_t swp;
3021
3022 if (huge_pte_none(pte) || pte_present(pte))
3023 return 0;
3024 swp = pte_to_swp_entry(pte);
3025 if (non_swap_entry(swp) && is_migration_entry(swp))
3026 return 1;
3027 else
3028 return 0;
3029 }
3030
3031 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3032 {
3033 swp_entry_t swp;
3034
3035 if (huge_pte_none(pte) || pte_present(pte))
3036 return 0;
3037 swp = pte_to_swp_entry(pte);
3038 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3039 return 1;
3040 else
3041 return 0;
3042 }
3043
3044 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3045 struct vm_area_struct *vma)
3046 {
3047 pte_t *src_pte, *dst_pte, entry;
3048 struct page *ptepage;
3049 unsigned long addr;
3050 int cow;
3051 struct hstate *h = hstate_vma(vma);
3052 unsigned long sz = huge_page_size(h);
3053 unsigned long mmun_start; /* For mmu_notifiers */
3054 unsigned long mmun_end; /* For mmu_notifiers */
3055 int ret = 0;
3056
3057 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3058
3059 mmun_start = vma->vm_start;
3060 mmun_end = vma->vm_end;
3061 if (cow)
3062 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3063
3064 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3065 spinlock_t *src_ptl, *dst_ptl;
3066 src_pte = huge_pte_offset(src, addr);
3067 if (!src_pte)
3068 continue;
3069 dst_pte = huge_pte_alloc(dst, addr, sz);
3070 if (!dst_pte) {
3071 ret = -ENOMEM;
3072 break;
3073 }
3074
3075 /* If the pagetables are shared don't copy or take references */
3076 if (dst_pte == src_pte)
3077 continue;
3078
3079 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3080 src_ptl = huge_pte_lockptr(h, src, src_pte);
3081 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3082 entry = huge_ptep_get(src_pte);
3083 if (huge_pte_none(entry)) { /* skip none entry */
3084 ;
3085 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3086 is_hugetlb_entry_hwpoisoned(entry))) {
3087 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3088
3089 if (is_write_migration_entry(swp_entry) && cow) {
3090 /*
3091 * COW mappings require pages in both
3092 * parent and child to be set to read.
3093 */
3094 make_migration_entry_read(&swp_entry);
3095 entry = swp_entry_to_pte(swp_entry);
3096 set_huge_pte_at(src, addr, src_pte, entry);
3097 }
3098 set_huge_pte_at(dst, addr, dst_pte, entry);
3099 } else {
3100 if (cow) {
3101 huge_ptep_set_wrprotect(src, addr, src_pte);
3102 mmu_notifier_invalidate_range(src, mmun_start,
3103 mmun_end);
3104 }
3105 entry = huge_ptep_get(src_pte);
3106 ptepage = pte_page(entry);
3107 get_page(ptepage);
3108 page_dup_rmap(ptepage, true);
3109 set_huge_pte_at(dst, addr, dst_pte, entry);
3110 hugetlb_count_add(pages_per_huge_page(h), dst);
3111 }
3112 spin_unlock(src_ptl);
3113 spin_unlock(dst_ptl);
3114 }
3115
3116 if (cow)
3117 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3118
3119 return ret;
3120 }
3121
3122 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3123 unsigned long start, unsigned long end,
3124 struct page *ref_page)
3125 {
3126 int force_flush = 0;
3127 struct mm_struct *mm = vma->vm_mm;
3128 unsigned long address;
3129 pte_t *ptep;
3130 pte_t pte;
3131 spinlock_t *ptl;
3132 struct page *page;
3133 struct hstate *h = hstate_vma(vma);
3134 unsigned long sz = huge_page_size(h);
3135 const unsigned long mmun_start = start; /* For mmu_notifiers */
3136 const unsigned long mmun_end = end; /* For mmu_notifiers */
3137
3138 WARN_ON(!is_vm_hugetlb_page(vma));
3139 BUG_ON(start & ~huge_page_mask(h));
3140 BUG_ON(end & ~huge_page_mask(h));
3141
3142 tlb_start_vma(tlb, vma);
3143 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3144 address = start;
3145 again:
3146 for (; address < end; address += sz) {
3147 ptep = huge_pte_offset(mm, address);
3148 if (!ptep)
3149 continue;
3150
3151 ptl = huge_pte_lock(h, mm, ptep);
3152 if (huge_pmd_unshare(mm, &address, ptep))
3153 goto unlock;
3154
3155 pte = huge_ptep_get(ptep);
3156 if (huge_pte_none(pte))
3157 goto unlock;
3158
3159 /*
3160 * Migrating hugepage or HWPoisoned hugepage is already
3161 * unmapped and its refcount is dropped, so just clear pte here.
3162 */
3163 if (unlikely(!pte_present(pte))) {
3164 huge_pte_clear(mm, address, ptep);
3165 goto unlock;
3166 }
3167
3168 page = pte_page(pte);
3169 /*
3170 * If a reference page is supplied, it is because a specific
3171 * page is being unmapped, not a range. Ensure the page we
3172 * are about to unmap is the actual page of interest.
3173 */
3174 if (ref_page) {
3175 if (page != ref_page)
3176 goto unlock;
3177
3178 /*
3179 * Mark the VMA as having unmapped its page so that
3180 * future faults in this VMA will fail rather than
3181 * looking like data was lost
3182 */
3183 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3184 }
3185
3186 pte = huge_ptep_get_and_clear(mm, address, ptep);
3187 tlb_remove_tlb_entry(tlb, ptep, address);
3188 if (huge_pte_dirty(pte))
3189 set_page_dirty(page);
3190
3191 hugetlb_count_sub(pages_per_huge_page(h), mm);
3192 page_remove_rmap(page, true);
3193 force_flush = !__tlb_remove_page(tlb, page);
3194 if (force_flush) {
3195 address += sz;
3196 spin_unlock(ptl);
3197 break;
3198 }
3199 /* Bail out after unmapping reference page if supplied */
3200 if (ref_page) {
3201 spin_unlock(ptl);
3202 break;
3203 }
3204 unlock:
3205 spin_unlock(ptl);
3206 }
3207 /*
3208 * mmu_gather ran out of room to batch pages, we break out of
3209 * the PTE lock to avoid doing the potential expensive TLB invalidate
3210 * and page-free while holding it.
3211 */
3212 if (force_flush) {
3213 force_flush = 0;
3214 tlb_flush_mmu(tlb);
3215 if (address < end && !ref_page)
3216 goto again;
3217 }
3218 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3219 tlb_end_vma(tlb, vma);
3220 }
3221
3222 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3223 struct vm_area_struct *vma, unsigned long start,
3224 unsigned long end, struct page *ref_page)
3225 {
3226 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3227
3228 /*
3229 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3230 * test will fail on a vma being torn down, and not grab a page table
3231 * on its way out. We're lucky that the flag has such an appropriate
3232 * name, and can in fact be safely cleared here. We could clear it
3233 * before the __unmap_hugepage_range above, but all that's necessary
3234 * is to clear it before releasing the i_mmap_rwsem. This works
3235 * because in the context this is called, the VMA is about to be
3236 * destroyed and the i_mmap_rwsem is held.
3237 */
3238 vma->vm_flags &= ~VM_MAYSHARE;
3239 }
3240
3241 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3242 unsigned long end, struct page *ref_page)
3243 {
3244 struct mm_struct *mm;
3245 struct mmu_gather tlb;
3246
3247 mm = vma->vm_mm;
3248
3249 tlb_gather_mmu(&tlb, mm, start, end);
3250 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3251 tlb_finish_mmu(&tlb, start, end);
3252 }
3253
3254 /*
3255 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3256 * mappping it owns the reserve page for. The intention is to unmap the page
3257 * from other VMAs and let the children be SIGKILLed if they are faulting the
3258 * same region.
3259 */
3260 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3261 struct page *page, unsigned long address)
3262 {
3263 struct hstate *h = hstate_vma(vma);
3264 struct vm_area_struct *iter_vma;
3265 struct address_space *mapping;
3266 pgoff_t pgoff;
3267
3268 /*
3269 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3270 * from page cache lookup which is in HPAGE_SIZE units.
3271 */
3272 address = address & huge_page_mask(h);
3273 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3274 vma->vm_pgoff;
3275 mapping = file_inode(vma->vm_file)->i_mapping;
3276
3277 /*
3278 * Take the mapping lock for the duration of the table walk. As
3279 * this mapping should be shared between all the VMAs,
3280 * __unmap_hugepage_range() is called as the lock is already held
3281 */
3282 i_mmap_lock_write(mapping);
3283 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3284 /* Do not unmap the current VMA */
3285 if (iter_vma == vma)
3286 continue;
3287
3288 /*
3289 * Shared VMAs have their own reserves and do not affect
3290 * MAP_PRIVATE accounting but it is possible that a shared
3291 * VMA is using the same page so check and skip such VMAs.
3292 */
3293 if (iter_vma->vm_flags & VM_MAYSHARE)
3294 continue;
3295
3296 /*
3297 * Unmap the page from other VMAs without their own reserves.
3298 * They get marked to be SIGKILLed if they fault in these
3299 * areas. This is because a future no-page fault on this VMA
3300 * could insert a zeroed page instead of the data existing
3301 * from the time of fork. This would look like data corruption
3302 */
3303 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3304 unmap_hugepage_range(iter_vma, address,
3305 address + huge_page_size(h), page);
3306 }
3307 i_mmap_unlock_write(mapping);
3308 }
3309
3310 /*
3311 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3312 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3313 * cannot race with other handlers or page migration.
3314 * Keep the pte_same checks anyway to make transition from the mutex easier.
3315 */
3316 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3317 unsigned long address, pte_t *ptep, pte_t pte,
3318 struct page *pagecache_page, spinlock_t *ptl)
3319 {
3320 struct hstate *h = hstate_vma(vma);
3321 struct page *old_page, *new_page;
3322 int ret = 0, outside_reserve = 0;
3323 unsigned long mmun_start; /* For mmu_notifiers */
3324 unsigned long mmun_end; /* For mmu_notifiers */
3325
3326 old_page = pte_page(pte);
3327
3328 retry_avoidcopy:
3329 /* If no-one else is actually using this page, avoid the copy
3330 * and just make the page writable */
3331 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3332 page_move_anon_rmap(old_page, vma, address);
3333 set_huge_ptep_writable(vma, address, ptep);
3334 return 0;
3335 }
3336
3337 /*
3338 * If the process that created a MAP_PRIVATE mapping is about to
3339 * perform a COW due to a shared page count, attempt to satisfy
3340 * the allocation without using the existing reserves. The pagecache
3341 * page is used to determine if the reserve at this address was
3342 * consumed or not. If reserves were used, a partial faulted mapping
3343 * at the time of fork() could consume its reserves on COW instead
3344 * of the full address range.
3345 */
3346 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3347 old_page != pagecache_page)
3348 outside_reserve = 1;
3349
3350 page_cache_get(old_page);
3351
3352 /*
3353 * Drop page table lock as buddy allocator may be called. It will
3354 * be acquired again before returning to the caller, as expected.
3355 */
3356 spin_unlock(ptl);
3357 new_page = alloc_huge_page(vma, address, outside_reserve);
3358
3359 if (IS_ERR(new_page)) {
3360 /*
3361 * If a process owning a MAP_PRIVATE mapping fails to COW,
3362 * it is due to references held by a child and an insufficient
3363 * huge page pool. To guarantee the original mappers
3364 * reliability, unmap the page from child processes. The child
3365 * may get SIGKILLed if it later faults.
3366 */
3367 if (outside_reserve) {
3368 page_cache_release(old_page);
3369 BUG_ON(huge_pte_none(pte));
3370 unmap_ref_private(mm, vma, old_page, address);
3371 BUG_ON(huge_pte_none(pte));
3372 spin_lock(ptl);
3373 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3374 if (likely(ptep &&
3375 pte_same(huge_ptep_get(ptep), pte)))
3376 goto retry_avoidcopy;
3377 /*
3378 * race occurs while re-acquiring page table
3379 * lock, and our job is done.
3380 */
3381 return 0;
3382 }
3383
3384 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3385 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3386 goto out_release_old;
3387 }
3388
3389 /*
3390 * When the original hugepage is shared one, it does not have
3391 * anon_vma prepared.
3392 */
3393 if (unlikely(anon_vma_prepare(vma))) {
3394 ret = VM_FAULT_OOM;
3395 goto out_release_all;
3396 }
3397
3398 copy_user_huge_page(new_page, old_page, address, vma,
3399 pages_per_huge_page(h));
3400 __SetPageUptodate(new_page);
3401 set_page_huge_active(new_page);
3402
3403 mmun_start = address & huge_page_mask(h);
3404 mmun_end = mmun_start + huge_page_size(h);
3405 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3406
3407 /*
3408 * Retake the page table lock to check for racing updates
3409 * before the page tables are altered
3410 */
3411 spin_lock(ptl);
3412 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3413 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3414 ClearPagePrivate(new_page);
3415
3416 /* Break COW */
3417 huge_ptep_clear_flush(vma, address, ptep);
3418 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3419 set_huge_pte_at(mm, address, ptep,
3420 make_huge_pte(vma, new_page, 1));
3421 page_remove_rmap(old_page, true);
3422 hugepage_add_new_anon_rmap(new_page, vma, address);
3423 /* Make the old page be freed below */
3424 new_page = old_page;
3425 }
3426 spin_unlock(ptl);
3427 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3428 out_release_all:
3429 page_cache_release(new_page);
3430 out_release_old:
3431 page_cache_release(old_page);
3432
3433 spin_lock(ptl); /* Caller expects lock to be held */
3434 return ret;
3435 }
3436
3437 /* Return the pagecache page at a given address within a VMA */
3438 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3439 struct vm_area_struct *vma, unsigned long address)
3440 {
3441 struct address_space *mapping;
3442 pgoff_t idx;
3443
3444 mapping = vma->vm_file->f_mapping;
3445 idx = vma_hugecache_offset(h, vma, address);
3446
3447 return find_lock_page(mapping, idx);
3448 }
3449
3450 /*
3451 * Return whether there is a pagecache page to back given address within VMA.
3452 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3453 */
3454 static bool hugetlbfs_pagecache_present(struct hstate *h,
3455 struct vm_area_struct *vma, unsigned long address)
3456 {
3457 struct address_space *mapping;
3458 pgoff_t idx;
3459 struct page *page;
3460
3461 mapping = vma->vm_file->f_mapping;
3462 idx = vma_hugecache_offset(h, vma, address);
3463
3464 page = find_get_page(mapping, idx);
3465 if (page)
3466 put_page(page);
3467 return page != NULL;
3468 }
3469
3470 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3471 pgoff_t idx)
3472 {
3473 struct inode *inode = mapping->host;
3474 struct hstate *h = hstate_inode(inode);
3475 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3476
3477 if (err)
3478 return err;
3479 ClearPagePrivate(page);
3480
3481 spin_lock(&inode->i_lock);
3482 inode->i_blocks += blocks_per_huge_page(h);
3483 spin_unlock(&inode->i_lock);
3484 return 0;
3485 }
3486
3487 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3488 struct address_space *mapping, pgoff_t idx,
3489 unsigned long address, pte_t *ptep, unsigned int flags)
3490 {
3491 struct hstate *h = hstate_vma(vma);
3492 int ret = VM_FAULT_SIGBUS;
3493 int anon_rmap = 0;
3494 unsigned long size;
3495 struct page *page;
3496 pte_t new_pte;
3497 spinlock_t *ptl;
3498
3499 /*
3500 * Currently, we are forced to kill the process in the event the
3501 * original mapper has unmapped pages from the child due to a failed
3502 * COW. Warn that such a situation has occurred as it may not be obvious
3503 */
3504 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3505 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3506 current->pid);
3507 return ret;
3508 }
3509
3510 /*
3511 * Use page lock to guard against racing truncation
3512 * before we get page_table_lock.
3513 */
3514 retry:
3515 page = find_lock_page(mapping, idx);
3516 if (!page) {
3517 size = i_size_read(mapping->host) >> huge_page_shift(h);
3518 if (idx >= size)
3519 goto out;
3520 page = alloc_huge_page(vma, address, 0);
3521 if (IS_ERR(page)) {
3522 ret = PTR_ERR(page);
3523 if (ret == -ENOMEM)
3524 ret = VM_FAULT_OOM;
3525 else
3526 ret = VM_FAULT_SIGBUS;
3527 goto out;
3528 }
3529 clear_huge_page(page, address, pages_per_huge_page(h));
3530 __SetPageUptodate(page);
3531 set_page_huge_active(page);
3532
3533 if (vma->vm_flags & VM_MAYSHARE) {
3534 int err = huge_add_to_page_cache(page, mapping, idx);
3535 if (err) {
3536 put_page(page);
3537 if (err == -EEXIST)
3538 goto retry;
3539 goto out;
3540 }
3541 } else {
3542 lock_page(page);
3543 if (unlikely(anon_vma_prepare(vma))) {
3544 ret = VM_FAULT_OOM;
3545 goto backout_unlocked;
3546 }
3547 anon_rmap = 1;
3548 }
3549 } else {
3550 /*
3551 * If memory error occurs between mmap() and fault, some process
3552 * don't have hwpoisoned swap entry for errored virtual address.
3553 * So we need to block hugepage fault by PG_hwpoison bit check.
3554 */
3555 if (unlikely(PageHWPoison(page))) {
3556 ret = VM_FAULT_HWPOISON |
3557 VM_FAULT_SET_HINDEX(hstate_index(h));
3558 goto backout_unlocked;
3559 }
3560 }
3561
3562 /*
3563 * If we are going to COW a private mapping later, we examine the
3564 * pending reservations for this page now. This will ensure that
3565 * any allocations necessary to record that reservation occur outside
3566 * the spinlock.
3567 */
3568 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3569 if (vma_needs_reservation(h, vma, address) < 0) {
3570 ret = VM_FAULT_OOM;
3571 goto backout_unlocked;
3572 }
3573 /* Just decrements count, does not deallocate */
3574 vma_end_reservation(h, vma, address);
3575 }
3576
3577 ptl = huge_pte_lockptr(h, mm, ptep);
3578 spin_lock(ptl);
3579 size = i_size_read(mapping->host) >> huge_page_shift(h);
3580 if (idx >= size)
3581 goto backout;
3582
3583 ret = 0;
3584 if (!huge_pte_none(huge_ptep_get(ptep)))
3585 goto backout;
3586
3587 if (anon_rmap) {
3588 ClearPagePrivate(page);
3589 hugepage_add_new_anon_rmap(page, vma, address);
3590 } else
3591 page_dup_rmap(page, true);
3592 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3593 && (vma->vm_flags & VM_SHARED)));
3594 set_huge_pte_at(mm, address, ptep, new_pte);
3595
3596 hugetlb_count_add(pages_per_huge_page(h), mm);
3597 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3598 /* Optimization, do the COW without a second fault */
3599 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3600 }
3601
3602 spin_unlock(ptl);
3603 unlock_page(page);
3604 out:
3605 return ret;
3606
3607 backout:
3608 spin_unlock(ptl);
3609 backout_unlocked:
3610 unlock_page(page);
3611 put_page(page);
3612 goto out;
3613 }
3614
3615 #ifdef CONFIG_SMP
3616 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3617 struct vm_area_struct *vma,
3618 struct address_space *mapping,
3619 pgoff_t idx, unsigned long address)
3620 {
3621 unsigned long key[2];
3622 u32 hash;
3623
3624 if (vma->vm_flags & VM_SHARED) {
3625 key[0] = (unsigned long) mapping;
3626 key[1] = idx;
3627 } else {
3628 key[0] = (unsigned long) mm;
3629 key[1] = address >> huge_page_shift(h);
3630 }
3631
3632 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3633
3634 return hash & (num_fault_mutexes - 1);
3635 }
3636 #else
3637 /*
3638 * For uniprocesor systems we always use a single mutex, so just
3639 * return 0 and avoid the hashing overhead.
3640 */
3641 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3642 struct vm_area_struct *vma,
3643 struct address_space *mapping,
3644 pgoff_t idx, unsigned long address)
3645 {
3646 return 0;
3647 }
3648 #endif
3649
3650 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3651 unsigned long address, unsigned int flags)
3652 {
3653 pte_t *ptep, entry;
3654 spinlock_t *ptl;
3655 int ret;
3656 u32 hash;
3657 pgoff_t idx;
3658 struct page *page = NULL;
3659 struct page *pagecache_page = NULL;
3660 struct hstate *h = hstate_vma(vma);
3661 struct address_space *mapping;
3662 int need_wait_lock = 0;
3663
3664 address &= huge_page_mask(h);
3665
3666 ptep = huge_pte_offset(mm, address);
3667 if (ptep) {
3668 entry = huge_ptep_get(ptep);
3669 if (unlikely(is_hugetlb_entry_migration(entry))) {
3670 migration_entry_wait_huge(vma, mm, ptep);
3671 return 0;
3672 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3673 return VM_FAULT_HWPOISON_LARGE |
3674 VM_FAULT_SET_HINDEX(hstate_index(h));
3675 } else {
3676 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3677 if (!ptep)
3678 return VM_FAULT_OOM;
3679 }
3680
3681 mapping = vma->vm_file->f_mapping;
3682 idx = vma_hugecache_offset(h, vma, address);
3683
3684 /*
3685 * Serialize hugepage allocation and instantiation, so that we don't
3686 * get spurious allocation failures if two CPUs race to instantiate
3687 * the same page in the page cache.
3688 */
3689 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3690 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3691
3692 entry = huge_ptep_get(ptep);
3693 if (huge_pte_none(entry)) {
3694 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3695 goto out_mutex;
3696 }
3697
3698 ret = 0;
3699
3700 /*
3701 * entry could be a migration/hwpoison entry at this point, so this
3702 * check prevents the kernel from going below assuming that we have
3703 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3704 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3705 * handle it.
3706 */
3707 if (!pte_present(entry))
3708 goto out_mutex;
3709
3710 /*
3711 * If we are going to COW the mapping later, we examine the pending
3712 * reservations for this page now. This will ensure that any
3713 * allocations necessary to record that reservation occur outside the
3714 * spinlock. For private mappings, we also lookup the pagecache
3715 * page now as it is used to determine if a reservation has been
3716 * consumed.
3717 */
3718 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3719 if (vma_needs_reservation(h, vma, address) < 0) {
3720 ret = VM_FAULT_OOM;
3721 goto out_mutex;
3722 }
3723 /* Just decrements count, does not deallocate */
3724 vma_end_reservation(h, vma, address);
3725
3726 if (!(vma->vm_flags & VM_MAYSHARE))
3727 pagecache_page = hugetlbfs_pagecache_page(h,
3728 vma, address);
3729 }
3730
3731 ptl = huge_pte_lock(h, mm, ptep);
3732
3733 /* Check for a racing update before calling hugetlb_cow */
3734 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3735 goto out_ptl;
3736
3737 /*
3738 * hugetlb_cow() requires page locks of pte_page(entry) and
3739 * pagecache_page, so here we need take the former one
3740 * when page != pagecache_page or !pagecache_page.
3741 */
3742 page = pte_page(entry);
3743 if (page != pagecache_page)
3744 if (!trylock_page(page)) {
3745 need_wait_lock = 1;
3746 goto out_ptl;
3747 }
3748
3749 get_page(page);
3750
3751 if (flags & FAULT_FLAG_WRITE) {
3752 if (!huge_pte_write(entry)) {
3753 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3754 pagecache_page, ptl);
3755 goto out_put_page;
3756 }
3757 entry = huge_pte_mkdirty(entry);
3758 }
3759 entry = pte_mkyoung(entry);
3760 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3761 flags & FAULT_FLAG_WRITE))
3762 update_mmu_cache(vma, address, ptep);
3763 out_put_page:
3764 if (page != pagecache_page)
3765 unlock_page(page);
3766 put_page(page);
3767 out_ptl:
3768 spin_unlock(ptl);
3769
3770 if (pagecache_page) {
3771 unlock_page(pagecache_page);
3772 put_page(pagecache_page);
3773 }
3774 out_mutex:
3775 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3776 /*
3777 * Generally it's safe to hold refcount during waiting page lock. But
3778 * here we just wait to defer the next page fault to avoid busy loop and
3779 * the page is not used after unlocked before returning from the current
3780 * page fault. So we are safe from accessing freed page, even if we wait
3781 * here without taking refcount.
3782 */
3783 if (need_wait_lock)
3784 wait_on_page_locked(page);
3785 return ret;
3786 }
3787
3788 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3789 struct page **pages, struct vm_area_struct **vmas,
3790 unsigned long *position, unsigned long *nr_pages,
3791 long i, unsigned int flags)
3792 {
3793 unsigned long pfn_offset;
3794 unsigned long vaddr = *position;
3795 unsigned long remainder = *nr_pages;
3796 struct hstate *h = hstate_vma(vma);
3797
3798 while (vaddr < vma->vm_end && remainder) {
3799 pte_t *pte;
3800 spinlock_t *ptl = NULL;
3801 int absent;
3802 struct page *page;
3803
3804 /*
3805 * If we have a pending SIGKILL, don't keep faulting pages and
3806 * potentially allocating memory.
3807 */
3808 if (unlikely(fatal_signal_pending(current))) {
3809 remainder = 0;
3810 break;
3811 }
3812
3813 /*
3814 * Some archs (sparc64, sh*) have multiple pte_ts to
3815 * each hugepage. We have to make sure we get the
3816 * first, for the page indexing below to work.
3817 *
3818 * Note that page table lock is not held when pte is null.
3819 */
3820 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3821 if (pte)
3822 ptl = huge_pte_lock(h, mm, pte);
3823 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3824
3825 /*
3826 * When coredumping, it suits get_dump_page if we just return
3827 * an error where there's an empty slot with no huge pagecache
3828 * to back it. This way, we avoid allocating a hugepage, and
3829 * the sparse dumpfile avoids allocating disk blocks, but its
3830 * huge holes still show up with zeroes where they need to be.
3831 */
3832 if (absent && (flags & FOLL_DUMP) &&
3833 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3834 if (pte)
3835 spin_unlock(ptl);
3836 remainder = 0;
3837 break;
3838 }
3839
3840 /*
3841 * We need call hugetlb_fault for both hugepages under migration
3842 * (in which case hugetlb_fault waits for the migration,) and
3843 * hwpoisoned hugepages (in which case we need to prevent the
3844 * caller from accessing to them.) In order to do this, we use
3845 * here is_swap_pte instead of is_hugetlb_entry_migration and
3846 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3847 * both cases, and because we can't follow correct pages
3848 * directly from any kind of swap entries.
3849 */
3850 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3851 ((flags & FOLL_WRITE) &&
3852 !huge_pte_write(huge_ptep_get(pte)))) {
3853 int ret;
3854
3855 if (pte)
3856 spin_unlock(ptl);
3857 ret = hugetlb_fault(mm, vma, vaddr,
3858 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3859 if (!(ret & VM_FAULT_ERROR))
3860 continue;
3861
3862 remainder = 0;
3863 break;
3864 }
3865
3866 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3867 page = pte_page(huge_ptep_get(pte));
3868 same_page:
3869 if (pages) {
3870 pages[i] = mem_map_offset(page, pfn_offset);
3871 get_page(pages[i]);
3872 }
3873
3874 if (vmas)
3875 vmas[i] = vma;
3876
3877 vaddr += PAGE_SIZE;
3878 ++pfn_offset;
3879 --remainder;
3880 ++i;
3881 if (vaddr < vma->vm_end && remainder &&
3882 pfn_offset < pages_per_huge_page(h)) {
3883 /*
3884 * We use pfn_offset to avoid touching the pageframes
3885 * of this compound page.
3886 */
3887 goto same_page;
3888 }
3889 spin_unlock(ptl);
3890 }
3891 *nr_pages = remainder;
3892 *position = vaddr;
3893
3894 return i ? i : -EFAULT;
3895 }
3896
3897 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3898 unsigned long address, unsigned long end, pgprot_t newprot)
3899 {
3900 struct mm_struct *mm = vma->vm_mm;
3901 unsigned long start = address;
3902 pte_t *ptep;
3903 pte_t pte;
3904 struct hstate *h = hstate_vma(vma);
3905 unsigned long pages = 0;
3906
3907 BUG_ON(address >= end);
3908 flush_cache_range(vma, address, end);
3909
3910 mmu_notifier_invalidate_range_start(mm, start, end);
3911 i_mmap_lock_write(vma->vm_file->f_mapping);
3912 for (; address < end; address += huge_page_size(h)) {
3913 spinlock_t *ptl;
3914 ptep = huge_pte_offset(mm, address);
3915 if (!ptep)
3916 continue;
3917 ptl = huge_pte_lock(h, mm, ptep);
3918 if (huge_pmd_unshare(mm, &address, ptep)) {
3919 pages++;
3920 spin_unlock(ptl);
3921 continue;
3922 }
3923 pte = huge_ptep_get(ptep);
3924 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3925 spin_unlock(ptl);
3926 continue;
3927 }
3928 if (unlikely(is_hugetlb_entry_migration(pte))) {
3929 swp_entry_t entry = pte_to_swp_entry(pte);
3930
3931 if (is_write_migration_entry(entry)) {
3932 pte_t newpte;
3933
3934 make_migration_entry_read(&entry);
3935 newpte = swp_entry_to_pte(entry);
3936 set_huge_pte_at(mm, address, ptep, newpte);
3937 pages++;
3938 }
3939 spin_unlock(ptl);
3940 continue;
3941 }
3942 if (!huge_pte_none(pte)) {
3943 pte = huge_ptep_get_and_clear(mm, address, ptep);
3944 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3945 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3946 set_huge_pte_at(mm, address, ptep, pte);
3947 pages++;
3948 }
3949 spin_unlock(ptl);
3950 }
3951 /*
3952 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3953 * may have cleared our pud entry and done put_page on the page table:
3954 * once we release i_mmap_rwsem, another task can do the final put_page
3955 * and that page table be reused and filled with junk.
3956 */
3957 flush_tlb_range(vma, start, end);
3958 mmu_notifier_invalidate_range(mm, start, end);
3959 i_mmap_unlock_write(vma->vm_file->f_mapping);
3960 mmu_notifier_invalidate_range_end(mm, start, end);
3961
3962 return pages << h->order;
3963 }
3964
3965 int hugetlb_reserve_pages(struct inode *inode,
3966 long from, long to,
3967 struct vm_area_struct *vma,
3968 vm_flags_t vm_flags)
3969 {
3970 long ret, chg;
3971 struct hstate *h = hstate_inode(inode);
3972 struct hugepage_subpool *spool = subpool_inode(inode);
3973 struct resv_map *resv_map;
3974 long gbl_reserve;
3975
3976 /*
3977 * Only apply hugepage reservation if asked. At fault time, an
3978 * attempt will be made for VM_NORESERVE to allocate a page
3979 * without using reserves
3980 */
3981 if (vm_flags & VM_NORESERVE)
3982 return 0;
3983
3984 /*
3985 * Shared mappings base their reservation on the number of pages that
3986 * are already allocated on behalf of the file. Private mappings need
3987 * to reserve the full area even if read-only as mprotect() may be
3988 * called to make the mapping read-write. Assume !vma is a shm mapping
3989 */
3990 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3991 resv_map = inode_resv_map(inode);
3992
3993 chg = region_chg(resv_map, from, to);
3994
3995 } else {
3996 resv_map = resv_map_alloc();
3997 if (!resv_map)
3998 return -ENOMEM;
3999
4000 chg = to - from;
4001
4002 set_vma_resv_map(vma, resv_map);
4003 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4004 }
4005
4006 if (chg < 0) {
4007 ret = chg;
4008 goto out_err;
4009 }
4010
4011 /*
4012 * There must be enough pages in the subpool for the mapping. If
4013 * the subpool has a minimum size, there may be some global
4014 * reservations already in place (gbl_reserve).
4015 */
4016 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4017 if (gbl_reserve < 0) {
4018 ret = -ENOSPC;
4019 goto out_err;
4020 }
4021
4022 /*
4023 * Check enough hugepages are available for the reservation.
4024 * Hand the pages back to the subpool if there are not
4025 */
4026 ret = hugetlb_acct_memory(h, gbl_reserve);
4027 if (ret < 0) {
4028 /* put back original number of pages, chg */
4029 (void)hugepage_subpool_put_pages(spool, chg);
4030 goto out_err;
4031 }
4032
4033 /*
4034 * Account for the reservations made. Shared mappings record regions
4035 * that have reservations as they are shared by multiple VMAs.
4036 * When the last VMA disappears, the region map says how much
4037 * the reservation was and the page cache tells how much of
4038 * the reservation was consumed. Private mappings are per-VMA and
4039 * only the consumed reservations are tracked. When the VMA
4040 * disappears, the original reservation is the VMA size and the
4041 * consumed reservations are stored in the map. Hence, nothing
4042 * else has to be done for private mappings here
4043 */
4044 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4045 long add = region_add(resv_map, from, to);
4046
4047 if (unlikely(chg > add)) {
4048 /*
4049 * pages in this range were added to the reserve
4050 * map between region_chg and region_add. This
4051 * indicates a race with alloc_huge_page. Adjust
4052 * the subpool and reserve counts modified above
4053 * based on the difference.
4054 */
4055 long rsv_adjust;
4056
4057 rsv_adjust = hugepage_subpool_put_pages(spool,
4058 chg - add);
4059 hugetlb_acct_memory(h, -rsv_adjust);
4060 }
4061 }
4062 return 0;
4063 out_err:
4064 if (!vma || vma->vm_flags & VM_MAYSHARE)
4065 region_abort(resv_map, from, to);
4066 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4067 kref_put(&resv_map->refs, resv_map_release);
4068 return ret;
4069 }
4070
4071 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4072 long freed)
4073 {
4074 struct hstate *h = hstate_inode(inode);
4075 struct resv_map *resv_map = inode_resv_map(inode);
4076 long chg = 0;
4077 struct hugepage_subpool *spool = subpool_inode(inode);
4078 long gbl_reserve;
4079
4080 if (resv_map) {
4081 chg = region_del(resv_map, start, end);
4082 /*
4083 * region_del() can fail in the rare case where a region
4084 * must be split and another region descriptor can not be
4085 * allocated. If end == LONG_MAX, it will not fail.
4086 */
4087 if (chg < 0)
4088 return chg;
4089 }
4090
4091 spin_lock(&inode->i_lock);
4092 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4093 spin_unlock(&inode->i_lock);
4094
4095 /*
4096 * If the subpool has a minimum size, the number of global
4097 * reservations to be released may be adjusted.
4098 */
4099 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4100 hugetlb_acct_memory(h, -gbl_reserve);
4101
4102 return 0;
4103 }
4104
4105 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4106 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4107 struct vm_area_struct *vma,
4108 unsigned long addr, pgoff_t idx)
4109 {
4110 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4111 svma->vm_start;
4112 unsigned long sbase = saddr & PUD_MASK;
4113 unsigned long s_end = sbase + PUD_SIZE;
4114
4115 /* Allow segments to share if only one is marked locked */
4116 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4117 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4118
4119 /*
4120 * match the virtual addresses, permission and the alignment of the
4121 * page table page.
4122 */
4123 if (pmd_index(addr) != pmd_index(saddr) ||
4124 vm_flags != svm_flags ||
4125 sbase < svma->vm_start || svma->vm_end < s_end)
4126 return 0;
4127
4128 return saddr;
4129 }
4130
4131 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4132 {
4133 unsigned long base = addr & PUD_MASK;
4134 unsigned long end = base + PUD_SIZE;
4135
4136 /*
4137 * check on proper vm_flags and page table alignment
4138 */
4139 if (vma->vm_flags & VM_MAYSHARE &&
4140 vma->vm_start <= base && end <= vma->vm_end)
4141 return true;
4142 return false;
4143 }
4144
4145 /*
4146 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4147 * and returns the corresponding pte. While this is not necessary for the
4148 * !shared pmd case because we can allocate the pmd later as well, it makes the
4149 * code much cleaner. pmd allocation is essential for the shared case because
4150 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4151 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4152 * bad pmd for sharing.
4153 */
4154 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4155 {
4156 struct vm_area_struct *vma = find_vma(mm, addr);
4157 struct address_space *mapping = vma->vm_file->f_mapping;
4158 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4159 vma->vm_pgoff;
4160 struct vm_area_struct *svma;
4161 unsigned long saddr;
4162 pte_t *spte = NULL;
4163 pte_t *pte;
4164 spinlock_t *ptl;
4165
4166 if (!vma_shareable(vma, addr))
4167 return (pte_t *)pmd_alloc(mm, pud, addr);
4168
4169 i_mmap_lock_write(mapping);
4170 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4171 if (svma == vma)
4172 continue;
4173
4174 saddr = page_table_shareable(svma, vma, addr, idx);
4175 if (saddr) {
4176 spte = huge_pte_offset(svma->vm_mm, saddr);
4177 if (spte) {
4178 mm_inc_nr_pmds(mm);
4179 get_page(virt_to_page(spte));
4180 break;
4181 }
4182 }
4183 }
4184
4185 if (!spte)
4186 goto out;
4187
4188 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4189 spin_lock(ptl);
4190 if (pud_none(*pud)) {
4191 pud_populate(mm, pud,
4192 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4193 } else {
4194 put_page(virt_to_page(spte));
4195 mm_inc_nr_pmds(mm);
4196 }
4197 spin_unlock(ptl);
4198 out:
4199 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4200 i_mmap_unlock_write(mapping);
4201 return pte;
4202 }
4203
4204 /*
4205 * unmap huge page backed by shared pte.
4206 *
4207 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4208 * indicated by page_count > 1, unmap is achieved by clearing pud and
4209 * decrementing the ref count. If count == 1, the pte page is not shared.
4210 *
4211 * called with page table lock held.
4212 *
4213 * returns: 1 successfully unmapped a shared pte page
4214 * 0 the underlying pte page is not shared, or it is the last user
4215 */
4216 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4217 {
4218 pgd_t *pgd = pgd_offset(mm, *addr);
4219 pud_t *pud = pud_offset(pgd, *addr);
4220
4221 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4222 if (page_count(virt_to_page(ptep)) == 1)
4223 return 0;
4224
4225 pud_clear(pud);
4226 put_page(virt_to_page(ptep));
4227 mm_dec_nr_pmds(mm);
4228 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4229 return 1;
4230 }
4231 #define want_pmd_share() (1)
4232 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4233 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4234 {
4235 return NULL;
4236 }
4237
4238 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4239 {
4240 return 0;
4241 }
4242 #define want_pmd_share() (0)
4243 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4244
4245 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4246 pte_t *huge_pte_alloc(struct mm_struct *mm,
4247 unsigned long addr, unsigned long sz)
4248 {
4249 pgd_t *pgd;
4250 pud_t *pud;
4251 pte_t *pte = NULL;
4252
4253 pgd = pgd_offset(mm, addr);
4254 pud = pud_alloc(mm, pgd, addr);
4255 if (pud) {
4256 if (sz == PUD_SIZE) {
4257 pte = (pte_t *)pud;
4258 } else {
4259 BUG_ON(sz != PMD_SIZE);
4260 if (want_pmd_share() && pud_none(*pud))
4261 pte = huge_pmd_share(mm, addr, pud);
4262 else
4263 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4264 }
4265 }
4266 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4267
4268 return pte;
4269 }
4270
4271 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4272 {
4273 pgd_t *pgd;
4274 pud_t *pud;
4275 pmd_t *pmd = NULL;
4276
4277 pgd = pgd_offset(mm, addr);
4278 if (pgd_present(*pgd)) {
4279 pud = pud_offset(pgd, addr);
4280 if (pud_present(*pud)) {
4281 if (pud_huge(*pud))
4282 return (pte_t *)pud;
4283 pmd = pmd_offset(pud, addr);
4284 }
4285 }
4286 return (pte_t *) pmd;
4287 }
4288
4289 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4290
4291 /*
4292 * These functions are overwritable if your architecture needs its own
4293 * behavior.
4294 */
4295 struct page * __weak
4296 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4297 int write)
4298 {
4299 return ERR_PTR(-EINVAL);
4300 }
4301
4302 struct page * __weak
4303 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4304 pmd_t *pmd, int flags)
4305 {
4306 struct page *page = NULL;
4307 spinlock_t *ptl;
4308 retry:
4309 ptl = pmd_lockptr(mm, pmd);
4310 spin_lock(ptl);
4311 /*
4312 * make sure that the address range covered by this pmd is not
4313 * unmapped from other threads.
4314 */
4315 if (!pmd_huge(*pmd))
4316 goto out;
4317 if (pmd_present(*pmd)) {
4318 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4319 if (flags & FOLL_GET)
4320 get_page(page);
4321 } else {
4322 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4323 spin_unlock(ptl);
4324 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4325 goto retry;
4326 }
4327 /*
4328 * hwpoisoned entry is treated as no_page_table in
4329 * follow_page_mask().
4330 */
4331 }
4332 out:
4333 spin_unlock(ptl);
4334 return page;
4335 }
4336
4337 struct page * __weak
4338 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4339 pud_t *pud, int flags)
4340 {
4341 if (flags & FOLL_GET)
4342 return NULL;
4343
4344 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4345 }
4346
4347 #ifdef CONFIG_MEMORY_FAILURE
4348
4349 /*
4350 * This function is called from memory failure code.
4351 * Assume the caller holds page lock of the head page.
4352 */
4353 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4354 {
4355 struct hstate *h = page_hstate(hpage);
4356 int nid = page_to_nid(hpage);
4357 int ret = -EBUSY;
4358
4359 spin_lock(&hugetlb_lock);
4360 /*
4361 * Just checking !page_huge_active is not enough, because that could be
4362 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4363 */
4364 if (!page_huge_active(hpage) && !page_count(hpage)) {
4365 /*
4366 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4367 * but dangling hpage->lru can trigger list-debug warnings
4368 * (this happens when we call unpoison_memory() on it),
4369 * so let it point to itself with list_del_init().
4370 */
4371 list_del_init(&hpage->lru);
4372 set_page_refcounted(hpage);
4373 h->free_huge_pages--;
4374 h->free_huge_pages_node[nid]--;
4375 ret = 0;
4376 }
4377 spin_unlock(&hugetlb_lock);
4378 return ret;
4379 }
4380 #endif
4381
4382 bool isolate_huge_page(struct page *page, struct list_head *list)
4383 {
4384 bool ret = true;
4385
4386 VM_BUG_ON_PAGE(!PageHead(page), page);
4387 spin_lock(&hugetlb_lock);
4388 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4389 ret = false;
4390 goto unlock;
4391 }
4392 clear_page_huge_active(page);
4393 list_move_tail(&page->lru, list);
4394 unlock:
4395 spin_unlock(&hugetlb_lock);
4396 return ret;
4397 }
4398
4399 void putback_active_hugepage(struct page *page)
4400 {
4401 VM_BUG_ON_PAGE(!PageHead(page), page);
4402 spin_lock(&hugetlb_lock);
4403 set_page_huge_active(page);
4404 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4405 spin_unlock(&hugetlb_lock);
4406 put_page(page);
4407 }