]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hugetlb.c
[PATCH] remove set_page_count() outside mm/
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16
17 #include <asm/page.h>
18 #include <asm/pgtable.h>
19
20 #include <linux/hugetlb.h>
21 #include "internal.h"
22
23 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
24 static unsigned long nr_huge_pages, free_huge_pages;
25 unsigned long max_huge_pages;
26 static struct list_head hugepage_freelists[MAX_NUMNODES];
27 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
28 static unsigned int free_huge_pages_node[MAX_NUMNODES];
29
30 /*
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32 */
33 static DEFINE_SPINLOCK(hugetlb_lock);
34
35 static void enqueue_huge_page(struct page *page)
36 {
37 int nid = page_to_nid(page);
38 list_add(&page->lru, &hugepage_freelists[nid]);
39 free_huge_pages++;
40 free_huge_pages_node[nid]++;
41 }
42
43 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
44 unsigned long address)
45 {
46 int nid = numa_node_id();
47 struct page *page = NULL;
48 struct zonelist *zonelist = huge_zonelist(vma, address);
49 struct zone **z;
50
51 for (z = zonelist->zones; *z; z++) {
52 nid = (*z)->zone_pgdat->node_id;
53 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
54 !list_empty(&hugepage_freelists[nid]))
55 break;
56 }
57
58 if (*z) {
59 page = list_entry(hugepage_freelists[nid].next,
60 struct page, lru);
61 list_del(&page->lru);
62 free_huge_pages--;
63 free_huge_pages_node[nid]--;
64 }
65 return page;
66 }
67
68 static int alloc_fresh_huge_page(void)
69 {
70 static int nid = 0;
71 struct page *page;
72 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
73 HUGETLB_PAGE_ORDER);
74 nid = (nid + 1) % num_online_nodes();
75 if (page) {
76 page[1].lru.next = (void *)free_huge_page; /* dtor */
77 spin_lock(&hugetlb_lock);
78 nr_huge_pages++;
79 nr_huge_pages_node[page_to_nid(page)]++;
80 spin_unlock(&hugetlb_lock);
81 put_page(page); /* free it into the hugepage allocator */
82 return 1;
83 }
84 return 0;
85 }
86
87 void free_huge_page(struct page *page)
88 {
89 BUG_ON(page_count(page));
90
91 INIT_LIST_HEAD(&page->lru);
92
93 spin_lock(&hugetlb_lock);
94 enqueue_huge_page(page);
95 spin_unlock(&hugetlb_lock);
96 }
97
98 struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
99 {
100 struct page *page;
101 int i;
102
103 spin_lock(&hugetlb_lock);
104 page = dequeue_huge_page(vma, addr);
105 if (!page) {
106 spin_unlock(&hugetlb_lock);
107 return NULL;
108 }
109 spin_unlock(&hugetlb_lock);
110 set_page_refcounted(page);
111 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
112 clear_user_highpage(&page[i], addr);
113 return page;
114 }
115
116 static int __init hugetlb_init(void)
117 {
118 unsigned long i;
119
120 if (HPAGE_SHIFT == 0)
121 return 0;
122
123 for (i = 0; i < MAX_NUMNODES; ++i)
124 INIT_LIST_HEAD(&hugepage_freelists[i]);
125
126 for (i = 0; i < max_huge_pages; ++i) {
127 if (!alloc_fresh_huge_page())
128 break;
129 }
130 max_huge_pages = free_huge_pages = nr_huge_pages = i;
131 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
132 return 0;
133 }
134 module_init(hugetlb_init);
135
136 static int __init hugetlb_setup(char *s)
137 {
138 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
139 max_huge_pages = 0;
140 return 1;
141 }
142 __setup("hugepages=", hugetlb_setup);
143
144 #ifdef CONFIG_SYSCTL
145 static void update_and_free_page(struct page *page)
146 {
147 int i;
148 nr_huge_pages--;
149 nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
150 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
151 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
152 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
153 1 << PG_private | 1<< PG_writeback);
154 }
155 page[1].lru.next = NULL;
156 set_page_refcounted(page);
157 __free_pages(page, HUGETLB_PAGE_ORDER);
158 }
159
160 #ifdef CONFIG_HIGHMEM
161 static void try_to_free_low(unsigned long count)
162 {
163 int i, nid;
164 for (i = 0; i < MAX_NUMNODES; ++i) {
165 struct page *page, *next;
166 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
167 if (PageHighMem(page))
168 continue;
169 list_del(&page->lru);
170 update_and_free_page(page);
171 nid = page_zone(page)->zone_pgdat->node_id;
172 free_huge_pages--;
173 free_huge_pages_node[nid]--;
174 if (count >= nr_huge_pages)
175 return;
176 }
177 }
178 }
179 #else
180 static inline void try_to_free_low(unsigned long count)
181 {
182 }
183 #endif
184
185 static unsigned long set_max_huge_pages(unsigned long count)
186 {
187 while (count > nr_huge_pages) {
188 if (!alloc_fresh_huge_page())
189 return nr_huge_pages;
190 }
191 if (count >= nr_huge_pages)
192 return nr_huge_pages;
193
194 spin_lock(&hugetlb_lock);
195 try_to_free_low(count);
196 while (count < nr_huge_pages) {
197 struct page *page = dequeue_huge_page(NULL, 0);
198 if (!page)
199 break;
200 update_and_free_page(page);
201 }
202 spin_unlock(&hugetlb_lock);
203 return nr_huge_pages;
204 }
205
206 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
207 struct file *file, void __user *buffer,
208 size_t *length, loff_t *ppos)
209 {
210 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
211 max_huge_pages = set_max_huge_pages(max_huge_pages);
212 return 0;
213 }
214 #endif /* CONFIG_SYSCTL */
215
216 int hugetlb_report_meminfo(char *buf)
217 {
218 return sprintf(buf,
219 "HugePages_Total: %5lu\n"
220 "HugePages_Free: %5lu\n"
221 "Hugepagesize: %5lu kB\n",
222 nr_huge_pages,
223 free_huge_pages,
224 HPAGE_SIZE/1024);
225 }
226
227 int hugetlb_report_node_meminfo(int nid, char *buf)
228 {
229 return sprintf(buf,
230 "Node %d HugePages_Total: %5u\n"
231 "Node %d HugePages_Free: %5u\n",
232 nid, nr_huge_pages_node[nid],
233 nid, free_huge_pages_node[nid]);
234 }
235
236 int is_hugepage_mem_enough(size_t size)
237 {
238 return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
239 }
240
241 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
242 unsigned long hugetlb_total_pages(void)
243 {
244 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
245 }
246
247 /*
248 * We cannot handle pagefaults against hugetlb pages at all. They cause
249 * handle_mm_fault() to try to instantiate regular-sized pages in the
250 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
251 * this far.
252 */
253 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
254 unsigned long address, int *unused)
255 {
256 BUG();
257 return NULL;
258 }
259
260 struct vm_operations_struct hugetlb_vm_ops = {
261 .nopage = hugetlb_nopage,
262 };
263
264 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
265 int writable)
266 {
267 pte_t entry;
268
269 if (writable) {
270 entry =
271 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
272 } else {
273 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
274 }
275 entry = pte_mkyoung(entry);
276 entry = pte_mkhuge(entry);
277
278 return entry;
279 }
280
281 static void set_huge_ptep_writable(struct vm_area_struct *vma,
282 unsigned long address, pte_t *ptep)
283 {
284 pte_t entry;
285
286 entry = pte_mkwrite(pte_mkdirty(*ptep));
287 ptep_set_access_flags(vma, address, ptep, entry, 1);
288 update_mmu_cache(vma, address, entry);
289 lazy_mmu_prot_update(entry);
290 }
291
292
293 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
294 struct vm_area_struct *vma)
295 {
296 pte_t *src_pte, *dst_pte, entry;
297 struct page *ptepage;
298 unsigned long addr;
299 int cow;
300
301 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
302
303 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
304 src_pte = huge_pte_offset(src, addr);
305 if (!src_pte)
306 continue;
307 dst_pte = huge_pte_alloc(dst, addr);
308 if (!dst_pte)
309 goto nomem;
310 spin_lock(&dst->page_table_lock);
311 spin_lock(&src->page_table_lock);
312 if (!pte_none(*src_pte)) {
313 if (cow)
314 ptep_set_wrprotect(src, addr, src_pte);
315 entry = *src_pte;
316 ptepage = pte_page(entry);
317 get_page(ptepage);
318 add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
319 set_huge_pte_at(dst, addr, dst_pte, entry);
320 }
321 spin_unlock(&src->page_table_lock);
322 spin_unlock(&dst->page_table_lock);
323 }
324 return 0;
325
326 nomem:
327 return -ENOMEM;
328 }
329
330 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
331 unsigned long end)
332 {
333 struct mm_struct *mm = vma->vm_mm;
334 unsigned long address;
335 pte_t *ptep;
336 pte_t pte;
337 struct page *page;
338
339 WARN_ON(!is_vm_hugetlb_page(vma));
340 BUG_ON(start & ~HPAGE_MASK);
341 BUG_ON(end & ~HPAGE_MASK);
342
343 spin_lock(&mm->page_table_lock);
344
345 /* Update high watermark before we lower rss */
346 update_hiwater_rss(mm);
347
348 for (address = start; address < end; address += HPAGE_SIZE) {
349 ptep = huge_pte_offset(mm, address);
350 if (!ptep)
351 continue;
352
353 pte = huge_ptep_get_and_clear(mm, address, ptep);
354 if (pte_none(pte))
355 continue;
356
357 page = pte_page(pte);
358 put_page(page);
359 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
360 }
361
362 spin_unlock(&mm->page_table_lock);
363 flush_tlb_range(vma, start, end);
364 }
365
366 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
367 unsigned long address, pte_t *ptep, pte_t pte)
368 {
369 struct page *old_page, *new_page;
370 int i, avoidcopy;
371
372 old_page = pte_page(pte);
373
374 /* If no-one else is actually using this page, avoid the copy
375 * and just make the page writable */
376 avoidcopy = (page_count(old_page) == 1);
377 if (avoidcopy) {
378 set_huge_ptep_writable(vma, address, ptep);
379 return VM_FAULT_MINOR;
380 }
381
382 page_cache_get(old_page);
383 new_page = alloc_huge_page(vma, address);
384
385 if (!new_page) {
386 page_cache_release(old_page);
387 return VM_FAULT_OOM;
388 }
389
390 spin_unlock(&mm->page_table_lock);
391 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
392 copy_user_highpage(new_page + i, old_page + i,
393 address + i*PAGE_SIZE);
394 spin_lock(&mm->page_table_lock);
395
396 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
397 if (likely(pte_same(*ptep, pte))) {
398 /* Break COW */
399 set_huge_pte_at(mm, address, ptep,
400 make_huge_pte(vma, new_page, 1));
401 /* Make the old page be freed below */
402 new_page = old_page;
403 }
404 page_cache_release(new_page);
405 page_cache_release(old_page);
406 return VM_FAULT_MINOR;
407 }
408
409 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
410 unsigned long address, pte_t *ptep, int write_access)
411 {
412 int ret = VM_FAULT_SIGBUS;
413 unsigned long idx;
414 unsigned long size;
415 struct page *page;
416 struct address_space *mapping;
417 pte_t new_pte;
418
419 mapping = vma->vm_file->f_mapping;
420 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
421 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
422
423 /*
424 * Use page lock to guard against racing truncation
425 * before we get page_table_lock.
426 */
427 retry:
428 page = find_lock_page(mapping, idx);
429 if (!page) {
430 if (hugetlb_get_quota(mapping))
431 goto out;
432 page = alloc_huge_page(vma, address);
433 if (!page) {
434 hugetlb_put_quota(mapping);
435 ret = VM_FAULT_OOM;
436 goto out;
437 }
438
439 if (vma->vm_flags & VM_SHARED) {
440 int err;
441
442 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
443 if (err) {
444 put_page(page);
445 hugetlb_put_quota(mapping);
446 if (err == -EEXIST)
447 goto retry;
448 goto out;
449 }
450 } else
451 lock_page(page);
452 }
453
454 spin_lock(&mm->page_table_lock);
455 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
456 if (idx >= size)
457 goto backout;
458
459 ret = VM_FAULT_MINOR;
460 if (!pte_none(*ptep))
461 goto backout;
462
463 add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
464 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
465 && (vma->vm_flags & VM_SHARED)));
466 set_huge_pte_at(mm, address, ptep, new_pte);
467
468 if (write_access && !(vma->vm_flags & VM_SHARED)) {
469 /* Optimization, do the COW without a second fault */
470 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
471 }
472
473 spin_unlock(&mm->page_table_lock);
474 unlock_page(page);
475 out:
476 return ret;
477
478 backout:
479 spin_unlock(&mm->page_table_lock);
480 hugetlb_put_quota(mapping);
481 unlock_page(page);
482 put_page(page);
483 goto out;
484 }
485
486 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
487 unsigned long address, int write_access)
488 {
489 pte_t *ptep;
490 pte_t entry;
491 int ret;
492
493 ptep = huge_pte_alloc(mm, address);
494 if (!ptep)
495 return VM_FAULT_OOM;
496
497 entry = *ptep;
498 if (pte_none(entry))
499 return hugetlb_no_page(mm, vma, address, ptep, write_access);
500
501 ret = VM_FAULT_MINOR;
502
503 spin_lock(&mm->page_table_lock);
504 /* Check for a racing update before calling hugetlb_cow */
505 if (likely(pte_same(entry, *ptep)))
506 if (write_access && !pte_write(entry))
507 ret = hugetlb_cow(mm, vma, address, ptep, entry);
508 spin_unlock(&mm->page_table_lock);
509
510 return ret;
511 }
512
513 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
514 struct page **pages, struct vm_area_struct **vmas,
515 unsigned long *position, int *length, int i)
516 {
517 unsigned long vpfn, vaddr = *position;
518 int remainder = *length;
519
520 vpfn = vaddr/PAGE_SIZE;
521 spin_lock(&mm->page_table_lock);
522 while (vaddr < vma->vm_end && remainder) {
523 pte_t *pte;
524 struct page *page;
525
526 /*
527 * Some archs (sparc64, sh*) have multiple pte_ts to
528 * each hugepage. We have to make * sure we get the
529 * first, for the page indexing below to work.
530 */
531 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
532
533 if (!pte || pte_none(*pte)) {
534 int ret;
535
536 spin_unlock(&mm->page_table_lock);
537 ret = hugetlb_fault(mm, vma, vaddr, 0);
538 spin_lock(&mm->page_table_lock);
539 if (ret == VM_FAULT_MINOR)
540 continue;
541
542 remainder = 0;
543 if (!i)
544 i = -EFAULT;
545 break;
546 }
547
548 if (pages) {
549 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
550 get_page(page);
551 pages[i] = page;
552 }
553
554 if (vmas)
555 vmas[i] = vma;
556
557 vaddr += PAGE_SIZE;
558 ++vpfn;
559 --remainder;
560 ++i;
561 }
562 spin_unlock(&mm->page_table_lock);
563 *length = remainder;
564 *position = vaddr;
565
566 return i;
567 }