]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/hugetlb.c
khugepaged: fix wrong result value for trace_mm_collapse_huge_page_isolate()
[mirror_ubuntu-focal-kernel.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31
32 #include <asm/page.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlb.h>
35
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
43
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
47 /*
48 * Minimum page order among possible hugepage sizes, set to a proper value
49 * at boot time.
50 */
51 static unsigned int minimum_order __read_mostly = UINT_MAX;
52
53 __initdata LIST_HEAD(huge_boot_pages);
54
55 /* for command line parsing */
56 static struct hstate * __initdata parsed_hstate;
57 static unsigned long __initdata default_hstate_max_huge_pages;
58 static unsigned long __initdata default_hstate_size;
59 static bool __initdata parsed_valid_hugepagesz = true;
60
61 /*
62 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63 * free_huge_pages, and surplus_huge_pages.
64 */
65 DEFINE_SPINLOCK(hugetlb_lock);
66
67 /*
68 * Serializes faults on the same logical page. This is used to
69 * prevent spurious OOMs when the hugepage pool is fully utilized.
70 */
71 static int num_fault_mutexes;
72 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
73
74 static inline bool PageHugeFreed(struct page *head)
75 {
76 return page_private(head + 4) == -1UL;
77 }
78
79 static inline void SetPageHugeFreed(struct page *head)
80 {
81 set_page_private(head + 4, -1UL);
82 }
83
84 static inline void ClearPageHugeFreed(struct page *head)
85 {
86 set_page_private(head + 4, 0);
87 }
88
89 /* Forward declaration */
90 static int hugetlb_acct_memory(struct hstate *h, long delta);
91
92 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
93 {
94 bool free = (spool->count == 0) && (spool->used_hpages == 0);
95
96 spin_unlock(&spool->lock);
97
98 /* If no pages are used, and no other handles to the subpool
99 * remain, give up any reservations mased on minimum size and
100 * free the subpool */
101 if (free) {
102 if (spool->min_hpages != -1)
103 hugetlb_acct_memory(spool->hstate,
104 -spool->min_hpages);
105 kfree(spool);
106 }
107 }
108
109 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
110 long min_hpages)
111 {
112 struct hugepage_subpool *spool;
113
114 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
115 if (!spool)
116 return NULL;
117
118 spin_lock_init(&spool->lock);
119 spool->count = 1;
120 spool->max_hpages = max_hpages;
121 spool->hstate = h;
122 spool->min_hpages = min_hpages;
123
124 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
125 kfree(spool);
126 return NULL;
127 }
128 spool->rsv_hpages = min_hpages;
129
130 return spool;
131 }
132
133 void hugepage_put_subpool(struct hugepage_subpool *spool)
134 {
135 spin_lock(&spool->lock);
136 BUG_ON(!spool->count);
137 spool->count--;
138 unlock_or_release_subpool(spool);
139 }
140
141 /*
142 * Subpool accounting for allocating and reserving pages.
143 * Return -ENOMEM if there are not enough resources to satisfy the
144 * the request. Otherwise, return the number of pages by which the
145 * global pools must be adjusted (upward). The returned value may
146 * only be different than the passed value (delta) in the case where
147 * a subpool minimum size must be manitained.
148 */
149 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
150 long delta)
151 {
152 long ret = delta;
153
154 if (!spool)
155 return ret;
156
157 spin_lock(&spool->lock);
158
159 if (spool->max_hpages != -1) { /* maximum size accounting */
160 if ((spool->used_hpages + delta) <= spool->max_hpages)
161 spool->used_hpages += delta;
162 else {
163 ret = -ENOMEM;
164 goto unlock_ret;
165 }
166 }
167
168 /* minimum size accounting */
169 if (spool->min_hpages != -1 && spool->rsv_hpages) {
170 if (delta > spool->rsv_hpages) {
171 /*
172 * Asking for more reserves than those already taken on
173 * behalf of subpool. Return difference.
174 */
175 ret = delta - spool->rsv_hpages;
176 spool->rsv_hpages = 0;
177 } else {
178 ret = 0; /* reserves already accounted for */
179 spool->rsv_hpages -= delta;
180 }
181 }
182
183 unlock_ret:
184 spin_unlock(&spool->lock);
185 return ret;
186 }
187
188 /*
189 * Subpool accounting for freeing and unreserving pages.
190 * Return the number of global page reservations that must be dropped.
191 * The return value may only be different than the passed value (delta)
192 * in the case where a subpool minimum size must be maintained.
193 */
194 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
195 long delta)
196 {
197 long ret = delta;
198
199 if (!spool)
200 return delta;
201
202 spin_lock(&spool->lock);
203
204 if (spool->max_hpages != -1) /* maximum size accounting */
205 spool->used_hpages -= delta;
206
207 /* minimum size accounting */
208 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
209 if (spool->rsv_hpages + delta <= spool->min_hpages)
210 ret = 0;
211 else
212 ret = spool->rsv_hpages + delta - spool->min_hpages;
213
214 spool->rsv_hpages += delta;
215 if (spool->rsv_hpages > spool->min_hpages)
216 spool->rsv_hpages = spool->min_hpages;
217 }
218
219 /*
220 * If hugetlbfs_put_super couldn't free spool due to an outstanding
221 * quota reference, free it now.
222 */
223 unlock_or_release_subpool(spool);
224
225 return ret;
226 }
227
228 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
229 {
230 return HUGETLBFS_SB(inode->i_sb)->spool;
231 }
232
233 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
234 {
235 return subpool_inode(file_inode(vma->vm_file));
236 }
237
238 /*
239 * Region tracking -- allows tracking of reservations and instantiated pages
240 * across the pages in a mapping.
241 *
242 * The region data structures are embedded into a resv_map and protected
243 * by a resv_map's lock. The set of regions within the resv_map represent
244 * reservations for huge pages, or huge pages that have already been
245 * instantiated within the map. The from and to elements are huge page
246 * indicies into the associated mapping. from indicates the starting index
247 * of the region. to represents the first index past the end of the region.
248 *
249 * For example, a file region structure with from == 0 and to == 4 represents
250 * four huge pages in a mapping. It is important to note that the to element
251 * represents the first element past the end of the region. This is used in
252 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
253 *
254 * Interval notation of the form [from, to) will be used to indicate that
255 * the endpoint from is inclusive and to is exclusive.
256 */
257 struct file_region {
258 struct list_head link;
259 long from;
260 long to;
261 };
262
263 /*
264 * Add the huge page range represented by [f, t) to the reserve
265 * map. In the normal case, existing regions will be expanded
266 * to accommodate the specified range. Sufficient regions should
267 * exist for expansion due to the previous call to region_chg
268 * with the same range. However, it is possible that region_del
269 * could have been called after region_chg and modifed the map
270 * in such a way that no region exists to be expanded. In this
271 * case, pull a region descriptor from the cache associated with
272 * the map and use that for the new range.
273 *
274 * Return the number of new huge pages added to the map. This
275 * number is greater than or equal to zero.
276 */
277 static long region_add(struct resv_map *resv, long f, long t)
278 {
279 struct list_head *head = &resv->regions;
280 struct file_region *rg, *nrg, *trg;
281 long add = 0;
282
283 spin_lock(&resv->lock);
284 /* Locate the region we are either in or before. */
285 list_for_each_entry(rg, head, link)
286 if (f <= rg->to)
287 break;
288
289 /*
290 * If no region exists which can be expanded to include the
291 * specified range, the list must have been modified by an
292 * interleving call to region_del(). Pull a region descriptor
293 * from the cache and use it for this range.
294 */
295 if (&rg->link == head || t < rg->from) {
296 VM_BUG_ON(resv->region_cache_count <= 0);
297
298 resv->region_cache_count--;
299 nrg = list_first_entry(&resv->region_cache, struct file_region,
300 link);
301 list_del(&nrg->link);
302
303 nrg->from = f;
304 nrg->to = t;
305 list_add(&nrg->link, rg->link.prev);
306
307 add += t - f;
308 goto out_locked;
309 }
310
311 /* Round our left edge to the current segment if it encloses us. */
312 if (f > rg->from)
313 f = rg->from;
314
315 /* Check for and consume any regions we now overlap with. */
316 nrg = rg;
317 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
318 if (&rg->link == head)
319 break;
320 if (rg->from > t)
321 break;
322
323 /* If this area reaches higher then extend our area to
324 * include it completely. If this is not the first area
325 * which we intend to reuse, free it. */
326 if (rg->to > t)
327 t = rg->to;
328 if (rg != nrg) {
329 /* Decrement return value by the deleted range.
330 * Another range will span this area so that by
331 * end of routine add will be >= zero
332 */
333 add -= (rg->to - rg->from);
334 list_del(&rg->link);
335 kfree(rg);
336 }
337 }
338
339 add += (nrg->from - f); /* Added to beginning of region */
340 nrg->from = f;
341 add += t - nrg->to; /* Added to end of region */
342 nrg->to = t;
343
344 out_locked:
345 resv->adds_in_progress--;
346 spin_unlock(&resv->lock);
347 VM_BUG_ON(add < 0);
348 return add;
349 }
350
351 /*
352 * Examine the existing reserve map and determine how many
353 * huge pages in the specified range [f, t) are NOT currently
354 * represented. This routine is called before a subsequent
355 * call to region_add that will actually modify the reserve
356 * map to add the specified range [f, t). region_chg does
357 * not change the number of huge pages represented by the
358 * map. However, if the existing regions in the map can not
359 * be expanded to represent the new range, a new file_region
360 * structure is added to the map as a placeholder. This is
361 * so that the subsequent region_add call will have all the
362 * regions it needs and will not fail.
363 *
364 * Upon entry, region_chg will also examine the cache of region descriptors
365 * associated with the map. If there are not enough descriptors cached, one
366 * will be allocated for the in progress add operation.
367 *
368 * Returns the number of huge pages that need to be added to the existing
369 * reservation map for the range [f, t). This number is greater or equal to
370 * zero. -ENOMEM is returned if a new file_region structure or cache entry
371 * is needed and can not be allocated.
372 */
373 static long region_chg(struct resv_map *resv, long f, long t)
374 {
375 struct list_head *head = &resv->regions;
376 struct file_region *rg, *nrg = NULL;
377 long chg = 0;
378
379 retry:
380 spin_lock(&resv->lock);
381 retry_locked:
382 resv->adds_in_progress++;
383
384 /*
385 * Check for sufficient descriptors in the cache to accommodate
386 * the number of in progress add operations.
387 */
388 if (resv->adds_in_progress > resv->region_cache_count) {
389 struct file_region *trg;
390
391 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
392 /* Must drop lock to allocate a new descriptor. */
393 resv->adds_in_progress--;
394 spin_unlock(&resv->lock);
395
396 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
397 if (!trg) {
398 kfree(nrg);
399 return -ENOMEM;
400 }
401
402 spin_lock(&resv->lock);
403 list_add(&trg->link, &resv->region_cache);
404 resv->region_cache_count++;
405 goto retry_locked;
406 }
407
408 /* Locate the region we are before or in. */
409 list_for_each_entry(rg, head, link)
410 if (f <= rg->to)
411 break;
412
413 /* If we are below the current region then a new region is required.
414 * Subtle, allocate a new region at the position but make it zero
415 * size such that we can guarantee to record the reservation. */
416 if (&rg->link == head || t < rg->from) {
417 if (!nrg) {
418 resv->adds_in_progress--;
419 spin_unlock(&resv->lock);
420 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
421 if (!nrg)
422 return -ENOMEM;
423
424 nrg->from = f;
425 nrg->to = f;
426 INIT_LIST_HEAD(&nrg->link);
427 goto retry;
428 }
429
430 list_add(&nrg->link, rg->link.prev);
431 chg = t - f;
432 goto out_nrg;
433 }
434
435 /* Round our left edge to the current segment if it encloses us. */
436 if (f > rg->from)
437 f = rg->from;
438 chg = t - f;
439
440 /* Check for and consume any regions we now overlap with. */
441 list_for_each_entry(rg, rg->link.prev, link) {
442 if (&rg->link == head)
443 break;
444 if (rg->from > t)
445 goto out;
446
447 /* We overlap with this area, if it extends further than
448 * us then we must extend ourselves. Account for its
449 * existing reservation. */
450 if (rg->to > t) {
451 chg += rg->to - t;
452 t = rg->to;
453 }
454 chg -= rg->to - rg->from;
455 }
456
457 out:
458 spin_unlock(&resv->lock);
459 /* We already know we raced and no longer need the new region */
460 kfree(nrg);
461 return chg;
462 out_nrg:
463 spin_unlock(&resv->lock);
464 return chg;
465 }
466
467 /*
468 * Abort the in progress add operation. The adds_in_progress field
469 * of the resv_map keeps track of the operations in progress between
470 * calls to region_chg and region_add. Operations are sometimes
471 * aborted after the call to region_chg. In such cases, region_abort
472 * is called to decrement the adds_in_progress counter.
473 *
474 * NOTE: The range arguments [f, t) are not needed or used in this
475 * routine. They are kept to make reading the calling code easier as
476 * arguments will match the associated region_chg call.
477 */
478 static void region_abort(struct resv_map *resv, long f, long t)
479 {
480 spin_lock(&resv->lock);
481 VM_BUG_ON(!resv->region_cache_count);
482 resv->adds_in_progress--;
483 spin_unlock(&resv->lock);
484 }
485
486 /*
487 * Delete the specified range [f, t) from the reserve map. If the
488 * t parameter is LONG_MAX, this indicates that ALL regions after f
489 * should be deleted. Locate the regions which intersect [f, t)
490 * and either trim, delete or split the existing regions.
491 *
492 * Returns the number of huge pages deleted from the reserve map.
493 * In the normal case, the return value is zero or more. In the
494 * case where a region must be split, a new region descriptor must
495 * be allocated. If the allocation fails, -ENOMEM will be returned.
496 * NOTE: If the parameter t == LONG_MAX, then we will never split
497 * a region and possibly return -ENOMEM. Callers specifying
498 * t == LONG_MAX do not need to check for -ENOMEM error.
499 */
500 static long region_del(struct resv_map *resv, long f, long t)
501 {
502 struct list_head *head = &resv->regions;
503 struct file_region *rg, *trg;
504 struct file_region *nrg = NULL;
505 long del = 0;
506
507 retry:
508 spin_lock(&resv->lock);
509 list_for_each_entry_safe(rg, trg, head, link) {
510 /*
511 * Skip regions before the range to be deleted. file_region
512 * ranges are normally of the form [from, to). However, there
513 * may be a "placeholder" entry in the map which is of the form
514 * (from, to) with from == to. Check for placeholder entries
515 * at the beginning of the range to be deleted.
516 */
517 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
518 continue;
519
520 if (rg->from >= t)
521 break;
522
523 if (f > rg->from && t < rg->to) { /* Must split region */
524 /*
525 * Check for an entry in the cache before dropping
526 * lock and attempting allocation.
527 */
528 if (!nrg &&
529 resv->region_cache_count > resv->adds_in_progress) {
530 nrg = list_first_entry(&resv->region_cache,
531 struct file_region,
532 link);
533 list_del(&nrg->link);
534 resv->region_cache_count--;
535 }
536
537 if (!nrg) {
538 spin_unlock(&resv->lock);
539 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
540 if (!nrg)
541 return -ENOMEM;
542 goto retry;
543 }
544
545 del += t - f;
546
547 /* New entry for end of split region */
548 nrg->from = t;
549 nrg->to = rg->to;
550 INIT_LIST_HEAD(&nrg->link);
551
552 /* Original entry is trimmed */
553 rg->to = f;
554
555 list_add(&nrg->link, &rg->link);
556 nrg = NULL;
557 break;
558 }
559
560 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
561 del += rg->to - rg->from;
562 list_del(&rg->link);
563 kfree(rg);
564 continue;
565 }
566
567 if (f <= rg->from) { /* Trim beginning of region */
568 del += t - rg->from;
569 rg->from = t;
570 } else { /* Trim end of region */
571 del += rg->to - f;
572 rg->to = f;
573 }
574 }
575
576 spin_unlock(&resv->lock);
577 kfree(nrg);
578 return del;
579 }
580
581 /*
582 * A rare out of memory error was encountered which prevented removal of
583 * the reserve map region for a page. The huge page itself was free'ed
584 * and removed from the page cache. This routine will adjust the subpool
585 * usage count, and the global reserve count if needed. By incrementing
586 * these counts, the reserve map entry which could not be deleted will
587 * appear as a "reserved" entry instead of simply dangling with incorrect
588 * counts.
589 */
590 void hugetlb_fix_reserve_counts(struct inode *inode)
591 {
592 struct hugepage_subpool *spool = subpool_inode(inode);
593 long rsv_adjust;
594
595 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
596 if (rsv_adjust) {
597 struct hstate *h = hstate_inode(inode);
598
599 hugetlb_acct_memory(h, 1);
600 }
601 }
602
603 /*
604 * Count and return the number of huge pages in the reserve map
605 * that intersect with the range [f, t).
606 */
607 static long region_count(struct resv_map *resv, long f, long t)
608 {
609 struct list_head *head = &resv->regions;
610 struct file_region *rg;
611 long chg = 0;
612
613 spin_lock(&resv->lock);
614 /* Locate each segment we overlap with, and count that overlap. */
615 list_for_each_entry(rg, head, link) {
616 long seg_from;
617 long seg_to;
618
619 if (rg->to <= f)
620 continue;
621 if (rg->from >= t)
622 break;
623
624 seg_from = max(rg->from, f);
625 seg_to = min(rg->to, t);
626
627 chg += seg_to - seg_from;
628 }
629 spin_unlock(&resv->lock);
630
631 return chg;
632 }
633
634 /*
635 * Convert the address within this vma to the page offset within
636 * the mapping, in pagecache page units; huge pages here.
637 */
638 static pgoff_t vma_hugecache_offset(struct hstate *h,
639 struct vm_area_struct *vma, unsigned long address)
640 {
641 return ((address - vma->vm_start) >> huge_page_shift(h)) +
642 (vma->vm_pgoff >> huge_page_order(h));
643 }
644
645 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
646 unsigned long address)
647 {
648 return vma_hugecache_offset(hstate_vma(vma), vma, address);
649 }
650 EXPORT_SYMBOL_GPL(linear_hugepage_index);
651
652 /*
653 * Return the size of the pages allocated when backing a VMA. In the majority
654 * cases this will be same size as used by the page table entries.
655 */
656 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
657 {
658 if (vma->vm_ops && vma->vm_ops->pagesize)
659 return vma->vm_ops->pagesize(vma);
660 return PAGE_SIZE;
661 }
662 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
663
664 /*
665 * Return the page size being used by the MMU to back a VMA. In the majority
666 * of cases, the page size used by the kernel matches the MMU size. On
667 * architectures where it differs, an architecture-specific 'strong'
668 * version of this symbol is required.
669 */
670 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
671 {
672 return vma_kernel_pagesize(vma);
673 }
674
675 /*
676 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
677 * bits of the reservation map pointer, which are always clear due to
678 * alignment.
679 */
680 #define HPAGE_RESV_OWNER (1UL << 0)
681 #define HPAGE_RESV_UNMAPPED (1UL << 1)
682 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
683
684 /*
685 * These helpers are used to track how many pages are reserved for
686 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
687 * is guaranteed to have their future faults succeed.
688 *
689 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
690 * the reserve counters are updated with the hugetlb_lock held. It is safe
691 * to reset the VMA at fork() time as it is not in use yet and there is no
692 * chance of the global counters getting corrupted as a result of the values.
693 *
694 * The private mapping reservation is represented in a subtly different
695 * manner to a shared mapping. A shared mapping has a region map associated
696 * with the underlying file, this region map represents the backing file
697 * pages which have ever had a reservation assigned which this persists even
698 * after the page is instantiated. A private mapping has a region map
699 * associated with the original mmap which is attached to all VMAs which
700 * reference it, this region map represents those offsets which have consumed
701 * reservation ie. where pages have been instantiated.
702 */
703 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
704 {
705 return (unsigned long)vma->vm_private_data;
706 }
707
708 static void set_vma_private_data(struct vm_area_struct *vma,
709 unsigned long value)
710 {
711 vma->vm_private_data = (void *)value;
712 }
713
714 struct resv_map *resv_map_alloc(void)
715 {
716 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
717 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
718
719 if (!resv_map || !rg) {
720 kfree(resv_map);
721 kfree(rg);
722 return NULL;
723 }
724
725 kref_init(&resv_map->refs);
726 spin_lock_init(&resv_map->lock);
727 INIT_LIST_HEAD(&resv_map->regions);
728
729 resv_map->adds_in_progress = 0;
730
731 INIT_LIST_HEAD(&resv_map->region_cache);
732 list_add(&rg->link, &resv_map->region_cache);
733 resv_map->region_cache_count = 1;
734
735 return resv_map;
736 }
737
738 void resv_map_release(struct kref *ref)
739 {
740 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
741 struct list_head *head = &resv_map->region_cache;
742 struct file_region *rg, *trg;
743
744 /* Clear out any active regions before we release the map. */
745 region_del(resv_map, 0, LONG_MAX);
746
747 /* ... and any entries left in the cache */
748 list_for_each_entry_safe(rg, trg, head, link) {
749 list_del(&rg->link);
750 kfree(rg);
751 }
752
753 VM_BUG_ON(resv_map->adds_in_progress);
754
755 kfree(resv_map);
756 }
757
758 static inline struct resv_map *inode_resv_map(struct inode *inode)
759 {
760 /*
761 * At inode evict time, i_mapping may not point to the original
762 * address space within the inode. This original address space
763 * contains the pointer to the resv_map. So, always use the
764 * address space embedded within the inode.
765 * The VERY common case is inode->mapping == &inode->i_data but,
766 * this may not be true for device special inodes.
767 */
768 return (struct resv_map *)(&inode->i_data)->private_data;
769 }
770
771 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
772 {
773 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
774 if (vma->vm_flags & VM_MAYSHARE) {
775 struct address_space *mapping = vma->vm_file->f_mapping;
776 struct inode *inode = mapping->host;
777
778 return inode_resv_map(inode);
779
780 } else {
781 return (struct resv_map *)(get_vma_private_data(vma) &
782 ~HPAGE_RESV_MASK);
783 }
784 }
785
786 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
787 {
788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
790
791 set_vma_private_data(vma, (get_vma_private_data(vma) &
792 HPAGE_RESV_MASK) | (unsigned long)map);
793 }
794
795 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
796 {
797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
798 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
799
800 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
801 }
802
803 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
804 {
805 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
806
807 return (get_vma_private_data(vma) & flag) != 0;
808 }
809
810 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
811 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
812 {
813 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
814 if (!(vma->vm_flags & VM_MAYSHARE))
815 vma->vm_private_data = (void *)0;
816 }
817
818 /* Returns true if the VMA has associated reserve pages */
819 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
820 {
821 if (vma->vm_flags & VM_NORESERVE) {
822 /*
823 * This address is already reserved by other process(chg == 0),
824 * so, we should decrement reserved count. Without decrementing,
825 * reserve count remains after releasing inode, because this
826 * allocated page will go into page cache and is regarded as
827 * coming from reserved pool in releasing step. Currently, we
828 * don't have any other solution to deal with this situation
829 * properly, so add work-around here.
830 */
831 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
832 return true;
833 else
834 return false;
835 }
836
837 /* Shared mappings always use reserves */
838 if (vma->vm_flags & VM_MAYSHARE) {
839 /*
840 * We know VM_NORESERVE is not set. Therefore, there SHOULD
841 * be a region map for all pages. The only situation where
842 * there is no region map is if a hole was punched via
843 * fallocate. In this case, there really are no reverves to
844 * use. This situation is indicated if chg != 0.
845 */
846 if (chg)
847 return false;
848 else
849 return true;
850 }
851
852 /*
853 * Only the process that called mmap() has reserves for
854 * private mappings.
855 */
856 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
857 /*
858 * Like the shared case above, a hole punch or truncate
859 * could have been performed on the private mapping.
860 * Examine the value of chg to determine if reserves
861 * actually exist or were previously consumed.
862 * Very Subtle - The value of chg comes from a previous
863 * call to vma_needs_reserves(). The reserve map for
864 * private mappings has different (opposite) semantics
865 * than that of shared mappings. vma_needs_reserves()
866 * has already taken this difference in semantics into
867 * account. Therefore, the meaning of chg is the same
868 * as in the shared case above. Code could easily be
869 * combined, but keeping it separate draws attention to
870 * subtle differences.
871 */
872 if (chg)
873 return false;
874 else
875 return true;
876 }
877
878 return false;
879 }
880
881 static void enqueue_huge_page(struct hstate *h, struct page *page)
882 {
883 int nid = page_to_nid(page);
884 list_move(&page->lru, &h->hugepage_freelists[nid]);
885 h->free_huge_pages++;
886 h->free_huge_pages_node[nid]++;
887 SetPageHugeFreed(page);
888 }
889
890 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
891 {
892 struct page *page;
893
894 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
895 if (!PageHWPoison(page))
896 break;
897 /*
898 * if 'non-isolated free hugepage' not found on the list,
899 * the allocation fails.
900 */
901 if (&h->hugepage_freelists[nid] == &page->lru)
902 return NULL;
903 list_move(&page->lru, &h->hugepage_activelist);
904 set_page_refcounted(page);
905 ClearPageHugeFreed(page);
906 h->free_huge_pages--;
907 h->free_huge_pages_node[nid]--;
908 return page;
909 }
910
911 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
912 nodemask_t *nmask)
913 {
914 unsigned int cpuset_mems_cookie;
915 struct zonelist *zonelist;
916 struct zone *zone;
917 struct zoneref *z;
918 int node = NUMA_NO_NODE;
919
920 zonelist = node_zonelist(nid, gfp_mask);
921
922 retry_cpuset:
923 cpuset_mems_cookie = read_mems_allowed_begin();
924 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
925 struct page *page;
926
927 if (!cpuset_zone_allowed(zone, gfp_mask))
928 continue;
929 /*
930 * no need to ask again on the same node. Pool is node rather than
931 * zone aware
932 */
933 if (zone_to_nid(zone) == node)
934 continue;
935 node = zone_to_nid(zone);
936
937 page = dequeue_huge_page_node_exact(h, node);
938 if (page)
939 return page;
940 }
941 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
942 goto retry_cpuset;
943
944 return NULL;
945 }
946
947 /* Movability of hugepages depends on migration support. */
948 static inline gfp_t htlb_alloc_mask(struct hstate *h)
949 {
950 if (hugepage_movable_supported(h))
951 return GFP_HIGHUSER_MOVABLE;
952 else
953 return GFP_HIGHUSER;
954 }
955
956 static struct page *dequeue_huge_page_vma(struct hstate *h,
957 struct vm_area_struct *vma,
958 unsigned long address, int avoid_reserve,
959 long chg)
960 {
961 struct page *page;
962 struct mempolicy *mpol;
963 gfp_t gfp_mask;
964 nodemask_t *nodemask;
965 int nid;
966
967 /*
968 * A child process with MAP_PRIVATE mappings created by their parent
969 * have no page reserves. This check ensures that reservations are
970 * not "stolen". The child may still get SIGKILLed
971 */
972 if (!vma_has_reserves(vma, chg) &&
973 h->free_huge_pages - h->resv_huge_pages == 0)
974 goto err;
975
976 /* If reserves cannot be used, ensure enough pages are in the pool */
977 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
978 goto err;
979
980 gfp_mask = htlb_alloc_mask(h);
981 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
982 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
983 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
984 SetPagePrivate(page);
985 h->resv_huge_pages--;
986 }
987
988 mpol_cond_put(mpol);
989 return page;
990
991 err:
992 return NULL;
993 }
994
995 /*
996 * common helper functions for hstate_next_node_to_{alloc|free}.
997 * We may have allocated or freed a huge page based on a different
998 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
999 * be outside of *nodes_allowed. Ensure that we use an allowed
1000 * node for alloc or free.
1001 */
1002 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1003 {
1004 nid = next_node_in(nid, *nodes_allowed);
1005 VM_BUG_ON(nid >= MAX_NUMNODES);
1006
1007 return nid;
1008 }
1009
1010 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1011 {
1012 if (!node_isset(nid, *nodes_allowed))
1013 nid = next_node_allowed(nid, nodes_allowed);
1014 return nid;
1015 }
1016
1017 /*
1018 * returns the previously saved node ["this node"] from which to
1019 * allocate a persistent huge page for the pool and advance the
1020 * next node from which to allocate, handling wrap at end of node
1021 * mask.
1022 */
1023 static int hstate_next_node_to_alloc(struct hstate *h,
1024 nodemask_t *nodes_allowed)
1025 {
1026 int nid;
1027
1028 VM_BUG_ON(!nodes_allowed);
1029
1030 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1031 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1032
1033 return nid;
1034 }
1035
1036 /*
1037 * helper for free_pool_huge_page() - return the previously saved
1038 * node ["this node"] from which to free a huge page. Advance the
1039 * next node id whether or not we find a free huge page to free so
1040 * that the next attempt to free addresses the next node.
1041 */
1042 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1043 {
1044 int nid;
1045
1046 VM_BUG_ON(!nodes_allowed);
1047
1048 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1049 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1050
1051 return nid;
1052 }
1053
1054 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1055 for (nr_nodes = nodes_weight(*mask); \
1056 nr_nodes > 0 && \
1057 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1058 nr_nodes--)
1059
1060 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1061 for (nr_nodes = nodes_weight(*mask); \
1062 nr_nodes > 0 && \
1063 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1064 nr_nodes--)
1065
1066 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1067 static void destroy_compound_gigantic_page(struct page *page,
1068 unsigned int order)
1069 {
1070 int i;
1071 int nr_pages = 1 << order;
1072 struct page *p = page + 1;
1073
1074 atomic_set(compound_mapcount_ptr(page), 0);
1075 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1076 clear_compound_head(p);
1077 set_page_refcounted(p);
1078 }
1079
1080 set_compound_order(page, 0);
1081 __ClearPageHead(page);
1082 }
1083
1084 static void free_gigantic_page(struct page *page, unsigned int order)
1085 {
1086 free_contig_range(page_to_pfn(page), 1 << order);
1087 }
1088
1089 #ifdef CONFIG_CONTIG_ALLOC
1090 static int __alloc_gigantic_page(unsigned long start_pfn,
1091 unsigned long nr_pages, gfp_t gfp_mask)
1092 {
1093 unsigned long end_pfn = start_pfn + nr_pages;
1094 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1095 gfp_mask);
1096 }
1097
1098 static bool pfn_range_valid_gigantic(struct zone *z,
1099 unsigned long start_pfn, unsigned long nr_pages)
1100 {
1101 unsigned long i, end_pfn = start_pfn + nr_pages;
1102 struct page *page;
1103
1104 for (i = start_pfn; i < end_pfn; i++) {
1105 page = pfn_to_online_page(i);
1106 if (!page)
1107 return false;
1108
1109 if (page_zone(page) != z)
1110 return false;
1111
1112 if (PageReserved(page))
1113 return false;
1114
1115 if (page_count(page) > 0)
1116 return false;
1117
1118 if (PageHuge(page))
1119 return false;
1120 }
1121
1122 return true;
1123 }
1124
1125 static bool zone_spans_last_pfn(const struct zone *zone,
1126 unsigned long start_pfn, unsigned long nr_pages)
1127 {
1128 unsigned long last_pfn = start_pfn + nr_pages - 1;
1129 return zone_spans_pfn(zone, last_pfn);
1130 }
1131
1132 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1133 int nid, nodemask_t *nodemask)
1134 {
1135 unsigned int order = huge_page_order(h);
1136 unsigned long nr_pages = 1 << order;
1137 unsigned long ret, pfn, flags;
1138 struct zonelist *zonelist;
1139 struct zone *zone;
1140 struct zoneref *z;
1141
1142 zonelist = node_zonelist(nid, gfp_mask);
1143 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1144 spin_lock_irqsave(&zone->lock, flags);
1145
1146 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1147 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1148 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1149 /*
1150 * We release the zone lock here because
1151 * alloc_contig_range() will also lock the zone
1152 * at some point. If there's an allocation
1153 * spinning on this lock, it may win the race
1154 * and cause alloc_contig_range() to fail...
1155 */
1156 spin_unlock_irqrestore(&zone->lock, flags);
1157 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1158 if (!ret)
1159 return pfn_to_page(pfn);
1160 spin_lock_irqsave(&zone->lock, flags);
1161 }
1162 pfn += nr_pages;
1163 }
1164
1165 spin_unlock_irqrestore(&zone->lock, flags);
1166 }
1167
1168 return NULL;
1169 }
1170
1171 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1172 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1173 #else /* !CONFIG_CONTIG_ALLOC */
1174 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1175 int nid, nodemask_t *nodemask)
1176 {
1177 return NULL;
1178 }
1179 #endif /* CONFIG_CONTIG_ALLOC */
1180
1181 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1182 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1183 int nid, nodemask_t *nodemask)
1184 {
1185 return NULL;
1186 }
1187 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1188 static inline void destroy_compound_gigantic_page(struct page *page,
1189 unsigned int order) { }
1190 #endif
1191
1192 static void update_and_free_page(struct hstate *h, struct page *page)
1193 {
1194 int i;
1195 struct page *subpage = page;
1196
1197 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1198 return;
1199
1200 h->nr_huge_pages--;
1201 h->nr_huge_pages_node[page_to_nid(page)]--;
1202 for (i = 0; i < pages_per_huge_page(h);
1203 i++, subpage = mem_map_next(subpage, page, i)) {
1204 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1205 1 << PG_referenced | 1 << PG_dirty |
1206 1 << PG_active | 1 << PG_private |
1207 1 << PG_writeback);
1208 }
1209 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1210 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1211 set_page_refcounted(page);
1212 if (hstate_is_gigantic(h)) {
1213 destroy_compound_gigantic_page(page, huge_page_order(h));
1214 free_gigantic_page(page, huge_page_order(h));
1215 } else {
1216 __free_pages(page, huge_page_order(h));
1217 }
1218 }
1219
1220 struct hstate *size_to_hstate(unsigned long size)
1221 {
1222 struct hstate *h;
1223
1224 for_each_hstate(h) {
1225 if (huge_page_size(h) == size)
1226 return h;
1227 }
1228 return NULL;
1229 }
1230
1231 /*
1232 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1233 * to hstate->hugepage_activelist.)
1234 *
1235 * This function can be called for tail pages, but never returns true for them.
1236 */
1237 bool page_huge_active(struct page *page)
1238 {
1239 return PageHeadHuge(page) && PagePrivate(&page[1]);
1240 }
1241
1242 /* never called for tail page */
1243 void set_page_huge_active(struct page *page)
1244 {
1245 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1246 SetPagePrivate(&page[1]);
1247 }
1248
1249 static void clear_page_huge_active(struct page *page)
1250 {
1251 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1252 ClearPagePrivate(&page[1]);
1253 }
1254
1255 /*
1256 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1257 * code
1258 */
1259 static inline bool PageHugeTemporary(struct page *page)
1260 {
1261 if (!PageHuge(page))
1262 return false;
1263
1264 return (unsigned long)page[2].mapping == -1U;
1265 }
1266
1267 static inline void SetPageHugeTemporary(struct page *page)
1268 {
1269 page[2].mapping = (void *)-1U;
1270 }
1271
1272 static inline void ClearPageHugeTemporary(struct page *page)
1273 {
1274 page[2].mapping = NULL;
1275 }
1276
1277 static void __free_huge_page(struct page *page)
1278 {
1279 /*
1280 * Can't pass hstate in here because it is called from the
1281 * compound page destructor.
1282 */
1283 struct hstate *h = page_hstate(page);
1284 int nid = page_to_nid(page);
1285 struct hugepage_subpool *spool =
1286 (struct hugepage_subpool *)page_private(page);
1287 bool restore_reserve;
1288
1289 VM_BUG_ON_PAGE(page_count(page), page);
1290 VM_BUG_ON_PAGE(page_mapcount(page), page);
1291
1292 set_page_private(page, 0);
1293 page->mapping = NULL;
1294 restore_reserve = PagePrivate(page);
1295 ClearPagePrivate(page);
1296
1297 /*
1298 * If PagePrivate() was set on page, page allocation consumed a
1299 * reservation. If the page was associated with a subpool, there
1300 * would have been a page reserved in the subpool before allocation
1301 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1302 * reservtion, do not call hugepage_subpool_put_pages() as this will
1303 * remove the reserved page from the subpool.
1304 */
1305 if (!restore_reserve) {
1306 /*
1307 * A return code of zero implies that the subpool will be
1308 * under its minimum size if the reservation is not restored
1309 * after page is free. Therefore, force restore_reserve
1310 * operation.
1311 */
1312 if (hugepage_subpool_put_pages(spool, 1) == 0)
1313 restore_reserve = true;
1314 }
1315
1316 spin_lock(&hugetlb_lock);
1317 clear_page_huge_active(page);
1318 hugetlb_cgroup_uncharge_page(hstate_index(h),
1319 pages_per_huge_page(h), page);
1320 if (restore_reserve)
1321 h->resv_huge_pages++;
1322
1323 if (PageHugeTemporary(page)) {
1324 list_del(&page->lru);
1325 ClearPageHugeTemporary(page);
1326 update_and_free_page(h, page);
1327 } else if (h->surplus_huge_pages_node[nid]) {
1328 /* remove the page from active list */
1329 list_del(&page->lru);
1330 update_and_free_page(h, page);
1331 h->surplus_huge_pages--;
1332 h->surplus_huge_pages_node[nid]--;
1333 } else {
1334 arch_clear_hugepage_flags(page);
1335 enqueue_huge_page(h, page);
1336 }
1337 spin_unlock(&hugetlb_lock);
1338 }
1339
1340 /*
1341 * As free_huge_page() can be called from a non-task context, we have
1342 * to defer the actual freeing in a workqueue to prevent potential
1343 * hugetlb_lock deadlock.
1344 *
1345 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1346 * be freed and frees them one-by-one. As the page->mapping pointer is
1347 * going to be cleared in __free_huge_page() anyway, it is reused as the
1348 * llist_node structure of a lockless linked list of huge pages to be freed.
1349 */
1350 static LLIST_HEAD(hpage_freelist);
1351
1352 static void free_hpage_workfn(struct work_struct *work)
1353 {
1354 struct llist_node *node;
1355 struct page *page;
1356
1357 node = llist_del_all(&hpage_freelist);
1358
1359 while (node) {
1360 page = container_of((struct address_space **)node,
1361 struct page, mapping);
1362 node = node->next;
1363 __free_huge_page(page);
1364 }
1365 }
1366 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1367
1368 void free_huge_page(struct page *page)
1369 {
1370 /*
1371 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1372 */
1373 if (!in_task()) {
1374 /*
1375 * Only call schedule_work() if hpage_freelist is previously
1376 * empty. Otherwise, schedule_work() had been called but the
1377 * workfn hasn't retrieved the list yet.
1378 */
1379 if (llist_add((struct llist_node *)&page->mapping,
1380 &hpage_freelist))
1381 schedule_work(&free_hpage_work);
1382 return;
1383 }
1384
1385 __free_huge_page(page);
1386 }
1387
1388 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1389 {
1390 INIT_LIST_HEAD(&page->lru);
1391 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1392 spin_lock(&hugetlb_lock);
1393 set_hugetlb_cgroup(page, NULL);
1394 h->nr_huge_pages++;
1395 h->nr_huge_pages_node[nid]++;
1396 ClearPageHugeFreed(page);
1397 spin_unlock(&hugetlb_lock);
1398 }
1399
1400 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1401 {
1402 int i;
1403 int nr_pages = 1 << order;
1404 struct page *p = page + 1;
1405
1406 /* we rely on prep_new_huge_page to set the destructor */
1407 set_compound_order(page, order);
1408 __ClearPageReserved(page);
1409 __SetPageHead(page);
1410 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1411 /*
1412 * For gigantic hugepages allocated through bootmem at
1413 * boot, it's safer to be consistent with the not-gigantic
1414 * hugepages and clear the PG_reserved bit from all tail pages
1415 * too. Otherwse drivers using get_user_pages() to access tail
1416 * pages may get the reference counting wrong if they see
1417 * PG_reserved set on a tail page (despite the head page not
1418 * having PG_reserved set). Enforcing this consistency between
1419 * head and tail pages allows drivers to optimize away a check
1420 * on the head page when they need know if put_page() is needed
1421 * after get_user_pages().
1422 */
1423 __ClearPageReserved(p);
1424 set_page_count(p, 0);
1425 set_compound_head(p, page);
1426 }
1427 atomic_set(compound_mapcount_ptr(page), -1);
1428 }
1429
1430 /*
1431 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1432 * transparent huge pages. See the PageTransHuge() documentation for more
1433 * details.
1434 */
1435 int PageHuge(struct page *page)
1436 {
1437 if (!PageCompound(page))
1438 return 0;
1439
1440 page = compound_head(page);
1441 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1442 }
1443 EXPORT_SYMBOL_GPL(PageHuge);
1444
1445 /*
1446 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1447 * normal or transparent huge pages.
1448 */
1449 int PageHeadHuge(struct page *page_head)
1450 {
1451 if (!PageHead(page_head))
1452 return 0;
1453
1454 return get_compound_page_dtor(page_head) == free_huge_page;
1455 }
1456
1457 pgoff_t __basepage_index(struct page *page)
1458 {
1459 struct page *page_head = compound_head(page);
1460 pgoff_t index = page_index(page_head);
1461 unsigned long compound_idx;
1462
1463 if (!PageHuge(page_head))
1464 return page_index(page);
1465
1466 if (compound_order(page_head) >= MAX_ORDER)
1467 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1468 else
1469 compound_idx = page - page_head;
1470
1471 return (index << compound_order(page_head)) + compound_idx;
1472 }
1473
1474 static struct page *alloc_buddy_huge_page(struct hstate *h,
1475 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1476 nodemask_t *node_alloc_noretry)
1477 {
1478 int order = huge_page_order(h);
1479 struct page *page;
1480 bool alloc_try_hard = true;
1481
1482 /*
1483 * By default we always try hard to allocate the page with
1484 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1485 * a loop (to adjust global huge page counts) and previous allocation
1486 * failed, do not continue to try hard on the same node. Use the
1487 * node_alloc_noretry bitmap to manage this state information.
1488 */
1489 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1490 alloc_try_hard = false;
1491 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1492 if (alloc_try_hard)
1493 gfp_mask |= __GFP_RETRY_MAYFAIL;
1494 if (nid == NUMA_NO_NODE)
1495 nid = numa_mem_id();
1496 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1497 if (page)
1498 __count_vm_event(HTLB_BUDDY_PGALLOC);
1499 else
1500 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1501
1502 /*
1503 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1504 * indicates an overall state change. Clear bit so that we resume
1505 * normal 'try hard' allocations.
1506 */
1507 if (node_alloc_noretry && page && !alloc_try_hard)
1508 node_clear(nid, *node_alloc_noretry);
1509
1510 /*
1511 * If we tried hard to get a page but failed, set bit so that
1512 * subsequent attempts will not try as hard until there is an
1513 * overall state change.
1514 */
1515 if (node_alloc_noretry && !page && alloc_try_hard)
1516 node_set(nid, *node_alloc_noretry);
1517
1518 return page;
1519 }
1520
1521 /*
1522 * Common helper to allocate a fresh hugetlb page. All specific allocators
1523 * should use this function to get new hugetlb pages
1524 */
1525 static struct page *alloc_fresh_huge_page(struct hstate *h,
1526 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1527 nodemask_t *node_alloc_noretry)
1528 {
1529 struct page *page;
1530
1531 if (hstate_is_gigantic(h))
1532 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1533 else
1534 page = alloc_buddy_huge_page(h, gfp_mask,
1535 nid, nmask, node_alloc_noretry);
1536 if (!page)
1537 return NULL;
1538
1539 if (hstate_is_gigantic(h))
1540 prep_compound_gigantic_page(page, huge_page_order(h));
1541 prep_new_huge_page(h, page, page_to_nid(page));
1542
1543 return page;
1544 }
1545
1546 /*
1547 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1548 * manner.
1549 */
1550 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1551 nodemask_t *node_alloc_noretry)
1552 {
1553 struct page *page;
1554 int nr_nodes, node;
1555 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1556
1557 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1558 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1559 node_alloc_noretry);
1560 if (page)
1561 break;
1562 }
1563
1564 if (!page)
1565 return 0;
1566
1567 put_page(page); /* free it into the hugepage allocator */
1568
1569 return 1;
1570 }
1571
1572 /*
1573 * Free huge page from pool from next node to free.
1574 * Attempt to keep persistent huge pages more or less
1575 * balanced over allowed nodes.
1576 * Called with hugetlb_lock locked.
1577 */
1578 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1579 bool acct_surplus)
1580 {
1581 int nr_nodes, node;
1582 int ret = 0;
1583
1584 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1585 /*
1586 * If we're returning unused surplus pages, only examine
1587 * nodes with surplus pages.
1588 */
1589 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1590 !list_empty(&h->hugepage_freelists[node])) {
1591 struct page *page =
1592 list_entry(h->hugepage_freelists[node].next,
1593 struct page, lru);
1594 list_del(&page->lru);
1595 h->free_huge_pages--;
1596 h->free_huge_pages_node[node]--;
1597 if (acct_surplus) {
1598 h->surplus_huge_pages--;
1599 h->surplus_huge_pages_node[node]--;
1600 }
1601 update_and_free_page(h, page);
1602 ret = 1;
1603 break;
1604 }
1605 }
1606
1607 return ret;
1608 }
1609
1610 /*
1611 * Dissolve a given free hugepage into free buddy pages. This function does
1612 * nothing for in-use hugepages and non-hugepages.
1613 * This function returns values like below:
1614 *
1615 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1616 * (allocated or reserved.)
1617 * 0: successfully dissolved free hugepages or the page is not a
1618 * hugepage (considered as already dissolved)
1619 */
1620 int dissolve_free_huge_page(struct page *page)
1621 {
1622 int rc = -EBUSY;
1623
1624 retry:
1625 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1626 if (!PageHuge(page))
1627 return 0;
1628
1629 spin_lock(&hugetlb_lock);
1630 if (!PageHuge(page)) {
1631 rc = 0;
1632 goto out;
1633 }
1634
1635 if (!page_count(page)) {
1636 struct page *head = compound_head(page);
1637 struct hstate *h = page_hstate(head);
1638 int nid = page_to_nid(head);
1639 if (h->free_huge_pages - h->resv_huge_pages == 0)
1640 goto out;
1641
1642 /*
1643 * We should make sure that the page is already on the free list
1644 * when it is dissolved.
1645 */
1646 if (unlikely(!PageHugeFreed(head))) {
1647 spin_unlock(&hugetlb_lock);
1648 cond_resched();
1649
1650 /*
1651 * Theoretically, we should return -EBUSY when we
1652 * encounter this race. In fact, we have a chance
1653 * to successfully dissolve the page if we do a
1654 * retry. Because the race window is quite small.
1655 * If we seize this opportunity, it is an optimization
1656 * for increasing the success rate of dissolving page.
1657 */
1658 goto retry;
1659 }
1660
1661 /*
1662 * Move PageHWPoison flag from head page to the raw error page,
1663 * which makes any subpages rather than the error page reusable.
1664 */
1665 if (PageHWPoison(head) && page != head) {
1666 SetPageHWPoison(page);
1667 ClearPageHWPoison(head);
1668 }
1669 list_del(&head->lru);
1670 h->free_huge_pages--;
1671 h->free_huge_pages_node[nid]--;
1672 h->max_huge_pages--;
1673 update_and_free_page(h, head);
1674 rc = 0;
1675 }
1676 out:
1677 spin_unlock(&hugetlb_lock);
1678 return rc;
1679 }
1680
1681 /*
1682 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1683 * make specified memory blocks removable from the system.
1684 * Note that this will dissolve a free gigantic hugepage completely, if any
1685 * part of it lies within the given range.
1686 * Also note that if dissolve_free_huge_page() returns with an error, all
1687 * free hugepages that were dissolved before that error are lost.
1688 */
1689 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1690 {
1691 unsigned long pfn;
1692 struct page *page;
1693 int rc = 0;
1694
1695 if (!hugepages_supported())
1696 return rc;
1697
1698 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1699 page = pfn_to_page(pfn);
1700 rc = dissolve_free_huge_page(page);
1701 if (rc)
1702 break;
1703 }
1704
1705 return rc;
1706 }
1707
1708 /*
1709 * Allocates a fresh surplus page from the page allocator.
1710 */
1711 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1712 int nid, nodemask_t *nmask)
1713 {
1714 struct page *page = NULL;
1715
1716 if (hstate_is_gigantic(h))
1717 return NULL;
1718
1719 spin_lock(&hugetlb_lock);
1720 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1721 goto out_unlock;
1722 spin_unlock(&hugetlb_lock);
1723
1724 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1725 if (!page)
1726 return NULL;
1727
1728 spin_lock(&hugetlb_lock);
1729 /*
1730 * We could have raced with the pool size change.
1731 * Double check that and simply deallocate the new page
1732 * if we would end up overcommiting the surpluses. Abuse
1733 * temporary page to workaround the nasty free_huge_page
1734 * codeflow
1735 */
1736 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1737 SetPageHugeTemporary(page);
1738 spin_unlock(&hugetlb_lock);
1739 put_page(page);
1740 return NULL;
1741 } else {
1742 h->surplus_huge_pages++;
1743 h->surplus_huge_pages_node[page_to_nid(page)]++;
1744 }
1745
1746 out_unlock:
1747 spin_unlock(&hugetlb_lock);
1748
1749 return page;
1750 }
1751
1752 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1753 int nid, nodemask_t *nmask)
1754 {
1755 struct page *page;
1756
1757 if (hstate_is_gigantic(h))
1758 return NULL;
1759
1760 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1761 if (!page)
1762 return NULL;
1763
1764 /*
1765 * We do not account these pages as surplus because they are only
1766 * temporary and will be released properly on the last reference
1767 */
1768 SetPageHugeTemporary(page);
1769
1770 return page;
1771 }
1772
1773 /*
1774 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1775 */
1776 static
1777 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1778 struct vm_area_struct *vma, unsigned long addr)
1779 {
1780 struct page *page;
1781 struct mempolicy *mpol;
1782 gfp_t gfp_mask = htlb_alloc_mask(h);
1783 int nid;
1784 nodemask_t *nodemask;
1785
1786 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1787 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1788 mpol_cond_put(mpol);
1789
1790 return page;
1791 }
1792
1793 /* page migration callback function */
1794 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1795 {
1796 gfp_t gfp_mask = htlb_alloc_mask(h);
1797 struct page *page = NULL;
1798
1799 if (nid != NUMA_NO_NODE)
1800 gfp_mask |= __GFP_THISNODE;
1801
1802 spin_lock(&hugetlb_lock);
1803 if (h->free_huge_pages - h->resv_huge_pages > 0)
1804 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1805 spin_unlock(&hugetlb_lock);
1806
1807 if (!page)
1808 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1809
1810 return page;
1811 }
1812
1813 /* page migration callback function */
1814 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1815 nodemask_t *nmask)
1816 {
1817 gfp_t gfp_mask = htlb_alloc_mask(h);
1818
1819 spin_lock(&hugetlb_lock);
1820 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1821 struct page *page;
1822
1823 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1824 if (page) {
1825 spin_unlock(&hugetlb_lock);
1826 return page;
1827 }
1828 }
1829 spin_unlock(&hugetlb_lock);
1830
1831 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1832 }
1833
1834 /* mempolicy aware migration callback */
1835 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1836 unsigned long address)
1837 {
1838 struct mempolicy *mpol;
1839 nodemask_t *nodemask;
1840 struct page *page;
1841 gfp_t gfp_mask;
1842 int node;
1843
1844 gfp_mask = htlb_alloc_mask(h);
1845 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1846 page = alloc_huge_page_nodemask(h, node, nodemask);
1847 mpol_cond_put(mpol);
1848
1849 return page;
1850 }
1851
1852 /*
1853 * Increase the hugetlb pool such that it can accommodate a reservation
1854 * of size 'delta'.
1855 */
1856 static int gather_surplus_pages(struct hstate *h, int delta)
1857 {
1858 struct list_head surplus_list;
1859 struct page *page, *tmp;
1860 int ret, i;
1861 int needed, allocated;
1862 bool alloc_ok = true;
1863
1864 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1865 if (needed <= 0) {
1866 h->resv_huge_pages += delta;
1867 return 0;
1868 }
1869
1870 allocated = 0;
1871 INIT_LIST_HEAD(&surplus_list);
1872
1873 ret = -ENOMEM;
1874 retry:
1875 spin_unlock(&hugetlb_lock);
1876 for (i = 0; i < needed; i++) {
1877 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1878 NUMA_NO_NODE, NULL);
1879 if (!page) {
1880 alloc_ok = false;
1881 break;
1882 }
1883 list_add(&page->lru, &surplus_list);
1884 cond_resched();
1885 }
1886 allocated += i;
1887
1888 /*
1889 * After retaking hugetlb_lock, we need to recalculate 'needed'
1890 * because either resv_huge_pages or free_huge_pages may have changed.
1891 */
1892 spin_lock(&hugetlb_lock);
1893 needed = (h->resv_huge_pages + delta) -
1894 (h->free_huge_pages + allocated);
1895 if (needed > 0) {
1896 if (alloc_ok)
1897 goto retry;
1898 /*
1899 * We were not able to allocate enough pages to
1900 * satisfy the entire reservation so we free what
1901 * we've allocated so far.
1902 */
1903 goto free;
1904 }
1905 /*
1906 * The surplus_list now contains _at_least_ the number of extra pages
1907 * needed to accommodate the reservation. Add the appropriate number
1908 * of pages to the hugetlb pool and free the extras back to the buddy
1909 * allocator. Commit the entire reservation here to prevent another
1910 * process from stealing the pages as they are added to the pool but
1911 * before they are reserved.
1912 */
1913 needed += allocated;
1914 h->resv_huge_pages += delta;
1915 ret = 0;
1916
1917 /* Free the needed pages to the hugetlb pool */
1918 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1919 if ((--needed) < 0)
1920 break;
1921 /*
1922 * This page is now managed by the hugetlb allocator and has
1923 * no users -- drop the buddy allocator's reference.
1924 */
1925 put_page_testzero(page);
1926 VM_BUG_ON_PAGE(page_count(page), page);
1927 enqueue_huge_page(h, page);
1928 }
1929 free:
1930 spin_unlock(&hugetlb_lock);
1931
1932 /* Free unnecessary surplus pages to the buddy allocator */
1933 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1934 put_page(page);
1935 spin_lock(&hugetlb_lock);
1936
1937 return ret;
1938 }
1939
1940 /*
1941 * This routine has two main purposes:
1942 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1943 * in unused_resv_pages. This corresponds to the prior adjustments made
1944 * to the associated reservation map.
1945 * 2) Free any unused surplus pages that may have been allocated to satisfy
1946 * the reservation. As many as unused_resv_pages may be freed.
1947 *
1948 * Called with hugetlb_lock held. However, the lock could be dropped (and
1949 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1950 * we must make sure nobody else can claim pages we are in the process of
1951 * freeing. Do this by ensuring resv_huge_page always is greater than the
1952 * number of huge pages we plan to free when dropping the lock.
1953 */
1954 static void return_unused_surplus_pages(struct hstate *h,
1955 unsigned long unused_resv_pages)
1956 {
1957 unsigned long nr_pages;
1958
1959 /* Cannot return gigantic pages currently */
1960 if (hstate_is_gigantic(h))
1961 goto out;
1962
1963 /*
1964 * Part (or even all) of the reservation could have been backed
1965 * by pre-allocated pages. Only free surplus pages.
1966 */
1967 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1968
1969 /*
1970 * We want to release as many surplus pages as possible, spread
1971 * evenly across all nodes with memory. Iterate across these nodes
1972 * until we can no longer free unreserved surplus pages. This occurs
1973 * when the nodes with surplus pages have no free pages.
1974 * free_pool_huge_page() will balance the the freed pages across the
1975 * on-line nodes with memory and will handle the hstate accounting.
1976 *
1977 * Note that we decrement resv_huge_pages as we free the pages. If
1978 * we drop the lock, resv_huge_pages will still be sufficiently large
1979 * to cover subsequent pages we may free.
1980 */
1981 while (nr_pages--) {
1982 h->resv_huge_pages--;
1983 unused_resv_pages--;
1984 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1985 goto out;
1986 cond_resched_lock(&hugetlb_lock);
1987 }
1988
1989 out:
1990 /* Fully uncommit the reservation */
1991 h->resv_huge_pages -= unused_resv_pages;
1992 }
1993
1994
1995 /*
1996 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1997 * are used by the huge page allocation routines to manage reservations.
1998 *
1999 * vma_needs_reservation is called to determine if the huge page at addr
2000 * within the vma has an associated reservation. If a reservation is
2001 * needed, the value 1 is returned. The caller is then responsible for
2002 * managing the global reservation and subpool usage counts. After
2003 * the huge page has been allocated, vma_commit_reservation is called
2004 * to add the page to the reservation map. If the page allocation fails,
2005 * the reservation must be ended instead of committed. vma_end_reservation
2006 * is called in such cases.
2007 *
2008 * In the normal case, vma_commit_reservation returns the same value
2009 * as the preceding vma_needs_reservation call. The only time this
2010 * is not the case is if a reserve map was changed between calls. It
2011 * is the responsibility of the caller to notice the difference and
2012 * take appropriate action.
2013 *
2014 * vma_add_reservation is used in error paths where a reservation must
2015 * be restored when a newly allocated huge page must be freed. It is
2016 * to be called after calling vma_needs_reservation to determine if a
2017 * reservation exists.
2018 */
2019 enum vma_resv_mode {
2020 VMA_NEEDS_RESV,
2021 VMA_COMMIT_RESV,
2022 VMA_END_RESV,
2023 VMA_ADD_RESV,
2024 };
2025 static long __vma_reservation_common(struct hstate *h,
2026 struct vm_area_struct *vma, unsigned long addr,
2027 enum vma_resv_mode mode)
2028 {
2029 struct resv_map *resv;
2030 pgoff_t idx;
2031 long ret;
2032
2033 resv = vma_resv_map(vma);
2034 if (!resv)
2035 return 1;
2036
2037 idx = vma_hugecache_offset(h, vma, addr);
2038 switch (mode) {
2039 case VMA_NEEDS_RESV:
2040 ret = region_chg(resv, idx, idx + 1);
2041 break;
2042 case VMA_COMMIT_RESV:
2043 ret = region_add(resv, idx, idx + 1);
2044 break;
2045 case VMA_END_RESV:
2046 region_abort(resv, idx, idx + 1);
2047 ret = 0;
2048 break;
2049 case VMA_ADD_RESV:
2050 if (vma->vm_flags & VM_MAYSHARE)
2051 ret = region_add(resv, idx, idx + 1);
2052 else {
2053 region_abort(resv, idx, idx + 1);
2054 ret = region_del(resv, idx, idx + 1);
2055 }
2056 break;
2057 default:
2058 BUG();
2059 }
2060
2061 if (vma->vm_flags & VM_MAYSHARE)
2062 return ret;
2063 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2064 /*
2065 * In most cases, reserves always exist for private mappings.
2066 * However, a file associated with mapping could have been
2067 * hole punched or truncated after reserves were consumed.
2068 * As subsequent fault on such a range will not use reserves.
2069 * Subtle - The reserve map for private mappings has the
2070 * opposite meaning than that of shared mappings. If NO
2071 * entry is in the reserve map, it means a reservation exists.
2072 * If an entry exists in the reserve map, it means the
2073 * reservation has already been consumed. As a result, the
2074 * return value of this routine is the opposite of the
2075 * value returned from reserve map manipulation routines above.
2076 */
2077 if (ret)
2078 return 0;
2079 else
2080 return 1;
2081 }
2082 else
2083 return ret < 0 ? ret : 0;
2084 }
2085
2086 static long vma_needs_reservation(struct hstate *h,
2087 struct vm_area_struct *vma, unsigned long addr)
2088 {
2089 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2090 }
2091
2092 static long vma_commit_reservation(struct hstate *h,
2093 struct vm_area_struct *vma, unsigned long addr)
2094 {
2095 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2096 }
2097
2098 static void vma_end_reservation(struct hstate *h,
2099 struct vm_area_struct *vma, unsigned long addr)
2100 {
2101 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2102 }
2103
2104 static long vma_add_reservation(struct hstate *h,
2105 struct vm_area_struct *vma, unsigned long addr)
2106 {
2107 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2108 }
2109
2110 /*
2111 * This routine is called to restore a reservation on error paths. In the
2112 * specific error paths, a huge page was allocated (via alloc_huge_page)
2113 * and is about to be freed. If a reservation for the page existed,
2114 * alloc_huge_page would have consumed the reservation and set PagePrivate
2115 * in the newly allocated page. When the page is freed via free_huge_page,
2116 * the global reservation count will be incremented if PagePrivate is set.
2117 * However, free_huge_page can not adjust the reserve map. Adjust the
2118 * reserve map here to be consistent with global reserve count adjustments
2119 * to be made by free_huge_page.
2120 */
2121 static void restore_reserve_on_error(struct hstate *h,
2122 struct vm_area_struct *vma, unsigned long address,
2123 struct page *page)
2124 {
2125 if (unlikely(PagePrivate(page))) {
2126 long rc = vma_needs_reservation(h, vma, address);
2127
2128 if (unlikely(rc < 0)) {
2129 /*
2130 * Rare out of memory condition in reserve map
2131 * manipulation. Clear PagePrivate so that
2132 * global reserve count will not be incremented
2133 * by free_huge_page. This will make it appear
2134 * as though the reservation for this page was
2135 * consumed. This may prevent the task from
2136 * faulting in the page at a later time. This
2137 * is better than inconsistent global huge page
2138 * accounting of reserve counts.
2139 */
2140 ClearPagePrivate(page);
2141 } else if (rc) {
2142 rc = vma_add_reservation(h, vma, address);
2143 if (unlikely(rc < 0))
2144 /*
2145 * See above comment about rare out of
2146 * memory condition.
2147 */
2148 ClearPagePrivate(page);
2149 } else
2150 vma_end_reservation(h, vma, address);
2151 }
2152 }
2153
2154 struct page *alloc_huge_page(struct vm_area_struct *vma,
2155 unsigned long addr, int avoid_reserve)
2156 {
2157 struct hugepage_subpool *spool = subpool_vma(vma);
2158 struct hstate *h = hstate_vma(vma);
2159 struct page *page;
2160 long map_chg, map_commit;
2161 long gbl_chg;
2162 int ret, idx;
2163 struct hugetlb_cgroup *h_cg;
2164
2165 idx = hstate_index(h);
2166 /*
2167 * Examine the region/reserve map to determine if the process
2168 * has a reservation for the page to be allocated. A return
2169 * code of zero indicates a reservation exists (no change).
2170 */
2171 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2172 if (map_chg < 0)
2173 return ERR_PTR(-ENOMEM);
2174
2175 /*
2176 * Processes that did not create the mapping will have no
2177 * reserves as indicated by the region/reserve map. Check
2178 * that the allocation will not exceed the subpool limit.
2179 * Allocations for MAP_NORESERVE mappings also need to be
2180 * checked against any subpool limit.
2181 */
2182 if (map_chg || avoid_reserve) {
2183 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2184 if (gbl_chg < 0) {
2185 vma_end_reservation(h, vma, addr);
2186 return ERR_PTR(-ENOSPC);
2187 }
2188
2189 /*
2190 * Even though there was no reservation in the region/reserve
2191 * map, there could be reservations associated with the
2192 * subpool that can be used. This would be indicated if the
2193 * return value of hugepage_subpool_get_pages() is zero.
2194 * However, if avoid_reserve is specified we still avoid even
2195 * the subpool reservations.
2196 */
2197 if (avoid_reserve)
2198 gbl_chg = 1;
2199 }
2200
2201 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2202 if (ret)
2203 goto out_subpool_put;
2204
2205 spin_lock(&hugetlb_lock);
2206 /*
2207 * glb_chg is passed to indicate whether or not a page must be taken
2208 * from the global free pool (global change). gbl_chg == 0 indicates
2209 * a reservation exists for the allocation.
2210 */
2211 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2212 if (!page) {
2213 spin_unlock(&hugetlb_lock);
2214 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2215 if (!page)
2216 goto out_uncharge_cgroup;
2217 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2218 SetPagePrivate(page);
2219 h->resv_huge_pages--;
2220 }
2221 spin_lock(&hugetlb_lock);
2222 list_move(&page->lru, &h->hugepage_activelist);
2223 /* Fall through */
2224 }
2225 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2226 spin_unlock(&hugetlb_lock);
2227
2228 set_page_private(page, (unsigned long)spool);
2229
2230 map_commit = vma_commit_reservation(h, vma, addr);
2231 if (unlikely(map_chg > map_commit)) {
2232 /*
2233 * The page was added to the reservation map between
2234 * vma_needs_reservation and vma_commit_reservation.
2235 * This indicates a race with hugetlb_reserve_pages.
2236 * Adjust for the subpool count incremented above AND
2237 * in hugetlb_reserve_pages for the same page. Also,
2238 * the reservation count added in hugetlb_reserve_pages
2239 * no longer applies.
2240 */
2241 long rsv_adjust;
2242
2243 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2244 hugetlb_acct_memory(h, -rsv_adjust);
2245 }
2246 return page;
2247
2248 out_uncharge_cgroup:
2249 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2250 out_subpool_put:
2251 if (map_chg || avoid_reserve)
2252 hugepage_subpool_put_pages(spool, 1);
2253 vma_end_reservation(h, vma, addr);
2254 return ERR_PTR(-ENOSPC);
2255 }
2256
2257 int alloc_bootmem_huge_page(struct hstate *h)
2258 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2259 int __alloc_bootmem_huge_page(struct hstate *h)
2260 {
2261 struct huge_bootmem_page *m;
2262 int nr_nodes, node;
2263
2264 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2265 void *addr;
2266
2267 addr = memblock_alloc_try_nid_raw(
2268 huge_page_size(h), huge_page_size(h),
2269 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2270 if (addr) {
2271 /*
2272 * Use the beginning of the huge page to store the
2273 * huge_bootmem_page struct (until gather_bootmem
2274 * puts them into the mem_map).
2275 */
2276 m = addr;
2277 goto found;
2278 }
2279 }
2280 return 0;
2281
2282 found:
2283 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2284 /* Put them into a private list first because mem_map is not up yet */
2285 INIT_LIST_HEAD(&m->list);
2286 list_add(&m->list, &huge_boot_pages);
2287 m->hstate = h;
2288 return 1;
2289 }
2290
2291 static void __init prep_compound_huge_page(struct page *page,
2292 unsigned int order)
2293 {
2294 if (unlikely(order > (MAX_ORDER - 1)))
2295 prep_compound_gigantic_page(page, order);
2296 else
2297 prep_compound_page(page, order);
2298 }
2299
2300 /* Put bootmem huge pages into the standard lists after mem_map is up */
2301 static void __init gather_bootmem_prealloc(void)
2302 {
2303 struct huge_bootmem_page *m;
2304
2305 list_for_each_entry(m, &huge_boot_pages, list) {
2306 struct page *page = virt_to_page(m);
2307 struct hstate *h = m->hstate;
2308
2309 WARN_ON(page_count(page) != 1);
2310 prep_compound_huge_page(page, h->order);
2311 WARN_ON(PageReserved(page));
2312 prep_new_huge_page(h, page, page_to_nid(page));
2313 put_page(page); /* free it into the hugepage allocator */
2314
2315 /*
2316 * If we had gigantic hugepages allocated at boot time, we need
2317 * to restore the 'stolen' pages to totalram_pages in order to
2318 * fix confusing memory reports from free(1) and another
2319 * side-effects, like CommitLimit going negative.
2320 */
2321 if (hstate_is_gigantic(h))
2322 adjust_managed_page_count(page, 1 << h->order);
2323 cond_resched();
2324 }
2325 }
2326
2327 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2328 {
2329 unsigned long i;
2330 nodemask_t *node_alloc_noretry;
2331
2332 if (!hstate_is_gigantic(h)) {
2333 /*
2334 * Bit mask controlling how hard we retry per-node allocations.
2335 * Ignore errors as lower level routines can deal with
2336 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2337 * time, we are likely in bigger trouble.
2338 */
2339 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2340 GFP_KERNEL);
2341 } else {
2342 /* allocations done at boot time */
2343 node_alloc_noretry = NULL;
2344 }
2345
2346 /* bit mask controlling how hard we retry per-node allocations */
2347 if (node_alloc_noretry)
2348 nodes_clear(*node_alloc_noretry);
2349
2350 for (i = 0; i < h->max_huge_pages; ++i) {
2351 if (hstate_is_gigantic(h)) {
2352 if (!alloc_bootmem_huge_page(h))
2353 break;
2354 } else if (!alloc_pool_huge_page(h,
2355 &node_states[N_MEMORY],
2356 node_alloc_noretry))
2357 break;
2358 cond_resched();
2359 }
2360 if (i < h->max_huge_pages) {
2361 char buf[32];
2362
2363 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2364 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2365 h->max_huge_pages, buf, i);
2366 h->max_huge_pages = i;
2367 }
2368
2369 kfree(node_alloc_noretry);
2370 }
2371
2372 static void __init hugetlb_init_hstates(void)
2373 {
2374 struct hstate *h;
2375
2376 for_each_hstate(h) {
2377 if (minimum_order > huge_page_order(h))
2378 minimum_order = huge_page_order(h);
2379
2380 /* oversize hugepages were init'ed in early boot */
2381 if (!hstate_is_gigantic(h))
2382 hugetlb_hstate_alloc_pages(h);
2383 }
2384 VM_BUG_ON(minimum_order == UINT_MAX);
2385 }
2386
2387 static void __init report_hugepages(void)
2388 {
2389 struct hstate *h;
2390
2391 for_each_hstate(h) {
2392 char buf[32];
2393
2394 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2395 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2396 buf, h->free_huge_pages);
2397 }
2398 }
2399
2400 #ifdef CONFIG_HIGHMEM
2401 static void try_to_free_low(struct hstate *h, unsigned long count,
2402 nodemask_t *nodes_allowed)
2403 {
2404 int i;
2405
2406 if (hstate_is_gigantic(h))
2407 return;
2408
2409 for_each_node_mask(i, *nodes_allowed) {
2410 struct page *page, *next;
2411 struct list_head *freel = &h->hugepage_freelists[i];
2412 list_for_each_entry_safe(page, next, freel, lru) {
2413 if (count >= h->nr_huge_pages)
2414 return;
2415 if (PageHighMem(page))
2416 continue;
2417 list_del(&page->lru);
2418 update_and_free_page(h, page);
2419 h->free_huge_pages--;
2420 h->free_huge_pages_node[page_to_nid(page)]--;
2421 }
2422 }
2423 }
2424 #else
2425 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2426 nodemask_t *nodes_allowed)
2427 {
2428 }
2429 #endif
2430
2431 /*
2432 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2433 * balanced by operating on them in a round-robin fashion.
2434 * Returns 1 if an adjustment was made.
2435 */
2436 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2437 int delta)
2438 {
2439 int nr_nodes, node;
2440
2441 VM_BUG_ON(delta != -1 && delta != 1);
2442
2443 if (delta < 0) {
2444 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2445 if (h->surplus_huge_pages_node[node])
2446 goto found;
2447 }
2448 } else {
2449 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2450 if (h->surplus_huge_pages_node[node] <
2451 h->nr_huge_pages_node[node])
2452 goto found;
2453 }
2454 }
2455 return 0;
2456
2457 found:
2458 h->surplus_huge_pages += delta;
2459 h->surplus_huge_pages_node[node] += delta;
2460 return 1;
2461 }
2462
2463 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2464 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2465 nodemask_t *nodes_allowed)
2466 {
2467 unsigned long min_count, ret;
2468 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2469
2470 /*
2471 * Bit mask controlling how hard we retry per-node allocations.
2472 * If we can not allocate the bit mask, do not attempt to allocate
2473 * the requested huge pages.
2474 */
2475 if (node_alloc_noretry)
2476 nodes_clear(*node_alloc_noretry);
2477 else
2478 return -ENOMEM;
2479
2480 spin_lock(&hugetlb_lock);
2481
2482 /*
2483 * Check for a node specific request.
2484 * Changing node specific huge page count may require a corresponding
2485 * change to the global count. In any case, the passed node mask
2486 * (nodes_allowed) will restrict alloc/free to the specified node.
2487 */
2488 if (nid != NUMA_NO_NODE) {
2489 unsigned long old_count = count;
2490
2491 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2492 /*
2493 * User may have specified a large count value which caused the
2494 * above calculation to overflow. In this case, they wanted
2495 * to allocate as many huge pages as possible. Set count to
2496 * largest possible value to align with their intention.
2497 */
2498 if (count < old_count)
2499 count = ULONG_MAX;
2500 }
2501
2502 /*
2503 * Gigantic pages runtime allocation depend on the capability for large
2504 * page range allocation.
2505 * If the system does not provide this feature, return an error when
2506 * the user tries to allocate gigantic pages but let the user free the
2507 * boottime allocated gigantic pages.
2508 */
2509 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2510 if (count > persistent_huge_pages(h)) {
2511 spin_unlock(&hugetlb_lock);
2512 NODEMASK_FREE(node_alloc_noretry);
2513 return -EINVAL;
2514 }
2515 /* Fall through to decrease pool */
2516 }
2517
2518 /*
2519 * Increase the pool size
2520 * First take pages out of surplus state. Then make up the
2521 * remaining difference by allocating fresh huge pages.
2522 *
2523 * We might race with alloc_surplus_huge_page() here and be unable
2524 * to convert a surplus huge page to a normal huge page. That is
2525 * not critical, though, it just means the overall size of the
2526 * pool might be one hugepage larger than it needs to be, but
2527 * within all the constraints specified by the sysctls.
2528 */
2529 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2530 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2531 break;
2532 }
2533
2534 while (count > persistent_huge_pages(h)) {
2535 /*
2536 * If this allocation races such that we no longer need the
2537 * page, free_huge_page will handle it by freeing the page
2538 * and reducing the surplus.
2539 */
2540 spin_unlock(&hugetlb_lock);
2541
2542 /* yield cpu to avoid soft lockup */
2543 cond_resched();
2544
2545 ret = alloc_pool_huge_page(h, nodes_allowed,
2546 node_alloc_noretry);
2547 spin_lock(&hugetlb_lock);
2548 if (!ret)
2549 goto out;
2550
2551 /* Bail for signals. Probably ctrl-c from user */
2552 if (signal_pending(current))
2553 goto out;
2554 }
2555
2556 /*
2557 * Decrease the pool size
2558 * First return free pages to the buddy allocator (being careful
2559 * to keep enough around to satisfy reservations). Then place
2560 * pages into surplus state as needed so the pool will shrink
2561 * to the desired size as pages become free.
2562 *
2563 * By placing pages into the surplus state independent of the
2564 * overcommit value, we are allowing the surplus pool size to
2565 * exceed overcommit. There are few sane options here. Since
2566 * alloc_surplus_huge_page() is checking the global counter,
2567 * though, we'll note that we're not allowed to exceed surplus
2568 * and won't grow the pool anywhere else. Not until one of the
2569 * sysctls are changed, or the surplus pages go out of use.
2570 */
2571 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2572 min_count = max(count, min_count);
2573 try_to_free_low(h, min_count, nodes_allowed);
2574 while (min_count < persistent_huge_pages(h)) {
2575 if (!free_pool_huge_page(h, nodes_allowed, 0))
2576 break;
2577 cond_resched_lock(&hugetlb_lock);
2578 }
2579 while (count < persistent_huge_pages(h)) {
2580 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2581 break;
2582 }
2583 out:
2584 h->max_huge_pages = persistent_huge_pages(h);
2585 spin_unlock(&hugetlb_lock);
2586
2587 NODEMASK_FREE(node_alloc_noretry);
2588
2589 return 0;
2590 }
2591
2592 #define HSTATE_ATTR_RO(_name) \
2593 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2594
2595 #define HSTATE_ATTR(_name) \
2596 static struct kobj_attribute _name##_attr = \
2597 __ATTR(_name, 0644, _name##_show, _name##_store)
2598
2599 static struct kobject *hugepages_kobj;
2600 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2601
2602 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2603
2604 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2605 {
2606 int i;
2607
2608 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2609 if (hstate_kobjs[i] == kobj) {
2610 if (nidp)
2611 *nidp = NUMA_NO_NODE;
2612 return &hstates[i];
2613 }
2614
2615 return kobj_to_node_hstate(kobj, nidp);
2616 }
2617
2618 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2619 struct kobj_attribute *attr, char *buf)
2620 {
2621 struct hstate *h;
2622 unsigned long nr_huge_pages;
2623 int nid;
2624
2625 h = kobj_to_hstate(kobj, &nid);
2626 if (nid == NUMA_NO_NODE)
2627 nr_huge_pages = h->nr_huge_pages;
2628 else
2629 nr_huge_pages = h->nr_huge_pages_node[nid];
2630
2631 return sprintf(buf, "%lu\n", nr_huge_pages);
2632 }
2633
2634 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2635 struct hstate *h, int nid,
2636 unsigned long count, size_t len)
2637 {
2638 int err;
2639 nodemask_t nodes_allowed, *n_mask;
2640
2641 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2642 return -EINVAL;
2643
2644 if (nid == NUMA_NO_NODE) {
2645 /*
2646 * global hstate attribute
2647 */
2648 if (!(obey_mempolicy &&
2649 init_nodemask_of_mempolicy(&nodes_allowed)))
2650 n_mask = &node_states[N_MEMORY];
2651 else
2652 n_mask = &nodes_allowed;
2653 } else {
2654 /*
2655 * Node specific request. count adjustment happens in
2656 * set_max_huge_pages() after acquiring hugetlb_lock.
2657 */
2658 init_nodemask_of_node(&nodes_allowed, nid);
2659 n_mask = &nodes_allowed;
2660 }
2661
2662 err = set_max_huge_pages(h, count, nid, n_mask);
2663
2664 return err ? err : len;
2665 }
2666
2667 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2668 struct kobject *kobj, const char *buf,
2669 size_t len)
2670 {
2671 struct hstate *h;
2672 unsigned long count;
2673 int nid;
2674 int err;
2675
2676 err = kstrtoul(buf, 10, &count);
2677 if (err)
2678 return err;
2679
2680 h = kobj_to_hstate(kobj, &nid);
2681 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2682 }
2683
2684 static ssize_t nr_hugepages_show(struct kobject *kobj,
2685 struct kobj_attribute *attr, char *buf)
2686 {
2687 return nr_hugepages_show_common(kobj, attr, buf);
2688 }
2689
2690 static ssize_t nr_hugepages_store(struct kobject *kobj,
2691 struct kobj_attribute *attr, const char *buf, size_t len)
2692 {
2693 return nr_hugepages_store_common(false, kobj, buf, len);
2694 }
2695 HSTATE_ATTR(nr_hugepages);
2696
2697 #ifdef CONFIG_NUMA
2698
2699 /*
2700 * hstate attribute for optionally mempolicy-based constraint on persistent
2701 * huge page alloc/free.
2702 */
2703 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2704 struct kobj_attribute *attr, char *buf)
2705 {
2706 return nr_hugepages_show_common(kobj, attr, buf);
2707 }
2708
2709 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2710 struct kobj_attribute *attr, const char *buf, size_t len)
2711 {
2712 return nr_hugepages_store_common(true, kobj, buf, len);
2713 }
2714 HSTATE_ATTR(nr_hugepages_mempolicy);
2715 #endif
2716
2717
2718 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2719 struct kobj_attribute *attr, char *buf)
2720 {
2721 struct hstate *h = kobj_to_hstate(kobj, NULL);
2722 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2723 }
2724
2725 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2726 struct kobj_attribute *attr, const char *buf, size_t count)
2727 {
2728 int err;
2729 unsigned long input;
2730 struct hstate *h = kobj_to_hstate(kobj, NULL);
2731
2732 if (hstate_is_gigantic(h))
2733 return -EINVAL;
2734
2735 err = kstrtoul(buf, 10, &input);
2736 if (err)
2737 return err;
2738
2739 spin_lock(&hugetlb_lock);
2740 h->nr_overcommit_huge_pages = input;
2741 spin_unlock(&hugetlb_lock);
2742
2743 return count;
2744 }
2745 HSTATE_ATTR(nr_overcommit_hugepages);
2746
2747 static ssize_t free_hugepages_show(struct kobject *kobj,
2748 struct kobj_attribute *attr, char *buf)
2749 {
2750 struct hstate *h;
2751 unsigned long free_huge_pages;
2752 int nid;
2753
2754 h = kobj_to_hstate(kobj, &nid);
2755 if (nid == NUMA_NO_NODE)
2756 free_huge_pages = h->free_huge_pages;
2757 else
2758 free_huge_pages = h->free_huge_pages_node[nid];
2759
2760 return sprintf(buf, "%lu\n", free_huge_pages);
2761 }
2762 HSTATE_ATTR_RO(free_hugepages);
2763
2764 static ssize_t resv_hugepages_show(struct kobject *kobj,
2765 struct kobj_attribute *attr, char *buf)
2766 {
2767 struct hstate *h = kobj_to_hstate(kobj, NULL);
2768 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2769 }
2770 HSTATE_ATTR_RO(resv_hugepages);
2771
2772 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2773 struct kobj_attribute *attr, char *buf)
2774 {
2775 struct hstate *h;
2776 unsigned long surplus_huge_pages;
2777 int nid;
2778
2779 h = kobj_to_hstate(kobj, &nid);
2780 if (nid == NUMA_NO_NODE)
2781 surplus_huge_pages = h->surplus_huge_pages;
2782 else
2783 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2784
2785 return sprintf(buf, "%lu\n", surplus_huge_pages);
2786 }
2787 HSTATE_ATTR_RO(surplus_hugepages);
2788
2789 static struct attribute *hstate_attrs[] = {
2790 &nr_hugepages_attr.attr,
2791 &nr_overcommit_hugepages_attr.attr,
2792 &free_hugepages_attr.attr,
2793 &resv_hugepages_attr.attr,
2794 &surplus_hugepages_attr.attr,
2795 #ifdef CONFIG_NUMA
2796 &nr_hugepages_mempolicy_attr.attr,
2797 #endif
2798 NULL,
2799 };
2800
2801 static const struct attribute_group hstate_attr_group = {
2802 .attrs = hstate_attrs,
2803 };
2804
2805 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2806 struct kobject **hstate_kobjs,
2807 const struct attribute_group *hstate_attr_group)
2808 {
2809 int retval;
2810 int hi = hstate_index(h);
2811
2812 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2813 if (!hstate_kobjs[hi])
2814 return -ENOMEM;
2815
2816 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2817 if (retval) {
2818 kobject_put(hstate_kobjs[hi]);
2819 hstate_kobjs[hi] = NULL;
2820 }
2821
2822 return retval;
2823 }
2824
2825 static void __init hugetlb_sysfs_init(void)
2826 {
2827 struct hstate *h;
2828 int err;
2829
2830 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2831 if (!hugepages_kobj)
2832 return;
2833
2834 for_each_hstate(h) {
2835 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2836 hstate_kobjs, &hstate_attr_group);
2837 if (err)
2838 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2839 }
2840 }
2841
2842 #ifdef CONFIG_NUMA
2843
2844 /*
2845 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2846 * with node devices in node_devices[] using a parallel array. The array
2847 * index of a node device or _hstate == node id.
2848 * This is here to avoid any static dependency of the node device driver, in
2849 * the base kernel, on the hugetlb module.
2850 */
2851 struct node_hstate {
2852 struct kobject *hugepages_kobj;
2853 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2854 };
2855 static struct node_hstate node_hstates[MAX_NUMNODES];
2856
2857 /*
2858 * A subset of global hstate attributes for node devices
2859 */
2860 static struct attribute *per_node_hstate_attrs[] = {
2861 &nr_hugepages_attr.attr,
2862 &free_hugepages_attr.attr,
2863 &surplus_hugepages_attr.attr,
2864 NULL,
2865 };
2866
2867 static const struct attribute_group per_node_hstate_attr_group = {
2868 .attrs = per_node_hstate_attrs,
2869 };
2870
2871 /*
2872 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2873 * Returns node id via non-NULL nidp.
2874 */
2875 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2876 {
2877 int nid;
2878
2879 for (nid = 0; nid < nr_node_ids; nid++) {
2880 struct node_hstate *nhs = &node_hstates[nid];
2881 int i;
2882 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2883 if (nhs->hstate_kobjs[i] == kobj) {
2884 if (nidp)
2885 *nidp = nid;
2886 return &hstates[i];
2887 }
2888 }
2889
2890 BUG();
2891 return NULL;
2892 }
2893
2894 /*
2895 * Unregister hstate attributes from a single node device.
2896 * No-op if no hstate attributes attached.
2897 */
2898 static void hugetlb_unregister_node(struct node *node)
2899 {
2900 struct hstate *h;
2901 struct node_hstate *nhs = &node_hstates[node->dev.id];
2902
2903 if (!nhs->hugepages_kobj)
2904 return; /* no hstate attributes */
2905
2906 for_each_hstate(h) {
2907 int idx = hstate_index(h);
2908 if (nhs->hstate_kobjs[idx]) {
2909 kobject_put(nhs->hstate_kobjs[idx]);
2910 nhs->hstate_kobjs[idx] = NULL;
2911 }
2912 }
2913
2914 kobject_put(nhs->hugepages_kobj);
2915 nhs->hugepages_kobj = NULL;
2916 }
2917
2918
2919 /*
2920 * Register hstate attributes for a single node device.
2921 * No-op if attributes already registered.
2922 */
2923 static void hugetlb_register_node(struct node *node)
2924 {
2925 struct hstate *h;
2926 struct node_hstate *nhs = &node_hstates[node->dev.id];
2927 int err;
2928
2929 if (nhs->hugepages_kobj)
2930 return; /* already allocated */
2931
2932 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2933 &node->dev.kobj);
2934 if (!nhs->hugepages_kobj)
2935 return;
2936
2937 for_each_hstate(h) {
2938 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2939 nhs->hstate_kobjs,
2940 &per_node_hstate_attr_group);
2941 if (err) {
2942 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2943 h->name, node->dev.id);
2944 hugetlb_unregister_node(node);
2945 break;
2946 }
2947 }
2948 }
2949
2950 /*
2951 * hugetlb init time: register hstate attributes for all registered node
2952 * devices of nodes that have memory. All on-line nodes should have
2953 * registered their associated device by this time.
2954 */
2955 static void __init hugetlb_register_all_nodes(void)
2956 {
2957 int nid;
2958
2959 for_each_node_state(nid, N_MEMORY) {
2960 struct node *node = node_devices[nid];
2961 if (node->dev.id == nid)
2962 hugetlb_register_node(node);
2963 }
2964
2965 /*
2966 * Let the node device driver know we're here so it can
2967 * [un]register hstate attributes on node hotplug.
2968 */
2969 register_hugetlbfs_with_node(hugetlb_register_node,
2970 hugetlb_unregister_node);
2971 }
2972 #else /* !CONFIG_NUMA */
2973
2974 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2975 {
2976 BUG();
2977 if (nidp)
2978 *nidp = -1;
2979 return NULL;
2980 }
2981
2982 static void hugetlb_register_all_nodes(void) { }
2983
2984 #endif
2985
2986 static int __init hugetlb_init(void)
2987 {
2988 int i;
2989
2990 if (!hugepages_supported())
2991 return 0;
2992
2993 if (!size_to_hstate(default_hstate_size)) {
2994 if (default_hstate_size != 0) {
2995 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2996 default_hstate_size, HPAGE_SIZE);
2997 }
2998
2999 default_hstate_size = HPAGE_SIZE;
3000 if (!size_to_hstate(default_hstate_size))
3001 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3002 }
3003 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
3004 if (default_hstate_max_huge_pages) {
3005 if (!default_hstate.max_huge_pages)
3006 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3007 }
3008
3009 hugetlb_init_hstates();
3010 gather_bootmem_prealloc();
3011 report_hugepages();
3012
3013 hugetlb_sysfs_init();
3014 hugetlb_register_all_nodes();
3015 hugetlb_cgroup_file_init();
3016
3017 #ifdef CONFIG_SMP
3018 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3019 #else
3020 num_fault_mutexes = 1;
3021 #endif
3022 hugetlb_fault_mutex_table =
3023 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3024 GFP_KERNEL);
3025 BUG_ON(!hugetlb_fault_mutex_table);
3026
3027 for (i = 0; i < num_fault_mutexes; i++)
3028 mutex_init(&hugetlb_fault_mutex_table[i]);
3029 return 0;
3030 }
3031 subsys_initcall(hugetlb_init);
3032
3033 /* Should be called on processing a hugepagesz=... option */
3034 void __init hugetlb_bad_size(void)
3035 {
3036 parsed_valid_hugepagesz = false;
3037 }
3038
3039 void __init hugetlb_add_hstate(unsigned int order)
3040 {
3041 struct hstate *h;
3042 unsigned long i;
3043
3044 if (size_to_hstate(PAGE_SIZE << order)) {
3045 pr_warn("hugepagesz= specified twice, ignoring\n");
3046 return;
3047 }
3048 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3049 BUG_ON(order == 0);
3050 h = &hstates[hugetlb_max_hstate++];
3051 h->order = order;
3052 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3053 h->nr_huge_pages = 0;
3054 h->free_huge_pages = 0;
3055 for (i = 0; i < MAX_NUMNODES; ++i)
3056 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3057 INIT_LIST_HEAD(&h->hugepage_activelist);
3058 h->next_nid_to_alloc = first_memory_node;
3059 h->next_nid_to_free = first_memory_node;
3060 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3061 huge_page_size(h)/1024);
3062
3063 parsed_hstate = h;
3064 }
3065
3066 static int __init hugetlb_nrpages_setup(char *s)
3067 {
3068 unsigned long *mhp;
3069 static unsigned long *last_mhp;
3070
3071 if (!parsed_valid_hugepagesz) {
3072 pr_warn("hugepages = %s preceded by "
3073 "an unsupported hugepagesz, ignoring\n", s);
3074 parsed_valid_hugepagesz = true;
3075 return 1;
3076 }
3077 /*
3078 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
3079 * so this hugepages= parameter goes to the "default hstate".
3080 */
3081 else if (!hugetlb_max_hstate)
3082 mhp = &default_hstate_max_huge_pages;
3083 else
3084 mhp = &parsed_hstate->max_huge_pages;
3085
3086 if (mhp == last_mhp) {
3087 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
3088 return 1;
3089 }
3090
3091 if (sscanf(s, "%lu", mhp) <= 0)
3092 *mhp = 0;
3093
3094 /*
3095 * Global state is always initialized later in hugetlb_init.
3096 * But we need to allocate >= MAX_ORDER hstates here early to still
3097 * use the bootmem allocator.
3098 */
3099 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3100 hugetlb_hstate_alloc_pages(parsed_hstate);
3101
3102 last_mhp = mhp;
3103
3104 return 1;
3105 }
3106 __setup("hugepages=", hugetlb_nrpages_setup);
3107
3108 static int __init hugetlb_default_setup(char *s)
3109 {
3110 default_hstate_size = memparse(s, &s);
3111 return 1;
3112 }
3113 __setup("default_hugepagesz=", hugetlb_default_setup);
3114
3115 static unsigned int cpuset_mems_nr(unsigned int *array)
3116 {
3117 int node;
3118 unsigned int nr = 0;
3119
3120 for_each_node_mask(node, cpuset_current_mems_allowed)
3121 nr += array[node];
3122
3123 return nr;
3124 }
3125
3126 #ifdef CONFIG_SYSCTL
3127 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3128 void *buffer, size_t *length,
3129 loff_t *ppos, unsigned long *out)
3130 {
3131 struct ctl_table dup_table;
3132
3133 /*
3134 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3135 * can duplicate the @table and alter the duplicate of it.
3136 */
3137 dup_table = *table;
3138 dup_table.data = out;
3139
3140 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3141 }
3142
3143 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3144 struct ctl_table *table, int write,
3145 void __user *buffer, size_t *length, loff_t *ppos)
3146 {
3147 struct hstate *h = &default_hstate;
3148 unsigned long tmp = h->max_huge_pages;
3149 int ret;
3150
3151 if (!hugepages_supported())
3152 return -EOPNOTSUPP;
3153
3154 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3155 &tmp);
3156 if (ret)
3157 goto out;
3158
3159 if (write)
3160 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3161 NUMA_NO_NODE, tmp, *length);
3162 out:
3163 return ret;
3164 }
3165
3166 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3167 void __user *buffer, size_t *length, loff_t *ppos)
3168 {
3169
3170 return hugetlb_sysctl_handler_common(false, table, write,
3171 buffer, length, ppos);
3172 }
3173
3174 #ifdef CONFIG_NUMA
3175 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3176 void __user *buffer, size_t *length, loff_t *ppos)
3177 {
3178 return hugetlb_sysctl_handler_common(true, table, write,
3179 buffer, length, ppos);
3180 }
3181 #endif /* CONFIG_NUMA */
3182
3183 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3184 void __user *buffer,
3185 size_t *length, loff_t *ppos)
3186 {
3187 struct hstate *h = &default_hstate;
3188 unsigned long tmp;
3189 int ret;
3190
3191 if (!hugepages_supported())
3192 return -EOPNOTSUPP;
3193
3194 tmp = h->nr_overcommit_huge_pages;
3195
3196 if (write && hstate_is_gigantic(h))
3197 return -EINVAL;
3198
3199 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3200 &tmp);
3201 if (ret)
3202 goto out;
3203
3204 if (write) {
3205 spin_lock(&hugetlb_lock);
3206 h->nr_overcommit_huge_pages = tmp;
3207 spin_unlock(&hugetlb_lock);
3208 }
3209 out:
3210 return ret;
3211 }
3212
3213 #endif /* CONFIG_SYSCTL */
3214
3215 void hugetlb_report_meminfo(struct seq_file *m)
3216 {
3217 struct hstate *h;
3218 unsigned long total = 0;
3219
3220 if (!hugepages_supported())
3221 return;
3222
3223 for_each_hstate(h) {
3224 unsigned long count = h->nr_huge_pages;
3225
3226 total += (PAGE_SIZE << huge_page_order(h)) * count;
3227
3228 if (h == &default_hstate)
3229 seq_printf(m,
3230 "HugePages_Total: %5lu\n"
3231 "HugePages_Free: %5lu\n"
3232 "HugePages_Rsvd: %5lu\n"
3233 "HugePages_Surp: %5lu\n"
3234 "Hugepagesize: %8lu kB\n",
3235 count,
3236 h->free_huge_pages,
3237 h->resv_huge_pages,
3238 h->surplus_huge_pages,
3239 (PAGE_SIZE << huge_page_order(h)) / 1024);
3240 }
3241
3242 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3243 }
3244
3245 int hugetlb_report_node_meminfo(int nid, char *buf)
3246 {
3247 struct hstate *h = &default_hstate;
3248 if (!hugepages_supported())
3249 return 0;
3250 return sprintf(buf,
3251 "Node %d HugePages_Total: %5u\n"
3252 "Node %d HugePages_Free: %5u\n"
3253 "Node %d HugePages_Surp: %5u\n",
3254 nid, h->nr_huge_pages_node[nid],
3255 nid, h->free_huge_pages_node[nid],
3256 nid, h->surplus_huge_pages_node[nid]);
3257 }
3258
3259 void hugetlb_show_meminfo(void)
3260 {
3261 struct hstate *h;
3262 int nid;
3263
3264 if (!hugepages_supported())
3265 return;
3266
3267 for_each_node_state(nid, N_MEMORY)
3268 for_each_hstate(h)
3269 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3270 nid,
3271 h->nr_huge_pages_node[nid],
3272 h->free_huge_pages_node[nid],
3273 h->surplus_huge_pages_node[nid],
3274 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3275 }
3276
3277 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3278 {
3279 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3280 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3281 }
3282
3283 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3284 unsigned long hugetlb_total_pages(void)
3285 {
3286 struct hstate *h;
3287 unsigned long nr_total_pages = 0;
3288
3289 for_each_hstate(h)
3290 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3291 return nr_total_pages;
3292 }
3293
3294 static int hugetlb_acct_memory(struct hstate *h, long delta)
3295 {
3296 int ret = -ENOMEM;
3297
3298 spin_lock(&hugetlb_lock);
3299 /*
3300 * When cpuset is configured, it breaks the strict hugetlb page
3301 * reservation as the accounting is done on a global variable. Such
3302 * reservation is completely rubbish in the presence of cpuset because
3303 * the reservation is not checked against page availability for the
3304 * current cpuset. Application can still potentially OOM'ed by kernel
3305 * with lack of free htlb page in cpuset that the task is in.
3306 * Attempt to enforce strict accounting with cpuset is almost
3307 * impossible (or too ugly) because cpuset is too fluid that
3308 * task or memory node can be dynamically moved between cpusets.
3309 *
3310 * The change of semantics for shared hugetlb mapping with cpuset is
3311 * undesirable. However, in order to preserve some of the semantics,
3312 * we fall back to check against current free page availability as
3313 * a best attempt and hopefully to minimize the impact of changing
3314 * semantics that cpuset has.
3315 */
3316 if (delta > 0) {
3317 if (gather_surplus_pages(h, delta) < 0)
3318 goto out;
3319
3320 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3321 return_unused_surplus_pages(h, delta);
3322 goto out;
3323 }
3324 }
3325
3326 ret = 0;
3327 if (delta < 0)
3328 return_unused_surplus_pages(h, (unsigned long) -delta);
3329
3330 out:
3331 spin_unlock(&hugetlb_lock);
3332 return ret;
3333 }
3334
3335 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3336 {
3337 struct resv_map *resv = vma_resv_map(vma);
3338
3339 /*
3340 * This new VMA should share its siblings reservation map if present.
3341 * The VMA will only ever have a valid reservation map pointer where
3342 * it is being copied for another still existing VMA. As that VMA
3343 * has a reference to the reservation map it cannot disappear until
3344 * after this open call completes. It is therefore safe to take a
3345 * new reference here without additional locking.
3346 */
3347 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3348 kref_get(&resv->refs);
3349 }
3350
3351 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3352 {
3353 struct hstate *h = hstate_vma(vma);
3354 struct resv_map *resv = vma_resv_map(vma);
3355 struct hugepage_subpool *spool = subpool_vma(vma);
3356 unsigned long reserve, start, end;
3357 long gbl_reserve;
3358
3359 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3360 return;
3361
3362 start = vma_hugecache_offset(h, vma, vma->vm_start);
3363 end = vma_hugecache_offset(h, vma, vma->vm_end);
3364
3365 reserve = (end - start) - region_count(resv, start, end);
3366
3367 kref_put(&resv->refs, resv_map_release);
3368
3369 if (reserve) {
3370 /*
3371 * Decrement reserve counts. The global reserve count may be
3372 * adjusted if the subpool has a minimum size.
3373 */
3374 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3375 hugetlb_acct_memory(h, -gbl_reserve);
3376 }
3377 }
3378
3379 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3380 {
3381 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3382 return -EINVAL;
3383 return 0;
3384 }
3385
3386 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3387 {
3388 struct hstate *hstate = hstate_vma(vma);
3389
3390 return 1UL << huge_page_shift(hstate);
3391 }
3392
3393 /*
3394 * We cannot handle pagefaults against hugetlb pages at all. They cause
3395 * handle_mm_fault() to try to instantiate regular-sized pages in the
3396 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3397 * this far.
3398 */
3399 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3400 {
3401 BUG();
3402 return 0;
3403 }
3404
3405 /*
3406 * When a new function is introduced to vm_operations_struct and added
3407 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3408 * This is because under System V memory model, mappings created via
3409 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3410 * their original vm_ops are overwritten with shm_vm_ops.
3411 */
3412 const struct vm_operations_struct hugetlb_vm_ops = {
3413 .fault = hugetlb_vm_op_fault,
3414 .open = hugetlb_vm_op_open,
3415 .close = hugetlb_vm_op_close,
3416 .split = hugetlb_vm_op_split,
3417 .pagesize = hugetlb_vm_op_pagesize,
3418 };
3419
3420 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3421 int writable)
3422 {
3423 pte_t entry;
3424
3425 if (writable) {
3426 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3427 vma->vm_page_prot)));
3428 } else {
3429 entry = huge_pte_wrprotect(mk_huge_pte(page,
3430 vma->vm_page_prot));
3431 }
3432 entry = pte_mkyoung(entry);
3433 entry = pte_mkhuge(entry);
3434 entry = arch_make_huge_pte(entry, vma, page, writable);
3435
3436 return entry;
3437 }
3438
3439 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3440 unsigned long address, pte_t *ptep)
3441 {
3442 pte_t entry;
3443
3444 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3445 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3446 update_mmu_cache(vma, address, ptep);
3447 }
3448
3449 bool is_hugetlb_entry_migration(pte_t pte)
3450 {
3451 swp_entry_t swp;
3452
3453 if (huge_pte_none(pte) || pte_present(pte))
3454 return false;
3455 swp = pte_to_swp_entry(pte);
3456 if (non_swap_entry(swp) && is_migration_entry(swp))
3457 return true;
3458 else
3459 return false;
3460 }
3461
3462 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3463 {
3464 swp_entry_t swp;
3465
3466 if (huge_pte_none(pte) || pte_present(pte))
3467 return 0;
3468 swp = pte_to_swp_entry(pte);
3469 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3470 return 1;
3471 else
3472 return 0;
3473 }
3474
3475 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3476 struct vm_area_struct *vma)
3477 {
3478 pte_t *src_pte, *dst_pte, entry, dst_entry;
3479 struct page *ptepage;
3480 unsigned long addr;
3481 int cow;
3482 struct hstate *h = hstate_vma(vma);
3483 unsigned long sz = huge_page_size(h);
3484 struct mmu_notifier_range range;
3485 int ret = 0;
3486
3487 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3488
3489 if (cow) {
3490 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3491 vma->vm_start,
3492 vma->vm_end);
3493 mmu_notifier_invalidate_range_start(&range);
3494 }
3495
3496 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3497 spinlock_t *src_ptl, *dst_ptl;
3498 src_pte = huge_pte_offset(src, addr, sz);
3499 if (!src_pte)
3500 continue;
3501 dst_pte = huge_pte_alloc(dst, addr, sz);
3502 if (!dst_pte) {
3503 ret = -ENOMEM;
3504 break;
3505 }
3506
3507 /*
3508 * If the pagetables are shared don't copy or take references.
3509 * dst_pte == src_pte is the common case of src/dest sharing.
3510 *
3511 * However, src could have 'unshared' and dst shares with
3512 * another vma. If dst_pte !none, this implies sharing.
3513 * Check here before taking page table lock, and once again
3514 * after taking the lock below.
3515 */
3516 dst_entry = huge_ptep_get(dst_pte);
3517 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3518 continue;
3519
3520 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3521 src_ptl = huge_pte_lockptr(h, src, src_pte);
3522 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3523 entry = huge_ptep_get(src_pte);
3524 dst_entry = huge_ptep_get(dst_pte);
3525 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3526 /*
3527 * Skip if src entry none. Also, skip in the
3528 * unlikely case dst entry !none as this implies
3529 * sharing with another vma.
3530 */
3531 ;
3532 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3533 is_hugetlb_entry_hwpoisoned(entry))) {
3534 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3535
3536 if (is_write_migration_entry(swp_entry) && cow) {
3537 /*
3538 * COW mappings require pages in both
3539 * parent and child to be set to read.
3540 */
3541 make_migration_entry_read(&swp_entry);
3542 entry = swp_entry_to_pte(swp_entry);
3543 set_huge_swap_pte_at(src, addr, src_pte,
3544 entry, sz);
3545 }
3546 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3547 } else {
3548 if (cow) {
3549 /*
3550 * No need to notify as we are downgrading page
3551 * table protection not changing it to point
3552 * to a new page.
3553 *
3554 * See Documentation/vm/mmu_notifier.rst
3555 */
3556 huge_ptep_set_wrprotect(src, addr, src_pte);
3557 }
3558 entry = huge_ptep_get(src_pte);
3559 ptepage = pte_page(entry);
3560 get_page(ptepage);
3561 page_dup_rmap(ptepage, true);
3562 set_huge_pte_at(dst, addr, dst_pte, entry);
3563 hugetlb_count_add(pages_per_huge_page(h), dst);
3564 }
3565 spin_unlock(src_ptl);
3566 spin_unlock(dst_ptl);
3567 }
3568
3569 if (cow)
3570 mmu_notifier_invalidate_range_end(&range);
3571
3572 return ret;
3573 }
3574
3575 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3576 unsigned long start, unsigned long end,
3577 struct page *ref_page)
3578 {
3579 struct mm_struct *mm = vma->vm_mm;
3580 unsigned long address;
3581 pte_t *ptep;
3582 pte_t pte;
3583 spinlock_t *ptl;
3584 struct page *page;
3585 struct hstate *h = hstate_vma(vma);
3586 unsigned long sz = huge_page_size(h);
3587 struct mmu_notifier_range range;
3588
3589 WARN_ON(!is_vm_hugetlb_page(vma));
3590 BUG_ON(start & ~huge_page_mask(h));
3591 BUG_ON(end & ~huge_page_mask(h));
3592
3593 /*
3594 * This is a hugetlb vma, all the pte entries should point
3595 * to huge page.
3596 */
3597 tlb_change_page_size(tlb, sz);
3598 tlb_start_vma(tlb, vma);
3599
3600 /*
3601 * If sharing possible, alert mmu notifiers of worst case.
3602 */
3603 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3604 end);
3605 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3606 mmu_notifier_invalidate_range_start(&range);
3607 address = start;
3608 for (; address < end; address += sz) {
3609 ptep = huge_pte_offset(mm, address, sz);
3610 if (!ptep)
3611 continue;
3612
3613 ptl = huge_pte_lock(h, mm, ptep);
3614 if (huge_pmd_unshare(mm, &address, ptep)) {
3615 spin_unlock(ptl);
3616 /*
3617 * We just unmapped a page of PMDs by clearing a PUD.
3618 * The caller's TLB flush range should cover this area.
3619 */
3620 continue;
3621 }
3622
3623 pte = huge_ptep_get(ptep);
3624 if (huge_pte_none(pte)) {
3625 spin_unlock(ptl);
3626 continue;
3627 }
3628
3629 /*
3630 * Migrating hugepage or HWPoisoned hugepage is already
3631 * unmapped and its refcount is dropped, so just clear pte here.
3632 */
3633 if (unlikely(!pte_present(pte))) {
3634 huge_pte_clear(mm, address, ptep, sz);
3635 spin_unlock(ptl);
3636 continue;
3637 }
3638
3639 page = pte_page(pte);
3640 /*
3641 * If a reference page is supplied, it is because a specific
3642 * page is being unmapped, not a range. Ensure the page we
3643 * are about to unmap is the actual page of interest.
3644 */
3645 if (ref_page) {
3646 if (page != ref_page) {
3647 spin_unlock(ptl);
3648 continue;
3649 }
3650 /*
3651 * Mark the VMA as having unmapped its page so that
3652 * future faults in this VMA will fail rather than
3653 * looking like data was lost
3654 */
3655 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3656 }
3657
3658 pte = huge_ptep_get_and_clear(mm, address, ptep);
3659 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3660 if (huge_pte_dirty(pte))
3661 set_page_dirty(page);
3662
3663 hugetlb_count_sub(pages_per_huge_page(h), mm);
3664 page_remove_rmap(page, true);
3665
3666 spin_unlock(ptl);
3667 tlb_remove_page_size(tlb, page, huge_page_size(h));
3668 /*
3669 * Bail out after unmapping reference page if supplied
3670 */
3671 if (ref_page)
3672 break;
3673 }
3674 mmu_notifier_invalidate_range_end(&range);
3675 tlb_end_vma(tlb, vma);
3676 }
3677
3678 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3679 struct vm_area_struct *vma, unsigned long start,
3680 unsigned long end, struct page *ref_page)
3681 {
3682 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3683
3684 /*
3685 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3686 * test will fail on a vma being torn down, and not grab a page table
3687 * on its way out. We're lucky that the flag has such an appropriate
3688 * name, and can in fact be safely cleared here. We could clear it
3689 * before the __unmap_hugepage_range above, but all that's necessary
3690 * is to clear it before releasing the i_mmap_rwsem. This works
3691 * because in the context this is called, the VMA is about to be
3692 * destroyed and the i_mmap_rwsem is held.
3693 */
3694 vma->vm_flags &= ~VM_MAYSHARE;
3695 }
3696
3697 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3698 unsigned long end, struct page *ref_page)
3699 {
3700 struct mm_struct *mm;
3701 struct mmu_gather tlb;
3702 unsigned long tlb_start = start;
3703 unsigned long tlb_end = end;
3704
3705 /*
3706 * If shared PMDs were possibly used within this vma range, adjust
3707 * start/end for worst case tlb flushing.
3708 * Note that we can not be sure if PMDs are shared until we try to
3709 * unmap pages. However, we want to make sure TLB flushing covers
3710 * the largest possible range.
3711 */
3712 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3713
3714 mm = vma->vm_mm;
3715
3716 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3717 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3718 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3719 }
3720
3721 /*
3722 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3723 * mappping it owns the reserve page for. The intention is to unmap the page
3724 * from other VMAs and let the children be SIGKILLed if they are faulting the
3725 * same region.
3726 */
3727 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3728 struct page *page, unsigned long address)
3729 {
3730 struct hstate *h = hstate_vma(vma);
3731 struct vm_area_struct *iter_vma;
3732 struct address_space *mapping;
3733 pgoff_t pgoff;
3734
3735 /*
3736 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3737 * from page cache lookup which is in HPAGE_SIZE units.
3738 */
3739 address = address & huge_page_mask(h);
3740 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3741 vma->vm_pgoff;
3742 mapping = vma->vm_file->f_mapping;
3743
3744 /*
3745 * Take the mapping lock for the duration of the table walk. As
3746 * this mapping should be shared between all the VMAs,
3747 * __unmap_hugepage_range() is called as the lock is already held
3748 */
3749 i_mmap_lock_write(mapping);
3750 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3751 /* Do not unmap the current VMA */
3752 if (iter_vma == vma)
3753 continue;
3754
3755 /*
3756 * Shared VMAs have their own reserves and do not affect
3757 * MAP_PRIVATE accounting but it is possible that a shared
3758 * VMA is using the same page so check and skip such VMAs.
3759 */
3760 if (iter_vma->vm_flags & VM_MAYSHARE)
3761 continue;
3762
3763 /*
3764 * Unmap the page from other VMAs without their own reserves.
3765 * They get marked to be SIGKILLed if they fault in these
3766 * areas. This is because a future no-page fault on this VMA
3767 * could insert a zeroed page instead of the data existing
3768 * from the time of fork. This would look like data corruption
3769 */
3770 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3771 unmap_hugepage_range(iter_vma, address,
3772 address + huge_page_size(h), page);
3773 }
3774 i_mmap_unlock_write(mapping);
3775 }
3776
3777 /*
3778 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3779 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3780 * cannot race with other handlers or page migration.
3781 * Keep the pte_same checks anyway to make transition from the mutex easier.
3782 */
3783 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3784 unsigned long address, pte_t *ptep,
3785 struct page *pagecache_page, spinlock_t *ptl)
3786 {
3787 pte_t pte;
3788 struct hstate *h = hstate_vma(vma);
3789 struct page *old_page, *new_page;
3790 int outside_reserve = 0;
3791 vm_fault_t ret = 0;
3792 unsigned long haddr = address & huge_page_mask(h);
3793 struct mmu_notifier_range range;
3794
3795 pte = huge_ptep_get(ptep);
3796 old_page = pte_page(pte);
3797
3798 retry_avoidcopy:
3799 /* If no-one else is actually using this page, avoid the copy
3800 * and just make the page writable */
3801 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3802 page_move_anon_rmap(old_page, vma);
3803 set_huge_ptep_writable(vma, haddr, ptep);
3804 return 0;
3805 }
3806
3807 /*
3808 * If the process that created a MAP_PRIVATE mapping is about to
3809 * perform a COW due to a shared page count, attempt to satisfy
3810 * the allocation without using the existing reserves. The pagecache
3811 * page is used to determine if the reserve at this address was
3812 * consumed or not. If reserves were used, a partial faulted mapping
3813 * at the time of fork() could consume its reserves on COW instead
3814 * of the full address range.
3815 */
3816 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3817 old_page != pagecache_page)
3818 outside_reserve = 1;
3819
3820 get_page(old_page);
3821
3822 /*
3823 * Drop page table lock as buddy allocator may be called. It will
3824 * be acquired again before returning to the caller, as expected.
3825 */
3826 spin_unlock(ptl);
3827 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3828
3829 if (IS_ERR(new_page)) {
3830 /*
3831 * If a process owning a MAP_PRIVATE mapping fails to COW,
3832 * it is due to references held by a child and an insufficient
3833 * huge page pool. To guarantee the original mappers
3834 * reliability, unmap the page from child processes. The child
3835 * may get SIGKILLed if it later faults.
3836 */
3837 if (outside_reserve) {
3838 put_page(old_page);
3839 BUG_ON(huge_pte_none(pte));
3840 unmap_ref_private(mm, vma, old_page, haddr);
3841 BUG_ON(huge_pte_none(pte));
3842 spin_lock(ptl);
3843 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3844 if (likely(ptep &&
3845 pte_same(huge_ptep_get(ptep), pte)))
3846 goto retry_avoidcopy;
3847 /*
3848 * race occurs while re-acquiring page table
3849 * lock, and our job is done.
3850 */
3851 return 0;
3852 }
3853
3854 ret = vmf_error(PTR_ERR(new_page));
3855 goto out_release_old;
3856 }
3857
3858 /*
3859 * When the original hugepage is shared one, it does not have
3860 * anon_vma prepared.
3861 */
3862 if (unlikely(anon_vma_prepare(vma))) {
3863 ret = VM_FAULT_OOM;
3864 goto out_release_all;
3865 }
3866
3867 copy_user_huge_page(new_page, old_page, address, vma,
3868 pages_per_huge_page(h));
3869 __SetPageUptodate(new_page);
3870
3871 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3872 haddr + huge_page_size(h));
3873 mmu_notifier_invalidate_range_start(&range);
3874
3875 /*
3876 * Retake the page table lock to check for racing updates
3877 * before the page tables are altered
3878 */
3879 spin_lock(ptl);
3880 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3881 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3882 ClearPagePrivate(new_page);
3883
3884 /* Break COW */
3885 huge_ptep_clear_flush(vma, haddr, ptep);
3886 mmu_notifier_invalidate_range(mm, range.start, range.end);
3887 set_huge_pte_at(mm, haddr, ptep,
3888 make_huge_pte(vma, new_page, 1));
3889 page_remove_rmap(old_page, true);
3890 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3891 set_page_huge_active(new_page);
3892 /* Make the old page be freed below */
3893 new_page = old_page;
3894 }
3895 spin_unlock(ptl);
3896 mmu_notifier_invalidate_range_end(&range);
3897 out_release_all:
3898 restore_reserve_on_error(h, vma, haddr, new_page);
3899 put_page(new_page);
3900 out_release_old:
3901 put_page(old_page);
3902
3903 spin_lock(ptl); /* Caller expects lock to be held */
3904 return ret;
3905 }
3906
3907 /* Return the pagecache page at a given address within a VMA */
3908 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3909 struct vm_area_struct *vma, unsigned long address)
3910 {
3911 struct address_space *mapping;
3912 pgoff_t idx;
3913
3914 mapping = vma->vm_file->f_mapping;
3915 idx = vma_hugecache_offset(h, vma, address);
3916
3917 return find_lock_page(mapping, idx);
3918 }
3919
3920 /*
3921 * Return whether there is a pagecache page to back given address within VMA.
3922 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3923 */
3924 static bool hugetlbfs_pagecache_present(struct hstate *h,
3925 struct vm_area_struct *vma, unsigned long address)
3926 {
3927 struct address_space *mapping;
3928 pgoff_t idx;
3929 struct page *page;
3930
3931 mapping = vma->vm_file->f_mapping;
3932 idx = vma_hugecache_offset(h, vma, address);
3933
3934 page = find_get_page(mapping, idx);
3935 if (page)
3936 put_page(page);
3937 return page != NULL;
3938 }
3939
3940 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3941 pgoff_t idx)
3942 {
3943 struct inode *inode = mapping->host;
3944 struct hstate *h = hstate_inode(inode);
3945 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3946
3947 if (err)
3948 return err;
3949 ClearPagePrivate(page);
3950
3951 /*
3952 * set page dirty so that it will not be removed from cache/file
3953 * by non-hugetlbfs specific code paths.
3954 */
3955 set_page_dirty(page);
3956
3957 spin_lock(&inode->i_lock);
3958 inode->i_blocks += blocks_per_huge_page(h);
3959 spin_unlock(&inode->i_lock);
3960 return 0;
3961 }
3962
3963 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3964 struct vm_area_struct *vma,
3965 struct address_space *mapping, pgoff_t idx,
3966 unsigned long address, pte_t *ptep, unsigned int flags)
3967 {
3968 struct hstate *h = hstate_vma(vma);
3969 vm_fault_t ret = VM_FAULT_SIGBUS;
3970 int anon_rmap = 0;
3971 unsigned long size;
3972 struct page *page;
3973 pte_t new_pte;
3974 spinlock_t *ptl;
3975 unsigned long haddr = address & huge_page_mask(h);
3976 bool new_page = false;
3977
3978 /*
3979 * Currently, we are forced to kill the process in the event the
3980 * original mapper has unmapped pages from the child due to a failed
3981 * COW. Warn that such a situation has occurred as it may not be obvious
3982 */
3983 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3984 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3985 current->pid);
3986 return ret;
3987 }
3988
3989 /*
3990 * Use page lock to guard against racing truncation
3991 * before we get page_table_lock.
3992 */
3993 retry:
3994 page = find_lock_page(mapping, idx);
3995 if (!page) {
3996 size = i_size_read(mapping->host) >> huge_page_shift(h);
3997 if (idx >= size)
3998 goto out;
3999
4000 /*
4001 * Check for page in userfault range
4002 */
4003 if (userfaultfd_missing(vma)) {
4004 u32 hash;
4005 struct vm_fault vmf = {
4006 .vma = vma,
4007 .address = haddr,
4008 .flags = flags,
4009 /*
4010 * Hard to debug if it ends up being
4011 * used by a callee that assumes
4012 * something about the other
4013 * uninitialized fields... same as in
4014 * memory.c
4015 */
4016 };
4017
4018 /*
4019 * hugetlb_fault_mutex must be dropped before
4020 * handling userfault. Reacquire after handling
4021 * fault to make calling code simpler.
4022 */
4023 hash = hugetlb_fault_mutex_hash(h, mapping, idx);
4024 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4025 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4026 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4027 goto out;
4028 }
4029
4030 page = alloc_huge_page(vma, haddr, 0);
4031 if (IS_ERR(page)) {
4032 /*
4033 * Returning error will result in faulting task being
4034 * sent SIGBUS. The hugetlb fault mutex prevents two
4035 * tasks from racing to fault in the same page which
4036 * could result in false unable to allocate errors.
4037 * Page migration does not take the fault mutex, but
4038 * does a clear then write of pte's under page table
4039 * lock. Page fault code could race with migration,
4040 * notice the clear pte and try to allocate a page
4041 * here. Before returning error, get ptl and make
4042 * sure there really is no pte entry.
4043 */
4044 ptl = huge_pte_lock(h, mm, ptep);
4045 if (!huge_pte_none(huge_ptep_get(ptep))) {
4046 ret = 0;
4047 spin_unlock(ptl);
4048 goto out;
4049 }
4050 spin_unlock(ptl);
4051 ret = vmf_error(PTR_ERR(page));
4052 goto out;
4053 }
4054 clear_huge_page(page, address, pages_per_huge_page(h));
4055 __SetPageUptodate(page);
4056 new_page = true;
4057
4058 if (vma->vm_flags & VM_MAYSHARE) {
4059 int err = huge_add_to_page_cache(page, mapping, idx);
4060 if (err) {
4061 put_page(page);
4062 if (err == -EEXIST)
4063 goto retry;
4064 goto out;
4065 }
4066 } else {
4067 lock_page(page);
4068 if (unlikely(anon_vma_prepare(vma))) {
4069 ret = VM_FAULT_OOM;
4070 goto backout_unlocked;
4071 }
4072 anon_rmap = 1;
4073 }
4074 } else {
4075 /*
4076 * If memory error occurs between mmap() and fault, some process
4077 * don't have hwpoisoned swap entry for errored virtual address.
4078 * So we need to block hugepage fault by PG_hwpoison bit check.
4079 */
4080 if (unlikely(PageHWPoison(page))) {
4081 ret = VM_FAULT_HWPOISON_LARGE |
4082 VM_FAULT_SET_HINDEX(hstate_index(h));
4083 goto backout_unlocked;
4084 }
4085 }
4086
4087 /*
4088 * If we are going to COW a private mapping later, we examine the
4089 * pending reservations for this page now. This will ensure that
4090 * any allocations necessary to record that reservation occur outside
4091 * the spinlock.
4092 */
4093 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4094 if (vma_needs_reservation(h, vma, haddr) < 0) {
4095 ret = VM_FAULT_OOM;
4096 goto backout_unlocked;
4097 }
4098 /* Just decrements count, does not deallocate */
4099 vma_end_reservation(h, vma, haddr);
4100 }
4101
4102 ptl = huge_pte_lock(h, mm, ptep);
4103 size = i_size_read(mapping->host) >> huge_page_shift(h);
4104 if (idx >= size)
4105 goto backout;
4106
4107 ret = 0;
4108 if (!huge_pte_none(huge_ptep_get(ptep)))
4109 goto backout;
4110
4111 if (anon_rmap) {
4112 ClearPagePrivate(page);
4113 hugepage_add_new_anon_rmap(page, vma, haddr);
4114 } else
4115 page_dup_rmap(page, true);
4116 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4117 && (vma->vm_flags & VM_SHARED)));
4118 set_huge_pte_at(mm, haddr, ptep, new_pte);
4119
4120 hugetlb_count_add(pages_per_huge_page(h), mm);
4121 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4122 /* Optimization, do the COW without a second fault */
4123 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4124 }
4125
4126 spin_unlock(ptl);
4127
4128 /*
4129 * Only make newly allocated pages active. Existing pages found
4130 * in the pagecache could be !page_huge_active() if they have been
4131 * isolated for migration.
4132 */
4133 if (new_page)
4134 set_page_huge_active(page);
4135
4136 unlock_page(page);
4137 out:
4138 return ret;
4139
4140 backout:
4141 spin_unlock(ptl);
4142 backout_unlocked:
4143 unlock_page(page);
4144 restore_reserve_on_error(h, vma, haddr, page);
4145 put_page(page);
4146 goto out;
4147 }
4148
4149 #ifdef CONFIG_SMP
4150 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4151 pgoff_t idx)
4152 {
4153 unsigned long key[2];
4154 u32 hash;
4155
4156 key[0] = (unsigned long) mapping;
4157 key[1] = idx;
4158
4159 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4160
4161 return hash & (num_fault_mutexes - 1);
4162 }
4163 #else
4164 /*
4165 * For uniprocesor systems we always use a single mutex, so just
4166 * return 0 and avoid the hashing overhead.
4167 */
4168 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
4169 pgoff_t idx)
4170 {
4171 return 0;
4172 }
4173 #endif
4174
4175 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4176 unsigned long address, unsigned int flags)
4177 {
4178 pte_t *ptep, entry;
4179 spinlock_t *ptl;
4180 vm_fault_t ret;
4181 u32 hash;
4182 pgoff_t idx;
4183 struct page *page = NULL;
4184 struct page *pagecache_page = NULL;
4185 struct hstate *h = hstate_vma(vma);
4186 struct address_space *mapping;
4187 int need_wait_lock = 0;
4188 unsigned long haddr = address & huge_page_mask(h);
4189
4190 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4191 if (ptep) {
4192 entry = huge_ptep_get(ptep);
4193 if (unlikely(is_hugetlb_entry_migration(entry))) {
4194 migration_entry_wait_huge(vma, mm, ptep);
4195 return 0;
4196 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4197 return VM_FAULT_HWPOISON_LARGE |
4198 VM_FAULT_SET_HINDEX(hstate_index(h));
4199 } else {
4200 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4201 if (!ptep)
4202 return VM_FAULT_OOM;
4203 }
4204
4205 mapping = vma->vm_file->f_mapping;
4206 idx = vma_hugecache_offset(h, vma, haddr);
4207
4208 /*
4209 * Serialize hugepage allocation and instantiation, so that we don't
4210 * get spurious allocation failures if two CPUs race to instantiate
4211 * the same page in the page cache.
4212 */
4213 hash = hugetlb_fault_mutex_hash(h, mapping, idx);
4214 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4215
4216 entry = huge_ptep_get(ptep);
4217 if (huge_pte_none(entry)) {
4218 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4219 goto out_mutex;
4220 }
4221
4222 ret = 0;
4223
4224 /*
4225 * entry could be a migration/hwpoison entry at this point, so this
4226 * check prevents the kernel from going below assuming that we have
4227 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4228 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4229 * handle it.
4230 */
4231 if (!pte_present(entry))
4232 goto out_mutex;
4233
4234 /*
4235 * If we are going to COW the mapping later, we examine the pending
4236 * reservations for this page now. This will ensure that any
4237 * allocations necessary to record that reservation occur outside the
4238 * spinlock. For private mappings, we also lookup the pagecache
4239 * page now as it is used to determine if a reservation has been
4240 * consumed.
4241 */
4242 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4243 if (vma_needs_reservation(h, vma, haddr) < 0) {
4244 ret = VM_FAULT_OOM;
4245 goto out_mutex;
4246 }
4247 /* Just decrements count, does not deallocate */
4248 vma_end_reservation(h, vma, haddr);
4249
4250 if (!(vma->vm_flags & VM_MAYSHARE))
4251 pagecache_page = hugetlbfs_pagecache_page(h,
4252 vma, haddr);
4253 }
4254
4255 ptl = huge_pte_lock(h, mm, ptep);
4256
4257 /* Check for a racing update before calling hugetlb_cow */
4258 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4259 goto out_ptl;
4260
4261 /*
4262 * hugetlb_cow() requires page locks of pte_page(entry) and
4263 * pagecache_page, so here we need take the former one
4264 * when page != pagecache_page or !pagecache_page.
4265 */
4266 page = pte_page(entry);
4267 if (page != pagecache_page)
4268 if (!trylock_page(page)) {
4269 need_wait_lock = 1;
4270 goto out_ptl;
4271 }
4272
4273 get_page(page);
4274
4275 if (flags & FAULT_FLAG_WRITE) {
4276 if (!huge_pte_write(entry)) {
4277 ret = hugetlb_cow(mm, vma, address, ptep,
4278 pagecache_page, ptl);
4279 goto out_put_page;
4280 }
4281 entry = huge_pte_mkdirty(entry);
4282 }
4283 entry = pte_mkyoung(entry);
4284 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4285 flags & FAULT_FLAG_WRITE))
4286 update_mmu_cache(vma, haddr, ptep);
4287 out_put_page:
4288 if (page != pagecache_page)
4289 unlock_page(page);
4290 put_page(page);
4291 out_ptl:
4292 spin_unlock(ptl);
4293
4294 if (pagecache_page) {
4295 unlock_page(pagecache_page);
4296 put_page(pagecache_page);
4297 }
4298 out_mutex:
4299 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4300 /*
4301 * Generally it's safe to hold refcount during waiting page lock. But
4302 * here we just wait to defer the next page fault to avoid busy loop and
4303 * the page is not used after unlocked before returning from the current
4304 * page fault. So we are safe from accessing freed page, even if we wait
4305 * here without taking refcount.
4306 */
4307 if (need_wait_lock)
4308 wait_on_page_locked(page);
4309 return ret;
4310 }
4311
4312 /*
4313 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4314 * modifications for huge pages.
4315 */
4316 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4317 pte_t *dst_pte,
4318 struct vm_area_struct *dst_vma,
4319 unsigned long dst_addr,
4320 unsigned long src_addr,
4321 struct page **pagep)
4322 {
4323 struct address_space *mapping;
4324 pgoff_t idx;
4325 unsigned long size;
4326 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4327 struct hstate *h = hstate_vma(dst_vma);
4328 pte_t _dst_pte;
4329 spinlock_t *ptl;
4330 int ret;
4331 struct page *page;
4332
4333 if (!*pagep) {
4334 ret = -ENOMEM;
4335 page = alloc_huge_page(dst_vma, dst_addr, 0);
4336 if (IS_ERR(page))
4337 goto out;
4338
4339 ret = copy_huge_page_from_user(page,
4340 (const void __user *) src_addr,
4341 pages_per_huge_page(h), false);
4342
4343 /* fallback to copy_from_user outside mmap_sem */
4344 if (unlikely(ret)) {
4345 ret = -ENOENT;
4346 *pagep = page;
4347 /* don't free the page */
4348 goto out;
4349 }
4350 } else {
4351 page = *pagep;
4352 *pagep = NULL;
4353 }
4354
4355 /*
4356 * The memory barrier inside __SetPageUptodate makes sure that
4357 * preceding stores to the page contents become visible before
4358 * the set_pte_at() write.
4359 */
4360 __SetPageUptodate(page);
4361
4362 mapping = dst_vma->vm_file->f_mapping;
4363 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4364
4365 /*
4366 * If shared, add to page cache
4367 */
4368 if (vm_shared) {
4369 size = i_size_read(mapping->host) >> huge_page_shift(h);
4370 ret = -EFAULT;
4371 if (idx >= size)
4372 goto out_release_nounlock;
4373
4374 /*
4375 * Serialization between remove_inode_hugepages() and
4376 * huge_add_to_page_cache() below happens through the
4377 * hugetlb_fault_mutex_table that here must be hold by
4378 * the caller.
4379 */
4380 ret = huge_add_to_page_cache(page, mapping, idx);
4381 if (ret)
4382 goto out_release_nounlock;
4383 }
4384
4385 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4386 spin_lock(ptl);
4387
4388 /*
4389 * Recheck the i_size after holding PT lock to make sure not
4390 * to leave any page mapped (as page_mapped()) beyond the end
4391 * of the i_size (remove_inode_hugepages() is strict about
4392 * enforcing that). If we bail out here, we'll also leave a
4393 * page in the radix tree in the vm_shared case beyond the end
4394 * of the i_size, but remove_inode_hugepages() will take care
4395 * of it as soon as we drop the hugetlb_fault_mutex_table.
4396 */
4397 size = i_size_read(mapping->host) >> huge_page_shift(h);
4398 ret = -EFAULT;
4399 if (idx >= size)
4400 goto out_release_unlock;
4401
4402 ret = -EEXIST;
4403 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4404 goto out_release_unlock;
4405
4406 if (vm_shared) {
4407 page_dup_rmap(page, true);
4408 } else {
4409 ClearPagePrivate(page);
4410 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4411 }
4412
4413 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4414 if (dst_vma->vm_flags & VM_WRITE)
4415 _dst_pte = huge_pte_mkdirty(_dst_pte);
4416 _dst_pte = pte_mkyoung(_dst_pte);
4417
4418 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4419
4420 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4421 dst_vma->vm_flags & VM_WRITE);
4422 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4423
4424 /* No need to invalidate - it was non-present before */
4425 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4426
4427 spin_unlock(ptl);
4428 set_page_huge_active(page);
4429 if (vm_shared)
4430 unlock_page(page);
4431 ret = 0;
4432 out:
4433 return ret;
4434 out_release_unlock:
4435 spin_unlock(ptl);
4436 if (vm_shared)
4437 unlock_page(page);
4438 out_release_nounlock:
4439 put_page(page);
4440 goto out;
4441 }
4442
4443 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4444 struct page **pages, struct vm_area_struct **vmas,
4445 unsigned long *position, unsigned long *nr_pages,
4446 long i, unsigned int flags, int *nonblocking)
4447 {
4448 unsigned long pfn_offset;
4449 unsigned long vaddr = *position;
4450 unsigned long remainder = *nr_pages;
4451 struct hstate *h = hstate_vma(vma);
4452 int err = -EFAULT;
4453
4454 while (vaddr < vma->vm_end && remainder) {
4455 pte_t *pte;
4456 spinlock_t *ptl = NULL;
4457 int absent;
4458 struct page *page;
4459
4460 /*
4461 * If we have a pending SIGKILL, don't keep faulting pages and
4462 * potentially allocating memory.
4463 */
4464 if (fatal_signal_pending(current)) {
4465 remainder = 0;
4466 break;
4467 }
4468
4469 /*
4470 * Some archs (sparc64, sh*) have multiple pte_ts to
4471 * each hugepage. We have to make sure we get the
4472 * first, for the page indexing below to work.
4473 *
4474 * Note that page table lock is not held when pte is null.
4475 */
4476 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4477 huge_page_size(h));
4478 if (pte)
4479 ptl = huge_pte_lock(h, mm, pte);
4480 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4481
4482 /*
4483 * When coredumping, it suits get_dump_page if we just return
4484 * an error where there's an empty slot with no huge pagecache
4485 * to back it. This way, we avoid allocating a hugepage, and
4486 * the sparse dumpfile avoids allocating disk blocks, but its
4487 * huge holes still show up with zeroes where they need to be.
4488 */
4489 if (absent && (flags & FOLL_DUMP) &&
4490 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4491 if (pte)
4492 spin_unlock(ptl);
4493 remainder = 0;
4494 break;
4495 }
4496
4497 /*
4498 * We need call hugetlb_fault for both hugepages under migration
4499 * (in which case hugetlb_fault waits for the migration,) and
4500 * hwpoisoned hugepages (in which case we need to prevent the
4501 * caller from accessing to them.) In order to do this, we use
4502 * here is_swap_pte instead of is_hugetlb_entry_migration and
4503 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4504 * both cases, and because we can't follow correct pages
4505 * directly from any kind of swap entries.
4506 */
4507 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4508 ((flags & FOLL_WRITE) &&
4509 !huge_pte_write(huge_ptep_get(pte)))) {
4510 vm_fault_t ret;
4511 unsigned int fault_flags = 0;
4512
4513 if (pte)
4514 spin_unlock(ptl);
4515 if (flags & FOLL_WRITE)
4516 fault_flags |= FAULT_FLAG_WRITE;
4517 if (nonblocking)
4518 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4519 if (flags & FOLL_NOWAIT)
4520 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4521 FAULT_FLAG_RETRY_NOWAIT;
4522 if (flags & FOLL_TRIED) {
4523 VM_WARN_ON_ONCE(fault_flags &
4524 FAULT_FLAG_ALLOW_RETRY);
4525 fault_flags |= FAULT_FLAG_TRIED;
4526 }
4527 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4528 if (ret & VM_FAULT_ERROR) {
4529 err = vm_fault_to_errno(ret, flags);
4530 remainder = 0;
4531 break;
4532 }
4533 if (ret & VM_FAULT_RETRY) {
4534 if (nonblocking &&
4535 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4536 *nonblocking = 0;
4537 *nr_pages = 0;
4538 /*
4539 * VM_FAULT_RETRY must not return an
4540 * error, it will return zero
4541 * instead.
4542 *
4543 * No need to update "position" as the
4544 * caller will not check it after
4545 * *nr_pages is set to 0.
4546 */
4547 return i;
4548 }
4549 continue;
4550 }
4551
4552 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4553 page = pte_page(huge_ptep_get(pte));
4554
4555 /*
4556 * Instead of doing 'try_get_page()' below in the same_page
4557 * loop, just check the count once here.
4558 */
4559 if (unlikely(page_count(page) <= 0)) {
4560 if (pages) {
4561 spin_unlock(ptl);
4562 remainder = 0;
4563 err = -ENOMEM;
4564 break;
4565 }
4566 }
4567 same_page:
4568 if (pages) {
4569 pages[i] = mem_map_offset(page, pfn_offset);
4570 get_page(pages[i]);
4571 }
4572
4573 if (vmas)
4574 vmas[i] = vma;
4575
4576 vaddr += PAGE_SIZE;
4577 ++pfn_offset;
4578 --remainder;
4579 ++i;
4580 if (vaddr < vma->vm_end && remainder &&
4581 pfn_offset < pages_per_huge_page(h)) {
4582 /*
4583 * We use pfn_offset to avoid touching the pageframes
4584 * of this compound page.
4585 */
4586 goto same_page;
4587 }
4588 spin_unlock(ptl);
4589 }
4590 *nr_pages = remainder;
4591 /*
4592 * setting position is actually required only if remainder is
4593 * not zero but it's faster not to add a "if (remainder)"
4594 * branch.
4595 */
4596 *position = vaddr;
4597
4598 return i ? i : err;
4599 }
4600
4601 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4602 /*
4603 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4604 * implement this.
4605 */
4606 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4607 #endif
4608
4609 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4610 unsigned long address, unsigned long end, pgprot_t newprot)
4611 {
4612 struct mm_struct *mm = vma->vm_mm;
4613 unsigned long start = address;
4614 pte_t *ptep;
4615 pte_t pte;
4616 struct hstate *h = hstate_vma(vma);
4617 unsigned long pages = 0;
4618 bool shared_pmd = false;
4619 struct mmu_notifier_range range;
4620
4621 /*
4622 * In the case of shared PMDs, the area to flush could be beyond
4623 * start/end. Set range.start/range.end to cover the maximum possible
4624 * range if PMD sharing is possible.
4625 */
4626 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4627 0, vma, mm, start, end);
4628 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4629
4630 BUG_ON(address >= end);
4631 flush_cache_range(vma, range.start, range.end);
4632
4633 mmu_notifier_invalidate_range_start(&range);
4634 i_mmap_lock_write(vma->vm_file->f_mapping);
4635 for (; address < end; address += huge_page_size(h)) {
4636 spinlock_t *ptl;
4637 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4638 if (!ptep)
4639 continue;
4640 ptl = huge_pte_lock(h, mm, ptep);
4641 if (huge_pmd_unshare(mm, &address, ptep)) {
4642 pages++;
4643 spin_unlock(ptl);
4644 shared_pmd = true;
4645 continue;
4646 }
4647 pte = huge_ptep_get(ptep);
4648 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4649 spin_unlock(ptl);
4650 continue;
4651 }
4652 if (unlikely(is_hugetlb_entry_migration(pte))) {
4653 swp_entry_t entry = pte_to_swp_entry(pte);
4654
4655 if (is_write_migration_entry(entry)) {
4656 pte_t newpte;
4657
4658 make_migration_entry_read(&entry);
4659 newpte = swp_entry_to_pte(entry);
4660 set_huge_swap_pte_at(mm, address, ptep,
4661 newpte, huge_page_size(h));
4662 pages++;
4663 }
4664 spin_unlock(ptl);
4665 continue;
4666 }
4667 if (!huge_pte_none(pte)) {
4668 pte_t old_pte;
4669
4670 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4671 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4672 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4673 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4674 pages++;
4675 }
4676 spin_unlock(ptl);
4677 }
4678 /*
4679 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4680 * may have cleared our pud entry and done put_page on the page table:
4681 * once we release i_mmap_rwsem, another task can do the final put_page
4682 * and that page table be reused and filled with junk. If we actually
4683 * did unshare a page of pmds, flush the range corresponding to the pud.
4684 */
4685 if (shared_pmd)
4686 flush_hugetlb_tlb_range(vma, range.start, range.end);
4687 else
4688 flush_hugetlb_tlb_range(vma, start, end);
4689 /*
4690 * No need to call mmu_notifier_invalidate_range() we are downgrading
4691 * page table protection not changing it to point to a new page.
4692 *
4693 * See Documentation/vm/mmu_notifier.rst
4694 */
4695 i_mmap_unlock_write(vma->vm_file->f_mapping);
4696 mmu_notifier_invalidate_range_end(&range);
4697
4698 return pages << h->order;
4699 }
4700
4701 int hugetlb_reserve_pages(struct inode *inode,
4702 long from, long to,
4703 struct vm_area_struct *vma,
4704 vm_flags_t vm_flags)
4705 {
4706 long ret, chg;
4707 struct hstate *h = hstate_inode(inode);
4708 struct hugepage_subpool *spool = subpool_inode(inode);
4709 struct resv_map *resv_map;
4710 long gbl_reserve;
4711
4712 /* This should never happen */
4713 if (from > to) {
4714 VM_WARN(1, "%s called with a negative range\n", __func__);
4715 return -EINVAL;
4716 }
4717
4718 /*
4719 * Only apply hugepage reservation if asked. At fault time, an
4720 * attempt will be made for VM_NORESERVE to allocate a page
4721 * without using reserves
4722 */
4723 if (vm_flags & VM_NORESERVE)
4724 return 0;
4725
4726 /*
4727 * Shared mappings base their reservation on the number of pages that
4728 * are already allocated on behalf of the file. Private mappings need
4729 * to reserve the full area even if read-only as mprotect() may be
4730 * called to make the mapping read-write. Assume !vma is a shm mapping
4731 */
4732 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4733 /*
4734 * resv_map can not be NULL as hugetlb_reserve_pages is only
4735 * called for inodes for which resv_maps were created (see
4736 * hugetlbfs_get_inode).
4737 */
4738 resv_map = inode_resv_map(inode);
4739
4740 chg = region_chg(resv_map, from, to);
4741
4742 } else {
4743 resv_map = resv_map_alloc();
4744 if (!resv_map)
4745 return -ENOMEM;
4746
4747 chg = to - from;
4748
4749 set_vma_resv_map(vma, resv_map);
4750 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4751 }
4752
4753 if (chg < 0) {
4754 ret = chg;
4755 goto out_err;
4756 }
4757
4758 /*
4759 * There must be enough pages in the subpool for the mapping. If
4760 * the subpool has a minimum size, there may be some global
4761 * reservations already in place (gbl_reserve).
4762 */
4763 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4764 if (gbl_reserve < 0) {
4765 ret = -ENOSPC;
4766 goto out_err;
4767 }
4768
4769 /*
4770 * Check enough hugepages are available for the reservation.
4771 * Hand the pages back to the subpool if there are not
4772 */
4773 ret = hugetlb_acct_memory(h, gbl_reserve);
4774 if (ret < 0) {
4775 /* put back original number of pages, chg */
4776 (void)hugepage_subpool_put_pages(spool, chg);
4777 goto out_err;
4778 }
4779
4780 /*
4781 * Account for the reservations made. Shared mappings record regions
4782 * that have reservations as they are shared by multiple VMAs.
4783 * When the last VMA disappears, the region map says how much
4784 * the reservation was and the page cache tells how much of
4785 * the reservation was consumed. Private mappings are per-VMA and
4786 * only the consumed reservations are tracked. When the VMA
4787 * disappears, the original reservation is the VMA size and the
4788 * consumed reservations are stored in the map. Hence, nothing
4789 * else has to be done for private mappings here
4790 */
4791 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4792 long add = region_add(resv_map, from, to);
4793
4794 if (unlikely(chg > add)) {
4795 /*
4796 * pages in this range were added to the reserve
4797 * map between region_chg and region_add. This
4798 * indicates a race with alloc_huge_page. Adjust
4799 * the subpool and reserve counts modified above
4800 * based on the difference.
4801 */
4802 long rsv_adjust;
4803
4804 rsv_adjust = hugepage_subpool_put_pages(spool,
4805 chg - add);
4806 hugetlb_acct_memory(h, -rsv_adjust);
4807 }
4808 }
4809 return 0;
4810 out_err:
4811 if (!vma || vma->vm_flags & VM_MAYSHARE)
4812 /* Don't call region_abort if region_chg failed */
4813 if (chg >= 0)
4814 region_abort(resv_map, from, to);
4815 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4816 kref_put(&resv_map->refs, resv_map_release);
4817 return ret;
4818 }
4819
4820 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4821 long freed)
4822 {
4823 struct hstate *h = hstate_inode(inode);
4824 struct resv_map *resv_map = inode_resv_map(inode);
4825 long chg = 0;
4826 struct hugepage_subpool *spool = subpool_inode(inode);
4827 long gbl_reserve;
4828
4829 /*
4830 * Since this routine can be called in the evict inode path for all
4831 * hugetlbfs inodes, resv_map could be NULL.
4832 */
4833 if (resv_map) {
4834 chg = region_del(resv_map, start, end);
4835 /*
4836 * region_del() can fail in the rare case where a region
4837 * must be split and another region descriptor can not be
4838 * allocated. If end == LONG_MAX, it will not fail.
4839 */
4840 if (chg < 0)
4841 return chg;
4842 }
4843
4844 spin_lock(&inode->i_lock);
4845 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4846 spin_unlock(&inode->i_lock);
4847
4848 /*
4849 * If the subpool has a minimum size, the number of global
4850 * reservations to be released may be adjusted.
4851 */
4852 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4853 hugetlb_acct_memory(h, -gbl_reserve);
4854
4855 return 0;
4856 }
4857
4858 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4859 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4860 struct vm_area_struct *vma,
4861 unsigned long addr, pgoff_t idx)
4862 {
4863 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4864 svma->vm_start;
4865 unsigned long sbase = saddr & PUD_MASK;
4866 unsigned long s_end = sbase + PUD_SIZE;
4867
4868 /* Allow segments to share if only one is marked locked */
4869 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4870 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4871
4872 /*
4873 * match the virtual addresses, permission and the alignment of the
4874 * page table page.
4875 */
4876 if (pmd_index(addr) != pmd_index(saddr) ||
4877 vm_flags != svm_flags ||
4878 sbase < svma->vm_start || svma->vm_end < s_end)
4879 return 0;
4880
4881 return saddr;
4882 }
4883
4884 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4885 {
4886 unsigned long base = addr & PUD_MASK;
4887 unsigned long end = base + PUD_SIZE;
4888
4889 /*
4890 * check on proper vm_flags and page table alignment
4891 */
4892 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4893 return true;
4894 return false;
4895 }
4896
4897 /*
4898 * Determine if start,end range within vma could be mapped by shared pmd.
4899 * If yes, adjust start and end to cover range associated with possible
4900 * shared pmd mappings.
4901 */
4902 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4903 unsigned long *start, unsigned long *end)
4904 {
4905 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
4906 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
4907
4908 /*
4909 * vma need span at least one aligned PUD size and the start,end range
4910 * must at least partialy within it.
4911 */
4912 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
4913 (*end <= v_start) || (*start >= v_end))
4914 return;
4915
4916 /* Extend the range to be PUD aligned for a worst case scenario */
4917 if (*start > v_start)
4918 *start = ALIGN_DOWN(*start, PUD_SIZE);
4919
4920 if (*end < v_end)
4921 *end = ALIGN(*end, PUD_SIZE);
4922 }
4923
4924 /*
4925 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4926 * and returns the corresponding pte. While this is not necessary for the
4927 * !shared pmd case because we can allocate the pmd later as well, it makes the
4928 * code much cleaner. pmd allocation is essential for the shared case because
4929 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4930 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4931 * bad pmd for sharing.
4932 */
4933 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4934 {
4935 struct vm_area_struct *vma = find_vma(mm, addr);
4936 struct address_space *mapping = vma->vm_file->f_mapping;
4937 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4938 vma->vm_pgoff;
4939 struct vm_area_struct *svma;
4940 unsigned long saddr;
4941 pte_t *spte = NULL;
4942 pte_t *pte;
4943 spinlock_t *ptl;
4944
4945 if (!vma_shareable(vma, addr))
4946 return (pte_t *)pmd_alloc(mm, pud, addr);
4947
4948 i_mmap_lock_read(mapping);
4949 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4950 if (svma == vma)
4951 continue;
4952
4953 saddr = page_table_shareable(svma, vma, addr, idx);
4954 if (saddr) {
4955 spte = huge_pte_offset(svma->vm_mm, saddr,
4956 vma_mmu_pagesize(svma));
4957 if (spte) {
4958 get_page(virt_to_page(spte));
4959 break;
4960 }
4961 }
4962 }
4963
4964 if (!spte)
4965 goto out;
4966
4967 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4968 if (pud_none(*pud)) {
4969 pud_populate(mm, pud,
4970 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4971 mm_inc_nr_pmds(mm);
4972 } else {
4973 put_page(virt_to_page(spte));
4974 }
4975 spin_unlock(ptl);
4976 out:
4977 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4978 i_mmap_unlock_read(mapping);
4979 return pte;
4980 }
4981
4982 /*
4983 * unmap huge page backed by shared pte.
4984 *
4985 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4986 * indicated by page_count > 1, unmap is achieved by clearing pud and
4987 * decrementing the ref count. If count == 1, the pte page is not shared.
4988 *
4989 * called with page table lock held.
4990 *
4991 * returns: 1 successfully unmapped a shared pte page
4992 * 0 the underlying pte page is not shared, or it is the last user
4993 */
4994 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4995 {
4996 pgd_t *pgd = pgd_offset(mm, *addr);
4997 p4d_t *p4d = p4d_offset(pgd, *addr);
4998 pud_t *pud = pud_offset(p4d, *addr);
4999
5000 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5001 if (page_count(virt_to_page(ptep)) == 1)
5002 return 0;
5003
5004 pud_clear(pud);
5005 put_page(virt_to_page(ptep));
5006 mm_dec_nr_pmds(mm);
5007 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5008 return 1;
5009 }
5010 #define want_pmd_share() (1)
5011 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5012 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5013 {
5014 return NULL;
5015 }
5016
5017 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5018 {
5019 return 0;
5020 }
5021
5022 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5023 unsigned long *start, unsigned long *end)
5024 {
5025 }
5026 #define want_pmd_share() (0)
5027 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5028
5029 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5030 pte_t *huge_pte_alloc(struct mm_struct *mm,
5031 unsigned long addr, unsigned long sz)
5032 {
5033 pgd_t *pgd;
5034 p4d_t *p4d;
5035 pud_t *pud;
5036 pte_t *pte = NULL;
5037
5038 pgd = pgd_offset(mm, addr);
5039 p4d = p4d_alloc(mm, pgd, addr);
5040 if (!p4d)
5041 return NULL;
5042 pud = pud_alloc(mm, p4d, addr);
5043 if (pud) {
5044 if (sz == PUD_SIZE) {
5045 pte = (pte_t *)pud;
5046 } else {
5047 BUG_ON(sz != PMD_SIZE);
5048 if (want_pmd_share() && pud_none(*pud))
5049 pte = huge_pmd_share(mm, addr, pud);
5050 else
5051 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5052 }
5053 }
5054 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5055
5056 return pte;
5057 }
5058
5059 /*
5060 * huge_pte_offset() - Walk the page table to resolve the hugepage
5061 * entry at address @addr
5062 *
5063 * Return: Pointer to page table or swap entry (PUD or PMD) for
5064 * address @addr, or NULL if a p*d_none() entry is encountered and the
5065 * size @sz doesn't match the hugepage size at this level of the page
5066 * table.
5067 */
5068 pte_t *huge_pte_offset(struct mm_struct *mm,
5069 unsigned long addr, unsigned long sz)
5070 {
5071 pgd_t *pgd;
5072 p4d_t *p4d;
5073 pud_t *pud, pud_entry;
5074 pmd_t *pmd, pmd_entry;
5075
5076 pgd = pgd_offset(mm, addr);
5077 if (!pgd_present(*pgd))
5078 return NULL;
5079 p4d = p4d_offset(pgd, addr);
5080 if (!p4d_present(*p4d))
5081 return NULL;
5082
5083 pud = pud_offset(p4d, addr);
5084 pud_entry = READ_ONCE(*pud);
5085 if (sz != PUD_SIZE && pud_none(pud_entry))
5086 return NULL;
5087 /* hugepage or swap? */
5088 if (pud_huge(pud_entry) || !pud_present(pud_entry))
5089 return (pte_t *)pud;
5090
5091 pmd = pmd_offset(pud, addr);
5092 pmd_entry = READ_ONCE(*pmd);
5093 if (sz != PMD_SIZE && pmd_none(pmd_entry))
5094 return NULL;
5095 /* hugepage or swap? */
5096 if (pmd_huge(pmd_entry) || !pmd_present(pmd_entry))
5097 return (pte_t *)pmd;
5098
5099 return NULL;
5100 }
5101
5102 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5103
5104 /*
5105 * These functions are overwritable if your architecture needs its own
5106 * behavior.
5107 */
5108 struct page * __weak
5109 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5110 int write)
5111 {
5112 return ERR_PTR(-EINVAL);
5113 }
5114
5115 struct page * __weak
5116 follow_huge_pd(struct vm_area_struct *vma,
5117 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5118 {
5119 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5120 return NULL;
5121 }
5122
5123 struct page * __weak
5124 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5125 pmd_t *pmd, int flags)
5126 {
5127 struct page *page = NULL;
5128 spinlock_t *ptl;
5129 pte_t pte;
5130 retry:
5131 ptl = pmd_lockptr(mm, pmd);
5132 spin_lock(ptl);
5133 /*
5134 * make sure that the address range covered by this pmd is not
5135 * unmapped from other threads.
5136 */
5137 if (!pmd_huge(*pmd))
5138 goto out;
5139 pte = huge_ptep_get((pte_t *)pmd);
5140 if (pte_present(pte)) {
5141 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5142 if (flags & FOLL_GET)
5143 get_page(page);
5144 } else {
5145 if (is_hugetlb_entry_migration(pte)) {
5146 spin_unlock(ptl);
5147 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5148 goto retry;
5149 }
5150 /*
5151 * hwpoisoned entry is treated as no_page_table in
5152 * follow_page_mask().
5153 */
5154 }
5155 out:
5156 spin_unlock(ptl);
5157 return page;
5158 }
5159
5160 struct page * __weak
5161 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5162 pud_t *pud, int flags)
5163 {
5164 if (flags & FOLL_GET)
5165 return NULL;
5166
5167 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5168 }
5169
5170 struct page * __weak
5171 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5172 {
5173 if (flags & FOLL_GET)
5174 return NULL;
5175
5176 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5177 }
5178
5179 bool isolate_huge_page(struct page *page, struct list_head *list)
5180 {
5181 bool ret = true;
5182
5183 spin_lock(&hugetlb_lock);
5184 if (!PageHeadHuge(page) || !page_huge_active(page) ||
5185 !get_page_unless_zero(page)) {
5186 ret = false;
5187 goto unlock;
5188 }
5189 clear_page_huge_active(page);
5190 list_move_tail(&page->lru, list);
5191 unlock:
5192 spin_unlock(&hugetlb_lock);
5193 return ret;
5194 }
5195
5196 void putback_active_hugepage(struct page *page)
5197 {
5198 VM_BUG_ON_PAGE(!PageHead(page), page);
5199 spin_lock(&hugetlb_lock);
5200 set_page_huge_active(page);
5201 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5202 spin_unlock(&hugetlb_lock);
5203 put_page(page);
5204 }
5205
5206 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5207 {
5208 struct hstate *h = page_hstate(oldpage);
5209
5210 hugetlb_cgroup_migrate(oldpage, newpage);
5211 set_page_owner_migrate_reason(newpage, reason);
5212
5213 /*
5214 * transfer temporary state of the new huge page. This is
5215 * reverse to other transitions because the newpage is going to
5216 * be final while the old one will be freed so it takes over
5217 * the temporary status.
5218 *
5219 * Also note that we have to transfer the per-node surplus state
5220 * here as well otherwise the global surplus count will not match
5221 * the per-node's.
5222 */
5223 if (PageHugeTemporary(newpage)) {
5224 int old_nid = page_to_nid(oldpage);
5225 int new_nid = page_to_nid(newpage);
5226
5227 SetPageHugeTemporary(oldpage);
5228 ClearPageHugeTemporary(newpage);
5229
5230 spin_lock(&hugetlb_lock);
5231 if (h->surplus_huge_pages_node[old_nid]) {
5232 h->surplus_huge_pages_node[old_nid]--;
5233 h->surplus_huge_pages_node[new_nid]++;
5234 }
5235 spin_unlock(&hugetlb_lock);
5236 }
5237 }