]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/hugetlb.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include <linux/userfaultfd_k.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56
57 /*
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
60 */
61 DEFINE_SPINLOCK(hugetlb_lock);
62
63 /*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 {
75 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77 spin_unlock(&spool->lock);
78
79 /* If no pages are used, and no other handles to the subpool
80 * remain, give up any reservations mased on minimum size and
81 * free the subpool */
82 if (free) {
83 if (spool->min_hpages != -1)
84 hugetlb_acct_memory(spool->hstate,
85 -spool->min_hpages);
86 kfree(spool);
87 }
88 }
89
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91 long min_hpages)
92 {
93 struct hugepage_subpool *spool;
94
95 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96 if (!spool)
97 return NULL;
98
99 spin_lock_init(&spool->lock);
100 spool->count = 1;
101 spool->max_hpages = max_hpages;
102 spool->hstate = h;
103 spool->min_hpages = min_hpages;
104
105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106 kfree(spool);
107 return NULL;
108 }
109 spool->rsv_hpages = min_hpages;
110
111 return spool;
112 }
113
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 {
116 spin_lock(&spool->lock);
117 BUG_ON(!spool->count);
118 spool->count--;
119 unlock_or_release_subpool(spool);
120 }
121
122 /*
123 * Subpool accounting for allocating and reserving pages.
124 * Return -ENOMEM if there are not enough resources to satisfy the
125 * the request. Otherwise, return the number of pages by which the
126 * global pools must be adjusted (upward). The returned value may
127 * only be different than the passed value (delta) in the case where
128 * a subpool minimum size must be manitained.
129 */
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131 long delta)
132 {
133 long ret = delta;
134
135 if (!spool)
136 return ret;
137
138 spin_lock(&spool->lock);
139
140 if (spool->max_hpages != -1) { /* maximum size accounting */
141 if ((spool->used_hpages + delta) <= spool->max_hpages)
142 spool->used_hpages += delta;
143 else {
144 ret = -ENOMEM;
145 goto unlock_ret;
146 }
147 }
148
149 /* minimum size accounting */
150 if (spool->min_hpages != -1 && spool->rsv_hpages) {
151 if (delta > spool->rsv_hpages) {
152 /*
153 * Asking for more reserves than those already taken on
154 * behalf of subpool. Return difference.
155 */
156 ret = delta - spool->rsv_hpages;
157 spool->rsv_hpages = 0;
158 } else {
159 ret = 0; /* reserves already accounted for */
160 spool->rsv_hpages -= delta;
161 }
162 }
163
164 unlock_ret:
165 spin_unlock(&spool->lock);
166 return ret;
167 }
168
169 /*
170 * Subpool accounting for freeing and unreserving pages.
171 * Return the number of global page reservations that must be dropped.
172 * The return value may only be different than the passed value (delta)
173 * in the case where a subpool minimum size must be maintained.
174 */
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176 long delta)
177 {
178 long ret = delta;
179
180 if (!spool)
181 return delta;
182
183 spin_lock(&spool->lock);
184
185 if (spool->max_hpages != -1) /* maximum size accounting */
186 spool->used_hpages -= delta;
187
188 /* minimum size accounting */
189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190 if (spool->rsv_hpages + delta <= spool->min_hpages)
191 ret = 0;
192 else
193 ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195 spool->rsv_hpages += delta;
196 if (spool->rsv_hpages > spool->min_hpages)
197 spool->rsv_hpages = spool->min_hpages;
198 }
199
200 /*
201 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 * quota reference, free it now.
203 */
204 unlock_or_release_subpool(spool);
205
206 return ret;
207 }
208
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 {
211 return HUGETLBFS_SB(inode->i_sb)->spool;
212 }
213
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 {
216 return subpool_inode(file_inode(vma->vm_file));
217 }
218
219 /*
220 * Region tracking -- allows tracking of reservations and instantiated pages
221 * across the pages in a mapping.
222 *
223 * The region data structures are embedded into a resv_map and protected
224 * by a resv_map's lock. The set of regions within the resv_map represent
225 * reservations for huge pages, or huge pages that have already been
226 * instantiated within the map. The from and to elements are huge page
227 * indicies into the associated mapping. from indicates the starting index
228 * of the region. to represents the first index past the end of the region.
229 *
230 * For example, a file region structure with from == 0 and to == 4 represents
231 * four huge pages in a mapping. It is important to note that the to element
232 * represents the first element past the end of the region. This is used in
233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 *
235 * Interval notation of the form [from, to) will be used to indicate that
236 * the endpoint from is inclusive and to is exclusive.
237 */
238 struct file_region {
239 struct list_head link;
240 long from;
241 long to;
242 };
243
244 /*
245 * Add the huge page range represented by [f, t) to the reserve
246 * map. In the normal case, existing regions will be expanded
247 * to accommodate the specified range. Sufficient regions should
248 * exist for expansion due to the previous call to region_chg
249 * with the same range. However, it is possible that region_del
250 * could have been called after region_chg and modifed the map
251 * in such a way that no region exists to be expanded. In this
252 * case, pull a region descriptor from the cache associated with
253 * the map and use that for the new range.
254 *
255 * Return the number of new huge pages added to the map. This
256 * number is greater than or equal to zero.
257 */
258 static long region_add(struct resv_map *resv, long f, long t)
259 {
260 struct list_head *head = &resv->regions;
261 struct file_region *rg, *nrg, *trg;
262 long add = 0;
263
264 spin_lock(&resv->lock);
265 /* Locate the region we are either in or before. */
266 list_for_each_entry(rg, head, link)
267 if (f <= rg->to)
268 break;
269
270 /*
271 * If no region exists which can be expanded to include the
272 * specified range, the list must have been modified by an
273 * interleving call to region_del(). Pull a region descriptor
274 * from the cache and use it for this range.
275 */
276 if (&rg->link == head || t < rg->from) {
277 VM_BUG_ON(resv->region_cache_count <= 0);
278
279 resv->region_cache_count--;
280 nrg = list_first_entry(&resv->region_cache, struct file_region,
281 link);
282 list_del(&nrg->link);
283
284 nrg->from = f;
285 nrg->to = t;
286 list_add(&nrg->link, rg->link.prev);
287
288 add += t - f;
289 goto out_locked;
290 }
291
292 /* Round our left edge to the current segment if it encloses us. */
293 if (f > rg->from)
294 f = rg->from;
295
296 /* Check for and consume any regions we now overlap with. */
297 nrg = rg;
298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 if (&rg->link == head)
300 break;
301 if (rg->from > t)
302 break;
303
304 /* If this area reaches higher then extend our area to
305 * include it completely. If this is not the first area
306 * which we intend to reuse, free it. */
307 if (rg->to > t)
308 t = rg->to;
309 if (rg != nrg) {
310 /* Decrement return value by the deleted range.
311 * Another range will span this area so that by
312 * end of routine add will be >= zero
313 */
314 add -= (rg->to - rg->from);
315 list_del(&rg->link);
316 kfree(rg);
317 }
318 }
319
320 add += (nrg->from - f); /* Added to beginning of region */
321 nrg->from = f;
322 add += t - nrg->to; /* Added to end of region */
323 nrg->to = t;
324
325 out_locked:
326 resv->adds_in_progress--;
327 spin_unlock(&resv->lock);
328 VM_BUG_ON(add < 0);
329 return add;
330 }
331
332 /*
333 * Examine the existing reserve map and determine how many
334 * huge pages in the specified range [f, t) are NOT currently
335 * represented. This routine is called before a subsequent
336 * call to region_add that will actually modify the reserve
337 * map to add the specified range [f, t). region_chg does
338 * not change the number of huge pages represented by the
339 * map. However, if the existing regions in the map can not
340 * be expanded to represent the new range, a new file_region
341 * structure is added to the map as a placeholder. This is
342 * so that the subsequent region_add call will have all the
343 * regions it needs and will not fail.
344 *
345 * Upon entry, region_chg will also examine the cache of region descriptors
346 * associated with the map. If there are not enough descriptors cached, one
347 * will be allocated for the in progress add operation.
348 *
349 * Returns the number of huge pages that need to be added to the existing
350 * reservation map for the range [f, t). This number is greater or equal to
351 * zero. -ENOMEM is returned if a new file_region structure or cache entry
352 * is needed and can not be allocated.
353 */
354 static long region_chg(struct resv_map *resv, long f, long t)
355 {
356 struct list_head *head = &resv->regions;
357 struct file_region *rg, *nrg = NULL;
358 long chg = 0;
359
360 retry:
361 spin_lock(&resv->lock);
362 retry_locked:
363 resv->adds_in_progress++;
364
365 /*
366 * Check for sufficient descriptors in the cache to accommodate
367 * the number of in progress add operations.
368 */
369 if (resv->adds_in_progress > resv->region_cache_count) {
370 struct file_region *trg;
371
372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 /* Must drop lock to allocate a new descriptor. */
374 resv->adds_in_progress--;
375 spin_unlock(&resv->lock);
376
377 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378 if (!trg) {
379 kfree(nrg);
380 return -ENOMEM;
381 }
382
383 spin_lock(&resv->lock);
384 list_add(&trg->link, &resv->region_cache);
385 resv->region_cache_count++;
386 goto retry_locked;
387 }
388
389 /* Locate the region we are before or in. */
390 list_for_each_entry(rg, head, link)
391 if (f <= rg->to)
392 break;
393
394 /* If we are below the current region then a new region is required.
395 * Subtle, allocate a new region at the position but make it zero
396 * size such that we can guarantee to record the reservation. */
397 if (&rg->link == head || t < rg->from) {
398 if (!nrg) {
399 resv->adds_in_progress--;
400 spin_unlock(&resv->lock);
401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402 if (!nrg)
403 return -ENOMEM;
404
405 nrg->from = f;
406 nrg->to = f;
407 INIT_LIST_HEAD(&nrg->link);
408 goto retry;
409 }
410
411 list_add(&nrg->link, rg->link.prev);
412 chg = t - f;
413 goto out_nrg;
414 }
415
416 /* Round our left edge to the current segment if it encloses us. */
417 if (f > rg->from)
418 f = rg->from;
419 chg = t - f;
420
421 /* Check for and consume any regions we now overlap with. */
422 list_for_each_entry(rg, rg->link.prev, link) {
423 if (&rg->link == head)
424 break;
425 if (rg->from > t)
426 goto out;
427
428 /* We overlap with this area, if it extends further than
429 * us then we must extend ourselves. Account for its
430 * existing reservation. */
431 if (rg->to > t) {
432 chg += rg->to - t;
433 t = rg->to;
434 }
435 chg -= rg->to - rg->from;
436 }
437
438 out:
439 spin_unlock(&resv->lock);
440 /* We already know we raced and no longer need the new region */
441 kfree(nrg);
442 return chg;
443 out_nrg:
444 spin_unlock(&resv->lock);
445 return chg;
446 }
447
448 /*
449 * Abort the in progress add operation. The adds_in_progress field
450 * of the resv_map keeps track of the operations in progress between
451 * calls to region_chg and region_add. Operations are sometimes
452 * aborted after the call to region_chg. In such cases, region_abort
453 * is called to decrement the adds_in_progress counter.
454 *
455 * NOTE: The range arguments [f, t) are not needed or used in this
456 * routine. They are kept to make reading the calling code easier as
457 * arguments will match the associated region_chg call.
458 */
459 static void region_abort(struct resv_map *resv, long f, long t)
460 {
461 spin_lock(&resv->lock);
462 VM_BUG_ON(!resv->region_cache_count);
463 resv->adds_in_progress--;
464 spin_unlock(&resv->lock);
465 }
466
467 /*
468 * Delete the specified range [f, t) from the reserve map. If the
469 * t parameter is LONG_MAX, this indicates that ALL regions after f
470 * should be deleted. Locate the regions which intersect [f, t)
471 * and either trim, delete or split the existing regions.
472 *
473 * Returns the number of huge pages deleted from the reserve map.
474 * In the normal case, the return value is zero or more. In the
475 * case where a region must be split, a new region descriptor must
476 * be allocated. If the allocation fails, -ENOMEM will be returned.
477 * NOTE: If the parameter t == LONG_MAX, then we will never split
478 * a region and possibly return -ENOMEM. Callers specifying
479 * t == LONG_MAX do not need to check for -ENOMEM error.
480 */
481 static long region_del(struct resv_map *resv, long f, long t)
482 {
483 struct list_head *head = &resv->regions;
484 struct file_region *rg, *trg;
485 struct file_region *nrg = NULL;
486 long del = 0;
487
488 retry:
489 spin_lock(&resv->lock);
490 list_for_each_entry_safe(rg, trg, head, link) {
491 /*
492 * Skip regions before the range to be deleted. file_region
493 * ranges are normally of the form [from, to). However, there
494 * may be a "placeholder" entry in the map which is of the form
495 * (from, to) with from == to. Check for placeholder entries
496 * at the beginning of the range to be deleted.
497 */
498 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499 continue;
500
501 if (rg->from >= t)
502 break;
503
504 if (f > rg->from && t < rg->to) { /* Must split region */
505 /*
506 * Check for an entry in the cache before dropping
507 * lock and attempting allocation.
508 */
509 if (!nrg &&
510 resv->region_cache_count > resv->adds_in_progress) {
511 nrg = list_first_entry(&resv->region_cache,
512 struct file_region,
513 link);
514 list_del(&nrg->link);
515 resv->region_cache_count--;
516 }
517
518 if (!nrg) {
519 spin_unlock(&resv->lock);
520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521 if (!nrg)
522 return -ENOMEM;
523 goto retry;
524 }
525
526 del += t - f;
527
528 /* New entry for end of split region */
529 nrg->from = t;
530 nrg->to = rg->to;
531 INIT_LIST_HEAD(&nrg->link);
532
533 /* Original entry is trimmed */
534 rg->to = f;
535
536 list_add(&nrg->link, &rg->link);
537 nrg = NULL;
538 break;
539 }
540
541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 del += rg->to - rg->from;
543 list_del(&rg->link);
544 kfree(rg);
545 continue;
546 }
547
548 if (f <= rg->from) { /* Trim beginning of region */
549 del += t - rg->from;
550 rg->from = t;
551 } else { /* Trim end of region */
552 del += rg->to - f;
553 rg->to = f;
554 }
555 }
556
557 spin_unlock(&resv->lock);
558 kfree(nrg);
559 return del;
560 }
561
562 /*
563 * A rare out of memory error was encountered which prevented removal of
564 * the reserve map region for a page. The huge page itself was free'ed
565 * and removed from the page cache. This routine will adjust the subpool
566 * usage count, and the global reserve count if needed. By incrementing
567 * these counts, the reserve map entry which could not be deleted will
568 * appear as a "reserved" entry instead of simply dangling with incorrect
569 * counts.
570 */
571 void hugetlb_fix_reserve_counts(struct inode *inode)
572 {
573 struct hugepage_subpool *spool = subpool_inode(inode);
574 long rsv_adjust;
575
576 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577 if (rsv_adjust) {
578 struct hstate *h = hstate_inode(inode);
579
580 hugetlb_acct_memory(h, 1);
581 }
582 }
583
584 /*
585 * Count and return the number of huge pages in the reserve map
586 * that intersect with the range [f, t).
587 */
588 static long region_count(struct resv_map *resv, long f, long t)
589 {
590 struct list_head *head = &resv->regions;
591 struct file_region *rg;
592 long chg = 0;
593
594 spin_lock(&resv->lock);
595 /* Locate each segment we overlap with, and count that overlap. */
596 list_for_each_entry(rg, head, link) {
597 long seg_from;
598 long seg_to;
599
600 if (rg->to <= f)
601 continue;
602 if (rg->from >= t)
603 break;
604
605 seg_from = max(rg->from, f);
606 seg_to = min(rg->to, t);
607
608 chg += seg_to - seg_from;
609 }
610 spin_unlock(&resv->lock);
611
612 return chg;
613 }
614
615 /*
616 * Convert the address within this vma to the page offset within
617 * the mapping, in pagecache page units; huge pages here.
618 */
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620 struct vm_area_struct *vma, unsigned long address)
621 {
622 return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 (vma->vm_pgoff >> huge_page_order(h));
624 }
625
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 unsigned long address)
628 {
629 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 }
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
632
633 /*
634 * Return the size of the pages allocated when backing a VMA. In the majority
635 * cases this will be same size as used by the page table entries.
636 */
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 {
639 struct hstate *hstate;
640
641 if (!is_vm_hugetlb_page(vma))
642 return PAGE_SIZE;
643
644 hstate = hstate_vma(vma);
645
646 return 1UL << huge_page_shift(hstate);
647 }
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649
650 /*
651 * Return the page size being used by the MMU to back a VMA. In the majority
652 * of cases, the page size used by the kernel matches the MMU size. On
653 * architectures where it differs, an architecture-specific version of this
654 * function is required.
655 */
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 {
659 return vma_kernel_pagesize(vma);
660 }
661 #endif
662
663 /*
664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
665 * bits of the reservation map pointer, which are always clear due to
666 * alignment.
667 */
668 #define HPAGE_RESV_OWNER (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671
672 /*
673 * These helpers are used to track how many pages are reserved for
674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675 * is guaranteed to have their future faults succeed.
676 *
677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678 * the reserve counters are updated with the hugetlb_lock held. It is safe
679 * to reset the VMA at fork() time as it is not in use yet and there is no
680 * chance of the global counters getting corrupted as a result of the values.
681 *
682 * The private mapping reservation is represented in a subtly different
683 * manner to a shared mapping. A shared mapping has a region map associated
684 * with the underlying file, this region map represents the backing file
685 * pages which have ever had a reservation assigned which this persists even
686 * after the page is instantiated. A private mapping has a region map
687 * associated with the original mmap which is attached to all VMAs which
688 * reference it, this region map represents those offsets which have consumed
689 * reservation ie. where pages have been instantiated.
690 */
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 {
693 return (unsigned long)vma->vm_private_data;
694 }
695
696 static void set_vma_private_data(struct vm_area_struct *vma,
697 unsigned long value)
698 {
699 vma->vm_private_data = (void *)value;
700 }
701
702 struct resv_map *resv_map_alloc(void)
703 {
704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707 if (!resv_map || !rg) {
708 kfree(resv_map);
709 kfree(rg);
710 return NULL;
711 }
712
713 kref_init(&resv_map->refs);
714 spin_lock_init(&resv_map->lock);
715 INIT_LIST_HEAD(&resv_map->regions);
716
717 resv_map->adds_in_progress = 0;
718
719 INIT_LIST_HEAD(&resv_map->region_cache);
720 list_add(&rg->link, &resv_map->region_cache);
721 resv_map->region_cache_count = 1;
722
723 return resv_map;
724 }
725
726 void resv_map_release(struct kref *ref)
727 {
728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729 struct list_head *head = &resv_map->region_cache;
730 struct file_region *rg, *trg;
731
732 /* Clear out any active regions before we release the map. */
733 region_del(resv_map, 0, LONG_MAX);
734
735 /* ... and any entries left in the cache */
736 list_for_each_entry_safe(rg, trg, head, link) {
737 list_del(&rg->link);
738 kfree(rg);
739 }
740
741 VM_BUG_ON(resv_map->adds_in_progress);
742
743 kfree(resv_map);
744 }
745
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 {
748 return inode->i_mapping->private_data;
749 }
750
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 {
753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754 if (vma->vm_flags & VM_MAYSHARE) {
755 struct address_space *mapping = vma->vm_file->f_mapping;
756 struct inode *inode = mapping->host;
757
758 return inode_resv_map(inode);
759
760 } else {
761 return (struct resv_map *)(get_vma_private_data(vma) &
762 ~HPAGE_RESV_MASK);
763 }
764 }
765
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 {
768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770
771 set_vma_private_data(vma, (get_vma_private_data(vma) &
772 HPAGE_RESV_MASK) | (unsigned long)map);
773 }
774
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 {
777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779
780 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 }
782
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 {
785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786
787 return (get_vma_private_data(vma) & flag) != 0;
788 }
789
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 {
793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794 if (!(vma->vm_flags & VM_MAYSHARE))
795 vma->vm_private_data = (void *)0;
796 }
797
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 {
801 if (vma->vm_flags & VM_NORESERVE) {
802 /*
803 * This address is already reserved by other process(chg == 0),
804 * so, we should decrement reserved count. Without decrementing,
805 * reserve count remains after releasing inode, because this
806 * allocated page will go into page cache and is regarded as
807 * coming from reserved pool in releasing step. Currently, we
808 * don't have any other solution to deal with this situation
809 * properly, so add work-around here.
810 */
811 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812 return true;
813 else
814 return false;
815 }
816
817 /* Shared mappings always use reserves */
818 if (vma->vm_flags & VM_MAYSHARE) {
819 /*
820 * We know VM_NORESERVE is not set. Therefore, there SHOULD
821 * be a region map for all pages. The only situation where
822 * there is no region map is if a hole was punched via
823 * fallocate. In this case, there really are no reverves to
824 * use. This situation is indicated if chg != 0.
825 */
826 if (chg)
827 return false;
828 else
829 return true;
830 }
831
832 /*
833 * Only the process that called mmap() has reserves for
834 * private mappings.
835 */
836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 /*
838 * Like the shared case above, a hole punch or truncate
839 * could have been performed on the private mapping.
840 * Examine the value of chg to determine if reserves
841 * actually exist or were previously consumed.
842 * Very Subtle - The value of chg comes from a previous
843 * call to vma_needs_reserves(). The reserve map for
844 * private mappings has different (opposite) semantics
845 * than that of shared mappings. vma_needs_reserves()
846 * has already taken this difference in semantics into
847 * account. Therefore, the meaning of chg is the same
848 * as in the shared case above. Code could easily be
849 * combined, but keeping it separate draws attention to
850 * subtle differences.
851 */
852 if (chg)
853 return false;
854 else
855 return true;
856 }
857
858 return false;
859 }
860
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 {
863 int nid = page_to_nid(page);
864 list_move(&page->lru, &h->hugepage_freelists[nid]);
865 h->free_huge_pages++;
866 h->free_huge_pages_node[nid]++;
867 }
868
869 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
870 {
871 struct page *page;
872
873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874 if (!is_migrate_isolate_page(page))
875 break;
876 /*
877 * if 'non-isolated free hugepage' not found on the list,
878 * the allocation fails.
879 */
880 if (&h->hugepage_freelists[nid] == &page->lru)
881 return NULL;
882 list_move(&page->lru, &h->hugepage_activelist);
883 set_page_refcounted(page);
884 h->free_huge_pages--;
885 h->free_huge_pages_node[nid]--;
886 return page;
887 }
888
889 /* Movability of hugepages depends on migration support. */
890 static inline gfp_t htlb_alloc_mask(struct hstate *h)
891 {
892 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
893 return GFP_HIGHUSER_MOVABLE;
894 else
895 return GFP_HIGHUSER;
896 }
897
898 static struct page *dequeue_huge_page_vma(struct hstate *h,
899 struct vm_area_struct *vma,
900 unsigned long address, int avoid_reserve,
901 long chg)
902 {
903 struct page *page = NULL;
904 struct mempolicy *mpol;
905 nodemask_t *nodemask;
906 struct zonelist *zonelist;
907 struct zone *zone;
908 struct zoneref *z;
909 unsigned int cpuset_mems_cookie;
910
911 /*
912 * A child process with MAP_PRIVATE mappings created by their parent
913 * have no page reserves. This check ensures that reservations are
914 * not "stolen". The child may still get SIGKILLed
915 */
916 if (!vma_has_reserves(vma, chg) &&
917 h->free_huge_pages - h->resv_huge_pages == 0)
918 goto err;
919
920 /* If reserves cannot be used, ensure enough pages are in the pool */
921 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
922 goto err;
923
924 retry_cpuset:
925 cpuset_mems_cookie = read_mems_allowed_begin();
926 zonelist = huge_zonelist(vma, address,
927 htlb_alloc_mask(h), &mpol, &nodemask);
928
929 for_each_zone_zonelist_nodemask(zone, z, zonelist,
930 MAX_NR_ZONES - 1, nodemask) {
931 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
932 page = dequeue_huge_page_node(h, zone_to_nid(zone));
933 if (page) {
934 if (avoid_reserve)
935 break;
936 if (!vma_has_reserves(vma, chg))
937 break;
938
939 SetPagePrivate(page);
940 h->resv_huge_pages--;
941 break;
942 }
943 }
944 }
945
946 mpol_cond_put(mpol);
947 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
948 goto retry_cpuset;
949 return page;
950
951 err:
952 return NULL;
953 }
954
955 /*
956 * common helper functions for hstate_next_node_to_{alloc|free}.
957 * We may have allocated or freed a huge page based on a different
958 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
959 * be outside of *nodes_allowed. Ensure that we use an allowed
960 * node for alloc or free.
961 */
962 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
963 {
964 nid = next_node_in(nid, *nodes_allowed);
965 VM_BUG_ON(nid >= MAX_NUMNODES);
966
967 return nid;
968 }
969
970 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
971 {
972 if (!node_isset(nid, *nodes_allowed))
973 nid = next_node_allowed(nid, nodes_allowed);
974 return nid;
975 }
976
977 /*
978 * returns the previously saved node ["this node"] from which to
979 * allocate a persistent huge page for the pool and advance the
980 * next node from which to allocate, handling wrap at end of node
981 * mask.
982 */
983 static int hstate_next_node_to_alloc(struct hstate *h,
984 nodemask_t *nodes_allowed)
985 {
986 int nid;
987
988 VM_BUG_ON(!nodes_allowed);
989
990 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
991 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
992
993 return nid;
994 }
995
996 /*
997 * helper for free_pool_huge_page() - return the previously saved
998 * node ["this node"] from which to free a huge page. Advance the
999 * next node id whether or not we find a free huge page to free so
1000 * that the next attempt to free addresses the next node.
1001 */
1002 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1003 {
1004 int nid;
1005
1006 VM_BUG_ON(!nodes_allowed);
1007
1008 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1009 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1010
1011 return nid;
1012 }
1013
1014 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1015 for (nr_nodes = nodes_weight(*mask); \
1016 nr_nodes > 0 && \
1017 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1018 nr_nodes--)
1019
1020 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1021 for (nr_nodes = nodes_weight(*mask); \
1022 nr_nodes > 0 && \
1023 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1024 nr_nodes--)
1025
1026 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1027 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1028 defined(CONFIG_CMA))
1029 static void destroy_compound_gigantic_page(struct page *page,
1030 unsigned int order)
1031 {
1032 int i;
1033 int nr_pages = 1 << order;
1034 struct page *p = page + 1;
1035
1036 atomic_set(compound_mapcount_ptr(page), 0);
1037 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1038 clear_compound_head(p);
1039 set_page_refcounted(p);
1040 }
1041
1042 set_compound_order(page, 0);
1043 __ClearPageHead(page);
1044 }
1045
1046 static void free_gigantic_page(struct page *page, unsigned int order)
1047 {
1048 free_contig_range(page_to_pfn(page), 1 << order);
1049 }
1050
1051 static int __alloc_gigantic_page(unsigned long start_pfn,
1052 unsigned long nr_pages)
1053 {
1054 unsigned long end_pfn = start_pfn + nr_pages;
1055 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1056 GFP_KERNEL);
1057 }
1058
1059 static bool pfn_range_valid_gigantic(struct zone *z,
1060 unsigned long start_pfn, unsigned long nr_pages)
1061 {
1062 unsigned long i, end_pfn = start_pfn + nr_pages;
1063 struct page *page;
1064
1065 for (i = start_pfn; i < end_pfn; i++) {
1066 if (!pfn_valid(i))
1067 return false;
1068
1069 page = pfn_to_page(i);
1070
1071 if (page_zone(page) != z)
1072 return false;
1073
1074 if (PageReserved(page))
1075 return false;
1076
1077 if (page_count(page) > 0)
1078 return false;
1079
1080 if (PageHuge(page))
1081 return false;
1082 }
1083
1084 return true;
1085 }
1086
1087 static bool zone_spans_last_pfn(const struct zone *zone,
1088 unsigned long start_pfn, unsigned long nr_pages)
1089 {
1090 unsigned long last_pfn = start_pfn + nr_pages - 1;
1091 return zone_spans_pfn(zone, last_pfn);
1092 }
1093
1094 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1095 {
1096 unsigned long nr_pages = 1 << order;
1097 unsigned long ret, pfn, flags;
1098 struct zone *z;
1099
1100 z = NODE_DATA(nid)->node_zones;
1101 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1102 spin_lock_irqsave(&z->lock, flags);
1103
1104 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1105 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1106 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1107 /*
1108 * We release the zone lock here because
1109 * alloc_contig_range() will also lock the zone
1110 * at some point. If there's an allocation
1111 * spinning on this lock, it may win the race
1112 * and cause alloc_contig_range() to fail...
1113 */
1114 spin_unlock_irqrestore(&z->lock, flags);
1115 ret = __alloc_gigantic_page(pfn, nr_pages);
1116 if (!ret)
1117 return pfn_to_page(pfn);
1118 spin_lock_irqsave(&z->lock, flags);
1119 }
1120 pfn += nr_pages;
1121 }
1122
1123 spin_unlock_irqrestore(&z->lock, flags);
1124 }
1125
1126 return NULL;
1127 }
1128
1129 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1130 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1131
1132 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1133 {
1134 struct page *page;
1135
1136 page = alloc_gigantic_page(nid, huge_page_order(h));
1137 if (page) {
1138 prep_compound_gigantic_page(page, huge_page_order(h));
1139 prep_new_huge_page(h, page, nid);
1140 }
1141
1142 return page;
1143 }
1144
1145 static int alloc_fresh_gigantic_page(struct hstate *h,
1146 nodemask_t *nodes_allowed)
1147 {
1148 struct page *page = NULL;
1149 int nr_nodes, node;
1150
1151 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1152 page = alloc_fresh_gigantic_page_node(h, node);
1153 if (page)
1154 return 1;
1155 }
1156
1157 return 0;
1158 }
1159
1160 static inline bool gigantic_page_supported(void) { return true; }
1161 #else
1162 static inline bool gigantic_page_supported(void) { return false; }
1163 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1164 static inline void destroy_compound_gigantic_page(struct page *page,
1165 unsigned int order) { }
1166 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1167 nodemask_t *nodes_allowed) { return 0; }
1168 #endif
1169
1170 static void update_and_free_page(struct hstate *h, struct page *page)
1171 {
1172 int i;
1173
1174 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1175 return;
1176
1177 h->nr_huge_pages--;
1178 h->nr_huge_pages_node[page_to_nid(page)]--;
1179 for (i = 0; i < pages_per_huge_page(h); i++) {
1180 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1181 1 << PG_referenced | 1 << PG_dirty |
1182 1 << PG_active | 1 << PG_private |
1183 1 << PG_writeback);
1184 }
1185 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1186 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1187 set_page_refcounted(page);
1188 if (hstate_is_gigantic(h)) {
1189 destroy_compound_gigantic_page(page, huge_page_order(h));
1190 free_gigantic_page(page, huge_page_order(h));
1191 } else {
1192 __free_pages(page, huge_page_order(h));
1193 }
1194 }
1195
1196 struct hstate *size_to_hstate(unsigned long size)
1197 {
1198 struct hstate *h;
1199
1200 for_each_hstate(h) {
1201 if (huge_page_size(h) == size)
1202 return h;
1203 }
1204 return NULL;
1205 }
1206
1207 /*
1208 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1209 * to hstate->hugepage_activelist.)
1210 *
1211 * This function can be called for tail pages, but never returns true for them.
1212 */
1213 bool page_huge_active(struct page *page)
1214 {
1215 VM_BUG_ON_PAGE(!PageHuge(page), page);
1216 return PageHead(page) && PagePrivate(&page[1]);
1217 }
1218
1219 /* never called for tail page */
1220 static void set_page_huge_active(struct page *page)
1221 {
1222 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1223 SetPagePrivate(&page[1]);
1224 }
1225
1226 static void clear_page_huge_active(struct page *page)
1227 {
1228 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1229 ClearPagePrivate(&page[1]);
1230 }
1231
1232 void free_huge_page(struct page *page)
1233 {
1234 /*
1235 * Can't pass hstate in here because it is called from the
1236 * compound page destructor.
1237 */
1238 struct hstate *h = page_hstate(page);
1239 int nid = page_to_nid(page);
1240 struct hugepage_subpool *spool =
1241 (struct hugepage_subpool *)page_private(page);
1242 bool restore_reserve;
1243
1244 set_page_private(page, 0);
1245 page->mapping = NULL;
1246 VM_BUG_ON_PAGE(page_count(page), page);
1247 VM_BUG_ON_PAGE(page_mapcount(page), page);
1248 restore_reserve = PagePrivate(page);
1249 ClearPagePrivate(page);
1250
1251 /*
1252 * A return code of zero implies that the subpool will be under its
1253 * minimum size if the reservation is not restored after page is free.
1254 * Therefore, force restore_reserve operation.
1255 */
1256 if (hugepage_subpool_put_pages(spool, 1) == 0)
1257 restore_reserve = true;
1258
1259 spin_lock(&hugetlb_lock);
1260 clear_page_huge_active(page);
1261 hugetlb_cgroup_uncharge_page(hstate_index(h),
1262 pages_per_huge_page(h), page);
1263 if (restore_reserve)
1264 h->resv_huge_pages++;
1265
1266 if (h->surplus_huge_pages_node[nid]) {
1267 /* remove the page from active list */
1268 list_del(&page->lru);
1269 update_and_free_page(h, page);
1270 h->surplus_huge_pages--;
1271 h->surplus_huge_pages_node[nid]--;
1272 } else {
1273 arch_clear_hugepage_flags(page);
1274 enqueue_huge_page(h, page);
1275 }
1276 spin_unlock(&hugetlb_lock);
1277 }
1278
1279 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1280 {
1281 INIT_LIST_HEAD(&page->lru);
1282 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1283 spin_lock(&hugetlb_lock);
1284 set_hugetlb_cgroup(page, NULL);
1285 h->nr_huge_pages++;
1286 h->nr_huge_pages_node[nid]++;
1287 spin_unlock(&hugetlb_lock);
1288 put_page(page); /* free it into the hugepage allocator */
1289 }
1290
1291 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1292 {
1293 int i;
1294 int nr_pages = 1 << order;
1295 struct page *p = page + 1;
1296
1297 /* we rely on prep_new_huge_page to set the destructor */
1298 set_compound_order(page, order);
1299 __ClearPageReserved(page);
1300 __SetPageHead(page);
1301 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1302 /*
1303 * For gigantic hugepages allocated through bootmem at
1304 * boot, it's safer to be consistent with the not-gigantic
1305 * hugepages and clear the PG_reserved bit from all tail pages
1306 * too. Otherwse drivers using get_user_pages() to access tail
1307 * pages may get the reference counting wrong if they see
1308 * PG_reserved set on a tail page (despite the head page not
1309 * having PG_reserved set). Enforcing this consistency between
1310 * head and tail pages allows drivers to optimize away a check
1311 * on the head page when they need know if put_page() is needed
1312 * after get_user_pages().
1313 */
1314 __ClearPageReserved(p);
1315 set_page_count(p, 0);
1316 set_compound_head(p, page);
1317 }
1318 atomic_set(compound_mapcount_ptr(page), -1);
1319 }
1320
1321 /*
1322 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1323 * transparent huge pages. See the PageTransHuge() documentation for more
1324 * details.
1325 */
1326 int PageHuge(struct page *page)
1327 {
1328 if (!PageCompound(page))
1329 return 0;
1330
1331 page = compound_head(page);
1332 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1333 }
1334 EXPORT_SYMBOL_GPL(PageHuge);
1335
1336 /*
1337 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1338 * normal or transparent huge pages.
1339 */
1340 int PageHeadHuge(struct page *page_head)
1341 {
1342 if (!PageHead(page_head))
1343 return 0;
1344
1345 return get_compound_page_dtor(page_head) == free_huge_page;
1346 }
1347
1348 pgoff_t __basepage_index(struct page *page)
1349 {
1350 struct page *page_head = compound_head(page);
1351 pgoff_t index = page_index(page_head);
1352 unsigned long compound_idx;
1353
1354 if (!PageHuge(page_head))
1355 return page_index(page);
1356
1357 if (compound_order(page_head) >= MAX_ORDER)
1358 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1359 else
1360 compound_idx = page - page_head;
1361
1362 return (index << compound_order(page_head)) + compound_idx;
1363 }
1364
1365 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1366 {
1367 struct page *page;
1368
1369 page = __alloc_pages_node(nid,
1370 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1371 __GFP_REPEAT|__GFP_NOWARN,
1372 huge_page_order(h));
1373 if (page) {
1374 prep_new_huge_page(h, page, nid);
1375 }
1376
1377 return page;
1378 }
1379
1380 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1381 {
1382 struct page *page;
1383 int nr_nodes, node;
1384 int ret = 0;
1385
1386 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1387 page = alloc_fresh_huge_page_node(h, node);
1388 if (page) {
1389 ret = 1;
1390 break;
1391 }
1392 }
1393
1394 if (ret)
1395 count_vm_event(HTLB_BUDDY_PGALLOC);
1396 else
1397 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1398
1399 return ret;
1400 }
1401
1402 /*
1403 * Free huge page from pool from next node to free.
1404 * Attempt to keep persistent huge pages more or less
1405 * balanced over allowed nodes.
1406 * Called with hugetlb_lock locked.
1407 */
1408 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1409 bool acct_surplus)
1410 {
1411 int nr_nodes, node;
1412 int ret = 0;
1413
1414 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1415 /*
1416 * If we're returning unused surplus pages, only examine
1417 * nodes with surplus pages.
1418 */
1419 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1420 !list_empty(&h->hugepage_freelists[node])) {
1421 struct page *page =
1422 list_entry(h->hugepage_freelists[node].next,
1423 struct page, lru);
1424 list_del(&page->lru);
1425 h->free_huge_pages--;
1426 h->free_huge_pages_node[node]--;
1427 if (acct_surplus) {
1428 h->surplus_huge_pages--;
1429 h->surplus_huge_pages_node[node]--;
1430 }
1431 update_and_free_page(h, page);
1432 ret = 1;
1433 break;
1434 }
1435 }
1436
1437 return ret;
1438 }
1439
1440 /*
1441 * Dissolve a given free hugepage into free buddy pages. This function does
1442 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1443 * number of free hugepages would be reduced below the number of reserved
1444 * hugepages.
1445 */
1446 static int dissolve_free_huge_page(struct page *page)
1447 {
1448 int rc = 0;
1449
1450 spin_lock(&hugetlb_lock);
1451 if (PageHuge(page) && !page_count(page)) {
1452 struct page *head = compound_head(page);
1453 struct hstate *h = page_hstate(head);
1454 int nid = page_to_nid(head);
1455 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1456 rc = -EBUSY;
1457 goto out;
1458 }
1459 list_del(&head->lru);
1460 h->free_huge_pages--;
1461 h->free_huge_pages_node[nid]--;
1462 h->max_huge_pages--;
1463 update_and_free_page(h, head);
1464 }
1465 out:
1466 spin_unlock(&hugetlb_lock);
1467 return rc;
1468 }
1469
1470 /*
1471 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1472 * make specified memory blocks removable from the system.
1473 * Note that this will dissolve a free gigantic hugepage completely, if any
1474 * part of it lies within the given range.
1475 * Also note that if dissolve_free_huge_page() returns with an error, all
1476 * free hugepages that were dissolved before that error are lost.
1477 */
1478 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1479 {
1480 unsigned long pfn;
1481 struct page *page;
1482 int rc = 0;
1483
1484 if (!hugepages_supported())
1485 return rc;
1486
1487 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1488 page = pfn_to_page(pfn);
1489 if (PageHuge(page) && !page_count(page)) {
1490 rc = dissolve_free_huge_page(page);
1491 if (rc)
1492 break;
1493 }
1494 }
1495
1496 return rc;
1497 }
1498
1499 /*
1500 * There are 3 ways this can get called:
1501 * 1. With vma+addr: we use the VMA's memory policy
1502 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1503 * page from any node, and let the buddy allocator itself figure
1504 * it out.
1505 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1506 * strictly from 'nid'
1507 */
1508 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1509 struct vm_area_struct *vma, unsigned long addr, int nid)
1510 {
1511 int order = huge_page_order(h);
1512 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1513 unsigned int cpuset_mems_cookie;
1514
1515 /*
1516 * We need a VMA to get a memory policy. If we do not
1517 * have one, we use the 'nid' argument.
1518 *
1519 * The mempolicy stuff below has some non-inlined bits
1520 * and calls ->vm_ops. That makes it hard to optimize at
1521 * compile-time, even when NUMA is off and it does
1522 * nothing. This helps the compiler optimize it out.
1523 */
1524 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1525 /*
1526 * If a specific node is requested, make sure to
1527 * get memory from there, but only when a node
1528 * is explicitly specified.
1529 */
1530 if (nid != NUMA_NO_NODE)
1531 gfp |= __GFP_THISNODE;
1532 /*
1533 * Make sure to call something that can handle
1534 * nid=NUMA_NO_NODE
1535 */
1536 return alloc_pages_node(nid, gfp, order);
1537 }
1538
1539 /*
1540 * OK, so we have a VMA. Fetch the mempolicy and try to
1541 * allocate a huge page with it. We will only reach this
1542 * when CONFIG_NUMA=y.
1543 */
1544 do {
1545 struct page *page;
1546 struct mempolicy *mpol;
1547 struct zonelist *zl;
1548 nodemask_t *nodemask;
1549
1550 cpuset_mems_cookie = read_mems_allowed_begin();
1551 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1552 mpol_cond_put(mpol);
1553 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1554 if (page)
1555 return page;
1556 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1557
1558 return NULL;
1559 }
1560
1561 /*
1562 * There are two ways to allocate a huge page:
1563 * 1. When you have a VMA and an address (like a fault)
1564 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1565 *
1566 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1567 * this case which signifies that the allocation should be done with
1568 * respect for the VMA's memory policy.
1569 *
1570 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1571 * implies that memory policies will not be taken in to account.
1572 */
1573 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1574 struct vm_area_struct *vma, unsigned long addr, int nid)
1575 {
1576 struct page *page;
1577 unsigned int r_nid;
1578
1579 if (hstate_is_gigantic(h))
1580 return NULL;
1581
1582 /*
1583 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1584 * This makes sure the caller is picking _one_ of the modes with which
1585 * we can call this function, not both.
1586 */
1587 if (vma || (addr != -1)) {
1588 VM_WARN_ON_ONCE(addr == -1);
1589 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1590 }
1591 /*
1592 * Assume we will successfully allocate the surplus page to
1593 * prevent racing processes from causing the surplus to exceed
1594 * overcommit
1595 *
1596 * This however introduces a different race, where a process B
1597 * tries to grow the static hugepage pool while alloc_pages() is
1598 * called by process A. B will only examine the per-node
1599 * counters in determining if surplus huge pages can be
1600 * converted to normal huge pages in adjust_pool_surplus(). A
1601 * won't be able to increment the per-node counter, until the
1602 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1603 * no more huge pages can be converted from surplus to normal
1604 * state (and doesn't try to convert again). Thus, we have a
1605 * case where a surplus huge page exists, the pool is grown, and
1606 * the surplus huge page still exists after, even though it
1607 * should just have been converted to a normal huge page. This
1608 * does not leak memory, though, as the hugepage will be freed
1609 * once it is out of use. It also does not allow the counters to
1610 * go out of whack in adjust_pool_surplus() as we don't modify
1611 * the node values until we've gotten the hugepage and only the
1612 * per-node value is checked there.
1613 */
1614 spin_lock(&hugetlb_lock);
1615 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1616 spin_unlock(&hugetlb_lock);
1617 return NULL;
1618 } else {
1619 h->nr_huge_pages++;
1620 h->surplus_huge_pages++;
1621 }
1622 spin_unlock(&hugetlb_lock);
1623
1624 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1625
1626 spin_lock(&hugetlb_lock);
1627 if (page) {
1628 INIT_LIST_HEAD(&page->lru);
1629 r_nid = page_to_nid(page);
1630 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1631 set_hugetlb_cgroup(page, NULL);
1632 /*
1633 * We incremented the global counters already
1634 */
1635 h->nr_huge_pages_node[r_nid]++;
1636 h->surplus_huge_pages_node[r_nid]++;
1637 __count_vm_event(HTLB_BUDDY_PGALLOC);
1638 } else {
1639 h->nr_huge_pages--;
1640 h->surplus_huge_pages--;
1641 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1642 }
1643 spin_unlock(&hugetlb_lock);
1644
1645 return page;
1646 }
1647
1648 /*
1649 * Allocate a huge page from 'nid'. Note, 'nid' may be
1650 * NUMA_NO_NODE, which means that it may be allocated
1651 * anywhere.
1652 */
1653 static
1654 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1655 {
1656 unsigned long addr = -1;
1657
1658 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1659 }
1660
1661 /*
1662 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1663 */
1664 static
1665 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1666 struct vm_area_struct *vma, unsigned long addr)
1667 {
1668 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1669 }
1670
1671 /*
1672 * This allocation function is useful in the context where vma is irrelevant.
1673 * E.g. soft-offlining uses this function because it only cares physical
1674 * address of error page.
1675 */
1676 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1677 {
1678 struct page *page = NULL;
1679
1680 spin_lock(&hugetlb_lock);
1681 if (h->free_huge_pages - h->resv_huge_pages > 0)
1682 page = dequeue_huge_page_node(h, nid);
1683 spin_unlock(&hugetlb_lock);
1684
1685 if (!page)
1686 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1687
1688 return page;
1689 }
1690
1691 /*
1692 * Increase the hugetlb pool such that it can accommodate a reservation
1693 * of size 'delta'.
1694 */
1695 static int gather_surplus_pages(struct hstate *h, int delta)
1696 {
1697 struct list_head surplus_list;
1698 struct page *page, *tmp;
1699 int ret, i;
1700 int needed, allocated;
1701 bool alloc_ok = true;
1702
1703 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1704 if (needed <= 0) {
1705 h->resv_huge_pages += delta;
1706 return 0;
1707 }
1708
1709 allocated = 0;
1710 INIT_LIST_HEAD(&surplus_list);
1711
1712 ret = -ENOMEM;
1713 retry:
1714 spin_unlock(&hugetlb_lock);
1715 for (i = 0; i < needed; i++) {
1716 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1717 if (!page) {
1718 alloc_ok = false;
1719 break;
1720 }
1721 list_add(&page->lru, &surplus_list);
1722 }
1723 allocated += i;
1724
1725 /*
1726 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727 * because either resv_huge_pages or free_huge_pages may have changed.
1728 */
1729 spin_lock(&hugetlb_lock);
1730 needed = (h->resv_huge_pages + delta) -
1731 (h->free_huge_pages + allocated);
1732 if (needed > 0) {
1733 if (alloc_ok)
1734 goto retry;
1735 /*
1736 * We were not able to allocate enough pages to
1737 * satisfy the entire reservation so we free what
1738 * we've allocated so far.
1739 */
1740 goto free;
1741 }
1742 /*
1743 * The surplus_list now contains _at_least_ the number of extra pages
1744 * needed to accommodate the reservation. Add the appropriate number
1745 * of pages to the hugetlb pool and free the extras back to the buddy
1746 * allocator. Commit the entire reservation here to prevent another
1747 * process from stealing the pages as they are added to the pool but
1748 * before they are reserved.
1749 */
1750 needed += allocated;
1751 h->resv_huge_pages += delta;
1752 ret = 0;
1753
1754 /* Free the needed pages to the hugetlb pool */
1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1756 if ((--needed) < 0)
1757 break;
1758 /*
1759 * This page is now managed by the hugetlb allocator and has
1760 * no users -- drop the buddy allocator's reference.
1761 */
1762 put_page_testzero(page);
1763 VM_BUG_ON_PAGE(page_count(page), page);
1764 enqueue_huge_page(h, page);
1765 }
1766 free:
1767 spin_unlock(&hugetlb_lock);
1768
1769 /* Free unnecessary surplus pages to the buddy allocator */
1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771 put_page(page);
1772 spin_lock(&hugetlb_lock);
1773
1774 return ret;
1775 }
1776
1777 /*
1778 * This routine has two main purposes:
1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780 * in unused_resv_pages. This corresponds to the prior adjustments made
1781 * to the associated reservation map.
1782 * 2) Free any unused surplus pages that may have been allocated to satisfy
1783 * the reservation. As many as unused_resv_pages may be freed.
1784 *
1785 * Called with hugetlb_lock held. However, the lock could be dropped (and
1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1787 * we must make sure nobody else can claim pages we are in the process of
1788 * freeing. Do this by ensuring resv_huge_page always is greater than the
1789 * number of huge pages we plan to free when dropping the lock.
1790 */
1791 static void return_unused_surplus_pages(struct hstate *h,
1792 unsigned long unused_resv_pages)
1793 {
1794 unsigned long nr_pages;
1795
1796 /* Cannot return gigantic pages currently */
1797 if (hstate_is_gigantic(h))
1798 goto out;
1799
1800 /*
1801 * Part (or even all) of the reservation could have been backed
1802 * by pre-allocated pages. Only free surplus pages.
1803 */
1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1805
1806 /*
1807 * We want to release as many surplus pages as possible, spread
1808 * evenly across all nodes with memory. Iterate across these nodes
1809 * until we can no longer free unreserved surplus pages. This occurs
1810 * when the nodes with surplus pages have no free pages.
1811 * free_pool_huge_page() will balance the the freed pages across the
1812 * on-line nodes with memory and will handle the hstate accounting.
1813 *
1814 * Note that we decrement resv_huge_pages as we free the pages. If
1815 * we drop the lock, resv_huge_pages will still be sufficiently large
1816 * to cover subsequent pages we may free.
1817 */
1818 while (nr_pages--) {
1819 h->resv_huge_pages--;
1820 unused_resv_pages--;
1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1822 goto out;
1823 cond_resched_lock(&hugetlb_lock);
1824 }
1825
1826 out:
1827 /* Fully uncommit the reservation */
1828 h->resv_huge_pages -= unused_resv_pages;
1829 }
1830
1831
1832 /*
1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1834 * are used by the huge page allocation routines to manage reservations.
1835 *
1836 * vma_needs_reservation is called to determine if the huge page at addr
1837 * within the vma has an associated reservation. If a reservation is
1838 * needed, the value 1 is returned. The caller is then responsible for
1839 * managing the global reservation and subpool usage counts. After
1840 * the huge page has been allocated, vma_commit_reservation is called
1841 * to add the page to the reservation map. If the page allocation fails,
1842 * the reservation must be ended instead of committed. vma_end_reservation
1843 * is called in such cases.
1844 *
1845 * In the normal case, vma_commit_reservation returns the same value
1846 * as the preceding vma_needs_reservation call. The only time this
1847 * is not the case is if a reserve map was changed between calls. It
1848 * is the responsibility of the caller to notice the difference and
1849 * take appropriate action.
1850 *
1851 * vma_add_reservation is used in error paths where a reservation must
1852 * be restored when a newly allocated huge page must be freed. It is
1853 * to be called after calling vma_needs_reservation to determine if a
1854 * reservation exists.
1855 */
1856 enum vma_resv_mode {
1857 VMA_NEEDS_RESV,
1858 VMA_COMMIT_RESV,
1859 VMA_END_RESV,
1860 VMA_ADD_RESV,
1861 };
1862 static long __vma_reservation_common(struct hstate *h,
1863 struct vm_area_struct *vma, unsigned long addr,
1864 enum vma_resv_mode mode)
1865 {
1866 struct resv_map *resv;
1867 pgoff_t idx;
1868 long ret;
1869
1870 resv = vma_resv_map(vma);
1871 if (!resv)
1872 return 1;
1873
1874 idx = vma_hugecache_offset(h, vma, addr);
1875 switch (mode) {
1876 case VMA_NEEDS_RESV:
1877 ret = region_chg(resv, idx, idx + 1);
1878 break;
1879 case VMA_COMMIT_RESV:
1880 ret = region_add(resv, idx, idx + 1);
1881 break;
1882 case VMA_END_RESV:
1883 region_abort(resv, idx, idx + 1);
1884 ret = 0;
1885 break;
1886 case VMA_ADD_RESV:
1887 if (vma->vm_flags & VM_MAYSHARE)
1888 ret = region_add(resv, idx, idx + 1);
1889 else {
1890 region_abort(resv, idx, idx + 1);
1891 ret = region_del(resv, idx, idx + 1);
1892 }
1893 break;
1894 default:
1895 BUG();
1896 }
1897
1898 if (vma->vm_flags & VM_MAYSHARE)
1899 return ret;
1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901 /*
1902 * In most cases, reserves always exist for private mappings.
1903 * However, a file associated with mapping could have been
1904 * hole punched or truncated after reserves were consumed.
1905 * As subsequent fault on such a range will not use reserves.
1906 * Subtle - The reserve map for private mappings has the
1907 * opposite meaning than that of shared mappings. If NO
1908 * entry is in the reserve map, it means a reservation exists.
1909 * If an entry exists in the reserve map, it means the
1910 * reservation has already been consumed. As a result, the
1911 * return value of this routine is the opposite of the
1912 * value returned from reserve map manipulation routines above.
1913 */
1914 if (ret)
1915 return 0;
1916 else
1917 return 1;
1918 }
1919 else
1920 return ret < 0 ? ret : 0;
1921 }
1922
1923 static long vma_needs_reservation(struct hstate *h,
1924 struct vm_area_struct *vma, unsigned long addr)
1925 {
1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1927 }
1928
1929 static long vma_commit_reservation(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1931 {
1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933 }
1934
1935 static void vma_end_reservation(struct hstate *h,
1936 struct vm_area_struct *vma, unsigned long addr)
1937 {
1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1939 }
1940
1941 static long vma_add_reservation(struct hstate *h,
1942 struct vm_area_struct *vma, unsigned long addr)
1943 {
1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945 }
1946
1947 /*
1948 * This routine is called to restore a reservation on error paths. In the
1949 * specific error paths, a huge page was allocated (via alloc_huge_page)
1950 * and is about to be freed. If a reservation for the page existed,
1951 * alloc_huge_page would have consumed the reservation and set PagePrivate
1952 * in the newly allocated page. When the page is freed via free_huge_page,
1953 * the global reservation count will be incremented if PagePrivate is set.
1954 * However, free_huge_page can not adjust the reserve map. Adjust the
1955 * reserve map here to be consistent with global reserve count adjustments
1956 * to be made by free_huge_page.
1957 */
1958 static void restore_reserve_on_error(struct hstate *h,
1959 struct vm_area_struct *vma, unsigned long address,
1960 struct page *page)
1961 {
1962 if (unlikely(PagePrivate(page))) {
1963 long rc = vma_needs_reservation(h, vma, address);
1964
1965 if (unlikely(rc < 0)) {
1966 /*
1967 * Rare out of memory condition in reserve map
1968 * manipulation. Clear PagePrivate so that
1969 * global reserve count will not be incremented
1970 * by free_huge_page. This will make it appear
1971 * as though the reservation for this page was
1972 * consumed. This may prevent the task from
1973 * faulting in the page at a later time. This
1974 * is better than inconsistent global huge page
1975 * accounting of reserve counts.
1976 */
1977 ClearPagePrivate(page);
1978 } else if (rc) {
1979 rc = vma_add_reservation(h, vma, address);
1980 if (unlikely(rc < 0))
1981 /*
1982 * See above comment about rare out of
1983 * memory condition.
1984 */
1985 ClearPagePrivate(page);
1986 } else
1987 vma_end_reservation(h, vma, address);
1988 }
1989 }
1990
1991 struct page *alloc_huge_page(struct vm_area_struct *vma,
1992 unsigned long addr, int avoid_reserve)
1993 {
1994 struct hugepage_subpool *spool = subpool_vma(vma);
1995 struct hstate *h = hstate_vma(vma);
1996 struct page *page;
1997 long map_chg, map_commit;
1998 long gbl_chg;
1999 int ret, idx;
2000 struct hugetlb_cgroup *h_cg;
2001
2002 idx = hstate_index(h);
2003 /*
2004 * Examine the region/reserve map to determine if the process
2005 * has a reservation for the page to be allocated. A return
2006 * code of zero indicates a reservation exists (no change).
2007 */
2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009 if (map_chg < 0)
2010 return ERR_PTR(-ENOMEM);
2011
2012 /*
2013 * Processes that did not create the mapping will have no
2014 * reserves as indicated by the region/reserve map. Check
2015 * that the allocation will not exceed the subpool limit.
2016 * Allocations for MAP_NORESERVE mappings also need to be
2017 * checked against any subpool limit.
2018 */
2019 if (map_chg || avoid_reserve) {
2020 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021 if (gbl_chg < 0) {
2022 vma_end_reservation(h, vma, addr);
2023 return ERR_PTR(-ENOSPC);
2024 }
2025
2026 /*
2027 * Even though there was no reservation in the region/reserve
2028 * map, there could be reservations associated with the
2029 * subpool that can be used. This would be indicated if the
2030 * return value of hugepage_subpool_get_pages() is zero.
2031 * However, if avoid_reserve is specified we still avoid even
2032 * the subpool reservations.
2033 */
2034 if (avoid_reserve)
2035 gbl_chg = 1;
2036 }
2037
2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2039 if (ret)
2040 goto out_subpool_put;
2041
2042 spin_lock(&hugetlb_lock);
2043 /*
2044 * glb_chg is passed to indicate whether or not a page must be taken
2045 * from the global free pool (global change). gbl_chg == 0 indicates
2046 * a reservation exists for the allocation.
2047 */
2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2049 if (!page) {
2050 spin_unlock(&hugetlb_lock);
2051 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2052 if (!page)
2053 goto out_uncharge_cgroup;
2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055 SetPagePrivate(page);
2056 h->resv_huge_pages--;
2057 }
2058 spin_lock(&hugetlb_lock);
2059 list_move(&page->lru, &h->hugepage_activelist);
2060 /* Fall through */
2061 }
2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063 spin_unlock(&hugetlb_lock);
2064
2065 set_page_private(page, (unsigned long)spool);
2066
2067 map_commit = vma_commit_reservation(h, vma, addr);
2068 if (unlikely(map_chg > map_commit)) {
2069 /*
2070 * The page was added to the reservation map between
2071 * vma_needs_reservation and vma_commit_reservation.
2072 * This indicates a race with hugetlb_reserve_pages.
2073 * Adjust for the subpool count incremented above AND
2074 * in hugetlb_reserve_pages for the same page. Also,
2075 * the reservation count added in hugetlb_reserve_pages
2076 * no longer applies.
2077 */
2078 long rsv_adjust;
2079
2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081 hugetlb_acct_memory(h, -rsv_adjust);
2082 }
2083 return page;
2084
2085 out_uncharge_cgroup:
2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087 out_subpool_put:
2088 if (map_chg || avoid_reserve)
2089 hugepage_subpool_put_pages(spool, 1);
2090 vma_end_reservation(h, vma, addr);
2091 return ERR_PTR(-ENOSPC);
2092 }
2093
2094 /*
2095 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2096 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2097 * where no ERR_VALUE is expected to be returned.
2098 */
2099 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2100 unsigned long addr, int avoid_reserve)
2101 {
2102 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2103 if (IS_ERR(page))
2104 page = NULL;
2105 return page;
2106 }
2107
2108 int __weak alloc_bootmem_huge_page(struct hstate *h)
2109 {
2110 struct huge_bootmem_page *m;
2111 int nr_nodes, node;
2112
2113 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2114 void *addr;
2115
2116 addr = memblock_virt_alloc_try_nid_nopanic(
2117 huge_page_size(h), huge_page_size(h),
2118 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2119 if (addr) {
2120 /*
2121 * Use the beginning of the huge page to store the
2122 * huge_bootmem_page struct (until gather_bootmem
2123 * puts them into the mem_map).
2124 */
2125 m = addr;
2126 goto found;
2127 }
2128 }
2129 return 0;
2130
2131 found:
2132 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2133 /* Put them into a private list first because mem_map is not up yet */
2134 list_add(&m->list, &huge_boot_pages);
2135 m->hstate = h;
2136 return 1;
2137 }
2138
2139 static void __init prep_compound_huge_page(struct page *page,
2140 unsigned int order)
2141 {
2142 if (unlikely(order > (MAX_ORDER - 1)))
2143 prep_compound_gigantic_page(page, order);
2144 else
2145 prep_compound_page(page, order);
2146 }
2147
2148 /* Put bootmem huge pages into the standard lists after mem_map is up */
2149 static void __init gather_bootmem_prealloc(void)
2150 {
2151 struct huge_bootmem_page *m;
2152
2153 list_for_each_entry(m, &huge_boot_pages, list) {
2154 struct hstate *h = m->hstate;
2155 struct page *page;
2156
2157 #ifdef CONFIG_HIGHMEM
2158 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2159 memblock_free_late(__pa(m),
2160 sizeof(struct huge_bootmem_page));
2161 #else
2162 page = virt_to_page(m);
2163 #endif
2164 WARN_ON(page_count(page) != 1);
2165 prep_compound_huge_page(page, h->order);
2166 WARN_ON(PageReserved(page));
2167 prep_new_huge_page(h, page, page_to_nid(page));
2168 /*
2169 * If we had gigantic hugepages allocated at boot time, we need
2170 * to restore the 'stolen' pages to totalram_pages in order to
2171 * fix confusing memory reports from free(1) and another
2172 * side-effects, like CommitLimit going negative.
2173 */
2174 if (hstate_is_gigantic(h))
2175 adjust_managed_page_count(page, 1 << h->order);
2176 }
2177 }
2178
2179 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2180 {
2181 unsigned long i;
2182
2183 for (i = 0; i < h->max_huge_pages; ++i) {
2184 if (hstate_is_gigantic(h)) {
2185 if (!alloc_bootmem_huge_page(h))
2186 break;
2187 } else if (!alloc_fresh_huge_page(h,
2188 &node_states[N_MEMORY]))
2189 break;
2190 }
2191 h->max_huge_pages = i;
2192 }
2193
2194 static void __init hugetlb_init_hstates(void)
2195 {
2196 struct hstate *h;
2197
2198 for_each_hstate(h) {
2199 if (minimum_order > huge_page_order(h))
2200 minimum_order = huge_page_order(h);
2201
2202 /* oversize hugepages were init'ed in early boot */
2203 if (!hstate_is_gigantic(h))
2204 hugetlb_hstate_alloc_pages(h);
2205 }
2206 VM_BUG_ON(minimum_order == UINT_MAX);
2207 }
2208
2209 static char * __init memfmt(char *buf, unsigned long n)
2210 {
2211 if (n >= (1UL << 30))
2212 sprintf(buf, "%lu GB", n >> 30);
2213 else if (n >= (1UL << 20))
2214 sprintf(buf, "%lu MB", n >> 20);
2215 else
2216 sprintf(buf, "%lu KB", n >> 10);
2217 return buf;
2218 }
2219
2220 static void __init report_hugepages(void)
2221 {
2222 struct hstate *h;
2223
2224 for_each_hstate(h) {
2225 char buf[32];
2226 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2227 memfmt(buf, huge_page_size(h)),
2228 h->free_huge_pages);
2229 }
2230 }
2231
2232 #ifdef CONFIG_HIGHMEM
2233 static void try_to_free_low(struct hstate *h, unsigned long count,
2234 nodemask_t *nodes_allowed)
2235 {
2236 int i;
2237
2238 if (hstate_is_gigantic(h))
2239 return;
2240
2241 for_each_node_mask(i, *nodes_allowed) {
2242 struct page *page, *next;
2243 struct list_head *freel = &h->hugepage_freelists[i];
2244 list_for_each_entry_safe(page, next, freel, lru) {
2245 if (count >= h->nr_huge_pages)
2246 return;
2247 if (PageHighMem(page))
2248 continue;
2249 list_del(&page->lru);
2250 update_and_free_page(h, page);
2251 h->free_huge_pages--;
2252 h->free_huge_pages_node[page_to_nid(page)]--;
2253 }
2254 }
2255 }
2256 #else
2257 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2258 nodemask_t *nodes_allowed)
2259 {
2260 }
2261 #endif
2262
2263 /*
2264 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2265 * balanced by operating on them in a round-robin fashion.
2266 * Returns 1 if an adjustment was made.
2267 */
2268 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2269 int delta)
2270 {
2271 int nr_nodes, node;
2272
2273 VM_BUG_ON(delta != -1 && delta != 1);
2274
2275 if (delta < 0) {
2276 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2277 if (h->surplus_huge_pages_node[node])
2278 goto found;
2279 }
2280 } else {
2281 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2282 if (h->surplus_huge_pages_node[node] <
2283 h->nr_huge_pages_node[node])
2284 goto found;
2285 }
2286 }
2287 return 0;
2288
2289 found:
2290 h->surplus_huge_pages += delta;
2291 h->surplus_huge_pages_node[node] += delta;
2292 return 1;
2293 }
2294
2295 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2296 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2297 nodemask_t *nodes_allowed)
2298 {
2299 unsigned long min_count, ret;
2300
2301 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2302 return h->max_huge_pages;
2303
2304 /*
2305 * Increase the pool size
2306 * First take pages out of surplus state. Then make up the
2307 * remaining difference by allocating fresh huge pages.
2308 *
2309 * We might race with __alloc_buddy_huge_page() here and be unable
2310 * to convert a surplus huge page to a normal huge page. That is
2311 * not critical, though, it just means the overall size of the
2312 * pool might be one hugepage larger than it needs to be, but
2313 * within all the constraints specified by the sysctls.
2314 */
2315 spin_lock(&hugetlb_lock);
2316 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2317 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2318 break;
2319 }
2320
2321 while (count > persistent_huge_pages(h)) {
2322 /*
2323 * If this allocation races such that we no longer need the
2324 * page, free_huge_page will handle it by freeing the page
2325 * and reducing the surplus.
2326 */
2327 spin_unlock(&hugetlb_lock);
2328
2329 /* yield cpu to avoid soft lockup */
2330 cond_resched();
2331
2332 if (hstate_is_gigantic(h))
2333 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2334 else
2335 ret = alloc_fresh_huge_page(h, nodes_allowed);
2336 spin_lock(&hugetlb_lock);
2337 if (!ret)
2338 goto out;
2339
2340 /* Bail for signals. Probably ctrl-c from user */
2341 if (signal_pending(current))
2342 goto out;
2343 }
2344
2345 /*
2346 * Decrease the pool size
2347 * First return free pages to the buddy allocator (being careful
2348 * to keep enough around to satisfy reservations). Then place
2349 * pages into surplus state as needed so the pool will shrink
2350 * to the desired size as pages become free.
2351 *
2352 * By placing pages into the surplus state independent of the
2353 * overcommit value, we are allowing the surplus pool size to
2354 * exceed overcommit. There are few sane options here. Since
2355 * __alloc_buddy_huge_page() is checking the global counter,
2356 * though, we'll note that we're not allowed to exceed surplus
2357 * and won't grow the pool anywhere else. Not until one of the
2358 * sysctls are changed, or the surplus pages go out of use.
2359 */
2360 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2361 min_count = max(count, min_count);
2362 try_to_free_low(h, min_count, nodes_allowed);
2363 while (min_count < persistent_huge_pages(h)) {
2364 if (!free_pool_huge_page(h, nodes_allowed, 0))
2365 break;
2366 cond_resched_lock(&hugetlb_lock);
2367 }
2368 while (count < persistent_huge_pages(h)) {
2369 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2370 break;
2371 }
2372 out:
2373 ret = persistent_huge_pages(h);
2374 spin_unlock(&hugetlb_lock);
2375 return ret;
2376 }
2377
2378 #define HSTATE_ATTR_RO(_name) \
2379 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2380
2381 #define HSTATE_ATTR(_name) \
2382 static struct kobj_attribute _name##_attr = \
2383 __ATTR(_name, 0644, _name##_show, _name##_store)
2384
2385 static struct kobject *hugepages_kobj;
2386 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2387
2388 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2389
2390 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2391 {
2392 int i;
2393
2394 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2395 if (hstate_kobjs[i] == kobj) {
2396 if (nidp)
2397 *nidp = NUMA_NO_NODE;
2398 return &hstates[i];
2399 }
2400
2401 return kobj_to_node_hstate(kobj, nidp);
2402 }
2403
2404 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2405 struct kobj_attribute *attr, char *buf)
2406 {
2407 struct hstate *h;
2408 unsigned long nr_huge_pages;
2409 int nid;
2410
2411 h = kobj_to_hstate(kobj, &nid);
2412 if (nid == NUMA_NO_NODE)
2413 nr_huge_pages = h->nr_huge_pages;
2414 else
2415 nr_huge_pages = h->nr_huge_pages_node[nid];
2416
2417 return sprintf(buf, "%lu\n", nr_huge_pages);
2418 }
2419
2420 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2421 struct hstate *h, int nid,
2422 unsigned long count, size_t len)
2423 {
2424 int err;
2425 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2426
2427 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2428 err = -EINVAL;
2429 goto out;
2430 }
2431
2432 if (nid == NUMA_NO_NODE) {
2433 /*
2434 * global hstate attribute
2435 */
2436 if (!(obey_mempolicy &&
2437 init_nodemask_of_mempolicy(nodes_allowed))) {
2438 NODEMASK_FREE(nodes_allowed);
2439 nodes_allowed = &node_states[N_MEMORY];
2440 }
2441 } else if (nodes_allowed) {
2442 /*
2443 * per node hstate attribute: adjust count to global,
2444 * but restrict alloc/free to the specified node.
2445 */
2446 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2447 init_nodemask_of_node(nodes_allowed, nid);
2448 } else
2449 nodes_allowed = &node_states[N_MEMORY];
2450
2451 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2452
2453 if (nodes_allowed != &node_states[N_MEMORY])
2454 NODEMASK_FREE(nodes_allowed);
2455
2456 return len;
2457 out:
2458 NODEMASK_FREE(nodes_allowed);
2459 return err;
2460 }
2461
2462 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2463 struct kobject *kobj, const char *buf,
2464 size_t len)
2465 {
2466 struct hstate *h;
2467 unsigned long count;
2468 int nid;
2469 int err;
2470
2471 err = kstrtoul(buf, 10, &count);
2472 if (err)
2473 return err;
2474
2475 h = kobj_to_hstate(kobj, &nid);
2476 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2477 }
2478
2479 static ssize_t nr_hugepages_show(struct kobject *kobj,
2480 struct kobj_attribute *attr, char *buf)
2481 {
2482 return nr_hugepages_show_common(kobj, attr, buf);
2483 }
2484
2485 static ssize_t nr_hugepages_store(struct kobject *kobj,
2486 struct kobj_attribute *attr, const char *buf, size_t len)
2487 {
2488 return nr_hugepages_store_common(false, kobj, buf, len);
2489 }
2490 HSTATE_ATTR(nr_hugepages);
2491
2492 #ifdef CONFIG_NUMA
2493
2494 /*
2495 * hstate attribute for optionally mempolicy-based constraint on persistent
2496 * huge page alloc/free.
2497 */
2498 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2499 struct kobj_attribute *attr, char *buf)
2500 {
2501 return nr_hugepages_show_common(kobj, attr, buf);
2502 }
2503
2504 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2505 struct kobj_attribute *attr, const char *buf, size_t len)
2506 {
2507 return nr_hugepages_store_common(true, kobj, buf, len);
2508 }
2509 HSTATE_ATTR(nr_hugepages_mempolicy);
2510 #endif
2511
2512
2513 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2514 struct kobj_attribute *attr, char *buf)
2515 {
2516 struct hstate *h = kobj_to_hstate(kobj, NULL);
2517 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2518 }
2519
2520 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2521 struct kobj_attribute *attr, const char *buf, size_t count)
2522 {
2523 int err;
2524 unsigned long input;
2525 struct hstate *h = kobj_to_hstate(kobj, NULL);
2526
2527 if (hstate_is_gigantic(h))
2528 return -EINVAL;
2529
2530 err = kstrtoul(buf, 10, &input);
2531 if (err)
2532 return err;
2533
2534 spin_lock(&hugetlb_lock);
2535 h->nr_overcommit_huge_pages = input;
2536 spin_unlock(&hugetlb_lock);
2537
2538 return count;
2539 }
2540 HSTATE_ATTR(nr_overcommit_hugepages);
2541
2542 static ssize_t free_hugepages_show(struct kobject *kobj,
2543 struct kobj_attribute *attr, char *buf)
2544 {
2545 struct hstate *h;
2546 unsigned long free_huge_pages;
2547 int nid;
2548
2549 h = kobj_to_hstate(kobj, &nid);
2550 if (nid == NUMA_NO_NODE)
2551 free_huge_pages = h->free_huge_pages;
2552 else
2553 free_huge_pages = h->free_huge_pages_node[nid];
2554
2555 return sprintf(buf, "%lu\n", free_huge_pages);
2556 }
2557 HSTATE_ATTR_RO(free_hugepages);
2558
2559 static ssize_t resv_hugepages_show(struct kobject *kobj,
2560 struct kobj_attribute *attr, char *buf)
2561 {
2562 struct hstate *h = kobj_to_hstate(kobj, NULL);
2563 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2564 }
2565 HSTATE_ATTR_RO(resv_hugepages);
2566
2567 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2568 struct kobj_attribute *attr, char *buf)
2569 {
2570 struct hstate *h;
2571 unsigned long surplus_huge_pages;
2572 int nid;
2573
2574 h = kobj_to_hstate(kobj, &nid);
2575 if (nid == NUMA_NO_NODE)
2576 surplus_huge_pages = h->surplus_huge_pages;
2577 else
2578 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2579
2580 return sprintf(buf, "%lu\n", surplus_huge_pages);
2581 }
2582 HSTATE_ATTR_RO(surplus_hugepages);
2583
2584 static struct attribute *hstate_attrs[] = {
2585 &nr_hugepages_attr.attr,
2586 &nr_overcommit_hugepages_attr.attr,
2587 &free_hugepages_attr.attr,
2588 &resv_hugepages_attr.attr,
2589 &surplus_hugepages_attr.attr,
2590 #ifdef CONFIG_NUMA
2591 &nr_hugepages_mempolicy_attr.attr,
2592 #endif
2593 NULL,
2594 };
2595
2596 static struct attribute_group hstate_attr_group = {
2597 .attrs = hstate_attrs,
2598 };
2599
2600 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2601 struct kobject **hstate_kobjs,
2602 struct attribute_group *hstate_attr_group)
2603 {
2604 int retval;
2605 int hi = hstate_index(h);
2606
2607 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2608 if (!hstate_kobjs[hi])
2609 return -ENOMEM;
2610
2611 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2612 if (retval)
2613 kobject_put(hstate_kobjs[hi]);
2614
2615 return retval;
2616 }
2617
2618 static void __init hugetlb_sysfs_init(void)
2619 {
2620 struct hstate *h;
2621 int err;
2622
2623 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2624 if (!hugepages_kobj)
2625 return;
2626
2627 for_each_hstate(h) {
2628 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2629 hstate_kobjs, &hstate_attr_group);
2630 if (err)
2631 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2632 }
2633 }
2634
2635 #ifdef CONFIG_NUMA
2636
2637 /*
2638 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2639 * with node devices in node_devices[] using a parallel array. The array
2640 * index of a node device or _hstate == node id.
2641 * This is here to avoid any static dependency of the node device driver, in
2642 * the base kernel, on the hugetlb module.
2643 */
2644 struct node_hstate {
2645 struct kobject *hugepages_kobj;
2646 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2647 };
2648 static struct node_hstate node_hstates[MAX_NUMNODES];
2649
2650 /*
2651 * A subset of global hstate attributes for node devices
2652 */
2653 static struct attribute *per_node_hstate_attrs[] = {
2654 &nr_hugepages_attr.attr,
2655 &free_hugepages_attr.attr,
2656 &surplus_hugepages_attr.attr,
2657 NULL,
2658 };
2659
2660 static struct attribute_group per_node_hstate_attr_group = {
2661 .attrs = per_node_hstate_attrs,
2662 };
2663
2664 /*
2665 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2666 * Returns node id via non-NULL nidp.
2667 */
2668 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2669 {
2670 int nid;
2671
2672 for (nid = 0; nid < nr_node_ids; nid++) {
2673 struct node_hstate *nhs = &node_hstates[nid];
2674 int i;
2675 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2676 if (nhs->hstate_kobjs[i] == kobj) {
2677 if (nidp)
2678 *nidp = nid;
2679 return &hstates[i];
2680 }
2681 }
2682
2683 BUG();
2684 return NULL;
2685 }
2686
2687 /*
2688 * Unregister hstate attributes from a single node device.
2689 * No-op if no hstate attributes attached.
2690 */
2691 static void hugetlb_unregister_node(struct node *node)
2692 {
2693 struct hstate *h;
2694 struct node_hstate *nhs = &node_hstates[node->dev.id];
2695
2696 if (!nhs->hugepages_kobj)
2697 return; /* no hstate attributes */
2698
2699 for_each_hstate(h) {
2700 int idx = hstate_index(h);
2701 if (nhs->hstate_kobjs[idx]) {
2702 kobject_put(nhs->hstate_kobjs[idx]);
2703 nhs->hstate_kobjs[idx] = NULL;
2704 }
2705 }
2706
2707 kobject_put(nhs->hugepages_kobj);
2708 nhs->hugepages_kobj = NULL;
2709 }
2710
2711
2712 /*
2713 * Register hstate attributes for a single node device.
2714 * No-op if attributes already registered.
2715 */
2716 static void hugetlb_register_node(struct node *node)
2717 {
2718 struct hstate *h;
2719 struct node_hstate *nhs = &node_hstates[node->dev.id];
2720 int err;
2721
2722 if (nhs->hugepages_kobj)
2723 return; /* already allocated */
2724
2725 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2726 &node->dev.kobj);
2727 if (!nhs->hugepages_kobj)
2728 return;
2729
2730 for_each_hstate(h) {
2731 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2732 nhs->hstate_kobjs,
2733 &per_node_hstate_attr_group);
2734 if (err) {
2735 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2736 h->name, node->dev.id);
2737 hugetlb_unregister_node(node);
2738 break;
2739 }
2740 }
2741 }
2742
2743 /*
2744 * hugetlb init time: register hstate attributes for all registered node
2745 * devices of nodes that have memory. All on-line nodes should have
2746 * registered their associated device by this time.
2747 */
2748 static void __init hugetlb_register_all_nodes(void)
2749 {
2750 int nid;
2751
2752 for_each_node_state(nid, N_MEMORY) {
2753 struct node *node = node_devices[nid];
2754 if (node->dev.id == nid)
2755 hugetlb_register_node(node);
2756 }
2757
2758 /*
2759 * Let the node device driver know we're here so it can
2760 * [un]register hstate attributes on node hotplug.
2761 */
2762 register_hugetlbfs_with_node(hugetlb_register_node,
2763 hugetlb_unregister_node);
2764 }
2765 #else /* !CONFIG_NUMA */
2766
2767 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2768 {
2769 BUG();
2770 if (nidp)
2771 *nidp = -1;
2772 return NULL;
2773 }
2774
2775 static void hugetlb_register_all_nodes(void) { }
2776
2777 #endif
2778
2779 static int __init hugetlb_init(void)
2780 {
2781 int i;
2782
2783 if (!hugepages_supported())
2784 return 0;
2785
2786 if (!size_to_hstate(default_hstate_size)) {
2787 default_hstate_size = HPAGE_SIZE;
2788 if (!size_to_hstate(default_hstate_size))
2789 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2790 }
2791 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2792 if (default_hstate_max_huge_pages) {
2793 if (!default_hstate.max_huge_pages)
2794 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2795 }
2796
2797 hugetlb_init_hstates();
2798 gather_bootmem_prealloc();
2799 report_hugepages();
2800
2801 hugetlb_sysfs_init();
2802 hugetlb_register_all_nodes();
2803 hugetlb_cgroup_file_init();
2804
2805 #ifdef CONFIG_SMP
2806 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2807 #else
2808 num_fault_mutexes = 1;
2809 #endif
2810 hugetlb_fault_mutex_table =
2811 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2812 BUG_ON(!hugetlb_fault_mutex_table);
2813
2814 for (i = 0; i < num_fault_mutexes; i++)
2815 mutex_init(&hugetlb_fault_mutex_table[i]);
2816 return 0;
2817 }
2818 subsys_initcall(hugetlb_init);
2819
2820 /* Should be called on processing a hugepagesz=... option */
2821 void __init hugetlb_bad_size(void)
2822 {
2823 parsed_valid_hugepagesz = false;
2824 }
2825
2826 void __init hugetlb_add_hstate(unsigned int order)
2827 {
2828 struct hstate *h;
2829 unsigned long i;
2830
2831 if (size_to_hstate(PAGE_SIZE << order)) {
2832 pr_warn("hugepagesz= specified twice, ignoring\n");
2833 return;
2834 }
2835 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2836 BUG_ON(order == 0);
2837 h = &hstates[hugetlb_max_hstate++];
2838 h->order = order;
2839 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2840 h->nr_huge_pages = 0;
2841 h->free_huge_pages = 0;
2842 for (i = 0; i < MAX_NUMNODES; ++i)
2843 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2844 INIT_LIST_HEAD(&h->hugepage_activelist);
2845 h->next_nid_to_alloc = first_memory_node;
2846 h->next_nid_to_free = first_memory_node;
2847 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2848 huge_page_size(h)/1024);
2849
2850 parsed_hstate = h;
2851 }
2852
2853 static int __init hugetlb_nrpages_setup(char *s)
2854 {
2855 unsigned long *mhp;
2856 static unsigned long *last_mhp;
2857
2858 if (!parsed_valid_hugepagesz) {
2859 pr_warn("hugepages = %s preceded by "
2860 "an unsupported hugepagesz, ignoring\n", s);
2861 parsed_valid_hugepagesz = true;
2862 return 1;
2863 }
2864 /*
2865 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2866 * so this hugepages= parameter goes to the "default hstate".
2867 */
2868 else if (!hugetlb_max_hstate)
2869 mhp = &default_hstate_max_huge_pages;
2870 else
2871 mhp = &parsed_hstate->max_huge_pages;
2872
2873 if (mhp == last_mhp) {
2874 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2875 return 1;
2876 }
2877
2878 if (sscanf(s, "%lu", mhp) <= 0)
2879 *mhp = 0;
2880
2881 /*
2882 * Global state is always initialized later in hugetlb_init.
2883 * But we need to allocate >= MAX_ORDER hstates here early to still
2884 * use the bootmem allocator.
2885 */
2886 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2887 hugetlb_hstate_alloc_pages(parsed_hstate);
2888
2889 last_mhp = mhp;
2890
2891 return 1;
2892 }
2893 __setup("hugepages=", hugetlb_nrpages_setup);
2894
2895 static int __init hugetlb_default_setup(char *s)
2896 {
2897 default_hstate_size = memparse(s, &s);
2898 return 1;
2899 }
2900 __setup("default_hugepagesz=", hugetlb_default_setup);
2901
2902 static unsigned int cpuset_mems_nr(unsigned int *array)
2903 {
2904 int node;
2905 unsigned int nr = 0;
2906
2907 for_each_node_mask(node, cpuset_current_mems_allowed)
2908 nr += array[node];
2909
2910 return nr;
2911 }
2912
2913 #ifdef CONFIG_SYSCTL
2914 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2915 struct ctl_table *table, int write,
2916 void __user *buffer, size_t *length, loff_t *ppos)
2917 {
2918 struct hstate *h = &default_hstate;
2919 unsigned long tmp = h->max_huge_pages;
2920 int ret;
2921
2922 if (!hugepages_supported())
2923 return -EOPNOTSUPP;
2924
2925 table->data = &tmp;
2926 table->maxlen = sizeof(unsigned long);
2927 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2928 if (ret)
2929 goto out;
2930
2931 if (write)
2932 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2933 NUMA_NO_NODE, tmp, *length);
2934 out:
2935 return ret;
2936 }
2937
2938 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2939 void __user *buffer, size_t *length, loff_t *ppos)
2940 {
2941
2942 return hugetlb_sysctl_handler_common(false, table, write,
2943 buffer, length, ppos);
2944 }
2945
2946 #ifdef CONFIG_NUMA
2947 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2948 void __user *buffer, size_t *length, loff_t *ppos)
2949 {
2950 return hugetlb_sysctl_handler_common(true, table, write,
2951 buffer, length, ppos);
2952 }
2953 #endif /* CONFIG_NUMA */
2954
2955 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2956 void __user *buffer,
2957 size_t *length, loff_t *ppos)
2958 {
2959 struct hstate *h = &default_hstate;
2960 unsigned long tmp;
2961 int ret;
2962
2963 if (!hugepages_supported())
2964 return -EOPNOTSUPP;
2965
2966 tmp = h->nr_overcommit_huge_pages;
2967
2968 if (write && hstate_is_gigantic(h))
2969 return -EINVAL;
2970
2971 table->data = &tmp;
2972 table->maxlen = sizeof(unsigned long);
2973 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2974 if (ret)
2975 goto out;
2976
2977 if (write) {
2978 spin_lock(&hugetlb_lock);
2979 h->nr_overcommit_huge_pages = tmp;
2980 spin_unlock(&hugetlb_lock);
2981 }
2982 out:
2983 return ret;
2984 }
2985
2986 #endif /* CONFIG_SYSCTL */
2987
2988 void hugetlb_report_meminfo(struct seq_file *m)
2989 {
2990 struct hstate *h = &default_hstate;
2991 if (!hugepages_supported())
2992 return;
2993 seq_printf(m,
2994 "HugePages_Total: %5lu\n"
2995 "HugePages_Free: %5lu\n"
2996 "HugePages_Rsvd: %5lu\n"
2997 "HugePages_Surp: %5lu\n"
2998 "Hugepagesize: %8lu kB\n",
2999 h->nr_huge_pages,
3000 h->free_huge_pages,
3001 h->resv_huge_pages,
3002 h->surplus_huge_pages,
3003 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3004 }
3005
3006 int hugetlb_report_node_meminfo(int nid, char *buf)
3007 {
3008 struct hstate *h = &default_hstate;
3009 if (!hugepages_supported())
3010 return 0;
3011 return sprintf(buf,
3012 "Node %d HugePages_Total: %5u\n"
3013 "Node %d HugePages_Free: %5u\n"
3014 "Node %d HugePages_Surp: %5u\n",
3015 nid, h->nr_huge_pages_node[nid],
3016 nid, h->free_huge_pages_node[nid],
3017 nid, h->surplus_huge_pages_node[nid]);
3018 }
3019
3020 void hugetlb_show_meminfo(void)
3021 {
3022 struct hstate *h;
3023 int nid;
3024
3025 if (!hugepages_supported())
3026 return;
3027
3028 for_each_node_state(nid, N_MEMORY)
3029 for_each_hstate(h)
3030 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3031 nid,
3032 h->nr_huge_pages_node[nid],
3033 h->free_huge_pages_node[nid],
3034 h->surplus_huge_pages_node[nid],
3035 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3036 }
3037
3038 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3039 {
3040 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3041 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3042 }
3043
3044 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3045 unsigned long hugetlb_total_pages(void)
3046 {
3047 struct hstate *h;
3048 unsigned long nr_total_pages = 0;
3049
3050 for_each_hstate(h)
3051 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3052 return nr_total_pages;
3053 }
3054
3055 static int hugetlb_acct_memory(struct hstate *h, long delta)
3056 {
3057 int ret = -ENOMEM;
3058
3059 spin_lock(&hugetlb_lock);
3060 /*
3061 * When cpuset is configured, it breaks the strict hugetlb page
3062 * reservation as the accounting is done on a global variable. Such
3063 * reservation is completely rubbish in the presence of cpuset because
3064 * the reservation is not checked against page availability for the
3065 * current cpuset. Application can still potentially OOM'ed by kernel
3066 * with lack of free htlb page in cpuset that the task is in.
3067 * Attempt to enforce strict accounting with cpuset is almost
3068 * impossible (or too ugly) because cpuset is too fluid that
3069 * task or memory node can be dynamically moved between cpusets.
3070 *
3071 * The change of semantics for shared hugetlb mapping with cpuset is
3072 * undesirable. However, in order to preserve some of the semantics,
3073 * we fall back to check against current free page availability as
3074 * a best attempt and hopefully to minimize the impact of changing
3075 * semantics that cpuset has.
3076 */
3077 if (delta > 0) {
3078 if (gather_surplus_pages(h, delta) < 0)
3079 goto out;
3080
3081 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3082 return_unused_surplus_pages(h, delta);
3083 goto out;
3084 }
3085 }
3086
3087 ret = 0;
3088 if (delta < 0)
3089 return_unused_surplus_pages(h, (unsigned long) -delta);
3090
3091 out:
3092 spin_unlock(&hugetlb_lock);
3093 return ret;
3094 }
3095
3096 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3097 {
3098 struct resv_map *resv = vma_resv_map(vma);
3099
3100 /*
3101 * This new VMA should share its siblings reservation map if present.
3102 * The VMA will only ever have a valid reservation map pointer where
3103 * it is being copied for another still existing VMA. As that VMA
3104 * has a reference to the reservation map it cannot disappear until
3105 * after this open call completes. It is therefore safe to take a
3106 * new reference here without additional locking.
3107 */
3108 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3109 kref_get(&resv->refs);
3110 }
3111
3112 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3113 {
3114 struct hstate *h = hstate_vma(vma);
3115 struct resv_map *resv = vma_resv_map(vma);
3116 struct hugepage_subpool *spool = subpool_vma(vma);
3117 unsigned long reserve, start, end;
3118 long gbl_reserve;
3119
3120 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3121 return;
3122
3123 start = vma_hugecache_offset(h, vma, vma->vm_start);
3124 end = vma_hugecache_offset(h, vma, vma->vm_end);
3125
3126 reserve = (end - start) - region_count(resv, start, end);
3127
3128 kref_put(&resv->refs, resv_map_release);
3129
3130 if (reserve) {
3131 /*
3132 * Decrement reserve counts. The global reserve count may be
3133 * adjusted if the subpool has a minimum size.
3134 */
3135 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3136 hugetlb_acct_memory(h, -gbl_reserve);
3137 }
3138 }
3139
3140 /*
3141 * We cannot handle pagefaults against hugetlb pages at all. They cause
3142 * handle_mm_fault() to try to instantiate regular-sized pages in the
3143 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3144 * this far.
3145 */
3146 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3147 {
3148 BUG();
3149 return 0;
3150 }
3151
3152 const struct vm_operations_struct hugetlb_vm_ops = {
3153 .fault = hugetlb_vm_op_fault,
3154 .open = hugetlb_vm_op_open,
3155 .close = hugetlb_vm_op_close,
3156 };
3157
3158 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3159 int writable)
3160 {
3161 pte_t entry;
3162
3163 if (writable) {
3164 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3165 vma->vm_page_prot)));
3166 } else {
3167 entry = huge_pte_wrprotect(mk_huge_pte(page,
3168 vma->vm_page_prot));
3169 }
3170 entry = pte_mkyoung(entry);
3171 entry = pte_mkhuge(entry);
3172 entry = arch_make_huge_pte(entry, vma, page, writable);
3173
3174 return entry;
3175 }
3176
3177 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3178 unsigned long address, pte_t *ptep)
3179 {
3180 pte_t entry;
3181
3182 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3183 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3184 update_mmu_cache(vma, address, ptep);
3185 }
3186
3187 static int is_hugetlb_entry_migration(pte_t pte)
3188 {
3189 swp_entry_t swp;
3190
3191 if (huge_pte_none(pte) || pte_present(pte))
3192 return 0;
3193 swp = pte_to_swp_entry(pte);
3194 if (non_swap_entry(swp) && is_migration_entry(swp))
3195 return 1;
3196 else
3197 return 0;
3198 }
3199
3200 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3201 {
3202 swp_entry_t swp;
3203
3204 if (huge_pte_none(pte) || pte_present(pte))
3205 return 0;
3206 swp = pte_to_swp_entry(pte);
3207 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3208 return 1;
3209 else
3210 return 0;
3211 }
3212
3213 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3214 struct vm_area_struct *vma)
3215 {
3216 pte_t *src_pte, *dst_pte, entry;
3217 struct page *ptepage;
3218 unsigned long addr;
3219 int cow;
3220 struct hstate *h = hstate_vma(vma);
3221 unsigned long sz = huge_page_size(h);
3222 unsigned long mmun_start; /* For mmu_notifiers */
3223 unsigned long mmun_end; /* For mmu_notifiers */
3224 int ret = 0;
3225
3226 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3227
3228 mmun_start = vma->vm_start;
3229 mmun_end = vma->vm_end;
3230 if (cow)
3231 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3232
3233 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3234 spinlock_t *src_ptl, *dst_ptl;
3235 src_pte = huge_pte_offset(src, addr);
3236 if (!src_pte)
3237 continue;
3238 dst_pte = huge_pte_alloc(dst, addr, sz);
3239 if (!dst_pte) {
3240 ret = -ENOMEM;
3241 break;
3242 }
3243
3244 /* If the pagetables are shared don't copy or take references */
3245 if (dst_pte == src_pte)
3246 continue;
3247
3248 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3249 src_ptl = huge_pte_lockptr(h, src, src_pte);
3250 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3251 entry = huge_ptep_get(src_pte);
3252 if (huge_pte_none(entry)) { /* skip none entry */
3253 ;
3254 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3255 is_hugetlb_entry_hwpoisoned(entry))) {
3256 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3257
3258 if (is_write_migration_entry(swp_entry) && cow) {
3259 /*
3260 * COW mappings require pages in both
3261 * parent and child to be set to read.
3262 */
3263 make_migration_entry_read(&swp_entry);
3264 entry = swp_entry_to_pte(swp_entry);
3265 set_huge_pte_at(src, addr, src_pte, entry);
3266 }
3267 set_huge_pte_at(dst, addr, dst_pte, entry);
3268 } else {
3269 if (cow) {
3270 huge_ptep_set_wrprotect(src, addr, src_pte);
3271 mmu_notifier_invalidate_range(src, mmun_start,
3272 mmun_end);
3273 }
3274 entry = huge_ptep_get(src_pte);
3275 ptepage = pte_page(entry);
3276 get_page(ptepage);
3277 page_dup_rmap(ptepage, true);
3278 set_huge_pte_at(dst, addr, dst_pte, entry);
3279 hugetlb_count_add(pages_per_huge_page(h), dst);
3280 }
3281 spin_unlock(src_ptl);
3282 spin_unlock(dst_ptl);
3283 }
3284
3285 if (cow)
3286 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3287
3288 return ret;
3289 }
3290
3291 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3292 unsigned long start, unsigned long end,
3293 struct page *ref_page)
3294 {
3295 struct mm_struct *mm = vma->vm_mm;
3296 unsigned long address;
3297 pte_t *ptep;
3298 pte_t pte;
3299 spinlock_t *ptl;
3300 struct page *page;
3301 struct hstate *h = hstate_vma(vma);
3302 unsigned long sz = huge_page_size(h);
3303 const unsigned long mmun_start = start; /* For mmu_notifiers */
3304 const unsigned long mmun_end = end; /* For mmu_notifiers */
3305
3306 WARN_ON(!is_vm_hugetlb_page(vma));
3307 BUG_ON(start & ~huge_page_mask(h));
3308 BUG_ON(end & ~huge_page_mask(h));
3309
3310 /*
3311 * This is a hugetlb vma, all the pte entries should point
3312 * to huge page.
3313 */
3314 tlb_remove_check_page_size_change(tlb, sz);
3315 tlb_start_vma(tlb, vma);
3316 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3317 address = start;
3318 for (; address < end; address += sz) {
3319 ptep = huge_pte_offset(mm, address);
3320 if (!ptep)
3321 continue;
3322
3323 ptl = huge_pte_lock(h, mm, ptep);
3324 if (huge_pmd_unshare(mm, &address, ptep)) {
3325 spin_unlock(ptl);
3326 continue;
3327 }
3328
3329 pte = huge_ptep_get(ptep);
3330 if (huge_pte_none(pte)) {
3331 spin_unlock(ptl);
3332 continue;
3333 }
3334
3335 /*
3336 * Migrating hugepage or HWPoisoned hugepage is already
3337 * unmapped and its refcount is dropped, so just clear pte here.
3338 */
3339 if (unlikely(!pte_present(pte))) {
3340 huge_pte_clear(mm, address, ptep);
3341 spin_unlock(ptl);
3342 continue;
3343 }
3344
3345 page = pte_page(pte);
3346 /*
3347 * If a reference page is supplied, it is because a specific
3348 * page is being unmapped, not a range. Ensure the page we
3349 * are about to unmap is the actual page of interest.
3350 */
3351 if (ref_page) {
3352 if (page != ref_page) {
3353 spin_unlock(ptl);
3354 continue;
3355 }
3356 /*
3357 * Mark the VMA as having unmapped its page so that
3358 * future faults in this VMA will fail rather than
3359 * looking like data was lost
3360 */
3361 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3362 }
3363
3364 pte = huge_ptep_get_and_clear(mm, address, ptep);
3365 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3366 if (huge_pte_dirty(pte))
3367 set_page_dirty(page);
3368
3369 hugetlb_count_sub(pages_per_huge_page(h), mm);
3370 page_remove_rmap(page, true);
3371
3372 spin_unlock(ptl);
3373 tlb_remove_page_size(tlb, page, huge_page_size(h));
3374 /*
3375 * Bail out after unmapping reference page if supplied
3376 */
3377 if (ref_page)
3378 break;
3379 }
3380 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3381 tlb_end_vma(tlb, vma);
3382 }
3383
3384 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3385 struct vm_area_struct *vma, unsigned long start,
3386 unsigned long end, struct page *ref_page)
3387 {
3388 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3389
3390 /*
3391 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3392 * test will fail on a vma being torn down, and not grab a page table
3393 * on its way out. We're lucky that the flag has such an appropriate
3394 * name, and can in fact be safely cleared here. We could clear it
3395 * before the __unmap_hugepage_range above, but all that's necessary
3396 * is to clear it before releasing the i_mmap_rwsem. This works
3397 * because in the context this is called, the VMA is about to be
3398 * destroyed and the i_mmap_rwsem is held.
3399 */
3400 vma->vm_flags &= ~VM_MAYSHARE;
3401 }
3402
3403 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3404 unsigned long end, struct page *ref_page)
3405 {
3406 struct mm_struct *mm;
3407 struct mmu_gather tlb;
3408
3409 mm = vma->vm_mm;
3410
3411 tlb_gather_mmu(&tlb, mm, start, end);
3412 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3413 tlb_finish_mmu(&tlb, start, end);
3414 }
3415
3416 /*
3417 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3418 * mappping it owns the reserve page for. The intention is to unmap the page
3419 * from other VMAs and let the children be SIGKILLed if they are faulting the
3420 * same region.
3421 */
3422 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3423 struct page *page, unsigned long address)
3424 {
3425 struct hstate *h = hstate_vma(vma);
3426 struct vm_area_struct *iter_vma;
3427 struct address_space *mapping;
3428 pgoff_t pgoff;
3429
3430 /*
3431 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3432 * from page cache lookup which is in HPAGE_SIZE units.
3433 */
3434 address = address & huge_page_mask(h);
3435 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3436 vma->vm_pgoff;
3437 mapping = vma->vm_file->f_mapping;
3438
3439 /*
3440 * Take the mapping lock for the duration of the table walk. As
3441 * this mapping should be shared between all the VMAs,
3442 * __unmap_hugepage_range() is called as the lock is already held
3443 */
3444 i_mmap_lock_write(mapping);
3445 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3446 /* Do not unmap the current VMA */
3447 if (iter_vma == vma)
3448 continue;
3449
3450 /*
3451 * Shared VMAs have their own reserves and do not affect
3452 * MAP_PRIVATE accounting but it is possible that a shared
3453 * VMA is using the same page so check and skip such VMAs.
3454 */
3455 if (iter_vma->vm_flags & VM_MAYSHARE)
3456 continue;
3457
3458 /*
3459 * Unmap the page from other VMAs without their own reserves.
3460 * They get marked to be SIGKILLed if they fault in these
3461 * areas. This is because a future no-page fault on this VMA
3462 * could insert a zeroed page instead of the data existing
3463 * from the time of fork. This would look like data corruption
3464 */
3465 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3466 unmap_hugepage_range(iter_vma, address,
3467 address + huge_page_size(h), page);
3468 }
3469 i_mmap_unlock_write(mapping);
3470 }
3471
3472 /*
3473 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3474 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3475 * cannot race with other handlers or page migration.
3476 * Keep the pte_same checks anyway to make transition from the mutex easier.
3477 */
3478 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3479 unsigned long address, pte_t *ptep,
3480 struct page *pagecache_page, spinlock_t *ptl)
3481 {
3482 pte_t pte;
3483 struct hstate *h = hstate_vma(vma);
3484 struct page *old_page, *new_page;
3485 int ret = 0, outside_reserve = 0;
3486 unsigned long mmun_start; /* For mmu_notifiers */
3487 unsigned long mmun_end; /* For mmu_notifiers */
3488
3489 pte = huge_ptep_get(ptep);
3490 old_page = pte_page(pte);
3491
3492 retry_avoidcopy:
3493 /* If no-one else is actually using this page, avoid the copy
3494 * and just make the page writable */
3495 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3496 page_move_anon_rmap(old_page, vma);
3497 set_huge_ptep_writable(vma, address, ptep);
3498 return 0;
3499 }
3500
3501 /*
3502 * If the process that created a MAP_PRIVATE mapping is about to
3503 * perform a COW due to a shared page count, attempt to satisfy
3504 * the allocation without using the existing reserves. The pagecache
3505 * page is used to determine if the reserve at this address was
3506 * consumed or not. If reserves were used, a partial faulted mapping
3507 * at the time of fork() could consume its reserves on COW instead
3508 * of the full address range.
3509 */
3510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3511 old_page != pagecache_page)
3512 outside_reserve = 1;
3513
3514 get_page(old_page);
3515
3516 /*
3517 * Drop page table lock as buddy allocator may be called. It will
3518 * be acquired again before returning to the caller, as expected.
3519 */
3520 spin_unlock(ptl);
3521 new_page = alloc_huge_page(vma, address, outside_reserve);
3522
3523 if (IS_ERR(new_page)) {
3524 /*
3525 * If a process owning a MAP_PRIVATE mapping fails to COW,
3526 * it is due to references held by a child and an insufficient
3527 * huge page pool. To guarantee the original mappers
3528 * reliability, unmap the page from child processes. The child
3529 * may get SIGKILLed if it later faults.
3530 */
3531 if (outside_reserve) {
3532 put_page(old_page);
3533 BUG_ON(huge_pte_none(pte));
3534 unmap_ref_private(mm, vma, old_page, address);
3535 BUG_ON(huge_pte_none(pte));
3536 spin_lock(ptl);
3537 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3538 if (likely(ptep &&
3539 pte_same(huge_ptep_get(ptep), pte)))
3540 goto retry_avoidcopy;
3541 /*
3542 * race occurs while re-acquiring page table
3543 * lock, and our job is done.
3544 */
3545 return 0;
3546 }
3547
3548 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3549 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3550 goto out_release_old;
3551 }
3552
3553 /*
3554 * When the original hugepage is shared one, it does not have
3555 * anon_vma prepared.
3556 */
3557 if (unlikely(anon_vma_prepare(vma))) {
3558 ret = VM_FAULT_OOM;
3559 goto out_release_all;
3560 }
3561
3562 copy_user_huge_page(new_page, old_page, address, vma,
3563 pages_per_huge_page(h));
3564 __SetPageUptodate(new_page);
3565 set_page_huge_active(new_page);
3566
3567 mmun_start = address & huge_page_mask(h);
3568 mmun_end = mmun_start + huge_page_size(h);
3569 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3570
3571 /*
3572 * Retake the page table lock to check for racing updates
3573 * before the page tables are altered
3574 */
3575 spin_lock(ptl);
3576 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3577 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3578 ClearPagePrivate(new_page);
3579
3580 /* Break COW */
3581 huge_ptep_clear_flush(vma, address, ptep);
3582 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3583 set_huge_pte_at(mm, address, ptep,
3584 make_huge_pte(vma, new_page, 1));
3585 page_remove_rmap(old_page, true);
3586 hugepage_add_new_anon_rmap(new_page, vma, address);
3587 /* Make the old page be freed below */
3588 new_page = old_page;
3589 }
3590 spin_unlock(ptl);
3591 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3592 out_release_all:
3593 restore_reserve_on_error(h, vma, address, new_page);
3594 put_page(new_page);
3595 out_release_old:
3596 put_page(old_page);
3597
3598 spin_lock(ptl); /* Caller expects lock to be held */
3599 return ret;
3600 }
3601
3602 /* Return the pagecache page at a given address within a VMA */
3603 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3604 struct vm_area_struct *vma, unsigned long address)
3605 {
3606 struct address_space *mapping;
3607 pgoff_t idx;
3608
3609 mapping = vma->vm_file->f_mapping;
3610 idx = vma_hugecache_offset(h, vma, address);
3611
3612 return find_lock_page(mapping, idx);
3613 }
3614
3615 /*
3616 * Return whether there is a pagecache page to back given address within VMA.
3617 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3618 */
3619 static bool hugetlbfs_pagecache_present(struct hstate *h,
3620 struct vm_area_struct *vma, unsigned long address)
3621 {
3622 struct address_space *mapping;
3623 pgoff_t idx;
3624 struct page *page;
3625
3626 mapping = vma->vm_file->f_mapping;
3627 idx = vma_hugecache_offset(h, vma, address);
3628
3629 page = find_get_page(mapping, idx);
3630 if (page)
3631 put_page(page);
3632 return page != NULL;
3633 }
3634
3635 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3636 pgoff_t idx)
3637 {
3638 struct inode *inode = mapping->host;
3639 struct hstate *h = hstate_inode(inode);
3640 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3641
3642 if (err)
3643 return err;
3644 ClearPagePrivate(page);
3645
3646 spin_lock(&inode->i_lock);
3647 inode->i_blocks += blocks_per_huge_page(h);
3648 spin_unlock(&inode->i_lock);
3649 return 0;
3650 }
3651
3652 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3653 struct address_space *mapping, pgoff_t idx,
3654 unsigned long address, pte_t *ptep, unsigned int flags)
3655 {
3656 struct hstate *h = hstate_vma(vma);
3657 int ret = VM_FAULT_SIGBUS;
3658 int anon_rmap = 0;
3659 unsigned long size;
3660 struct page *page;
3661 pte_t new_pte;
3662 spinlock_t *ptl;
3663
3664 /*
3665 * Currently, we are forced to kill the process in the event the
3666 * original mapper has unmapped pages from the child due to a failed
3667 * COW. Warn that such a situation has occurred as it may not be obvious
3668 */
3669 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3670 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3671 current->pid);
3672 return ret;
3673 }
3674
3675 /*
3676 * Use page lock to guard against racing truncation
3677 * before we get page_table_lock.
3678 */
3679 retry:
3680 page = find_lock_page(mapping, idx);
3681 if (!page) {
3682 size = i_size_read(mapping->host) >> huge_page_shift(h);
3683 if (idx >= size)
3684 goto out;
3685
3686 /*
3687 * Check for page in userfault range
3688 */
3689 if (userfaultfd_missing(vma)) {
3690 u32 hash;
3691 struct vm_fault vmf = {
3692 .vma = vma,
3693 .address = address,
3694 .flags = flags,
3695 /*
3696 * Hard to debug if it ends up being
3697 * used by a callee that assumes
3698 * something about the other
3699 * uninitialized fields... same as in
3700 * memory.c
3701 */
3702 };
3703
3704 /*
3705 * hugetlb_fault_mutex must be dropped before
3706 * handling userfault. Reacquire after handling
3707 * fault to make calling code simpler.
3708 */
3709 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3710 idx, address);
3711 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3712 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3713 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3714 goto out;
3715 }
3716
3717 page = alloc_huge_page(vma, address, 0);
3718 if (IS_ERR(page)) {
3719 ret = PTR_ERR(page);
3720 if (ret == -ENOMEM)
3721 ret = VM_FAULT_OOM;
3722 else
3723 ret = VM_FAULT_SIGBUS;
3724 goto out;
3725 }
3726 clear_huge_page(page, address, pages_per_huge_page(h));
3727 __SetPageUptodate(page);
3728 set_page_huge_active(page);
3729
3730 if (vma->vm_flags & VM_MAYSHARE) {
3731 int err = huge_add_to_page_cache(page, mapping, idx);
3732 if (err) {
3733 put_page(page);
3734 if (err == -EEXIST)
3735 goto retry;
3736 goto out;
3737 }
3738 } else {
3739 lock_page(page);
3740 if (unlikely(anon_vma_prepare(vma))) {
3741 ret = VM_FAULT_OOM;
3742 goto backout_unlocked;
3743 }
3744 anon_rmap = 1;
3745 }
3746 } else {
3747 /*
3748 * If memory error occurs between mmap() and fault, some process
3749 * don't have hwpoisoned swap entry for errored virtual address.
3750 * So we need to block hugepage fault by PG_hwpoison bit check.
3751 */
3752 if (unlikely(PageHWPoison(page))) {
3753 ret = VM_FAULT_HWPOISON |
3754 VM_FAULT_SET_HINDEX(hstate_index(h));
3755 goto backout_unlocked;
3756 }
3757 }
3758
3759 /*
3760 * If we are going to COW a private mapping later, we examine the
3761 * pending reservations for this page now. This will ensure that
3762 * any allocations necessary to record that reservation occur outside
3763 * the spinlock.
3764 */
3765 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3766 if (vma_needs_reservation(h, vma, address) < 0) {
3767 ret = VM_FAULT_OOM;
3768 goto backout_unlocked;
3769 }
3770 /* Just decrements count, does not deallocate */
3771 vma_end_reservation(h, vma, address);
3772 }
3773
3774 ptl = huge_pte_lock(h, mm, ptep);
3775 size = i_size_read(mapping->host) >> huge_page_shift(h);
3776 if (idx >= size)
3777 goto backout;
3778
3779 ret = 0;
3780 if (!huge_pte_none(huge_ptep_get(ptep)))
3781 goto backout;
3782
3783 if (anon_rmap) {
3784 ClearPagePrivate(page);
3785 hugepage_add_new_anon_rmap(page, vma, address);
3786 } else
3787 page_dup_rmap(page, true);
3788 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3789 && (vma->vm_flags & VM_SHARED)));
3790 set_huge_pte_at(mm, address, ptep, new_pte);
3791
3792 hugetlb_count_add(pages_per_huge_page(h), mm);
3793 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3794 /* Optimization, do the COW without a second fault */
3795 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3796 }
3797
3798 spin_unlock(ptl);
3799 unlock_page(page);
3800 out:
3801 return ret;
3802
3803 backout:
3804 spin_unlock(ptl);
3805 backout_unlocked:
3806 unlock_page(page);
3807 restore_reserve_on_error(h, vma, address, page);
3808 put_page(page);
3809 goto out;
3810 }
3811
3812 #ifdef CONFIG_SMP
3813 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3814 struct vm_area_struct *vma,
3815 struct address_space *mapping,
3816 pgoff_t idx, unsigned long address)
3817 {
3818 unsigned long key[2];
3819 u32 hash;
3820
3821 if (vma->vm_flags & VM_SHARED) {
3822 key[0] = (unsigned long) mapping;
3823 key[1] = idx;
3824 } else {
3825 key[0] = (unsigned long) mm;
3826 key[1] = address >> huge_page_shift(h);
3827 }
3828
3829 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3830
3831 return hash & (num_fault_mutexes - 1);
3832 }
3833 #else
3834 /*
3835 * For uniprocesor systems we always use a single mutex, so just
3836 * return 0 and avoid the hashing overhead.
3837 */
3838 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3839 struct vm_area_struct *vma,
3840 struct address_space *mapping,
3841 pgoff_t idx, unsigned long address)
3842 {
3843 return 0;
3844 }
3845 #endif
3846
3847 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3848 unsigned long address, unsigned int flags)
3849 {
3850 pte_t *ptep, entry;
3851 spinlock_t *ptl;
3852 int ret;
3853 u32 hash;
3854 pgoff_t idx;
3855 struct page *page = NULL;
3856 struct page *pagecache_page = NULL;
3857 struct hstate *h = hstate_vma(vma);
3858 struct address_space *mapping;
3859 int need_wait_lock = 0;
3860
3861 address &= huge_page_mask(h);
3862
3863 ptep = huge_pte_offset(mm, address);
3864 if (ptep) {
3865 entry = huge_ptep_get(ptep);
3866 if (unlikely(is_hugetlb_entry_migration(entry))) {
3867 migration_entry_wait_huge(vma, mm, ptep);
3868 return 0;
3869 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3870 return VM_FAULT_HWPOISON_LARGE |
3871 VM_FAULT_SET_HINDEX(hstate_index(h));
3872 } else {
3873 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3874 if (!ptep)
3875 return VM_FAULT_OOM;
3876 }
3877
3878 mapping = vma->vm_file->f_mapping;
3879 idx = vma_hugecache_offset(h, vma, address);
3880
3881 /*
3882 * Serialize hugepage allocation and instantiation, so that we don't
3883 * get spurious allocation failures if two CPUs race to instantiate
3884 * the same page in the page cache.
3885 */
3886 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3887 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3888
3889 entry = huge_ptep_get(ptep);
3890 if (huge_pte_none(entry)) {
3891 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3892 goto out_mutex;
3893 }
3894
3895 ret = 0;
3896
3897 /*
3898 * entry could be a migration/hwpoison entry at this point, so this
3899 * check prevents the kernel from going below assuming that we have
3900 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3901 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3902 * handle it.
3903 */
3904 if (!pte_present(entry))
3905 goto out_mutex;
3906
3907 /*
3908 * If we are going to COW the mapping later, we examine the pending
3909 * reservations for this page now. This will ensure that any
3910 * allocations necessary to record that reservation occur outside the
3911 * spinlock. For private mappings, we also lookup the pagecache
3912 * page now as it is used to determine if a reservation has been
3913 * consumed.
3914 */
3915 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3916 if (vma_needs_reservation(h, vma, address) < 0) {
3917 ret = VM_FAULT_OOM;
3918 goto out_mutex;
3919 }
3920 /* Just decrements count, does not deallocate */
3921 vma_end_reservation(h, vma, address);
3922
3923 if (!(vma->vm_flags & VM_MAYSHARE))
3924 pagecache_page = hugetlbfs_pagecache_page(h,
3925 vma, address);
3926 }
3927
3928 ptl = huge_pte_lock(h, mm, ptep);
3929
3930 /* Check for a racing update before calling hugetlb_cow */
3931 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3932 goto out_ptl;
3933
3934 /*
3935 * hugetlb_cow() requires page locks of pte_page(entry) and
3936 * pagecache_page, so here we need take the former one
3937 * when page != pagecache_page or !pagecache_page.
3938 */
3939 page = pte_page(entry);
3940 if (page != pagecache_page)
3941 if (!trylock_page(page)) {
3942 need_wait_lock = 1;
3943 goto out_ptl;
3944 }
3945
3946 get_page(page);
3947
3948 if (flags & FAULT_FLAG_WRITE) {
3949 if (!huge_pte_write(entry)) {
3950 ret = hugetlb_cow(mm, vma, address, ptep,
3951 pagecache_page, ptl);
3952 goto out_put_page;
3953 }
3954 entry = huge_pte_mkdirty(entry);
3955 }
3956 entry = pte_mkyoung(entry);
3957 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3958 flags & FAULT_FLAG_WRITE))
3959 update_mmu_cache(vma, address, ptep);
3960 out_put_page:
3961 if (page != pagecache_page)
3962 unlock_page(page);
3963 put_page(page);
3964 out_ptl:
3965 spin_unlock(ptl);
3966
3967 if (pagecache_page) {
3968 unlock_page(pagecache_page);
3969 put_page(pagecache_page);
3970 }
3971 out_mutex:
3972 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3973 /*
3974 * Generally it's safe to hold refcount during waiting page lock. But
3975 * here we just wait to defer the next page fault to avoid busy loop and
3976 * the page is not used after unlocked before returning from the current
3977 * page fault. So we are safe from accessing freed page, even if we wait
3978 * here without taking refcount.
3979 */
3980 if (need_wait_lock)
3981 wait_on_page_locked(page);
3982 return ret;
3983 }
3984
3985 /*
3986 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3987 * modifications for huge pages.
3988 */
3989 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3990 pte_t *dst_pte,
3991 struct vm_area_struct *dst_vma,
3992 unsigned long dst_addr,
3993 unsigned long src_addr,
3994 struct page **pagep)
3995 {
3996 int vm_shared = dst_vma->vm_flags & VM_SHARED;
3997 struct hstate *h = hstate_vma(dst_vma);
3998 pte_t _dst_pte;
3999 spinlock_t *ptl;
4000 int ret;
4001 struct page *page;
4002
4003 if (!*pagep) {
4004 ret = -ENOMEM;
4005 page = alloc_huge_page(dst_vma, dst_addr, 0);
4006 if (IS_ERR(page))
4007 goto out;
4008
4009 ret = copy_huge_page_from_user(page,
4010 (const void __user *) src_addr,
4011 pages_per_huge_page(h), false);
4012
4013 /* fallback to copy_from_user outside mmap_sem */
4014 if (unlikely(ret)) {
4015 ret = -EFAULT;
4016 *pagep = page;
4017 /* don't free the page */
4018 goto out;
4019 }
4020 } else {
4021 page = *pagep;
4022 *pagep = NULL;
4023 }
4024
4025 /*
4026 * The memory barrier inside __SetPageUptodate makes sure that
4027 * preceding stores to the page contents become visible before
4028 * the set_pte_at() write.
4029 */
4030 __SetPageUptodate(page);
4031 set_page_huge_active(page);
4032
4033 /*
4034 * If shared, add to page cache
4035 */
4036 if (vm_shared) {
4037 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4038 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4039
4040 ret = huge_add_to_page_cache(page, mapping, idx);
4041 if (ret)
4042 goto out_release_nounlock;
4043 }
4044
4045 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4046 spin_lock(ptl);
4047
4048 ret = -EEXIST;
4049 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4050 goto out_release_unlock;
4051
4052 if (vm_shared) {
4053 page_dup_rmap(page, true);
4054 } else {
4055 ClearPagePrivate(page);
4056 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4057 }
4058
4059 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4060 if (dst_vma->vm_flags & VM_WRITE)
4061 _dst_pte = huge_pte_mkdirty(_dst_pte);
4062 _dst_pte = pte_mkyoung(_dst_pte);
4063
4064 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4065
4066 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4067 dst_vma->vm_flags & VM_WRITE);
4068 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4069
4070 /* No need to invalidate - it was non-present before */
4071 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4072
4073 spin_unlock(ptl);
4074 if (vm_shared)
4075 unlock_page(page);
4076 ret = 0;
4077 out:
4078 return ret;
4079 out_release_unlock:
4080 spin_unlock(ptl);
4081 out_release_nounlock:
4082 if (vm_shared)
4083 unlock_page(page);
4084 put_page(page);
4085 goto out;
4086 }
4087
4088 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4089 struct page **pages, struct vm_area_struct **vmas,
4090 unsigned long *position, unsigned long *nr_pages,
4091 long i, unsigned int flags, int *nonblocking)
4092 {
4093 unsigned long pfn_offset;
4094 unsigned long vaddr = *position;
4095 unsigned long remainder = *nr_pages;
4096 struct hstate *h = hstate_vma(vma);
4097
4098 while (vaddr < vma->vm_end && remainder) {
4099 pte_t *pte;
4100 spinlock_t *ptl = NULL;
4101 int absent;
4102 struct page *page;
4103
4104 /*
4105 * If we have a pending SIGKILL, don't keep faulting pages and
4106 * potentially allocating memory.
4107 */
4108 if (unlikely(fatal_signal_pending(current))) {
4109 remainder = 0;
4110 break;
4111 }
4112
4113 /*
4114 * Some archs (sparc64, sh*) have multiple pte_ts to
4115 * each hugepage. We have to make sure we get the
4116 * first, for the page indexing below to work.
4117 *
4118 * Note that page table lock is not held when pte is null.
4119 */
4120 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4121 if (pte)
4122 ptl = huge_pte_lock(h, mm, pte);
4123 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4124
4125 /*
4126 * When coredumping, it suits get_dump_page if we just return
4127 * an error where there's an empty slot with no huge pagecache
4128 * to back it. This way, we avoid allocating a hugepage, and
4129 * the sparse dumpfile avoids allocating disk blocks, but its
4130 * huge holes still show up with zeroes where they need to be.
4131 */
4132 if (absent && (flags & FOLL_DUMP) &&
4133 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4134 if (pte)
4135 spin_unlock(ptl);
4136 remainder = 0;
4137 break;
4138 }
4139
4140 /*
4141 * We need call hugetlb_fault for both hugepages under migration
4142 * (in which case hugetlb_fault waits for the migration,) and
4143 * hwpoisoned hugepages (in which case we need to prevent the
4144 * caller from accessing to them.) In order to do this, we use
4145 * here is_swap_pte instead of is_hugetlb_entry_migration and
4146 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4147 * both cases, and because we can't follow correct pages
4148 * directly from any kind of swap entries.
4149 */
4150 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4151 ((flags & FOLL_WRITE) &&
4152 !huge_pte_write(huge_ptep_get(pte)))) {
4153 int ret;
4154 unsigned int fault_flags = 0;
4155
4156 if (pte)
4157 spin_unlock(ptl);
4158 if (flags & FOLL_WRITE)
4159 fault_flags |= FAULT_FLAG_WRITE;
4160 if (nonblocking)
4161 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4162 if (flags & FOLL_NOWAIT)
4163 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4164 FAULT_FLAG_RETRY_NOWAIT;
4165 if (flags & FOLL_TRIED) {
4166 VM_WARN_ON_ONCE(fault_flags &
4167 FAULT_FLAG_ALLOW_RETRY);
4168 fault_flags |= FAULT_FLAG_TRIED;
4169 }
4170 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4171 if (ret & VM_FAULT_ERROR) {
4172 remainder = 0;
4173 break;
4174 }
4175 if (ret & VM_FAULT_RETRY) {
4176 if (nonblocking)
4177 *nonblocking = 0;
4178 *nr_pages = 0;
4179 /*
4180 * VM_FAULT_RETRY must not return an
4181 * error, it will return zero
4182 * instead.
4183 *
4184 * No need to update "position" as the
4185 * caller will not check it after
4186 * *nr_pages is set to 0.
4187 */
4188 return i;
4189 }
4190 continue;
4191 }
4192
4193 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4194 page = pte_page(huge_ptep_get(pte));
4195 same_page:
4196 if (pages) {
4197 pages[i] = mem_map_offset(page, pfn_offset);
4198 get_page(pages[i]);
4199 }
4200
4201 if (vmas)
4202 vmas[i] = vma;
4203
4204 vaddr += PAGE_SIZE;
4205 ++pfn_offset;
4206 --remainder;
4207 ++i;
4208 if (vaddr < vma->vm_end && remainder &&
4209 pfn_offset < pages_per_huge_page(h)) {
4210 /*
4211 * We use pfn_offset to avoid touching the pageframes
4212 * of this compound page.
4213 */
4214 goto same_page;
4215 }
4216 spin_unlock(ptl);
4217 }
4218 *nr_pages = remainder;
4219 /*
4220 * setting position is actually required only if remainder is
4221 * not zero but it's faster not to add a "if (remainder)"
4222 * branch.
4223 */
4224 *position = vaddr;
4225
4226 return i ? i : -EFAULT;
4227 }
4228
4229 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4230 /*
4231 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4232 * implement this.
4233 */
4234 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4235 #endif
4236
4237 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4238 unsigned long address, unsigned long end, pgprot_t newprot)
4239 {
4240 struct mm_struct *mm = vma->vm_mm;
4241 unsigned long start = address;
4242 pte_t *ptep;
4243 pte_t pte;
4244 struct hstate *h = hstate_vma(vma);
4245 unsigned long pages = 0;
4246
4247 BUG_ON(address >= end);
4248 flush_cache_range(vma, address, end);
4249
4250 mmu_notifier_invalidate_range_start(mm, start, end);
4251 i_mmap_lock_write(vma->vm_file->f_mapping);
4252 for (; address < end; address += huge_page_size(h)) {
4253 spinlock_t *ptl;
4254 ptep = huge_pte_offset(mm, address);
4255 if (!ptep)
4256 continue;
4257 ptl = huge_pte_lock(h, mm, ptep);
4258 if (huge_pmd_unshare(mm, &address, ptep)) {
4259 pages++;
4260 spin_unlock(ptl);
4261 continue;
4262 }
4263 pte = huge_ptep_get(ptep);
4264 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4265 spin_unlock(ptl);
4266 continue;
4267 }
4268 if (unlikely(is_hugetlb_entry_migration(pte))) {
4269 swp_entry_t entry = pte_to_swp_entry(pte);
4270
4271 if (is_write_migration_entry(entry)) {
4272 pte_t newpte;
4273
4274 make_migration_entry_read(&entry);
4275 newpte = swp_entry_to_pte(entry);
4276 set_huge_pte_at(mm, address, ptep, newpte);
4277 pages++;
4278 }
4279 spin_unlock(ptl);
4280 continue;
4281 }
4282 if (!huge_pte_none(pte)) {
4283 pte = huge_ptep_get_and_clear(mm, address, ptep);
4284 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4285 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4286 set_huge_pte_at(mm, address, ptep, pte);
4287 pages++;
4288 }
4289 spin_unlock(ptl);
4290 }
4291 /*
4292 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4293 * may have cleared our pud entry and done put_page on the page table:
4294 * once we release i_mmap_rwsem, another task can do the final put_page
4295 * and that page table be reused and filled with junk.
4296 */
4297 flush_hugetlb_tlb_range(vma, start, end);
4298 mmu_notifier_invalidate_range(mm, start, end);
4299 i_mmap_unlock_write(vma->vm_file->f_mapping);
4300 mmu_notifier_invalidate_range_end(mm, start, end);
4301
4302 return pages << h->order;
4303 }
4304
4305 int hugetlb_reserve_pages(struct inode *inode,
4306 long from, long to,
4307 struct vm_area_struct *vma,
4308 vm_flags_t vm_flags)
4309 {
4310 long ret, chg;
4311 struct hstate *h = hstate_inode(inode);
4312 struct hugepage_subpool *spool = subpool_inode(inode);
4313 struct resv_map *resv_map;
4314 long gbl_reserve;
4315
4316 /*
4317 * Only apply hugepage reservation if asked. At fault time, an
4318 * attempt will be made for VM_NORESERVE to allocate a page
4319 * without using reserves
4320 */
4321 if (vm_flags & VM_NORESERVE)
4322 return 0;
4323
4324 /*
4325 * Shared mappings base their reservation on the number of pages that
4326 * are already allocated on behalf of the file. Private mappings need
4327 * to reserve the full area even if read-only as mprotect() may be
4328 * called to make the mapping read-write. Assume !vma is a shm mapping
4329 */
4330 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4331 resv_map = inode_resv_map(inode);
4332
4333 chg = region_chg(resv_map, from, to);
4334
4335 } else {
4336 resv_map = resv_map_alloc();
4337 if (!resv_map)
4338 return -ENOMEM;
4339
4340 chg = to - from;
4341
4342 set_vma_resv_map(vma, resv_map);
4343 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4344 }
4345
4346 if (chg < 0) {
4347 ret = chg;
4348 goto out_err;
4349 }
4350
4351 /*
4352 * There must be enough pages in the subpool for the mapping. If
4353 * the subpool has a minimum size, there may be some global
4354 * reservations already in place (gbl_reserve).
4355 */
4356 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4357 if (gbl_reserve < 0) {
4358 ret = -ENOSPC;
4359 goto out_err;
4360 }
4361
4362 /*
4363 * Check enough hugepages are available for the reservation.
4364 * Hand the pages back to the subpool if there are not
4365 */
4366 ret = hugetlb_acct_memory(h, gbl_reserve);
4367 if (ret < 0) {
4368 /* put back original number of pages, chg */
4369 (void)hugepage_subpool_put_pages(spool, chg);
4370 goto out_err;
4371 }
4372
4373 /*
4374 * Account for the reservations made. Shared mappings record regions
4375 * that have reservations as they are shared by multiple VMAs.
4376 * When the last VMA disappears, the region map says how much
4377 * the reservation was and the page cache tells how much of
4378 * the reservation was consumed. Private mappings are per-VMA and
4379 * only the consumed reservations are tracked. When the VMA
4380 * disappears, the original reservation is the VMA size and the
4381 * consumed reservations are stored in the map. Hence, nothing
4382 * else has to be done for private mappings here
4383 */
4384 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4385 long add = region_add(resv_map, from, to);
4386
4387 if (unlikely(chg > add)) {
4388 /*
4389 * pages in this range were added to the reserve
4390 * map between region_chg and region_add. This
4391 * indicates a race with alloc_huge_page. Adjust
4392 * the subpool and reserve counts modified above
4393 * based on the difference.
4394 */
4395 long rsv_adjust;
4396
4397 rsv_adjust = hugepage_subpool_put_pages(spool,
4398 chg - add);
4399 hugetlb_acct_memory(h, -rsv_adjust);
4400 }
4401 }
4402 return 0;
4403 out_err:
4404 if (!vma || vma->vm_flags & VM_MAYSHARE)
4405 region_abort(resv_map, from, to);
4406 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4407 kref_put(&resv_map->refs, resv_map_release);
4408 return ret;
4409 }
4410
4411 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4412 long freed)
4413 {
4414 struct hstate *h = hstate_inode(inode);
4415 struct resv_map *resv_map = inode_resv_map(inode);
4416 long chg = 0;
4417 struct hugepage_subpool *spool = subpool_inode(inode);
4418 long gbl_reserve;
4419
4420 if (resv_map) {
4421 chg = region_del(resv_map, start, end);
4422 /*
4423 * region_del() can fail in the rare case where a region
4424 * must be split and another region descriptor can not be
4425 * allocated. If end == LONG_MAX, it will not fail.
4426 */
4427 if (chg < 0)
4428 return chg;
4429 }
4430
4431 spin_lock(&inode->i_lock);
4432 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4433 spin_unlock(&inode->i_lock);
4434
4435 /*
4436 * If the subpool has a minimum size, the number of global
4437 * reservations to be released may be adjusted.
4438 */
4439 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4440 hugetlb_acct_memory(h, -gbl_reserve);
4441
4442 return 0;
4443 }
4444
4445 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4446 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4447 struct vm_area_struct *vma,
4448 unsigned long addr, pgoff_t idx)
4449 {
4450 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4451 svma->vm_start;
4452 unsigned long sbase = saddr & PUD_MASK;
4453 unsigned long s_end = sbase + PUD_SIZE;
4454
4455 /* Allow segments to share if only one is marked locked */
4456 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4457 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4458
4459 /*
4460 * match the virtual addresses, permission and the alignment of the
4461 * page table page.
4462 */
4463 if (pmd_index(addr) != pmd_index(saddr) ||
4464 vm_flags != svm_flags ||
4465 sbase < svma->vm_start || svma->vm_end < s_end)
4466 return 0;
4467
4468 return saddr;
4469 }
4470
4471 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4472 {
4473 unsigned long base = addr & PUD_MASK;
4474 unsigned long end = base + PUD_SIZE;
4475
4476 /*
4477 * check on proper vm_flags and page table alignment
4478 */
4479 if (vma->vm_flags & VM_MAYSHARE &&
4480 vma->vm_start <= base && end <= vma->vm_end)
4481 return true;
4482 return false;
4483 }
4484
4485 /*
4486 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4487 * and returns the corresponding pte. While this is not necessary for the
4488 * !shared pmd case because we can allocate the pmd later as well, it makes the
4489 * code much cleaner. pmd allocation is essential for the shared case because
4490 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4491 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4492 * bad pmd for sharing.
4493 */
4494 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4495 {
4496 struct vm_area_struct *vma = find_vma(mm, addr);
4497 struct address_space *mapping = vma->vm_file->f_mapping;
4498 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4499 vma->vm_pgoff;
4500 struct vm_area_struct *svma;
4501 unsigned long saddr;
4502 pte_t *spte = NULL;
4503 pte_t *pte;
4504 spinlock_t *ptl;
4505
4506 if (!vma_shareable(vma, addr))
4507 return (pte_t *)pmd_alloc(mm, pud, addr);
4508
4509 i_mmap_lock_write(mapping);
4510 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4511 if (svma == vma)
4512 continue;
4513
4514 saddr = page_table_shareable(svma, vma, addr, idx);
4515 if (saddr) {
4516 spte = huge_pte_offset(svma->vm_mm, saddr);
4517 if (spte) {
4518 get_page(virt_to_page(spte));
4519 break;
4520 }
4521 }
4522 }
4523
4524 if (!spte)
4525 goto out;
4526
4527 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4528 if (pud_none(*pud)) {
4529 pud_populate(mm, pud,
4530 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4531 mm_inc_nr_pmds(mm);
4532 } else {
4533 put_page(virt_to_page(spte));
4534 }
4535 spin_unlock(ptl);
4536 out:
4537 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4538 i_mmap_unlock_write(mapping);
4539 return pte;
4540 }
4541
4542 /*
4543 * unmap huge page backed by shared pte.
4544 *
4545 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4546 * indicated by page_count > 1, unmap is achieved by clearing pud and
4547 * decrementing the ref count. If count == 1, the pte page is not shared.
4548 *
4549 * called with page table lock held.
4550 *
4551 * returns: 1 successfully unmapped a shared pte page
4552 * 0 the underlying pte page is not shared, or it is the last user
4553 */
4554 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4555 {
4556 pgd_t *pgd = pgd_offset(mm, *addr);
4557 pud_t *pud = pud_offset(pgd, *addr);
4558
4559 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4560 if (page_count(virt_to_page(ptep)) == 1)
4561 return 0;
4562
4563 pud_clear(pud);
4564 put_page(virt_to_page(ptep));
4565 mm_dec_nr_pmds(mm);
4566 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4567 return 1;
4568 }
4569 #define want_pmd_share() (1)
4570 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4571 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4572 {
4573 return NULL;
4574 }
4575
4576 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4577 {
4578 return 0;
4579 }
4580 #define want_pmd_share() (0)
4581 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4582
4583 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4584 pte_t *huge_pte_alloc(struct mm_struct *mm,
4585 unsigned long addr, unsigned long sz)
4586 {
4587 pgd_t *pgd;
4588 pud_t *pud;
4589 pte_t *pte = NULL;
4590
4591 pgd = pgd_offset(mm, addr);
4592 pud = pud_alloc(mm, pgd, addr);
4593 if (pud) {
4594 if (sz == PUD_SIZE) {
4595 pte = (pte_t *)pud;
4596 } else {
4597 BUG_ON(sz != PMD_SIZE);
4598 if (want_pmd_share() && pud_none(*pud))
4599 pte = huge_pmd_share(mm, addr, pud);
4600 else
4601 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4602 }
4603 }
4604 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4605
4606 return pte;
4607 }
4608
4609 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4610 {
4611 pgd_t *pgd;
4612 pud_t *pud;
4613 pmd_t *pmd = NULL;
4614
4615 pgd = pgd_offset(mm, addr);
4616 if (pgd_present(*pgd)) {
4617 pud = pud_offset(pgd, addr);
4618 if (pud_present(*pud)) {
4619 if (pud_huge(*pud))
4620 return (pte_t *)pud;
4621 pmd = pmd_offset(pud, addr);
4622 }
4623 }
4624 return (pte_t *) pmd;
4625 }
4626
4627 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4628
4629 /*
4630 * These functions are overwritable if your architecture needs its own
4631 * behavior.
4632 */
4633 struct page * __weak
4634 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4635 int write)
4636 {
4637 return ERR_PTR(-EINVAL);
4638 }
4639
4640 struct page * __weak
4641 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4642 pmd_t *pmd, int flags)
4643 {
4644 struct page *page = NULL;
4645 spinlock_t *ptl;
4646 retry:
4647 ptl = pmd_lockptr(mm, pmd);
4648 spin_lock(ptl);
4649 /*
4650 * make sure that the address range covered by this pmd is not
4651 * unmapped from other threads.
4652 */
4653 if (!pmd_huge(*pmd))
4654 goto out;
4655 if (pmd_present(*pmd)) {
4656 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4657 if (flags & FOLL_GET)
4658 get_page(page);
4659 } else {
4660 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4661 spin_unlock(ptl);
4662 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4663 goto retry;
4664 }
4665 /*
4666 * hwpoisoned entry is treated as no_page_table in
4667 * follow_page_mask().
4668 */
4669 }
4670 out:
4671 spin_unlock(ptl);
4672 return page;
4673 }
4674
4675 struct page * __weak
4676 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4677 pud_t *pud, int flags)
4678 {
4679 if (flags & FOLL_GET)
4680 return NULL;
4681
4682 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4683 }
4684
4685 #ifdef CONFIG_MEMORY_FAILURE
4686
4687 /*
4688 * This function is called from memory failure code.
4689 */
4690 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4691 {
4692 struct hstate *h = page_hstate(hpage);
4693 int nid = page_to_nid(hpage);
4694 int ret = -EBUSY;
4695
4696 spin_lock(&hugetlb_lock);
4697 /*
4698 * Just checking !page_huge_active is not enough, because that could be
4699 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4700 */
4701 if (!page_huge_active(hpage) && !page_count(hpage)) {
4702 /*
4703 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4704 * but dangling hpage->lru can trigger list-debug warnings
4705 * (this happens when we call unpoison_memory() on it),
4706 * so let it point to itself with list_del_init().
4707 */
4708 list_del_init(&hpage->lru);
4709 set_page_refcounted(hpage);
4710 h->free_huge_pages--;
4711 h->free_huge_pages_node[nid]--;
4712 ret = 0;
4713 }
4714 spin_unlock(&hugetlb_lock);
4715 return ret;
4716 }
4717 #endif
4718
4719 bool isolate_huge_page(struct page *page, struct list_head *list)
4720 {
4721 bool ret = true;
4722
4723 VM_BUG_ON_PAGE(!PageHead(page), page);
4724 spin_lock(&hugetlb_lock);
4725 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4726 ret = false;
4727 goto unlock;
4728 }
4729 clear_page_huge_active(page);
4730 list_move_tail(&page->lru, list);
4731 unlock:
4732 spin_unlock(&hugetlb_lock);
4733 return ret;
4734 }
4735
4736 void putback_active_hugepage(struct page *page)
4737 {
4738 VM_BUG_ON_PAGE(!PageHead(page), page);
4739 spin_lock(&hugetlb_lock);
4740 set_page_huge_active(page);
4741 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4742 spin_unlock(&hugetlb_lock);
4743 put_page(page);
4744 }