]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/hugetlb.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include "internal.h"
38
39 int hugepages_treat_as_movable;
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49
50 __initdata LIST_HEAD(huge_boot_pages);
51
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57
58 /*
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
61 */
62 DEFINE_SPINLOCK(hugetlb_lock);
63
64 /*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
87 kfree(spool);
88 }
89 }
90
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
93 {
94 struct hugepage_subpool *spool;
95
96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
111
112 return spool;
113 }
114
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121 }
122
123 /*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 long delta)
133 {
134 long ret = delta;
135
136 if (!spool)
137 return ret;
138
139 spin_lock(&spool->lock);
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
148 }
149
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165 unlock_ret:
166 spin_unlock(&spool->lock);
167 return ret;
168 }
169
170 /*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 long delta)
178 {
179 long ret = delta;
180
181 if (!spool)
182 return delta;
183
184 spin_lock(&spool->lock);
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
205 unlock_or_release_subpool(spool);
206
207 return ret;
208 }
209
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 return subpool_inode(file_inode(vma->vm_file));
218 }
219
220 /*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
223 *
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
238 */
239 struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243 };
244
245 /*
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
258 */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 struct list_head *head = &resv->regions;
262 struct file_region *rg, *nrg, *trg;
263 long add = 0;
264
265 spin_lock(&resv->lock);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
320
321 add += (nrg->from - f); /* Added to beginning of region */
322 nrg->from = f;
323 add += t - nrg->to; /* Added to end of region */
324 nrg->to = t;
325
326 out_locked:
327 resv->adds_in_progress--;
328 spin_unlock(&resv->lock);
329 VM_BUG_ON(add < 0);
330 return add;
331 }
332
333 /*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
354 */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 struct list_head *head = &resv->regions;
358 struct file_region *rg, *nrg = NULL;
359 long chg = 0;
360
361 retry:
362 spin_lock(&resv->lock);
363 retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 if (!trg) {
380 kfree(nrg);
381 return -ENOMEM;
382 }
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
399 if (!nrg) {
400 resv->adds_in_progress--;
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
411
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
427 goto out;
428
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
438
439 out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444 out_nrg:
445 spin_unlock(&resv->lock);
446 return chg;
447 }
448
449 /*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466 }
467
468 /*
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
481 */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 struct list_head *head = &resv->regions;
485 struct file_region *rg, *trg;
486 struct file_region *nrg = NULL;
487 long del = 0;
488
489 retry:
490 spin_lock(&resv->lock);
491 list_for_each_entry_safe(rg, trg, head, link) {
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 continue;
501
502 if (rg->from >= t)
503 break;
504
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
518
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
539 break;
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
556 }
557
558 spin_unlock(&resv->lock);
559 kfree(nrg);
560 return del;
561 }
562
563 /*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 if (rsv_adjust) {
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583 }
584
585 /*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 struct list_head *head = &resv->regions;
592 struct file_region *rg;
593 long chg = 0;
594
595 spin_lock(&resv->lock);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
598 long seg_from;
599 long seg_to;
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
611 spin_unlock(&resv->lock);
612
613 return chg;
614 }
615
616 /*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
622 {
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
625 }
626
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629 {
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633
634 /*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 struct hstate *hstate;
641
642 if (!is_vm_hugetlb_page(vma))
643 return PAGE_SIZE;
644
645 hstate = hstate_vma(vma);
646
647 return 1UL << huge_page_shift(hstate);
648 }
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650
651 /*
652 * Return the page size being used by the MMU to back a VMA. In the majority
653 * of cases, the page size used by the kernel matches the MMU size. On
654 * architectures where it differs, an architecture-specific version of this
655 * function is required.
656 */
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 {
660 return vma_kernel_pagesize(vma);
661 }
662 #endif
663
664 /*
665 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
666 * bits of the reservation map pointer, which are always clear due to
667 * alignment.
668 */
669 #define HPAGE_RESV_OWNER (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672
673 /*
674 * These helpers are used to track how many pages are reserved for
675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676 * is guaranteed to have their future faults succeed.
677 *
678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679 * the reserve counters are updated with the hugetlb_lock held. It is safe
680 * to reset the VMA at fork() time as it is not in use yet and there is no
681 * chance of the global counters getting corrupted as a result of the values.
682 *
683 * The private mapping reservation is represented in a subtly different
684 * manner to a shared mapping. A shared mapping has a region map associated
685 * with the underlying file, this region map represents the backing file
686 * pages which have ever had a reservation assigned which this persists even
687 * after the page is instantiated. A private mapping has a region map
688 * associated with the original mmap which is attached to all VMAs which
689 * reference it, this region map represents those offsets which have consumed
690 * reservation ie. where pages have been instantiated.
691 */
692 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 {
694 return (unsigned long)vma->vm_private_data;
695 }
696
697 static void set_vma_private_data(struct vm_area_struct *vma,
698 unsigned long value)
699 {
700 vma->vm_private_data = (void *)value;
701 }
702
703 struct resv_map *resv_map_alloc(void)
704 {
705 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707
708 if (!resv_map || !rg) {
709 kfree(resv_map);
710 kfree(rg);
711 return NULL;
712 }
713
714 kref_init(&resv_map->refs);
715 spin_lock_init(&resv_map->lock);
716 INIT_LIST_HEAD(&resv_map->regions);
717
718 resv_map->adds_in_progress = 0;
719
720 INIT_LIST_HEAD(&resv_map->region_cache);
721 list_add(&rg->link, &resv_map->region_cache);
722 resv_map->region_cache_count = 1;
723
724 return resv_map;
725 }
726
727 void resv_map_release(struct kref *ref)
728 {
729 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730 struct list_head *head = &resv_map->region_cache;
731 struct file_region *rg, *trg;
732
733 /* Clear out any active regions before we release the map. */
734 region_del(resv_map, 0, LONG_MAX);
735
736 /* ... and any entries left in the cache */
737 list_for_each_entry_safe(rg, trg, head, link) {
738 list_del(&rg->link);
739 kfree(rg);
740 }
741
742 VM_BUG_ON(resv_map->adds_in_progress);
743
744 kfree(resv_map);
745 }
746
747 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 {
749 return inode->i_mapping->private_data;
750 }
751
752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 {
754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 if (vma->vm_flags & VM_MAYSHARE) {
756 struct address_space *mapping = vma->vm_file->f_mapping;
757 struct inode *inode = mapping->host;
758
759 return inode_resv_map(inode);
760
761 } else {
762 return (struct resv_map *)(get_vma_private_data(vma) &
763 ~HPAGE_RESV_MASK);
764 }
765 }
766
767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 {
769 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771
772 set_vma_private_data(vma, (get_vma_private_data(vma) &
773 HPAGE_RESV_MASK) | (unsigned long)map);
774 }
775
776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 {
778 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780
781 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 }
783
784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 {
786 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787
788 return (get_vma_private_data(vma) & flag) != 0;
789 }
790
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 {
794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795 if (!(vma->vm_flags & VM_MAYSHARE))
796 vma->vm_private_data = (void *)0;
797 }
798
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 {
802 if (vma->vm_flags & VM_NORESERVE) {
803 /*
804 * This address is already reserved by other process(chg == 0),
805 * so, we should decrement reserved count. Without decrementing,
806 * reserve count remains after releasing inode, because this
807 * allocated page will go into page cache and is regarded as
808 * coming from reserved pool in releasing step. Currently, we
809 * don't have any other solution to deal with this situation
810 * properly, so add work-around here.
811 */
812 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813 return true;
814 else
815 return false;
816 }
817
818 /* Shared mappings always use reserves */
819 if (vma->vm_flags & VM_MAYSHARE) {
820 /*
821 * We know VM_NORESERVE is not set. Therefore, there SHOULD
822 * be a region map for all pages. The only situation where
823 * there is no region map is if a hole was punched via
824 * fallocate. In this case, there really are no reverves to
825 * use. This situation is indicated if chg != 0.
826 */
827 if (chg)
828 return false;
829 else
830 return true;
831 }
832
833 /*
834 * Only the process that called mmap() has reserves for
835 * private mappings.
836 */
837 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 /*
839 * Like the shared case above, a hole punch or truncate
840 * could have been performed on the private mapping.
841 * Examine the value of chg to determine if reserves
842 * actually exist or were previously consumed.
843 * Very Subtle - The value of chg comes from a previous
844 * call to vma_needs_reserves(). The reserve map for
845 * private mappings has different (opposite) semantics
846 * than that of shared mappings. vma_needs_reserves()
847 * has already taken this difference in semantics into
848 * account. Therefore, the meaning of chg is the same
849 * as in the shared case above. Code could easily be
850 * combined, but keeping it separate draws attention to
851 * subtle differences.
852 */
853 if (chg)
854 return false;
855 else
856 return true;
857 }
858
859 return false;
860 }
861
862 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 {
864 int nid = page_to_nid(page);
865 list_move(&page->lru, &h->hugepage_freelists[nid]);
866 h->free_huge_pages++;
867 h->free_huge_pages_node[nid]++;
868 }
869
870 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
871 {
872 struct page *page;
873
874 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875 if (!is_migrate_isolate_page(page))
876 break;
877 /*
878 * if 'non-isolated free hugepage' not found on the list,
879 * the allocation fails.
880 */
881 if (&h->hugepage_freelists[nid] == &page->lru)
882 return NULL;
883 list_move(&page->lru, &h->hugepage_activelist);
884 set_page_refcounted(page);
885 h->free_huge_pages--;
886 h->free_huge_pages_node[nid]--;
887 return page;
888 }
889
890 /* Movability of hugepages depends on migration support. */
891 static inline gfp_t htlb_alloc_mask(struct hstate *h)
892 {
893 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
894 return GFP_HIGHUSER_MOVABLE;
895 else
896 return GFP_HIGHUSER;
897 }
898
899 static struct page *dequeue_huge_page_vma(struct hstate *h,
900 struct vm_area_struct *vma,
901 unsigned long address, int avoid_reserve,
902 long chg)
903 {
904 struct page *page = NULL;
905 struct mempolicy *mpol;
906 nodemask_t *nodemask;
907 struct zonelist *zonelist;
908 struct zone *zone;
909 struct zoneref *z;
910 unsigned int cpuset_mems_cookie;
911
912 /*
913 * A child process with MAP_PRIVATE mappings created by their parent
914 * have no page reserves. This check ensures that reservations are
915 * not "stolen". The child may still get SIGKILLed
916 */
917 if (!vma_has_reserves(vma, chg) &&
918 h->free_huge_pages - h->resv_huge_pages == 0)
919 goto err;
920
921 /* If reserves cannot be used, ensure enough pages are in the pool */
922 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
923 goto err;
924
925 retry_cpuset:
926 cpuset_mems_cookie = read_mems_allowed_begin();
927 zonelist = huge_zonelist(vma, address,
928 htlb_alloc_mask(h), &mpol, &nodemask);
929
930 for_each_zone_zonelist_nodemask(zone, z, zonelist,
931 MAX_NR_ZONES - 1, nodemask) {
932 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
933 page = dequeue_huge_page_node(h, zone_to_nid(zone));
934 if (page) {
935 if (avoid_reserve)
936 break;
937 if (!vma_has_reserves(vma, chg))
938 break;
939
940 SetPagePrivate(page);
941 h->resv_huge_pages--;
942 break;
943 }
944 }
945 }
946
947 mpol_cond_put(mpol);
948 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
949 goto retry_cpuset;
950 return page;
951
952 err:
953 return NULL;
954 }
955
956 /*
957 * common helper functions for hstate_next_node_to_{alloc|free}.
958 * We may have allocated or freed a huge page based on a different
959 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
960 * be outside of *nodes_allowed. Ensure that we use an allowed
961 * node for alloc or free.
962 */
963 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
964 {
965 nid = next_node_in(nid, *nodes_allowed);
966 VM_BUG_ON(nid >= MAX_NUMNODES);
967
968 return nid;
969 }
970
971 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
972 {
973 if (!node_isset(nid, *nodes_allowed))
974 nid = next_node_allowed(nid, nodes_allowed);
975 return nid;
976 }
977
978 /*
979 * returns the previously saved node ["this node"] from which to
980 * allocate a persistent huge page for the pool and advance the
981 * next node from which to allocate, handling wrap at end of node
982 * mask.
983 */
984 static int hstate_next_node_to_alloc(struct hstate *h,
985 nodemask_t *nodes_allowed)
986 {
987 int nid;
988
989 VM_BUG_ON(!nodes_allowed);
990
991 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
992 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
993
994 return nid;
995 }
996
997 /*
998 * helper for free_pool_huge_page() - return the previously saved
999 * node ["this node"] from which to free a huge page. Advance the
1000 * next node id whether or not we find a free huge page to free so
1001 * that the next attempt to free addresses the next node.
1002 */
1003 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1004 {
1005 int nid;
1006
1007 VM_BUG_ON(!nodes_allowed);
1008
1009 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1010 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1011
1012 return nid;
1013 }
1014
1015 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1016 for (nr_nodes = nodes_weight(*mask); \
1017 nr_nodes > 0 && \
1018 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1019 nr_nodes--)
1020
1021 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1022 for (nr_nodes = nodes_weight(*mask); \
1023 nr_nodes > 0 && \
1024 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1025 nr_nodes--)
1026
1027 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1028 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1029 defined(CONFIG_CMA))
1030 static void destroy_compound_gigantic_page(struct page *page,
1031 unsigned int order)
1032 {
1033 int i;
1034 int nr_pages = 1 << order;
1035 struct page *p = page + 1;
1036
1037 atomic_set(compound_mapcount_ptr(page), 0);
1038 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1039 clear_compound_head(p);
1040 set_page_refcounted(p);
1041 }
1042
1043 set_compound_order(page, 0);
1044 __ClearPageHead(page);
1045 }
1046
1047 static void free_gigantic_page(struct page *page, unsigned int order)
1048 {
1049 free_contig_range(page_to_pfn(page), 1 << order);
1050 }
1051
1052 static int __alloc_gigantic_page(unsigned long start_pfn,
1053 unsigned long nr_pages)
1054 {
1055 unsigned long end_pfn = start_pfn + nr_pages;
1056 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1057 GFP_KERNEL);
1058 }
1059
1060 static bool pfn_range_valid_gigantic(struct zone *z,
1061 unsigned long start_pfn, unsigned long nr_pages)
1062 {
1063 unsigned long i, end_pfn = start_pfn + nr_pages;
1064 struct page *page;
1065
1066 for (i = start_pfn; i < end_pfn; i++) {
1067 if (!pfn_valid(i))
1068 return false;
1069
1070 page = pfn_to_page(i);
1071
1072 if (page_zone(page) != z)
1073 return false;
1074
1075 if (PageReserved(page))
1076 return false;
1077
1078 if (page_count(page) > 0)
1079 return false;
1080
1081 if (PageHuge(page))
1082 return false;
1083 }
1084
1085 return true;
1086 }
1087
1088 static bool zone_spans_last_pfn(const struct zone *zone,
1089 unsigned long start_pfn, unsigned long nr_pages)
1090 {
1091 unsigned long last_pfn = start_pfn + nr_pages - 1;
1092 return zone_spans_pfn(zone, last_pfn);
1093 }
1094
1095 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1096 {
1097 unsigned long nr_pages = 1 << order;
1098 unsigned long ret, pfn, flags;
1099 struct zone *z;
1100
1101 z = NODE_DATA(nid)->node_zones;
1102 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1103 spin_lock_irqsave(&z->lock, flags);
1104
1105 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1106 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1107 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1108 /*
1109 * We release the zone lock here because
1110 * alloc_contig_range() will also lock the zone
1111 * at some point. If there's an allocation
1112 * spinning on this lock, it may win the race
1113 * and cause alloc_contig_range() to fail...
1114 */
1115 spin_unlock_irqrestore(&z->lock, flags);
1116 ret = __alloc_gigantic_page(pfn, nr_pages);
1117 if (!ret)
1118 return pfn_to_page(pfn);
1119 spin_lock_irqsave(&z->lock, flags);
1120 }
1121 pfn += nr_pages;
1122 }
1123
1124 spin_unlock_irqrestore(&z->lock, flags);
1125 }
1126
1127 return NULL;
1128 }
1129
1130 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1131 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1132
1133 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1134 {
1135 struct page *page;
1136
1137 page = alloc_gigantic_page(nid, huge_page_order(h));
1138 if (page) {
1139 prep_compound_gigantic_page(page, huge_page_order(h));
1140 prep_new_huge_page(h, page, nid);
1141 }
1142
1143 return page;
1144 }
1145
1146 static int alloc_fresh_gigantic_page(struct hstate *h,
1147 nodemask_t *nodes_allowed)
1148 {
1149 struct page *page = NULL;
1150 int nr_nodes, node;
1151
1152 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1153 page = alloc_fresh_gigantic_page_node(h, node);
1154 if (page)
1155 return 1;
1156 }
1157
1158 return 0;
1159 }
1160
1161 static inline bool gigantic_page_supported(void) { return true; }
1162 #else
1163 static inline bool gigantic_page_supported(void) { return false; }
1164 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1165 static inline void destroy_compound_gigantic_page(struct page *page,
1166 unsigned int order) { }
1167 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1168 nodemask_t *nodes_allowed) { return 0; }
1169 #endif
1170
1171 static void update_and_free_page(struct hstate *h, struct page *page)
1172 {
1173 int i;
1174
1175 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1176 return;
1177
1178 h->nr_huge_pages--;
1179 h->nr_huge_pages_node[page_to_nid(page)]--;
1180 for (i = 0; i < pages_per_huge_page(h); i++) {
1181 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1182 1 << PG_referenced | 1 << PG_dirty |
1183 1 << PG_active | 1 << PG_private |
1184 1 << PG_writeback);
1185 }
1186 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1187 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1188 set_page_refcounted(page);
1189 if (hstate_is_gigantic(h)) {
1190 destroy_compound_gigantic_page(page, huge_page_order(h));
1191 free_gigantic_page(page, huge_page_order(h));
1192 } else {
1193 __free_pages(page, huge_page_order(h));
1194 }
1195 }
1196
1197 struct hstate *size_to_hstate(unsigned long size)
1198 {
1199 struct hstate *h;
1200
1201 for_each_hstate(h) {
1202 if (huge_page_size(h) == size)
1203 return h;
1204 }
1205 return NULL;
1206 }
1207
1208 /*
1209 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1210 * to hstate->hugepage_activelist.)
1211 *
1212 * This function can be called for tail pages, but never returns true for them.
1213 */
1214 bool page_huge_active(struct page *page)
1215 {
1216 VM_BUG_ON_PAGE(!PageHuge(page), page);
1217 return PageHead(page) && PagePrivate(&page[1]);
1218 }
1219
1220 /* never called for tail page */
1221 static void set_page_huge_active(struct page *page)
1222 {
1223 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1224 SetPagePrivate(&page[1]);
1225 }
1226
1227 static void clear_page_huge_active(struct page *page)
1228 {
1229 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1230 ClearPagePrivate(&page[1]);
1231 }
1232
1233 void free_huge_page(struct page *page)
1234 {
1235 /*
1236 * Can't pass hstate in here because it is called from the
1237 * compound page destructor.
1238 */
1239 struct hstate *h = page_hstate(page);
1240 int nid = page_to_nid(page);
1241 struct hugepage_subpool *spool =
1242 (struct hugepage_subpool *)page_private(page);
1243 bool restore_reserve;
1244
1245 set_page_private(page, 0);
1246 page->mapping = NULL;
1247 VM_BUG_ON_PAGE(page_count(page), page);
1248 VM_BUG_ON_PAGE(page_mapcount(page), page);
1249 restore_reserve = PagePrivate(page);
1250 ClearPagePrivate(page);
1251
1252 /*
1253 * A return code of zero implies that the subpool will be under its
1254 * minimum size if the reservation is not restored after page is free.
1255 * Therefore, force restore_reserve operation.
1256 */
1257 if (hugepage_subpool_put_pages(spool, 1) == 0)
1258 restore_reserve = true;
1259
1260 spin_lock(&hugetlb_lock);
1261 clear_page_huge_active(page);
1262 hugetlb_cgroup_uncharge_page(hstate_index(h),
1263 pages_per_huge_page(h), page);
1264 if (restore_reserve)
1265 h->resv_huge_pages++;
1266
1267 if (h->surplus_huge_pages_node[nid]) {
1268 /* remove the page from active list */
1269 list_del(&page->lru);
1270 update_and_free_page(h, page);
1271 h->surplus_huge_pages--;
1272 h->surplus_huge_pages_node[nid]--;
1273 } else {
1274 arch_clear_hugepage_flags(page);
1275 enqueue_huge_page(h, page);
1276 }
1277 spin_unlock(&hugetlb_lock);
1278 }
1279
1280 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1281 {
1282 INIT_LIST_HEAD(&page->lru);
1283 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1284 spin_lock(&hugetlb_lock);
1285 set_hugetlb_cgroup(page, NULL);
1286 h->nr_huge_pages++;
1287 h->nr_huge_pages_node[nid]++;
1288 spin_unlock(&hugetlb_lock);
1289 put_page(page); /* free it into the hugepage allocator */
1290 }
1291
1292 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1293 {
1294 int i;
1295 int nr_pages = 1 << order;
1296 struct page *p = page + 1;
1297
1298 /* we rely on prep_new_huge_page to set the destructor */
1299 set_compound_order(page, order);
1300 __ClearPageReserved(page);
1301 __SetPageHead(page);
1302 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1303 /*
1304 * For gigantic hugepages allocated through bootmem at
1305 * boot, it's safer to be consistent with the not-gigantic
1306 * hugepages and clear the PG_reserved bit from all tail pages
1307 * too. Otherwse drivers using get_user_pages() to access tail
1308 * pages may get the reference counting wrong if they see
1309 * PG_reserved set on a tail page (despite the head page not
1310 * having PG_reserved set). Enforcing this consistency between
1311 * head and tail pages allows drivers to optimize away a check
1312 * on the head page when they need know if put_page() is needed
1313 * after get_user_pages().
1314 */
1315 __ClearPageReserved(p);
1316 set_page_count(p, 0);
1317 set_compound_head(p, page);
1318 }
1319 atomic_set(compound_mapcount_ptr(page), -1);
1320 }
1321
1322 /*
1323 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1324 * transparent huge pages. See the PageTransHuge() documentation for more
1325 * details.
1326 */
1327 int PageHuge(struct page *page)
1328 {
1329 if (!PageCompound(page))
1330 return 0;
1331
1332 page = compound_head(page);
1333 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1334 }
1335 EXPORT_SYMBOL_GPL(PageHuge);
1336
1337 /*
1338 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1339 * normal or transparent huge pages.
1340 */
1341 int PageHeadHuge(struct page *page_head)
1342 {
1343 if (!PageHead(page_head))
1344 return 0;
1345
1346 return get_compound_page_dtor(page_head) == free_huge_page;
1347 }
1348
1349 pgoff_t __basepage_index(struct page *page)
1350 {
1351 struct page *page_head = compound_head(page);
1352 pgoff_t index = page_index(page_head);
1353 unsigned long compound_idx;
1354
1355 if (!PageHuge(page_head))
1356 return page_index(page);
1357
1358 if (compound_order(page_head) >= MAX_ORDER)
1359 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1360 else
1361 compound_idx = page - page_head;
1362
1363 return (index << compound_order(page_head)) + compound_idx;
1364 }
1365
1366 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1367 {
1368 struct page *page;
1369
1370 page = __alloc_pages_node(nid,
1371 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1372 __GFP_REPEAT|__GFP_NOWARN,
1373 huge_page_order(h));
1374 if (page) {
1375 prep_new_huge_page(h, page, nid);
1376 }
1377
1378 return page;
1379 }
1380
1381 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1382 {
1383 struct page *page;
1384 int nr_nodes, node;
1385 int ret = 0;
1386
1387 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1388 page = alloc_fresh_huge_page_node(h, node);
1389 if (page) {
1390 ret = 1;
1391 break;
1392 }
1393 }
1394
1395 if (ret)
1396 count_vm_event(HTLB_BUDDY_PGALLOC);
1397 else
1398 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1399
1400 return ret;
1401 }
1402
1403 /*
1404 * Free huge page from pool from next node to free.
1405 * Attempt to keep persistent huge pages more or less
1406 * balanced over allowed nodes.
1407 * Called with hugetlb_lock locked.
1408 */
1409 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1410 bool acct_surplus)
1411 {
1412 int nr_nodes, node;
1413 int ret = 0;
1414
1415 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1416 /*
1417 * If we're returning unused surplus pages, only examine
1418 * nodes with surplus pages.
1419 */
1420 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1421 !list_empty(&h->hugepage_freelists[node])) {
1422 struct page *page =
1423 list_entry(h->hugepage_freelists[node].next,
1424 struct page, lru);
1425 list_del(&page->lru);
1426 h->free_huge_pages--;
1427 h->free_huge_pages_node[node]--;
1428 if (acct_surplus) {
1429 h->surplus_huge_pages--;
1430 h->surplus_huge_pages_node[node]--;
1431 }
1432 update_and_free_page(h, page);
1433 ret = 1;
1434 break;
1435 }
1436 }
1437
1438 return ret;
1439 }
1440
1441 /*
1442 * Dissolve a given free hugepage into free buddy pages. This function does
1443 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1444 * number of free hugepages would be reduced below the number of reserved
1445 * hugepages.
1446 */
1447 static int dissolve_free_huge_page(struct page *page)
1448 {
1449 int rc = 0;
1450
1451 spin_lock(&hugetlb_lock);
1452 if (PageHuge(page) && !page_count(page)) {
1453 struct page *head = compound_head(page);
1454 struct hstate *h = page_hstate(head);
1455 int nid = page_to_nid(head);
1456 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1457 rc = -EBUSY;
1458 goto out;
1459 }
1460 list_del(&head->lru);
1461 h->free_huge_pages--;
1462 h->free_huge_pages_node[nid]--;
1463 h->max_huge_pages--;
1464 update_and_free_page(h, head);
1465 }
1466 out:
1467 spin_unlock(&hugetlb_lock);
1468 return rc;
1469 }
1470
1471 /*
1472 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1473 * make specified memory blocks removable from the system.
1474 * Note that this will dissolve a free gigantic hugepage completely, if any
1475 * part of it lies within the given range.
1476 * Also note that if dissolve_free_huge_page() returns with an error, all
1477 * free hugepages that were dissolved before that error are lost.
1478 */
1479 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1480 {
1481 unsigned long pfn;
1482 struct page *page;
1483 int rc = 0;
1484
1485 if (!hugepages_supported())
1486 return rc;
1487
1488 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1489 page = pfn_to_page(pfn);
1490 if (PageHuge(page) && !page_count(page)) {
1491 rc = dissolve_free_huge_page(page);
1492 if (rc)
1493 break;
1494 }
1495 }
1496
1497 return rc;
1498 }
1499
1500 /*
1501 * There are 3 ways this can get called:
1502 * 1. With vma+addr: we use the VMA's memory policy
1503 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1504 * page from any node, and let the buddy allocator itself figure
1505 * it out.
1506 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1507 * strictly from 'nid'
1508 */
1509 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1510 struct vm_area_struct *vma, unsigned long addr, int nid)
1511 {
1512 int order = huge_page_order(h);
1513 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1514 unsigned int cpuset_mems_cookie;
1515
1516 /*
1517 * We need a VMA to get a memory policy. If we do not
1518 * have one, we use the 'nid' argument.
1519 *
1520 * The mempolicy stuff below has some non-inlined bits
1521 * and calls ->vm_ops. That makes it hard to optimize at
1522 * compile-time, even when NUMA is off and it does
1523 * nothing. This helps the compiler optimize it out.
1524 */
1525 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1526 /*
1527 * If a specific node is requested, make sure to
1528 * get memory from there, but only when a node
1529 * is explicitly specified.
1530 */
1531 if (nid != NUMA_NO_NODE)
1532 gfp |= __GFP_THISNODE;
1533 /*
1534 * Make sure to call something that can handle
1535 * nid=NUMA_NO_NODE
1536 */
1537 return alloc_pages_node(nid, gfp, order);
1538 }
1539
1540 /*
1541 * OK, so we have a VMA. Fetch the mempolicy and try to
1542 * allocate a huge page with it. We will only reach this
1543 * when CONFIG_NUMA=y.
1544 */
1545 do {
1546 struct page *page;
1547 struct mempolicy *mpol;
1548 struct zonelist *zl;
1549 nodemask_t *nodemask;
1550
1551 cpuset_mems_cookie = read_mems_allowed_begin();
1552 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1553 mpol_cond_put(mpol);
1554 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1555 if (page)
1556 return page;
1557 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1558
1559 return NULL;
1560 }
1561
1562 /*
1563 * There are two ways to allocate a huge page:
1564 * 1. When you have a VMA and an address (like a fault)
1565 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1566 *
1567 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1568 * this case which signifies that the allocation should be done with
1569 * respect for the VMA's memory policy.
1570 *
1571 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1572 * implies that memory policies will not be taken in to account.
1573 */
1574 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1575 struct vm_area_struct *vma, unsigned long addr, int nid)
1576 {
1577 struct page *page;
1578 unsigned int r_nid;
1579
1580 if (hstate_is_gigantic(h))
1581 return NULL;
1582
1583 /*
1584 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1585 * This makes sure the caller is picking _one_ of the modes with which
1586 * we can call this function, not both.
1587 */
1588 if (vma || (addr != -1)) {
1589 VM_WARN_ON_ONCE(addr == -1);
1590 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1591 }
1592 /*
1593 * Assume we will successfully allocate the surplus page to
1594 * prevent racing processes from causing the surplus to exceed
1595 * overcommit
1596 *
1597 * This however introduces a different race, where a process B
1598 * tries to grow the static hugepage pool while alloc_pages() is
1599 * called by process A. B will only examine the per-node
1600 * counters in determining if surplus huge pages can be
1601 * converted to normal huge pages in adjust_pool_surplus(). A
1602 * won't be able to increment the per-node counter, until the
1603 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1604 * no more huge pages can be converted from surplus to normal
1605 * state (and doesn't try to convert again). Thus, we have a
1606 * case where a surplus huge page exists, the pool is grown, and
1607 * the surplus huge page still exists after, even though it
1608 * should just have been converted to a normal huge page. This
1609 * does not leak memory, though, as the hugepage will be freed
1610 * once it is out of use. It also does not allow the counters to
1611 * go out of whack in adjust_pool_surplus() as we don't modify
1612 * the node values until we've gotten the hugepage and only the
1613 * per-node value is checked there.
1614 */
1615 spin_lock(&hugetlb_lock);
1616 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1617 spin_unlock(&hugetlb_lock);
1618 return NULL;
1619 } else {
1620 h->nr_huge_pages++;
1621 h->surplus_huge_pages++;
1622 }
1623 spin_unlock(&hugetlb_lock);
1624
1625 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1626
1627 spin_lock(&hugetlb_lock);
1628 if (page) {
1629 INIT_LIST_HEAD(&page->lru);
1630 r_nid = page_to_nid(page);
1631 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1632 set_hugetlb_cgroup(page, NULL);
1633 /*
1634 * We incremented the global counters already
1635 */
1636 h->nr_huge_pages_node[r_nid]++;
1637 h->surplus_huge_pages_node[r_nid]++;
1638 __count_vm_event(HTLB_BUDDY_PGALLOC);
1639 } else {
1640 h->nr_huge_pages--;
1641 h->surplus_huge_pages--;
1642 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1643 }
1644 spin_unlock(&hugetlb_lock);
1645
1646 return page;
1647 }
1648
1649 /*
1650 * Allocate a huge page from 'nid'. Note, 'nid' may be
1651 * NUMA_NO_NODE, which means that it may be allocated
1652 * anywhere.
1653 */
1654 static
1655 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1656 {
1657 unsigned long addr = -1;
1658
1659 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1660 }
1661
1662 /*
1663 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1664 */
1665 static
1666 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1667 struct vm_area_struct *vma, unsigned long addr)
1668 {
1669 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1670 }
1671
1672 /*
1673 * This allocation function is useful in the context where vma is irrelevant.
1674 * E.g. soft-offlining uses this function because it only cares physical
1675 * address of error page.
1676 */
1677 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1678 {
1679 struct page *page = NULL;
1680
1681 spin_lock(&hugetlb_lock);
1682 if (h->free_huge_pages - h->resv_huge_pages > 0)
1683 page = dequeue_huge_page_node(h, nid);
1684 spin_unlock(&hugetlb_lock);
1685
1686 if (!page)
1687 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1688
1689 return page;
1690 }
1691
1692 /*
1693 * Increase the hugetlb pool such that it can accommodate a reservation
1694 * of size 'delta'.
1695 */
1696 static int gather_surplus_pages(struct hstate *h, int delta)
1697 {
1698 struct list_head surplus_list;
1699 struct page *page, *tmp;
1700 int ret, i;
1701 int needed, allocated;
1702 bool alloc_ok = true;
1703
1704 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1705 if (needed <= 0) {
1706 h->resv_huge_pages += delta;
1707 return 0;
1708 }
1709
1710 allocated = 0;
1711 INIT_LIST_HEAD(&surplus_list);
1712
1713 ret = -ENOMEM;
1714 retry:
1715 spin_unlock(&hugetlb_lock);
1716 for (i = 0; i < needed; i++) {
1717 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1718 if (!page) {
1719 alloc_ok = false;
1720 break;
1721 }
1722 list_add(&page->lru, &surplus_list);
1723 }
1724 allocated += i;
1725
1726 /*
1727 * After retaking hugetlb_lock, we need to recalculate 'needed'
1728 * because either resv_huge_pages or free_huge_pages may have changed.
1729 */
1730 spin_lock(&hugetlb_lock);
1731 needed = (h->resv_huge_pages + delta) -
1732 (h->free_huge_pages + allocated);
1733 if (needed > 0) {
1734 if (alloc_ok)
1735 goto retry;
1736 /*
1737 * We were not able to allocate enough pages to
1738 * satisfy the entire reservation so we free what
1739 * we've allocated so far.
1740 */
1741 goto free;
1742 }
1743 /*
1744 * The surplus_list now contains _at_least_ the number of extra pages
1745 * needed to accommodate the reservation. Add the appropriate number
1746 * of pages to the hugetlb pool and free the extras back to the buddy
1747 * allocator. Commit the entire reservation here to prevent another
1748 * process from stealing the pages as they are added to the pool but
1749 * before they are reserved.
1750 */
1751 needed += allocated;
1752 h->resv_huge_pages += delta;
1753 ret = 0;
1754
1755 /* Free the needed pages to the hugetlb pool */
1756 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1757 if ((--needed) < 0)
1758 break;
1759 /*
1760 * This page is now managed by the hugetlb allocator and has
1761 * no users -- drop the buddy allocator's reference.
1762 */
1763 put_page_testzero(page);
1764 VM_BUG_ON_PAGE(page_count(page), page);
1765 enqueue_huge_page(h, page);
1766 }
1767 free:
1768 spin_unlock(&hugetlb_lock);
1769
1770 /* Free unnecessary surplus pages to the buddy allocator */
1771 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1772 put_page(page);
1773 spin_lock(&hugetlb_lock);
1774
1775 return ret;
1776 }
1777
1778 /*
1779 * This routine has two main purposes:
1780 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1781 * in unused_resv_pages. This corresponds to the prior adjustments made
1782 * to the associated reservation map.
1783 * 2) Free any unused surplus pages that may have been allocated to satisfy
1784 * the reservation. As many as unused_resv_pages may be freed.
1785 *
1786 * Called with hugetlb_lock held. However, the lock could be dropped (and
1787 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1788 * we must make sure nobody else can claim pages we are in the process of
1789 * freeing. Do this by ensuring resv_huge_page always is greater than the
1790 * number of huge pages we plan to free when dropping the lock.
1791 */
1792 static void return_unused_surplus_pages(struct hstate *h,
1793 unsigned long unused_resv_pages)
1794 {
1795 unsigned long nr_pages;
1796
1797 /* Cannot return gigantic pages currently */
1798 if (hstate_is_gigantic(h))
1799 goto out;
1800
1801 /*
1802 * Part (or even all) of the reservation could have been backed
1803 * by pre-allocated pages. Only free surplus pages.
1804 */
1805 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1806
1807 /*
1808 * We want to release as many surplus pages as possible, spread
1809 * evenly across all nodes with memory. Iterate across these nodes
1810 * until we can no longer free unreserved surplus pages. This occurs
1811 * when the nodes with surplus pages have no free pages.
1812 * free_pool_huge_page() will balance the the freed pages across the
1813 * on-line nodes with memory and will handle the hstate accounting.
1814 *
1815 * Note that we decrement resv_huge_pages as we free the pages. If
1816 * we drop the lock, resv_huge_pages will still be sufficiently large
1817 * to cover subsequent pages we may free.
1818 */
1819 while (nr_pages--) {
1820 h->resv_huge_pages--;
1821 unused_resv_pages--;
1822 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1823 goto out;
1824 cond_resched_lock(&hugetlb_lock);
1825 }
1826
1827 out:
1828 /* Fully uncommit the reservation */
1829 h->resv_huge_pages -= unused_resv_pages;
1830 }
1831
1832
1833 /*
1834 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1835 * are used by the huge page allocation routines to manage reservations.
1836 *
1837 * vma_needs_reservation is called to determine if the huge page at addr
1838 * within the vma has an associated reservation. If a reservation is
1839 * needed, the value 1 is returned. The caller is then responsible for
1840 * managing the global reservation and subpool usage counts. After
1841 * the huge page has been allocated, vma_commit_reservation is called
1842 * to add the page to the reservation map. If the page allocation fails,
1843 * the reservation must be ended instead of committed. vma_end_reservation
1844 * is called in such cases.
1845 *
1846 * In the normal case, vma_commit_reservation returns the same value
1847 * as the preceding vma_needs_reservation call. The only time this
1848 * is not the case is if a reserve map was changed between calls. It
1849 * is the responsibility of the caller to notice the difference and
1850 * take appropriate action.
1851 *
1852 * vma_add_reservation is used in error paths where a reservation must
1853 * be restored when a newly allocated huge page must be freed. It is
1854 * to be called after calling vma_needs_reservation to determine if a
1855 * reservation exists.
1856 */
1857 enum vma_resv_mode {
1858 VMA_NEEDS_RESV,
1859 VMA_COMMIT_RESV,
1860 VMA_END_RESV,
1861 VMA_ADD_RESV,
1862 };
1863 static long __vma_reservation_common(struct hstate *h,
1864 struct vm_area_struct *vma, unsigned long addr,
1865 enum vma_resv_mode mode)
1866 {
1867 struct resv_map *resv;
1868 pgoff_t idx;
1869 long ret;
1870
1871 resv = vma_resv_map(vma);
1872 if (!resv)
1873 return 1;
1874
1875 idx = vma_hugecache_offset(h, vma, addr);
1876 switch (mode) {
1877 case VMA_NEEDS_RESV:
1878 ret = region_chg(resv, idx, idx + 1);
1879 break;
1880 case VMA_COMMIT_RESV:
1881 ret = region_add(resv, idx, idx + 1);
1882 break;
1883 case VMA_END_RESV:
1884 region_abort(resv, idx, idx + 1);
1885 ret = 0;
1886 break;
1887 case VMA_ADD_RESV:
1888 if (vma->vm_flags & VM_MAYSHARE)
1889 ret = region_add(resv, idx, idx + 1);
1890 else {
1891 region_abort(resv, idx, idx + 1);
1892 ret = region_del(resv, idx, idx + 1);
1893 }
1894 break;
1895 default:
1896 BUG();
1897 }
1898
1899 if (vma->vm_flags & VM_MAYSHARE)
1900 return ret;
1901 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1902 /*
1903 * In most cases, reserves always exist for private mappings.
1904 * However, a file associated with mapping could have been
1905 * hole punched or truncated after reserves were consumed.
1906 * As subsequent fault on such a range will not use reserves.
1907 * Subtle - The reserve map for private mappings has the
1908 * opposite meaning than that of shared mappings. If NO
1909 * entry is in the reserve map, it means a reservation exists.
1910 * If an entry exists in the reserve map, it means the
1911 * reservation has already been consumed. As a result, the
1912 * return value of this routine is the opposite of the
1913 * value returned from reserve map manipulation routines above.
1914 */
1915 if (ret)
1916 return 0;
1917 else
1918 return 1;
1919 }
1920 else
1921 return ret < 0 ? ret : 0;
1922 }
1923
1924 static long vma_needs_reservation(struct hstate *h,
1925 struct vm_area_struct *vma, unsigned long addr)
1926 {
1927 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1928 }
1929
1930 static long vma_commit_reservation(struct hstate *h,
1931 struct vm_area_struct *vma, unsigned long addr)
1932 {
1933 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1934 }
1935
1936 static void vma_end_reservation(struct hstate *h,
1937 struct vm_area_struct *vma, unsigned long addr)
1938 {
1939 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1940 }
1941
1942 static long vma_add_reservation(struct hstate *h,
1943 struct vm_area_struct *vma, unsigned long addr)
1944 {
1945 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1946 }
1947
1948 /*
1949 * This routine is called to restore a reservation on error paths. In the
1950 * specific error paths, a huge page was allocated (via alloc_huge_page)
1951 * and is about to be freed. If a reservation for the page existed,
1952 * alloc_huge_page would have consumed the reservation and set PagePrivate
1953 * in the newly allocated page. When the page is freed via free_huge_page,
1954 * the global reservation count will be incremented if PagePrivate is set.
1955 * However, free_huge_page can not adjust the reserve map. Adjust the
1956 * reserve map here to be consistent with global reserve count adjustments
1957 * to be made by free_huge_page.
1958 */
1959 static void restore_reserve_on_error(struct hstate *h,
1960 struct vm_area_struct *vma, unsigned long address,
1961 struct page *page)
1962 {
1963 if (unlikely(PagePrivate(page))) {
1964 long rc = vma_needs_reservation(h, vma, address);
1965
1966 if (unlikely(rc < 0)) {
1967 /*
1968 * Rare out of memory condition in reserve map
1969 * manipulation. Clear PagePrivate so that
1970 * global reserve count will not be incremented
1971 * by free_huge_page. This will make it appear
1972 * as though the reservation for this page was
1973 * consumed. This may prevent the task from
1974 * faulting in the page at a later time. This
1975 * is better than inconsistent global huge page
1976 * accounting of reserve counts.
1977 */
1978 ClearPagePrivate(page);
1979 } else if (rc) {
1980 rc = vma_add_reservation(h, vma, address);
1981 if (unlikely(rc < 0))
1982 /*
1983 * See above comment about rare out of
1984 * memory condition.
1985 */
1986 ClearPagePrivate(page);
1987 } else
1988 vma_end_reservation(h, vma, address);
1989 }
1990 }
1991
1992 struct page *alloc_huge_page(struct vm_area_struct *vma,
1993 unsigned long addr, int avoid_reserve)
1994 {
1995 struct hugepage_subpool *spool = subpool_vma(vma);
1996 struct hstate *h = hstate_vma(vma);
1997 struct page *page;
1998 long map_chg, map_commit;
1999 long gbl_chg;
2000 int ret, idx;
2001 struct hugetlb_cgroup *h_cg;
2002
2003 idx = hstate_index(h);
2004 /*
2005 * Examine the region/reserve map to determine if the process
2006 * has a reservation for the page to be allocated. A return
2007 * code of zero indicates a reservation exists (no change).
2008 */
2009 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2010 if (map_chg < 0)
2011 return ERR_PTR(-ENOMEM);
2012
2013 /*
2014 * Processes that did not create the mapping will have no
2015 * reserves as indicated by the region/reserve map. Check
2016 * that the allocation will not exceed the subpool limit.
2017 * Allocations for MAP_NORESERVE mappings also need to be
2018 * checked against any subpool limit.
2019 */
2020 if (map_chg || avoid_reserve) {
2021 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2022 if (gbl_chg < 0) {
2023 vma_end_reservation(h, vma, addr);
2024 return ERR_PTR(-ENOSPC);
2025 }
2026
2027 /*
2028 * Even though there was no reservation in the region/reserve
2029 * map, there could be reservations associated with the
2030 * subpool that can be used. This would be indicated if the
2031 * return value of hugepage_subpool_get_pages() is zero.
2032 * However, if avoid_reserve is specified we still avoid even
2033 * the subpool reservations.
2034 */
2035 if (avoid_reserve)
2036 gbl_chg = 1;
2037 }
2038
2039 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2040 if (ret)
2041 goto out_subpool_put;
2042
2043 spin_lock(&hugetlb_lock);
2044 /*
2045 * glb_chg is passed to indicate whether or not a page must be taken
2046 * from the global free pool (global change). gbl_chg == 0 indicates
2047 * a reservation exists for the allocation.
2048 */
2049 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2050 if (!page) {
2051 spin_unlock(&hugetlb_lock);
2052 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2053 if (!page)
2054 goto out_uncharge_cgroup;
2055 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2056 SetPagePrivate(page);
2057 h->resv_huge_pages--;
2058 }
2059 spin_lock(&hugetlb_lock);
2060 list_move(&page->lru, &h->hugepage_activelist);
2061 /* Fall through */
2062 }
2063 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2064 spin_unlock(&hugetlb_lock);
2065
2066 set_page_private(page, (unsigned long)spool);
2067
2068 map_commit = vma_commit_reservation(h, vma, addr);
2069 if (unlikely(map_chg > map_commit)) {
2070 /*
2071 * The page was added to the reservation map between
2072 * vma_needs_reservation and vma_commit_reservation.
2073 * This indicates a race with hugetlb_reserve_pages.
2074 * Adjust for the subpool count incremented above AND
2075 * in hugetlb_reserve_pages for the same page. Also,
2076 * the reservation count added in hugetlb_reserve_pages
2077 * no longer applies.
2078 */
2079 long rsv_adjust;
2080
2081 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2082 hugetlb_acct_memory(h, -rsv_adjust);
2083 }
2084 return page;
2085
2086 out_uncharge_cgroup:
2087 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2088 out_subpool_put:
2089 if (map_chg || avoid_reserve)
2090 hugepage_subpool_put_pages(spool, 1);
2091 vma_end_reservation(h, vma, addr);
2092 return ERR_PTR(-ENOSPC);
2093 }
2094
2095 /*
2096 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2097 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2098 * where no ERR_VALUE is expected to be returned.
2099 */
2100 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2101 unsigned long addr, int avoid_reserve)
2102 {
2103 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2104 if (IS_ERR(page))
2105 page = NULL;
2106 return page;
2107 }
2108
2109 int __weak alloc_bootmem_huge_page(struct hstate *h)
2110 {
2111 struct huge_bootmem_page *m;
2112 int nr_nodes, node;
2113
2114 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2115 void *addr;
2116
2117 addr = memblock_virt_alloc_try_nid_nopanic(
2118 huge_page_size(h), huge_page_size(h),
2119 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2120 if (addr) {
2121 /*
2122 * Use the beginning of the huge page to store the
2123 * huge_bootmem_page struct (until gather_bootmem
2124 * puts them into the mem_map).
2125 */
2126 m = addr;
2127 goto found;
2128 }
2129 }
2130 return 0;
2131
2132 found:
2133 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2134 /* Put them into a private list first because mem_map is not up yet */
2135 list_add(&m->list, &huge_boot_pages);
2136 m->hstate = h;
2137 return 1;
2138 }
2139
2140 static void __init prep_compound_huge_page(struct page *page,
2141 unsigned int order)
2142 {
2143 if (unlikely(order > (MAX_ORDER - 1)))
2144 prep_compound_gigantic_page(page, order);
2145 else
2146 prep_compound_page(page, order);
2147 }
2148
2149 /* Put bootmem huge pages into the standard lists after mem_map is up */
2150 static void __init gather_bootmem_prealloc(void)
2151 {
2152 struct huge_bootmem_page *m;
2153
2154 list_for_each_entry(m, &huge_boot_pages, list) {
2155 struct hstate *h = m->hstate;
2156 struct page *page;
2157
2158 #ifdef CONFIG_HIGHMEM
2159 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2160 memblock_free_late(__pa(m),
2161 sizeof(struct huge_bootmem_page));
2162 #else
2163 page = virt_to_page(m);
2164 #endif
2165 WARN_ON(page_count(page) != 1);
2166 prep_compound_huge_page(page, h->order);
2167 WARN_ON(PageReserved(page));
2168 prep_new_huge_page(h, page, page_to_nid(page));
2169 /*
2170 * If we had gigantic hugepages allocated at boot time, we need
2171 * to restore the 'stolen' pages to totalram_pages in order to
2172 * fix confusing memory reports from free(1) and another
2173 * side-effects, like CommitLimit going negative.
2174 */
2175 if (hstate_is_gigantic(h))
2176 adjust_managed_page_count(page, 1 << h->order);
2177 }
2178 }
2179
2180 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2181 {
2182 unsigned long i;
2183
2184 for (i = 0; i < h->max_huge_pages; ++i) {
2185 if (hstate_is_gigantic(h)) {
2186 if (!alloc_bootmem_huge_page(h))
2187 break;
2188 } else if (!alloc_fresh_huge_page(h,
2189 &node_states[N_MEMORY]))
2190 break;
2191 }
2192 h->max_huge_pages = i;
2193 }
2194
2195 static void __init hugetlb_init_hstates(void)
2196 {
2197 struct hstate *h;
2198
2199 for_each_hstate(h) {
2200 if (minimum_order > huge_page_order(h))
2201 minimum_order = huge_page_order(h);
2202
2203 /* oversize hugepages were init'ed in early boot */
2204 if (!hstate_is_gigantic(h))
2205 hugetlb_hstate_alloc_pages(h);
2206 }
2207 VM_BUG_ON(minimum_order == UINT_MAX);
2208 }
2209
2210 static char * __init memfmt(char *buf, unsigned long n)
2211 {
2212 if (n >= (1UL << 30))
2213 sprintf(buf, "%lu GB", n >> 30);
2214 else if (n >= (1UL << 20))
2215 sprintf(buf, "%lu MB", n >> 20);
2216 else
2217 sprintf(buf, "%lu KB", n >> 10);
2218 return buf;
2219 }
2220
2221 static void __init report_hugepages(void)
2222 {
2223 struct hstate *h;
2224
2225 for_each_hstate(h) {
2226 char buf[32];
2227 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2228 memfmt(buf, huge_page_size(h)),
2229 h->free_huge_pages);
2230 }
2231 }
2232
2233 #ifdef CONFIG_HIGHMEM
2234 static void try_to_free_low(struct hstate *h, unsigned long count,
2235 nodemask_t *nodes_allowed)
2236 {
2237 int i;
2238
2239 if (hstate_is_gigantic(h))
2240 return;
2241
2242 for_each_node_mask(i, *nodes_allowed) {
2243 struct page *page, *next;
2244 struct list_head *freel = &h->hugepage_freelists[i];
2245 list_for_each_entry_safe(page, next, freel, lru) {
2246 if (count >= h->nr_huge_pages)
2247 return;
2248 if (PageHighMem(page))
2249 continue;
2250 list_del(&page->lru);
2251 update_and_free_page(h, page);
2252 h->free_huge_pages--;
2253 h->free_huge_pages_node[page_to_nid(page)]--;
2254 }
2255 }
2256 }
2257 #else
2258 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2259 nodemask_t *nodes_allowed)
2260 {
2261 }
2262 #endif
2263
2264 /*
2265 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2266 * balanced by operating on them in a round-robin fashion.
2267 * Returns 1 if an adjustment was made.
2268 */
2269 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2270 int delta)
2271 {
2272 int nr_nodes, node;
2273
2274 VM_BUG_ON(delta != -1 && delta != 1);
2275
2276 if (delta < 0) {
2277 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2278 if (h->surplus_huge_pages_node[node])
2279 goto found;
2280 }
2281 } else {
2282 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2283 if (h->surplus_huge_pages_node[node] <
2284 h->nr_huge_pages_node[node])
2285 goto found;
2286 }
2287 }
2288 return 0;
2289
2290 found:
2291 h->surplus_huge_pages += delta;
2292 h->surplus_huge_pages_node[node] += delta;
2293 return 1;
2294 }
2295
2296 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2297 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2298 nodemask_t *nodes_allowed)
2299 {
2300 unsigned long min_count, ret;
2301
2302 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2303 return h->max_huge_pages;
2304
2305 /*
2306 * Increase the pool size
2307 * First take pages out of surplus state. Then make up the
2308 * remaining difference by allocating fresh huge pages.
2309 *
2310 * We might race with __alloc_buddy_huge_page() here and be unable
2311 * to convert a surplus huge page to a normal huge page. That is
2312 * not critical, though, it just means the overall size of the
2313 * pool might be one hugepage larger than it needs to be, but
2314 * within all the constraints specified by the sysctls.
2315 */
2316 spin_lock(&hugetlb_lock);
2317 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2318 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2319 break;
2320 }
2321
2322 while (count > persistent_huge_pages(h)) {
2323 /*
2324 * If this allocation races such that we no longer need the
2325 * page, free_huge_page will handle it by freeing the page
2326 * and reducing the surplus.
2327 */
2328 spin_unlock(&hugetlb_lock);
2329
2330 /* yield cpu to avoid soft lockup */
2331 cond_resched();
2332
2333 if (hstate_is_gigantic(h))
2334 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2335 else
2336 ret = alloc_fresh_huge_page(h, nodes_allowed);
2337 spin_lock(&hugetlb_lock);
2338 if (!ret)
2339 goto out;
2340
2341 /* Bail for signals. Probably ctrl-c from user */
2342 if (signal_pending(current))
2343 goto out;
2344 }
2345
2346 /*
2347 * Decrease the pool size
2348 * First return free pages to the buddy allocator (being careful
2349 * to keep enough around to satisfy reservations). Then place
2350 * pages into surplus state as needed so the pool will shrink
2351 * to the desired size as pages become free.
2352 *
2353 * By placing pages into the surplus state independent of the
2354 * overcommit value, we are allowing the surplus pool size to
2355 * exceed overcommit. There are few sane options here. Since
2356 * __alloc_buddy_huge_page() is checking the global counter,
2357 * though, we'll note that we're not allowed to exceed surplus
2358 * and won't grow the pool anywhere else. Not until one of the
2359 * sysctls are changed, or the surplus pages go out of use.
2360 */
2361 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2362 min_count = max(count, min_count);
2363 try_to_free_low(h, min_count, nodes_allowed);
2364 while (min_count < persistent_huge_pages(h)) {
2365 if (!free_pool_huge_page(h, nodes_allowed, 0))
2366 break;
2367 cond_resched_lock(&hugetlb_lock);
2368 }
2369 while (count < persistent_huge_pages(h)) {
2370 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2371 break;
2372 }
2373 out:
2374 ret = persistent_huge_pages(h);
2375 spin_unlock(&hugetlb_lock);
2376 return ret;
2377 }
2378
2379 #define HSTATE_ATTR_RO(_name) \
2380 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2381
2382 #define HSTATE_ATTR(_name) \
2383 static struct kobj_attribute _name##_attr = \
2384 __ATTR(_name, 0644, _name##_show, _name##_store)
2385
2386 static struct kobject *hugepages_kobj;
2387 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2388
2389 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2390
2391 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2392 {
2393 int i;
2394
2395 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2396 if (hstate_kobjs[i] == kobj) {
2397 if (nidp)
2398 *nidp = NUMA_NO_NODE;
2399 return &hstates[i];
2400 }
2401
2402 return kobj_to_node_hstate(kobj, nidp);
2403 }
2404
2405 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2406 struct kobj_attribute *attr, char *buf)
2407 {
2408 struct hstate *h;
2409 unsigned long nr_huge_pages;
2410 int nid;
2411
2412 h = kobj_to_hstate(kobj, &nid);
2413 if (nid == NUMA_NO_NODE)
2414 nr_huge_pages = h->nr_huge_pages;
2415 else
2416 nr_huge_pages = h->nr_huge_pages_node[nid];
2417
2418 return sprintf(buf, "%lu\n", nr_huge_pages);
2419 }
2420
2421 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2422 struct hstate *h, int nid,
2423 unsigned long count, size_t len)
2424 {
2425 int err;
2426 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2427
2428 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2429 err = -EINVAL;
2430 goto out;
2431 }
2432
2433 if (nid == NUMA_NO_NODE) {
2434 /*
2435 * global hstate attribute
2436 */
2437 if (!(obey_mempolicy &&
2438 init_nodemask_of_mempolicy(nodes_allowed))) {
2439 NODEMASK_FREE(nodes_allowed);
2440 nodes_allowed = &node_states[N_MEMORY];
2441 }
2442 } else if (nodes_allowed) {
2443 /*
2444 * per node hstate attribute: adjust count to global,
2445 * but restrict alloc/free to the specified node.
2446 */
2447 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2448 init_nodemask_of_node(nodes_allowed, nid);
2449 } else
2450 nodes_allowed = &node_states[N_MEMORY];
2451
2452 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2453
2454 if (nodes_allowed != &node_states[N_MEMORY])
2455 NODEMASK_FREE(nodes_allowed);
2456
2457 return len;
2458 out:
2459 NODEMASK_FREE(nodes_allowed);
2460 return err;
2461 }
2462
2463 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2464 struct kobject *kobj, const char *buf,
2465 size_t len)
2466 {
2467 struct hstate *h;
2468 unsigned long count;
2469 int nid;
2470 int err;
2471
2472 err = kstrtoul(buf, 10, &count);
2473 if (err)
2474 return err;
2475
2476 h = kobj_to_hstate(kobj, &nid);
2477 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2478 }
2479
2480 static ssize_t nr_hugepages_show(struct kobject *kobj,
2481 struct kobj_attribute *attr, char *buf)
2482 {
2483 return nr_hugepages_show_common(kobj, attr, buf);
2484 }
2485
2486 static ssize_t nr_hugepages_store(struct kobject *kobj,
2487 struct kobj_attribute *attr, const char *buf, size_t len)
2488 {
2489 return nr_hugepages_store_common(false, kobj, buf, len);
2490 }
2491 HSTATE_ATTR(nr_hugepages);
2492
2493 #ifdef CONFIG_NUMA
2494
2495 /*
2496 * hstate attribute for optionally mempolicy-based constraint on persistent
2497 * huge page alloc/free.
2498 */
2499 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2500 struct kobj_attribute *attr, char *buf)
2501 {
2502 return nr_hugepages_show_common(kobj, attr, buf);
2503 }
2504
2505 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2506 struct kobj_attribute *attr, const char *buf, size_t len)
2507 {
2508 return nr_hugepages_store_common(true, kobj, buf, len);
2509 }
2510 HSTATE_ATTR(nr_hugepages_mempolicy);
2511 #endif
2512
2513
2514 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2515 struct kobj_attribute *attr, char *buf)
2516 {
2517 struct hstate *h = kobj_to_hstate(kobj, NULL);
2518 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2519 }
2520
2521 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2522 struct kobj_attribute *attr, const char *buf, size_t count)
2523 {
2524 int err;
2525 unsigned long input;
2526 struct hstate *h = kobj_to_hstate(kobj, NULL);
2527
2528 if (hstate_is_gigantic(h))
2529 return -EINVAL;
2530
2531 err = kstrtoul(buf, 10, &input);
2532 if (err)
2533 return err;
2534
2535 spin_lock(&hugetlb_lock);
2536 h->nr_overcommit_huge_pages = input;
2537 spin_unlock(&hugetlb_lock);
2538
2539 return count;
2540 }
2541 HSTATE_ATTR(nr_overcommit_hugepages);
2542
2543 static ssize_t free_hugepages_show(struct kobject *kobj,
2544 struct kobj_attribute *attr, char *buf)
2545 {
2546 struct hstate *h;
2547 unsigned long free_huge_pages;
2548 int nid;
2549
2550 h = kobj_to_hstate(kobj, &nid);
2551 if (nid == NUMA_NO_NODE)
2552 free_huge_pages = h->free_huge_pages;
2553 else
2554 free_huge_pages = h->free_huge_pages_node[nid];
2555
2556 return sprintf(buf, "%lu\n", free_huge_pages);
2557 }
2558 HSTATE_ATTR_RO(free_hugepages);
2559
2560 static ssize_t resv_hugepages_show(struct kobject *kobj,
2561 struct kobj_attribute *attr, char *buf)
2562 {
2563 struct hstate *h = kobj_to_hstate(kobj, NULL);
2564 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2565 }
2566 HSTATE_ATTR_RO(resv_hugepages);
2567
2568 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2569 struct kobj_attribute *attr, char *buf)
2570 {
2571 struct hstate *h;
2572 unsigned long surplus_huge_pages;
2573 int nid;
2574
2575 h = kobj_to_hstate(kobj, &nid);
2576 if (nid == NUMA_NO_NODE)
2577 surplus_huge_pages = h->surplus_huge_pages;
2578 else
2579 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2580
2581 return sprintf(buf, "%lu\n", surplus_huge_pages);
2582 }
2583 HSTATE_ATTR_RO(surplus_hugepages);
2584
2585 static struct attribute *hstate_attrs[] = {
2586 &nr_hugepages_attr.attr,
2587 &nr_overcommit_hugepages_attr.attr,
2588 &free_hugepages_attr.attr,
2589 &resv_hugepages_attr.attr,
2590 &surplus_hugepages_attr.attr,
2591 #ifdef CONFIG_NUMA
2592 &nr_hugepages_mempolicy_attr.attr,
2593 #endif
2594 NULL,
2595 };
2596
2597 static struct attribute_group hstate_attr_group = {
2598 .attrs = hstate_attrs,
2599 };
2600
2601 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2602 struct kobject **hstate_kobjs,
2603 struct attribute_group *hstate_attr_group)
2604 {
2605 int retval;
2606 int hi = hstate_index(h);
2607
2608 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2609 if (!hstate_kobjs[hi])
2610 return -ENOMEM;
2611
2612 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2613 if (retval)
2614 kobject_put(hstate_kobjs[hi]);
2615
2616 return retval;
2617 }
2618
2619 static void __init hugetlb_sysfs_init(void)
2620 {
2621 struct hstate *h;
2622 int err;
2623
2624 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2625 if (!hugepages_kobj)
2626 return;
2627
2628 for_each_hstate(h) {
2629 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2630 hstate_kobjs, &hstate_attr_group);
2631 if (err)
2632 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2633 }
2634 }
2635
2636 #ifdef CONFIG_NUMA
2637
2638 /*
2639 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2640 * with node devices in node_devices[] using a parallel array. The array
2641 * index of a node device or _hstate == node id.
2642 * This is here to avoid any static dependency of the node device driver, in
2643 * the base kernel, on the hugetlb module.
2644 */
2645 struct node_hstate {
2646 struct kobject *hugepages_kobj;
2647 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2648 };
2649 static struct node_hstate node_hstates[MAX_NUMNODES];
2650
2651 /*
2652 * A subset of global hstate attributes for node devices
2653 */
2654 static struct attribute *per_node_hstate_attrs[] = {
2655 &nr_hugepages_attr.attr,
2656 &free_hugepages_attr.attr,
2657 &surplus_hugepages_attr.attr,
2658 NULL,
2659 };
2660
2661 static struct attribute_group per_node_hstate_attr_group = {
2662 .attrs = per_node_hstate_attrs,
2663 };
2664
2665 /*
2666 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2667 * Returns node id via non-NULL nidp.
2668 */
2669 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2670 {
2671 int nid;
2672
2673 for (nid = 0; nid < nr_node_ids; nid++) {
2674 struct node_hstate *nhs = &node_hstates[nid];
2675 int i;
2676 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2677 if (nhs->hstate_kobjs[i] == kobj) {
2678 if (nidp)
2679 *nidp = nid;
2680 return &hstates[i];
2681 }
2682 }
2683
2684 BUG();
2685 return NULL;
2686 }
2687
2688 /*
2689 * Unregister hstate attributes from a single node device.
2690 * No-op if no hstate attributes attached.
2691 */
2692 static void hugetlb_unregister_node(struct node *node)
2693 {
2694 struct hstate *h;
2695 struct node_hstate *nhs = &node_hstates[node->dev.id];
2696
2697 if (!nhs->hugepages_kobj)
2698 return; /* no hstate attributes */
2699
2700 for_each_hstate(h) {
2701 int idx = hstate_index(h);
2702 if (nhs->hstate_kobjs[idx]) {
2703 kobject_put(nhs->hstate_kobjs[idx]);
2704 nhs->hstate_kobjs[idx] = NULL;
2705 }
2706 }
2707
2708 kobject_put(nhs->hugepages_kobj);
2709 nhs->hugepages_kobj = NULL;
2710 }
2711
2712
2713 /*
2714 * Register hstate attributes for a single node device.
2715 * No-op if attributes already registered.
2716 */
2717 static void hugetlb_register_node(struct node *node)
2718 {
2719 struct hstate *h;
2720 struct node_hstate *nhs = &node_hstates[node->dev.id];
2721 int err;
2722
2723 if (nhs->hugepages_kobj)
2724 return; /* already allocated */
2725
2726 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2727 &node->dev.kobj);
2728 if (!nhs->hugepages_kobj)
2729 return;
2730
2731 for_each_hstate(h) {
2732 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2733 nhs->hstate_kobjs,
2734 &per_node_hstate_attr_group);
2735 if (err) {
2736 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2737 h->name, node->dev.id);
2738 hugetlb_unregister_node(node);
2739 break;
2740 }
2741 }
2742 }
2743
2744 /*
2745 * hugetlb init time: register hstate attributes for all registered node
2746 * devices of nodes that have memory. All on-line nodes should have
2747 * registered their associated device by this time.
2748 */
2749 static void __init hugetlb_register_all_nodes(void)
2750 {
2751 int nid;
2752
2753 for_each_node_state(nid, N_MEMORY) {
2754 struct node *node = node_devices[nid];
2755 if (node->dev.id == nid)
2756 hugetlb_register_node(node);
2757 }
2758
2759 /*
2760 * Let the node device driver know we're here so it can
2761 * [un]register hstate attributes on node hotplug.
2762 */
2763 register_hugetlbfs_with_node(hugetlb_register_node,
2764 hugetlb_unregister_node);
2765 }
2766 #else /* !CONFIG_NUMA */
2767
2768 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2769 {
2770 BUG();
2771 if (nidp)
2772 *nidp = -1;
2773 return NULL;
2774 }
2775
2776 static void hugetlb_register_all_nodes(void) { }
2777
2778 #endif
2779
2780 static int __init hugetlb_init(void)
2781 {
2782 int i;
2783
2784 if (!hugepages_supported())
2785 return 0;
2786
2787 if (!size_to_hstate(default_hstate_size)) {
2788 default_hstate_size = HPAGE_SIZE;
2789 if (!size_to_hstate(default_hstate_size))
2790 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2791 }
2792 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2793 if (default_hstate_max_huge_pages) {
2794 if (!default_hstate.max_huge_pages)
2795 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2796 }
2797
2798 hugetlb_init_hstates();
2799 gather_bootmem_prealloc();
2800 report_hugepages();
2801
2802 hugetlb_sysfs_init();
2803 hugetlb_register_all_nodes();
2804 hugetlb_cgroup_file_init();
2805
2806 #ifdef CONFIG_SMP
2807 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2808 #else
2809 num_fault_mutexes = 1;
2810 #endif
2811 hugetlb_fault_mutex_table =
2812 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2813 BUG_ON(!hugetlb_fault_mutex_table);
2814
2815 for (i = 0; i < num_fault_mutexes; i++)
2816 mutex_init(&hugetlb_fault_mutex_table[i]);
2817 return 0;
2818 }
2819 subsys_initcall(hugetlb_init);
2820
2821 /* Should be called on processing a hugepagesz=... option */
2822 void __init hugetlb_bad_size(void)
2823 {
2824 parsed_valid_hugepagesz = false;
2825 }
2826
2827 void __init hugetlb_add_hstate(unsigned int order)
2828 {
2829 struct hstate *h;
2830 unsigned long i;
2831
2832 if (size_to_hstate(PAGE_SIZE << order)) {
2833 pr_warn("hugepagesz= specified twice, ignoring\n");
2834 return;
2835 }
2836 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2837 BUG_ON(order == 0);
2838 h = &hstates[hugetlb_max_hstate++];
2839 h->order = order;
2840 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2841 h->nr_huge_pages = 0;
2842 h->free_huge_pages = 0;
2843 for (i = 0; i < MAX_NUMNODES; ++i)
2844 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2845 INIT_LIST_HEAD(&h->hugepage_activelist);
2846 h->next_nid_to_alloc = first_memory_node;
2847 h->next_nid_to_free = first_memory_node;
2848 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2849 huge_page_size(h)/1024);
2850
2851 parsed_hstate = h;
2852 }
2853
2854 static int __init hugetlb_nrpages_setup(char *s)
2855 {
2856 unsigned long *mhp;
2857 static unsigned long *last_mhp;
2858
2859 if (!parsed_valid_hugepagesz) {
2860 pr_warn("hugepages = %s preceded by "
2861 "an unsupported hugepagesz, ignoring\n", s);
2862 parsed_valid_hugepagesz = true;
2863 return 1;
2864 }
2865 /*
2866 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2867 * so this hugepages= parameter goes to the "default hstate".
2868 */
2869 else if (!hugetlb_max_hstate)
2870 mhp = &default_hstate_max_huge_pages;
2871 else
2872 mhp = &parsed_hstate->max_huge_pages;
2873
2874 if (mhp == last_mhp) {
2875 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2876 return 1;
2877 }
2878
2879 if (sscanf(s, "%lu", mhp) <= 0)
2880 *mhp = 0;
2881
2882 /*
2883 * Global state is always initialized later in hugetlb_init.
2884 * But we need to allocate >= MAX_ORDER hstates here early to still
2885 * use the bootmem allocator.
2886 */
2887 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2888 hugetlb_hstate_alloc_pages(parsed_hstate);
2889
2890 last_mhp = mhp;
2891
2892 return 1;
2893 }
2894 __setup("hugepages=", hugetlb_nrpages_setup);
2895
2896 static int __init hugetlb_default_setup(char *s)
2897 {
2898 default_hstate_size = memparse(s, &s);
2899 return 1;
2900 }
2901 __setup("default_hugepagesz=", hugetlb_default_setup);
2902
2903 static unsigned int cpuset_mems_nr(unsigned int *array)
2904 {
2905 int node;
2906 unsigned int nr = 0;
2907
2908 for_each_node_mask(node, cpuset_current_mems_allowed)
2909 nr += array[node];
2910
2911 return nr;
2912 }
2913
2914 #ifdef CONFIG_SYSCTL
2915 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2916 struct ctl_table *table, int write,
2917 void __user *buffer, size_t *length, loff_t *ppos)
2918 {
2919 struct hstate *h = &default_hstate;
2920 unsigned long tmp = h->max_huge_pages;
2921 int ret;
2922
2923 if (!hugepages_supported())
2924 return -EOPNOTSUPP;
2925
2926 table->data = &tmp;
2927 table->maxlen = sizeof(unsigned long);
2928 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2929 if (ret)
2930 goto out;
2931
2932 if (write)
2933 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2934 NUMA_NO_NODE, tmp, *length);
2935 out:
2936 return ret;
2937 }
2938
2939 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2940 void __user *buffer, size_t *length, loff_t *ppos)
2941 {
2942
2943 return hugetlb_sysctl_handler_common(false, table, write,
2944 buffer, length, ppos);
2945 }
2946
2947 #ifdef CONFIG_NUMA
2948 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2949 void __user *buffer, size_t *length, loff_t *ppos)
2950 {
2951 return hugetlb_sysctl_handler_common(true, table, write,
2952 buffer, length, ppos);
2953 }
2954 #endif /* CONFIG_NUMA */
2955
2956 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2957 void __user *buffer,
2958 size_t *length, loff_t *ppos)
2959 {
2960 struct hstate *h = &default_hstate;
2961 unsigned long tmp;
2962 int ret;
2963
2964 if (!hugepages_supported())
2965 return -EOPNOTSUPP;
2966
2967 tmp = h->nr_overcommit_huge_pages;
2968
2969 if (write && hstate_is_gigantic(h))
2970 return -EINVAL;
2971
2972 table->data = &tmp;
2973 table->maxlen = sizeof(unsigned long);
2974 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2975 if (ret)
2976 goto out;
2977
2978 if (write) {
2979 spin_lock(&hugetlb_lock);
2980 h->nr_overcommit_huge_pages = tmp;
2981 spin_unlock(&hugetlb_lock);
2982 }
2983 out:
2984 return ret;
2985 }
2986
2987 #endif /* CONFIG_SYSCTL */
2988
2989 void hugetlb_report_meminfo(struct seq_file *m)
2990 {
2991 struct hstate *h = &default_hstate;
2992 if (!hugepages_supported())
2993 return;
2994 seq_printf(m,
2995 "HugePages_Total: %5lu\n"
2996 "HugePages_Free: %5lu\n"
2997 "HugePages_Rsvd: %5lu\n"
2998 "HugePages_Surp: %5lu\n"
2999 "Hugepagesize: %8lu kB\n",
3000 h->nr_huge_pages,
3001 h->free_huge_pages,
3002 h->resv_huge_pages,
3003 h->surplus_huge_pages,
3004 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3005 }
3006
3007 int hugetlb_report_node_meminfo(int nid, char *buf)
3008 {
3009 struct hstate *h = &default_hstate;
3010 if (!hugepages_supported())
3011 return 0;
3012 return sprintf(buf,
3013 "Node %d HugePages_Total: %5u\n"
3014 "Node %d HugePages_Free: %5u\n"
3015 "Node %d HugePages_Surp: %5u\n",
3016 nid, h->nr_huge_pages_node[nid],
3017 nid, h->free_huge_pages_node[nid],
3018 nid, h->surplus_huge_pages_node[nid]);
3019 }
3020
3021 void hugetlb_show_meminfo(void)
3022 {
3023 struct hstate *h;
3024 int nid;
3025
3026 if (!hugepages_supported())
3027 return;
3028
3029 for_each_node_state(nid, N_MEMORY)
3030 for_each_hstate(h)
3031 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3032 nid,
3033 h->nr_huge_pages_node[nid],
3034 h->free_huge_pages_node[nid],
3035 h->surplus_huge_pages_node[nid],
3036 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3037 }
3038
3039 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3040 {
3041 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3042 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3043 }
3044
3045 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3046 unsigned long hugetlb_total_pages(void)
3047 {
3048 struct hstate *h;
3049 unsigned long nr_total_pages = 0;
3050
3051 for_each_hstate(h)
3052 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3053 return nr_total_pages;
3054 }
3055
3056 static int hugetlb_acct_memory(struct hstate *h, long delta)
3057 {
3058 int ret = -ENOMEM;
3059
3060 spin_lock(&hugetlb_lock);
3061 /*
3062 * When cpuset is configured, it breaks the strict hugetlb page
3063 * reservation as the accounting is done on a global variable. Such
3064 * reservation is completely rubbish in the presence of cpuset because
3065 * the reservation is not checked against page availability for the
3066 * current cpuset. Application can still potentially OOM'ed by kernel
3067 * with lack of free htlb page in cpuset that the task is in.
3068 * Attempt to enforce strict accounting with cpuset is almost
3069 * impossible (or too ugly) because cpuset is too fluid that
3070 * task or memory node can be dynamically moved between cpusets.
3071 *
3072 * The change of semantics for shared hugetlb mapping with cpuset is
3073 * undesirable. However, in order to preserve some of the semantics,
3074 * we fall back to check against current free page availability as
3075 * a best attempt and hopefully to minimize the impact of changing
3076 * semantics that cpuset has.
3077 */
3078 if (delta > 0) {
3079 if (gather_surplus_pages(h, delta) < 0)
3080 goto out;
3081
3082 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3083 return_unused_surplus_pages(h, delta);
3084 goto out;
3085 }
3086 }
3087
3088 ret = 0;
3089 if (delta < 0)
3090 return_unused_surplus_pages(h, (unsigned long) -delta);
3091
3092 out:
3093 spin_unlock(&hugetlb_lock);
3094 return ret;
3095 }
3096
3097 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3098 {
3099 struct resv_map *resv = vma_resv_map(vma);
3100
3101 /*
3102 * This new VMA should share its siblings reservation map if present.
3103 * The VMA will only ever have a valid reservation map pointer where
3104 * it is being copied for another still existing VMA. As that VMA
3105 * has a reference to the reservation map it cannot disappear until
3106 * after this open call completes. It is therefore safe to take a
3107 * new reference here without additional locking.
3108 */
3109 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3110 kref_get(&resv->refs);
3111 }
3112
3113 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3114 {
3115 struct hstate *h = hstate_vma(vma);
3116 struct resv_map *resv = vma_resv_map(vma);
3117 struct hugepage_subpool *spool = subpool_vma(vma);
3118 unsigned long reserve, start, end;
3119 long gbl_reserve;
3120
3121 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3122 return;
3123
3124 start = vma_hugecache_offset(h, vma, vma->vm_start);
3125 end = vma_hugecache_offset(h, vma, vma->vm_end);
3126
3127 reserve = (end - start) - region_count(resv, start, end);
3128
3129 kref_put(&resv->refs, resv_map_release);
3130
3131 if (reserve) {
3132 /*
3133 * Decrement reserve counts. The global reserve count may be
3134 * adjusted if the subpool has a minimum size.
3135 */
3136 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3137 hugetlb_acct_memory(h, -gbl_reserve);
3138 }
3139 }
3140
3141 /*
3142 * We cannot handle pagefaults against hugetlb pages at all. They cause
3143 * handle_mm_fault() to try to instantiate regular-sized pages in the
3144 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3145 * this far.
3146 */
3147 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3148 {
3149 BUG();
3150 return 0;
3151 }
3152
3153 const struct vm_operations_struct hugetlb_vm_ops = {
3154 .fault = hugetlb_vm_op_fault,
3155 .open = hugetlb_vm_op_open,
3156 .close = hugetlb_vm_op_close,
3157 };
3158
3159 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3160 int writable)
3161 {
3162 pte_t entry;
3163
3164 if (writable) {
3165 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3166 vma->vm_page_prot)));
3167 } else {
3168 entry = huge_pte_wrprotect(mk_huge_pte(page,
3169 vma->vm_page_prot));
3170 }
3171 entry = pte_mkyoung(entry);
3172 entry = pte_mkhuge(entry);
3173 entry = arch_make_huge_pte(entry, vma, page, writable);
3174
3175 return entry;
3176 }
3177
3178 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3179 unsigned long address, pte_t *ptep)
3180 {
3181 pte_t entry;
3182
3183 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3184 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3185 update_mmu_cache(vma, address, ptep);
3186 }
3187
3188 static int is_hugetlb_entry_migration(pte_t pte)
3189 {
3190 swp_entry_t swp;
3191
3192 if (huge_pte_none(pte) || pte_present(pte))
3193 return 0;
3194 swp = pte_to_swp_entry(pte);
3195 if (non_swap_entry(swp) && is_migration_entry(swp))
3196 return 1;
3197 else
3198 return 0;
3199 }
3200
3201 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3202 {
3203 swp_entry_t swp;
3204
3205 if (huge_pte_none(pte) || pte_present(pte))
3206 return 0;
3207 swp = pte_to_swp_entry(pte);
3208 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3209 return 1;
3210 else
3211 return 0;
3212 }
3213
3214 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3215 struct vm_area_struct *vma)
3216 {
3217 pte_t *src_pte, *dst_pte, entry;
3218 struct page *ptepage;
3219 unsigned long addr;
3220 int cow;
3221 struct hstate *h = hstate_vma(vma);
3222 unsigned long sz = huge_page_size(h);
3223 unsigned long mmun_start; /* For mmu_notifiers */
3224 unsigned long mmun_end; /* For mmu_notifiers */
3225 int ret = 0;
3226
3227 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3228
3229 mmun_start = vma->vm_start;
3230 mmun_end = vma->vm_end;
3231 if (cow)
3232 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3233
3234 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3235 spinlock_t *src_ptl, *dst_ptl;
3236 src_pte = huge_pte_offset(src, addr);
3237 if (!src_pte)
3238 continue;
3239 dst_pte = huge_pte_alloc(dst, addr, sz);
3240 if (!dst_pte) {
3241 ret = -ENOMEM;
3242 break;
3243 }
3244
3245 /* If the pagetables are shared don't copy or take references */
3246 if (dst_pte == src_pte)
3247 continue;
3248
3249 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3250 src_ptl = huge_pte_lockptr(h, src, src_pte);
3251 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3252 entry = huge_ptep_get(src_pte);
3253 if (huge_pte_none(entry)) { /* skip none entry */
3254 ;
3255 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3256 is_hugetlb_entry_hwpoisoned(entry))) {
3257 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3258
3259 if (is_write_migration_entry(swp_entry) && cow) {
3260 /*
3261 * COW mappings require pages in both
3262 * parent and child to be set to read.
3263 */
3264 make_migration_entry_read(&swp_entry);
3265 entry = swp_entry_to_pte(swp_entry);
3266 set_huge_pte_at(src, addr, src_pte, entry);
3267 }
3268 set_huge_pte_at(dst, addr, dst_pte, entry);
3269 } else {
3270 if (cow) {
3271 huge_ptep_set_wrprotect(src, addr, src_pte);
3272 mmu_notifier_invalidate_range(src, mmun_start,
3273 mmun_end);
3274 }
3275 entry = huge_ptep_get(src_pte);
3276 ptepage = pte_page(entry);
3277 get_page(ptepage);
3278 page_dup_rmap(ptepage, true);
3279 set_huge_pte_at(dst, addr, dst_pte, entry);
3280 hugetlb_count_add(pages_per_huge_page(h), dst);
3281 }
3282 spin_unlock(src_ptl);
3283 spin_unlock(dst_ptl);
3284 }
3285
3286 if (cow)
3287 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3288
3289 return ret;
3290 }
3291
3292 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3293 unsigned long start, unsigned long end,
3294 struct page *ref_page)
3295 {
3296 struct mm_struct *mm = vma->vm_mm;
3297 unsigned long address;
3298 pte_t *ptep;
3299 pte_t pte;
3300 spinlock_t *ptl;
3301 struct page *page;
3302 struct hstate *h = hstate_vma(vma);
3303 unsigned long sz = huge_page_size(h);
3304 const unsigned long mmun_start = start; /* For mmu_notifiers */
3305 const unsigned long mmun_end = end; /* For mmu_notifiers */
3306
3307 WARN_ON(!is_vm_hugetlb_page(vma));
3308 BUG_ON(start & ~huge_page_mask(h));
3309 BUG_ON(end & ~huge_page_mask(h));
3310
3311 /*
3312 * This is a hugetlb vma, all the pte entries should point
3313 * to huge page.
3314 */
3315 tlb_remove_check_page_size_change(tlb, sz);
3316 tlb_start_vma(tlb, vma);
3317 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3318 address = start;
3319 for (; address < end; address += sz) {
3320 ptep = huge_pte_offset(mm, address);
3321 if (!ptep)
3322 continue;
3323
3324 ptl = huge_pte_lock(h, mm, ptep);
3325 if (huge_pmd_unshare(mm, &address, ptep)) {
3326 spin_unlock(ptl);
3327 continue;
3328 }
3329
3330 pte = huge_ptep_get(ptep);
3331 if (huge_pte_none(pte)) {
3332 spin_unlock(ptl);
3333 continue;
3334 }
3335
3336 /*
3337 * Migrating hugepage or HWPoisoned hugepage is already
3338 * unmapped and its refcount is dropped, so just clear pte here.
3339 */
3340 if (unlikely(!pte_present(pte))) {
3341 huge_pte_clear(mm, address, ptep);
3342 spin_unlock(ptl);
3343 continue;
3344 }
3345
3346 page = pte_page(pte);
3347 /*
3348 * If a reference page is supplied, it is because a specific
3349 * page is being unmapped, not a range. Ensure the page we
3350 * are about to unmap is the actual page of interest.
3351 */
3352 if (ref_page) {
3353 if (page != ref_page) {
3354 spin_unlock(ptl);
3355 continue;
3356 }
3357 /*
3358 * Mark the VMA as having unmapped its page so that
3359 * future faults in this VMA will fail rather than
3360 * looking like data was lost
3361 */
3362 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3363 }
3364
3365 pte = huge_ptep_get_and_clear(mm, address, ptep);
3366 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3367 if (huge_pte_dirty(pte))
3368 set_page_dirty(page);
3369
3370 hugetlb_count_sub(pages_per_huge_page(h), mm);
3371 page_remove_rmap(page, true);
3372
3373 spin_unlock(ptl);
3374 tlb_remove_page_size(tlb, page, huge_page_size(h));
3375 /*
3376 * Bail out after unmapping reference page if supplied
3377 */
3378 if (ref_page)
3379 break;
3380 }
3381 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3382 tlb_end_vma(tlb, vma);
3383 }
3384
3385 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3386 struct vm_area_struct *vma, unsigned long start,
3387 unsigned long end, struct page *ref_page)
3388 {
3389 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3390
3391 /*
3392 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3393 * test will fail on a vma being torn down, and not grab a page table
3394 * on its way out. We're lucky that the flag has such an appropriate
3395 * name, and can in fact be safely cleared here. We could clear it
3396 * before the __unmap_hugepage_range above, but all that's necessary
3397 * is to clear it before releasing the i_mmap_rwsem. This works
3398 * because in the context this is called, the VMA is about to be
3399 * destroyed and the i_mmap_rwsem is held.
3400 */
3401 vma->vm_flags &= ~VM_MAYSHARE;
3402 }
3403
3404 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3405 unsigned long end, struct page *ref_page)
3406 {
3407 struct mm_struct *mm;
3408 struct mmu_gather tlb;
3409
3410 mm = vma->vm_mm;
3411
3412 tlb_gather_mmu(&tlb, mm, start, end);
3413 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3414 tlb_finish_mmu(&tlb, start, end);
3415 }
3416
3417 /*
3418 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3419 * mappping it owns the reserve page for. The intention is to unmap the page
3420 * from other VMAs and let the children be SIGKILLed if they are faulting the
3421 * same region.
3422 */
3423 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3424 struct page *page, unsigned long address)
3425 {
3426 struct hstate *h = hstate_vma(vma);
3427 struct vm_area_struct *iter_vma;
3428 struct address_space *mapping;
3429 pgoff_t pgoff;
3430
3431 /*
3432 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3433 * from page cache lookup which is in HPAGE_SIZE units.
3434 */
3435 address = address & huge_page_mask(h);
3436 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3437 vma->vm_pgoff;
3438 mapping = vma->vm_file->f_mapping;
3439
3440 /*
3441 * Take the mapping lock for the duration of the table walk. As
3442 * this mapping should be shared between all the VMAs,
3443 * __unmap_hugepage_range() is called as the lock is already held
3444 */
3445 i_mmap_lock_write(mapping);
3446 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3447 /* Do not unmap the current VMA */
3448 if (iter_vma == vma)
3449 continue;
3450
3451 /*
3452 * Shared VMAs have their own reserves and do not affect
3453 * MAP_PRIVATE accounting but it is possible that a shared
3454 * VMA is using the same page so check and skip such VMAs.
3455 */
3456 if (iter_vma->vm_flags & VM_MAYSHARE)
3457 continue;
3458
3459 /*
3460 * Unmap the page from other VMAs without their own reserves.
3461 * They get marked to be SIGKILLed if they fault in these
3462 * areas. This is because a future no-page fault on this VMA
3463 * could insert a zeroed page instead of the data existing
3464 * from the time of fork. This would look like data corruption
3465 */
3466 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3467 unmap_hugepage_range(iter_vma, address,
3468 address + huge_page_size(h), page);
3469 }
3470 i_mmap_unlock_write(mapping);
3471 }
3472
3473 /*
3474 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3475 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3476 * cannot race with other handlers or page migration.
3477 * Keep the pte_same checks anyway to make transition from the mutex easier.
3478 */
3479 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3480 unsigned long address, pte_t *ptep,
3481 struct page *pagecache_page, spinlock_t *ptl)
3482 {
3483 pte_t pte;
3484 struct hstate *h = hstate_vma(vma);
3485 struct page *old_page, *new_page;
3486 int ret = 0, outside_reserve = 0;
3487 unsigned long mmun_start; /* For mmu_notifiers */
3488 unsigned long mmun_end; /* For mmu_notifiers */
3489
3490 pte = huge_ptep_get(ptep);
3491 old_page = pte_page(pte);
3492
3493 retry_avoidcopy:
3494 /* If no-one else is actually using this page, avoid the copy
3495 * and just make the page writable */
3496 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3497 page_move_anon_rmap(old_page, vma);
3498 set_huge_ptep_writable(vma, address, ptep);
3499 return 0;
3500 }
3501
3502 /*
3503 * If the process that created a MAP_PRIVATE mapping is about to
3504 * perform a COW due to a shared page count, attempt to satisfy
3505 * the allocation without using the existing reserves. The pagecache
3506 * page is used to determine if the reserve at this address was
3507 * consumed or not. If reserves were used, a partial faulted mapping
3508 * at the time of fork() could consume its reserves on COW instead
3509 * of the full address range.
3510 */
3511 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3512 old_page != pagecache_page)
3513 outside_reserve = 1;
3514
3515 get_page(old_page);
3516
3517 /*
3518 * Drop page table lock as buddy allocator may be called. It will
3519 * be acquired again before returning to the caller, as expected.
3520 */
3521 spin_unlock(ptl);
3522 new_page = alloc_huge_page(vma, address, outside_reserve);
3523
3524 if (IS_ERR(new_page)) {
3525 /*
3526 * If a process owning a MAP_PRIVATE mapping fails to COW,
3527 * it is due to references held by a child and an insufficient
3528 * huge page pool. To guarantee the original mappers
3529 * reliability, unmap the page from child processes. The child
3530 * may get SIGKILLed if it later faults.
3531 */
3532 if (outside_reserve) {
3533 put_page(old_page);
3534 BUG_ON(huge_pte_none(pte));
3535 unmap_ref_private(mm, vma, old_page, address);
3536 BUG_ON(huge_pte_none(pte));
3537 spin_lock(ptl);
3538 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3539 if (likely(ptep &&
3540 pte_same(huge_ptep_get(ptep), pte)))
3541 goto retry_avoidcopy;
3542 /*
3543 * race occurs while re-acquiring page table
3544 * lock, and our job is done.
3545 */
3546 return 0;
3547 }
3548
3549 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3550 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3551 goto out_release_old;
3552 }
3553
3554 /*
3555 * When the original hugepage is shared one, it does not have
3556 * anon_vma prepared.
3557 */
3558 if (unlikely(anon_vma_prepare(vma))) {
3559 ret = VM_FAULT_OOM;
3560 goto out_release_all;
3561 }
3562
3563 copy_user_huge_page(new_page, old_page, address, vma,
3564 pages_per_huge_page(h));
3565 __SetPageUptodate(new_page);
3566 set_page_huge_active(new_page);
3567
3568 mmun_start = address & huge_page_mask(h);
3569 mmun_end = mmun_start + huge_page_size(h);
3570 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3571
3572 /*
3573 * Retake the page table lock to check for racing updates
3574 * before the page tables are altered
3575 */
3576 spin_lock(ptl);
3577 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3578 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3579 ClearPagePrivate(new_page);
3580
3581 /* Break COW */
3582 huge_ptep_clear_flush(vma, address, ptep);
3583 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3584 set_huge_pte_at(mm, address, ptep,
3585 make_huge_pte(vma, new_page, 1));
3586 page_remove_rmap(old_page, true);
3587 hugepage_add_new_anon_rmap(new_page, vma, address);
3588 /* Make the old page be freed below */
3589 new_page = old_page;
3590 }
3591 spin_unlock(ptl);
3592 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3593 out_release_all:
3594 restore_reserve_on_error(h, vma, address, new_page);
3595 put_page(new_page);
3596 out_release_old:
3597 put_page(old_page);
3598
3599 spin_lock(ptl); /* Caller expects lock to be held */
3600 return ret;
3601 }
3602
3603 /* Return the pagecache page at a given address within a VMA */
3604 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3605 struct vm_area_struct *vma, unsigned long address)
3606 {
3607 struct address_space *mapping;
3608 pgoff_t idx;
3609
3610 mapping = vma->vm_file->f_mapping;
3611 idx = vma_hugecache_offset(h, vma, address);
3612
3613 return find_lock_page(mapping, idx);
3614 }
3615
3616 /*
3617 * Return whether there is a pagecache page to back given address within VMA.
3618 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3619 */
3620 static bool hugetlbfs_pagecache_present(struct hstate *h,
3621 struct vm_area_struct *vma, unsigned long address)
3622 {
3623 struct address_space *mapping;
3624 pgoff_t idx;
3625 struct page *page;
3626
3627 mapping = vma->vm_file->f_mapping;
3628 idx = vma_hugecache_offset(h, vma, address);
3629
3630 page = find_get_page(mapping, idx);
3631 if (page)
3632 put_page(page);
3633 return page != NULL;
3634 }
3635
3636 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3637 pgoff_t idx)
3638 {
3639 struct inode *inode = mapping->host;
3640 struct hstate *h = hstate_inode(inode);
3641 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3642
3643 if (err)
3644 return err;
3645 ClearPagePrivate(page);
3646
3647 spin_lock(&inode->i_lock);
3648 inode->i_blocks += blocks_per_huge_page(h);
3649 spin_unlock(&inode->i_lock);
3650 return 0;
3651 }
3652
3653 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3654 struct address_space *mapping, pgoff_t idx,
3655 unsigned long address, pte_t *ptep, unsigned int flags)
3656 {
3657 struct hstate *h = hstate_vma(vma);
3658 int ret = VM_FAULT_SIGBUS;
3659 int anon_rmap = 0;
3660 unsigned long size;
3661 struct page *page;
3662 pte_t new_pte;
3663 spinlock_t *ptl;
3664
3665 /*
3666 * Currently, we are forced to kill the process in the event the
3667 * original mapper has unmapped pages from the child due to a failed
3668 * COW. Warn that such a situation has occurred as it may not be obvious
3669 */
3670 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3671 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3672 current->pid);
3673 return ret;
3674 }
3675
3676 /*
3677 * Use page lock to guard against racing truncation
3678 * before we get page_table_lock.
3679 */
3680 retry:
3681 page = find_lock_page(mapping, idx);
3682 if (!page) {
3683 size = i_size_read(mapping->host) >> huge_page_shift(h);
3684 if (idx >= size)
3685 goto out;
3686
3687 /*
3688 * Check for page in userfault range
3689 */
3690 if (userfaultfd_missing(vma)) {
3691 u32 hash;
3692 struct vm_fault vmf = {
3693 .vma = vma,
3694 .address = address,
3695 .flags = flags,
3696 /*
3697 * Hard to debug if it ends up being
3698 * used by a callee that assumes
3699 * something about the other
3700 * uninitialized fields... same as in
3701 * memory.c
3702 */
3703 };
3704
3705 /*
3706 * hugetlb_fault_mutex must be dropped before
3707 * handling userfault. Reacquire after handling
3708 * fault to make calling code simpler.
3709 */
3710 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3711 idx, address);
3712 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3713 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3714 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3715 goto out;
3716 }
3717
3718 page = alloc_huge_page(vma, address, 0);
3719 if (IS_ERR(page)) {
3720 ret = PTR_ERR(page);
3721 if (ret == -ENOMEM)
3722 ret = VM_FAULT_OOM;
3723 else
3724 ret = VM_FAULT_SIGBUS;
3725 goto out;
3726 }
3727 clear_huge_page(page, address, pages_per_huge_page(h));
3728 __SetPageUptodate(page);
3729 set_page_huge_active(page);
3730
3731 if (vma->vm_flags & VM_MAYSHARE) {
3732 int err = huge_add_to_page_cache(page, mapping, idx);
3733 if (err) {
3734 put_page(page);
3735 if (err == -EEXIST)
3736 goto retry;
3737 goto out;
3738 }
3739 } else {
3740 lock_page(page);
3741 if (unlikely(anon_vma_prepare(vma))) {
3742 ret = VM_FAULT_OOM;
3743 goto backout_unlocked;
3744 }
3745 anon_rmap = 1;
3746 }
3747 } else {
3748 /*
3749 * If memory error occurs between mmap() and fault, some process
3750 * don't have hwpoisoned swap entry for errored virtual address.
3751 * So we need to block hugepage fault by PG_hwpoison bit check.
3752 */
3753 if (unlikely(PageHWPoison(page))) {
3754 ret = VM_FAULT_HWPOISON |
3755 VM_FAULT_SET_HINDEX(hstate_index(h));
3756 goto backout_unlocked;
3757 }
3758 }
3759
3760 /*
3761 * If we are going to COW a private mapping later, we examine the
3762 * pending reservations for this page now. This will ensure that
3763 * any allocations necessary to record that reservation occur outside
3764 * the spinlock.
3765 */
3766 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3767 if (vma_needs_reservation(h, vma, address) < 0) {
3768 ret = VM_FAULT_OOM;
3769 goto backout_unlocked;
3770 }
3771 /* Just decrements count, does not deallocate */
3772 vma_end_reservation(h, vma, address);
3773 }
3774
3775 ptl = huge_pte_lock(h, mm, ptep);
3776 size = i_size_read(mapping->host) >> huge_page_shift(h);
3777 if (idx >= size)
3778 goto backout;
3779
3780 ret = 0;
3781 if (!huge_pte_none(huge_ptep_get(ptep)))
3782 goto backout;
3783
3784 if (anon_rmap) {
3785 ClearPagePrivate(page);
3786 hugepage_add_new_anon_rmap(page, vma, address);
3787 } else
3788 page_dup_rmap(page, true);
3789 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3790 && (vma->vm_flags & VM_SHARED)));
3791 set_huge_pte_at(mm, address, ptep, new_pte);
3792
3793 hugetlb_count_add(pages_per_huge_page(h), mm);
3794 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3795 /* Optimization, do the COW without a second fault */
3796 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3797 }
3798
3799 spin_unlock(ptl);
3800 unlock_page(page);
3801 out:
3802 return ret;
3803
3804 backout:
3805 spin_unlock(ptl);
3806 backout_unlocked:
3807 unlock_page(page);
3808 restore_reserve_on_error(h, vma, address, page);
3809 put_page(page);
3810 goto out;
3811 }
3812
3813 #ifdef CONFIG_SMP
3814 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3815 struct vm_area_struct *vma,
3816 struct address_space *mapping,
3817 pgoff_t idx, unsigned long address)
3818 {
3819 unsigned long key[2];
3820 u32 hash;
3821
3822 if (vma->vm_flags & VM_SHARED) {
3823 key[0] = (unsigned long) mapping;
3824 key[1] = idx;
3825 } else {
3826 key[0] = (unsigned long) mm;
3827 key[1] = address >> huge_page_shift(h);
3828 }
3829
3830 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3831
3832 return hash & (num_fault_mutexes - 1);
3833 }
3834 #else
3835 /*
3836 * For uniprocesor systems we always use a single mutex, so just
3837 * return 0 and avoid the hashing overhead.
3838 */
3839 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3840 struct vm_area_struct *vma,
3841 struct address_space *mapping,
3842 pgoff_t idx, unsigned long address)
3843 {
3844 return 0;
3845 }
3846 #endif
3847
3848 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3849 unsigned long address, unsigned int flags)
3850 {
3851 pte_t *ptep, entry;
3852 spinlock_t *ptl;
3853 int ret;
3854 u32 hash;
3855 pgoff_t idx;
3856 struct page *page = NULL;
3857 struct page *pagecache_page = NULL;
3858 struct hstate *h = hstate_vma(vma);
3859 struct address_space *mapping;
3860 int need_wait_lock = 0;
3861
3862 address &= huge_page_mask(h);
3863
3864 ptep = huge_pte_offset(mm, address);
3865 if (ptep) {
3866 entry = huge_ptep_get(ptep);
3867 if (unlikely(is_hugetlb_entry_migration(entry))) {
3868 migration_entry_wait_huge(vma, mm, ptep);
3869 return 0;
3870 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3871 return VM_FAULT_HWPOISON_LARGE |
3872 VM_FAULT_SET_HINDEX(hstate_index(h));
3873 } else {
3874 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3875 if (!ptep)
3876 return VM_FAULT_OOM;
3877 }
3878
3879 mapping = vma->vm_file->f_mapping;
3880 idx = vma_hugecache_offset(h, vma, address);
3881
3882 /*
3883 * Serialize hugepage allocation and instantiation, so that we don't
3884 * get spurious allocation failures if two CPUs race to instantiate
3885 * the same page in the page cache.
3886 */
3887 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3888 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3889
3890 entry = huge_ptep_get(ptep);
3891 if (huge_pte_none(entry)) {
3892 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3893 goto out_mutex;
3894 }
3895
3896 ret = 0;
3897
3898 /*
3899 * entry could be a migration/hwpoison entry at this point, so this
3900 * check prevents the kernel from going below assuming that we have
3901 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3902 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3903 * handle it.
3904 */
3905 if (!pte_present(entry))
3906 goto out_mutex;
3907
3908 /*
3909 * If we are going to COW the mapping later, we examine the pending
3910 * reservations for this page now. This will ensure that any
3911 * allocations necessary to record that reservation occur outside the
3912 * spinlock. For private mappings, we also lookup the pagecache
3913 * page now as it is used to determine if a reservation has been
3914 * consumed.
3915 */
3916 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3917 if (vma_needs_reservation(h, vma, address) < 0) {
3918 ret = VM_FAULT_OOM;
3919 goto out_mutex;
3920 }
3921 /* Just decrements count, does not deallocate */
3922 vma_end_reservation(h, vma, address);
3923
3924 if (!(vma->vm_flags & VM_MAYSHARE))
3925 pagecache_page = hugetlbfs_pagecache_page(h,
3926 vma, address);
3927 }
3928
3929 ptl = huge_pte_lock(h, mm, ptep);
3930
3931 /* Check for a racing update before calling hugetlb_cow */
3932 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3933 goto out_ptl;
3934
3935 /*
3936 * hugetlb_cow() requires page locks of pte_page(entry) and
3937 * pagecache_page, so here we need take the former one
3938 * when page != pagecache_page or !pagecache_page.
3939 */
3940 page = pte_page(entry);
3941 if (page != pagecache_page)
3942 if (!trylock_page(page)) {
3943 need_wait_lock = 1;
3944 goto out_ptl;
3945 }
3946
3947 get_page(page);
3948
3949 if (flags & FAULT_FLAG_WRITE) {
3950 if (!huge_pte_write(entry)) {
3951 ret = hugetlb_cow(mm, vma, address, ptep,
3952 pagecache_page, ptl);
3953 goto out_put_page;
3954 }
3955 entry = huge_pte_mkdirty(entry);
3956 }
3957 entry = pte_mkyoung(entry);
3958 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3959 flags & FAULT_FLAG_WRITE))
3960 update_mmu_cache(vma, address, ptep);
3961 out_put_page:
3962 if (page != pagecache_page)
3963 unlock_page(page);
3964 put_page(page);
3965 out_ptl:
3966 spin_unlock(ptl);
3967
3968 if (pagecache_page) {
3969 unlock_page(pagecache_page);
3970 put_page(pagecache_page);
3971 }
3972 out_mutex:
3973 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3974 /*
3975 * Generally it's safe to hold refcount during waiting page lock. But
3976 * here we just wait to defer the next page fault to avoid busy loop and
3977 * the page is not used after unlocked before returning from the current
3978 * page fault. So we are safe from accessing freed page, even if we wait
3979 * here without taking refcount.
3980 */
3981 if (need_wait_lock)
3982 wait_on_page_locked(page);
3983 return ret;
3984 }
3985
3986 /*
3987 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3988 * modifications for huge pages.
3989 */
3990 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3991 pte_t *dst_pte,
3992 struct vm_area_struct *dst_vma,
3993 unsigned long dst_addr,
3994 unsigned long src_addr,
3995 struct page **pagep)
3996 {
3997 int vm_shared = dst_vma->vm_flags & VM_SHARED;
3998 struct hstate *h = hstate_vma(dst_vma);
3999 pte_t _dst_pte;
4000 spinlock_t *ptl;
4001 int ret;
4002 struct page *page;
4003
4004 if (!*pagep) {
4005 ret = -ENOMEM;
4006 page = alloc_huge_page(dst_vma, dst_addr, 0);
4007 if (IS_ERR(page))
4008 goto out;
4009
4010 ret = copy_huge_page_from_user(page,
4011 (const void __user *) src_addr,
4012 pages_per_huge_page(h), false);
4013
4014 /* fallback to copy_from_user outside mmap_sem */
4015 if (unlikely(ret)) {
4016 ret = -EFAULT;
4017 *pagep = page;
4018 /* don't free the page */
4019 goto out;
4020 }
4021 } else {
4022 page = *pagep;
4023 *pagep = NULL;
4024 }
4025
4026 /*
4027 * The memory barrier inside __SetPageUptodate makes sure that
4028 * preceding stores to the page contents become visible before
4029 * the set_pte_at() write.
4030 */
4031 __SetPageUptodate(page);
4032 set_page_huge_active(page);
4033
4034 /*
4035 * If shared, add to page cache
4036 */
4037 if (vm_shared) {
4038 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4039 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4040
4041 ret = huge_add_to_page_cache(page, mapping, idx);
4042 if (ret)
4043 goto out_release_nounlock;
4044 }
4045
4046 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4047 spin_lock(ptl);
4048
4049 ret = -EEXIST;
4050 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4051 goto out_release_unlock;
4052
4053 if (vm_shared) {
4054 page_dup_rmap(page, true);
4055 } else {
4056 ClearPagePrivate(page);
4057 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4058 }
4059
4060 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4061 if (dst_vma->vm_flags & VM_WRITE)
4062 _dst_pte = huge_pte_mkdirty(_dst_pte);
4063 _dst_pte = pte_mkyoung(_dst_pte);
4064
4065 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4066
4067 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4068 dst_vma->vm_flags & VM_WRITE);
4069 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4070
4071 /* No need to invalidate - it was non-present before */
4072 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4073
4074 spin_unlock(ptl);
4075 if (vm_shared)
4076 unlock_page(page);
4077 ret = 0;
4078 out:
4079 return ret;
4080 out_release_unlock:
4081 spin_unlock(ptl);
4082 out_release_nounlock:
4083 if (vm_shared)
4084 unlock_page(page);
4085 put_page(page);
4086 goto out;
4087 }
4088
4089 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4090 struct page **pages, struct vm_area_struct **vmas,
4091 unsigned long *position, unsigned long *nr_pages,
4092 long i, unsigned int flags, int *nonblocking)
4093 {
4094 unsigned long pfn_offset;
4095 unsigned long vaddr = *position;
4096 unsigned long remainder = *nr_pages;
4097 struct hstate *h = hstate_vma(vma);
4098
4099 while (vaddr < vma->vm_end && remainder) {
4100 pte_t *pte;
4101 spinlock_t *ptl = NULL;
4102 int absent;
4103 struct page *page;
4104
4105 /*
4106 * If we have a pending SIGKILL, don't keep faulting pages and
4107 * potentially allocating memory.
4108 */
4109 if (unlikely(fatal_signal_pending(current))) {
4110 remainder = 0;
4111 break;
4112 }
4113
4114 /*
4115 * Some archs (sparc64, sh*) have multiple pte_ts to
4116 * each hugepage. We have to make sure we get the
4117 * first, for the page indexing below to work.
4118 *
4119 * Note that page table lock is not held when pte is null.
4120 */
4121 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4122 if (pte)
4123 ptl = huge_pte_lock(h, mm, pte);
4124 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4125
4126 /*
4127 * When coredumping, it suits get_dump_page if we just return
4128 * an error where there's an empty slot with no huge pagecache
4129 * to back it. This way, we avoid allocating a hugepage, and
4130 * the sparse dumpfile avoids allocating disk blocks, but its
4131 * huge holes still show up with zeroes where they need to be.
4132 */
4133 if (absent && (flags & FOLL_DUMP) &&
4134 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4135 if (pte)
4136 spin_unlock(ptl);
4137 remainder = 0;
4138 break;
4139 }
4140
4141 /*
4142 * We need call hugetlb_fault for both hugepages under migration
4143 * (in which case hugetlb_fault waits for the migration,) and
4144 * hwpoisoned hugepages (in which case we need to prevent the
4145 * caller from accessing to them.) In order to do this, we use
4146 * here is_swap_pte instead of is_hugetlb_entry_migration and
4147 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4148 * both cases, and because we can't follow correct pages
4149 * directly from any kind of swap entries.
4150 */
4151 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4152 ((flags & FOLL_WRITE) &&
4153 !huge_pte_write(huge_ptep_get(pte)))) {
4154 int ret;
4155 unsigned int fault_flags = 0;
4156
4157 if (pte)
4158 spin_unlock(ptl);
4159 if (flags & FOLL_WRITE)
4160 fault_flags |= FAULT_FLAG_WRITE;
4161 if (nonblocking)
4162 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4163 if (flags & FOLL_NOWAIT)
4164 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4165 FAULT_FLAG_RETRY_NOWAIT;
4166 if (flags & FOLL_TRIED) {
4167 VM_WARN_ON_ONCE(fault_flags &
4168 FAULT_FLAG_ALLOW_RETRY);
4169 fault_flags |= FAULT_FLAG_TRIED;
4170 }
4171 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4172 if (ret & VM_FAULT_ERROR) {
4173 int err = vm_fault_to_errno(ret, flags);
4174
4175 if (err)
4176 return err;
4177
4178 remainder = 0;
4179 break;
4180 }
4181 if (ret & VM_FAULT_RETRY) {
4182 if (nonblocking)
4183 *nonblocking = 0;
4184 *nr_pages = 0;
4185 /*
4186 * VM_FAULT_RETRY must not return an
4187 * error, it will return zero
4188 * instead.
4189 *
4190 * No need to update "position" as the
4191 * caller will not check it after
4192 * *nr_pages is set to 0.
4193 */
4194 return i;
4195 }
4196 continue;
4197 }
4198
4199 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4200 page = pte_page(huge_ptep_get(pte));
4201 same_page:
4202 if (pages) {
4203 pages[i] = mem_map_offset(page, pfn_offset);
4204 get_page(pages[i]);
4205 }
4206
4207 if (vmas)
4208 vmas[i] = vma;
4209
4210 vaddr += PAGE_SIZE;
4211 ++pfn_offset;
4212 --remainder;
4213 ++i;
4214 if (vaddr < vma->vm_end && remainder &&
4215 pfn_offset < pages_per_huge_page(h)) {
4216 /*
4217 * We use pfn_offset to avoid touching the pageframes
4218 * of this compound page.
4219 */
4220 goto same_page;
4221 }
4222 spin_unlock(ptl);
4223 }
4224 *nr_pages = remainder;
4225 /*
4226 * setting position is actually required only if remainder is
4227 * not zero but it's faster not to add a "if (remainder)"
4228 * branch.
4229 */
4230 *position = vaddr;
4231
4232 return i ? i : -EFAULT;
4233 }
4234
4235 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4236 /*
4237 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4238 * implement this.
4239 */
4240 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4241 #endif
4242
4243 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4244 unsigned long address, unsigned long end, pgprot_t newprot)
4245 {
4246 struct mm_struct *mm = vma->vm_mm;
4247 unsigned long start = address;
4248 pte_t *ptep;
4249 pte_t pte;
4250 struct hstate *h = hstate_vma(vma);
4251 unsigned long pages = 0;
4252
4253 BUG_ON(address >= end);
4254 flush_cache_range(vma, address, end);
4255
4256 mmu_notifier_invalidate_range_start(mm, start, end);
4257 i_mmap_lock_write(vma->vm_file->f_mapping);
4258 for (; address < end; address += huge_page_size(h)) {
4259 spinlock_t *ptl;
4260 ptep = huge_pte_offset(mm, address);
4261 if (!ptep)
4262 continue;
4263 ptl = huge_pte_lock(h, mm, ptep);
4264 if (huge_pmd_unshare(mm, &address, ptep)) {
4265 pages++;
4266 spin_unlock(ptl);
4267 continue;
4268 }
4269 pte = huge_ptep_get(ptep);
4270 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4271 spin_unlock(ptl);
4272 continue;
4273 }
4274 if (unlikely(is_hugetlb_entry_migration(pte))) {
4275 swp_entry_t entry = pte_to_swp_entry(pte);
4276
4277 if (is_write_migration_entry(entry)) {
4278 pte_t newpte;
4279
4280 make_migration_entry_read(&entry);
4281 newpte = swp_entry_to_pte(entry);
4282 set_huge_pte_at(mm, address, ptep, newpte);
4283 pages++;
4284 }
4285 spin_unlock(ptl);
4286 continue;
4287 }
4288 if (!huge_pte_none(pte)) {
4289 pte = huge_ptep_get_and_clear(mm, address, ptep);
4290 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4291 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4292 set_huge_pte_at(mm, address, ptep, pte);
4293 pages++;
4294 }
4295 spin_unlock(ptl);
4296 }
4297 /*
4298 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4299 * may have cleared our pud entry and done put_page on the page table:
4300 * once we release i_mmap_rwsem, another task can do the final put_page
4301 * and that page table be reused and filled with junk.
4302 */
4303 flush_hugetlb_tlb_range(vma, start, end);
4304 mmu_notifier_invalidate_range(mm, start, end);
4305 i_mmap_unlock_write(vma->vm_file->f_mapping);
4306 mmu_notifier_invalidate_range_end(mm, start, end);
4307
4308 return pages << h->order;
4309 }
4310
4311 int hugetlb_reserve_pages(struct inode *inode,
4312 long from, long to,
4313 struct vm_area_struct *vma,
4314 vm_flags_t vm_flags)
4315 {
4316 long ret, chg;
4317 struct hstate *h = hstate_inode(inode);
4318 struct hugepage_subpool *spool = subpool_inode(inode);
4319 struct resv_map *resv_map;
4320 long gbl_reserve;
4321
4322 /*
4323 * Only apply hugepage reservation if asked. At fault time, an
4324 * attempt will be made for VM_NORESERVE to allocate a page
4325 * without using reserves
4326 */
4327 if (vm_flags & VM_NORESERVE)
4328 return 0;
4329
4330 /*
4331 * Shared mappings base their reservation on the number of pages that
4332 * are already allocated on behalf of the file. Private mappings need
4333 * to reserve the full area even if read-only as mprotect() may be
4334 * called to make the mapping read-write. Assume !vma is a shm mapping
4335 */
4336 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4337 resv_map = inode_resv_map(inode);
4338
4339 chg = region_chg(resv_map, from, to);
4340
4341 } else {
4342 resv_map = resv_map_alloc();
4343 if (!resv_map)
4344 return -ENOMEM;
4345
4346 chg = to - from;
4347
4348 set_vma_resv_map(vma, resv_map);
4349 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4350 }
4351
4352 if (chg < 0) {
4353 ret = chg;
4354 goto out_err;
4355 }
4356
4357 /*
4358 * There must be enough pages in the subpool for the mapping. If
4359 * the subpool has a minimum size, there may be some global
4360 * reservations already in place (gbl_reserve).
4361 */
4362 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4363 if (gbl_reserve < 0) {
4364 ret = -ENOSPC;
4365 goto out_err;
4366 }
4367
4368 /*
4369 * Check enough hugepages are available for the reservation.
4370 * Hand the pages back to the subpool if there are not
4371 */
4372 ret = hugetlb_acct_memory(h, gbl_reserve);
4373 if (ret < 0) {
4374 /* put back original number of pages, chg */
4375 (void)hugepage_subpool_put_pages(spool, chg);
4376 goto out_err;
4377 }
4378
4379 /*
4380 * Account for the reservations made. Shared mappings record regions
4381 * that have reservations as they are shared by multiple VMAs.
4382 * When the last VMA disappears, the region map says how much
4383 * the reservation was and the page cache tells how much of
4384 * the reservation was consumed. Private mappings are per-VMA and
4385 * only the consumed reservations are tracked. When the VMA
4386 * disappears, the original reservation is the VMA size and the
4387 * consumed reservations are stored in the map. Hence, nothing
4388 * else has to be done for private mappings here
4389 */
4390 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4391 long add = region_add(resv_map, from, to);
4392
4393 if (unlikely(chg > add)) {
4394 /*
4395 * pages in this range were added to the reserve
4396 * map between region_chg and region_add. This
4397 * indicates a race with alloc_huge_page. Adjust
4398 * the subpool and reserve counts modified above
4399 * based on the difference.
4400 */
4401 long rsv_adjust;
4402
4403 rsv_adjust = hugepage_subpool_put_pages(spool,
4404 chg - add);
4405 hugetlb_acct_memory(h, -rsv_adjust);
4406 }
4407 }
4408 return 0;
4409 out_err:
4410 if (!vma || vma->vm_flags & VM_MAYSHARE)
4411 /* Don't call region_abort if region_chg failed */
4412 if (chg >= 0)
4413 region_abort(resv_map, from, to);
4414 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4415 kref_put(&resv_map->refs, resv_map_release);
4416 return ret;
4417 }
4418
4419 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4420 long freed)
4421 {
4422 struct hstate *h = hstate_inode(inode);
4423 struct resv_map *resv_map = inode_resv_map(inode);
4424 long chg = 0;
4425 struct hugepage_subpool *spool = subpool_inode(inode);
4426 long gbl_reserve;
4427
4428 if (resv_map) {
4429 chg = region_del(resv_map, start, end);
4430 /*
4431 * region_del() can fail in the rare case where a region
4432 * must be split and another region descriptor can not be
4433 * allocated. If end == LONG_MAX, it will not fail.
4434 */
4435 if (chg < 0)
4436 return chg;
4437 }
4438
4439 spin_lock(&inode->i_lock);
4440 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4441 spin_unlock(&inode->i_lock);
4442
4443 /*
4444 * If the subpool has a minimum size, the number of global
4445 * reservations to be released may be adjusted.
4446 */
4447 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4448 hugetlb_acct_memory(h, -gbl_reserve);
4449
4450 return 0;
4451 }
4452
4453 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4454 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4455 struct vm_area_struct *vma,
4456 unsigned long addr, pgoff_t idx)
4457 {
4458 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4459 svma->vm_start;
4460 unsigned long sbase = saddr & PUD_MASK;
4461 unsigned long s_end = sbase + PUD_SIZE;
4462
4463 /* Allow segments to share if only one is marked locked */
4464 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4465 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4466
4467 /*
4468 * match the virtual addresses, permission and the alignment of the
4469 * page table page.
4470 */
4471 if (pmd_index(addr) != pmd_index(saddr) ||
4472 vm_flags != svm_flags ||
4473 sbase < svma->vm_start || svma->vm_end < s_end)
4474 return 0;
4475
4476 return saddr;
4477 }
4478
4479 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4480 {
4481 unsigned long base = addr & PUD_MASK;
4482 unsigned long end = base + PUD_SIZE;
4483
4484 /*
4485 * check on proper vm_flags and page table alignment
4486 */
4487 if (vma->vm_flags & VM_MAYSHARE &&
4488 vma->vm_start <= base && end <= vma->vm_end)
4489 return true;
4490 return false;
4491 }
4492
4493 /*
4494 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4495 * and returns the corresponding pte. While this is not necessary for the
4496 * !shared pmd case because we can allocate the pmd later as well, it makes the
4497 * code much cleaner. pmd allocation is essential for the shared case because
4498 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4499 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4500 * bad pmd for sharing.
4501 */
4502 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4503 {
4504 struct vm_area_struct *vma = find_vma(mm, addr);
4505 struct address_space *mapping = vma->vm_file->f_mapping;
4506 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4507 vma->vm_pgoff;
4508 struct vm_area_struct *svma;
4509 unsigned long saddr;
4510 pte_t *spte = NULL;
4511 pte_t *pte;
4512 spinlock_t *ptl;
4513
4514 if (!vma_shareable(vma, addr))
4515 return (pte_t *)pmd_alloc(mm, pud, addr);
4516
4517 i_mmap_lock_write(mapping);
4518 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4519 if (svma == vma)
4520 continue;
4521
4522 saddr = page_table_shareable(svma, vma, addr, idx);
4523 if (saddr) {
4524 spte = huge_pte_offset(svma->vm_mm, saddr);
4525 if (spte) {
4526 get_page(virt_to_page(spte));
4527 break;
4528 }
4529 }
4530 }
4531
4532 if (!spte)
4533 goto out;
4534
4535 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4536 if (pud_none(*pud)) {
4537 pud_populate(mm, pud,
4538 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4539 mm_inc_nr_pmds(mm);
4540 } else {
4541 put_page(virt_to_page(spte));
4542 }
4543 spin_unlock(ptl);
4544 out:
4545 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4546 i_mmap_unlock_write(mapping);
4547 return pte;
4548 }
4549
4550 /*
4551 * unmap huge page backed by shared pte.
4552 *
4553 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4554 * indicated by page_count > 1, unmap is achieved by clearing pud and
4555 * decrementing the ref count. If count == 1, the pte page is not shared.
4556 *
4557 * called with page table lock held.
4558 *
4559 * returns: 1 successfully unmapped a shared pte page
4560 * 0 the underlying pte page is not shared, or it is the last user
4561 */
4562 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4563 {
4564 pgd_t *pgd = pgd_offset(mm, *addr);
4565 p4d_t *p4d = p4d_offset(pgd, *addr);
4566 pud_t *pud = pud_offset(p4d, *addr);
4567
4568 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4569 if (page_count(virt_to_page(ptep)) == 1)
4570 return 0;
4571
4572 pud_clear(pud);
4573 put_page(virt_to_page(ptep));
4574 mm_dec_nr_pmds(mm);
4575 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4576 return 1;
4577 }
4578 #define want_pmd_share() (1)
4579 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4580 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4581 {
4582 return NULL;
4583 }
4584
4585 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4586 {
4587 return 0;
4588 }
4589 #define want_pmd_share() (0)
4590 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4591
4592 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4593 pte_t *huge_pte_alloc(struct mm_struct *mm,
4594 unsigned long addr, unsigned long sz)
4595 {
4596 pgd_t *pgd;
4597 p4d_t *p4d;
4598 pud_t *pud;
4599 pte_t *pte = NULL;
4600
4601 pgd = pgd_offset(mm, addr);
4602 p4d = p4d_offset(pgd, addr);
4603 pud = pud_alloc(mm, p4d, addr);
4604 if (pud) {
4605 if (sz == PUD_SIZE) {
4606 pte = (pte_t *)pud;
4607 } else {
4608 BUG_ON(sz != PMD_SIZE);
4609 if (want_pmd_share() && pud_none(*pud))
4610 pte = huge_pmd_share(mm, addr, pud);
4611 else
4612 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4613 }
4614 }
4615 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4616
4617 return pte;
4618 }
4619
4620 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4621 {
4622 pgd_t *pgd;
4623 p4d_t *p4d;
4624 pud_t *pud;
4625 pmd_t *pmd;
4626
4627 pgd = pgd_offset(mm, addr);
4628 if (!pgd_present(*pgd))
4629 return NULL;
4630 p4d = p4d_offset(pgd, addr);
4631 if (!p4d_present(*p4d))
4632 return NULL;
4633 pud = pud_offset(p4d, addr);
4634 if (!pud_present(*pud))
4635 return NULL;
4636 if (pud_huge(*pud))
4637 return (pte_t *)pud;
4638 pmd = pmd_offset(pud, addr);
4639 return (pte_t *) pmd;
4640 }
4641
4642 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4643
4644 /*
4645 * These functions are overwritable if your architecture needs its own
4646 * behavior.
4647 */
4648 struct page * __weak
4649 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4650 int write)
4651 {
4652 return ERR_PTR(-EINVAL);
4653 }
4654
4655 struct page * __weak
4656 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4657 pmd_t *pmd, int flags)
4658 {
4659 struct page *page = NULL;
4660 spinlock_t *ptl;
4661 pte_t pte;
4662 retry:
4663 ptl = pmd_lockptr(mm, pmd);
4664 spin_lock(ptl);
4665 /*
4666 * make sure that the address range covered by this pmd is not
4667 * unmapped from other threads.
4668 */
4669 if (!pmd_huge(*pmd))
4670 goto out;
4671 pte = huge_ptep_get((pte_t *)pmd);
4672 if (pte_present(pte)) {
4673 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4674 if (flags & FOLL_GET)
4675 get_page(page);
4676 } else {
4677 if (is_hugetlb_entry_migration(pte)) {
4678 spin_unlock(ptl);
4679 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4680 goto retry;
4681 }
4682 /*
4683 * hwpoisoned entry is treated as no_page_table in
4684 * follow_page_mask().
4685 */
4686 }
4687 out:
4688 spin_unlock(ptl);
4689 return page;
4690 }
4691
4692 struct page * __weak
4693 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4694 pud_t *pud, int flags)
4695 {
4696 if (flags & FOLL_GET)
4697 return NULL;
4698
4699 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4700 }
4701
4702 #ifdef CONFIG_MEMORY_FAILURE
4703
4704 /*
4705 * This function is called from memory failure code.
4706 */
4707 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4708 {
4709 struct hstate *h = page_hstate(hpage);
4710 int nid = page_to_nid(hpage);
4711 int ret = -EBUSY;
4712
4713 spin_lock(&hugetlb_lock);
4714 /*
4715 * Just checking !page_huge_active is not enough, because that could be
4716 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4717 */
4718 if (!page_huge_active(hpage) && !page_count(hpage)) {
4719 /*
4720 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4721 * but dangling hpage->lru can trigger list-debug warnings
4722 * (this happens when we call unpoison_memory() on it),
4723 * so let it point to itself with list_del_init().
4724 */
4725 list_del_init(&hpage->lru);
4726 set_page_refcounted(hpage);
4727 h->free_huge_pages--;
4728 h->free_huge_pages_node[nid]--;
4729 ret = 0;
4730 }
4731 spin_unlock(&hugetlb_lock);
4732 return ret;
4733 }
4734 #endif
4735
4736 bool isolate_huge_page(struct page *page, struct list_head *list)
4737 {
4738 bool ret = true;
4739
4740 VM_BUG_ON_PAGE(!PageHead(page), page);
4741 spin_lock(&hugetlb_lock);
4742 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4743 ret = false;
4744 goto unlock;
4745 }
4746 clear_page_huge_active(page);
4747 list_move_tail(&page->lru, list);
4748 unlock:
4749 spin_unlock(&hugetlb_lock);
4750 return ret;
4751 }
4752
4753 void putback_active_hugepage(struct page *page)
4754 {
4755 VM_BUG_ON_PAGE(!PageHead(page), page);
4756 spin_lock(&hugetlb_lock);
4757 set_page_huge_active(page);
4758 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4759 spin_unlock(&hugetlb_lock);
4760 put_page(page);
4761 }