]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/hugetlb.c
mm: hugetlb: return immediately for hugetlb page in __delete_from_page_cache()
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include <linux/userfaultfd_k.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56
57 /*
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
60 */
61 DEFINE_SPINLOCK(hugetlb_lock);
62
63 /*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 {
75 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77 spin_unlock(&spool->lock);
78
79 /* If no pages are used, and no other handles to the subpool
80 * remain, give up any reservations mased on minimum size and
81 * free the subpool */
82 if (free) {
83 if (spool->min_hpages != -1)
84 hugetlb_acct_memory(spool->hstate,
85 -spool->min_hpages);
86 kfree(spool);
87 }
88 }
89
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91 long min_hpages)
92 {
93 struct hugepage_subpool *spool;
94
95 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96 if (!spool)
97 return NULL;
98
99 spin_lock_init(&spool->lock);
100 spool->count = 1;
101 spool->max_hpages = max_hpages;
102 spool->hstate = h;
103 spool->min_hpages = min_hpages;
104
105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106 kfree(spool);
107 return NULL;
108 }
109 spool->rsv_hpages = min_hpages;
110
111 return spool;
112 }
113
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 {
116 spin_lock(&spool->lock);
117 BUG_ON(!spool->count);
118 spool->count--;
119 unlock_or_release_subpool(spool);
120 }
121
122 /*
123 * Subpool accounting for allocating and reserving pages.
124 * Return -ENOMEM if there are not enough resources to satisfy the
125 * the request. Otherwise, return the number of pages by which the
126 * global pools must be adjusted (upward). The returned value may
127 * only be different than the passed value (delta) in the case where
128 * a subpool minimum size must be manitained.
129 */
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131 long delta)
132 {
133 long ret = delta;
134
135 if (!spool)
136 return ret;
137
138 spin_lock(&spool->lock);
139
140 if (spool->max_hpages != -1) { /* maximum size accounting */
141 if ((spool->used_hpages + delta) <= spool->max_hpages)
142 spool->used_hpages += delta;
143 else {
144 ret = -ENOMEM;
145 goto unlock_ret;
146 }
147 }
148
149 /* minimum size accounting */
150 if (spool->min_hpages != -1 && spool->rsv_hpages) {
151 if (delta > spool->rsv_hpages) {
152 /*
153 * Asking for more reserves than those already taken on
154 * behalf of subpool. Return difference.
155 */
156 ret = delta - spool->rsv_hpages;
157 spool->rsv_hpages = 0;
158 } else {
159 ret = 0; /* reserves already accounted for */
160 spool->rsv_hpages -= delta;
161 }
162 }
163
164 unlock_ret:
165 spin_unlock(&spool->lock);
166 return ret;
167 }
168
169 /*
170 * Subpool accounting for freeing and unreserving pages.
171 * Return the number of global page reservations that must be dropped.
172 * The return value may only be different than the passed value (delta)
173 * in the case where a subpool minimum size must be maintained.
174 */
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176 long delta)
177 {
178 long ret = delta;
179
180 if (!spool)
181 return delta;
182
183 spin_lock(&spool->lock);
184
185 if (spool->max_hpages != -1) /* maximum size accounting */
186 spool->used_hpages -= delta;
187
188 /* minimum size accounting */
189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190 if (spool->rsv_hpages + delta <= spool->min_hpages)
191 ret = 0;
192 else
193 ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195 spool->rsv_hpages += delta;
196 if (spool->rsv_hpages > spool->min_hpages)
197 spool->rsv_hpages = spool->min_hpages;
198 }
199
200 /*
201 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 * quota reference, free it now.
203 */
204 unlock_or_release_subpool(spool);
205
206 return ret;
207 }
208
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 {
211 return HUGETLBFS_SB(inode->i_sb)->spool;
212 }
213
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 {
216 return subpool_inode(file_inode(vma->vm_file));
217 }
218
219 /*
220 * Region tracking -- allows tracking of reservations and instantiated pages
221 * across the pages in a mapping.
222 *
223 * The region data structures are embedded into a resv_map and protected
224 * by a resv_map's lock. The set of regions within the resv_map represent
225 * reservations for huge pages, or huge pages that have already been
226 * instantiated within the map. The from and to elements are huge page
227 * indicies into the associated mapping. from indicates the starting index
228 * of the region. to represents the first index past the end of the region.
229 *
230 * For example, a file region structure with from == 0 and to == 4 represents
231 * four huge pages in a mapping. It is important to note that the to element
232 * represents the first element past the end of the region. This is used in
233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 *
235 * Interval notation of the form [from, to) will be used to indicate that
236 * the endpoint from is inclusive and to is exclusive.
237 */
238 struct file_region {
239 struct list_head link;
240 long from;
241 long to;
242 };
243
244 /*
245 * Add the huge page range represented by [f, t) to the reserve
246 * map. In the normal case, existing regions will be expanded
247 * to accommodate the specified range. Sufficient regions should
248 * exist for expansion due to the previous call to region_chg
249 * with the same range. However, it is possible that region_del
250 * could have been called after region_chg and modifed the map
251 * in such a way that no region exists to be expanded. In this
252 * case, pull a region descriptor from the cache associated with
253 * the map and use that for the new range.
254 *
255 * Return the number of new huge pages added to the map. This
256 * number is greater than or equal to zero.
257 */
258 static long region_add(struct resv_map *resv, long f, long t)
259 {
260 struct list_head *head = &resv->regions;
261 struct file_region *rg, *nrg, *trg;
262 long add = 0;
263
264 spin_lock(&resv->lock);
265 /* Locate the region we are either in or before. */
266 list_for_each_entry(rg, head, link)
267 if (f <= rg->to)
268 break;
269
270 /*
271 * If no region exists which can be expanded to include the
272 * specified range, the list must have been modified by an
273 * interleving call to region_del(). Pull a region descriptor
274 * from the cache and use it for this range.
275 */
276 if (&rg->link == head || t < rg->from) {
277 VM_BUG_ON(resv->region_cache_count <= 0);
278
279 resv->region_cache_count--;
280 nrg = list_first_entry(&resv->region_cache, struct file_region,
281 link);
282 list_del(&nrg->link);
283
284 nrg->from = f;
285 nrg->to = t;
286 list_add(&nrg->link, rg->link.prev);
287
288 add += t - f;
289 goto out_locked;
290 }
291
292 /* Round our left edge to the current segment if it encloses us. */
293 if (f > rg->from)
294 f = rg->from;
295
296 /* Check for and consume any regions we now overlap with. */
297 nrg = rg;
298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 if (&rg->link == head)
300 break;
301 if (rg->from > t)
302 break;
303
304 /* If this area reaches higher then extend our area to
305 * include it completely. If this is not the first area
306 * which we intend to reuse, free it. */
307 if (rg->to > t)
308 t = rg->to;
309 if (rg != nrg) {
310 /* Decrement return value by the deleted range.
311 * Another range will span this area so that by
312 * end of routine add will be >= zero
313 */
314 add -= (rg->to - rg->from);
315 list_del(&rg->link);
316 kfree(rg);
317 }
318 }
319
320 add += (nrg->from - f); /* Added to beginning of region */
321 nrg->from = f;
322 add += t - nrg->to; /* Added to end of region */
323 nrg->to = t;
324
325 out_locked:
326 resv->adds_in_progress--;
327 spin_unlock(&resv->lock);
328 VM_BUG_ON(add < 0);
329 return add;
330 }
331
332 /*
333 * Examine the existing reserve map and determine how many
334 * huge pages in the specified range [f, t) are NOT currently
335 * represented. This routine is called before a subsequent
336 * call to region_add that will actually modify the reserve
337 * map to add the specified range [f, t). region_chg does
338 * not change the number of huge pages represented by the
339 * map. However, if the existing regions in the map can not
340 * be expanded to represent the new range, a new file_region
341 * structure is added to the map as a placeholder. This is
342 * so that the subsequent region_add call will have all the
343 * regions it needs and will not fail.
344 *
345 * Upon entry, region_chg will also examine the cache of region descriptors
346 * associated with the map. If there are not enough descriptors cached, one
347 * will be allocated for the in progress add operation.
348 *
349 * Returns the number of huge pages that need to be added to the existing
350 * reservation map for the range [f, t). This number is greater or equal to
351 * zero. -ENOMEM is returned if a new file_region structure or cache entry
352 * is needed and can not be allocated.
353 */
354 static long region_chg(struct resv_map *resv, long f, long t)
355 {
356 struct list_head *head = &resv->regions;
357 struct file_region *rg, *nrg = NULL;
358 long chg = 0;
359
360 retry:
361 spin_lock(&resv->lock);
362 retry_locked:
363 resv->adds_in_progress++;
364
365 /*
366 * Check for sufficient descriptors in the cache to accommodate
367 * the number of in progress add operations.
368 */
369 if (resv->adds_in_progress > resv->region_cache_count) {
370 struct file_region *trg;
371
372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 /* Must drop lock to allocate a new descriptor. */
374 resv->adds_in_progress--;
375 spin_unlock(&resv->lock);
376
377 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378 if (!trg) {
379 kfree(nrg);
380 return -ENOMEM;
381 }
382
383 spin_lock(&resv->lock);
384 list_add(&trg->link, &resv->region_cache);
385 resv->region_cache_count++;
386 goto retry_locked;
387 }
388
389 /* Locate the region we are before or in. */
390 list_for_each_entry(rg, head, link)
391 if (f <= rg->to)
392 break;
393
394 /* If we are below the current region then a new region is required.
395 * Subtle, allocate a new region at the position but make it zero
396 * size such that we can guarantee to record the reservation. */
397 if (&rg->link == head || t < rg->from) {
398 if (!nrg) {
399 resv->adds_in_progress--;
400 spin_unlock(&resv->lock);
401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402 if (!nrg)
403 return -ENOMEM;
404
405 nrg->from = f;
406 nrg->to = f;
407 INIT_LIST_HEAD(&nrg->link);
408 goto retry;
409 }
410
411 list_add(&nrg->link, rg->link.prev);
412 chg = t - f;
413 goto out_nrg;
414 }
415
416 /* Round our left edge to the current segment if it encloses us. */
417 if (f > rg->from)
418 f = rg->from;
419 chg = t - f;
420
421 /* Check for and consume any regions we now overlap with. */
422 list_for_each_entry(rg, rg->link.prev, link) {
423 if (&rg->link == head)
424 break;
425 if (rg->from > t)
426 goto out;
427
428 /* We overlap with this area, if it extends further than
429 * us then we must extend ourselves. Account for its
430 * existing reservation. */
431 if (rg->to > t) {
432 chg += rg->to - t;
433 t = rg->to;
434 }
435 chg -= rg->to - rg->from;
436 }
437
438 out:
439 spin_unlock(&resv->lock);
440 /* We already know we raced and no longer need the new region */
441 kfree(nrg);
442 return chg;
443 out_nrg:
444 spin_unlock(&resv->lock);
445 return chg;
446 }
447
448 /*
449 * Abort the in progress add operation. The adds_in_progress field
450 * of the resv_map keeps track of the operations in progress between
451 * calls to region_chg and region_add. Operations are sometimes
452 * aborted after the call to region_chg. In such cases, region_abort
453 * is called to decrement the adds_in_progress counter.
454 *
455 * NOTE: The range arguments [f, t) are not needed or used in this
456 * routine. They are kept to make reading the calling code easier as
457 * arguments will match the associated region_chg call.
458 */
459 static void region_abort(struct resv_map *resv, long f, long t)
460 {
461 spin_lock(&resv->lock);
462 VM_BUG_ON(!resv->region_cache_count);
463 resv->adds_in_progress--;
464 spin_unlock(&resv->lock);
465 }
466
467 /*
468 * Delete the specified range [f, t) from the reserve map. If the
469 * t parameter is LONG_MAX, this indicates that ALL regions after f
470 * should be deleted. Locate the regions which intersect [f, t)
471 * and either trim, delete or split the existing regions.
472 *
473 * Returns the number of huge pages deleted from the reserve map.
474 * In the normal case, the return value is zero or more. In the
475 * case where a region must be split, a new region descriptor must
476 * be allocated. If the allocation fails, -ENOMEM will be returned.
477 * NOTE: If the parameter t == LONG_MAX, then we will never split
478 * a region and possibly return -ENOMEM. Callers specifying
479 * t == LONG_MAX do not need to check for -ENOMEM error.
480 */
481 static long region_del(struct resv_map *resv, long f, long t)
482 {
483 struct list_head *head = &resv->regions;
484 struct file_region *rg, *trg;
485 struct file_region *nrg = NULL;
486 long del = 0;
487
488 retry:
489 spin_lock(&resv->lock);
490 list_for_each_entry_safe(rg, trg, head, link) {
491 /*
492 * Skip regions before the range to be deleted. file_region
493 * ranges are normally of the form [from, to). However, there
494 * may be a "placeholder" entry in the map which is of the form
495 * (from, to) with from == to. Check for placeholder entries
496 * at the beginning of the range to be deleted.
497 */
498 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499 continue;
500
501 if (rg->from >= t)
502 break;
503
504 if (f > rg->from && t < rg->to) { /* Must split region */
505 /*
506 * Check for an entry in the cache before dropping
507 * lock and attempting allocation.
508 */
509 if (!nrg &&
510 resv->region_cache_count > resv->adds_in_progress) {
511 nrg = list_first_entry(&resv->region_cache,
512 struct file_region,
513 link);
514 list_del(&nrg->link);
515 resv->region_cache_count--;
516 }
517
518 if (!nrg) {
519 spin_unlock(&resv->lock);
520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521 if (!nrg)
522 return -ENOMEM;
523 goto retry;
524 }
525
526 del += t - f;
527
528 /* New entry for end of split region */
529 nrg->from = t;
530 nrg->to = rg->to;
531 INIT_LIST_HEAD(&nrg->link);
532
533 /* Original entry is trimmed */
534 rg->to = f;
535
536 list_add(&nrg->link, &rg->link);
537 nrg = NULL;
538 break;
539 }
540
541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 del += rg->to - rg->from;
543 list_del(&rg->link);
544 kfree(rg);
545 continue;
546 }
547
548 if (f <= rg->from) { /* Trim beginning of region */
549 del += t - rg->from;
550 rg->from = t;
551 } else { /* Trim end of region */
552 del += rg->to - f;
553 rg->to = f;
554 }
555 }
556
557 spin_unlock(&resv->lock);
558 kfree(nrg);
559 return del;
560 }
561
562 /*
563 * A rare out of memory error was encountered which prevented removal of
564 * the reserve map region for a page. The huge page itself was free'ed
565 * and removed from the page cache. This routine will adjust the subpool
566 * usage count, and the global reserve count if needed. By incrementing
567 * these counts, the reserve map entry which could not be deleted will
568 * appear as a "reserved" entry instead of simply dangling with incorrect
569 * counts.
570 */
571 void hugetlb_fix_reserve_counts(struct inode *inode)
572 {
573 struct hugepage_subpool *spool = subpool_inode(inode);
574 long rsv_adjust;
575
576 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577 if (rsv_adjust) {
578 struct hstate *h = hstate_inode(inode);
579
580 hugetlb_acct_memory(h, 1);
581 }
582 }
583
584 /*
585 * Count and return the number of huge pages in the reserve map
586 * that intersect with the range [f, t).
587 */
588 static long region_count(struct resv_map *resv, long f, long t)
589 {
590 struct list_head *head = &resv->regions;
591 struct file_region *rg;
592 long chg = 0;
593
594 spin_lock(&resv->lock);
595 /* Locate each segment we overlap with, and count that overlap. */
596 list_for_each_entry(rg, head, link) {
597 long seg_from;
598 long seg_to;
599
600 if (rg->to <= f)
601 continue;
602 if (rg->from >= t)
603 break;
604
605 seg_from = max(rg->from, f);
606 seg_to = min(rg->to, t);
607
608 chg += seg_to - seg_from;
609 }
610 spin_unlock(&resv->lock);
611
612 return chg;
613 }
614
615 /*
616 * Convert the address within this vma to the page offset within
617 * the mapping, in pagecache page units; huge pages here.
618 */
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620 struct vm_area_struct *vma, unsigned long address)
621 {
622 return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 (vma->vm_pgoff >> huge_page_order(h));
624 }
625
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 unsigned long address)
628 {
629 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 }
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
632
633 /*
634 * Return the size of the pages allocated when backing a VMA. In the majority
635 * cases this will be same size as used by the page table entries.
636 */
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 {
639 struct hstate *hstate;
640
641 if (!is_vm_hugetlb_page(vma))
642 return PAGE_SIZE;
643
644 hstate = hstate_vma(vma);
645
646 return 1UL << huge_page_shift(hstate);
647 }
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649
650 /*
651 * Return the page size being used by the MMU to back a VMA. In the majority
652 * of cases, the page size used by the kernel matches the MMU size. On
653 * architectures where it differs, an architecture-specific version of this
654 * function is required.
655 */
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 {
659 return vma_kernel_pagesize(vma);
660 }
661 #endif
662
663 /*
664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
665 * bits of the reservation map pointer, which are always clear due to
666 * alignment.
667 */
668 #define HPAGE_RESV_OWNER (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671
672 /*
673 * These helpers are used to track how many pages are reserved for
674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675 * is guaranteed to have their future faults succeed.
676 *
677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678 * the reserve counters are updated with the hugetlb_lock held. It is safe
679 * to reset the VMA at fork() time as it is not in use yet and there is no
680 * chance of the global counters getting corrupted as a result of the values.
681 *
682 * The private mapping reservation is represented in a subtly different
683 * manner to a shared mapping. A shared mapping has a region map associated
684 * with the underlying file, this region map represents the backing file
685 * pages which have ever had a reservation assigned which this persists even
686 * after the page is instantiated. A private mapping has a region map
687 * associated with the original mmap which is attached to all VMAs which
688 * reference it, this region map represents those offsets which have consumed
689 * reservation ie. where pages have been instantiated.
690 */
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 {
693 return (unsigned long)vma->vm_private_data;
694 }
695
696 static void set_vma_private_data(struct vm_area_struct *vma,
697 unsigned long value)
698 {
699 vma->vm_private_data = (void *)value;
700 }
701
702 struct resv_map *resv_map_alloc(void)
703 {
704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707 if (!resv_map || !rg) {
708 kfree(resv_map);
709 kfree(rg);
710 return NULL;
711 }
712
713 kref_init(&resv_map->refs);
714 spin_lock_init(&resv_map->lock);
715 INIT_LIST_HEAD(&resv_map->regions);
716
717 resv_map->adds_in_progress = 0;
718
719 INIT_LIST_HEAD(&resv_map->region_cache);
720 list_add(&rg->link, &resv_map->region_cache);
721 resv_map->region_cache_count = 1;
722
723 return resv_map;
724 }
725
726 void resv_map_release(struct kref *ref)
727 {
728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729 struct list_head *head = &resv_map->region_cache;
730 struct file_region *rg, *trg;
731
732 /* Clear out any active regions before we release the map. */
733 region_del(resv_map, 0, LONG_MAX);
734
735 /* ... and any entries left in the cache */
736 list_for_each_entry_safe(rg, trg, head, link) {
737 list_del(&rg->link);
738 kfree(rg);
739 }
740
741 VM_BUG_ON(resv_map->adds_in_progress);
742
743 kfree(resv_map);
744 }
745
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 {
748 return inode->i_mapping->private_data;
749 }
750
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 {
753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754 if (vma->vm_flags & VM_MAYSHARE) {
755 struct address_space *mapping = vma->vm_file->f_mapping;
756 struct inode *inode = mapping->host;
757
758 return inode_resv_map(inode);
759
760 } else {
761 return (struct resv_map *)(get_vma_private_data(vma) &
762 ~HPAGE_RESV_MASK);
763 }
764 }
765
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 {
768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770
771 set_vma_private_data(vma, (get_vma_private_data(vma) &
772 HPAGE_RESV_MASK) | (unsigned long)map);
773 }
774
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 {
777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779
780 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 }
782
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 {
785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786
787 return (get_vma_private_data(vma) & flag) != 0;
788 }
789
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 {
793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794 if (!(vma->vm_flags & VM_MAYSHARE))
795 vma->vm_private_data = (void *)0;
796 }
797
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 {
801 if (vma->vm_flags & VM_NORESERVE) {
802 /*
803 * This address is already reserved by other process(chg == 0),
804 * so, we should decrement reserved count. Without decrementing,
805 * reserve count remains after releasing inode, because this
806 * allocated page will go into page cache and is regarded as
807 * coming from reserved pool in releasing step. Currently, we
808 * don't have any other solution to deal with this situation
809 * properly, so add work-around here.
810 */
811 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812 return true;
813 else
814 return false;
815 }
816
817 /* Shared mappings always use reserves */
818 if (vma->vm_flags & VM_MAYSHARE) {
819 /*
820 * We know VM_NORESERVE is not set. Therefore, there SHOULD
821 * be a region map for all pages. The only situation where
822 * there is no region map is if a hole was punched via
823 * fallocate. In this case, there really are no reverves to
824 * use. This situation is indicated if chg != 0.
825 */
826 if (chg)
827 return false;
828 else
829 return true;
830 }
831
832 /*
833 * Only the process that called mmap() has reserves for
834 * private mappings.
835 */
836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 /*
838 * Like the shared case above, a hole punch or truncate
839 * could have been performed on the private mapping.
840 * Examine the value of chg to determine if reserves
841 * actually exist or were previously consumed.
842 * Very Subtle - The value of chg comes from a previous
843 * call to vma_needs_reserves(). The reserve map for
844 * private mappings has different (opposite) semantics
845 * than that of shared mappings. vma_needs_reserves()
846 * has already taken this difference in semantics into
847 * account. Therefore, the meaning of chg is the same
848 * as in the shared case above. Code could easily be
849 * combined, but keeping it separate draws attention to
850 * subtle differences.
851 */
852 if (chg)
853 return false;
854 else
855 return true;
856 }
857
858 return false;
859 }
860
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 {
863 int nid = page_to_nid(page);
864 list_move(&page->lru, &h->hugepage_freelists[nid]);
865 h->free_huge_pages++;
866 h->free_huge_pages_node[nid]++;
867 }
868
869 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
870 {
871 struct page *page;
872
873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874 if (!PageHWPoison(page))
875 break;
876 /*
877 * if 'non-isolated free hugepage' not found on the list,
878 * the allocation fails.
879 */
880 if (&h->hugepage_freelists[nid] == &page->lru)
881 return NULL;
882 list_move(&page->lru, &h->hugepage_activelist);
883 set_page_refcounted(page);
884 h->free_huge_pages--;
885 h->free_huge_pages_node[nid]--;
886 return page;
887 }
888
889 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
890 {
891 struct page *page;
892 int node;
893
894 if (nid != NUMA_NO_NODE)
895 return dequeue_huge_page_node_exact(h, nid);
896
897 for_each_online_node(node) {
898 page = dequeue_huge_page_node_exact(h, node);
899 if (page)
900 return page;
901 }
902 return NULL;
903 }
904
905 /* Movability of hugepages depends on migration support. */
906 static inline gfp_t htlb_alloc_mask(struct hstate *h)
907 {
908 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
909 return GFP_HIGHUSER_MOVABLE;
910 else
911 return GFP_HIGHUSER;
912 }
913
914 static struct page *dequeue_huge_page_vma(struct hstate *h,
915 struct vm_area_struct *vma,
916 unsigned long address, int avoid_reserve,
917 long chg)
918 {
919 struct page *page = NULL;
920 struct mempolicy *mpol;
921 nodemask_t *nodemask;
922 gfp_t gfp_mask;
923 int nid;
924 struct zonelist *zonelist;
925 struct zone *zone;
926 struct zoneref *z;
927 unsigned int cpuset_mems_cookie;
928
929 /*
930 * A child process with MAP_PRIVATE mappings created by their parent
931 * have no page reserves. This check ensures that reservations are
932 * not "stolen". The child may still get SIGKILLed
933 */
934 if (!vma_has_reserves(vma, chg) &&
935 h->free_huge_pages - h->resv_huge_pages == 0)
936 goto err;
937
938 /* If reserves cannot be used, ensure enough pages are in the pool */
939 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
940 goto err;
941
942 retry_cpuset:
943 cpuset_mems_cookie = read_mems_allowed_begin();
944 gfp_mask = htlb_alloc_mask(h);
945 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
946 zonelist = node_zonelist(nid, gfp_mask);
947
948 for_each_zone_zonelist_nodemask(zone, z, zonelist,
949 MAX_NR_ZONES - 1, nodemask) {
950 if (cpuset_zone_allowed(zone, gfp_mask)) {
951 page = dequeue_huge_page_node(h, zone_to_nid(zone));
952 if (page) {
953 if (avoid_reserve)
954 break;
955 if (!vma_has_reserves(vma, chg))
956 break;
957
958 SetPagePrivate(page);
959 h->resv_huge_pages--;
960 break;
961 }
962 }
963 }
964
965 mpol_cond_put(mpol);
966 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
967 goto retry_cpuset;
968 return page;
969
970 err:
971 return NULL;
972 }
973
974 /*
975 * common helper functions for hstate_next_node_to_{alloc|free}.
976 * We may have allocated or freed a huge page based on a different
977 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978 * be outside of *nodes_allowed. Ensure that we use an allowed
979 * node for alloc or free.
980 */
981 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
982 {
983 nid = next_node_in(nid, *nodes_allowed);
984 VM_BUG_ON(nid >= MAX_NUMNODES);
985
986 return nid;
987 }
988
989 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
990 {
991 if (!node_isset(nid, *nodes_allowed))
992 nid = next_node_allowed(nid, nodes_allowed);
993 return nid;
994 }
995
996 /*
997 * returns the previously saved node ["this node"] from which to
998 * allocate a persistent huge page for the pool and advance the
999 * next node from which to allocate, handling wrap at end of node
1000 * mask.
1001 */
1002 static int hstate_next_node_to_alloc(struct hstate *h,
1003 nodemask_t *nodes_allowed)
1004 {
1005 int nid;
1006
1007 VM_BUG_ON(!nodes_allowed);
1008
1009 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011
1012 return nid;
1013 }
1014
1015 /*
1016 * helper for free_pool_huge_page() - return the previously saved
1017 * node ["this node"] from which to free a huge page. Advance the
1018 * next node id whether or not we find a free huge page to free so
1019 * that the next attempt to free addresses the next node.
1020 */
1021 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022 {
1023 int nid;
1024
1025 VM_BUG_ON(!nodes_allowed);
1026
1027 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029
1030 return nid;
1031 }
1032
1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1035 nr_nodes > 0 && \
1036 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1037 nr_nodes--)
1038
1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1040 for (nr_nodes = nodes_weight(*mask); \
1041 nr_nodes > 0 && \
1042 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1043 nr_nodes--)
1044
1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046 static void destroy_compound_gigantic_page(struct page *page,
1047 unsigned int order)
1048 {
1049 int i;
1050 int nr_pages = 1 << order;
1051 struct page *p = page + 1;
1052
1053 atomic_set(compound_mapcount_ptr(page), 0);
1054 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055 clear_compound_head(p);
1056 set_page_refcounted(p);
1057 }
1058
1059 set_compound_order(page, 0);
1060 __ClearPageHead(page);
1061 }
1062
1063 static void free_gigantic_page(struct page *page, unsigned int order)
1064 {
1065 free_contig_range(page_to_pfn(page), 1 << order);
1066 }
1067
1068 static int __alloc_gigantic_page(unsigned long start_pfn,
1069 unsigned long nr_pages)
1070 {
1071 unsigned long end_pfn = start_pfn + nr_pages;
1072 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073 GFP_KERNEL);
1074 }
1075
1076 static bool pfn_range_valid_gigantic(struct zone *z,
1077 unsigned long start_pfn, unsigned long nr_pages)
1078 {
1079 unsigned long i, end_pfn = start_pfn + nr_pages;
1080 struct page *page;
1081
1082 for (i = start_pfn; i < end_pfn; i++) {
1083 if (!pfn_valid(i))
1084 return false;
1085
1086 page = pfn_to_page(i);
1087
1088 if (page_zone(page) != z)
1089 return false;
1090
1091 if (PageReserved(page))
1092 return false;
1093
1094 if (page_count(page) > 0)
1095 return false;
1096
1097 if (PageHuge(page))
1098 return false;
1099 }
1100
1101 return true;
1102 }
1103
1104 static bool zone_spans_last_pfn(const struct zone *zone,
1105 unsigned long start_pfn, unsigned long nr_pages)
1106 {
1107 unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 return zone_spans_pfn(zone, last_pfn);
1109 }
1110
1111 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1112 {
1113 unsigned long nr_pages = 1 << order;
1114 unsigned long ret, pfn, flags;
1115 struct zone *z;
1116
1117 z = NODE_DATA(nid)->node_zones;
1118 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1119 spin_lock_irqsave(&z->lock, flags);
1120
1121 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1122 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1123 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1124 /*
1125 * We release the zone lock here because
1126 * alloc_contig_range() will also lock the zone
1127 * at some point. If there's an allocation
1128 * spinning on this lock, it may win the race
1129 * and cause alloc_contig_range() to fail...
1130 */
1131 spin_unlock_irqrestore(&z->lock, flags);
1132 ret = __alloc_gigantic_page(pfn, nr_pages);
1133 if (!ret)
1134 return pfn_to_page(pfn);
1135 spin_lock_irqsave(&z->lock, flags);
1136 }
1137 pfn += nr_pages;
1138 }
1139
1140 spin_unlock_irqrestore(&z->lock, flags);
1141 }
1142
1143 return NULL;
1144 }
1145
1146 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1147 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1148
1149 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1150 {
1151 struct page *page;
1152
1153 page = alloc_gigantic_page(nid, huge_page_order(h));
1154 if (page) {
1155 prep_compound_gigantic_page(page, huge_page_order(h));
1156 prep_new_huge_page(h, page, nid);
1157 }
1158
1159 return page;
1160 }
1161
1162 static int alloc_fresh_gigantic_page(struct hstate *h,
1163 nodemask_t *nodes_allowed)
1164 {
1165 struct page *page = NULL;
1166 int nr_nodes, node;
1167
1168 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1169 page = alloc_fresh_gigantic_page_node(h, node);
1170 if (page)
1171 return 1;
1172 }
1173
1174 return 0;
1175 }
1176
1177 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1178 static inline bool gigantic_page_supported(void) { return false; }
1179 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1180 static inline void destroy_compound_gigantic_page(struct page *page,
1181 unsigned int order) { }
1182 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1183 nodemask_t *nodes_allowed) { return 0; }
1184 #endif
1185
1186 static void update_and_free_page(struct hstate *h, struct page *page)
1187 {
1188 int i;
1189
1190 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1191 return;
1192
1193 h->nr_huge_pages--;
1194 h->nr_huge_pages_node[page_to_nid(page)]--;
1195 for (i = 0; i < pages_per_huge_page(h); i++) {
1196 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1197 1 << PG_referenced | 1 << PG_dirty |
1198 1 << PG_active | 1 << PG_private |
1199 1 << PG_writeback);
1200 }
1201 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1202 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1203 set_page_refcounted(page);
1204 if (hstate_is_gigantic(h)) {
1205 destroy_compound_gigantic_page(page, huge_page_order(h));
1206 free_gigantic_page(page, huge_page_order(h));
1207 } else {
1208 __free_pages(page, huge_page_order(h));
1209 }
1210 }
1211
1212 struct hstate *size_to_hstate(unsigned long size)
1213 {
1214 struct hstate *h;
1215
1216 for_each_hstate(h) {
1217 if (huge_page_size(h) == size)
1218 return h;
1219 }
1220 return NULL;
1221 }
1222
1223 /*
1224 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1225 * to hstate->hugepage_activelist.)
1226 *
1227 * This function can be called for tail pages, but never returns true for them.
1228 */
1229 bool page_huge_active(struct page *page)
1230 {
1231 VM_BUG_ON_PAGE(!PageHuge(page), page);
1232 return PageHead(page) && PagePrivate(&page[1]);
1233 }
1234
1235 /* never called for tail page */
1236 static void set_page_huge_active(struct page *page)
1237 {
1238 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1239 SetPagePrivate(&page[1]);
1240 }
1241
1242 static void clear_page_huge_active(struct page *page)
1243 {
1244 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1245 ClearPagePrivate(&page[1]);
1246 }
1247
1248 void free_huge_page(struct page *page)
1249 {
1250 /*
1251 * Can't pass hstate in here because it is called from the
1252 * compound page destructor.
1253 */
1254 struct hstate *h = page_hstate(page);
1255 int nid = page_to_nid(page);
1256 struct hugepage_subpool *spool =
1257 (struct hugepage_subpool *)page_private(page);
1258 bool restore_reserve;
1259
1260 set_page_private(page, 0);
1261 page->mapping = NULL;
1262 VM_BUG_ON_PAGE(page_count(page), page);
1263 VM_BUG_ON_PAGE(page_mapcount(page), page);
1264 restore_reserve = PagePrivate(page);
1265 ClearPagePrivate(page);
1266
1267 /*
1268 * A return code of zero implies that the subpool will be under its
1269 * minimum size if the reservation is not restored after page is free.
1270 * Therefore, force restore_reserve operation.
1271 */
1272 if (hugepage_subpool_put_pages(spool, 1) == 0)
1273 restore_reserve = true;
1274
1275 spin_lock(&hugetlb_lock);
1276 clear_page_huge_active(page);
1277 hugetlb_cgroup_uncharge_page(hstate_index(h),
1278 pages_per_huge_page(h), page);
1279 if (restore_reserve)
1280 h->resv_huge_pages++;
1281
1282 if (h->surplus_huge_pages_node[nid]) {
1283 /* remove the page from active list */
1284 list_del(&page->lru);
1285 update_and_free_page(h, page);
1286 h->surplus_huge_pages--;
1287 h->surplus_huge_pages_node[nid]--;
1288 } else {
1289 arch_clear_hugepage_flags(page);
1290 enqueue_huge_page(h, page);
1291 }
1292 spin_unlock(&hugetlb_lock);
1293 }
1294
1295 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1296 {
1297 INIT_LIST_HEAD(&page->lru);
1298 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1299 spin_lock(&hugetlb_lock);
1300 set_hugetlb_cgroup(page, NULL);
1301 h->nr_huge_pages++;
1302 h->nr_huge_pages_node[nid]++;
1303 spin_unlock(&hugetlb_lock);
1304 put_page(page); /* free it into the hugepage allocator */
1305 }
1306
1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 {
1309 int i;
1310 int nr_pages = 1 << order;
1311 struct page *p = page + 1;
1312
1313 /* we rely on prep_new_huge_page to set the destructor */
1314 set_compound_order(page, order);
1315 __ClearPageReserved(page);
1316 __SetPageHead(page);
1317 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318 /*
1319 * For gigantic hugepages allocated through bootmem at
1320 * boot, it's safer to be consistent with the not-gigantic
1321 * hugepages and clear the PG_reserved bit from all tail pages
1322 * too. Otherwse drivers using get_user_pages() to access tail
1323 * pages may get the reference counting wrong if they see
1324 * PG_reserved set on a tail page (despite the head page not
1325 * having PG_reserved set). Enforcing this consistency between
1326 * head and tail pages allows drivers to optimize away a check
1327 * on the head page when they need know if put_page() is needed
1328 * after get_user_pages().
1329 */
1330 __ClearPageReserved(p);
1331 set_page_count(p, 0);
1332 set_compound_head(p, page);
1333 }
1334 atomic_set(compound_mapcount_ptr(page), -1);
1335 }
1336
1337 /*
1338 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339 * transparent huge pages. See the PageTransHuge() documentation for more
1340 * details.
1341 */
1342 int PageHuge(struct page *page)
1343 {
1344 if (!PageCompound(page))
1345 return 0;
1346
1347 page = compound_head(page);
1348 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349 }
1350 EXPORT_SYMBOL_GPL(PageHuge);
1351
1352 /*
1353 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354 * normal or transparent huge pages.
1355 */
1356 int PageHeadHuge(struct page *page_head)
1357 {
1358 if (!PageHead(page_head))
1359 return 0;
1360
1361 return get_compound_page_dtor(page_head) == free_huge_page;
1362 }
1363
1364 pgoff_t __basepage_index(struct page *page)
1365 {
1366 struct page *page_head = compound_head(page);
1367 pgoff_t index = page_index(page_head);
1368 unsigned long compound_idx;
1369
1370 if (!PageHuge(page_head))
1371 return page_index(page);
1372
1373 if (compound_order(page_head) >= MAX_ORDER)
1374 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375 else
1376 compound_idx = page - page_head;
1377
1378 return (index << compound_order(page_head)) + compound_idx;
1379 }
1380
1381 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1382 {
1383 struct page *page;
1384
1385 page = __alloc_pages_node(nid,
1386 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1387 __GFP_REPEAT|__GFP_NOWARN,
1388 huge_page_order(h));
1389 if (page) {
1390 prep_new_huge_page(h, page, nid);
1391 }
1392
1393 return page;
1394 }
1395
1396 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1397 {
1398 struct page *page;
1399 int nr_nodes, node;
1400 int ret = 0;
1401
1402 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1403 page = alloc_fresh_huge_page_node(h, node);
1404 if (page) {
1405 ret = 1;
1406 break;
1407 }
1408 }
1409
1410 if (ret)
1411 count_vm_event(HTLB_BUDDY_PGALLOC);
1412 else
1413 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1414
1415 return ret;
1416 }
1417
1418 /*
1419 * Free huge page from pool from next node to free.
1420 * Attempt to keep persistent huge pages more or less
1421 * balanced over allowed nodes.
1422 * Called with hugetlb_lock locked.
1423 */
1424 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1425 bool acct_surplus)
1426 {
1427 int nr_nodes, node;
1428 int ret = 0;
1429
1430 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1431 /*
1432 * If we're returning unused surplus pages, only examine
1433 * nodes with surplus pages.
1434 */
1435 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1436 !list_empty(&h->hugepage_freelists[node])) {
1437 struct page *page =
1438 list_entry(h->hugepage_freelists[node].next,
1439 struct page, lru);
1440 list_del(&page->lru);
1441 h->free_huge_pages--;
1442 h->free_huge_pages_node[node]--;
1443 if (acct_surplus) {
1444 h->surplus_huge_pages--;
1445 h->surplus_huge_pages_node[node]--;
1446 }
1447 update_and_free_page(h, page);
1448 ret = 1;
1449 break;
1450 }
1451 }
1452
1453 return ret;
1454 }
1455
1456 /*
1457 * Dissolve a given free hugepage into free buddy pages. This function does
1458 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1459 * number of free hugepages would be reduced below the number of reserved
1460 * hugepages.
1461 */
1462 static int dissolve_free_huge_page(struct page *page)
1463 {
1464 int rc = 0;
1465
1466 spin_lock(&hugetlb_lock);
1467 if (PageHuge(page) && !page_count(page)) {
1468 struct page *head = compound_head(page);
1469 struct hstate *h = page_hstate(head);
1470 int nid = page_to_nid(head);
1471 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1472 rc = -EBUSY;
1473 goto out;
1474 }
1475 list_del(&head->lru);
1476 h->free_huge_pages--;
1477 h->free_huge_pages_node[nid]--;
1478 h->max_huge_pages--;
1479 update_and_free_page(h, head);
1480 }
1481 out:
1482 spin_unlock(&hugetlb_lock);
1483 return rc;
1484 }
1485
1486 /*
1487 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1488 * make specified memory blocks removable from the system.
1489 * Note that this will dissolve a free gigantic hugepage completely, if any
1490 * part of it lies within the given range.
1491 * Also note that if dissolve_free_huge_page() returns with an error, all
1492 * free hugepages that were dissolved before that error are lost.
1493 */
1494 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1495 {
1496 unsigned long pfn;
1497 struct page *page;
1498 int rc = 0;
1499
1500 if (!hugepages_supported())
1501 return rc;
1502
1503 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1504 page = pfn_to_page(pfn);
1505 if (PageHuge(page) && !page_count(page)) {
1506 rc = dissolve_free_huge_page(page);
1507 if (rc)
1508 break;
1509 }
1510 }
1511
1512 return rc;
1513 }
1514
1515 /*
1516 * There are 3 ways this can get called:
1517 * 1. With vma+addr: we use the VMA's memory policy
1518 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1519 * page from any node, and let the buddy allocator itself figure
1520 * it out.
1521 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1522 * strictly from 'nid'
1523 */
1524 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1525 struct vm_area_struct *vma, unsigned long addr, int nid)
1526 {
1527 int order = huge_page_order(h);
1528 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1529 unsigned int cpuset_mems_cookie;
1530
1531 /*
1532 * We need a VMA to get a memory policy. If we do not
1533 * have one, we use the 'nid' argument.
1534 *
1535 * The mempolicy stuff below has some non-inlined bits
1536 * and calls ->vm_ops. That makes it hard to optimize at
1537 * compile-time, even when NUMA is off and it does
1538 * nothing. This helps the compiler optimize it out.
1539 */
1540 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1541 /*
1542 * If a specific node is requested, make sure to
1543 * get memory from there, but only when a node
1544 * is explicitly specified.
1545 */
1546 if (nid != NUMA_NO_NODE)
1547 gfp |= __GFP_THISNODE;
1548 /*
1549 * Make sure to call something that can handle
1550 * nid=NUMA_NO_NODE
1551 */
1552 return alloc_pages_node(nid, gfp, order);
1553 }
1554
1555 /*
1556 * OK, so we have a VMA. Fetch the mempolicy and try to
1557 * allocate a huge page with it. We will only reach this
1558 * when CONFIG_NUMA=y.
1559 */
1560 do {
1561 struct page *page;
1562 struct mempolicy *mpol;
1563 int nid;
1564 nodemask_t *nodemask;
1565
1566 cpuset_mems_cookie = read_mems_allowed_begin();
1567 nid = huge_node(vma, addr, gfp, &mpol, &nodemask);
1568 mpol_cond_put(mpol);
1569 page = __alloc_pages_nodemask(gfp, order, nid, nodemask);
1570 if (page)
1571 return page;
1572 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1573
1574 return NULL;
1575 }
1576
1577 /*
1578 * There are two ways to allocate a huge page:
1579 * 1. When you have a VMA and an address (like a fault)
1580 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1581 *
1582 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1583 * this case which signifies that the allocation should be done with
1584 * respect for the VMA's memory policy.
1585 *
1586 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1587 * implies that memory policies will not be taken in to account.
1588 */
1589 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1590 struct vm_area_struct *vma, unsigned long addr, int nid)
1591 {
1592 struct page *page;
1593 unsigned int r_nid;
1594
1595 if (hstate_is_gigantic(h))
1596 return NULL;
1597
1598 /*
1599 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1600 * This makes sure the caller is picking _one_ of the modes with which
1601 * we can call this function, not both.
1602 */
1603 if (vma || (addr != -1)) {
1604 VM_WARN_ON_ONCE(addr == -1);
1605 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1606 }
1607 /*
1608 * Assume we will successfully allocate the surplus page to
1609 * prevent racing processes from causing the surplus to exceed
1610 * overcommit
1611 *
1612 * This however introduces a different race, where a process B
1613 * tries to grow the static hugepage pool while alloc_pages() is
1614 * called by process A. B will only examine the per-node
1615 * counters in determining if surplus huge pages can be
1616 * converted to normal huge pages in adjust_pool_surplus(). A
1617 * won't be able to increment the per-node counter, until the
1618 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1619 * no more huge pages can be converted from surplus to normal
1620 * state (and doesn't try to convert again). Thus, we have a
1621 * case where a surplus huge page exists, the pool is grown, and
1622 * the surplus huge page still exists after, even though it
1623 * should just have been converted to a normal huge page. This
1624 * does not leak memory, though, as the hugepage will be freed
1625 * once it is out of use. It also does not allow the counters to
1626 * go out of whack in adjust_pool_surplus() as we don't modify
1627 * the node values until we've gotten the hugepage and only the
1628 * per-node value is checked there.
1629 */
1630 spin_lock(&hugetlb_lock);
1631 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1632 spin_unlock(&hugetlb_lock);
1633 return NULL;
1634 } else {
1635 h->nr_huge_pages++;
1636 h->surplus_huge_pages++;
1637 }
1638 spin_unlock(&hugetlb_lock);
1639
1640 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1641
1642 spin_lock(&hugetlb_lock);
1643 if (page) {
1644 INIT_LIST_HEAD(&page->lru);
1645 r_nid = page_to_nid(page);
1646 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1647 set_hugetlb_cgroup(page, NULL);
1648 /*
1649 * We incremented the global counters already
1650 */
1651 h->nr_huge_pages_node[r_nid]++;
1652 h->surplus_huge_pages_node[r_nid]++;
1653 __count_vm_event(HTLB_BUDDY_PGALLOC);
1654 } else {
1655 h->nr_huge_pages--;
1656 h->surplus_huge_pages--;
1657 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1658 }
1659 spin_unlock(&hugetlb_lock);
1660
1661 return page;
1662 }
1663
1664 /*
1665 * Allocate a huge page from 'nid'. Note, 'nid' may be
1666 * NUMA_NO_NODE, which means that it may be allocated
1667 * anywhere.
1668 */
1669 static
1670 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1671 {
1672 unsigned long addr = -1;
1673
1674 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1675 }
1676
1677 /*
1678 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1679 */
1680 static
1681 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1682 struct vm_area_struct *vma, unsigned long addr)
1683 {
1684 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1685 }
1686
1687 /*
1688 * This allocation function is useful in the context where vma is irrelevant.
1689 * E.g. soft-offlining uses this function because it only cares physical
1690 * address of error page.
1691 */
1692 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1693 {
1694 struct page *page = NULL;
1695
1696 spin_lock(&hugetlb_lock);
1697 if (h->free_huge_pages - h->resv_huge_pages > 0)
1698 page = dequeue_huge_page_node(h, nid);
1699 spin_unlock(&hugetlb_lock);
1700
1701 if (!page)
1702 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1703
1704 return page;
1705 }
1706
1707 /*
1708 * Increase the hugetlb pool such that it can accommodate a reservation
1709 * of size 'delta'.
1710 */
1711 static int gather_surplus_pages(struct hstate *h, int delta)
1712 {
1713 struct list_head surplus_list;
1714 struct page *page, *tmp;
1715 int ret, i;
1716 int needed, allocated;
1717 bool alloc_ok = true;
1718
1719 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1720 if (needed <= 0) {
1721 h->resv_huge_pages += delta;
1722 return 0;
1723 }
1724
1725 allocated = 0;
1726 INIT_LIST_HEAD(&surplus_list);
1727
1728 ret = -ENOMEM;
1729 retry:
1730 spin_unlock(&hugetlb_lock);
1731 for (i = 0; i < needed; i++) {
1732 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1733 if (!page) {
1734 alloc_ok = false;
1735 break;
1736 }
1737 list_add(&page->lru, &surplus_list);
1738 }
1739 allocated += i;
1740
1741 /*
1742 * After retaking hugetlb_lock, we need to recalculate 'needed'
1743 * because either resv_huge_pages or free_huge_pages may have changed.
1744 */
1745 spin_lock(&hugetlb_lock);
1746 needed = (h->resv_huge_pages + delta) -
1747 (h->free_huge_pages + allocated);
1748 if (needed > 0) {
1749 if (alloc_ok)
1750 goto retry;
1751 /*
1752 * We were not able to allocate enough pages to
1753 * satisfy the entire reservation so we free what
1754 * we've allocated so far.
1755 */
1756 goto free;
1757 }
1758 /*
1759 * The surplus_list now contains _at_least_ the number of extra pages
1760 * needed to accommodate the reservation. Add the appropriate number
1761 * of pages to the hugetlb pool and free the extras back to the buddy
1762 * allocator. Commit the entire reservation here to prevent another
1763 * process from stealing the pages as they are added to the pool but
1764 * before they are reserved.
1765 */
1766 needed += allocated;
1767 h->resv_huge_pages += delta;
1768 ret = 0;
1769
1770 /* Free the needed pages to the hugetlb pool */
1771 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1772 if ((--needed) < 0)
1773 break;
1774 /*
1775 * This page is now managed by the hugetlb allocator and has
1776 * no users -- drop the buddy allocator's reference.
1777 */
1778 put_page_testzero(page);
1779 VM_BUG_ON_PAGE(page_count(page), page);
1780 enqueue_huge_page(h, page);
1781 }
1782 free:
1783 spin_unlock(&hugetlb_lock);
1784
1785 /* Free unnecessary surplus pages to the buddy allocator */
1786 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1787 put_page(page);
1788 spin_lock(&hugetlb_lock);
1789
1790 return ret;
1791 }
1792
1793 /*
1794 * This routine has two main purposes:
1795 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1796 * in unused_resv_pages. This corresponds to the prior adjustments made
1797 * to the associated reservation map.
1798 * 2) Free any unused surplus pages that may have been allocated to satisfy
1799 * the reservation. As many as unused_resv_pages may be freed.
1800 *
1801 * Called with hugetlb_lock held. However, the lock could be dropped (and
1802 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1803 * we must make sure nobody else can claim pages we are in the process of
1804 * freeing. Do this by ensuring resv_huge_page always is greater than the
1805 * number of huge pages we plan to free when dropping the lock.
1806 */
1807 static void return_unused_surplus_pages(struct hstate *h,
1808 unsigned long unused_resv_pages)
1809 {
1810 unsigned long nr_pages;
1811
1812 /* Cannot return gigantic pages currently */
1813 if (hstate_is_gigantic(h))
1814 goto out;
1815
1816 /*
1817 * Part (or even all) of the reservation could have been backed
1818 * by pre-allocated pages. Only free surplus pages.
1819 */
1820 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1821
1822 /*
1823 * We want to release as many surplus pages as possible, spread
1824 * evenly across all nodes with memory. Iterate across these nodes
1825 * until we can no longer free unreserved surplus pages. This occurs
1826 * when the nodes with surplus pages have no free pages.
1827 * free_pool_huge_page() will balance the the freed pages across the
1828 * on-line nodes with memory and will handle the hstate accounting.
1829 *
1830 * Note that we decrement resv_huge_pages as we free the pages. If
1831 * we drop the lock, resv_huge_pages will still be sufficiently large
1832 * to cover subsequent pages we may free.
1833 */
1834 while (nr_pages--) {
1835 h->resv_huge_pages--;
1836 unused_resv_pages--;
1837 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1838 goto out;
1839 cond_resched_lock(&hugetlb_lock);
1840 }
1841
1842 out:
1843 /* Fully uncommit the reservation */
1844 h->resv_huge_pages -= unused_resv_pages;
1845 }
1846
1847
1848 /*
1849 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1850 * are used by the huge page allocation routines to manage reservations.
1851 *
1852 * vma_needs_reservation is called to determine if the huge page at addr
1853 * within the vma has an associated reservation. If a reservation is
1854 * needed, the value 1 is returned. The caller is then responsible for
1855 * managing the global reservation and subpool usage counts. After
1856 * the huge page has been allocated, vma_commit_reservation is called
1857 * to add the page to the reservation map. If the page allocation fails,
1858 * the reservation must be ended instead of committed. vma_end_reservation
1859 * is called in such cases.
1860 *
1861 * In the normal case, vma_commit_reservation returns the same value
1862 * as the preceding vma_needs_reservation call. The only time this
1863 * is not the case is if a reserve map was changed between calls. It
1864 * is the responsibility of the caller to notice the difference and
1865 * take appropriate action.
1866 *
1867 * vma_add_reservation is used in error paths where a reservation must
1868 * be restored when a newly allocated huge page must be freed. It is
1869 * to be called after calling vma_needs_reservation to determine if a
1870 * reservation exists.
1871 */
1872 enum vma_resv_mode {
1873 VMA_NEEDS_RESV,
1874 VMA_COMMIT_RESV,
1875 VMA_END_RESV,
1876 VMA_ADD_RESV,
1877 };
1878 static long __vma_reservation_common(struct hstate *h,
1879 struct vm_area_struct *vma, unsigned long addr,
1880 enum vma_resv_mode mode)
1881 {
1882 struct resv_map *resv;
1883 pgoff_t idx;
1884 long ret;
1885
1886 resv = vma_resv_map(vma);
1887 if (!resv)
1888 return 1;
1889
1890 idx = vma_hugecache_offset(h, vma, addr);
1891 switch (mode) {
1892 case VMA_NEEDS_RESV:
1893 ret = region_chg(resv, idx, idx + 1);
1894 break;
1895 case VMA_COMMIT_RESV:
1896 ret = region_add(resv, idx, idx + 1);
1897 break;
1898 case VMA_END_RESV:
1899 region_abort(resv, idx, idx + 1);
1900 ret = 0;
1901 break;
1902 case VMA_ADD_RESV:
1903 if (vma->vm_flags & VM_MAYSHARE)
1904 ret = region_add(resv, idx, idx + 1);
1905 else {
1906 region_abort(resv, idx, idx + 1);
1907 ret = region_del(resv, idx, idx + 1);
1908 }
1909 break;
1910 default:
1911 BUG();
1912 }
1913
1914 if (vma->vm_flags & VM_MAYSHARE)
1915 return ret;
1916 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1917 /*
1918 * In most cases, reserves always exist for private mappings.
1919 * However, a file associated with mapping could have been
1920 * hole punched or truncated after reserves were consumed.
1921 * As subsequent fault on such a range will not use reserves.
1922 * Subtle - The reserve map for private mappings has the
1923 * opposite meaning than that of shared mappings. If NO
1924 * entry is in the reserve map, it means a reservation exists.
1925 * If an entry exists in the reserve map, it means the
1926 * reservation has already been consumed. As a result, the
1927 * return value of this routine is the opposite of the
1928 * value returned from reserve map manipulation routines above.
1929 */
1930 if (ret)
1931 return 0;
1932 else
1933 return 1;
1934 }
1935 else
1936 return ret < 0 ? ret : 0;
1937 }
1938
1939 static long vma_needs_reservation(struct hstate *h,
1940 struct vm_area_struct *vma, unsigned long addr)
1941 {
1942 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1943 }
1944
1945 static long vma_commit_reservation(struct hstate *h,
1946 struct vm_area_struct *vma, unsigned long addr)
1947 {
1948 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1949 }
1950
1951 static void vma_end_reservation(struct hstate *h,
1952 struct vm_area_struct *vma, unsigned long addr)
1953 {
1954 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1955 }
1956
1957 static long vma_add_reservation(struct hstate *h,
1958 struct vm_area_struct *vma, unsigned long addr)
1959 {
1960 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1961 }
1962
1963 /*
1964 * This routine is called to restore a reservation on error paths. In the
1965 * specific error paths, a huge page was allocated (via alloc_huge_page)
1966 * and is about to be freed. If a reservation for the page existed,
1967 * alloc_huge_page would have consumed the reservation and set PagePrivate
1968 * in the newly allocated page. When the page is freed via free_huge_page,
1969 * the global reservation count will be incremented if PagePrivate is set.
1970 * However, free_huge_page can not adjust the reserve map. Adjust the
1971 * reserve map here to be consistent with global reserve count adjustments
1972 * to be made by free_huge_page.
1973 */
1974 static void restore_reserve_on_error(struct hstate *h,
1975 struct vm_area_struct *vma, unsigned long address,
1976 struct page *page)
1977 {
1978 if (unlikely(PagePrivate(page))) {
1979 long rc = vma_needs_reservation(h, vma, address);
1980
1981 if (unlikely(rc < 0)) {
1982 /*
1983 * Rare out of memory condition in reserve map
1984 * manipulation. Clear PagePrivate so that
1985 * global reserve count will not be incremented
1986 * by free_huge_page. This will make it appear
1987 * as though the reservation for this page was
1988 * consumed. This may prevent the task from
1989 * faulting in the page at a later time. This
1990 * is better than inconsistent global huge page
1991 * accounting of reserve counts.
1992 */
1993 ClearPagePrivate(page);
1994 } else if (rc) {
1995 rc = vma_add_reservation(h, vma, address);
1996 if (unlikely(rc < 0))
1997 /*
1998 * See above comment about rare out of
1999 * memory condition.
2000 */
2001 ClearPagePrivate(page);
2002 } else
2003 vma_end_reservation(h, vma, address);
2004 }
2005 }
2006
2007 struct page *alloc_huge_page(struct vm_area_struct *vma,
2008 unsigned long addr, int avoid_reserve)
2009 {
2010 struct hugepage_subpool *spool = subpool_vma(vma);
2011 struct hstate *h = hstate_vma(vma);
2012 struct page *page;
2013 long map_chg, map_commit;
2014 long gbl_chg;
2015 int ret, idx;
2016 struct hugetlb_cgroup *h_cg;
2017
2018 idx = hstate_index(h);
2019 /*
2020 * Examine the region/reserve map to determine if the process
2021 * has a reservation for the page to be allocated. A return
2022 * code of zero indicates a reservation exists (no change).
2023 */
2024 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2025 if (map_chg < 0)
2026 return ERR_PTR(-ENOMEM);
2027
2028 /*
2029 * Processes that did not create the mapping will have no
2030 * reserves as indicated by the region/reserve map. Check
2031 * that the allocation will not exceed the subpool limit.
2032 * Allocations for MAP_NORESERVE mappings also need to be
2033 * checked against any subpool limit.
2034 */
2035 if (map_chg || avoid_reserve) {
2036 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2037 if (gbl_chg < 0) {
2038 vma_end_reservation(h, vma, addr);
2039 return ERR_PTR(-ENOSPC);
2040 }
2041
2042 /*
2043 * Even though there was no reservation in the region/reserve
2044 * map, there could be reservations associated with the
2045 * subpool that can be used. This would be indicated if the
2046 * return value of hugepage_subpool_get_pages() is zero.
2047 * However, if avoid_reserve is specified we still avoid even
2048 * the subpool reservations.
2049 */
2050 if (avoid_reserve)
2051 gbl_chg = 1;
2052 }
2053
2054 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2055 if (ret)
2056 goto out_subpool_put;
2057
2058 spin_lock(&hugetlb_lock);
2059 /*
2060 * glb_chg is passed to indicate whether or not a page must be taken
2061 * from the global free pool (global change). gbl_chg == 0 indicates
2062 * a reservation exists for the allocation.
2063 */
2064 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2065 if (!page) {
2066 spin_unlock(&hugetlb_lock);
2067 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2068 if (!page)
2069 goto out_uncharge_cgroup;
2070 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2071 SetPagePrivate(page);
2072 h->resv_huge_pages--;
2073 }
2074 spin_lock(&hugetlb_lock);
2075 list_move(&page->lru, &h->hugepage_activelist);
2076 /* Fall through */
2077 }
2078 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2079 spin_unlock(&hugetlb_lock);
2080
2081 set_page_private(page, (unsigned long)spool);
2082
2083 map_commit = vma_commit_reservation(h, vma, addr);
2084 if (unlikely(map_chg > map_commit)) {
2085 /*
2086 * The page was added to the reservation map between
2087 * vma_needs_reservation and vma_commit_reservation.
2088 * This indicates a race with hugetlb_reserve_pages.
2089 * Adjust for the subpool count incremented above AND
2090 * in hugetlb_reserve_pages for the same page. Also,
2091 * the reservation count added in hugetlb_reserve_pages
2092 * no longer applies.
2093 */
2094 long rsv_adjust;
2095
2096 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2097 hugetlb_acct_memory(h, -rsv_adjust);
2098 }
2099 return page;
2100
2101 out_uncharge_cgroup:
2102 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2103 out_subpool_put:
2104 if (map_chg || avoid_reserve)
2105 hugepage_subpool_put_pages(spool, 1);
2106 vma_end_reservation(h, vma, addr);
2107 return ERR_PTR(-ENOSPC);
2108 }
2109
2110 /*
2111 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2112 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2113 * where no ERR_VALUE is expected to be returned.
2114 */
2115 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2116 unsigned long addr, int avoid_reserve)
2117 {
2118 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2119 if (IS_ERR(page))
2120 page = NULL;
2121 return page;
2122 }
2123
2124 int __weak alloc_bootmem_huge_page(struct hstate *h)
2125 {
2126 struct huge_bootmem_page *m;
2127 int nr_nodes, node;
2128
2129 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2130 void *addr;
2131
2132 addr = memblock_virt_alloc_try_nid_nopanic(
2133 huge_page_size(h), huge_page_size(h),
2134 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2135 if (addr) {
2136 /*
2137 * Use the beginning of the huge page to store the
2138 * huge_bootmem_page struct (until gather_bootmem
2139 * puts them into the mem_map).
2140 */
2141 m = addr;
2142 goto found;
2143 }
2144 }
2145 return 0;
2146
2147 found:
2148 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2149 /* Put them into a private list first because mem_map is not up yet */
2150 list_add(&m->list, &huge_boot_pages);
2151 m->hstate = h;
2152 return 1;
2153 }
2154
2155 static void __init prep_compound_huge_page(struct page *page,
2156 unsigned int order)
2157 {
2158 if (unlikely(order > (MAX_ORDER - 1)))
2159 prep_compound_gigantic_page(page, order);
2160 else
2161 prep_compound_page(page, order);
2162 }
2163
2164 /* Put bootmem huge pages into the standard lists after mem_map is up */
2165 static void __init gather_bootmem_prealloc(void)
2166 {
2167 struct huge_bootmem_page *m;
2168
2169 list_for_each_entry(m, &huge_boot_pages, list) {
2170 struct hstate *h = m->hstate;
2171 struct page *page;
2172
2173 #ifdef CONFIG_HIGHMEM
2174 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2175 memblock_free_late(__pa(m),
2176 sizeof(struct huge_bootmem_page));
2177 #else
2178 page = virt_to_page(m);
2179 #endif
2180 WARN_ON(page_count(page) != 1);
2181 prep_compound_huge_page(page, h->order);
2182 WARN_ON(PageReserved(page));
2183 prep_new_huge_page(h, page, page_to_nid(page));
2184 /*
2185 * If we had gigantic hugepages allocated at boot time, we need
2186 * to restore the 'stolen' pages to totalram_pages in order to
2187 * fix confusing memory reports from free(1) and another
2188 * side-effects, like CommitLimit going negative.
2189 */
2190 if (hstate_is_gigantic(h))
2191 adjust_managed_page_count(page, 1 << h->order);
2192 }
2193 }
2194
2195 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2196 {
2197 unsigned long i;
2198
2199 for (i = 0; i < h->max_huge_pages; ++i) {
2200 if (hstate_is_gigantic(h)) {
2201 if (!alloc_bootmem_huge_page(h))
2202 break;
2203 } else if (!alloc_fresh_huge_page(h,
2204 &node_states[N_MEMORY]))
2205 break;
2206 }
2207 h->max_huge_pages = i;
2208 }
2209
2210 static void __init hugetlb_init_hstates(void)
2211 {
2212 struct hstate *h;
2213
2214 for_each_hstate(h) {
2215 if (minimum_order > huge_page_order(h))
2216 minimum_order = huge_page_order(h);
2217
2218 /* oversize hugepages were init'ed in early boot */
2219 if (!hstate_is_gigantic(h))
2220 hugetlb_hstate_alloc_pages(h);
2221 }
2222 VM_BUG_ON(minimum_order == UINT_MAX);
2223 }
2224
2225 static char * __init memfmt(char *buf, unsigned long n)
2226 {
2227 if (n >= (1UL << 30))
2228 sprintf(buf, "%lu GB", n >> 30);
2229 else if (n >= (1UL << 20))
2230 sprintf(buf, "%lu MB", n >> 20);
2231 else
2232 sprintf(buf, "%lu KB", n >> 10);
2233 return buf;
2234 }
2235
2236 static void __init report_hugepages(void)
2237 {
2238 struct hstate *h;
2239
2240 for_each_hstate(h) {
2241 char buf[32];
2242 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2243 memfmt(buf, huge_page_size(h)),
2244 h->free_huge_pages);
2245 }
2246 }
2247
2248 #ifdef CONFIG_HIGHMEM
2249 static void try_to_free_low(struct hstate *h, unsigned long count,
2250 nodemask_t *nodes_allowed)
2251 {
2252 int i;
2253
2254 if (hstate_is_gigantic(h))
2255 return;
2256
2257 for_each_node_mask(i, *nodes_allowed) {
2258 struct page *page, *next;
2259 struct list_head *freel = &h->hugepage_freelists[i];
2260 list_for_each_entry_safe(page, next, freel, lru) {
2261 if (count >= h->nr_huge_pages)
2262 return;
2263 if (PageHighMem(page))
2264 continue;
2265 list_del(&page->lru);
2266 update_and_free_page(h, page);
2267 h->free_huge_pages--;
2268 h->free_huge_pages_node[page_to_nid(page)]--;
2269 }
2270 }
2271 }
2272 #else
2273 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2274 nodemask_t *nodes_allowed)
2275 {
2276 }
2277 #endif
2278
2279 /*
2280 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2281 * balanced by operating on them in a round-robin fashion.
2282 * Returns 1 if an adjustment was made.
2283 */
2284 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2285 int delta)
2286 {
2287 int nr_nodes, node;
2288
2289 VM_BUG_ON(delta != -1 && delta != 1);
2290
2291 if (delta < 0) {
2292 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2293 if (h->surplus_huge_pages_node[node])
2294 goto found;
2295 }
2296 } else {
2297 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2298 if (h->surplus_huge_pages_node[node] <
2299 h->nr_huge_pages_node[node])
2300 goto found;
2301 }
2302 }
2303 return 0;
2304
2305 found:
2306 h->surplus_huge_pages += delta;
2307 h->surplus_huge_pages_node[node] += delta;
2308 return 1;
2309 }
2310
2311 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2312 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2313 nodemask_t *nodes_allowed)
2314 {
2315 unsigned long min_count, ret;
2316
2317 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2318 return h->max_huge_pages;
2319
2320 /*
2321 * Increase the pool size
2322 * First take pages out of surplus state. Then make up the
2323 * remaining difference by allocating fresh huge pages.
2324 *
2325 * We might race with __alloc_buddy_huge_page() here and be unable
2326 * to convert a surplus huge page to a normal huge page. That is
2327 * not critical, though, it just means the overall size of the
2328 * pool might be one hugepage larger than it needs to be, but
2329 * within all the constraints specified by the sysctls.
2330 */
2331 spin_lock(&hugetlb_lock);
2332 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2333 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2334 break;
2335 }
2336
2337 while (count > persistent_huge_pages(h)) {
2338 /*
2339 * If this allocation races such that we no longer need the
2340 * page, free_huge_page will handle it by freeing the page
2341 * and reducing the surplus.
2342 */
2343 spin_unlock(&hugetlb_lock);
2344
2345 /* yield cpu to avoid soft lockup */
2346 cond_resched();
2347
2348 if (hstate_is_gigantic(h))
2349 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2350 else
2351 ret = alloc_fresh_huge_page(h, nodes_allowed);
2352 spin_lock(&hugetlb_lock);
2353 if (!ret)
2354 goto out;
2355
2356 /* Bail for signals. Probably ctrl-c from user */
2357 if (signal_pending(current))
2358 goto out;
2359 }
2360
2361 /*
2362 * Decrease the pool size
2363 * First return free pages to the buddy allocator (being careful
2364 * to keep enough around to satisfy reservations). Then place
2365 * pages into surplus state as needed so the pool will shrink
2366 * to the desired size as pages become free.
2367 *
2368 * By placing pages into the surplus state independent of the
2369 * overcommit value, we are allowing the surplus pool size to
2370 * exceed overcommit. There are few sane options here. Since
2371 * __alloc_buddy_huge_page() is checking the global counter,
2372 * though, we'll note that we're not allowed to exceed surplus
2373 * and won't grow the pool anywhere else. Not until one of the
2374 * sysctls are changed, or the surplus pages go out of use.
2375 */
2376 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2377 min_count = max(count, min_count);
2378 try_to_free_low(h, min_count, nodes_allowed);
2379 while (min_count < persistent_huge_pages(h)) {
2380 if (!free_pool_huge_page(h, nodes_allowed, 0))
2381 break;
2382 cond_resched_lock(&hugetlb_lock);
2383 }
2384 while (count < persistent_huge_pages(h)) {
2385 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2386 break;
2387 }
2388 out:
2389 ret = persistent_huge_pages(h);
2390 spin_unlock(&hugetlb_lock);
2391 return ret;
2392 }
2393
2394 #define HSTATE_ATTR_RO(_name) \
2395 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2396
2397 #define HSTATE_ATTR(_name) \
2398 static struct kobj_attribute _name##_attr = \
2399 __ATTR(_name, 0644, _name##_show, _name##_store)
2400
2401 static struct kobject *hugepages_kobj;
2402 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2403
2404 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2405
2406 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2407 {
2408 int i;
2409
2410 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2411 if (hstate_kobjs[i] == kobj) {
2412 if (nidp)
2413 *nidp = NUMA_NO_NODE;
2414 return &hstates[i];
2415 }
2416
2417 return kobj_to_node_hstate(kobj, nidp);
2418 }
2419
2420 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2421 struct kobj_attribute *attr, char *buf)
2422 {
2423 struct hstate *h;
2424 unsigned long nr_huge_pages;
2425 int nid;
2426
2427 h = kobj_to_hstate(kobj, &nid);
2428 if (nid == NUMA_NO_NODE)
2429 nr_huge_pages = h->nr_huge_pages;
2430 else
2431 nr_huge_pages = h->nr_huge_pages_node[nid];
2432
2433 return sprintf(buf, "%lu\n", nr_huge_pages);
2434 }
2435
2436 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2437 struct hstate *h, int nid,
2438 unsigned long count, size_t len)
2439 {
2440 int err;
2441 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2442
2443 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2444 err = -EINVAL;
2445 goto out;
2446 }
2447
2448 if (nid == NUMA_NO_NODE) {
2449 /*
2450 * global hstate attribute
2451 */
2452 if (!(obey_mempolicy &&
2453 init_nodemask_of_mempolicy(nodes_allowed))) {
2454 NODEMASK_FREE(nodes_allowed);
2455 nodes_allowed = &node_states[N_MEMORY];
2456 }
2457 } else if (nodes_allowed) {
2458 /*
2459 * per node hstate attribute: adjust count to global,
2460 * but restrict alloc/free to the specified node.
2461 */
2462 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2463 init_nodemask_of_node(nodes_allowed, nid);
2464 } else
2465 nodes_allowed = &node_states[N_MEMORY];
2466
2467 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2468
2469 if (nodes_allowed != &node_states[N_MEMORY])
2470 NODEMASK_FREE(nodes_allowed);
2471
2472 return len;
2473 out:
2474 NODEMASK_FREE(nodes_allowed);
2475 return err;
2476 }
2477
2478 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2479 struct kobject *kobj, const char *buf,
2480 size_t len)
2481 {
2482 struct hstate *h;
2483 unsigned long count;
2484 int nid;
2485 int err;
2486
2487 err = kstrtoul(buf, 10, &count);
2488 if (err)
2489 return err;
2490
2491 h = kobj_to_hstate(kobj, &nid);
2492 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2493 }
2494
2495 static ssize_t nr_hugepages_show(struct kobject *kobj,
2496 struct kobj_attribute *attr, char *buf)
2497 {
2498 return nr_hugepages_show_common(kobj, attr, buf);
2499 }
2500
2501 static ssize_t nr_hugepages_store(struct kobject *kobj,
2502 struct kobj_attribute *attr, const char *buf, size_t len)
2503 {
2504 return nr_hugepages_store_common(false, kobj, buf, len);
2505 }
2506 HSTATE_ATTR(nr_hugepages);
2507
2508 #ifdef CONFIG_NUMA
2509
2510 /*
2511 * hstate attribute for optionally mempolicy-based constraint on persistent
2512 * huge page alloc/free.
2513 */
2514 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2515 struct kobj_attribute *attr, char *buf)
2516 {
2517 return nr_hugepages_show_common(kobj, attr, buf);
2518 }
2519
2520 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2521 struct kobj_attribute *attr, const char *buf, size_t len)
2522 {
2523 return nr_hugepages_store_common(true, kobj, buf, len);
2524 }
2525 HSTATE_ATTR(nr_hugepages_mempolicy);
2526 #endif
2527
2528
2529 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2530 struct kobj_attribute *attr, char *buf)
2531 {
2532 struct hstate *h = kobj_to_hstate(kobj, NULL);
2533 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2534 }
2535
2536 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2537 struct kobj_attribute *attr, const char *buf, size_t count)
2538 {
2539 int err;
2540 unsigned long input;
2541 struct hstate *h = kobj_to_hstate(kobj, NULL);
2542
2543 if (hstate_is_gigantic(h))
2544 return -EINVAL;
2545
2546 err = kstrtoul(buf, 10, &input);
2547 if (err)
2548 return err;
2549
2550 spin_lock(&hugetlb_lock);
2551 h->nr_overcommit_huge_pages = input;
2552 spin_unlock(&hugetlb_lock);
2553
2554 return count;
2555 }
2556 HSTATE_ATTR(nr_overcommit_hugepages);
2557
2558 static ssize_t free_hugepages_show(struct kobject *kobj,
2559 struct kobj_attribute *attr, char *buf)
2560 {
2561 struct hstate *h;
2562 unsigned long free_huge_pages;
2563 int nid;
2564
2565 h = kobj_to_hstate(kobj, &nid);
2566 if (nid == NUMA_NO_NODE)
2567 free_huge_pages = h->free_huge_pages;
2568 else
2569 free_huge_pages = h->free_huge_pages_node[nid];
2570
2571 return sprintf(buf, "%lu\n", free_huge_pages);
2572 }
2573 HSTATE_ATTR_RO(free_hugepages);
2574
2575 static ssize_t resv_hugepages_show(struct kobject *kobj,
2576 struct kobj_attribute *attr, char *buf)
2577 {
2578 struct hstate *h = kobj_to_hstate(kobj, NULL);
2579 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2580 }
2581 HSTATE_ATTR_RO(resv_hugepages);
2582
2583 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2584 struct kobj_attribute *attr, char *buf)
2585 {
2586 struct hstate *h;
2587 unsigned long surplus_huge_pages;
2588 int nid;
2589
2590 h = kobj_to_hstate(kobj, &nid);
2591 if (nid == NUMA_NO_NODE)
2592 surplus_huge_pages = h->surplus_huge_pages;
2593 else
2594 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2595
2596 return sprintf(buf, "%lu\n", surplus_huge_pages);
2597 }
2598 HSTATE_ATTR_RO(surplus_hugepages);
2599
2600 static struct attribute *hstate_attrs[] = {
2601 &nr_hugepages_attr.attr,
2602 &nr_overcommit_hugepages_attr.attr,
2603 &free_hugepages_attr.attr,
2604 &resv_hugepages_attr.attr,
2605 &surplus_hugepages_attr.attr,
2606 #ifdef CONFIG_NUMA
2607 &nr_hugepages_mempolicy_attr.attr,
2608 #endif
2609 NULL,
2610 };
2611
2612 static struct attribute_group hstate_attr_group = {
2613 .attrs = hstate_attrs,
2614 };
2615
2616 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2617 struct kobject **hstate_kobjs,
2618 struct attribute_group *hstate_attr_group)
2619 {
2620 int retval;
2621 int hi = hstate_index(h);
2622
2623 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2624 if (!hstate_kobjs[hi])
2625 return -ENOMEM;
2626
2627 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2628 if (retval)
2629 kobject_put(hstate_kobjs[hi]);
2630
2631 return retval;
2632 }
2633
2634 static void __init hugetlb_sysfs_init(void)
2635 {
2636 struct hstate *h;
2637 int err;
2638
2639 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2640 if (!hugepages_kobj)
2641 return;
2642
2643 for_each_hstate(h) {
2644 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2645 hstate_kobjs, &hstate_attr_group);
2646 if (err)
2647 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2648 }
2649 }
2650
2651 #ifdef CONFIG_NUMA
2652
2653 /*
2654 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2655 * with node devices in node_devices[] using a parallel array. The array
2656 * index of a node device or _hstate == node id.
2657 * This is here to avoid any static dependency of the node device driver, in
2658 * the base kernel, on the hugetlb module.
2659 */
2660 struct node_hstate {
2661 struct kobject *hugepages_kobj;
2662 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2663 };
2664 static struct node_hstate node_hstates[MAX_NUMNODES];
2665
2666 /*
2667 * A subset of global hstate attributes for node devices
2668 */
2669 static struct attribute *per_node_hstate_attrs[] = {
2670 &nr_hugepages_attr.attr,
2671 &free_hugepages_attr.attr,
2672 &surplus_hugepages_attr.attr,
2673 NULL,
2674 };
2675
2676 static struct attribute_group per_node_hstate_attr_group = {
2677 .attrs = per_node_hstate_attrs,
2678 };
2679
2680 /*
2681 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2682 * Returns node id via non-NULL nidp.
2683 */
2684 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2685 {
2686 int nid;
2687
2688 for (nid = 0; nid < nr_node_ids; nid++) {
2689 struct node_hstate *nhs = &node_hstates[nid];
2690 int i;
2691 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2692 if (nhs->hstate_kobjs[i] == kobj) {
2693 if (nidp)
2694 *nidp = nid;
2695 return &hstates[i];
2696 }
2697 }
2698
2699 BUG();
2700 return NULL;
2701 }
2702
2703 /*
2704 * Unregister hstate attributes from a single node device.
2705 * No-op if no hstate attributes attached.
2706 */
2707 static void hugetlb_unregister_node(struct node *node)
2708 {
2709 struct hstate *h;
2710 struct node_hstate *nhs = &node_hstates[node->dev.id];
2711
2712 if (!nhs->hugepages_kobj)
2713 return; /* no hstate attributes */
2714
2715 for_each_hstate(h) {
2716 int idx = hstate_index(h);
2717 if (nhs->hstate_kobjs[idx]) {
2718 kobject_put(nhs->hstate_kobjs[idx]);
2719 nhs->hstate_kobjs[idx] = NULL;
2720 }
2721 }
2722
2723 kobject_put(nhs->hugepages_kobj);
2724 nhs->hugepages_kobj = NULL;
2725 }
2726
2727
2728 /*
2729 * Register hstate attributes for a single node device.
2730 * No-op if attributes already registered.
2731 */
2732 static void hugetlb_register_node(struct node *node)
2733 {
2734 struct hstate *h;
2735 struct node_hstate *nhs = &node_hstates[node->dev.id];
2736 int err;
2737
2738 if (nhs->hugepages_kobj)
2739 return; /* already allocated */
2740
2741 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2742 &node->dev.kobj);
2743 if (!nhs->hugepages_kobj)
2744 return;
2745
2746 for_each_hstate(h) {
2747 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2748 nhs->hstate_kobjs,
2749 &per_node_hstate_attr_group);
2750 if (err) {
2751 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2752 h->name, node->dev.id);
2753 hugetlb_unregister_node(node);
2754 break;
2755 }
2756 }
2757 }
2758
2759 /*
2760 * hugetlb init time: register hstate attributes for all registered node
2761 * devices of nodes that have memory. All on-line nodes should have
2762 * registered their associated device by this time.
2763 */
2764 static void __init hugetlb_register_all_nodes(void)
2765 {
2766 int nid;
2767
2768 for_each_node_state(nid, N_MEMORY) {
2769 struct node *node = node_devices[nid];
2770 if (node->dev.id == nid)
2771 hugetlb_register_node(node);
2772 }
2773
2774 /*
2775 * Let the node device driver know we're here so it can
2776 * [un]register hstate attributes on node hotplug.
2777 */
2778 register_hugetlbfs_with_node(hugetlb_register_node,
2779 hugetlb_unregister_node);
2780 }
2781 #else /* !CONFIG_NUMA */
2782
2783 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2784 {
2785 BUG();
2786 if (nidp)
2787 *nidp = -1;
2788 return NULL;
2789 }
2790
2791 static void hugetlb_register_all_nodes(void) { }
2792
2793 #endif
2794
2795 static int __init hugetlb_init(void)
2796 {
2797 int i;
2798
2799 if (!hugepages_supported())
2800 return 0;
2801
2802 if (!size_to_hstate(default_hstate_size)) {
2803 default_hstate_size = HPAGE_SIZE;
2804 if (!size_to_hstate(default_hstate_size))
2805 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2806 }
2807 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2808 if (default_hstate_max_huge_pages) {
2809 if (!default_hstate.max_huge_pages)
2810 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2811 }
2812
2813 hugetlb_init_hstates();
2814 gather_bootmem_prealloc();
2815 report_hugepages();
2816
2817 hugetlb_sysfs_init();
2818 hugetlb_register_all_nodes();
2819 hugetlb_cgroup_file_init();
2820
2821 #ifdef CONFIG_SMP
2822 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2823 #else
2824 num_fault_mutexes = 1;
2825 #endif
2826 hugetlb_fault_mutex_table =
2827 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2828 BUG_ON(!hugetlb_fault_mutex_table);
2829
2830 for (i = 0; i < num_fault_mutexes; i++)
2831 mutex_init(&hugetlb_fault_mutex_table[i]);
2832 return 0;
2833 }
2834 subsys_initcall(hugetlb_init);
2835
2836 /* Should be called on processing a hugepagesz=... option */
2837 void __init hugetlb_bad_size(void)
2838 {
2839 parsed_valid_hugepagesz = false;
2840 }
2841
2842 void __init hugetlb_add_hstate(unsigned int order)
2843 {
2844 struct hstate *h;
2845 unsigned long i;
2846
2847 if (size_to_hstate(PAGE_SIZE << order)) {
2848 pr_warn("hugepagesz= specified twice, ignoring\n");
2849 return;
2850 }
2851 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2852 BUG_ON(order == 0);
2853 h = &hstates[hugetlb_max_hstate++];
2854 h->order = order;
2855 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2856 h->nr_huge_pages = 0;
2857 h->free_huge_pages = 0;
2858 for (i = 0; i < MAX_NUMNODES; ++i)
2859 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2860 INIT_LIST_HEAD(&h->hugepage_activelist);
2861 h->next_nid_to_alloc = first_memory_node;
2862 h->next_nid_to_free = first_memory_node;
2863 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2864 huge_page_size(h)/1024);
2865
2866 parsed_hstate = h;
2867 }
2868
2869 static int __init hugetlb_nrpages_setup(char *s)
2870 {
2871 unsigned long *mhp;
2872 static unsigned long *last_mhp;
2873
2874 if (!parsed_valid_hugepagesz) {
2875 pr_warn("hugepages = %s preceded by "
2876 "an unsupported hugepagesz, ignoring\n", s);
2877 parsed_valid_hugepagesz = true;
2878 return 1;
2879 }
2880 /*
2881 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2882 * so this hugepages= parameter goes to the "default hstate".
2883 */
2884 else if (!hugetlb_max_hstate)
2885 mhp = &default_hstate_max_huge_pages;
2886 else
2887 mhp = &parsed_hstate->max_huge_pages;
2888
2889 if (mhp == last_mhp) {
2890 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2891 return 1;
2892 }
2893
2894 if (sscanf(s, "%lu", mhp) <= 0)
2895 *mhp = 0;
2896
2897 /*
2898 * Global state is always initialized later in hugetlb_init.
2899 * But we need to allocate >= MAX_ORDER hstates here early to still
2900 * use the bootmem allocator.
2901 */
2902 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2903 hugetlb_hstate_alloc_pages(parsed_hstate);
2904
2905 last_mhp = mhp;
2906
2907 return 1;
2908 }
2909 __setup("hugepages=", hugetlb_nrpages_setup);
2910
2911 static int __init hugetlb_default_setup(char *s)
2912 {
2913 default_hstate_size = memparse(s, &s);
2914 return 1;
2915 }
2916 __setup("default_hugepagesz=", hugetlb_default_setup);
2917
2918 static unsigned int cpuset_mems_nr(unsigned int *array)
2919 {
2920 int node;
2921 unsigned int nr = 0;
2922
2923 for_each_node_mask(node, cpuset_current_mems_allowed)
2924 nr += array[node];
2925
2926 return nr;
2927 }
2928
2929 #ifdef CONFIG_SYSCTL
2930 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2931 struct ctl_table *table, int write,
2932 void __user *buffer, size_t *length, loff_t *ppos)
2933 {
2934 struct hstate *h = &default_hstate;
2935 unsigned long tmp = h->max_huge_pages;
2936 int ret;
2937
2938 if (!hugepages_supported())
2939 return -EOPNOTSUPP;
2940
2941 table->data = &tmp;
2942 table->maxlen = sizeof(unsigned long);
2943 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2944 if (ret)
2945 goto out;
2946
2947 if (write)
2948 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2949 NUMA_NO_NODE, tmp, *length);
2950 out:
2951 return ret;
2952 }
2953
2954 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2955 void __user *buffer, size_t *length, loff_t *ppos)
2956 {
2957
2958 return hugetlb_sysctl_handler_common(false, table, write,
2959 buffer, length, ppos);
2960 }
2961
2962 #ifdef CONFIG_NUMA
2963 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2964 void __user *buffer, size_t *length, loff_t *ppos)
2965 {
2966 return hugetlb_sysctl_handler_common(true, table, write,
2967 buffer, length, ppos);
2968 }
2969 #endif /* CONFIG_NUMA */
2970
2971 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2972 void __user *buffer,
2973 size_t *length, loff_t *ppos)
2974 {
2975 struct hstate *h = &default_hstate;
2976 unsigned long tmp;
2977 int ret;
2978
2979 if (!hugepages_supported())
2980 return -EOPNOTSUPP;
2981
2982 tmp = h->nr_overcommit_huge_pages;
2983
2984 if (write && hstate_is_gigantic(h))
2985 return -EINVAL;
2986
2987 table->data = &tmp;
2988 table->maxlen = sizeof(unsigned long);
2989 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2990 if (ret)
2991 goto out;
2992
2993 if (write) {
2994 spin_lock(&hugetlb_lock);
2995 h->nr_overcommit_huge_pages = tmp;
2996 spin_unlock(&hugetlb_lock);
2997 }
2998 out:
2999 return ret;
3000 }
3001
3002 #endif /* CONFIG_SYSCTL */
3003
3004 void hugetlb_report_meminfo(struct seq_file *m)
3005 {
3006 struct hstate *h = &default_hstate;
3007 if (!hugepages_supported())
3008 return;
3009 seq_printf(m,
3010 "HugePages_Total: %5lu\n"
3011 "HugePages_Free: %5lu\n"
3012 "HugePages_Rsvd: %5lu\n"
3013 "HugePages_Surp: %5lu\n"
3014 "Hugepagesize: %8lu kB\n",
3015 h->nr_huge_pages,
3016 h->free_huge_pages,
3017 h->resv_huge_pages,
3018 h->surplus_huge_pages,
3019 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3020 }
3021
3022 int hugetlb_report_node_meminfo(int nid, char *buf)
3023 {
3024 struct hstate *h = &default_hstate;
3025 if (!hugepages_supported())
3026 return 0;
3027 return sprintf(buf,
3028 "Node %d HugePages_Total: %5u\n"
3029 "Node %d HugePages_Free: %5u\n"
3030 "Node %d HugePages_Surp: %5u\n",
3031 nid, h->nr_huge_pages_node[nid],
3032 nid, h->free_huge_pages_node[nid],
3033 nid, h->surplus_huge_pages_node[nid]);
3034 }
3035
3036 void hugetlb_show_meminfo(void)
3037 {
3038 struct hstate *h;
3039 int nid;
3040
3041 if (!hugepages_supported())
3042 return;
3043
3044 for_each_node_state(nid, N_MEMORY)
3045 for_each_hstate(h)
3046 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3047 nid,
3048 h->nr_huge_pages_node[nid],
3049 h->free_huge_pages_node[nid],
3050 h->surplus_huge_pages_node[nid],
3051 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3052 }
3053
3054 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3055 {
3056 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3057 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3058 }
3059
3060 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3061 unsigned long hugetlb_total_pages(void)
3062 {
3063 struct hstate *h;
3064 unsigned long nr_total_pages = 0;
3065
3066 for_each_hstate(h)
3067 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3068 return nr_total_pages;
3069 }
3070
3071 static int hugetlb_acct_memory(struct hstate *h, long delta)
3072 {
3073 int ret = -ENOMEM;
3074
3075 spin_lock(&hugetlb_lock);
3076 /*
3077 * When cpuset is configured, it breaks the strict hugetlb page
3078 * reservation as the accounting is done on a global variable. Such
3079 * reservation is completely rubbish in the presence of cpuset because
3080 * the reservation is not checked against page availability for the
3081 * current cpuset. Application can still potentially OOM'ed by kernel
3082 * with lack of free htlb page in cpuset that the task is in.
3083 * Attempt to enforce strict accounting with cpuset is almost
3084 * impossible (or too ugly) because cpuset is too fluid that
3085 * task or memory node can be dynamically moved between cpusets.
3086 *
3087 * The change of semantics for shared hugetlb mapping with cpuset is
3088 * undesirable. However, in order to preserve some of the semantics,
3089 * we fall back to check against current free page availability as
3090 * a best attempt and hopefully to minimize the impact of changing
3091 * semantics that cpuset has.
3092 */
3093 if (delta > 0) {
3094 if (gather_surplus_pages(h, delta) < 0)
3095 goto out;
3096
3097 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3098 return_unused_surplus_pages(h, delta);
3099 goto out;
3100 }
3101 }
3102
3103 ret = 0;
3104 if (delta < 0)
3105 return_unused_surplus_pages(h, (unsigned long) -delta);
3106
3107 out:
3108 spin_unlock(&hugetlb_lock);
3109 return ret;
3110 }
3111
3112 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3113 {
3114 struct resv_map *resv = vma_resv_map(vma);
3115
3116 /*
3117 * This new VMA should share its siblings reservation map if present.
3118 * The VMA will only ever have a valid reservation map pointer where
3119 * it is being copied for another still existing VMA. As that VMA
3120 * has a reference to the reservation map it cannot disappear until
3121 * after this open call completes. It is therefore safe to take a
3122 * new reference here without additional locking.
3123 */
3124 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3125 kref_get(&resv->refs);
3126 }
3127
3128 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3129 {
3130 struct hstate *h = hstate_vma(vma);
3131 struct resv_map *resv = vma_resv_map(vma);
3132 struct hugepage_subpool *spool = subpool_vma(vma);
3133 unsigned long reserve, start, end;
3134 long gbl_reserve;
3135
3136 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3137 return;
3138
3139 start = vma_hugecache_offset(h, vma, vma->vm_start);
3140 end = vma_hugecache_offset(h, vma, vma->vm_end);
3141
3142 reserve = (end - start) - region_count(resv, start, end);
3143
3144 kref_put(&resv->refs, resv_map_release);
3145
3146 if (reserve) {
3147 /*
3148 * Decrement reserve counts. The global reserve count may be
3149 * adjusted if the subpool has a minimum size.
3150 */
3151 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3152 hugetlb_acct_memory(h, -gbl_reserve);
3153 }
3154 }
3155
3156 /*
3157 * We cannot handle pagefaults against hugetlb pages at all. They cause
3158 * handle_mm_fault() to try to instantiate regular-sized pages in the
3159 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3160 * this far.
3161 */
3162 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3163 {
3164 BUG();
3165 return 0;
3166 }
3167
3168 const struct vm_operations_struct hugetlb_vm_ops = {
3169 .fault = hugetlb_vm_op_fault,
3170 .open = hugetlb_vm_op_open,
3171 .close = hugetlb_vm_op_close,
3172 };
3173
3174 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3175 int writable)
3176 {
3177 pte_t entry;
3178
3179 if (writable) {
3180 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3181 vma->vm_page_prot)));
3182 } else {
3183 entry = huge_pte_wrprotect(mk_huge_pte(page,
3184 vma->vm_page_prot));
3185 }
3186 entry = pte_mkyoung(entry);
3187 entry = pte_mkhuge(entry);
3188 entry = arch_make_huge_pte(entry, vma, page, writable);
3189
3190 return entry;
3191 }
3192
3193 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3194 unsigned long address, pte_t *ptep)
3195 {
3196 pte_t entry;
3197
3198 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3199 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3200 update_mmu_cache(vma, address, ptep);
3201 }
3202
3203 bool is_hugetlb_entry_migration(pte_t pte)
3204 {
3205 swp_entry_t swp;
3206
3207 if (huge_pte_none(pte) || pte_present(pte))
3208 return false;
3209 swp = pte_to_swp_entry(pte);
3210 if (non_swap_entry(swp) && is_migration_entry(swp))
3211 return true;
3212 else
3213 return false;
3214 }
3215
3216 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3217 {
3218 swp_entry_t swp;
3219
3220 if (huge_pte_none(pte) || pte_present(pte))
3221 return 0;
3222 swp = pte_to_swp_entry(pte);
3223 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3224 return 1;
3225 else
3226 return 0;
3227 }
3228
3229 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3230 struct vm_area_struct *vma)
3231 {
3232 pte_t *src_pte, *dst_pte, entry;
3233 struct page *ptepage;
3234 unsigned long addr;
3235 int cow;
3236 struct hstate *h = hstate_vma(vma);
3237 unsigned long sz = huge_page_size(h);
3238 unsigned long mmun_start; /* For mmu_notifiers */
3239 unsigned long mmun_end; /* For mmu_notifiers */
3240 int ret = 0;
3241
3242 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3243
3244 mmun_start = vma->vm_start;
3245 mmun_end = vma->vm_end;
3246 if (cow)
3247 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3248
3249 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3250 spinlock_t *src_ptl, *dst_ptl;
3251 src_pte = huge_pte_offset(src, addr, sz);
3252 if (!src_pte)
3253 continue;
3254 dst_pte = huge_pte_alloc(dst, addr, sz);
3255 if (!dst_pte) {
3256 ret = -ENOMEM;
3257 break;
3258 }
3259
3260 /* If the pagetables are shared don't copy or take references */
3261 if (dst_pte == src_pte)
3262 continue;
3263
3264 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3265 src_ptl = huge_pte_lockptr(h, src, src_pte);
3266 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3267 entry = huge_ptep_get(src_pte);
3268 if (huge_pte_none(entry)) { /* skip none entry */
3269 ;
3270 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3271 is_hugetlb_entry_hwpoisoned(entry))) {
3272 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3273
3274 if (is_write_migration_entry(swp_entry) && cow) {
3275 /*
3276 * COW mappings require pages in both
3277 * parent and child to be set to read.
3278 */
3279 make_migration_entry_read(&swp_entry);
3280 entry = swp_entry_to_pte(swp_entry);
3281 set_huge_swap_pte_at(src, addr, src_pte,
3282 entry, sz);
3283 }
3284 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3285 } else {
3286 if (cow) {
3287 huge_ptep_set_wrprotect(src, addr, src_pte);
3288 mmu_notifier_invalidate_range(src, mmun_start,
3289 mmun_end);
3290 }
3291 entry = huge_ptep_get(src_pte);
3292 ptepage = pte_page(entry);
3293 get_page(ptepage);
3294 page_dup_rmap(ptepage, true);
3295 set_huge_pte_at(dst, addr, dst_pte, entry);
3296 hugetlb_count_add(pages_per_huge_page(h), dst);
3297 }
3298 spin_unlock(src_ptl);
3299 spin_unlock(dst_ptl);
3300 }
3301
3302 if (cow)
3303 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3304
3305 return ret;
3306 }
3307
3308 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3309 unsigned long start, unsigned long end,
3310 struct page *ref_page)
3311 {
3312 struct mm_struct *mm = vma->vm_mm;
3313 unsigned long address;
3314 pte_t *ptep;
3315 pte_t pte;
3316 spinlock_t *ptl;
3317 struct page *page;
3318 struct hstate *h = hstate_vma(vma);
3319 unsigned long sz = huge_page_size(h);
3320 const unsigned long mmun_start = start; /* For mmu_notifiers */
3321 const unsigned long mmun_end = end; /* For mmu_notifiers */
3322
3323 WARN_ON(!is_vm_hugetlb_page(vma));
3324 BUG_ON(start & ~huge_page_mask(h));
3325 BUG_ON(end & ~huge_page_mask(h));
3326
3327 /*
3328 * This is a hugetlb vma, all the pte entries should point
3329 * to huge page.
3330 */
3331 tlb_remove_check_page_size_change(tlb, sz);
3332 tlb_start_vma(tlb, vma);
3333 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3334 address = start;
3335 for (; address < end; address += sz) {
3336 ptep = huge_pte_offset(mm, address, sz);
3337 if (!ptep)
3338 continue;
3339
3340 ptl = huge_pte_lock(h, mm, ptep);
3341 if (huge_pmd_unshare(mm, &address, ptep)) {
3342 spin_unlock(ptl);
3343 continue;
3344 }
3345
3346 pte = huge_ptep_get(ptep);
3347 if (huge_pte_none(pte)) {
3348 spin_unlock(ptl);
3349 continue;
3350 }
3351
3352 /*
3353 * Migrating hugepage or HWPoisoned hugepage is already
3354 * unmapped and its refcount is dropped, so just clear pte here.
3355 */
3356 if (unlikely(!pte_present(pte))) {
3357 huge_pte_clear(mm, address, ptep, sz);
3358 spin_unlock(ptl);
3359 continue;
3360 }
3361
3362 page = pte_page(pte);
3363 /*
3364 * If a reference page is supplied, it is because a specific
3365 * page is being unmapped, not a range. Ensure the page we
3366 * are about to unmap is the actual page of interest.
3367 */
3368 if (ref_page) {
3369 if (page != ref_page) {
3370 spin_unlock(ptl);
3371 continue;
3372 }
3373 /*
3374 * Mark the VMA as having unmapped its page so that
3375 * future faults in this VMA will fail rather than
3376 * looking like data was lost
3377 */
3378 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3379 }
3380
3381 pte = huge_ptep_get_and_clear(mm, address, ptep);
3382 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3383 if (huge_pte_dirty(pte))
3384 set_page_dirty(page);
3385
3386 hugetlb_count_sub(pages_per_huge_page(h), mm);
3387 page_remove_rmap(page, true);
3388
3389 spin_unlock(ptl);
3390 tlb_remove_page_size(tlb, page, huge_page_size(h));
3391 /*
3392 * Bail out after unmapping reference page if supplied
3393 */
3394 if (ref_page)
3395 break;
3396 }
3397 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3398 tlb_end_vma(tlb, vma);
3399 }
3400
3401 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3402 struct vm_area_struct *vma, unsigned long start,
3403 unsigned long end, struct page *ref_page)
3404 {
3405 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3406
3407 /*
3408 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3409 * test will fail on a vma being torn down, and not grab a page table
3410 * on its way out. We're lucky that the flag has such an appropriate
3411 * name, and can in fact be safely cleared here. We could clear it
3412 * before the __unmap_hugepage_range above, but all that's necessary
3413 * is to clear it before releasing the i_mmap_rwsem. This works
3414 * because in the context this is called, the VMA is about to be
3415 * destroyed and the i_mmap_rwsem is held.
3416 */
3417 vma->vm_flags &= ~VM_MAYSHARE;
3418 }
3419
3420 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3421 unsigned long end, struct page *ref_page)
3422 {
3423 struct mm_struct *mm;
3424 struct mmu_gather tlb;
3425
3426 mm = vma->vm_mm;
3427
3428 tlb_gather_mmu(&tlb, mm, start, end);
3429 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3430 tlb_finish_mmu(&tlb, start, end);
3431 }
3432
3433 /*
3434 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3435 * mappping it owns the reserve page for. The intention is to unmap the page
3436 * from other VMAs and let the children be SIGKILLed if they are faulting the
3437 * same region.
3438 */
3439 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3440 struct page *page, unsigned long address)
3441 {
3442 struct hstate *h = hstate_vma(vma);
3443 struct vm_area_struct *iter_vma;
3444 struct address_space *mapping;
3445 pgoff_t pgoff;
3446
3447 /*
3448 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3449 * from page cache lookup which is in HPAGE_SIZE units.
3450 */
3451 address = address & huge_page_mask(h);
3452 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3453 vma->vm_pgoff;
3454 mapping = vma->vm_file->f_mapping;
3455
3456 /*
3457 * Take the mapping lock for the duration of the table walk. As
3458 * this mapping should be shared between all the VMAs,
3459 * __unmap_hugepage_range() is called as the lock is already held
3460 */
3461 i_mmap_lock_write(mapping);
3462 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3463 /* Do not unmap the current VMA */
3464 if (iter_vma == vma)
3465 continue;
3466
3467 /*
3468 * Shared VMAs have their own reserves and do not affect
3469 * MAP_PRIVATE accounting but it is possible that a shared
3470 * VMA is using the same page so check and skip such VMAs.
3471 */
3472 if (iter_vma->vm_flags & VM_MAYSHARE)
3473 continue;
3474
3475 /*
3476 * Unmap the page from other VMAs without their own reserves.
3477 * They get marked to be SIGKILLed if they fault in these
3478 * areas. This is because a future no-page fault on this VMA
3479 * could insert a zeroed page instead of the data existing
3480 * from the time of fork. This would look like data corruption
3481 */
3482 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3483 unmap_hugepage_range(iter_vma, address,
3484 address + huge_page_size(h), page);
3485 }
3486 i_mmap_unlock_write(mapping);
3487 }
3488
3489 /*
3490 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3491 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3492 * cannot race with other handlers or page migration.
3493 * Keep the pte_same checks anyway to make transition from the mutex easier.
3494 */
3495 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3496 unsigned long address, pte_t *ptep,
3497 struct page *pagecache_page, spinlock_t *ptl)
3498 {
3499 pte_t pte;
3500 struct hstate *h = hstate_vma(vma);
3501 struct page *old_page, *new_page;
3502 int ret = 0, outside_reserve = 0;
3503 unsigned long mmun_start; /* For mmu_notifiers */
3504 unsigned long mmun_end; /* For mmu_notifiers */
3505
3506 pte = huge_ptep_get(ptep);
3507 old_page = pte_page(pte);
3508
3509 retry_avoidcopy:
3510 /* If no-one else is actually using this page, avoid the copy
3511 * and just make the page writable */
3512 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3513 page_move_anon_rmap(old_page, vma);
3514 set_huge_ptep_writable(vma, address, ptep);
3515 return 0;
3516 }
3517
3518 /*
3519 * If the process that created a MAP_PRIVATE mapping is about to
3520 * perform a COW due to a shared page count, attempt to satisfy
3521 * the allocation without using the existing reserves. The pagecache
3522 * page is used to determine if the reserve at this address was
3523 * consumed or not. If reserves were used, a partial faulted mapping
3524 * at the time of fork() could consume its reserves on COW instead
3525 * of the full address range.
3526 */
3527 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3528 old_page != pagecache_page)
3529 outside_reserve = 1;
3530
3531 get_page(old_page);
3532
3533 /*
3534 * Drop page table lock as buddy allocator may be called. It will
3535 * be acquired again before returning to the caller, as expected.
3536 */
3537 spin_unlock(ptl);
3538 new_page = alloc_huge_page(vma, address, outside_reserve);
3539
3540 if (IS_ERR(new_page)) {
3541 /*
3542 * If a process owning a MAP_PRIVATE mapping fails to COW,
3543 * it is due to references held by a child and an insufficient
3544 * huge page pool. To guarantee the original mappers
3545 * reliability, unmap the page from child processes. The child
3546 * may get SIGKILLed if it later faults.
3547 */
3548 if (outside_reserve) {
3549 put_page(old_page);
3550 BUG_ON(huge_pte_none(pte));
3551 unmap_ref_private(mm, vma, old_page, address);
3552 BUG_ON(huge_pte_none(pte));
3553 spin_lock(ptl);
3554 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3555 huge_page_size(h));
3556 if (likely(ptep &&
3557 pte_same(huge_ptep_get(ptep), pte)))
3558 goto retry_avoidcopy;
3559 /*
3560 * race occurs while re-acquiring page table
3561 * lock, and our job is done.
3562 */
3563 return 0;
3564 }
3565
3566 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3567 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3568 goto out_release_old;
3569 }
3570
3571 /*
3572 * When the original hugepage is shared one, it does not have
3573 * anon_vma prepared.
3574 */
3575 if (unlikely(anon_vma_prepare(vma))) {
3576 ret = VM_FAULT_OOM;
3577 goto out_release_all;
3578 }
3579
3580 copy_user_huge_page(new_page, old_page, address, vma,
3581 pages_per_huge_page(h));
3582 __SetPageUptodate(new_page);
3583 set_page_huge_active(new_page);
3584
3585 mmun_start = address & huge_page_mask(h);
3586 mmun_end = mmun_start + huge_page_size(h);
3587 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3588
3589 /*
3590 * Retake the page table lock to check for racing updates
3591 * before the page tables are altered
3592 */
3593 spin_lock(ptl);
3594 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3595 huge_page_size(h));
3596 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3597 ClearPagePrivate(new_page);
3598
3599 /* Break COW */
3600 huge_ptep_clear_flush(vma, address, ptep);
3601 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3602 set_huge_pte_at(mm, address, ptep,
3603 make_huge_pte(vma, new_page, 1));
3604 page_remove_rmap(old_page, true);
3605 hugepage_add_new_anon_rmap(new_page, vma, address);
3606 /* Make the old page be freed below */
3607 new_page = old_page;
3608 }
3609 spin_unlock(ptl);
3610 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3611 out_release_all:
3612 restore_reserve_on_error(h, vma, address, new_page);
3613 put_page(new_page);
3614 out_release_old:
3615 put_page(old_page);
3616
3617 spin_lock(ptl); /* Caller expects lock to be held */
3618 return ret;
3619 }
3620
3621 /* Return the pagecache page at a given address within a VMA */
3622 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3623 struct vm_area_struct *vma, unsigned long address)
3624 {
3625 struct address_space *mapping;
3626 pgoff_t idx;
3627
3628 mapping = vma->vm_file->f_mapping;
3629 idx = vma_hugecache_offset(h, vma, address);
3630
3631 return find_lock_page(mapping, idx);
3632 }
3633
3634 /*
3635 * Return whether there is a pagecache page to back given address within VMA.
3636 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3637 */
3638 static bool hugetlbfs_pagecache_present(struct hstate *h,
3639 struct vm_area_struct *vma, unsigned long address)
3640 {
3641 struct address_space *mapping;
3642 pgoff_t idx;
3643 struct page *page;
3644
3645 mapping = vma->vm_file->f_mapping;
3646 idx = vma_hugecache_offset(h, vma, address);
3647
3648 page = find_get_page(mapping, idx);
3649 if (page)
3650 put_page(page);
3651 return page != NULL;
3652 }
3653
3654 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3655 pgoff_t idx)
3656 {
3657 struct inode *inode = mapping->host;
3658 struct hstate *h = hstate_inode(inode);
3659 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3660
3661 if (err)
3662 return err;
3663 ClearPagePrivate(page);
3664
3665 spin_lock(&inode->i_lock);
3666 inode->i_blocks += blocks_per_huge_page(h);
3667 spin_unlock(&inode->i_lock);
3668 return 0;
3669 }
3670
3671 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3672 struct address_space *mapping, pgoff_t idx,
3673 unsigned long address, pte_t *ptep, unsigned int flags)
3674 {
3675 struct hstate *h = hstate_vma(vma);
3676 int ret = VM_FAULT_SIGBUS;
3677 int anon_rmap = 0;
3678 unsigned long size;
3679 struct page *page;
3680 pte_t new_pte;
3681 spinlock_t *ptl;
3682
3683 /*
3684 * Currently, we are forced to kill the process in the event the
3685 * original mapper has unmapped pages from the child due to a failed
3686 * COW. Warn that such a situation has occurred as it may not be obvious
3687 */
3688 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3689 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3690 current->pid);
3691 return ret;
3692 }
3693
3694 /*
3695 * Use page lock to guard against racing truncation
3696 * before we get page_table_lock.
3697 */
3698 retry:
3699 page = find_lock_page(mapping, idx);
3700 if (!page) {
3701 size = i_size_read(mapping->host) >> huge_page_shift(h);
3702 if (idx >= size)
3703 goto out;
3704
3705 /*
3706 * Check for page in userfault range
3707 */
3708 if (userfaultfd_missing(vma)) {
3709 u32 hash;
3710 struct vm_fault vmf = {
3711 .vma = vma,
3712 .address = address,
3713 .flags = flags,
3714 /*
3715 * Hard to debug if it ends up being
3716 * used by a callee that assumes
3717 * something about the other
3718 * uninitialized fields... same as in
3719 * memory.c
3720 */
3721 };
3722
3723 /*
3724 * hugetlb_fault_mutex must be dropped before
3725 * handling userfault. Reacquire after handling
3726 * fault to make calling code simpler.
3727 */
3728 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3729 idx, address);
3730 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3731 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3732 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3733 goto out;
3734 }
3735
3736 page = alloc_huge_page(vma, address, 0);
3737 if (IS_ERR(page)) {
3738 ret = PTR_ERR(page);
3739 if (ret == -ENOMEM)
3740 ret = VM_FAULT_OOM;
3741 else
3742 ret = VM_FAULT_SIGBUS;
3743 goto out;
3744 }
3745 clear_huge_page(page, address, pages_per_huge_page(h));
3746 __SetPageUptodate(page);
3747 set_page_huge_active(page);
3748
3749 if (vma->vm_flags & VM_MAYSHARE) {
3750 int err = huge_add_to_page_cache(page, mapping, idx);
3751 if (err) {
3752 put_page(page);
3753 if (err == -EEXIST)
3754 goto retry;
3755 goto out;
3756 }
3757 } else {
3758 lock_page(page);
3759 if (unlikely(anon_vma_prepare(vma))) {
3760 ret = VM_FAULT_OOM;
3761 goto backout_unlocked;
3762 }
3763 anon_rmap = 1;
3764 }
3765 } else {
3766 /*
3767 * If memory error occurs between mmap() and fault, some process
3768 * don't have hwpoisoned swap entry for errored virtual address.
3769 * So we need to block hugepage fault by PG_hwpoison bit check.
3770 */
3771 if (unlikely(PageHWPoison(page))) {
3772 ret = VM_FAULT_HWPOISON |
3773 VM_FAULT_SET_HINDEX(hstate_index(h));
3774 goto backout_unlocked;
3775 }
3776 }
3777
3778 /*
3779 * If we are going to COW a private mapping later, we examine the
3780 * pending reservations for this page now. This will ensure that
3781 * any allocations necessary to record that reservation occur outside
3782 * the spinlock.
3783 */
3784 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3785 if (vma_needs_reservation(h, vma, address) < 0) {
3786 ret = VM_FAULT_OOM;
3787 goto backout_unlocked;
3788 }
3789 /* Just decrements count, does not deallocate */
3790 vma_end_reservation(h, vma, address);
3791 }
3792
3793 ptl = huge_pte_lock(h, mm, ptep);
3794 size = i_size_read(mapping->host) >> huge_page_shift(h);
3795 if (idx >= size)
3796 goto backout;
3797
3798 ret = 0;
3799 if (!huge_pte_none(huge_ptep_get(ptep)))
3800 goto backout;
3801
3802 if (anon_rmap) {
3803 ClearPagePrivate(page);
3804 hugepage_add_new_anon_rmap(page, vma, address);
3805 } else
3806 page_dup_rmap(page, true);
3807 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3808 && (vma->vm_flags & VM_SHARED)));
3809 set_huge_pte_at(mm, address, ptep, new_pte);
3810
3811 hugetlb_count_add(pages_per_huge_page(h), mm);
3812 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3813 /* Optimization, do the COW without a second fault */
3814 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3815 }
3816
3817 spin_unlock(ptl);
3818 unlock_page(page);
3819 out:
3820 return ret;
3821
3822 backout:
3823 spin_unlock(ptl);
3824 backout_unlocked:
3825 unlock_page(page);
3826 restore_reserve_on_error(h, vma, address, page);
3827 put_page(page);
3828 goto out;
3829 }
3830
3831 #ifdef CONFIG_SMP
3832 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3833 struct vm_area_struct *vma,
3834 struct address_space *mapping,
3835 pgoff_t idx, unsigned long address)
3836 {
3837 unsigned long key[2];
3838 u32 hash;
3839
3840 if (vma->vm_flags & VM_SHARED) {
3841 key[0] = (unsigned long) mapping;
3842 key[1] = idx;
3843 } else {
3844 key[0] = (unsigned long) mm;
3845 key[1] = address >> huge_page_shift(h);
3846 }
3847
3848 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3849
3850 return hash & (num_fault_mutexes - 1);
3851 }
3852 #else
3853 /*
3854 * For uniprocesor systems we always use a single mutex, so just
3855 * return 0 and avoid the hashing overhead.
3856 */
3857 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3858 struct vm_area_struct *vma,
3859 struct address_space *mapping,
3860 pgoff_t idx, unsigned long address)
3861 {
3862 return 0;
3863 }
3864 #endif
3865
3866 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3867 unsigned long address, unsigned int flags)
3868 {
3869 pte_t *ptep, entry;
3870 spinlock_t *ptl;
3871 int ret;
3872 u32 hash;
3873 pgoff_t idx;
3874 struct page *page = NULL;
3875 struct page *pagecache_page = NULL;
3876 struct hstate *h = hstate_vma(vma);
3877 struct address_space *mapping;
3878 int need_wait_lock = 0;
3879
3880 address &= huge_page_mask(h);
3881
3882 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3883 if (ptep) {
3884 entry = huge_ptep_get(ptep);
3885 if (unlikely(is_hugetlb_entry_migration(entry))) {
3886 migration_entry_wait_huge(vma, mm, ptep);
3887 return 0;
3888 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3889 return VM_FAULT_HWPOISON_LARGE |
3890 VM_FAULT_SET_HINDEX(hstate_index(h));
3891 } else {
3892 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3893 if (!ptep)
3894 return VM_FAULT_OOM;
3895 }
3896
3897 mapping = vma->vm_file->f_mapping;
3898 idx = vma_hugecache_offset(h, vma, address);
3899
3900 /*
3901 * Serialize hugepage allocation and instantiation, so that we don't
3902 * get spurious allocation failures if two CPUs race to instantiate
3903 * the same page in the page cache.
3904 */
3905 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3906 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3907
3908 entry = huge_ptep_get(ptep);
3909 if (huge_pte_none(entry)) {
3910 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3911 goto out_mutex;
3912 }
3913
3914 ret = 0;
3915
3916 /*
3917 * entry could be a migration/hwpoison entry at this point, so this
3918 * check prevents the kernel from going below assuming that we have
3919 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3920 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3921 * handle it.
3922 */
3923 if (!pte_present(entry))
3924 goto out_mutex;
3925
3926 /*
3927 * If we are going to COW the mapping later, we examine the pending
3928 * reservations for this page now. This will ensure that any
3929 * allocations necessary to record that reservation occur outside the
3930 * spinlock. For private mappings, we also lookup the pagecache
3931 * page now as it is used to determine if a reservation has been
3932 * consumed.
3933 */
3934 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3935 if (vma_needs_reservation(h, vma, address) < 0) {
3936 ret = VM_FAULT_OOM;
3937 goto out_mutex;
3938 }
3939 /* Just decrements count, does not deallocate */
3940 vma_end_reservation(h, vma, address);
3941
3942 if (!(vma->vm_flags & VM_MAYSHARE))
3943 pagecache_page = hugetlbfs_pagecache_page(h,
3944 vma, address);
3945 }
3946
3947 ptl = huge_pte_lock(h, mm, ptep);
3948
3949 /* Check for a racing update before calling hugetlb_cow */
3950 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3951 goto out_ptl;
3952
3953 /*
3954 * hugetlb_cow() requires page locks of pte_page(entry) and
3955 * pagecache_page, so here we need take the former one
3956 * when page != pagecache_page or !pagecache_page.
3957 */
3958 page = pte_page(entry);
3959 if (page != pagecache_page)
3960 if (!trylock_page(page)) {
3961 need_wait_lock = 1;
3962 goto out_ptl;
3963 }
3964
3965 get_page(page);
3966
3967 if (flags & FAULT_FLAG_WRITE) {
3968 if (!huge_pte_write(entry)) {
3969 ret = hugetlb_cow(mm, vma, address, ptep,
3970 pagecache_page, ptl);
3971 goto out_put_page;
3972 }
3973 entry = huge_pte_mkdirty(entry);
3974 }
3975 entry = pte_mkyoung(entry);
3976 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3977 flags & FAULT_FLAG_WRITE))
3978 update_mmu_cache(vma, address, ptep);
3979 out_put_page:
3980 if (page != pagecache_page)
3981 unlock_page(page);
3982 put_page(page);
3983 out_ptl:
3984 spin_unlock(ptl);
3985
3986 if (pagecache_page) {
3987 unlock_page(pagecache_page);
3988 put_page(pagecache_page);
3989 }
3990 out_mutex:
3991 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3992 /*
3993 * Generally it's safe to hold refcount during waiting page lock. But
3994 * here we just wait to defer the next page fault to avoid busy loop and
3995 * the page is not used after unlocked before returning from the current
3996 * page fault. So we are safe from accessing freed page, even if we wait
3997 * here without taking refcount.
3998 */
3999 if (need_wait_lock)
4000 wait_on_page_locked(page);
4001 return ret;
4002 }
4003
4004 /*
4005 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4006 * modifications for huge pages.
4007 */
4008 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4009 pte_t *dst_pte,
4010 struct vm_area_struct *dst_vma,
4011 unsigned long dst_addr,
4012 unsigned long src_addr,
4013 struct page **pagep)
4014 {
4015 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4016 struct hstate *h = hstate_vma(dst_vma);
4017 pte_t _dst_pte;
4018 spinlock_t *ptl;
4019 int ret;
4020 struct page *page;
4021
4022 if (!*pagep) {
4023 ret = -ENOMEM;
4024 page = alloc_huge_page(dst_vma, dst_addr, 0);
4025 if (IS_ERR(page))
4026 goto out;
4027
4028 ret = copy_huge_page_from_user(page,
4029 (const void __user *) src_addr,
4030 pages_per_huge_page(h), false);
4031
4032 /* fallback to copy_from_user outside mmap_sem */
4033 if (unlikely(ret)) {
4034 ret = -EFAULT;
4035 *pagep = page;
4036 /* don't free the page */
4037 goto out;
4038 }
4039 } else {
4040 page = *pagep;
4041 *pagep = NULL;
4042 }
4043
4044 /*
4045 * The memory barrier inside __SetPageUptodate makes sure that
4046 * preceding stores to the page contents become visible before
4047 * the set_pte_at() write.
4048 */
4049 __SetPageUptodate(page);
4050 set_page_huge_active(page);
4051
4052 /*
4053 * If shared, add to page cache
4054 */
4055 if (vm_shared) {
4056 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4057 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4058
4059 ret = huge_add_to_page_cache(page, mapping, idx);
4060 if (ret)
4061 goto out_release_nounlock;
4062 }
4063
4064 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4065 spin_lock(ptl);
4066
4067 ret = -EEXIST;
4068 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4069 goto out_release_unlock;
4070
4071 if (vm_shared) {
4072 page_dup_rmap(page, true);
4073 } else {
4074 ClearPagePrivate(page);
4075 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4076 }
4077
4078 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4079 if (dst_vma->vm_flags & VM_WRITE)
4080 _dst_pte = huge_pte_mkdirty(_dst_pte);
4081 _dst_pte = pte_mkyoung(_dst_pte);
4082
4083 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4084
4085 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4086 dst_vma->vm_flags & VM_WRITE);
4087 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4088
4089 /* No need to invalidate - it was non-present before */
4090 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4091
4092 spin_unlock(ptl);
4093 if (vm_shared)
4094 unlock_page(page);
4095 ret = 0;
4096 out:
4097 return ret;
4098 out_release_unlock:
4099 spin_unlock(ptl);
4100 out_release_nounlock:
4101 if (vm_shared)
4102 unlock_page(page);
4103 put_page(page);
4104 goto out;
4105 }
4106
4107 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4108 struct page **pages, struct vm_area_struct **vmas,
4109 unsigned long *position, unsigned long *nr_pages,
4110 long i, unsigned int flags, int *nonblocking)
4111 {
4112 unsigned long pfn_offset;
4113 unsigned long vaddr = *position;
4114 unsigned long remainder = *nr_pages;
4115 struct hstate *h = hstate_vma(vma);
4116
4117 while (vaddr < vma->vm_end && remainder) {
4118 pte_t *pte;
4119 spinlock_t *ptl = NULL;
4120 int absent;
4121 struct page *page;
4122
4123 /*
4124 * If we have a pending SIGKILL, don't keep faulting pages and
4125 * potentially allocating memory.
4126 */
4127 if (unlikely(fatal_signal_pending(current))) {
4128 remainder = 0;
4129 break;
4130 }
4131
4132 /*
4133 * Some archs (sparc64, sh*) have multiple pte_ts to
4134 * each hugepage. We have to make sure we get the
4135 * first, for the page indexing below to work.
4136 *
4137 * Note that page table lock is not held when pte is null.
4138 */
4139 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4140 huge_page_size(h));
4141 if (pte)
4142 ptl = huge_pte_lock(h, mm, pte);
4143 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4144
4145 /*
4146 * When coredumping, it suits get_dump_page if we just return
4147 * an error where there's an empty slot with no huge pagecache
4148 * to back it. This way, we avoid allocating a hugepage, and
4149 * the sparse dumpfile avoids allocating disk blocks, but its
4150 * huge holes still show up with zeroes where they need to be.
4151 */
4152 if (absent && (flags & FOLL_DUMP) &&
4153 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4154 if (pte)
4155 spin_unlock(ptl);
4156 remainder = 0;
4157 break;
4158 }
4159
4160 /*
4161 * We need call hugetlb_fault for both hugepages under migration
4162 * (in which case hugetlb_fault waits for the migration,) and
4163 * hwpoisoned hugepages (in which case we need to prevent the
4164 * caller from accessing to them.) In order to do this, we use
4165 * here is_swap_pte instead of is_hugetlb_entry_migration and
4166 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4167 * both cases, and because we can't follow correct pages
4168 * directly from any kind of swap entries.
4169 */
4170 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4171 ((flags & FOLL_WRITE) &&
4172 !huge_pte_write(huge_ptep_get(pte)))) {
4173 int ret;
4174 unsigned int fault_flags = 0;
4175
4176 if (pte)
4177 spin_unlock(ptl);
4178 if (flags & FOLL_WRITE)
4179 fault_flags |= FAULT_FLAG_WRITE;
4180 if (nonblocking)
4181 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4182 if (flags & FOLL_NOWAIT)
4183 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4184 FAULT_FLAG_RETRY_NOWAIT;
4185 if (flags & FOLL_TRIED) {
4186 VM_WARN_ON_ONCE(fault_flags &
4187 FAULT_FLAG_ALLOW_RETRY);
4188 fault_flags |= FAULT_FLAG_TRIED;
4189 }
4190 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4191 if (ret & VM_FAULT_ERROR) {
4192 int err = vm_fault_to_errno(ret, flags);
4193
4194 if (err)
4195 return err;
4196
4197 remainder = 0;
4198 break;
4199 }
4200 if (ret & VM_FAULT_RETRY) {
4201 if (nonblocking)
4202 *nonblocking = 0;
4203 *nr_pages = 0;
4204 /*
4205 * VM_FAULT_RETRY must not return an
4206 * error, it will return zero
4207 * instead.
4208 *
4209 * No need to update "position" as the
4210 * caller will not check it after
4211 * *nr_pages is set to 0.
4212 */
4213 return i;
4214 }
4215 continue;
4216 }
4217
4218 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4219 page = pte_page(huge_ptep_get(pte));
4220 same_page:
4221 if (pages) {
4222 pages[i] = mem_map_offset(page, pfn_offset);
4223 get_page(pages[i]);
4224 }
4225
4226 if (vmas)
4227 vmas[i] = vma;
4228
4229 vaddr += PAGE_SIZE;
4230 ++pfn_offset;
4231 --remainder;
4232 ++i;
4233 if (vaddr < vma->vm_end && remainder &&
4234 pfn_offset < pages_per_huge_page(h)) {
4235 /*
4236 * We use pfn_offset to avoid touching the pageframes
4237 * of this compound page.
4238 */
4239 goto same_page;
4240 }
4241 spin_unlock(ptl);
4242 }
4243 *nr_pages = remainder;
4244 /*
4245 * setting position is actually required only if remainder is
4246 * not zero but it's faster not to add a "if (remainder)"
4247 * branch.
4248 */
4249 *position = vaddr;
4250
4251 return i ? i : -EFAULT;
4252 }
4253
4254 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4255 /*
4256 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4257 * implement this.
4258 */
4259 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4260 #endif
4261
4262 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4263 unsigned long address, unsigned long end, pgprot_t newprot)
4264 {
4265 struct mm_struct *mm = vma->vm_mm;
4266 unsigned long start = address;
4267 pte_t *ptep;
4268 pte_t pte;
4269 struct hstate *h = hstate_vma(vma);
4270 unsigned long pages = 0;
4271
4272 BUG_ON(address >= end);
4273 flush_cache_range(vma, address, end);
4274
4275 mmu_notifier_invalidate_range_start(mm, start, end);
4276 i_mmap_lock_write(vma->vm_file->f_mapping);
4277 for (; address < end; address += huge_page_size(h)) {
4278 spinlock_t *ptl;
4279 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4280 if (!ptep)
4281 continue;
4282 ptl = huge_pte_lock(h, mm, ptep);
4283 if (huge_pmd_unshare(mm, &address, ptep)) {
4284 pages++;
4285 spin_unlock(ptl);
4286 continue;
4287 }
4288 pte = huge_ptep_get(ptep);
4289 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4290 spin_unlock(ptl);
4291 continue;
4292 }
4293 if (unlikely(is_hugetlb_entry_migration(pte))) {
4294 swp_entry_t entry = pte_to_swp_entry(pte);
4295
4296 if (is_write_migration_entry(entry)) {
4297 pte_t newpte;
4298
4299 make_migration_entry_read(&entry);
4300 newpte = swp_entry_to_pte(entry);
4301 set_huge_swap_pte_at(mm, address, ptep,
4302 newpte, huge_page_size(h));
4303 pages++;
4304 }
4305 spin_unlock(ptl);
4306 continue;
4307 }
4308 if (!huge_pte_none(pte)) {
4309 pte = huge_ptep_get_and_clear(mm, address, ptep);
4310 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4311 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4312 set_huge_pte_at(mm, address, ptep, pte);
4313 pages++;
4314 }
4315 spin_unlock(ptl);
4316 }
4317 /*
4318 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4319 * may have cleared our pud entry and done put_page on the page table:
4320 * once we release i_mmap_rwsem, another task can do the final put_page
4321 * and that page table be reused and filled with junk.
4322 */
4323 flush_hugetlb_tlb_range(vma, start, end);
4324 mmu_notifier_invalidate_range(mm, start, end);
4325 i_mmap_unlock_write(vma->vm_file->f_mapping);
4326 mmu_notifier_invalidate_range_end(mm, start, end);
4327
4328 return pages << h->order;
4329 }
4330
4331 int hugetlb_reserve_pages(struct inode *inode,
4332 long from, long to,
4333 struct vm_area_struct *vma,
4334 vm_flags_t vm_flags)
4335 {
4336 long ret, chg;
4337 struct hstate *h = hstate_inode(inode);
4338 struct hugepage_subpool *spool = subpool_inode(inode);
4339 struct resv_map *resv_map;
4340 long gbl_reserve;
4341
4342 /*
4343 * Only apply hugepage reservation if asked. At fault time, an
4344 * attempt will be made for VM_NORESERVE to allocate a page
4345 * without using reserves
4346 */
4347 if (vm_flags & VM_NORESERVE)
4348 return 0;
4349
4350 /*
4351 * Shared mappings base their reservation on the number of pages that
4352 * are already allocated on behalf of the file. Private mappings need
4353 * to reserve the full area even if read-only as mprotect() may be
4354 * called to make the mapping read-write. Assume !vma is a shm mapping
4355 */
4356 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4357 resv_map = inode_resv_map(inode);
4358
4359 chg = region_chg(resv_map, from, to);
4360
4361 } else {
4362 resv_map = resv_map_alloc();
4363 if (!resv_map)
4364 return -ENOMEM;
4365
4366 chg = to - from;
4367
4368 set_vma_resv_map(vma, resv_map);
4369 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4370 }
4371
4372 if (chg < 0) {
4373 ret = chg;
4374 goto out_err;
4375 }
4376
4377 /*
4378 * There must be enough pages in the subpool for the mapping. If
4379 * the subpool has a minimum size, there may be some global
4380 * reservations already in place (gbl_reserve).
4381 */
4382 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4383 if (gbl_reserve < 0) {
4384 ret = -ENOSPC;
4385 goto out_err;
4386 }
4387
4388 /*
4389 * Check enough hugepages are available for the reservation.
4390 * Hand the pages back to the subpool if there are not
4391 */
4392 ret = hugetlb_acct_memory(h, gbl_reserve);
4393 if (ret < 0) {
4394 /* put back original number of pages, chg */
4395 (void)hugepage_subpool_put_pages(spool, chg);
4396 goto out_err;
4397 }
4398
4399 /*
4400 * Account for the reservations made. Shared mappings record regions
4401 * that have reservations as they are shared by multiple VMAs.
4402 * When the last VMA disappears, the region map says how much
4403 * the reservation was and the page cache tells how much of
4404 * the reservation was consumed. Private mappings are per-VMA and
4405 * only the consumed reservations are tracked. When the VMA
4406 * disappears, the original reservation is the VMA size and the
4407 * consumed reservations are stored in the map. Hence, nothing
4408 * else has to be done for private mappings here
4409 */
4410 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4411 long add = region_add(resv_map, from, to);
4412
4413 if (unlikely(chg > add)) {
4414 /*
4415 * pages in this range were added to the reserve
4416 * map between region_chg and region_add. This
4417 * indicates a race with alloc_huge_page. Adjust
4418 * the subpool and reserve counts modified above
4419 * based on the difference.
4420 */
4421 long rsv_adjust;
4422
4423 rsv_adjust = hugepage_subpool_put_pages(spool,
4424 chg - add);
4425 hugetlb_acct_memory(h, -rsv_adjust);
4426 }
4427 }
4428 return 0;
4429 out_err:
4430 if (!vma || vma->vm_flags & VM_MAYSHARE)
4431 /* Don't call region_abort if region_chg failed */
4432 if (chg >= 0)
4433 region_abort(resv_map, from, to);
4434 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4435 kref_put(&resv_map->refs, resv_map_release);
4436 return ret;
4437 }
4438
4439 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4440 long freed)
4441 {
4442 struct hstate *h = hstate_inode(inode);
4443 struct resv_map *resv_map = inode_resv_map(inode);
4444 long chg = 0;
4445 struct hugepage_subpool *spool = subpool_inode(inode);
4446 long gbl_reserve;
4447
4448 if (resv_map) {
4449 chg = region_del(resv_map, start, end);
4450 /*
4451 * region_del() can fail in the rare case where a region
4452 * must be split and another region descriptor can not be
4453 * allocated. If end == LONG_MAX, it will not fail.
4454 */
4455 if (chg < 0)
4456 return chg;
4457 }
4458
4459 spin_lock(&inode->i_lock);
4460 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4461 spin_unlock(&inode->i_lock);
4462
4463 /*
4464 * If the subpool has a minimum size, the number of global
4465 * reservations to be released may be adjusted.
4466 */
4467 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4468 hugetlb_acct_memory(h, -gbl_reserve);
4469
4470 return 0;
4471 }
4472
4473 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4474 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4475 struct vm_area_struct *vma,
4476 unsigned long addr, pgoff_t idx)
4477 {
4478 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4479 svma->vm_start;
4480 unsigned long sbase = saddr & PUD_MASK;
4481 unsigned long s_end = sbase + PUD_SIZE;
4482
4483 /* Allow segments to share if only one is marked locked */
4484 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4485 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4486
4487 /*
4488 * match the virtual addresses, permission and the alignment of the
4489 * page table page.
4490 */
4491 if (pmd_index(addr) != pmd_index(saddr) ||
4492 vm_flags != svm_flags ||
4493 sbase < svma->vm_start || svma->vm_end < s_end)
4494 return 0;
4495
4496 return saddr;
4497 }
4498
4499 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4500 {
4501 unsigned long base = addr & PUD_MASK;
4502 unsigned long end = base + PUD_SIZE;
4503
4504 /*
4505 * check on proper vm_flags and page table alignment
4506 */
4507 if (vma->vm_flags & VM_MAYSHARE &&
4508 vma->vm_start <= base && end <= vma->vm_end)
4509 return true;
4510 return false;
4511 }
4512
4513 /*
4514 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4515 * and returns the corresponding pte. While this is not necessary for the
4516 * !shared pmd case because we can allocate the pmd later as well, it makes the
4517 * code much cleaner. pmd allocation is essential for the shared case because
4518 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4519 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4520 * bad pmd for sharing.
4521 */
4522 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4523 {
4524 struct vm_area_struct *vma = find_vma(mm, addr);
4525 struct address_space *mapping = vma->vm_file->f_mapping;
4526 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4527 vma->vm_pgoff;
4528 struct vm_area_struct *svma;
4529 unsigned long saddr;
4530 pte_t *spte = NULL;
4531 pte_t *pte;
4532 spinlock_t *ptl;
4533
4534 if (!vma_shareable(vma, addr))
4535 return (pte_t *)pmd_alloc(mm, pud, addr);
4536
4537 i_mmap_lock_write(mapping);
4538 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4539 if (svma == vma)
4540 continue;
4541
4542 saddr = page_table_shareable(svma, vma, addr, idx);
4543 if (saddr) {
4544 spte = huge_pte_offset(svma->vm_mm, saddr,
4545 vma_mmu_pagesize(svma));
4546 if (spte) {
4547 get_page(virt_to_page(spte));
4548 break;
4549 }
4550 }
4551 }
4552
4553 if (!spte)
4554 goto out;
4555
4556 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4557 if (pud_none(*pud)) {
4558 pud_populate(mm, pud,
4559 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4560 mm_inc_nr_pmds(mm);
4561 } else {
4562 put_page(virt_to_page(spte));
4563 }
4564 spin_unlock(ptl);
4565 out:
4566 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4567 i_mmap_unlock_write(mapping);
4568 return pte;
4569 }
4570
4571 /*
4572 * unmap huge page backed by shared pte.
4573 *
4574 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4575 * indicated by page_count > 1, unmap is achieved by clearing pud and
4576 * decrementing the ref count. If count == 1, the pte page is not shared.
4577 *
4578 * called with page table lock held.
4579 *
4580 * returns: 1 successfully unmapped a shared pte page
4581 * 0 the underlying pte page is not shared, or it is the last user
4582 */
4583 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4584 {
4585 pgd_t *pgd = pgd_offset(mm, *addr);
4586 p4d_t *p4d = p4d_offset(pgd, *addr);
4587 pud_t *pud = pud_offset(p4d, *addr);
4588
4589 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4590 if (page_count(virt_to_page(ptep)) == 1)
4591 return 0;
4592
4593 pud_clear(pud);
4594 put_page(virt_to_page(ptep));
4595 mm_dec_nr_pmds(mm);
4596 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4597 return 1;
4598 }
4599 #define want_pmd_share() (1)
4600 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4601 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4602 {
4603 return NULL;
4604 }
4605
4606 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4607 {
4608 return 0;
4609 }
4610 #define want_pmd_share() (0)
4611 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4612
4613 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4614 pte_t *huge_pte_alloc(struct mm_struct *mm,
4615 unsigned long addr, unsigned long sz)
4616 {
4617 pgd_t *pgd;
4618 p4d_t *p4d;
4619 pud_t *pud;
4620 pte_t *pte = NULL;
4621
4622 pgd = pgd_offset(mm, addr);
4623 p4d = p4d_offset(pgd, addr);
4624 pud = pud_alloc(mm, p4d, addr);
4625 if (pud) {
4626 if (sz == PUD_SIZE) {
4627 pte = (pte_t *)pud;
4628 } else {
4629 BUG_ON(sz != PMD_SIZE);
4630 if (want_pmd_share() && pud_none(*pud))
4631 pte = huge_pmd_share(mm, addr, pud);
4632 else
4633 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4634 }
4635 }
4636 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4637
4638 return pte;
4639 }
4640
4641 pte_t *huge_pte_offset(struct mm_struct *mm,
4642 unsigned long addr, unsigned long sz)
4643 {
4644 pgd_t *pgd;
4645 p4d_t *p4d;
4646 pud_t *pud;
4647 pmd_t *pmd;
4648
4649 pgd = pgd_offset(mm, addr);
4650 if (!pgd_present(*pgd))
4651 return NULL;
4652 p4d = p4d_offset(pgd, addr);
4653 if (!p4d_present(*p4d))
4654 return NULL;
4655 pud = pud_offset(p4d, addr);
4656 if (!pud_present(*pud))
4657 return NULL;
4658 if (pud_huge(*pud))
4659 return (pte_t *)pud;
4660 pmd = pmd_offset(pud, addr);
4661 return (pte_t *) pmd;
4662 }
4663
4664 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4665
4666 /*
4667 * These functions are overwritable if your architecture needs its own
4668 * behavior.
4669 */
4670 struct page * __weak
4671 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4672 int write)
4673 {
4674 return ERR_PTR(-EINVAL);
4675 }
4676
4677 struct page * __weak
4678 follow_huge_pd(struct vm_area_struct *vma,
4679 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4680 {
4681 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4682 return NULL;
4683 }
4684
4685 struct page * __weak
4686 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4687 pmd_t *pmd, int flags)
4688 {
4689 struct page *page = NULL;
4690 spinlock_t *ptl;
4691 pte_t pte;
4692 retry:
4693 ptl = pmd_lockptr(mm, pmd);
4694 spin_lock(ptl);
4695 /*
4696 * make sure that the address range covered by this pmd is not
4697 * unmapped from other threads.
4698 */
4699 if (!pmd_huge(*pmd))
4700 goto out;
4701 pte = huge_ptep_get((pte_t *)pmd);
4702 if (pte_present(pte)) {
4703 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4704 if (flags & FOLL_GET)
4705 get_page(page);
4706 } else {
4707 if (is_hugetlb_entry_migration(pte)) {
4708 spin_unlock(ptl);
4709 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4710 goto retry;
4711 }
4712 /*
4713 * hwpoisoned entry is treated as no_page_table in
4714 * follow_page_mask().
4715 */
4716 }
4717 out:
4718 spin_unlock(ptl);
4719 return page;
4720 }
4721
4722 struct page * __weak
4723 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4724 pud_t *pud, int flags)
4725 {
4726 if (flags & FOLL_GET)
4727 return NULL;
4728
4729 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4730 }
4731
4732 struct page * __weak
4733 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4734 {
4735 if (flags & FOLL_GET)
4736 return NULL;
4737
4738 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4739 }
4740
4741 #ifdef CONFIG_MEMORY_FAILURE
4742
4743 /*
4744 * This function is called from memory failure code.
4745 */
4746 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4747 {
4748 struct hstate *h = page_hstate(hpage);
4749 int nid = page_to_nid(hpage);
4750 int ret = -EBUSY;
4751
4752 spin_lock(&hugetlb_lock);
4753 /*
4754 * Just checking !page_huge_active is not enough, because that could be
4755 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4756 */
4757 if (!page_huge_active(hpage) && !page_count(hpage)) {
4758 /*
4759 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4760 * but dangling hpage->lru can trigger list-debug warnings
4761 * (this happens when we call unpoison_memory() on it),
4762 * so let it point to itself with list_del_init().
4763 */
4764 list_del_init(&hpage->lru);
4765 set_page_refcounted(hpage);
4766 h->free_huge_pages--;
4767 h->free_huge_pages_node[nid]--;
4768 ret = 0;
4769 }
4770 spin_unlock(&hugetlb_lock);
4771 return ret;
4772 }
4773 #endif
4774
4775 bool isolate_huge_page(struct page *page, struct list_head *list)
4776 {
4777 bool ret = true;
4778
4779 VM_BUG_ON_PAGE(!PageHead(page), page);
4780 spin_lock(&hugetlb_lock);
4781 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4782 ret = false;
4783 goto unlock;
4784 }
4785 clear_page_huge_active(page);
4786 list_move_tail(&page->lru, list);
4787 unlock:
4788 spin_unlock(&hugetlb_lock);
4789 return ret;
4790 }
4791
4792 void putback_active_hugepage(struct page *page)
4793 {
4794 VM_BUG_ON_PAGE(!PageHead(page), page);
4795 spin_lock(&hugetlb_lock);
4796 set_page_huge_active(page);
4797 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4798 spin_unlock(&hugetlb_lock);
4799 put_page(page);
4800 }