]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hugetlb.c
mm/hugetlb.c: use long vars instead of int in region_count()
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94 {
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113 {
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291 }
292
293 /*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
299 {
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306 {
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375 {
376 vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435 return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
441 {
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
444
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 /*
450 * Only the process that called mmap() has reserves for
451 * private mappings.
452 */
453 h->resv_huge_pages--;
454 }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468 if (vma->vm_flags & VM_MAYSHARE)
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
481
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
485
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
489 }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494 int i;
495 struct hstate *h = page_hstate(src);
496
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
500 }
501
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
506 }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511 int nid = page_to_nid(page);
512 list_add(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519 struct page *page;
520
521 if (list_empty(&h->hugepage_freelists[nid]))
522 return NULL;
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 list_del(&page->lru);
525 set_page_refcounted(page);
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
528 return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
533 unsigned long address, int avoid_reserve)
534 {
535 struct page *page = NULL;
536 struct mempolicy *mpol;
537 nodemask_t *nodemask;
538 struct zonelist *zonelist;
539 struct zone *zone;
540 struct zoneref *z;
541 unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544 cpuset_mems_cookie = get_mems_allowed();
545 zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
547 /*
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
551 */
552 if (!vma_has_reserves(vma) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
554 goto err;
555
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 goto err;
559
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
568 }
569 }
570 }
571
572 mpol_cond_put(mpol);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
575 return page;
576
577 err:
578 mpol_cond_put(mpol);
579 return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584 int i;
585
586 VM_BUG_ON(h->order >= MAX_ORDER);
587
588 h->nr_huge_pages--;
589 h->nr_huge_pages_node[page_to_nid(page)]--;
590 for (i = 0; i < pages_per_huge_page(h); i++) {
591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 1 << PG_referenced | 1 << PG_dirty |
593 1 << PG_active | 1 << PG_reserved |
594 1 << PG_private | 1 << PG_writeback);
595 }
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
598 arch_release_hugepage(page);
599 __free_pages(page, huge_page_order(h));
600 }
601
602 struct hstate *size_to_hstate(unsigned long size)
603 {
604 struct hstate *h;
605
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
609 }
610 return NULL;
611 }
612
613 static void free_huge_page(struct page *page)
614 {
615 /*
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
618 */
619 struct hstate *h = page_hstate(page);
620 int nid = page_to_nid(page);
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
623
624 set_page_private(page, 0);
625 page->mapping = NULL;
626 BUG_ON(page_count(page));
627 BUG_ON(page_mapcount(page));
628 INIT_LIST_HEAD(&page->lru);
629
630 spin_lock(&hugetlb_lock);
631 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632 update_and_free_page(h, page);
633 h->surplus_huge_pages--;
634 h->surplus_huge_pages_node[nid]--;
635 } else {
636 enqueue_huge_page(h, page);
637 }
638 spin_unlock(&hugetlb_lock);
639 hugepage_subpool_put_pages(spool, 1);
640 }
641
642 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
643 {
644 set_compound_page_dtor(page, free_huge_page);
645 spin_lock(&hugetlb_lock);
646 h->nr_huge_pages++;
647 h->nr_huge_pages_node[nid]++;
648 spin_unlock(&hugetlb_lock);
649 put_page(page); /* free it into the hugepage allocator */
650 }
651
652 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
653 {
654 int i;
655 int nr_pages = 1 << order;
656 struct page *p = page + 1;
657
658 /* we rely on prep_new_huge_page to set the destructor */
659 set_compound_order(page, order);
660 __SetPageHead(page);
661 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662 __SetPageTail(p);
663 set_page_count(p, 0);
664 p->first_page = page;
665 }
666 }
667
668 int PageHuge(struct page *page)
669 {
670 compound_page_dtor *dtor;
671
672 if (!PageCompound(page))
673 return 0;
674
675 page = compound_head(page);
676 dtor = get_compound_page_dtor(page);
677
678 return dtor == free_huge_page;
679 }
680 EXPORT_SYMBOL_GPL(PageHuge);
681
682 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
683 {
684 struct page *page;
685
686 if (h->order >= MAX_ORDER)
687 return NULL;
688
689 page = alloc_pages_exact_node(nid,
690 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
691 __GFP_REPEAT|__GFP_NOWARN,
692 huge_page_order(h));
693 if (page) {
694 if (arch_prepare_hugepage(page)) {
695 __free_pages(page, huge_page_order(h));
696 return NULL;
697 }
698 prep_new_huge_page(h, page, nid);
699 }
700
701 return page;
702 }
703
704 /*
705 * common helper functions for hstate_next_node_to_{alloc|free}.
706 * We may have allocated or freed a huge page based on a different
707 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
708 * be outside of *nodes_allowed. Ensure that we use an allowed
709 * node for alloc or free.
710 */
711 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
712 {
713 nid = next_node(nid, *nodes_allowed);
714 if (nid == MAX_NUMNODES)
715 nid = first_node(*nodes_allowed);
716 VM_BUG_ON(nid >= MAX_NUMNODES);
717
718 return nid;
719 }
720
721 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
722 {
723 if (!node_isset(nid, *nodes_allowed))
724 nid = next_node_allowed(nid, nodes_allowed);
725 return nid;
726 }
727
728 /*
729 * returns the previously saved node ["this node"] from which to
730 * allocate a persistent huge page for the pool and advance the
731 * next node from which to allocate, handling wrap at end of node
732 * mask.
733 */
734 static int hstate_next_node_to_alloc(struct hstate *h,
735 nodemask_t *nodes_allowed)
736 {
737 int nid;
738
739 VM_BUG_ON(!nodes_allowed);
740
741 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
742 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
743
744 return nid;
745 }
746
747 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
748 {
749 struct page *page;
750 int start_nid;
751 int next_nid;
752 int ret = 0;
753
754 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
755 next_nid = start_nid;
756
757 do {
758 page = alloc_fresh_huge_page_node(h, next_nid);
759 if (page) {
760 ret = 1;
761 break;
762 }
763 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
764 } while (next_nid != start_nid);
765
766 if (ret)
767 count_vm_event(HTLB_BUDDY_PGALLOC);
768 else
769 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
770
771 return ret;
772 }
773
774 /*
775 * helper for free_pool_huge_page() - return the previously saved
776 * node ["this node"] from which to free a huge page. Advance the
777 * next node id whether or not we find a free huge page to free so
778 * that the next attempt to free addresses the next node.
779 */
780 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
781 {
782 int nid;
783
784 VM_BUG_ON(!nodes_allowed);
785
786 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
787 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
788
789 return nid;
790 }
791
792 /*
793 * Free huge page from pool from next node to free.
794 * Attempt to keep persistent huge pages more or less
795 * balanced over allowed nodes.
796 * Called with hugetlb_lock locked.
797 */
798 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
799 bool acct_surplus)
800 {
801 int start_nid;
802 int next_nid;
803 int ret = 0;
804
805 start_nid = hstate_next_node_to_free(h, nodes_allowed);
806 next_nid = start_nid;
807
808 do {
809 /*
810 * If we're returning unused surplus pages, only examine
811 * nodes with surplus pages.
812 */
813 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
814 !list_empty(&h->hugepage_freelists[next_nid])) {
815 struct page *page =
816 list_entry(h->hugepage_freelists[next_nid].next,
817 struct page, lru);
818 list_del(&page->lru);
819 h->free_huge_pages--;
820 h->free_huge_pages_node[next_nid]--;
821 if (acct_surplus) {
822 h->surplus_huge_pages--;
823 h->surplus_huge_pages_node[next_nid]--;
824 }
825 update_and_free_page(h, page);
826 ret = 1;
827 break;
828 }
829 next_nid = hstate_next_node_to_free(h, nodes_allowed);
830 } while (next_nid != start_nid);
831
832 return ret;
833 }
834
835 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
836 {
837 struct page *page;
838 unsigned int r_nid;
839
840 if (h->order >= MAX_ORDER)
841 return NULL;
842
843 /*
844 * Assume we will successfully allocate the surplus page to
845 * prevent racing processes from causing the surplus to exceed
846 * overcommit
847 *
848 * This however introduces a different race, where a process B
849 * tries to grow the static hugepage pool while alloc_pages() is
850 * called by process A. B will only examine the per-node
851 * counters in determining if surplus huge pages can be
852 * converted to normal huge pages in adjust_pool_surplus(). A
853 * won't be able to increment the per-node counter, until the
854 * lock is dropped by B, but B doesn't drop hugetlb_lock until
855 * no more huge pages can be converted from surplus to normal
856 * state (and doesn't try to convert again). Thus, we have a
857 * case where a surplus huge page exists, the pool is grown, and
858 * the surplus huge page still exists after, even though it
859 * should just have been converted to a normal huge page. This
860 * does not leak memory, though, as the hugepage will be freed
861 * once it is out of use. It also does not allow the counters to
862 * go out of whack in adjust_pool_surplus() as we don't modify
863 * the node values until we've gotten the hugepage and only the
864 * per-node value is checked there.
865 */
866 spin_lock(&hugetlb_lock);
867 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
868 spin_unlock(&hugetlb_lock);
869 return NULL;
870 } else {
871 h->nr_huge_pages++;
872 h->surplus_huge_pages++;
873 }
874 spin_unlock(&hugetlb_lock);
875
876 if (nid == NUMA_NO_NODE)
877 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
878 __GFP_REPEAT|__GFP_NOWARN,
879 huge_page_order(h));
880 else
881 page = alloc_pages_exact_node(nid,
882 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
883 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
884
885 if (page && arch_prepare_hugepage(page)) {
886 __free_pages(page, huge_page_order(h));
887 page = NULL;
888 }
889
890 spin_lock(&hugetlb_lock);
891 if (page) {
892 r_nid = page_to_nid(page);
893 set_compound_page_dtor(page, free_huge_page);
894 /*
895 * We incremented the global counters already
896 */
897 h->nr_huge_pages_node[r_nid]++;
898 h->surplus_huge_pages_node[r_nid]++;
899 __count_vm_event(HTLB_BUDDY_PGALLOC);
900 } else {
901 h->nr_huge_pages--;
902 h->surplus_huge_pages--;
903 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
904 }
905 spin_unlock(&hugetlb_lock);
906
907 return page;
908 }
909
910 /*
911 * This allocation function is useful in the context where vma is irrelevant.
912 * E.g. soft-offlining uses this function because it only cares physical
913 * address of error page.
914 */
915 struct page *alloc_huge_page_node(struct hstate *h, int nid)
916 {
917 struct page *page;
918
919 spin_lock(&hugetlb_lock);
920 page = dequeue_huge_page_node(h, nid);
921 spin_unlock(&hugetlb_lock);
922
923 if (!page)
924 page = alloc_buddy_huge_page(h, nid);
925
926 return page;
927 }
928
929 /*
930 * Increase the hugetlb pool such that it can accommodate a reservation
931 * of size 'delta'.
932 */
933 static int gather_surplus_pages(struct hstate *h, int delta)
934 {
935 struct list_head surplus_list;
936 struct page *page, *tmp;
937 int ret, i;
938 int needed, allocated;
939 bool alloc_ok = true;
940
941 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
942 if (needed <= 0) {
943 h->resv_huge_pages += delta;
944 return 0;
945 }
946
947 allocated = 0;
948 INIT_LIST_HEAD(&surplus_list);
949
950 ret = -ENOMEM;
951 retry:
952 spin_unlock(&hugetlb_lock);
953 for (i = 0; i < needed; i++) {
954 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
955 if (!page) {
956 alloc_ok = false;
957 break;
958 }
959 list_add(&page->lru, &surplus_list);
960 }
961 allocated += i;
962
963 /*
964 * After retaking hugetlb_lock, we need to recalculate 'needed'
965 * because either resv_huge_pages or free_huge_pages may have changed.
966 */
967 spin_lock(&hugetlb_lock);
968 needed = (h->resv_huge_pages + delta) -
969 (h->free_huge_pages + allocated);
970 if (needed > 0) {
971 if (alloc_ok)
972 goto retry;
973 /*
974 * We were not able to allocate enough pages to
975 * satisfy the entire reservation so we free what
976 * we've allocated so far.
977 */
978 goto free;
979 }
980 /*
981 * The surplus_list now contains _at_least_ the number of extra pages
982 * needed to accommodate the reservation. Add the appropriate number
983 * of pages to the hugetlb pool and free the extras back to the buddy
984 * allocator. Commit the entire reservation here to prevent another
985 * process from stealing the pages as they are added to the pool but
986 * before they are reserved.
987 */
988 needed += allocated;
989 h->resv_huge_pages += delta;
990 ret = 0;
991
992 /* Free the needed pages to the hugetlb pool */
993 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
994 if ((--needed) < 0)
995 break;
996 list_del(&page->lru);
997 /*
998 * This page is now managed by the hugetlb allocator and has
999 * no users -- drop the buddy allocator's reference.
1000 */
1001 put_page_testzero(page);
1002 VM_BUG_ON(page_count(page));
1003 enqueue_huge_page(h, page);
1004 }
1005 free:
1006 spin_unlock(&hugetlb_lock);
1007
1008 /* Free unnecessary surplus pages to the buddy allocator */
1009 if (!list_empty(&surplus_list)) {
1010 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1011 list_del(&page->lru);
1012 put_page(page);
1013 }
1014 }
1015 spin_lock(&hugetlb_lock);
1016
1017 return ret;
1018 }
1019
1020 /*
1021 * When releasing a hugetlb pool reservation, any surplus pages that were
1022 * allocated to satisfy the reservation must be explicitly freed if they were
1023 * never used.
1024 * Called with hugetlb_lock held.
1025 */
1026 static void return_unused_surplus_pages(struct hstate *h,
1027 unsigned long unused_resv_pages)
1028 {
1029 unsigned long nr_pages;
1030
1031 /* Uncommit the reservation */
1032 h->resv_huge_pages -= unused_resv_pages;
1033
1034 /* Cannot return gigantic pages currently */
1035 if (h->order >= MAX_ORDER)
1036 return;
1037
1038 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1039
1040 /*
1041 * We want to release as many surplus pages as possible, spread
1042 * evenly across all nodes with memory. Iterate across these nodes
1043 * until we can no longer free unreserved surplus pages. This occurs
1044 * when the nodes with surplus pages have no free pages.
1045 * free_pool_huge_page() will balance the the freed pages across the
1046 * on-line nodes with memory and will handle the hstate accounting.
1047 */
1048 while (nr_pages--) {
1049 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1050 break;
1051 }
1052 }
1053
1054 /*
1055 * Determine if the huge page at addr within the vma has an associated
1056 * reservation. Where it does not we will need to logically increase
1057 * reservation and actually increase subpool usage before an allocation
1058 * can occur. Where any new reservation would be required the
1059 * reservation change is prepared, but not committed. Once the page
1060 * has been allocated from the subpool and instantiated the change should
1061 * be committed via vma_commit_reservation. No action is required on
1062 * failure.
1063 */
1064 static long vma_needs_reservation(struct hstate *h,
1065 struct vm_area_struct *vma, unsigned long addr)
1066 {
1067 struct address_space *mapping = vma->vm_file->f_mapping;
1068 struct inode *inode = mapping->host;
1069
1070 if (vma->vm_flags & VM_MAYSHARE) {
1071 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1072 return region_chg(&inode->i_mapping->private_list,
1073 idx, idx + 1);
1074
1075 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1076 return 1;
1077
1078 } else {
1079 long err;
1080 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1081 struct resv_map *reservations = vma_resv_map(vma);
1082
1083 err = region_chg(&reservations->regions, idx, idx + 1);
1084 if (err < 0)
1085 return err;
1086 return 0;
1087 }
1088 }
1089 static void vma_commit_reservation(struct hstate *h,
1090 struct vm_area_struct *vma, unsigned long addr)
1091 {
1092 struct address_space *mapping = vma->vm_file->f_mapping;
1093 struct inode *inode = mapping->host;
1094
1095 if (vma->vm_flags & VM_MAYSHARE) {
1096 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1097 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1098
1099 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1100 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1101 struct resv_map *reservations = vma_resv_map(vma);
1102
1103 /* Mark this page used in the map. */
1104 region_add(&reservations->regions, idx, idx + 1);
1105 }
1106 }
1107
1108 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1109 unsigned long addr, int avoid_reserve)
1110 {
1111 struct hugepage_subpool *spool = subpool_vma(vma);
1112 struct hstate *h = hstate_vma(vma);
1113 struct page *page;
1114 long chg;
1115
1116 /*
1117 * Processes that did not create the mapping will have no
1118 * reserves and will not have accounted against subpool
1119 * limit. Check that the subpool limit can be made before
1120 * satisfying the allocation MAP_NORESERVE mappings may also
1121 * need pages and subpool limit allocated allocated if no reserve
1122 * mapping overlaps.
1123 */
1124 chg = vma_needs_reservation(h, vma, addr);
1125 if (chg < 0)
1126 return ERR_PTR(-VM_FAULT_OOM);
1127 if (chg)
1128 if (hugepage_subpool_get_pages(spool, chg))
1129 return ERR_PTR(-VM_FAULT_SIGBUS);
1130
1131 spin_lock(&hugetlb_lock);
1132 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1133 spin_unlock(&hugetlb_lock);
1134
1135 if (!page) {
1136 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1137 if (!page) {
1138 hugepage_subpool_put_pages(spool, chg);
1139 return ERR_PTR(-VM_FAULT_SIGBUS);
1140 }
1141 }
1142
1143 set_page_private(page, (unsigned long)spool);
1144
1145 vma_commit_reservation(h, vma, addr);
1146
1147 return page;
1148 }
1149
1150 int __weak alloc_bootmem_huge_page(struct hstate *h)
1151 {
1152 struct huge_bootmem_page *m;
1153 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1154
1155 while (nr_nodes) {
1156 void *addr;
1157
1158 addr = __alloc_bootmem_node_nopanic(
1159 NODE_DATA(hstate_next_node_to_alloc(h,
1160 &node_states[N_HIGH_MEMORY])),
1161 huge_page_size(h), huge_page_size(h), 0);
1162
1163 if (addr) {
1164 /*
1165 * Use the beginning of the huge page to store the
1166 * huge_bootmem_page struct (until gather_bootmem
1167 * puts them into the mem_map).
1168 */
1169 m = addr;
1170 goto found;
1171 }
1172 nr_nodes--;
1173 }
1174 return 0;
1175
1176 found:
1177 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1178 /* Put them into a private list first because mem_map is not up yet */
1179 list_add(&m->list, &huge_boot_pages);
1180 m->hstate = h;
1181 return 1;
1182 }
1183
1184 static void prep_compound_huge_page(struct page *page, int order)
1185 {
1186 if (unlikely(order > (MAX_ORDER - 1)))
1187 prep_compound_gigantic_page(page, order);
1188 else
1189 prep_compound_page(page, order);
1190 }
1191
1192 /* Put bootmem huge pages into the standard lists after mem_map is up */
1193 static void __init gather_bootmem_prealloc(void)
1194 {
1195 struct huge_bootmem_page *m;
1196
1197 list_for_each_entry(m, &huge_boot_pages, list) {
1198 struct hstate *h = m->hstate;
1199 struct page *page;
1200
1201 #ifdef CONFIG_HIGHMEM
1202 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1203 free_bootmem_late((unsigned long)m,
1204 sizeof(struct huge_bootmem_page));
1205 #else
1206 page = virt_to_page(m);
1207 #endif
1208 __ClearPageReserved(page);
1209 WARN_ON(page_count(page) != 1);
1210 prep_compound_huge_page(page, h->order);
1211 prep_new_huge_page(h, page, page_to_nid(page));
1212 /*
1213 * If we had gigantic hugepages allocated at boot time, we need
1214 * to restore the 'stolen' pages to totalram_pages in order to
1215 * fix confusing memory reports from free(1) and another
1216 * side-effects, like CommitLimit going negative.
1217 */
1218 if (h->order > (MAX_ORDER - 1))
1219 totalram_pages += 1 << h->order;
1220 }
1221 }
1222
1223 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1224 {
1225 unsigned long i;
1226
1227 for (i = 0; i < h->max_huge_pages; ++i) {
1228 if (h->order >= MAX_ORDER) {
1229 if (!alloc_bootmem_huge_page(h))
1230 break;
1231 } else if (!alloc_fresh_huge_page(h,
1232 &node_states[N_HIGH_MEMORY]))
1233 break;
1234 }
1235 h->max_huge_pages = i;
1236 }
1237
1238 static void __init hugetlb_init_hstates(void)
1239 {
1240 struct hstate *h;
1241
1242 for_each_hstate(h) {
1243 /* oversize hugepages were init'ed in early boot */
1244 if (h->order < MAX_ORDER)
1245 hugetlb_hstate_alloc_pages(h);
1246 }
1247 }
1248
1249 static char * __init memfmt(char *buf, unsigned long n)
1250 {
1251 if (n >= (1UL << 30))
1252 sprintf(buf, "%lu GB", n >> 30);
1253 else if (n >= (1UL << 20))
1254 sprintf(buf, "%lu MB", n >> 20);
1255 else
1256 sprintf(buf, "%lu KB", n >> 10);
1257 return buf;
1258 }
1259
1260 static void __init report_hugepages(void)
1261 {
1262 struct hstate *h;
1263
1264 for_each_hstate(h) {
1265 char buf[32];
1266 printk(KERN_INFO "HugeTLB registered %s page size, "
1267 "pre-allocated %ld pages\n",
1268 memfmt(buf, huge_page_size(h)),
1269 h->free_huge_pages);
1270 }
1271 }
1272
1273 #ifdef CONFIG_HIGHMEM
1274 static void try_to_free_low(struct hstate *h, unsigned long count,
1275 nodemask_t *nodes_allowed)
1276 {
1277 int i;
1278
1279 if (h->order >= MAX_ORDER)
1280 return;
1281
1282 for_each_node_mask(i, *nodes_allowed) {
1283 struct page *page, *next;
1284 struct list_head *freel = &h->hugepage_freelists[i];
1285 list_for_each_entry_safe(page, next, freel, lru) {
1286 if (count >= h->nr_huge_pages)
1287 return;
1288 if (PageHighMem(page))
1289 continue;
1290 list_del(&page->lru);
1291 update_and_free_page(h, page);
1292 h->free_huge_pages--;
1293 h->free_huge_pages_node[page_to_nid(page)]--;
1294 }
1295 }
1296 }
1297 #else
1298 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1299 nodemask_t *nodes_allowed)
1300 {
1301 }
1302 #endif
1303
1304 /*
1305 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1306 * balanced by operating on them in a round-robin fashion.
1307 * Returns 1 if an adjustment was made.
1308 */
1309 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1310 int delta)
1311 {
1312 int start_nid, next_nid;
1313 int ret = 0;
1314
1315 VM_BUG_ON(delta != -1 && delta != 1);
1316
1317 if (delta < 0)
1318 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1319 else
1320 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1321 next_nid = start_nid;
1322
1323 do {
1324 int nid = next_nid;
1325 if (delta < 0) {
1326 /*
1327 * To shrink on this node, there must be a surplus page
1328 */
1329 if (!h->surplus_huge_pages_node[nid]) {
1330 next_nid = hstate_next_node_to_alloc(h,
1331 nodes_allowed);
1332 continue;
1333 }
1334 }
1335 if (delta > 0) {
1336 /*
1337 * Surplus cannot exceed the total number of pages
1338 */
1339 if (h->surplus_huge_pages_node[nid] >=
1340 h->nr_huge_pages_node[nid]) {
1341 next_nid = hstate_next_node_to_free(h,
1342 nodes_allowed);
1343 continue;
1344 }
1345 }
1346
1347 h->surplus_huge_pages += delta;
1348 h->surplus_huge_pages_node[nid] += delta;
1349 ret = 1;
1350 break;
1351 } while (next_nid != start_nid);
1352
1353 return ret;
1354 }
1355
1356 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1357 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1358 nodemask_t *nodes_allowed)
1359 {
1360 unsigned long min_count, ret;
1361
1362 if (h->order >= MAX_ORDER)
1363 return h->max_huge_pages;
1364
1365 /*
1366 * Increase the pool size
1367 * First take pages out of surplus state. Then make up the
1368 * remaining difference by allocating fresh huge pages.
1369 *
1370 * We might race with alloc_buddy_huge_page() here and be unable
1371 * to convert a surplus huge page to a normal huge page. That is
1372 * not critical, though, it just means the overall size of the
1373 * pool might be one hugepage larger than it needs to be, but
1374 * within all the constraints specified by the sysctls.
1375 */
1376 spin_lock(&hugetlb_lock);
1377 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1378 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1379 break;
1380 }
1381
1382 while (count > persistent_huge_pages(h)) {
1383 /*
1384 * If this allocation races such that we no longer need the
1385 * page, free_huge_page will handle it by freeing the page
1386 * and reducing the surplus.
1387 */
1388 spin_unlock(&hugetlb_lock);
1389 ret = alloc_fresh_huge_page(h, nodes_allowed);
1390 spin_lock(&hugetlb_lock);
1391 if (!ret)
1392 goto out;
1393
1394 /* Bail for signals. Probably ctrl-c from user */
1395 if (signal_pending(current))
1396 goto out;
1397 }
1398
1399 /*
1400 * Decrease the pool size
1401 * First return free pages to the buddy allocator (being careful
1402 * to keep enough around to satisfy reservations). Then place
1403 * pages into surplus state as needed so the pool will shrink
1404 * to the desired size as pages become free.
1405 *
1406 * By placing pages into the surplus state independent of the
1407 * overcommit value, we are allowing the surplus pool size to
1408 * exceed overcommit. There are few sane options here. Since
1409 * alloc_buddy_huge_page() is checking the global counter,
1410 * though, we'll note that we're not allowed to exceed surplus
1411 * and won't grow the pool anywhere else. Not until one of the
1412 * sysctls are changed, or the surplus pages go out of use.
1413 */
1414 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1415 min_count = max(count, min_count);
1416 try_to_free_low(h, min_count, nodes_allowed);
1417 while (min_count < persistent_huge_pages(h)) {
1418 if (!free_pool_huge_page(h, nodes_allowed, 0))
1419 break;
1420 }
1421 while (count < persistent_huge_pages(h)) {
1422 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1423 break;
1424 }
1425 out:
1426 ret = persistent_huge_pages(h);
1427 spin_unlock(&hugetlb_lock);
1428 return ret;
1429 }
1430
1431 #define HSTATE_ATTR_RO(_name) \
1432 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1433
1434 #define HSTATE_ATTR(_name) \
1435 static struct kobj_attribute _name##_attr = \
1436 __ATTR(_name, 0644, _name##_show, _name##_store)
1437
1438 static struct kobject *hugepages_kobj;
1439 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1440
1441 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1442
1443 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1444 {
1445 int i;
1446
1447 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1448 if (hstate_kobjs[i] == kobj) {
1449 if (nidp)
1450 *nidp = NUMA_NO_NODE;
1451 return &hstates[i];
1452 }
1453
1454 return kobj_to_node_hstate(kobj, nidp);
1455 }
1456
1457 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1458 struct kobj_attribute *attr, char *buf)
1459 {
1460 struct hstate *h;
1461 unsigned long nr_huge_pages;
1462 int nid;
1463
1464 h = kobj_to_hstate(kobj, &nid);
1465 if (nid == NUMA_NO_NODE)
1466 nr_huge_pages = h->nr_huge_pages;
1467 else
1468 nr_huge_pages = h->nr_huge_pages_node[nid];
1469
1470 return sprintf(buf, "%lu\n", nr_huge_pages);
1471 }
1472
1473 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1474 struct kobject *kobj, struct kobj_attribute *attr,
1475 const char *buf, size_t len)
1476 {
1477 int err;
1478 int nid;
1479 unsigned long count;
1480 struct hstate *h;
1481 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1482
1483 err = strict_strtoul(buf, 10, &count);
1484 if (err)
1485 goto out;
1486
1487 h = kobj_to_hstate(kobj, &nid);
1488 if (h->order >= MAX_ORDER) {
1489 err = -EINVAL;
1490 goto out;
1491 }
1492
1493 if (nid == NUMA_NO_NODE) {
1494 /*
1495 * global hstate attribute
1496 */
1497 if (!(obey_mempolicy &&
1498 init_nodemask_of_mempolicy(nodes_allowed))) {
1499 NODEMASK_FREE(nodes_allowed);
1500 nodes_allowed = &node_states[N_HIGH_MEMORY];
1501 }
1502 } else if (nodes_allowed) {
1503 /*
1504 * per node hstate attribute: adjust count to global,
1505 * but restrict alloc/free to the specified node.
1506 */
1507 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1508 init_nodemask_of_node(nodes_allowed, nid);
1509 } else
1510 nodes_allowed = &node_states[N_HIGH_MEMORY];
1511
1512 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1513
1514 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1515 NODEMASK_FREE(nodes_allowed);
1516
1517 return len;
1518 out:
1519 NODEMASK_FREE(nodes_allowed);
1520 return err;
1521 }
1522
1523 static ssize_t nr_hugepages_show(struct kobject *kobj,
1524 struct kobj_attribute *attr, char *buf)
1525 {
1526 return nr_hugepages_show_common(kobj, attr, buf);
1527 }
1528
1529 static ssize_t nr_hugepages_store(struct kobject *kobj,
1530 struct kobj_attribute *attr, const char *buf, size_t len)
1531 {
1532 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1533 }
1534 HSTATE_ATTR(nr_hugepages);
1535
1536 #ifdef CONFIG_NUMA
1537
1538 /*
1539 * hstate attribute for optionally mempolicy-based constraint on persistent
1540 * huge page alloc/free.
1541 */
1542 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1543 struct kobj_attribute *attr, char *buf)
1544 {
1545 return nr_hugepages_show_common(kobj, attr, buf);
1546 }
1547
1548 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1549 struct kobj_attribute *attr, const char *buf, size_t len)
1550 {
1551 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1552 }
1553 HSTATE_ATTR(nr_hugepages_mempolicy);
1554 #endif
1555
1556
1557 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1558 struct kobj_attribute *attr, char *buf)
1559 {
1560 struct hstate *h = kobj_to_hstate(kobj, NULL);
1561 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1562 }
1563
1564 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1565 struct kobj_attribute *attr, const char *buf, size_t count)
1566 {
1567 int err;
1568 unsigned long input;
1569 struct hstate *h = kobj_to_hstate(kobj, NULL);
1570
1571 if (h->order >= MAX_ORDER)
1572 return -EINVAL;
1573
1574 err = strict_strtoul(buf, 10, &input);
1575 if (err)
1576 return err;
1577
1578 spin_lock(&hugetlb_lock);
1579 h->nr_overcommit_huge_pages = input;
1580 spin_unlock(&hugetlb_lock);
1581
1582 return count;
1583 }
1584 HSTATE_ATTR(nr_overcommit_hugepages);
1585
1586 static ssize_t free_hugepages_show(struct kobject *kobj,
1587 struct kobj_attribute *attr, char *buf)
1588 {
1589 struct hstate *h;
1590 unsigned long free_huge_pages;
1591 int nid;
1592
1593 h = kobj_to_hstate(kobj, &nid);
1594 if (nid == NUMA_NO_NODE)
1595 free_huge_pages = h->free_huge_pages;
1596 else
1597 free_huge_pages = h->free_huge_pages_node[nid];
1598
1599 return sprintf(buf, "%lu\n", free_huge_pages);
1600 }
1601 HSTATE_ATTR_RO(free_hugepages);
1602
1603 static ssize_t resv_hugepages_show(struct kobject *kobj,
1604 struct kobj_attribute *attr, char *buf)
1605 {
1606 struct hstate *h = kobj_to_hstate(kobj, NULL);
1607 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1608 }
1609 HSTATE_ATTR_RO(resv_hugepages);
1610
1611 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1612 struct kobj_attribute *attr, char *buf)
1613 {
1614 struct hstate *h;
1615 unsigned long surplus_huge_pages;
1616 int nid;
1617
1618 h = kobj_to_hstate(kobj, &nid);
1619 if (nid == NUMA_NO_NODE)
1620 surplus_huge_pages = h->surplus_huge_pages;
1621 else
1622 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1623
1624 return sprintf(buf, "%lu\n", surplus_huge_pages);
1625 }
1626 HSTATE_ATTR_RO(surplus_hugepages);
1627
1628 static struct attribute *hstate_attrs[] = {
1629 &nr_hugepages_attr.attr,
1630 &nr_overcommit_hugepages_attr.attr,
1631 &free_hugepages_attr.attr,
1632 &resv_hugepages_attr.attr,
1633 &surplus_hugepages_attr.attr,
1634 #ifdef CONFIG_NUMA
1635 &nr_hugepages_mempolicy_attr.attr,
1636 #endif
1637 NULL,
1638 };
1639
1640 static struct attribute_group hstate_attr_group = {
1641 .attrs = hstate_attrs,
1642 };
1643
1644 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1645 struct kobject **hstate_kobjs,
1646 struct attribute_group *hstate_attr_group)
1647 {
1648 int retval;
1649 int hi = h - hstates;
1650
1651 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1652 if (!hstate_kobjs[hi])
1653 return -ENOMEM;
1654
1655 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1656 if (retval)
1657 kobject_put(hstate_kobjs[hi]);
1658
1659 return retval;
1660 }
1661
1662 static void __init hugetlb_sysfs_init(void)
1663 {
1664 struct hstate *h;
1665 int err;
1666
1667 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1668 if (!hugepages_kobj)
1669 return;
1670
1671 for_each_hstate(h) {
1672 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1673 hstate_kobjs, &hstate_attr_group);
1674 if (err)
1675 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1676 h->name);
1677 }
1678 }
1679
1680 #ifdef CONFIG_NUMA
1681
1682 /*
1683 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1684 * with node devices in node_devices[] using a parallel array. The array
1685 * index of a node device or _hstate == node id.
1686 * This is here to avoid any static dependency of the node device driver, in
1687 * the base kernel, on the hugetlb module.
1688 */
1689 struct node_hstate {
1690 struct kobject *hugepages_kobj;
1691 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1692 };
1693 struct node_hstate node_hstates[MAX_NUMNODES];
1694
1695 /*
1696 * A subset of global hstate attributes for node devices
1697 */
1698 static struct attribute *per_node_hstate_attrs[] = {
1699 &nr_hugepages_attr.attr,
1700 &free_hugepages_attr.attr,
1701 &surplus_hugepages_attr.attr,
1702 NULL,
1703 };
1704
1705 static struct attribute_group per_node_hstate_attr_group = {
1706 .attrs = per_node_hstate_attrs,
1707 };
1708
1709 /*
1710 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1711 * Returns node id via non-NULL nidp.
1712 */
1713 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1714 {
1715 int nid;
1716
1717 for (nid = 0; nid < nr_node_ids; nid++) {
1718 struct node_hstate *nhs = &node_hstates[nid];
1719 int i;
1720 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1721 if (nhs->hstate_kobjs[i] == kobj) {
1722 if (nidp)
1723 *nidp = nid;
1724 return &hstates[i];
1725 }
1726 }
1727
1728 BUG();
1729 return NULL;
1730 }
1731
1732 /*
1733 * Unregister hstate attributes from a single node device.
1734 * No-op if no hstate attributes attached.
1735 */
1736 void hugetlb_unregister_node(struct node *node)
1737 {
1738 struct hstate *h;
1739 struct node_hstate *nhs = &node_hstates[node->dev.id];
1740
1741 if (!nhs->hugepages_kobj)
1742 return; /* no hstate attributes */
1743
1744 for_each_hstate(h)
1745 if (nhs->hstate_kobjs[h - hstates]) {
1746 kobject_put(nhs->hstate_kobjs[h - hstates]);
1747 nhs->hstate_kobjs[h - hstates] = NULL;
1748 }
1749
1750 kobject_put(nhs->hugepages_kobj);
1751 nhs->hugepages_kobj = NULL;
1752 }
1753
1754 /*
1755 * hugetlb module exit: unregister hstate attributes from node devices
1756 * that have them.
1757 */
1758 static void hugetlb_unregister_all_nodes(void)
1759 {
1760 int nid;
1761
1762 /*
1763 * disable node device registrations.
1764 */
1765 register_hugetlbfs_with_node(NULL, NULL);
1766
1767 /*
1768 * remove hstate attributes from any nodes that have them.
1769 */
1770 for (nid = 0; nid < nr_node_ids; nid++)
1771 hugetlb_unregister_node(&node_devices[nid]);
1772 }
1773
1774 /*
1775 * Register hstate attributes for a single node device.
1776 * No-op if attributes already registered.
1777 */
1778 void hugetlb_register_node(struct node *node)
1779 {
1780 struct hstate *h;
1781 struct node_hstate *nhs = &node_hstates[node->dev.id];
1782 int err;
1783
1784 if (nhs->hugepages_kobj)
1785 return; /* already allocated */
1786
1787 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1788 &node->dev.kobj);
1789 if (!nhs->hugepages_kobj)
1790 return;
1791
1792 for_each_hstate(h) {
1793 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1794 nhs->hstate_kobjs,
1795 &per_node_hstate_attr_group);
1796 if (err) {
1797 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1798 " for node %d\n",
1799 h->name, node->dev.id);
1800 hugetlb_unregister_node(node);
1801 break;
1802 }
1803 }
1804 }
1805
1806 /*
1807 * hugetlb init time: register hstate attributes for all registered node
1808 * devices of nodes that have memory. All on-line nodes should have
1809 * registered their associated device by this time.
1810 */
1811 static void hugetlb_register_all_nodes(void)
1812 {
1813 int nid;
1814
1815 for_each_node_state(nid, N_HIGH_MEMORY) {
1816 struct node *node = &node_devices[nid];
1817 if (node->dev.id == nid)
1818 hugetlb_register_node(node);
1819 }
1820
1821 /*
1822 * Let the node device driver know we're here so it can
1823 * [un]register hstate attributes on node hotplug.
1824 */
1825 register_hugetlbfs_with_node(hugetlb_register_node,
1826 hugetlb_unregister_node);
1827 }
1828 #else /* !CONFIG_NUMA */
1829
1830 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1831 {
1832 BUG();
1833 if (nidp)
1834 *nidp = -1;
1835 return NULL;
1836 }
1837
1838 static void hugetlb_unregister_all_nodes(void) { }
1839
1840 static void hugetlb_register_all_nodes(void) { }
1841
1842 #endif
1843
1844 static void __exit hugetlb_exit(void)
1845 {
1846 struct hstate *h;
1847
1848 hugetlb_unregister_all_nodes();
1849
1850 for_each_hstate(h) {
1851 kobject_put(hstate_kobjs[h - hstates]);
1852 }
1853
1854 kobject_put(hugepages_kobj);
1855 }
1856 module_exit(hugetlb_exit);
1857
1858 static int __init hugetlb_init(void)
1859 {
1860 /* Some platform decide whether they support huge pages at boot
1861 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1862 * there is no such support
1863 */
1864 if (HPAGE_SHIFT == 0)
1865 return 0;
1866
1867 if (!size_to_hstate(default_hstate_size)) {
1868 default_hstate_size = HPAGE_SIZE;
1869 if (!size_to_hstate(default_hstate_size))
1870 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1871 }
1872 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1873 if (default_hstate_max_huge_pages)
1874 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1875
1876 hugetlb_init_hstates();
1877
1878 gather_bootmem_prealloc();
1879
1880 report_hugepages();
1881
1882 hugetlb_sysfs_init();
1883
1884 hugetlb_register_all_nodes();
1885
1886 return 0;
1887 }
1888 module_init(hugetlb_init);
1889
1890 /* Should be called on processing a hugepagesz=... option */
1891 void __init hugetlb_add_hstate(unsigned order)
1892 {
1893 struct hstate *h;
1894 unsigned long i;
1895
1896 if (size_to_hstate(PAGE_SIZE << order)) {
1897 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1898 return;
1899 }
1900 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1901 BUG_ON(order == 0);
1902 h = &hstates[max_hstate++];
1903 h->order = order;
1904 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1905 h->nr_huge_pages = 0;
1906 h->free_huge_pages = 0;
1907 for (i = 0; i < MAX_NUMNODES; ++i)
1908 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1909 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1910 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1911 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1912 huge_page_size(h)/1024);
1913
1914 parsed_hstate = h;
1915 }
1916
1917 static int __init hugetlb_nrpages_setup(char *s)
1918 {
1919 unsigned long *mhp;
1920 static unsigned long *last_mhp;
1921
1922 /*
1923 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1924 * so this hugepages= parameter goes to the "default hstate".
1925 */
1926 if (!max_hstate)
1927 mhp = &default_hstate_max_huge_pages;
1928 else
1929 mhp = &parsed_hstate->max_huge_pages;
1930
1931 if (mhp == last_mhp) {
1932 printk(KERN_WARNING "hugepages= specified twice without "
1933 "interleaving hugepagesz=, ignoring\n");
1934 return 1;
1935 }
1936
1937 if (sscanf(s, "%lu", mhp) <= 0)
1938 *mhp = 0;
1939
1940 /*
1941 * Global state is always initialized later in hugetlb_init.
1942 * But we need to allocate >= MAX_ORDER hstates here early to still
1943 * use the bootmem allocator.
1944 */
1945 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1946 hugetlb_hstate_alloc_pages(parsed_hstate);
1947
1948 last_mhp = mhp;
1949
1950 return 1;
1951 }
1952 __setup("hugepages=", hugetlb_nrpages_setup);
1953
1954 static int __init hugetlb_default_setup(char *s)
1955 {
1956 default_hstate_size = memparse(s, &s);
1957 return 1;
1958 }
1959 __setup("default_hugepagesz=", hugetlb_default_setup);
1960
1961 static unsigned int cpuset_mems_nr(unsigned int *array)
1962 {
1963 int node;
1964 unsigned int nr = 0;
1965
1966 for_each_node_mask(node, cpuset_current_mems_allowed)
1967 nr += array[node];
1968
1969 return nr;
1970 }
1971
1972 #ifdef CONFIG_SYSCTL
1973 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1974 struct ctl_table *table, int write,
1975 void __user *buffer, size_t *length, loff_t *ppos)
1976 {
1977 struct hstate *h = &default_hstate;
1978 unsigned long tmp;
1979 int ret;
1980
1981 tmp = h->max_huge_pages;
1982
1983 if (write && h->order >= MAX_ORDER)
1984 return -EINVAL;
1985
1986 table->data = &tmp;
1987 table->maxlen = sizeof(unsigned long);
1988 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1989 if (ret)
1990 goto out;
1991
1992 if (write) {
1993 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1994 GFP_KERNEL | __GFP_NORETRY);
1995 if (!(obey_mempolicy &&
1996 init_nodemask_of_mempolicy(nodes_allowed))) {
1997 NODEMASK_FREE(nodes_allowed);
1998 nodes_allowed = &node_states[N_HIGH_MEMORY];
1999 }
2000 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2001
2002 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2003 NODEMASK_FREE(nodes_allowed);
2004 }
2005 out:
2006 return ret;
2007 }
2008
2009 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2010 void __user *buffer, size_t *length, loff_t *ppos)
2011 {
2012
2013 return hugetlb_sysctl_handler_common(false, table, write,
2014 buffer, length, ppos);
2015 }
2016
2017 #ifdef CONFIG_NUMA
2018 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2019 void __user *buffer, size_t *length, loff_t *ppos)
2020 {
2021 return hugetlb_sysctl_handler_common(true, table, write,
2022 buffer, length, ppos);
2023 }
2024 #endif /* CONFIG_NUMA */
2025
2026 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2027 void __user *buffer,
2028 size_t *length, loff_t *ppos)
2029 {
2030 proc_dointvec(table, write, buffer, length, ppos);
2031 if (hugepages_treat_as_movable)
2032 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2033 else
2034 htlb_alloc_mask = GFP_HIGHUSER;
2035 return 0;
2036 }
2037
2038 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2039 void __user *buffer,
2040 size_t *length, loff_t *ppos)
2041 {
2042 struct hstate *h = &default_hstate;
2043 unsigned long tmp;
2044 int ret;
2045
2046 tmp = h->nr_overcommit_huge_pages;
2047
2048 if (write && h->order >= MAX_ORDER)
2049 return -EINVAL;
2050
2051 table->data = &tmp;
2052 table->maxlen = sizeof(unsigned long);
2053 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2054 if (ret)
2055 goto out;
2056
2057 if (write) {
2058 spin_lock(&hugetlb_lock);
2059 h->nr_overcommit_huge_pages = tmp;
2060 spin_unlock(&hugetlb_lock);
2061 }
2062 out:
2063 return ret;
2064 }
2065
2066 #endif /* CONFIG_SYSCTL */
2067
2068 void hugetlb_report_meminfo(struct seq_file *m)
2069 {
2070 struct hstate *h = &default_hstate;
2071 seq_printf(m,
2072 "HugePages_Total: %5lu\n"
2073 "HugePages_Free: %5lu\n"
2074 "HugePages_Rsvd: %5lu\n"
2075 "HugePages_Surp: %5lu\n"
2076 "Hugepagesize: %8lu kB\n",
2077 h->nr_huge_pages,
2078 h->free_huge_pages,
2079 h->resv_huge_pages,
2080 h->surplus_huge_pages,
2081 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2082 }
2083
2084 int hugetlb_report_node_meminfo(int nid, char *buf)
2085 {
2086 struct hstate *h = &default_hstate;
2087 return sprintf(buf,
2088 "Node %d HugePages_Total: %5u\n"
2089 "Node %d HugePages_Free: %5u\n"
2090 "Node %d HugePages_Surp: %5u\n",
2091 nid, h->nr_huge_pages_node[nid],
2092 nid, h->free_huge_pages_node[nid],
2093 nid, h->surplus_huge_pages_node[nid]);
2094 }
2095
2096 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2097 unsigned long hugetlb_total_pages(void)
2098 {
2099 struct hstate *h = &default_hstate;
2100 return h->nr_huge_pages * pages_per_huge_page(h);
2101 }
2102
2103 static int hugetlb_acct_memory(struct hstate *h, long delta)
2104 {
2105 int ret = -ENOMEM;
2106
2107 spin_lock(&hugetlb_lock);
2108 /*
2109 * When cpuset is configured, it breaks the strict hugetlb page
2110 * reservation as the accounting is done on a global variable. Such
2111 * reservation is completely rubbish in the presence of cpuset because
2112 * the reservation is not checked against page availability for the
2113 * current cpuset. Application can still potentially OOM'ed by kernel
2114 * with lack of free htlb page in cpuset that the task is in.
2115 * Attempt to enforce strict accounting with cpuset is almost
2116 * impossible (or too ugly) because cpuset is too fluid that
2117 * task or memory node can be dynamically moved between cpusets.
2118 *
2119 * The change of semantics for shared hugetlb mapping with cpuset is
2120 * undesirable. However, in order to preserve some of the semantics,
2121 * we fall back to check against current free page availability as
2122 * a best attempt and hopefully to minimize the impact of changing
2123 * semantics that cpuset has.
2124 */
2125 if (delta > 0) {
2126 if (gather_surplus_pages(h, delta) < 0)
2127 goto out;
2128
2129 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2130 return_unused_surplus_pages(h, delta);
2131 goto out;
2132 }
2133 }
2134
2135 ret = 0;
2136 if (delta < 0)
2137 return_unused_surplus_pages(h, (unsigned long) -delta);
2138
2139 out:
2140 spin_unlock(&hugetlb_lock);
2141 return ret;
2142 }
2143
2144 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2145 {
2146 struct resv_map *reservations = vma_resv_map(vma);
2147
2148 /*
2149 * This new VMA should share its siblings reservation map if present.
2150 * The VMA will only ever have a valid reservation map pointer where
2151 * it is being copied for another still existing VMA. As that VMA
2152 * has a reference to the reservation map it cannot disappear until
2153 * after this open call completes. It is therefore safe to take a
2154 * new reference here without additional locking.
2155 */
2156 if (reservations)
2157 kref_get(&reservations->refs);
2158 }
2159
2160 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2161 {
2162 struct hstate *h = hstate_vma(vma);
2163 struct resv_map *reservations = vma_resv_map(vma);
2164 struct hugepage_subpool *spool = subpool_vma(vma);
2165 unsigned long reserve;
2166 unsigned long start;
2167 unsigned long end;
2168
2169 if (reservations) {
2170 start = vma_hugecache_offset(h, vma, vma->vm_start);
2171 end = vma_hugecache_offset(h, vma, vma->vm_end);
2172
2173 reserve = (end - start) -
2174 region_count(&reservations->regions, start, end);
2175
2176 kref_put(&reservations->refs, resv_map_release);
2177
2178 if (reserve) {
2179 hugetlb_acct_memory(h, -reserve);
2180 hugepage_subpool_put_pages(spool, reserve);
2181 }
2182 }
2183 }
2184
2185 /*
2186 * We cannot handle pagefaults against hugetlb pages at all. They cause
2187 * handle_mm_fault() to try to instantiate regular-sized pages in the
2188 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2189 * this far.
2190 */
2191 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2192 {
2193 BUG();
2194 return 0;
2195 }
2196
2197 const struct vm_operations_struct hugetlb_vm_ops = {
2198 .fault = hugetlb_vm_op_fault,
2199 .open = hugetlb_vm_op_open,
2200 .close = hugetlb_vm_op_close,
2201 };
2202
2203 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2204 int writable)
2205 {
2206 pte_t entry;
2207
2208 if (writable) {
2209 entry =
2210 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2211 } else {
2212 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2213 }
2214 entry = pte_mkyoung(entry);
2215 entry = pte_mkhuge(entry);
2216 entry = arch_make_huge_pte(entry, vma, page, writable);
2217
2218 return entry;
2219 }
2220
2221 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2222 unsigned long address, pte_t *ptep)
2223 {
2224 pte_t entry;
2225
2226 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2227 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2228 update_mmu_cache(vma, address, ptep);
2229 }
2230
2231
2232 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2233 struct vm_area_struct *vma)
2234 {
2235 pte_t *src_pte, *dst_pte, entry;
2236 struct page *ptepage;
2237 unsigned long addr;
2238 int cow;
2239 struct hstate *h = hstate_vma(vma);
2240 unsigned long sz = huge_page_size(h);
2241
2242 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2243
2244 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2245 src_pte = huge_pte_offset(src, addr);
2246 if (!src_pte)
2247 continue;
2248 dst_pte = huge_pte_alloc(dst, addr, sz);
2249 if (!dst_pte)
2250 goto nomem;
2251
2252 /* If the pagetables are shared don't copy or take references */
2253 if (dst_pte == src_pte)
2254 continue;
2255
2256 spin_lock(&dst->page_table_lock);
2257 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2258 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2259 if (cow)
2260 huge_ptep_set_wrprotect(src, addr, src_pte);
2261 entry = huge_ptep_get(src_pte);
2262 ptepage = pte_page(entry);
2263 get_page(ptepage);
2264 page_dup_rmap(ptepage);
2265 set_huge_pte_at(dst, addr, dst_pte, entry);
2266 }
2267 spin_unlock(&src->page_table_lock);
2268 spin_unlock(&dst->page_table_lock);
2269 }
2270 return 0;
2271
2272 nomem:
2273 return -ENOMEM;
2274 }
2275
2276 static int is_hugetlb_entry_migration(pte_t pte)
2277 {
2278 swp_entry_t swp;
2279
2280 if (huge_pte_none(pte) || pte_present(pte))
2281 return 0;
2282 swp = pte_to_swp_entry(pte);
2283 if (non_swap_entry(swp) && is_migration_entry(swp))
2284 return 1;
2285 else
2286 return 0;
2287 }
2288
2289 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2290 {
2291 swp_entry_t swp;
2292
2293 if (huge_pte_none(pte) || pte_present(pte))
2294 return 0;
2295 swp = pte_to_swp_entry(pte);
2296 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2297 return 1;
2298 else
2299 return 0;
2300 }
2301
2302 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2303 unsigned long end, struct page *ref_page)
2304 {
2305 struct mm_struct *mm = vma->vm_mm;
2306 unsigned long address;
2307 pte_t *ptep;
2308 pte_t pte;
2309 struct page *page;
2310 struct page *tmp;
2311 struct hstate *h = hstate_vma(vma);
2312 unsigned long sz = huge_page_size(h);
2313
2314 /*
2315 * A page gathering list, protected by per file i_mmap_mutex. The
2316 * lock is used to avoid list corruption from multiple unmapping
2317 * of the same page since we are using page->lru.
2318 */
2319 LIST_HEAD(page_list);
2320
2321 WARN_ON(!is_vm_hugetlb_page(vma));
2322 BUG_ON(start & ~huge_page_mask(h));
2323 BUG_ON(end & ~huge_page_mask(h));
2324
2325 mmu_notifier_invalidate_range_start(mm, start, end);
2326 spin_lock(&mm->page_table_lock);
2327 for (address = start; address < end; address += sz) {
2328 ptep = huge_pte_offset(mm, address);
2329 if (!ptep)
2330 continue;
2331
2332 if (huge_pmd_unshare(mm, &address, ptep))
2333 continue;
2334
2335 pte = huge_ptep_get(ptep);
2336 if (huge_pte_none(pte))
2337 continue;
2338
2339 /*
2340 * HWPoisoned hugepage is already unmapped and dropped reference
2341 */
2342 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2343 continue;
2344
2345 page = pte_page(pte);
2346 /*
2347 * If a reference page is supplied, it is because a specific
2348 * page is being unmapped, not a range. Ensure the page we
2349 * are about to unmap is the actual page of interest.
2350 */
2351 if (ref_page) {
2352 if (page != ref_page)
2353 continue;
2354
2355 /*
2356 * Mark the VMA as having unmapped its page so that
2357 * future faults in this VMA will fail rather than
2358 * looking like data was lost
2359 */
2360 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2361 }
2362
2363 pte = huge_ptep_get_and_clear(mm, address, ptep);
2364 if (pte_dirty(pte))
2365 set_page_dirty(page);
2366 list_add(&page->lru, &page_list);
2367
2368 /* Bail out after unmapping reference page if supplied */
2369 if (ref_page)
2370 break;
2371 }
2372 flush_tlb_range(vma, start, end);
2373 spin_unlock(&mm->page_table_lock);
2374 mmu_notifier_invalidate_range_end(mm, start, end);
2375 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2376 page_remove_rmap(page);
2377 list_del(&page->lru);
2378 put_page(page);
2379 }
2380 }
2381
2382 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2383 unsigned long end, struct page *ref_page)
2384 {
2385 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2386 __unmap_hugepage_range(vma, start, end, ref_page);
2387 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2388 }
2389
2390 /*
2391 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2392 * mappping it owns the reserve page for. The intention is to unmap the page
2393 * from other VMAs and let the children be SIGKILLed if they are faulting the
2394 * same region.
2395 */
2396 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2397 struct page *page, unsigned long address)
2398 {
2399 struct hstate *h = hstate_vma(vma);
2400 struct vm_area_struct *iter_vma;
2401 struct address_space *mapping;
2402 struct prio_tree_iter iter;
2403 pgoff_t pgoff;
2404
2405 /*
2406 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2407 * from page cache lookup which is in HPAGE_SIZE units.
2408 */
2409 address = address & huge_page_mask(h);
2410 pgoff = vma_hugecache_offset(h, vma, address);
2411 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2412
2413 /*
2414 * Take the mapping lock for the duration of the table walk. As
2415 * this mapping should be shared between all the VMAs,
2416 * __unmap_hugepage_range() is called as the lock is already held
2417 */
2418 mutex_lock(&mapping->i_mmap_mutex);
2419 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2420 /* Do not unmap the current VMA */
2421 if (iter_vma == vma)
2422 continue;
2423
2424 /*
2425 * Unmap the page from other VMAs without their own reserves.
2426 * They get marked to be SIGKILLed if they fault in these
2427 * areas. This is because a future no-page fault on this VMA
2428 * could insert a zeroed page instead of the data existing
2429 * from the time of fork. This would look like data corruption
2430 */
2431 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2432 __unmap_hugepage_range(iter_vma,
2433 address, address + huge_page_size(h),
2434 page);
2435 }
2436 mutex_unlock(&mapping->i_mmap_mutex);
2437
2438 return 1;
2439 }
2440
2441 /*
2442 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2443 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2444 * cannot race with other handlers or page migration.
2445 * Keep the pte_same checks anyway to make transition from the mutex easier.
2446 */
2447 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2448 unsigned long address, pte_t *ptep, pte_t pte,
2449 struct page *pagecache_page)
2450 {
2451 struct hstate *h = hstate_vma(vma);
2452 struct page *old_page, *new_page;
2453 int avoidcopy;
2454 int outside_reserve = 0;
2455
2456 old_page = pte_page(pte);
2457
2458 retry_avoidcopy:
2459 /* If no-one else is actually using this page, avoid the copy
2460 * and just make the page writable */
2461 avoidcopy = (page_mapcount(old_page) == 1);
2462 if (avoidcopy) {
2463 if (PageAnon(old_page))
2464 page_move_anon_rmap(old_page, vma, address);
2465 set_huge_ptep_writable(vma, address, ptep);
2466 return 0;
2467 }
2468
2469 /*
2470 * If the process that created a MAP_PRIVATE mapping is about to
2471 * perform a COW due to a shared page count, attempt to satisfy
2472 * the allocation without using the existing reserves. The pagecache
2473 * page is used to determine if the reserve at this address was
2474 * consumed or not. If reserves were used, a partial faulted mapping
2475 * at the time of fork() could consume its reserves on COW instead
2476 * of the full address range.
2477 */
2478 if (!(vma->vm_flags & VM_MAYSHARE) &&
2479 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2480 old_page != pagecache_page)
2481 outside_reserve = 1;
2482
2483 page_cache_get(old_page);
2484
2485 /* Drop page_table_lock as buddy allocator may be called */
2486 spin_unlock(&mm->page_table_lock);
2487 new_page = alloc_huge_page(vma, address, outside_reserve);
2488
2489 if (IS_ERR(new_page)) {
2490 page_cache_release(old_page);
2491
2492 /*
2493 * If a process owning a MAP_PRIVATE mapping fails to COW,
2494 * it is due to references held by a child and an insufficient
2495 * huge page pool. To guarantee the original mappers
2496 * reliability, unmap the page from child processes. The child
2497 * may get SIGKILLed if it later faults.
2498 */
2499 if (outside_reserve) {
2500 BUG_ON(huge_pte_none(pte));
2501 if (unmap_ref_private(mm, vma, old_page, address)) {
2502 BUG_ON(huge_pte_none(pte));
2503 spin_lock(&mm->page_table_lock);
2504 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2505 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2506 goto retry_avoidcopy;
2507 /*
2508 * race occurs while re-acquiring page_table_lock, and
2509 * our job is done.
2510 */
2511 return 0;
2512 }
2513 WARN_ON_ONCE(1);
2514 }
2515
2516 /* Caller expects lock to be held */
2517 spin_lock(&mm->page_table_lock);
2518 return -PTR_ERR(new_page);
2519 }
2520
2521 /*
2522 * When the original hugepage is shared one, it does not have
2523 * anon_vma prepared.
2524 */
2525 if (unlikely(anon_vma_prepare(vma))) {
2526 page_cache_release(new_page);
2527 page_cache_release(old_page);
2528 /* Caller expects lock to be held */
2529 spin_lock(&mm->page_table_lock);
2530 return VM_FAULT_OOM;
2531 }
2532
2533 copy_user_huge_page(new_page, old_page, address, vma,
2534 pages_per_huge_page(h));
2535 __SetPageUptodate(new_page);
2536
2537 /*
2538 * Retake the page_table_lock to check for racing updates
2539 * before the page tables are altered
2540 */
2541 spin_lock(&mm->page_table_lock);
2542 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2543 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2544 /* Break COW */
2545 mmu_notifier_invalidate_range_start(mm,
2546 address & huge_page_mask(h),
2547 (address & huge_page_mask(h)) + huge_page_size(h));
2548 huge_ptep_clear_flush(vma, address, ptep);
2549 set_huge_pte_at(mm, address, ptep,
2550 make_huge_pte(vma, new_page, 1));
2551 page_remove_rmap(old_page);
2552 hugepage_add_new_anon_rmap(new_page, vma, address);
2553 /* Make the old page be freed below */
2554 new_page = old_page;
2555 mmu_notifier_invalidate_range_end(mm,
2556 address & huge_page_mask(h),
2557 (address & huge_page_mask(h)) + huge_page_size(h));
2558 }
2559 page_cache_release(new_page);
2560 page_cache_release(old_page);
2561 return 0;
2562 }
2563
2564 /* Return the pagecache page at a given address within a VMA */
2565 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2566 struct vm_area_struct *vma, unsigned long address)
2567 {
2568 struct address_space *mapping;
2569 pgoff_t idx;
2570
2571 mapping = vma->vm_file->f_mapping;
2572 idx = vma_hugecache_offset(h, vma, address);
2573
2574 return find_lock_page(mapping, idx);
2575 }
2576
2577 /*
2578 * Return whether there is a pagecache page to back given address within VMA.
2579 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2580 */
2581 static bool hugetlbfs_pagecache_present(struct hstate *h,
2582 struct vm_area_struct *vma, unsigned long address)
2583 {
2584 struct address_space *mapping;
2585 pgoff_t idx;
2586 struct page *page;
2587
2588 mapping = vma->vm_file->f_mapping;
2589 idx = vma_hugecache_offset(h, vma, address);
2590
2591 page = find_get_page(mapping, idx);
2592 if (page)
2593 put_page(page);
2594 return page != NULL;
2595 }
2596
2597 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2598 unsigned long address, pte_t *ptep, unsigned int flags)
2599 {
2600 struct hstate *h = hstate_vma(vma);
2601 int ret = VM_FAULT_SIGBUS;
2602 int anon_rmap = 0;
2603 pgoff_t idx;
2604 unsigned long size;
2605 struct page *page;
2606 struct address_space *mapping;
2607 pte_t new_pte;
2608
2609 /*
2610 * Currently, we are forced to kill the process in the event the
2611 * original mapper has unmapped pages from the child due to a failed
2612 * COW. Warn that such a situation has occurred as it may not be obvious
2613 */
2614 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2615 printk(KERN_WARNING
2616 "PID %d killed due to inadequate hugepage pool\n",
2617 current->pid);
2618 return ret;
2619 }
2620
2621 mapping = vma->vm_file->f_mapping;
2622 idx = vma_hugecache_offset(h, vma, address);
2623
2624 /*
2625 * Use page lock to guard against racing truncation
2626 * before we get page_table_lock.
2627 */
2628 retry:
2629 page = find_lock_page(mapping, idx);
2630 if (!page) {
2631 size = i_size_read(mapping->host) >> huge_page_shift(h);
2632 if (idx >= size)
2633 goto out;
2634 page = alloc_huge_page(vma, address, 0);
2635 if (IS_ERR(page)) {
2636 ret = -PTR_ERR(page);
2637 goto out;
2638 }
2639 clear_huge_page(page, address, pages_per_huge_page(h));
2640 __SetPageUptodate(page);
2641
2642 if (vma->vm_flags & VM_MAYSHARE) {
2643 int err;
2644 struct inode *inode = mapping->host;
2645
2646 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2647 if (err) {
2648 put_page(page);
2649 if (err == -EEXIST)
2650 goto retry;
2651 goto out;
2652 }
2653
2654 spin_lock(&inode->i_lock);
2655 inode->i_blocks += blocks_per_huge_page(h);
2656 spin_unlock(&inode->i_lock);
2657 } else {
2658 lock_page(page);
2659 if (unlikely(anon_vma_prepare(vma))) {
2660 ret = VM_FAULT_OOM;
2661 goto backout_unlocked;
2662 }
2663 anon_rmap = 1;
2664 }
2665 } else {
2666 /*
2667 * If memory error occurs between mmap() and fault, some process
2668 * don't have hwpoisoned swap entry for errored virtual address.
2669 * So we need to block hugepage fault by PG_hwpoison bit check.
2670 */
2671 if (unlikely(PageHWPoison(page))) {
2672 ret = VM_FAULT_HWPOISON |
2673 VM_FAULT_SET_HINDEX(h - hstates);
2674 goto backout_unlocked;
2675 }
2676 }
2677
2678 /*
2679 * If we are going to COW a private mapping later, we examine the
2680 * pending reservations for this page now. This will ensure that
2681 * any allocations necessary to record that reservation occur outside
2682 * the spinlock.
2683 */
2684 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2685 if (vma_needs_reservation(h, vma, address) < 0) {
2686 ret = VM_FAULT_OOM;
2687 goto backout_unlocked;
2688 }
2689
2690 spin_lock(&mm->page_table_lock);
2691 size = i_size_read(mapping->host) >> huge_page_shift(h);
2692 if (idx >= size)
2693 goto backout;
2694
2695 ret = 0;
2696 if (!huge_pte_none(huge_ptep_get(ptep)))
2697 goto backout;
2698
2699 if (anon_rmap)
2700 hugepage_add_new_anon_rmap(page, vma, address);
2701 else
2702 page_dup_rmap(page);
2703 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2704 && (vma->vm_flags & VM_SHARED)));
2705 set_huge_pte_at(mm, address, ptep, new_pte);
2706
2707 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2708 /* Optimization, do the COW without a second fault */
2709 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2710 }
2711
2712 spin_unlock(&mm->page_table_lock);
2713 unlock_page(page);
2714 out:
2715 return ret;
2716
2717 backout:
2718 spin_unlock(&mm->page_table_lock);
2719 backout_unlocked:
2720 unlock_page(page);
2721 put_page(page);
2722 goto out;
2723 }
2724
2725 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2726 unsigned long address, unsigned int flags)
2727 {
2728 pte_t *ptep;
2729 pte_t entry;
2730 int ret;
2731 struct page *page = NULL;
2732 struct page *pagecache_page = NULL;
2733 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2734 struct hstate *h = hstate_vma(vma);
2735
2736 address &= huge_page_mask(h);
2737
2738 ptep = huge_pte_offset(mm, address);
2739 if (ptep) {
2740 entry = huge_ptep_get(ptep);
2741 if (unlikely(is_hugetlb_entry_migration(entry))) {
2742 migration_entry_wait(mm, (pmd_t *)ptep, address);
2743 return 0;
2744 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2745 return VM_FAULT_HWPOISON_LARGE |
2746 VM_FAULT_SET_HINDEX(h - hstates);
2747 }
2748
2749 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2750 if (!ptep)
2751 return VM_FAULT_OOM;
2752
2753 /*
2754 * Serialize hugepage allocation and instantiation, so that we don't
2755 * get spurious allocation failures if two CPUs race to instantiate
2756 * the same page in the page cache.
2757 */
2758 mutex_lock(&hugetlb_instantiation_mutex);
2759 entry = huge_ptep_get(ptep);
2760 if (huge_pte_none(entry)) {
2761 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2762 goto out_mutex;
2763 }
2764
2765 ret = 0;
2766
2767 /*
2768 * If we are going to COW the mapping later, we examine the pending
2769 * reservations for this page now. This will ensure that any
2770 * allocations necessary to record that reservation occur outside the
2771 * spinlock. For private mappings, we also lookup the pagecache
2772 * page now as it is used to determine if a reservation has been
2773 * consumed.
2774 */
2775 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2776 if (vma_needs_reservation(h, vma, address) < 0) {
2777 ret = VM_FAULT_OOM;
2778 goto out_mutex;
2779 }
2780
2781 if (!(vma->vm_flags & VM_MAYSHARE))
2782 pagecache_page = hugetlbfs_pagecache_page(h,
2783 vma, address);
2784 }
2785
2786 /*
2787 * hugetlb_cow() requires page locks of pte_page(entry) and
2788 * pagecache_page, so here we need take the former one
2789 * when page != pagecache_page or !pagecache_page.
2790 * Note that locking order is always pagecache_page -> page,
2791 * so no worry about deadlock.
2792 */
2793 page = pte_page(entry);
2794 get_page(page);
2795 if (page != pagecache_page)
2796 lock_page(page);
2797
2798 spin_lock(&mm->page_table_lock);
2799 /* Check for a racing update before calling hugetlb_cow */
2800 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2801 goto out_page_table_lock;
2802
2803
2804 if (flags & FAULT_FLAG_WRITE) {
2805 if (!pte_write(entry)) {
2806 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2807 pagecache_page);
2808 goto out_page_table_lock;
2809 }
2810 entry = pte_mkdirty(entry);
2811 }
2812 entry = pte_mkyoung(entry);
2813 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2814 flags & FAULT_FLAG_WRITE))
2815 update_mmu_cache(vma, address, ptep);
2816
2817 out_page_table_lock:
2818 spin_unlock(&mm->page_table_lock);
2819
2820 if (pagecache_page) {
2821 unlock_page(pagecache_page);
2822 put_page(pagecache_page);
2823 }
2824 if (page != pagecache_page)
2825 unlock_page(page);
2826 put_page(page);
2827
2828 out_mutex:
2829 mutex_unlock(&hugetlb_instantiation_mutex);
2830
2831 return ret;
2832 }
2833
2834 /* Can be overriden by architectures */
2835 __attribute__((weak)) struct page *
2836 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2837 pud_t *pud, int write)
2838 {
2839 BUG();
2840 return NULL;
2841 }
2842
2843 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2844 struct page **pages, struct vm_area_struct **vmas,
2845 unsigned long *position, int *length, int i,
2846 unsigned int flags)
2847 {
2848 unsigned long pfn_offset;
2849 unsigned long vaddr = *position;
2850 int remainder = *length;
2851 struct hstate *h = hstate_vma(vma);
2852
2853 spin_lock(&mm->page_table_lock);
2854 while (vaddr < vma->vm_end && remainder) {
2855 pte_t *pte;
2856 int absent;
2857 struct page *page;
2858
2859 /*
2860 * Some archs (sparc64, sh*) have multiple pte_ts to
2861 * each hugepage. We have to make sure we get the
2862 * first, for the page indexing below to work.
2863 */
2864 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2865 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2866
2867 /*
2868 * When coredumping, it suits get_dump_page if we just return
2869 * an error where there's an empty slot with no huge pagecache
2870 * to back it. This way, we avoid allocating a hugepage, and
2871 * the sparse dumpfile avoids allocating disk blocks, but its
2872 * huge holes still show up with zeroes where they need to be.
2873 */
2874 if (absent && (flags & FOLL_DUMP) &&
2875 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2876 remainder = 0;
2877 break;
2878 }
2879
2880 if (absent ||
2881 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2882 int ret;
2883
2884 spin_unlock(&mm->page_table_lock);
2885 ret = hugetlb_fault(mm, vma, vaddr,
2886 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2887 spin_lock(&mm->page_table_lock);
2888 if (!(ret & VM_FAULT_ERROR))
2889 continue;
2890
2891 remainder = 0;
2892 break;
2893 }
2894
2895 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2896 page = pte_page(huge_ptep_get(pte));
2897 same_page:
2898 if (pages) {
2899 pages[i] = mem_map_offset(page, pfn_offset);
2900 get_page(pages[i]);
2901 }
2902
2903 if (vmas)
2904 vmas[i] = vma;
2905
2906 vaddr += PAGE_SIZE;
2907 ++pfn_offset;
2908 --remainder;
2909 ++i;
2910 if (vaddr < vma->vm_end && remainder &&
2911 pfn_offset < pages_per_huge_page(h)) {
2912 /*
2913 * We use pfn_offset to avoid touching the pageframes
2914 * of this compound page.
2915 */
2916 goto same_page;
2917 }
2918 }
2919 spin_unlock(&mm->page_table_lock);
2920 *length = remainder;
2921 *position = vaddr;
2922
2923 return i ? i : -EFAULT;
2924 }
2925
2926 void hugetlb_change_protection(struct vm_area_struct *vma,
2927 unsigned long address, unsigned long end, pgprot_t newprot)
2928 {
2929 struct mm_struct *mm = vma->vm_mm;
2930 unsigned long start = address;
2931 pte_t *ptep;
2932 pte_t pte;
2933 struct hstate *h = hstate_vma(vma);
2934
2935 BUG_ON(address >= end);
2936 flush_cache_range(vma, address, end);
2937
2938 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2939 spin_lock(&mm->page_table_lock);
2940 for (; address < end; address += huge_page_size(h)) {
2941 ptep = huge_pte_offset(mm, address);
2942 if (!ptep)
2943 continue;
2944 if (huge_pmd_unshare(mm, &address, ptep))
2945 continue;
2946 if (!huge_pte_none(huge_ptep_get(ptep))) {
2947 pte = huge_ptep_get_and_clear(mm, address, ptep);
2948 pte = pte_mkhuge(pte_modify(pte, newprot));
2949 set_huge_pte_at(mm, address, ptep, pte);
2950 }
2951 }
2952 spin_unlock(&mm->page_table_lock);
2953 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2954
2955 flush_tlb_range(vma, start, end);
2956 }
2957
2958 int hugetlb_reserve_pages(struct inode *inode,
2959 long from, long to,
2960 struct vm_area_struct *vma,
2961 vm_flags_t vm_flags)
2962 {
2963 long ret, chg;
2964 struct hstate *h = hstate_inode(inode);
2965 struct hugepage_subpool *spool = subpool_inode(inode);
2966
2967 /*
2968 * Only apply hugepage reservation if asked. At fault time, an
2969 * attempt will be made for VM_NORESERVE to allocate a page
2970 * without using reserves
2971 */
2972 if (vm_flags & VM_NORESERVE)
2973 return 0;
2974
2975 /*
2976 * Shared mappings base their reservation on the number of pages that
2977 * are already allocated on behalf of the file. Private mappings need
2978 * to reserve the full area even if read-only as mprotect() may be
2979 * called to make the mapping read-write. Assume !vma is a shm mapping
2980 */
2981 if (!vma || vma->vm_flags & VM_MAYSHARE)
2982 chg = region_chg(&inode->i_mapping->private_list, from, to);
2983 else {
2984 struct resv_map *resv_map = resv_map_alloc();
2985 if (!resv_map)
2986 return -ENOMEM;
2987
2988 chg = to - from;
2989
2990 set_vma_resv_map(vma, resv_map);
2991 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2992 }
2993
2994 if (chg < 0)
2995 return chg;
2996
2997 /* There must be enough pages in the subpool for the mapping */
2998 if (hugepage_subpool_get_pages(spool, chg))
2999 return -ENOSPC;
3000
3001 /*
3002 * Check enough hugepages are available for the reservation.
3003 * Hand the pages back to the subpool if there are not
3004 */
3005 ret = hugetlb_acct_memory(h, chg);
3006 if (ret < 0) {
3007 hugepage_subpool_put_pages(spool, chg);
3008 return ret;
3009 }
3010
3011 /*
3012 * Account for the reservations made. Shared mappings record regions
3013 * that have reservations as they are shared by multiple VMAs.
3014 * When the last VMA disappears, the region map says how much
3015 * the reservation was and the page cache tells how much of
3016 * the reservation was consumed. Private mappings are per-VMA and
3017 * only the consumed reservations are tracked. When the VMA
3018 * disappears, the original reservation is the VMA size and the
3019 * consumed reservations are stored in the map. Hence, nothing
3020 * else has to be done for private mappings here
3021 */
3022 if (!vma || vma->vm_flags & VM_MAYSHARE)
3023 region_add(&inode->i_mapping->private_list, from, to);
3024 return 0;
3025 }
3026
3027 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3028 {
3029 struct hstate *h = hstate_inode(inode);
3030 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3031 struct hugepage_subpool *spool = subpool_inode(inode);
3032
3033 spin_lock(&inode->i_lock);
3034 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3035 spin_unlock(&inode->i_lock);
3036
3037 hugepage_subpool_put_pages(spool, (chg - freed));
3038 hugetlb_acct_memory(h, -(chg - freed));
3039 }
3040
3041 #ifdef CONFIG_MEMORY_FAILURE
3042
3043 /* Should be called in hugetlb_lock */
3044 static int is_hugepage_on_freelist(struct page *hpage)
3045 {
3046 struct page *page;
3047 struct page *tmp;
3048 struct hstate *h = page_hstate(hpage);
3049 int nid = page_to_nid(hpage);
3050
3051 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3052 if (page == hpage)
3053 return 1;
3054 return 0;
3055 }
3056
3057 /*
3058 * This function is called from memory failure code.
3059 * Assume the caller holds page lock of the head page.
3060 */
3061 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3062 {
3063 struct hstate *h = page_hstate(hpage);
3064 int nid = page_to_nid(hpage);
3065 int ret = -EBUSY;
3066
3067 spin_lock(&hugetlb_lock);
3068 if (is_hugepage_on_freelist(hpage)) {
3069 list_del(&hpage->lru);
3070 set_page_refcounted(hpage);
3071 h->free_huge_pages--;
3072 h->free_huge_pages_node[nid]--;
3073 ret = 0;
3074 }
3075 spin_unlock(&hugetlb_lock);
3076 return ret;
3077 }
3078 #endif