]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/hugetlb.c
mm, hugetlb: improve, cleanup resv_map parameters
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
53 */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94 {
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113 {
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152 };
153
154 static long region_add(struct resv_map *resv, long f, long t)
155 {
156 struct list_head *head = &resv->regions;
157 struct file_region *rg, *nrg, *trg;
158
159 /* Locate the region we are either in or before. */
160 list_for_each_entry(rg, head, link)
161 if (f <= rg->to)
162 break;
163
164 /* Round our left edge to the current segment if it encloses us. */
165 if (f > rg->from)
166 f = rg->from;
167
168 /* Check for and consume any regions we now overlap with. */
169 nrg = rg;
170 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
171 if (&rg->link == head)
172 break;
173 if (rg->from > t)
174 break;
175
176 /* If this area reaches higher then extend our area to
177 * include it completely. If this is not the first area
178 * which we intend to reuse, free it. */
179 if (rg->to > t)
180 t = rg->to;
181 if (rg != nrg) {
182 list_del(&rg->link);
183 kfree(rg);
184 }
185 }
186 nrg->from = f;
187 nrg->to = t;
188 return 0;
189 }
190
191 static long region_chg(struct resv_map *resv, long f, long t)
192 {
193 struct list_head *head = &resv->regions;
194 struct file_region *rg, *nrg;
195 long chg = 0;
196
197 /* Locate the region we are before or in. */
198 list_for_each_entry(rg, head, link)
199 if (f <= rg->to)
200 break;
201
202 /* If we are below the current region then a new region is required.
203 * Subtle, allocate a new region at the position but make it zero
204 * size such that we can guarantee to record the reservation. */
205 if (&rg->link == head || t < rg->from) {
206 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
207 if (!nrg)
208 return -ENOMEM;
209 nrg->from = f;
210 nrg->to = f;
211 INIT_LIST_HEAD(&nrg->link);
212 list_add(&nrg->link, rg->link.prev);
213
214 return t - f;
215 }
216
217 /* Round our left edge to the current segment if it encloses us. */
218 if (f > rg->from)
219 f = rg->from;
220 chg = t - f;
221
222 /* Check for and consume any regions we now overlap with. */
223 list_for_each_entry(rg, rg->link.prev, link) {
224 if (&rg->link == head)
225 break;
226 if (rg->from > t)
227 return chg;
228
229 /* We overlap with this area, if it extends further than
230 * us then we must extend ourselves. Account for its
231 * existing reservation. */
232 if (rg->to > t) {
233 chg += rg->to - t;
234 t = rg->to;
235 }
236 chg -= rg->to - rg->from;
237 }
238 return chg;
239 }
240
241 static long region_truncate(struct resv_map *resv, long end)
242 {
243 struct list_head *head = &resv->regions;
244 struct file_region *rg, *trg;
245 long chg = 0;
246
247 /* Locate the region we are either in or before. */
248 list_for_each_entry(rg, head, link)
249 if (end <= rg->to)
250 break;
251 if (&rg->link == head)
252 return 0;
253
254 /* If we are in the middle of a region then adjust it. */
255 if (end > rg->from) {
256 chg = rg->to - end;
257 rg->to = end;
258 rg = list_entry(rg->link.next, typeof(*rg), link);
259 }
260
261 /* Drop any remaining regions. */
262 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
263 if (&rg->link == head)
264 break;
265 chg += rg->to - rg->from;
266 list_del(&rg->link);
267 kfree(rg);
268 }
269 return chg;
270 }
271
272 static long region_count(struct resv_map *resv, long f, long t)
273 {
274 struct list_head *head = &resv->regions;
275 struct file_region *rg;
276 long chg = 0;
277
278 /* Locate each segment we overlap with, and count that overlap. */
279 list_for_each_entry(rg, head, link) {
280 long seg_from;
281 long seg_to;
282
283 if (rg->to <= f)
284 continue;
285 if (rg->from >= t)
286 break;
287
288 seg_from = max(rg->from, f);
289 seg_to = min(rg->to, t);
290
291 chg += seg_to - seg_from;
292 }
293
294 return chg;
295 }
296
297 /*
298 * Convert the address within this vma to the page offset within
299 * the mapping, in pagecache page units; huge pages here.
300 */
301 static pgoff_t vma_hugecache_offset(struct hstate *h,
302 struct vm_area_struct *vma, unsigned long address)
303 {
304 return ((address - vma->vm_start) >> huge_page_shift(h)) +
305 (vma->vm_pgoff >> huge_page_order(h));
306 }
307
308 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
309 unsigned long address)
310 {
311 return vma_hugecache_offset(hstate_vma(vma), vma, address);
312 }
313
314 /*
315 * Return the size of the pages allocated when backing a VMA. In the majority
316 * cases this will be same size as used by the page table entries.
317 */
318 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
319 {
320 struct hstate *hstate;
321
322 if (!is_vm_hugetlb_page(vma))
323 return PAGE_SIZE;
324
325 hstate = hstate_vma(vma);
326
327 return 1UL << huge_page_shift(hstate);
328 }
329 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
330
331 /*
332 * Return the page size being used by the MMU to back a VMA. In the majority
333 * of cases, the page size used by the kernel matches the MMU size. On
334 * architectures where it differs, an architecture-specific version of this
335 * function is required.
336 */
337 #ifndef vma_mmu_pagesize
338 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
339 {
340 return vma_kernel_pagesize(vma);
341 }
342 #endif
343
344 /*
345 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
346 * bits of the reservation map pointer, which are always clear due to
347 * alignment.
348 */
349 #define HPAGE_RESV_OWNER (1UL << 0)
350 #define HPAGE_RESV_UNMAPPED (1UL << 1)
351 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
352
353 /*
354 * These helpers are used to track how many pages are reserved for
355 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
356 * is guaranteed to have their future faults succeed.
357 *
358 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
359 * the reserve counters are updated with the hugetlb_lock held. It is safe
360 * to reset the VMA at fork() time as it is not in use yet and there is no
361 * chance of the global counters getting corrupted as a result of the values.
362 *
363 * The private mapping reservation is represented in a subtly different
364 * manner to a shared mapping. A shared mapping has a region map associated
365 * with the underlying file, this region map represents the backing file
366 * pages which have ever had a reservation assigned which this persists even
367 * after the page is instantiated. A private mapping has a region map
368 * associated with the original mmap which is attached to all VMAs which
369 * reference it, this region map represents those offsets which have consumed
370 * reservation ie. where pages have been instantiated.
371 */
372 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
373 {
374 return (unsigned long)vma->vm_private_data;
375 }
376
377 static void set_vma_private_data(struct vm_area_struct *vma,
378 unsigned long value)
379 {
380 vma->vm_private_data = (void *)value;
381 }
382
383 struct resv_map *resv_map_alloc(void)
384 {
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393 }
394
395 void resv_map_release(struct kref *ref)
396 {
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(resv_map, 0);
401 kfree(resv_map);
402 }
403
404 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 {
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
407 if (!(vma->vm_flags & VM_MAYSHARE))
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
410 return NULL;
411 }
412
413 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 {
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
420 }
421
422 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423 {
424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 }
429
430 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431 {
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
433
434 return (get_vma_private_data(vma) & flag) != 0;
435 }
436
437 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
438 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439 {
440 VM_BUG_ON(!is_vm_hugetlb_page(vma));
441 if (!(vma->vm_flags & VM_MAYSHARE))
442 vma->vm_private_data = (void *)0;
443 }
444
445 /* Returns true if the VMA has associated reserve pages */
446 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
447 {
448 if (vma->vm_flags & VM_NORESERVE) {
449 /*
450 * This address is already reserved by other process(chg == 0),
451 * so, we should decrement reserved count. Without decrementing,
452 * reserve count remains after releasing inode, because this
453 * allocated page will go into page cache and is regarded as
454 * coming from reserved pool in releasing step. Currently, we
455 * don't have any other solution to deal with this situation
456 * properly, so add work-around here.
457 */
458 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459 return 1;
460 else
461 return 0;
462 }
463
464 /* Shared mappings always use reserves */
465 if (vma->vm_flags & VM_MAYSHARE)
466 return 1;
467
468 /*
469 * Only the process that called mmap() has reserves for
470 * private mappings.
471 */
472 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473 return 1;
474
475 return 0;
476 }
477
478 static void enqueue_huge_page(struct hstate *h, struct page *page)
479 {
480 int nid = page_to_nid(page);
481 list_move(&page->lru, &h->hugepage_freelists[nid]);
482 h->free_huge_pages++;
483 h->free_huge_pages_node[nid]++;
484 }
485
486 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
487 {
488 struct page *page;
489
490 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
491 if (!is_migrate_isolate_page(page))
492 break;
493 /*
494 * if 'non-isolated free hugepage' not found on the list,
495 * the allocation fails.
496 */
497 if (&h->hugepage_freelists[nid] == &page->lru)
498 return NULL;
499 list_move(&page->lru, &h->hugepage_activelist);
500 set_page_refcounted(page);
501 h->free_huge_pages--;
502 h->free_huge_pages_node[nid]--;
503 return page;
504 }
505
506 /* Movability of hugepages depends on migration support. */
507 static inline gfp_t htlb_alloc_mask(struct hstate *h)
508 {
509 if (hugepages_treat_as_movable || hugepage_migration_support(h))
510 return GFP_HIGHUSER_MOVABLE;
511 else
512 return GFP_HIGHUSER;
513 }
514
515 static struct page *dequeue_huge_page_vma(struct hstate *h,
516 struct vm_area_struct *vma,
517 unsigned long address, int avoid_reserve,
518 long chg)
519 {
520 struct page *page = NULL;
521 struct mempolicy *mpol;
522 nodemask_t *nodemask;
523 struct zonelist *zonelist;
524 struct zone *zone;
525 struct zoneref *z;
526 unsigned int cpuset_mems_cookie;
527
528 /*
529 * A child process with MAP_PRIVATE mappings created by their parent
530 * have no page reserves. This check ensures that reservations are
531 * not "stolen". The child may still get SIGKILLed
532 */
533 if (!vma_has_reserves(vma, chg) &&
534 h->free_huge_pages - h->resv_huge_pages == 0)
535 goto err;
536
537 /* If reserves cannot be used, ensure enough pages are in the pool */
538 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
539 goto err;
540
541 retry_cpuset:
542 cpuset_mems_cookie = read_mems_allowed_begin();
543 zonelist = huge_zonelist(vma, address,
544 htlb_alloc_mask(h), &mpol, &nodemask);
545
546 for_each_zone_zonelist_nodemask(zone, z, zonelist,
547 MAX_NR_ZONES - 1, nodemask) {
548 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
549 page = dequeue_huge_page_node(h, zone_to_nid(zone));
550 if (page) {
551 if (avoid_reserve)
552 break;
553 if (!vma_has_reserves(vma, chg))
554 break;
555
556 SetPagePrivate(page);
557 h->resv_huge_pages--;
558 break;
559 }
560 }
561 }
562
563 mpol_cond_put(mpol);
564 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
565 goto retry_cpuset;
566 return page;
567
568 err:
569 return NULL;
570 }
571
572 static void update_and_free_page(struct hstate *h, struct page *page)
573 {
574 int i;
575
576 VM_BUG_ON(h->order >= MAX_ORDER);
577
578 h->nr_huge_pages--;
579 h->nr_huge_pages_node[page_to_nid(page)]--;
580 for (i = 0; i < pages_per_huge_page(h); i++) {
581 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
582 1 << PG_referenced | 1 << PG_dirty |
583 1 << PG_active | 1 << PG_reserved |
584 1 << PG_private | 1 << PG_writeback);
585 }
586 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
587 set_compound_page_dtor(page, NULL);
588 set_page_refcounted(page);
589 arch_release_hugepage(page);
590 __free_pages(page, huge_page_order(h));
591 }
592
593 struct hstate *size_to_hstate(unsigned long size)
594 {
595 struct hstate *h;
596
597 for_each_hstate(h) {
598 if (huge_page_size(h) == size)
599 return h;
600 }
601 return NULL;
602 }
603
604 static void free_huge_page(struct page *page)
605 {
606 /*
607 * Can't pass hstate in here because it is called from the
608 * compound page destructor.
609 */
610 struct hstate *h = page_hstate(page);
611 int nid = page_to_nid(page);
612 struct hugepage_subpool *spool =
613 (struct hugepage_subpool *)page_private(page);
614 bool restore_reserve;
615
616 set_page_private(page, 0);
617 page->mapping = NULL;
618 BUG_ON(page_count(page));
619 BUG_ON(page_mapcount(page));
620 restore_reserve = PagePrivate(page);
621 ClearPagePrivate(page);
622
623 spin_lock(&hugetlb_lock);
624 hugetlb_cgroup_uncharge_page(hstate_index(h),
625 pages_per_huge_page(h), page);
626 if (restore_reserve)
627 h->resv_huge_pages++;
628
629 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
630 /* remove the page from active list */
631 list_del(&page->lru);
632 update_and_free_page(h, page);
633 h->surplus_huge_pages--;
634 h->surplus_huge_pages_node[nid]--;
635 } else {
636 arch_clear_hugepage_flags(page);
637 enqueue_huge_page(h, page);
638 }
639 spin_unlock(&hugetlb_lock);
640 hugepage_subpool_put_pages(spool, 1);
641 }
642
643 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
644 {
645 INIT_LIST_HEAD(&page->lru);
646 set_compound_page_dtor(page, free_huge_page);
647 spin_lock(&hugetlb_lock);
648 set_hugetlb_cgroup(page, NULL);
649 h->nr_huge_pages++;
650 h->nr_huge_pages_node[nid]++;
651 spin_unlock(&hugetlb_lock);
652 put_page(page); /* free it into the hugepage allocator */
653 }
654
655 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
656 {
657 int i;
658 int nr_pages = 1 << order;
659 struct page *p = page + 1;
660
661 /* we rely on prep_new_huge_page to set the destructor */
662 set_compound_order(page, order);
663 __SetPageHead(page);
664 __ClearPageReserved(page);
665 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
666 __SetPageTail(p);
667 /*
668 * For gigantic hugepages allocated through bootmem at
669 * boot, it's safer to be consistent with the not-gigantic
670 * hugepages and clear the PG_reserved bit from all tail pages
671 * too. Otherwse drivers using get_user_pages() to access tail
672 * pages may get the reference counting wrong if they see
673 * PG_reserved set on a tail page (despite the head page not
674 * having PG_reserved set). Enforcing this consistency between
675 * head and tail pages allows drivers to optimize away a check
676 * on the head page when they need know if put_page() is needed
677 * after get_user_pages().
678 */
679 __ClearPageReserved(p);
680 set_page_count(p, 0);
681 p->first_page = page;
682 }
683 }
684
685 /*
686 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
687 * transparent huge pages. See the PageTransHuge() documentation for more
688 * details.
689 */
690 int PageHuge(struct page *page)
691 {
692 if (!PageCompound(page))
693 return 0;
694
695 page = compound_head(page);
696 return get_compound_page_dtor(page) == free_huge_page;
697 }
698 EXPORT_SYMBOL_GPL(PageHuge);
699
700 /*
701 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
702 * normal or transparent huge pages.
703 */
704 int PageHeadHuge(struct page *page_head)
705 {
706 if (!PageHead(page_head))
707 return 0;
708
709 return get_compound_page_dtor(page_head) == free_huge_page;
710 }
711
712 pgoff_t __basepage_index(struct page *page)
713 {
714 struct page *page_head = compound_head(page);
715 pgoff_t index = page_index(page_head);
716 unsigned long compound_idx;
717
718 if (!PageHuge(page_head))
719 return page_index(page);
720
721 if (compound_order(page_head) >= MAX_ORDER)
722 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
723 else
724 compound_idx = page - page_head;
725
726 return (index << compound_order(page_head)) + compound_idx;
727 }
728
729 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
730 {
731 struct page *page;
732
733 if (h->order >= MAX_ORDER)
734 return NULL;
735
736 page = alloc_pages_exact_node(nid,
737 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
738 __GFP_REPEAT|__GFP_NOWARN,
739 huge_page_order(h));
740 if (page) {
741 if (arch_prepare_hugepage(page)) {
742 __free_pages(page, huge_page_order(h));
743 return NULL;
744 }
745 prep_new_huge_page(h, page, nid);
746 }
747
748 return page;
749 }
750
751 /*
752 * common helper functions for hstate_next_node_to_{alloc|free}.
753 * We may have allocated or freed a huge page based on a different
754 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
755 * be outside of *nodes_allowed. Ensure that we use an allowed
756 * node for alloc or free.
757 */
758 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
759 {
760 nid = next_node(nid, *nodes_allowed);
761 if (nid == MAX_NUMNODES)
762 nid = first_node(*nodes_allowed);
763 VM_BUG_ON(nid >= MAX_NUMNODES);
764
765 return nid;
766 }
767
768 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
769 {
770 if (!node_isset(nid, *nodes_allowed))
771 nid = next_node_allowed(nid, nodes_allowed);
772 return nid;
773 }
774
775 /*
776 * returns the previously saved node ["this node"] from which to
777 * allocate a persistent huge page for the pool and advance the
778 * next node from which to allocate, handling wrap at end of node
779 * mask.
780 */
781 static int hstate_next_node_to_alloc(struct hstate *h,
782 nodemask_t *nodes_allowed)
783 {
784 int nid;
785
786 VM_BUG_ON(!nodes_allowed);
787
788 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
789 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
790
791 return nid;
792 }
793
794 /*
795 * helper for free_pool_huge_page() - return the previously saved
796 * node ["this node"] from which to free a huge page. Advance the
797 * next node id whether or not we find a free huge page to free so
798 * that the next attempt to free addresses the next node.
799 */
800 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
801 {
802 int nid;
803
804 VM_BUG_ON(!nodes_allowed);
805
806 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
807 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
808
809 return nid;
810 }
811
812 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
813 for (nr_nodes = nodes_weight(*mask); \
814 nr_nodes > 0 && \
815 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
816 nr_nodes--)
817
818 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
819 for (nr_nodes = nodes_weight(*mask); \
820 nr_nodes > 0 && \
821 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
822 nr_nodes--)
823
824 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
825 {
826 struct page *page;
827 int nr_nodes, node;
828 int ret = 0;
829
830 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
831 page = alloc_fresh_huge_page_node(h, node);
832 if (page) {
833 ret = 1;
834 break;
835 }
836 }
837
838 if (ret)
839 count_vm_event(HTLB_BUDDY_PGALLOC);
840 else
841 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
842
843 return ret;
844 }
845
846 /*
847 * Free huge page from pool from next node to free.
848 * Attempt to keep persistent huge pages more or less
849 * balanced over allowed nodes.
850 * Called with hugetlb_lock locked.
851 */
852 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
853 bool acct_surplus)
854 {
855 int nr_nodes, node;
856 int ret = 0;
857
858 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
859 /*
860 * If we're returning unused surplus pages, only examine
861 * nodes with surplus pages.
862 */
863 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
864 !list_empty(&h->hugepage_freelists[node])) {
865 struct page *page =
866 list_entry(h->hugepage_freelists[node].next,
867 struct page, lru);
868 list_del(&page->lru);
869 h->free_huge_pages--;
870 h->free_huge_pages_node[node]--;
871 if (acct_surplus) {
872 h->surplus_huge_pages--;
873 h->surplus_huge_pages_node[node]--;
874 }
875 update_and_free_page(h, page);
876 ret = 1;
877 break;
878 }
879 }
880
881 return ret;
882 }
883
884 /*
885 * Dissolve a given free hugepage into free buddy pages. This function does
886 * nothing for in-use (including surplus) hugepages.
887 */
888 static void dissolve_free_huge_page(struct page *page)
889 {
890 spin_lock(&hugetlb_lock);
891 if (PageHuge(page) && !page_count(page)) {
892 struct hstate *h = page_hstate(page);
893 int nid = page_to_nid(page);
894 list_del(&page->lru);
895 h->free_huge_pages--;
896 h->free_huge_pages_node[nid]--;
897 update_and_free_page(h, page);
898 }
899 spin_unlock(&hugetlb_lock);
900 }
901
902 /*
903 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
904 * make specified memory blocks removable from the system.
905 * Note that start_pfn should aligned with (minimum) hugepage size.
906 */
907 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
908 {
909 unsigned int order = 8 * sizeof(void *);
910 unsigned long pfn;
911 struct hstate *h;
912
913 /* Set scan step to minimum hugepage size */
914 for_each_hstate(h)
915 if (order > huge_page_order(h))
916 order = huge_page_order(h);
917 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
918 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
919 dissolve_free_huge_page(pfn_to_page(pfn));
920 }
921
922 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
923 {
924 struct page *page;
925 unsigned int r_nid;
926
927 if (h->order >= MAX_ORDER)
928 return NULL;
929
930 /*
931 * Assume we will successfully allocate the surplus page to
932 * prevent racing processes from causing the surplus to exceed
933 * overcommit
934 *
935 * This however introduces a different race, where a process B
936 * tries to grow the static hugepage pool while alloc_pages() is
937 * called by process A. B will only examine the per-node
938 * counters in determining if surplus huge pages can be
939 * converted to normal huge pages in adjust_pool_surplus(). A
940 * won't be able to increment the per-node counter, until the
941 * lock is dropped by B, but B doesn't drop hugetlb_lock until
942 * no more huge pages can be converted from surplus to normal
943 * state (and doesn't try to convert again). Thus, we have a
944 * case where a surplus huge page exists, the pool is grown, and
945 * the surplus huge page still exists after, even though it
946 * should just have been converted to a normal huge page. This
947 * does not leak memory, though, as the hugepage will be freed
948 * once it is out of use. It also does not allow the counters to
949 * go out of whack in adjust_pool_surplus() as we don't modify
950 * the node values until we've gotten the hugepage and only the
951 * per-node value is checked there.
952 */
953 spin_lock(&hugetlb_lock);
954 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
955 spin_unlock(&hugetlb_lock);
956 return NULL;
957 } else {
958 h->nr_huge_pages++;
959 h->surplus_huge_pages++;
960 }
961 spin_unlock(&hugetlb_lock);
962
963 if (nid == NUMA_NO_NODE)
964 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
965 __GFP_REPEAT|__GFP_NOWARN,
966 huge_page_order(h));
967 else
968 page = alloc_pages_exact_node(nid,
969 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
970 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
971
972 if (page && arch_prepare_hugepage(page)) {
973 __free_pages(page, huge_page_order(h));
974 page = NULL;
975 }
976
977 spin_lock(&hugetlb_lock);
978 if (page) {
979 INIT_LIST_HEAD(&page->lru);
980 r_nid = page_to_nid(page);
981 set_compound_page_dtor(page, free_huge_page);
982 set_hugetlb_cgroup(page, NULL);
983 /*
984 * We incremented the global counters already
985 */
986 h->nr_huge_pages_node[r_nid]++;
987 h->surplus_huge_pages_node[r_nid]++;
988 __count_vm_event(HTLB_BUDDY_PGALLOC);
989 } else {
990 h->nr_huge_pages--;
991 h->surplus_huge_pages--;
992 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
993 }
994 spin_unlock(&hugetlb_lock);
995
996 return page;
997 }
998
999 /*
1000 * This allocation function is useful in the context where vma is irrelevant.
1001 * E.g. soft-offlining uses this function because it only cares physical
1002 * address of error page.
1003 */
1004 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1005 {
1006 struct page *page = NULL;
1007
1008 spin_lock(&hugetlb_lock);
1009 if (h->free_huge_pages - h->resv_huge_pages > 0)
1010 page = dequeue_huge_page_node(h, nid);
1011 spin_unlock(&hugetlb_lock);
1012
1013 if (!page)
1014 page = alloc_buddy_huge_page(h, nid);
1015
1016 return page;
1017 }
1018
1019 /*
1020 * Increase the hugetlb pool such that it can accommodate a reservation
1021 * of size 'delta'.
1022 */
1023 static int gather_surplus_pages(struct hstate *h, int delta)
1024 {
1025 struct list_head surplus_list;
1026 struct page *page, *tmp;
1027 int ret, i;
1028 int needed, allocated;
1029 bool alloc_ok = true;
1030
1031 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1032 if (needed <= 0) {
1033 h->resv_huge_pages += delta;
1034 return 0;
1035 }
1036
1037 allocated = 0;
1038 INIT_LIST_HEAD(&surplus_list);
1039
1040 ret = -ENOMEM;
1041 retry:
1042 spin_unlock(&hugetlb_lock);
1043 for (i = 0; i < needed; i++) {
1044 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1045 if (!page) {
1046 alloc_ok = false;
1047 break;
1048 }
1049 list_add(&page->lru, &surplus_list);
1050 }
1051 allocated += i;
1052
1053 /*
1054 * After retaking hugetlb_lock, we need to recalculate 'needed'
1055 * because either resv_huge_pages or free_huge_pages may have changed.
1056 */
1057 spin_lock(&hugetlb_lock);
1058 needed = (h->resv_huge_pages + delta) -
1059 (h->free_huge_pages + allocated);
1060 if (needed > 0) {
1061 if (alloc_ok)
1062 goto retry;
1063 /*
1064 * We were not able to allocate enough pages to
1065 * satisfy the entire reservation so we free what
1066 * we've allocated so far.
1067 */
1068 goto free;
1069 }
1070 /*
1071 * The surplus_list now contains _at_least_ the number of extra pages
1072 * needed to accommodate the reservation. Add the appropriate number
1073 * of pages to the hugetlb pool and free the extras back to the buddy
1074 * allocator. Commit the entire reservation here to prevent another
1075 * process from stealing the pages as they are added to the pool but
1076 * before they are reserved.
1077 */
1078 needed += allocated;
1079 h->resv_huge_pages += delta;
1080 ret = 0;
1081
1082 /* Free the needed pages to the hugetlb pool */
1083 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1084 if ((--needed) < 0)
1085 break;
1086 /*
1087 * This page is now managed by the hugetlb allocator and has
1088 * no users -- drop the buddy allocator's reference.
1089 */
1090 put_page_testzero(page);
1091 VM_BUG_ON_PAGE(page_count(page), page);
1092 enqueue_huge_page(h, page);
1093 }
1094 free:
1095 spin_unlock(&hugetlb_lock);
1096
1097 /* Free unnecessary surplus pages to the buddy allocator */
1098 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1099 put_page(page);
1100 spin_lock(&hugetlb_lock);
1101
1102 return ret;
1103 }
1104
1105 /*
1106 * When releasing a hugetlb pool reservation, any surplus pages that were
1107 * allocated to satisfy the reservation must be explicitly freed if they were
1108 * never used.
1109 * Called with hugetlb_lock held.
1110 */
1111 static void return_unused_surplus_pages(struct hstate *h,
1112 unsigned long unused_resv_pages)
1113 {
1114 unsigned long nr_pages;
1115
1116 /* Uncommit the reservation */
1117 h->resv_huge_pages -= unused_resv_pages;
1118
1119 /* Cannot return gigantic pages currently */
1120 if (h->order >= MAX_ORDER)
1121 return;
1122
1123 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1124
1125 /*
1126 * We want to release as many surplus pages as possible, spread
1127 * evenly across all nodes with memory. Iterate across these nodes
1128 * until we can no longer free unreserved surplus pages. This occurs
1129 * when the nodes with surplus pages have no free pages.
1130 * free_pool_huge_page() will balance the the freed pages across the
1131 * on-line nodes with memory and will handle the hstate accounting.
1132 */
1133 while (nr_pages--) {
1134 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1135 break;
1136 }
1137 }
1138
1139 /*
1140 * Determine if the huge page at addr within the vma has an associated
1141 * reservation. Where it does not we will need to logically increase
1142 * reservation and actually increase subpool usage before an allocation
1143 * can occur. Where any new reservation would be required the
1144 * reservation change is prepared, but not committed. Once the page
1145 * has been allocated from the subpool and instantiated the change should
1146 * be committed via vma_commit_reservation. No action is required on
1147 * failure.
1148 */
1149 static long vma_needs_reservation(struct hstate *h,
1150 struct vm_area_struct *vma, unsigned long addr)
1151 {
1152 struct address_space *mapping = vma->vm_file->f_mapping;
1153 struct inode *inode = mapping->host;
1154
1155 if (vma->vm_flags & VM_MAYSHARE) {
1156 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1157 struct resv_map *resv = inode->i_mapping->private_data;
1158
1159 return region_chg(resv, idx, idx + 1);
1160
1161 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1162 return 1;
1163
1164 } else {
1165 long err;
1166 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1167 struct resv_map *resv = vma_resv_map(vma);
1168
1169 err = region_chg(resv, idx, idx + 1);
1170 if (err < 0)
1171 return err;
1172 return 0;
1173 }
1174 }
1175 static void vma_commit_reservation(struct hstate *h,
1176 struct vm_area_struct *vma, unsigned long addr)
1177 {
1178 struct address_space *mapping = vma->vm_file->f_mapping;
1179 struct inode *inode = mapping->host;
1180
1181 if (vma->vm_flags & VM_MAYSHARE) {
1182 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1183 struct resv_map *resv = inode->i_mapping->private_data;
1184
1185 region_add(resv, idx, idx + 1);
1186
1187 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1188 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1189 struct resv_map *resv = vma_resv_map(vma);
1190
1191 /* Mark this page used in the map. */
1192 region_add(resv, idx, idx + 1);
1193 }
1194 }
1195
1196 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1197 unsigned long addr, int avoid_reserve)
1198 {
1199 struct hugepage_subpool *spool = subpool_vma(vma);
1200 struct hstate *h = hstate_vma(vma);
1201 struct page *page;
1202 long chg;
1203 int ret, idx;
1204 struct hugetlb_cgroup *h_cg;
1205
1206 idx = hstate_index(h);
1207 /*
1208 * Processes that did not create the mapping will have no
1209 * reserves and will not have accounted against subpool
1210 * limit. Check that the subpool limit can be made before
1211 * satisfying the allocation MAP_NORESERVE mappings may also
1212 * need pages and subpool limit allocated allocated if no reserve
1213 * mapping overlaps.
1214 */
1215 chg = vma_needs_reservation(h, vma, addr);
1216 if (chg < 0)
1217 return ERR_PTR(-ENOMEM);
1218 if (chg || avoid_reserve)
1219 if (hugepage_subpool_get_pages(spool, 1))
1220 return ERR_PTR(-ENOSPC);
1221
1222 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1223 if (ret) {
1224 if (chg || avoid_reserve)
1225 hugepage_subpool_put_pages(spool, 1);
1226 return ERR_PTR(-ENOSPC);
1227 }
1228 spin_lock(&hugetlb_lock);
1229 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1230 if (!page) {
1231 spin_unlock(&hugetlb_lock);
1232 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1233 if (!page) {
1234 hugetlb_cgroup_uncharge_cgroup(idx,
1235 pages_per_huge_page(h),
1236 h_cg);
1237 if (chg || avoid_reserve)
1238 hugepage_subpool_put_pages(spool, 1);
1239 return ERR_PTR(-ENOSPC);
1240 }
1241 spin_lock(&hugetlb_lock);
1242 list_move(&page->lru, &h->hugepage_activelist);
1243 /* Fall through */
1244 }
1245 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1246 spin_unlock(&hugetlb_lock);
1247
1248 set_page_private(page, (unsigned long)spool);
1249
1250 vma_commit_reservation(h, vma, addr);
1251 return page;
1252 }
1253
1254 /*
1255 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1256 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1257 * where no ERR_VALUE is expected to be returned.
1258 */
1259 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1260 unsigned long addr, int avoid_reserve)
1261 {
1262 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1263 if (IS_ERR(page))
1264 page = NULL;
1265 return page;
1266 }
1267
1268 int __weak alloc_bootmem_huge_page(struct hstate *h)
1269 {
1270 struct huge_bootmem_page *m;
1271 int nr_nodes, node;
1272
1273 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1274 void *addr;
1275
1276 addr = memblock_virt_alloc_try_nid_nopanic(
1277 huge_page_size(h), huge_page_size(h),
1278 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1279 if (addr) {
1280 /*
1281 * Use the beginning of the huge page to store the
1282 * huge_bootmem_page struct (until gather_bootmem
1283 * puts them into the mem_map).
1284 */
1285 m = addr;
1286 goto found;
1287 }
1288 }
1289 return 0;
1290
1291 found:
1292 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1293 /* Put them into a private list first because mem_map is not up yet */
1294 list_add(&m->list, &huge_boot_pages);
1295 m->hstate = h;
1296 return 1;
1297 }
1298
1299 static void prep_compound_huge_page(struct page *page, int order)
1300 {
1301 if (unlikely(order > (MAX_ORDER - 1)))
1302 prep_compound_gigantic_page(page, order);
1303 else
1304 prep_compound_page(page, order);
1305 }
1306
1307 /* Put bootmem huge pages into the standard lists after mem_map is up */
1308 static void __init gather_bootmem_prealloc(void)
1309 {
1310 struct huge_bootmem_page *m;
1311
1312 list_for_each_entry(m, &huge_boot_pages, list) {
1313 struct hstate *h = m->hstate;
1314 struct page *page;
1315
1316 #ifdef CONFIG_HIGHMEM
1317 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1318 memblock_free_late(__pa(m),
1319 sizeof(struct huge_bootmem_page));
1320 #else
1321 page = virt_to_page(m);
1322 #endif
1323 WARN_ON(page_count(page) != 1);
1324 prep_compound_huge_page(page, h->order);
1325 WARN_ON(PageReserved(page));
1326 prep_new_huge_page(h, page, page_to_nid(page));
1327 /*
1328 * If we had gigantic hugepages allocated at boot time, we need
1329 * to restore the 'stolen' pages to totalram_pages in order to
1330 * fix confusing memory reports from free(1) and another
1331 * side-effects, like CommitLimit going negative.
1332 */
1333 if (h->order > (MAX_ORDER - 1))
1334 adjust_managed_page_count(page, 1 << h->order);
1335 }
1336 }
1337
1338 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1339 {
1340 unsigned long i;
1341
1342 for (i = 0; i < h->max_huge_pages; ++i) {
1343 if (h->order >= MAX_ORDER) {
1344 if (!alloc_bootmem_huge_page(h))
1345 break;
1346 } else if (!alloc_fresh_huge_page(h,
1347 &node_states[N_MEMORY]))
1348 break;
1349 }
1350 h->max_huge_pages = i;
1351 }
1352
1353 static void __init hugetlb_init_hstates(void)
1354 {
1355 struct hstate *h;
1356
1357 for_each_hstate(h) {
1358 /* oversize hugepages were init'ed in early boot */
1359 if (h->order < MAX_ORDER)
1360 hugetlb_hstate_alloc_pages(h);
1361 }
1362 }
1363
1364 static char * __init memfmt(char *buf, unsigned long n)
1365 {
1366 if (n >= (1UL << 30))
1367 sprintf(buf, "%lu GB", n >> 30);
1368 else if (n >= (1UL << 20))
1369 sprintf(buf, "%lu MB", n >> 20);
1370 else
1371 sprintf(buf, "%lu KB", n >> 10);
1372 return buf;
1373 }
1374
1375 static void __init report_hugepages(void)
1376 {
1377 struct hstate *h;
1378
1379 for_each_hstate(h) {
1380 char buf[32];
1381 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1382 memfmt(buf, huge_page_size(h)),
1383 h->free_huge_pages);
1384 }
1385 }
1386
1387 #ifdef CONFIG_HIGHMEM
1388 static void try_to_free_low(struct hstate *h, unsigned long count,
1389 nodemask_t *nodes_allowed)
1390 {
1391 int i;
1392
1393 if (h->order >= MAX_ORDER)
1394 return;
1395
1396 for_each_node_mask(i, *nodes_allowed) {
1397 struct page *page, *next;
1398 struct list_head *freel = &h->hugepage_freelists[i];
1399 list_for_each_entry_safe(page, next, freel, lru) {
1400 if (count >= h->nr_huge_pages)
1401 return;
1402 if (PageHighMem(page))
1403 continue;
1404 list_del(&page->lru);
1405 update_and_free_page(h, page);
1406 h->free_huge_pages--;
1407 h->free_huge_pages_node[page_to_nid(page)]--;
1408 }
1409 }
1410 }
1411 #else
1412 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1413 nodemask_t *nodes_allowed)
1414 {
1415 }
1416 #endif
1417
1418 /*
1419 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1420 * balanced by operating on them in a round-robin fashion.
1421 * Returns 1 if an adjustment was made.
1422 */
1423 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1424 int delta)
1425 {
1426 int nr_nodes, node;
1427
1428 VM_BUG_ON(delta != -1 && delta != 1);
1429
1430 if (delta < 0) {
1431 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1432 if (h->surplus_huge_pages_node[node])
1433 goto found;
1434 }
1435 } else {
1436 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1437 if (h->surplus_huge_pages_node[node] <
1438 h->nr_huge_pages_node[node])
1439 goto found;
1440 }
1441 }
1442 return 0;
1443
1444 found:
1445 h->surplus_huge_pages += delta;
1446 h->surplus_huge_pages_node[node] += delta;
1447 return 1;
1448 }
1449
1450 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1451 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1452 nodemask_t *nodes_allowed)
1453 {
1454 unsigned long min_count, ret;
1455
1456 if (h->order >= MAX_ORDER)
1457 return h->max_huge_pages;
1458
1459 /*
1460 * Increase the pool size
1461 * First take pages out of surplus state. Then make up the
1462 * remaining difference by allocating fresh huge pages.
1463 *
1464 * We might race with alloc_buddy_huge_page() here and be unable
1465 * to convert a surplus huge page to a normal huge page. That is
1466 * not critical, though, it just means the overall size of the
1467 * pool might be one hugepage larger than it needs to be, but
1468 * within all the constraints specified by the sysctls.
1469 */
1470 spin_lock(&hugetlb_lock);
1471 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1472 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1473 break;
1474 }
1475
1476 while (count > persistent_huge_pages(h)) {
1477 /*
1478 * If this allocation races such that we no longer need the
1479 * page, free_huge_page will handle it by freeing the page
1480 * and reducing the surplus.
1481 */
1482 spin_unlock(&hugetlb_lock);
1483 ret = alloc_fresh_huge_page(h, nodes_allowed);
1484 spin_lock(&hugetlb_lock);
1485 if (!ret)
1486 goto out;
1487
1488 /* Bail for signals. Probably ctrl-c from user */
1489 if (signal_pending(current))
1490 goto out;
1491 }
1492
1493 /*
1494 * Decrease the pool size
1495 * First return free pages to the buddy allocator (being careful
1496 * to keep enough around to satisfy reservations). Then place
1497 * pages into surplus state as needed so the pool will shrink
1498 * to the desired size as pages become free.
1499 *
1500 * By placing pages into the surplus state independent of the
1501 * overcommit value, we are allowing the surplus pool size to
1502 * exceed overcommit. There are few sane options here. Since
1503 * alloc_buddy_huge_page() is checking the global counter,
1504 * though, we'll note that we're not allowed to exceed surplus
1505 * and won't grow the pool anywhere else. Not until one of the
1506 * sysctls are changed, or the surplus pages go out of use.
1507 */
1508 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1509 min_count = max(count, min_count);
1510 try_to_free_low(h, min_count, nodes_allowed);
1511 while (min_count < persistent_huge_pages(h)) {
1512 if (!free_pool_huge_page(h, nodes_allowed, 0))
1513 break;
1514 }
1515 while (count < persistent_huge_pages(h)) {
1516 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1517 break;
1518 }
1519 out:
1520 ret = persistent_huge_pages(h);
1521 spin_unlock(&hugetlb_lock);
1522 return ret;
1523 }
1524
1525 #define HSTATE_ATTR_RO(_name) \
1526 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1527
1528 #define HSTATE_ATTR(_name) \
1529 static struct kobj_attribute _name##_attr = \
1530 __ATTR(_name, 0644, _name##_show, _name##_store)
1531
1532 static struct kobject *hugepages_kobj;
1533 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1534
1535 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1536
1537 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1538 {
1539 int i;
1540
1541 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1542 if (hstate_kobjs[i] == kobj) {
1543 if (nidp)
1544 *nidp = NUMA_NO_NODE;
1545 return &hstates[i];
1546 }
1547
1548 return kobj_to_node_hstate(kobj, nidp);
1549 }
1550
1551 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1552 struct kobj_attribute *attr, char *buf)
1553 {
1554 struct hstate *h;
1555 unsigned long nr_huge_pages;
1556 int nid;
1557
1558 h = kobj_to_hstate(kobj, &nid);
1559 if (nid == NUMA_NO_NODE)
1560 nr_huge_pages = h->nr_huge_pages;
1561 else
1562 nr_huge_pages = h->nr_huge_pages_node[nid];
1563
1564 return sprintf(buf, "%lu\n", nr_huge_pages);
1565 }
1566
1567 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1568 struct kobject *kobj, struct kobj_attribute *attr,
1569 const char *buf, size_t len)
1570 {
1571 int err;
1572 int nid;
1573 unsigned long count;
1574 struct hstate *h;
1575 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1576
1577 err = kstrtoul(buf, 10, &count);
1578 if (err)
1579 goto out;
1580
1581 h = kobj_to_hstate(kobj, &nid);
1582 if (h->order >= MAX_ORDER) {
1583 err = -EINVAL;
1584 goto out;
1585 }
1586
1587 if (nid == NUMA_NO_NODE) {
1588 /*
1589 * global hstate attribute
1590 */
1591 if (!(obey_mempolicy &&
1592 init_nodemask_of_mempolicy(nodes_allowed))) {
1593 NODEMASK_FREE(nodes_allowed);
1594 nodes_allowed = &node_states[N_MEMORY];
1595 }
1596 } else if (nodes_allowed) {
1597 /*
1598 * per node hstate attribute: adjust count to global,
1599 * but restrict alloc/free to the specified node.
1600 */
1601 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1602 init_nodemask_of_node(nodes_allowed, nid);
1603 } else
1604 nodes_allowed = &node_states[N_MEMORY];
1605
1606 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1607
1608 if (nodes_allowed != &node_states[N_MEMORY])
1609 NODEMASK_FREE(nodes_allowed);
1610
1611 return len;
1612 out:
1613 NODEMASK_FREE(nodes_allowed);
1614 return err;
1615 }
1616
1617 static ssize_t nr_hugepages_show(struct kobject *kobj,
1618 struct kobj_attribute *attr, char *buf)
1619 {
1620 return nr_hugepages_show_common(kobj, attr, buf);
1621 }
1622
1623 static ssize_t nr_hugepages_store(struct kobject *kobj,
1624 struct kobj_attribute *attr, const char *buf, size_t len)
1625 {
1626 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1627 }
1628 HSTATE_ATTR(nr_hugepages);
1629
1630 #ifdef CONFIG_NUMA
1631
1632 /*
1633 * hstate attribute for optionally mempolicy-based constraint on persistent
1634 * huge page alloc/free.
1635 */
1636 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1637 struct kobj_attribute *attr, char *buf)
1638 {
1639 return nr_hugepages_show_common(kobj, attr, buf);
1640 }
1641
1642 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1643 struct kobj_attribute *attr, const char *buf, size_t len)
1644 {
1645 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1646 }
1647 HSTATE_ATTR(nr_hugepages_mempolicy);
1648 #endif
1649
1650
1651 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1652 struct kobj_attribute *attr, char *buf)
1653 {
1654 struct hstate *h = kobj_to_hstate(kobj, NULL);
1655 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1656 }
1657
1658 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1659 struct kobj_attribute *attr, const char *buf, size_t count)
1660 {
1661 int err;
1662 unsigned long input;
1663 struct hstate *h = kobj_to_hstate(kobj, NULL);
1664
1665 if (h->order >= MAX_ORDER)
1666 return -EINVAL;
1667
1668 err = kstrtoul(buf, 10, &input);
1669 if (err)
1670 return err;
1671
1672 spin_lock(&hugetlb_lock);
1673 h->nr_overcommit_huge_pages = input;
1674 spin_unlock(&hugetlb_lock);
1675
1676 return count;
1677 }
1678 HSTATE_ATTR(nr_overcommit_hugepages);
1679
1680 static ssize_t free_hugepages_show(struct kobject *kobj,
1681 struct kobj_attribute *attr, char *buf)
1682 {
1683 struct hstate *h;
1684 unsigned long free_huge_pages;
1685 int nid;
1686
1687 h = kobj_to_hstate(kobj, &nid);
1688 if (nid == NUMA_NO_NODE)
1689 free_huge_pages = h->free_huge_pages;
1690 else
1691 free_huge_pages = h->free_huge_pages_node[nid];
1692
1693 return sprintf(buf, "%lu\n", free_huge_pages);
1694 }
1695 HSTATE_ATTR_RO(free_hugepages);
1696
1697 static ssize_t resv_hugepages_show(struct kobject *kobj,
1698 struct kobj_attribute *attr, char *buf)
1699 {
1700 struct hstate *h = kobj_to_hstate(kobj, NULL);
1701 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1702 }
1703 HSTATE_ATTR_RO(resv_hugepages);
1704
1705 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1706 struct kobj_attribute *attr, char *buf)
1707 {
1708 struct hstate *h;
1709 unsigned long surplus_huge_pages;
1710 int nid;
1711
1712 h = kobj_to_hstate(kobj, &nid);
1713 if (nid == NUMA_NO_NODE)
1714 surplus_huge_pages = h->surplus_huge_pages;
1715 else
1716 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1717
1718 return sprintf(buf, "%lu\n", surplus_huge_pages);
1719 }
1720 HSTATE_ATTR_RO(surplus_hugepages);
1721
1722 static struct attribute *hstate_attrs[] = {
1723 &nr_hugepages_attr.attr,
1724 &nr_overcommit_hugepages_attr.attr,
1725 &free_hugepages_attr.attr,
1726 &resv_hugepages_attr.attr,
1727 &surplus_hugepages_attr.attr,
1728 #ifdef CONFIG_NUMA
1729 &nr_hugepages_mempolicy_attr.attr,
1730 #endif
1731 NULL,
1732 };
1733
1734 static struct attribute_group hstate_attr_group = {
1735 .attrs = hstate_attrs,
1736 };
1737
1738 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1739 struct kobject **hstate_kobjs,
1740 struct attribute_group *hstate_attr_group)
1741 {
1742 int retval;
1743 int hi = hstate_index(h);
1744
1745 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1746 if (!hstate_kobjs[hi])
1747 return -ENOMEM;
1748
1749 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1750 if (retval)
1751 kobject_put(hstate_kobjs[hi]);
1752
1753 return retval;
1754 }
1755
1756 static void __init hugetlb_sysfs_init(void)
1757 {
1758 struct hstate *h;
1759 int err;
1760
1761 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1762 if (!hugepages_kobj)
1763 return;
1764
1765 for_each_hstate(h) {
1766 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1767 hstate_kobjs, &hstate_attr_group);
1768 if (err)
1769 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1770 }
1771 }
1772
1773 #ifdef CONFIG_NUMA
1774
1775 /*
1776 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1777 * with node devices in node_devices[] using a parallel array. The array
1778 * index of a node device or _hstate == node id.
1779 * This is here to avoid any static dependency of the node device driver, in
1780 * the base kernel, on the hugetlb module.
1781 */
1782 struct node_hstate {
1783 struct kobject *hugepages_kobj;
1784 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1785 };
1786 struct node_hstate node_hstates[MAX_NUMNODES];
1787
1788 /*
1789 * A subset of global hstate attributes for node devices
1790 */
1791 static struct attribute *per_node_hstate_attrs[] = {
1792 &nr_hugepages_attr.attr,
1793 &free_hugepages_attr.attr,
1794 &surplus_hugepages_attr.attr,
1795 NULL,
1796 };
1797
1798 static struct attribute_group per_node_hstate_attr_group = {
1799 .attrs = per_node_hstate_attrs,
1800 };
1801
1802 /*
1803 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1804 * Returns node id via non-NULL nidp.
1805 */
1806 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1807 {
1808 int nid;
1809
1810 for (nid = 0; nid < nr_node_ids; nid++) {
1811 struct node_hstate *nhs = &node_hstates[nid];
1812 int i;
1813 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1814 if (nhs->hstate_kobjs[i] == kobj) {
1815 if (nidp)
1816 *nidp = nid;
1817 return &hstates[i];
1818 }
1819 }
1820
1821 BUG();
1822 return NULL;
1823 }
1824
1825 /*
1826 * Unregister hstate attributes from a single node device.
1827 * No-op if no hstate attributes attached.
1828 */
1829 static void hugetlb_unregister_node(struct node *node)
1830 {
1831 struct hstate *h;
1832 struct node_hstate *nhs = &node_hstates[node->dev.id];
1833
1834 if (!nhs->hugepages_kobj)
1835 return; /* no hstate attributes */
1836
1837 for_each_hstate(h) {
1838 int idx = hstate_index(h);
1839 if (nhs->hstate_kobjs[idx]) {
1840 kobject_put(nhs->hstate_kobjs[idx]);
1841 nhs->hstate_kobjs[idx] = NULL;
1842 }
1843 }
1844
1845 kobject_put(nhs->hugepages_kobj);
1846 nhs->hugepages_kobj = NULL;
1847 }
1848
1849 /*
1850 * hugetlb module exit: unregister hstate attributes from node devices
1851 * that have them.
1852 */
1853 static void hugetlb_unregister_all_nodes(void)
1854 {
1855 int nid;
1856
1857 /*
1858 * disable node device registrations.
1859 */
1860 register_hugetlbfs_with_node(NULL, NULL);
1861
1862 /*
1863 * remove hstate attributes from any nodes that have them.
1864 */
1865 for (nid = 0; nid < nr_node_ids; nid++)
1866 hugetlb_unregister_node(node_devices[nid]);
1867 }
1868
1869 /*
1870 * Register hstate attributes for a single node device.
1871 * No-op if attributes already registered.
1872 */
1873 static void hugetlb_register_node(struct node *node)
1874 {
1875 struct hstate *h;
1876 struct node_hstate *nhs = &node_hstates[node->dev.id];
1877 int err;
1878
1879 if (nhs->hugepages_kobj)
1880 return; /* already allocated */
1881
1882 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1883 &node->dev.kobj);
1884 if (!nhs->hugepages_kobj)
1885 return;
1886
1887 for_each_hstate(h) {
1888 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1889 nhs->hstate_kobjs,
1890 &per_node_hstate_attr_group);
1891 if (err) {
1892 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1893 h->name, node->dev.id);
1894 hugetlb_unregister_node(node);
1895 break;
1896 }
1897 }
1898 }
1899
1900 /*
1901 * hugetlb init time: register hstate attributes for all registered node
1902 * devices of nodes that have memory. All on-line nodes should have
1903 * registered their associated device by this time.
1904 */
1905 static void hugetlb_register_all_nodes(void)
1906 {
1907 int nid;
1908
1909 for_each_node_state(nid, N_MEMORY) {
1910 struct node *node = node_devices[nid];
1911 if (node->dev.id == nid)
1912 hugetlb_register_node(node);
1913 }
1914
1915 /*
1916 * Let the node device driver know we're here so it can
1917 * [un]register hstate attributes on node hotplug.
1918 */
1919 register_hugetlbfs_with_node(hugetlb_register_node,
1920 hugetlb_unregister_node);
1921 }
1922 #else /* !CONFIG_NUMA */
1923
1924 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1925 {
1926 BUG();
1927 if (nidp)
1928 *nidp = -1;
1929 return NULL;
1930 }
1931
1932 static void hugetlb_unregister_all_nodes(void) { }
1933
1934 static void hugetlb_register_all_nodes(void) { }
1935
1936 #endif
1937
1938 static void __exit hugetlb_exit(void)
1939 {
1940 struct hstate *h;
1941
1942 hugetlb_unregister_all_nodes();
1943
1944 for_each_hstate(h) {
1945 kobject_put(hstate_kobjs[hstate_index(h)]);
1946 }
1947
1948 kobject_put(hugepages_kobj);
1949 }
1950 module_exit(hugetlb_exit);
1951
1952 static int __init hugetlb_init(void)
1953 {
1954 /* Some platform decide whether they support huge pages at boot
1955 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1956 * there is no such support
1957 */
1958 if (HPAGE_SHIFT == 0)
1959 return 0;
1960
1961 if (!size_to_hstate(default_hstate_size)) {
1962 default_hstate_size = HPAGE_SIZE;
1963 if (!size_to_hstate(default_hstate_size))
1964 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1965 }
1966 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1967 if (default_hstate_max_huge_pages)
1968 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1969
1970 hugetlb_init_hstates();
1971 gather_bootmem_prealloc();
1972 report_hugepages();
1973
1974 hugetlb_sysfs_init();
1975 hugetlb_register_all_nodes();
1976 hugetlb_cgroup_file_init();
1977
1978 return 0;
1979 }
1980 module_init(hugetlb_init);
1981
1982 /* Should be called on processing a hugepagesz=... option */
1983 void __init hugetlb_add_hstate(unsigned order)
1984 {
1985 struct hstate *h;
1986 unsigned long i;
1987
1988 if (size_to_hstate(PAGE_SIZE << order)) {
1989 pr_warning("hugepagesz= specified twice, ignoring\n");
1990 return;
1991 }
1992 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1993 BUG_ON(order == 0);
1994 h = &hstates[hugetlb_max_hstate++];
1995 h->order = order;
1996 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1997 h->nr_huge_pages = 0;
1998 h->free_huge_pages = 0;
1999 for (i = 0; i < MAX_NUMNODES; ++i)
2000 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2001 INIT_LIST_HEAD(&h->hugepage_activelist);
2002 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2003 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2004 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2005 huge_page_size(h)/1024);
2006
2007 parsed_hstate = h;
2008 }
2009
2010 static int __init hugetlb_nrpages_setup(char *s)
2011 {
2012 unsigned long *mhp;
2013 static unsigned long *last_mhp;
2014
2015 /*
2016 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2017 * so this hugepages= parameter goes to the "default hstate".
2018 */
2019 if (!hugetlb_max_hstate)
2020 mhp = &default_hstate_max_huge_pages;
2021 else
2022 mhp = &parsed_hstate->max_huge_pages;
2023
2024 if (mhp == last_mhp) {
2025 pr_warning("hugepages= specified twice without "
2026 "interleaving hugepagesz=, ignoring\n");
2027 return 1;
2028 }
2029
2030 if (sscanf(s, "%lu", mhp) <= 0)
2031 *mhp = 0;
2032
2033 /*
2034 * Global state is always initialized later in hugetlb_init.
2035 * But we need to allocate >= MAX_ORDER hstates here early to still
2036 * use the bootmem allocator.
2037 */
2038 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2039 hugetlb_hstate_alloc_pages(parsed_hstate);
2040
2041 last_mhp = mhp;
2042
2043 return 1;
2044 }
2045 __setup("hugepages=", hugetlb_nrpages_setup);
2046
2047 static int __init hugetlb_default_setup(char *s)
2048 {
2049 default_hstate_size = memparse(s, &s);
2050 return 1;
2051 }
2052 __setup("default_hugepagesz=", hugetlb_default_setup);
2053
2054 static unsigned int cpuset_mems_nr(unsigned int *array)
2055 {
2056 int node;
2057 unsigned int nr = 0;
2058
2059 for_each_node_mask(node, cpuset_current_mems_allowed)
2060 nr += array[node];
2061
2062 return nr;
2063 }
2064
2065 #ifdef CONFIG_SYSCTL
2066 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2067 struct ctl_table *table, int write,
2068 void __user *buffer, size_t *length, loff_t *ppos)
2069 {
2070 struct hstate *h = &default_hstate;
2071 unsigned long tmp;
2072 int ret;
2073
2074 tmp = h->max_huge_pages;
2075
2076 if (write && h->order >= MAX_ORDER)
2077 return -EINVAL;
2078
2079 table->data = &tmp;
2080 table->maxlen = sizeof(unsigned long);
2081 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2082 if (ret)
2083 goto out;
2084
2085 if (write) {
2086 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2087 GFP_KERNEL | __GFP_NORETRY);
2088 if (!(obey_mempolicy &&
2089 init_nodemask_of_mempolicy(nodes_allowed))) {
2090 NODEMASK_FREE(nodes_allowed);
2091 nodes_allowed = &node_states[N_MEMORY];
2092 }
2093 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2094
2095 if (nodes_allowed != &node_states[N_MEMORY])
2096 NODEMASK_FREE(nodes_allowed);
2097 }
2098 out:
2099 return ret;
2100 }
2101
2102 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2103 void __user *buffer, size_t *length, loff_t *ppos)
2104 {
2105
2106 return hugetlb_sysctl_handler_common(false, table, write,
2107 buffer, length, ppos);
2108 }
2109
2110 #ifdef CONFIG_NUMA
2111 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2112 void __user *buffer, size_t *length, loff_t *ppos)
2113 {
2114 return hugetlb_sysctl_handler_common(true, table, write,
2115 buffer, length, ppos);
2116 }
2117 #endif /* CONFIG_NUMA */
2118
2119 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2120 void __user *buffer,
2121 size_t *length, loff_t *ppos)
2122 {
2123 struct hstate *h = &default_hstate;
2124 unsigned long tmp;
2125 int ret;
2126
2127 tmp = h->nr_overcommit_huge_pages;
2128
2129 if (write && h->order >= MAX_ORDER)
2130 return -EINVAL;
2131
2132 table->data = &tmp;
2133 table->maxlen = sizeof(unsigned long);
2134 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2135 if (ret)
2136 goto out;
2137
2138 if (write) {
2139 spin_lock(&hugetlb_lock);
2140 h->nr_overcommit_huge_pages = tmp;
2141 spin_unlock(&hugetlb_lock);
2142 }
2143 out:
2144 return ret;
2145 }
2146
2147 #endif /* CONFIG_SYSCTL */
2148
2149 void hugetlb_report_meminfo(struct seq_file *m)
2150 {
2151 struct hstate *h = &default_hstate;
2152 seq_printf(m,
2153 "HugePages_Total: %5lu\n"
2154 "HugePages_Free: %5lu\n"
2155 "HugePages_Rsvd: %5lu\n"
2156 "HugePages_Surp: %5lu\n"
2157 "Hugepagesize: %8lu kB\n",
2158 h->nr_huge_pages,
2159 h->free_huge_pages,
2160 h->resv_huge_pages,
2161 h->surplus_huge_pages,
2162 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2163 }
2164
2165 int hugetlb_report_node_meminfo(int nid, char *buf)
2166 {
2167 struct hstate *h = &default_hstate;
2168 return sprintf(buf,
2169 "Node %d HugePages_Total: %5u\n"
2170 "Node %d HugePages_Free: %5u\n"
2171 "Node %d HugePages_Surp: %5u\n",
2172 nid, h->nr_huge_pages_node[nid],
2173 nid, h->free_huge_pages_node[nid],
2174 nid, h->surplus_huge_pages_node[nid]);
2175 }
2176
2177 void hugetlb_show_meminfo(void)
2178 {
2179 struct hstate *h;
2180 int nid;
2181
2182 for_each_node_state(nid, N_MEMORY)
2183 for_each_hstate(h)
2184 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2185 nid,
2186 h->nr_huge_pages_node[nid],
2187 h->free_huge_pages_node[nid],
2188 h->surplus_huge_pages_node[nid],
2189 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2190 }
2191
2192 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2193 unsigned long hugetlb_total_pages(void)
2194 {
2195 struct hstate *h;
2196 unsigned long nr_total_pages = 0;
2197
2198 for_each_hstate(h)
2199 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2200 return nr_total_pages;
2201 }
2202
2203 static int hugetlb_acct_memory(struct hstate *h, long delta)
2204 {
2205 int ret = -ENOMEM;
2206
2207 spin_lock(&hugetlb_lock);
2208 /*
2209 * When cpuset is configured, it breaks the strict hugetlb page
2210 * reservation as the accounting is done on a global variable. Such
2211 * reservation is completely rubbish in the presence of cpuset because
2212 * the reservation is not checked against page availability for the
2213 * current cpuset. Application can still potentially OOM'ed by kernel
2214 * with lack of free htlb page in cpuset that the task is in.
2215 * Attempt to enforce strict accounting with cpuset is almost
2216 * impossible (or too ugly) because cpuset is too fluid that
2217 * task or memory node can be dynamically moved between cpusets.
2218 *
2219 * The change of semantics for shared hugetlb mapping with cpuset is
2220 * undesirable. However, in order to preserve some of the semantics,
2221 * we fall back to check against current free page availability as
2222 * a best attempt and hopefully to minimize the impact of changing
2223 * semantics that cpuset has.
2224 */
2225 if (delta > 0) {
2226 if (gather_surplus_pages(h, delta) < 0)
2227 goto out;
2228
2229 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2230 return_unused_surplus_pages(h, delta);
2231 goto out;
2232 }
2233 }
2234
2235 ret = 0;
2236 if (delta < 0)
2237 return_unused_surplus_pages(h, (unsigned long) -delta);
2238
2239 out:
2240 spin_unlock(&hugetlb_lock);
2241 return ret;
2242 }
2243
2244 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2245 {
2246 struct resv_map *resv = vma_resv_map(vma);
2247
2248 /*
2249 * This new VMA should share its siblings reservation map if present.
2250 * The VMA will only ever have a valid reservation map pointer where
2251 * it is being copied for another still existing VMA. As that VMA
2252 * has a reference to the reservation map it cannot disappear until
2253 * after this open call completes. It is therefore safe to take a
2254 * new reference here without additional locking.
2255 */
2256 if (resv)
2257 kref_get(&resv->refs);
2258 }
2259
2260 static void resv_map_put(struct vm_area_struct *vma)
2261 {
2262 struct resv_map *resv = vma_resv_map(vma);
2263
2264 if (!resv)
2265 return;
2266 kref_put(&resv->refs, resv_map_release);
2267 }
2268
2269 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2270 {
2271 struct hstate *h = hstate_vma(vma);
2272 struct resv_map *resv = vma_resv_map(vma);
2273 struct hugepage_subpool *spool = subpool_vma(vma);
2274 unsigned long reserve;
2275 unsigned long start;
2276 unsigned long end;
2277
2278 if (resv) {
2279 start = vma_hugecache_offset(h, vma, vma->vm_start);
2280 end = vma_hugecache_offset(h, vma, vma->vm_end);
2281
2282 reserve = (end - start) -
2283 region_count(resv, start, end);
2284
2285 resv_map_put(vma);
2286
2287 if (reserve) {
2288 hugetlb_acct_memory(h, -reserve);
2289 hugepage_subpool_put_pages(spool, reserve);
2290 }
2291 }
2292 }
2293
2294 /*
2295 * We cannot handle pagefaults against hugetlb pages at all. They cause
2296 * handle_mm_fault() to try to instantiate regular-sized pages in the
2297 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2298 * this far.
2299 */
2300 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2301 {
2302 BUG();
2303 return 0;
2304 }
2305
2306 const struct vm_operations_struct hugetlb_vm_ops = {
2307 .fault = hugetlb_vm_op_fault,
2308 .open = hugetlb_vm_op_open,
2309 .close = hugetlb_vm_op_close,
2310 };
2311
2312 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2313 int writable)
2314 {
2315 pte_t entry;
2316
2317 if (writable) {
2318 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2319 vma->vm_page_prot)));
2320 } else {
2321 entry = huge_pte_wrprotect(mk_huge_pte(page,
2322 vma->vm_page_prot));
2323 }
2324 entry = pte_mkyoung(entry);
2325 entry = pte_mkhuge(entry);
2326 entry = arch_make_huge_pte(entry, vma, page, writable);
2327
2328 return entry;
2329 }
2330
2331 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2332 unsigned long address, pte_t *ptep)
2333 {
2334 pte_t entry;
2335
2336 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2337 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2338 update_mmu_cache(vma, address, ptep);
2339 }
2340
2341
2342 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2343 struct vm_area_struct *vma)
2344 {
2345 pte_t *src_pte, *dst_pte, entry;
2346 struct page *ptepage;
2347 unsigned long addr;
2348 int cow;
2349 struct hstate *h = hstate_vma(vma);
2350 unsigned long sz = huge_page_size(h);
2351 unsigned long mmun_start; /* For mmu_notifiers */
2352 unsigned long mmun_end; /* For mmu_notifiers */
2353 int ret = 0;
2354
2355 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2356
2357 mmun_start = vma->vm_start;
2358 mmun_end = vma->vm_end;
2359 if (cow)
2360 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2361
2362 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2363 spinlock_t *src_ptl, *dst_ptl;
2364 src_pte = huge_pte_offset(src, addr);
2365 if (!src_pte)
2366 continue;
2367 dst_pte = huge_pte_alloc(dst, addr, sz);
2368 if (!dst_pte) {
2369 ret = -ENOMEM;
2370 break;
2371 }
2372
2373 /* If the pagetables are shared don't copy or take references */
2374 if (dst_pte == src_pte)
2375 continue;
2376
2377 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2378 src_ptl = huge_pte_lockptr(h, src, src_pte);
2379 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2380 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2381 if (cow)
2382 huge_ptep_set_wrprotect(src, addr, src_pte);
2383 entry = huge_ptep_get(src_pte);
2384 ptepage = pte_page(entry);
2385 get_page(ptepage);
2386 page_dup_rmap(ptepage);
2387 set_huge_pte_at(dst, addr, dst_pte, entry);
2388 }
2389 spin_unlock(src_ptl);
2390 spin_unlock(dst_ptl);
2391 }
2392
2393 if (cow)
2394 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2395
2396 return ret;
2397 }
2398
2399 static int is_hugetlb_entry_migration(pte_t pte)
2400 {
2401 swp_entry_t swp;
2402
2403 if (huge_pte_none(pte) || pte_present(pte))
2404 return 0;
2405 swp = pte_to_swp_entry(pte);
2406 if (non_swap_entry(swp) && is_migration_entry(swp))
2407 return 1;
2408 else
2409 return 0;
2410 }
2411
2412 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2413 {
2414 swp_entry_t swp;
2415
2416 if (huge_pte_none(pte) || pte_present(pte))
2417 return 0;
2418 swp = pte_to_swp_entry(pte);
2419 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2420 return 1;
2421 else
2422 return 0;
2423 }
2424
2425 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2426 unsigned long start, unsigned long end,
2427 struct page *ref_page)
2428 {
2429 int force_flush = 0;
2430 struct mm_struct *mm = vma->vm_mm;
2431 unsigned long address;
2432 pte_t *ptep;
2433 pte_t pte;
2434 spinlock_t *ptl;
2435 struct page *page;
2436 struct hstate *h = hstate_vma(vma);
2437 unsigned long sz = huge_page_size(h);
2438 const unsigned long mmun_start = start; /* For mmu_notifiers */
2439 const unsigned long mmun_end = end; /* For mmu_notifiers */
2440
2441 WARN_ON(!is_vm_hugetlb_page(vma));
2442 BUG_ON(start & ~huge_page_mask(h));
2443 BUG_ON(end & ~huge_page_mask(h));
2444
2445 tlb_start_vma(tlb, vma);
2446 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2447 again:
2448 for (address = start; address < end; address += sz) {
2449 ptep = huge_pte_offset(mm, address);
2450 if (!ptep)
2451 continue;
2452
2453 ptl = huge_pte_lock(h, mm, ptep);
2454 if (huge_pmd_unshare(mm, &address, ptep))
2455 goto unlock;
2456
2457 pte = huge_ptep_get(ptep);
2458 if (huge_pte_none(pte))
2459 goto unlock;
2460
2461 /*
2462 * HWPoisoned hugepage is already unmapped and dropped reference
2463 */
2464 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2465 huge_pte_clear(mm, address, ptep);
2466 goto unlock;
2467 }
2468
2469 page = pte_page(pte);
2470 /*
2471 * If a reference page is supplied, it is because a specific
2472 * page is being unmapped, not a range. Ensure the page we
2473 * are about to unmap is the actual page of interest.
2474 */
2475 if (ref_page) {
2476 if (page != ref_page)
2477 goto unlock;
2478
2479 /*
2480 * Mark the VMA as having unmapped its page so that
2481 * future faults in this VMA will fail rather than
2482 * looking like data was lost
2483 */
2484 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2485 }
2486
2487 pte = huge_ptep_get_and_clear(mm, address, ptep);
2488 tlb_remove_tlb_entry(tlb, ptep, address);
2489 if (huge_pte_dirty(pte))
2490 set_page_dirty(page);
2491
2492 page_remove_rmap(page);
2493 force_flush = !__tlb_remove_page(tlb, page);
2494 if (force_flush) {
2495 spin_unlock(ptl);
2496 break;
2497 }
2498 /* Bail out after unmapping reference page if supplied */
2499 if (ref_page) {
2500 spin_unlock(ptl);
2501 break;
2502 }
2503 unlock:
2504 spin_unlock(ptl);
2505 }
2506 /*
2507 * mmu_gather ran out of room to batch pages, we break out of
2508 * the PTE lock to avoid doing the potential expensive TLB invalidate
2509 * and page-free while holding it.
2510 */
2511 if (force_flush) {
2512 force_flush = 0;
2513 tlb_flush_mmu(tlb);
2514 if (address < end && !ref_page)
2515 goto again;
2516 }
2517 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2518 tlb_end_vma(tlb, vma);
2519 }
2520
2521 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2522 struct vm_area_struct *vma, unsigned long start,
2523 unsigned long end, struct page *ref_page)
2524 {
2525 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2526
2527 /*
2528 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2529 * test will fail on a vma being torn down, and not grab a page table
2530 * on its way out. We're lucky that the flag has such an appropriate
2531 * name, and can in fact be safely cleared here. We could clear it
2532 * before the __unmap_hugepage_range above, but all that's necessary
2533 * is to clear it before releasing the i_mmap_mutex. This works
2534 * because in the context this is called, the VMA is about to be
2535 * destroyed and the i_mmap_mutex is held.
2536 */
2537 vma->vm_flags &= ~VM_MAYSHARE;
2538 }
2539
2540 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2541 unsigned long end, struct page *ref_page)
2542 {
2543 struct mm_struct *mm;
2544 struct mmu_gather tlb;
2545
2546 mm = vma->vm_mm;
2547
2548 tlb_gather_mmu(&tlb, mm, start, end);
2549 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2550 tlb_finish_mmu(&tlb, start, end);
2551 }
2552
2553 /*
2554 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2555 * mappping it owns the reserve page for. The intention is to unmap the page
2556 * from other VMAs and let the children be SIGKILLed if they are faulting the
2557 * same region.
2558 */
2559 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2560 struct page *page, unsigned long address)
2561 {
2562 struct hstate *h = hstate_vma(vma);
2563 struct vm_area_struct *iter_vma;
2564 struct address_space *mapping;
2565 pgoff_t pgoff;
2566
2567 /*
2568 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2569 * from page cache lookup which is in HPAGE_SIZE units.
2570 */
2571 address = address & huge_page_mask(h);
2572 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2573 vma->vm_pgoff;
2574 mapping = file_inode(vma->vm_file)->i_mapping;
2575
2576 /*
2577 * Take the mapping lock for the duration of the table walk. As
2578 * this mapping should be shared between all the VMAs,
2579 * __unmap_hugepage_range() is called as the lock is already held
2580 */
2581 mutex_lock(&mapping->i_mmap_mutex);
2582 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2583 /* Do not unmap the current VMA */
2584 if (iter_vma == vma)
2585 continue;
2586
2587 /*
2588 * Unmap the page from other VMAs without their own reserves.
2589 * They get marked to be SIGKILLed if they fault in these
2590 * areas. This is because a future no-page fault on this VMA
2591 * could insert a zeroed page instead of the data existing
2592 * from the time of fork. This would look like data corruption
2593 */
2594 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2595 unmap_hugepage_range(iter_vma, address,
2596 address + huge_page_size(h), page);
2597 }
2598 mutex_unlock(&mapping->i_mmap_mutex);
2599
2600 return 1;
2601 }
2602
2603 /*
2604 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2605 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2606 * cannot race with other handlers or page migration.
2607 * Keep the pte_same checks anyway to make transition from the mutex easier.
2608 */
2609 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2610 unsigned long address, pte_t *ptep, pte_t pte,
2611 struct page *pagecache_page, spinlock_t *ptl)
2612 {
2613 struct hstate *h = hstate_vma(vma);
2614 struct page *old_page, *new_page;
2615 int outside_reserve = 0;
2616 unsigned long mmun_start; /* For mmu_notifiers */
2617 unsigned long mmun_end; /* For mmu_notifiers */
2618
2619 old_page = pte_page(pte);
2620
2621 retry_avoidcopy:
2622 /* If no-one else is actually using this page, avoid the copy
2623 * and just make the page writable */
2624 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2625 page_move_anon_rmap(old_page, vma, address);
2626 set_huge_ptep_writable(vma, address, ptep);
2627 return 0;
2628 }
2629
2630 /*
2631 * If the process that created a MAP_PRIVATE mapping is about to
2632 * perform a COW due to a shared page count, attempt to satisfy
2633 * the allocation without using the existing reserves. The pagecache
2634 * page is used to determine if the reserve at this address was
2635 * consumed or not. If reserves were used, a partial faulted mapping
2636 * at the time of fork() could consume its reserves on COW instead
2637 * of the full address range.
2638 */
2639 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2640 old_page != pagecache_page)
2641 outside_reserve = 1;
2642
2643 page_cache_get(old_page);
2644
2645 /* Drop page table lock as buddy allocator may be called */
2646 spin_unlock(ptl);
2647 new_page = alloc_huge_page(vma, address, outside_reserve);
2648
2649 if (IS_ERR(new_page)) {
2650 long err = PTR_ERR(new_page);
2651 page_cache_release(old_page);
2652
2653 /*
2654 * If a process owning a MAP_PRIVATE mapping fails to COW,
2655 * it is due to references held by a child and an insufficient
2656 * huge page pool. To guarantee the original mappers
2657 * reliability, unmap the page from child processes. The child
2658 * may get SIGKILLed if it later faults.
2659 */
2660 if (outside_reserve) {
2661 BUG_ON(huge_pte_none(pte));
2662 if (unmap_ref_private(mm, vma, old_page, address)) {
2663 BUG_ON(huge_pte_none(pte));
2664 spin_lock(ptl);
2665 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2666 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2667 goto retry_avoidcopy;
2668 /*
2669 * race occurs while re-acquiring page table
2670 * lock, and our job is done.
2671 */
2672 return 0;
2673 }
2674 WARN_ON_ONCE(1);
2675 }
2676
2677 /* Caller expects lock to be held */
2678 spin_lock(ptl);
2679 if (err == -ENOMEM)
2680 return VM_FAULT_OOM;
2681 else
2682 return VM_FAULT_SIGBUS;
2683 }
2684
2685 /*
2686 * When the original hugepage is shared one, it does not have
2687 * anon_vma prepared.
2688 */
2689 if (unlikely(anon_vma_prepare(vma))) {
2690 page_cache_release(new_page);
2691 page_cache_release(old_page);
2692 /* Caller expects lock to be held */
2693 spin_lock(ptl);
2694 return VM_FAULT_OOM;
2695 }
2696
2697 copy_user_huge_page(new_page, old_page, address, vma,
2698 pages_per_huge_page(h));
2699 __SetPageUptodate(new_page);
2700
2701 mmun_start = address & huge_page_mask(h);
2702 mmun_end = mmun_start + huge_page_size(h);
2703 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2704 /*
2705 * Retake the page table lock to check for racing updates
2706 * before the page tables are altered
2707 */
2708 spin_lock(ptl);
2709 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2710 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2711 ClearPagePrivate(new_page);
2712
2713 /* Break COW */
2714 huge_ptep_clear_flush(vma, address, ptep);
2715 set_huge_pte_at(mm, address, ptep,
2716 make_huge_pte(vma, new_page, 1));
2717 page_remove_rmap(old_page);
2718 hugepage_add_new_anon_rmap(new_page, vma, address);
2719 /* Make the old page be freed below */
2720 new_page = old_page;
2721 }
2722 spin_unlock(ptl);
2723 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2724 page_cache_release(new_page);
2725 page_cache_release(old_page);
2726
2727 /* Caller expects lock to be held */
2728 spin_lock(ptl);
2729 return 0;
2730 }
2731
2732 /* Return the pagecache page at a given address within a VMA */
2733 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2734 struct vm_area_struct *vma, unsigned long address)
2735 {
2736 struct address_space *mapping;
2737 pgoff_t idx;
2738
2739 mapping = vma->vm_file->f_mapping;
2740 idx = vma_hugecache_offset(h, vma, address);
2741
2742 return find_lock_page(mapping, idx);
2743 }
2744
2745 /*
2746 * Return whether there is a pagecache page to back given address within VMA.
2747 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2748 */
2749 static bool hugetlbfs_pagecache_present(struct hstate *h,
2750 struct vm_area_struct *vma, unsigned long address)
2751 {
2752 struct address_space *mapping;
2753 pgoff_t idx;
2754 struct page *page;
2755
2756 mapping = vma->vm_file->f_mapping;
2757 idx = vma_hugecache_offset(h, vma, address);
2758
2759 page = find_get_page(mapping, idx);
2760 if (page)
2761 put_page(page);
2762 return page != NULL;
2763 }
2764
2765 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2766 unsigned long address, pte_t *ptep, unsigned int flags)
2767 {
2768 struct hstate *h = hstate_vma(vma);
2769 int ret = VM_FAULT_SIGBUS;
2770 int anon_rmap = 0;
2771 pgoff_t idx;
2772 unsigned long size;
2773 struct page *page;
2774 struct address_space *mapping;
2775 pte_t new_pte;
2776 spinlock_t *ptl;
2777
2778 /*
2779 * Currently, we are forced to kill the process in the event the
2780 * original mapper has unmapped pages from the child due to a failed
2781 * COW. Warn that such a situation has occurred as it may not be obvious
2782 */
2783 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2784 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2785 current->pid);
2786 return ret;
2787 }
2788
2789 mapping = vma->vm_file->f_mapping;
2790 idx = vma_hugecache_offset(h, vma, address);
2791
2792 /*
2793 * Use page lock to guard against racing truncation
2794 * before we get page_table_lock.
2795 */
2796 retry:
2797 page = find_lock_page(mapping, idx);
2798 if (!page) {
2799 size = i_size_read(mapping->host) >> huge_page_shift(h);
2800 if (idx >= size)
2801 goto out;
2802 page = alloc_huge_page(vma, address, 0);
2803 if (IS_ERR(page)) {
2804 ret = PTR_ERR(page);
2805 if (ret == -ENOMEM)
2806 ret = VM_FAULT_OOM;
2807 else
2808 ret = VM_FAULT_SIGBUS;
2809 goto out;
2810 }
2811 clear_huge_page(page, address, pages_per_huge_page(h));
2812 __SetPageUptodate(page);
2813
2814 if (vma->vm_flags & VM_MAYSHARE) {
2815 int err;
2816 struct inode *inode = mapping->host;
2817
2818 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2819 if (err) {
2820 put_page(page);
2821 if (err == -EEXIST)
2822 goto retry;
2823 goto out;
2824 }
2825 ClearPagePrivate(page);
2826
2827 spin_lock(&inode->i_lock);
2828 inode->i_blocks += blocks_per_huge_page(h);
2829 spin_unlock(&inode->i_lock);
2830 } else {
2831 lock_page(page);
2832 if (unlikely(anon_vma_prepare(vma))) {
2833 ret = VM_FAULT_OOM;
2834 goto backout_unlocked;
2835 }
2836 anon_rmap = 1;
2837 }
2838 } else {
2839 /*
2840 * If memory error occurs between mmap() and fault, some process
2841 * don't have hwpoisoned swap entry for errored virtual address.
2842 * So we need to block hugepage fault by PG_hwpoison bit check.
2843 */
2844 if (unlikely(PageHWPoison(page))) {
2845 ret = VM_FAULT_HWPOISON |
2846 VM_FAULT_SET_HINDEX(hstate_index(h));
2847 goto backout_unlocked;
2848 }
2849 }
2850
2851 /*
2852 * If we are going to COW a private mapping later, we examine the
2853 * pending reservations for this page now. This will ensure that
2854 * any allocations necessary to record that reservation occur outside
2855 * the spinlock.
2856 */
2857 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2858 if (vma_needs_reservation(h, vma, address) < 0) {
2859 ret = VM_FAULT_OOM;
2860 goto backout_unlocked;
2861 }
2862
2863 ptl = huge_pte_lockptr(h, mm, ptep);
2864 spin_lock(ptl);
2865 size = i_size_read(mapping->host) >> huge_page_shift(h);
2866 if (idx >= size)
2867 goto backout;
2868
2869 ret = 0;
2870 if (!huge_pte_none(huge_ptep_get(ptep)))
2871 goto backout;
2872
2873 if (anon_rmap) {
2874 ClearPagePrivate(page);
2875 hugepage_add_new_anon_rmap(page, vma, address);
2876 }
2877 else
2878 page_dup_rmap(page);
2879 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2880 && (vma->vm_flags & VM_SHARED)));
2881 set_huge_pte_at(mm, address, ptep, new_pte);
2882
2883 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2884 /* Optimization, do the COW without a second fault */
2885 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2886 }
2887
2888 spin_unlock(ptl);
2889 unlock_page(page);
2890 out:
2891 return ret;
2892
2893 backout:
2894 spin_unlock(ptl);
2895 backout_unlocked:
2896 unlock_page(page);
2897 put_page(page);
2898 goto out;
2899 }
2900
2901 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2902 unsigned long address, unsigned int flags)
2903 {
2904 pte_t *ptep;
2905 pte_t entry;
2906 spinlock_t *ptl;
2907 int ret;
2908 struct page *page = NULL;
2909 struct page *pagecache_page = NULL;
2910 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2911 struct hstate *h = hstate_vma(vma);
2912
2913 address &= huge_page_mask(h);
2914
2915 ptep = huge_pte_offset(mm, address);
2916 if (ptep) {
2917 entry = huge_ptep_get(ptep);
2918 if (unlikely(is_hugetlb_entry_migration(entry))) {
2919 migration_entry_wait_huge(vma, mm, ptep);
2920 return 0;
2921 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2922 return VM_FAULT_HWPOISON_LARGE |
2923 VM_FAULT_SET_HINDEX(hstate_index(h));
2924 }
2925
2926 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2927 if (!ptep)
2928 return VM_FAULT_OOM;
2929
2930 /*
2931 * Serialize hugepage allocation and instantiation, so that we don't
2932 * get spurious allocation failures if two CPUs race to instantiate
2933 * the same page in the page cache.
2934 */
2935 mutex_lock(&hugetlb_instantiation_mutex);
2936 entry = huge_ptep_get(ptep);
2937 if (huge_pte_none(entry)) {
2938 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2939 goto out_mutex;
2940 }
2941
2942 ret = 0;
2943
2944 /*
2945 * If we are going to COW the mapping later, we examine the pending
2946 * reservations for this page now. This will ensure that any
2947 * allocations necessary to record that reservation occur outside the
2948 * spinlock. For private mappings, we also lookup the pagecache
2949 * page now as it is used to determine if a reservation has been
2950 * consumed.
2951 */
2952 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2953 if (vma_needs_reservation(h, vma, address) < 0) {
2954 ret = VM_FAULT_OOM;
2955 goto out_mutex;
2956 }
2957
2958 if (!(vma->vm_flags & VM_MAYSHARE))
2959 pagecache_page = hugetlbfs_pagecache_page(h,
2960 vma, address);
2961 }
2962
2963 /*
2964 * hugetlb_cow() requires page locks of pte_page(entry) and
2965 * pagecache_page, so here we need take the former one
2966 * when page != pagecache_page or !pagecache_page.
2967 * Note that locking order is always pagecache_page -> page,
2968 * so no worry about deadlock.
2969 */
2970 page = pte_page(entry);
2971 get_page(page);
2972 if (page != pagecache_page)
2973 lock_page(page);
2974
2975 ptl = huge_pte_lockptr(h, mm, ptep);
2976 spin_lock(ptl);
2977 /* Check for a racing update before calling hugetlb_cow */
2978 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2979 goto out_ptl;
2980
2981
2982 if (flags & FAULT_FLAG_WRITE) {
2983 if (!huge_pte_write(entry)) {
2984 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2985 pagecache_page, ptl);
2986 goto out_ptl;
2987 }
2988 entry = huge_pte_mkdirty(entry);
2989 }
2990 entry = pte_mkyoung(entry);
2991 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2992 flags & FAULT_FLAG_WRITE))
2993 update_mmu_cache(vma, address, ptep);
2994
2995 out_ptl:
2996 spin_unlock(ptl);
2997
2998 if (pagecache_page) {
2999 unlock_page(pagecache_page);
3000 put_page(pagecache_page);
3001 }
3002 if (page != pagecache_page)
3003 unlock_page(page);
3004 put_page(page);
3005
3006 out_mutex:
3007 mutex_unlock(&hugetlb_instantiation_mutex);
3008
3009 return ret;
3010 }
3011
3012 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3013 struct page **pages, struct vm_area_struct **vmas,
3014 unsigned long *position, unsigned long *nr_pages,
3015 long i, unsigned int flags)
3016 {
3017 unsigned long pfn_offset;
3018 unsigned long vaddr = *position;
3019 unsigned long remainder = *nr_pages;
3020 struct hstate *h = hstate_vma(vma);
3021
3022 while (vaddr < vma->vm_end && remainder) {
3023 pte_t *pte;
3024 spinlock_t *ptl = NULL;
3025 int absent;
3026 struct page *page;
3027
3028 /*
3029 * Some archs (sparc64, sh*) have multiple pte_ts to
3030 * each hugepage. We have to make sure we get the
3031 * first, for the page indexing below to work.
3032 *
3033 * Note that page table lock is not held when pte is null.
3034 */
3035 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3036 if (pte)
3037 ptl = huge_pte_lock(h, mm, pte);
3038 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3039
3040 /*
3041 * When coredumping, it suits get_dump_page if we just return
3042 * an error where there's an empty slot with no huge pagecache
3043 * to back it. This way, we avoid allocating a hugepage, and
3044 * the sparse dumpfile avoids allocating disk blocks, but its
3045 * huge holes still show up with zeroes where they need to be.
3046 */
3047 if (absent && (flags & FOLL_DUMP) &&
3048 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3049 if (pte)
3050 spin_unlock(ptl);
3051 remainder = 0;
3052 break;
3053 }
3054
3055 /*
3056 * We need call hugetlb_fault for both hugepages under migration
3057 * (in which case hugetlb_fault waits for the migration,) and
3058 * hwpoisoned hugepages (in which case we need to prevent the
3059 * caller from accessing to them.) In order to do this, we use
3060 * here is_swap_pte instead of is_hugetlb_entry_migration and
3061 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3062 * both cases, and because we can't follow correct pages
3063 * directly from any kind of swap entries.
3064 */
3065 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3066 ((flags & FOLL_WRITE) &&
3067 !huge_pte_write(huge_ptep_get(pte)))) {
3068 int ret;
3069
3070 if (pte)
3071 spin_unlock(ptl);
3072 ret = hugetlb_fault(mm, vma, vaddr,
3073 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3074 if (!(ret & VM_FAULT_ERROR))
3075 continue;
3076
3077 remainder = 0;
3078 break;
3079 }
3080
3081 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3082 page = pte_page(huge_ptep_get(pte));
3083 same_page:
3084 if (pages) {
3085 pages[i] = mem_map_offset(page, pfn_offset);
3086 get_page_foll(pages[i]);
3087 }
3088
3089 if (vmas)
3090 vmas[i] = vma;
3091
3092 vaddr += PAGE_SIZE;
3093 ++pfn_offset;
3094 --remainder;
3095 ++i;
3096 if (vaddr < vma->vm_end && remainder &&
3097 pfn_offset < pages_per_huge_page(h)) {
3098 /*
3099 * We use pfn_offset to avoid touching the pageframes
3100 * of this compound page.
3101 */
3102 goto same_page;
3103 }
3104 spin_unlock(ptl);
3105 }
3106 *nr_pages = remainder;
3107 *position = vaddr;
3108
3109 return i ? i : -EFAULT;
3110 }
3111
3112 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3113 unsigned long address, unsigned long end, pgprot_t newprot)
3114 {
3115 struct mm_struct *mm = vma->vm_mm;
3116 unsigned long start = address;
3117 pte_t *ptep;
3118 pte_t pte;
3119 struct hstate *h = hstate_vma(vma);
3120 unsigned long pages = 0;
3121
3122 BUG_ON(address >= end);
3123 flush_cache_range(vma, address, end);
3124
3125 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3126 for (; address < end; address += huge_page_size(h)) {
3127 spinlock_t *ptl;
3128 ptep = huge_pte_offset(mm, address);
3129 if (!ptep)
3130 continue;
3131 ptl = huge_pte_lock(h, mm, ptep);
3132 if (huge_pmd_unshare(mm, &address, ptep)) {
3133 pages++;
3134 spin_unlock(ptl);
3135 continue;
3136 }
3137 if (!huge_pte_none(huge_ptep_get(ptep))) {
3138 pte = huge_ptep_get_and_clear(mm, address, ptep);
3139 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3140 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3141 set_huge_pte_at(mm, address, ptep, pte);
3142 pages++;
3143 }
3144 spin_unlock(ptl);
3145 }
3146 /*
3147 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3148 * may have cleared our pud entry and done put_page on the page table:
3149 * once we release i_mmap_mutex, another task can do the final put_page
3150 * and that page table be reused and filled with junk.
3151 */
3152 flush_tlb_range(vma, start, end);
3153 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3154
3155 return pages << h->order;
3156 }
3157
3158 int hugetlb_reserve_pages(struct inode *inode,
3159 long from, long to,
3160 struct vm_area_struct *vma,
3161 vm_flags_t vm_flags)
3162 {
3163 long ret, chg;
3164 struct hstate *h = hstate_inode(inode);
3165 struct hugepage_subpool *spool = subpool_inode(inode);
3166 struct resv_map *resv_map;
3167
3168 /*
3169 * Only apply hugepage reservation if asked. At fault time, an
3170 * attempt will be made for VM_NORESERVE to allocate a page
3171 * without using reserves
3172 */
3173 if (vm_flags & VM_NORESERVE)
3174 return 0;
3175
3176 /*
3177 * Shared mappings base their reservation on the number of pages that
3178 * are already allocated on behalf of the file. Private mappings need
3179 * to reserve the full area even if read-only as mprotect() may be
3180 * called to make the mapping read-write. Assume !vma is a shm mapping
3181 */
3182 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3183 resv_map = inode->i_mapping->private_data;
3184
3185 chg = region_chg(resv_map, from, to);
3186
3187 } else {
3188 resv_map = resv_map_alloc();
3189 if (!resv_map)
3190 return -ENOMEM;
3191
3192 chg = to - from;
3193
3194 set_vma_resv_map(vma, resv_map);
3195 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3196 }
3197
3198 if (chg < 0) {
3199 ret = chg;
3200 goto out_err;
3201 }
3202
3203 /* There must be enough pages in the subpool for the mapping */
3204 if (hugepage_subpool_get_pages(spool, chg)) {
3205 ret = -ENOSPC;
3206 goto out_err;
3207 }
3208
3209 /*
3210 * Check enough hugepages are available for the reservation.
3211 * Hand the pages back to the subpool if there are not
3212 */
3213 ret = hugetlb_acct_memory(h, chg);
3214 if (ret < 0) {
3215 hugepage_subpool_put_pages(spool, chg);
3216 goto out_err;
3217 }
3218
3219 /*
3220 * Account for the reservations made. Shared mappings record regions
3221 * that have reservations as they are shared by multiple VMAs.
3222 * When the last VMA disappears, the region map says how much
3223 * the reservation was and the page cache tells how much of
3224 * the reservation was consumed. Private mappings are per-VMA and
3225 * only the consumed reservations are tracked. When the VMA
3226 * disappears, the original reservation is the VMA size and the
3227 * consumed reservations are stored in the map. Hence, nothing
3228 * else has to be done for private mappings here
3229 */
3230 if (!vma || vma->vm_flags & VM_MAYSHARE)
3231 region_add(resv_map, from, to);
3232 return 0;
3233 out_err:
3234 if (vma)
3235 resv_map_put(vma);
3236 return ret;
3237 }
3238
3239 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3240 {
3241 struct hstate *h = hstate_inode(inode);
3242 struct resv_map *resv_map = inode->i_mapping->private_data;
3243 long chg = 0;
3244 struct hugepage_subpool *spool = subpool_inode(inode);
3245
3246 if (resv_map)
3247 chg = region_truncate(resv_map, offset);
3248 spin_lock(&inode->i_lock);
3249 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3250 spin_unlock(&inode->i_lock);
3251
3252 hugepage_subpool_put_pages(spool, (chg - freed));
3253 hugetlb_acct_memory(h, -(chg - freed));
3254 }
3255
3256 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3257 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3258 struct vm_area_struct *vma,
3259 unsigned long addr, pgoff_t idx)
3260 {
3261 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3262 svma->vm_start;
3263 unsigned long sbase = saddr & PUD_MASK;
3264 unsigned long s_end = sbase + PUD_SIZE;
3265
3266 /* Allow segments to share if only one is marked locked */
3267 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3268 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3269
3270 /*
3271 * match the virtual addresses, permission and the alignment of the
3272 * page table page.
3273 */
3274 if (pmd_index(addr) != pmd_index(saddr) ||
3275 vm_flags != svm_flags ||
3276 sbase < svma->vm_start || svma->vm_end < s_end)
3277 return 0;
3278
3279 return saddr;
3280 }
3281
3282 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3283 {
3284 unsigned long base = addr & PUD_MASK;
3285 unsigned long end = base + PUD_SIZE;
3286
3287 /*
3288 * check on proper vm_flags and page table alignment
3289 */
3290 if (vma->vm_flags & VM_MAYSHARE &&
3291 vma->vm_start <= base && end <= vma->vm_end)
3292 return 1;
3293 return 0;
3294 }
3295
3296 /*
3297 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3298 * and returns the corresponding pte. While this is not necessary for the
3299 * !shared pmd case because we can allocate the pmd later as well, it makes the
3300 * code much cleaner. pmd allocation is essential for the shared case because
3301 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3302 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3303 * bad pmd for sharing.
3304 */
3305 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3306 {
3307 struct vm_area_struct *vma = find_vma(mm, addr);
3308 struct address_space *mapping = vma->vm_file->f_mapping;
3309 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3310 vma->vm_pgoff;
3311 struct vm_area_struct *svma;
3312 unsigned long saddr;
3313 pte_t *spte = NULL;
3314 pte_t *pte;
3315 spinlock_t *ptl;
3316
3317 if (!vma_shareable(vma, addr))
3318 return (pte_t *)pmd_alloc(mm, pud, addr);
3319
3320 mutex_lock(&mapping->i_mmap_mutex);
3321 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3322 if (svma == vma)
3323 continue;
3324
3325 saddr = page_table_shareable(svma, vma, addr, idx);
3326 if (saddr) {
3327 spte = huge_pte_offset(svma->vm_mm, saddr);
3328 if (spte) {
3329 get_page(virt_to_page(spte));
3330 break;
3331 }
3332 }
3333 }
3334
3335 if (!spte)
3336 goto out;
3337
3338 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3339 spin_lock(ptl);
3340 if (pud_none(*pud))
3341 pud_populate(mm, pud,
3342 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3343 else
3344 put_page(virt_to_page(spte));
3345 spin_unlock(ptl);
3346 out:
3347 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3348 mutex_unlock(&mapping->i_mmap_mutex);
3349 return pte;
3350 }
3351
3352 /*
3353 * unmap huge page backed by shared pte.
3354 *
3355 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3356 * indicated by page_count > 1, unmap is achieved by clearing pud and
3357 * decrementing the ref count. If count == 1, the pte page is not shared.
3358 *
3359 * called with page table lock held.
3360 *
3361 * returns: 1 successfully unmapped a shared pte page
3362 * 0 the underlying pte page is not shared, or it is the last user
3363 */
3364 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3365 {
3366 pgd_t *pgd = pgd_offset(mm, *addr);
3367 pud_t *pud = pud_offset(pgd, *addr);
3368
3369 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3370 if (page_count(virt_to_page(ptep)) == 1)
3371 return 0;
3372
3373 pud_clear(pud);
3374 put_page(virt_to_page(ptep));
3375 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3376 return 1;
3377 }
3378 #define want_pmd_share() (1)
3379 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3380 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3381 {
3382 return NULL;
3383 }
3384 #define want_pmd_share() (0)
3385 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3386
3387 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3388 pte_t *huge_pte_alloc(struct mm_struct *mm,
3389 unsigned long addr, unsigned long sz)
3390 {
3391 pgd_t *pgd;
3392 pud_t *pud;
3393 pte_t *pte = NULL;
3394
3395 pgd = pgd_offset(mm, addr);
3396 pud = pud_alloc(mm, pgd, addr);
3397 if (pud) {
3398 if (sz == PUD_SIZE) {
3399 pte = (pte_t *)pud;
3400 } else {
3401 BUG_ON(sz != PMD_SIZE);
3402 if (want_pmd_share() && pud_none(*pud))
3403 pte = huge_pmd_share(mm, addr, pud);
3404 else
3405 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3406 }
3407 }
3408 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3409
3410 return pte;
3411 }
3412
3413 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3414 {
3415 pgd_t *pgd;
3416 pud_t *pud;
3417 pmd_t *pmd = NULL;
3418
3419 pgd = pgd_offset(mm, addr);
3420 if (pgd_present(*pgd)) {
3421 pud = pud_offset(pgd, addr);
3422 if (pud_present(*pud)) {
3423 if (pud_huge(*pud))
3424 return (pte_t *)pud;
3425 pmd = pmd_offset(pud, addr);
3426 }
3427 }
3428 return (pte_t *) pmd;
3429 }
3430
3431 struct page *
3432 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3433 pmd_t *pmd, int write)
3434 {
3435 struct page *page;
3436
3437 page = pte_page(*(pte_t *)pmd);
3438 if (page)
3439 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3440 return page;
3441 }
3442
3443 struct page *
3444 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3445 pud_t *pud, int write)
3446 {
3447 struct page *page;
3448
3449 page = pte_page(*(pte_t *)pud);
3450 if (page)
3451 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3452 return page;
3453 }
3454
3455 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3456
3457 /* Can be overriden by architectures */
3458 __attribute__((weak)) struct page *
3459 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3460 pud_t *pud, int write)
3461 {
3462 BUG();
3463 return NULL;
3464 }
3465
3466 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3467
3468 #ifdef CONFIG_MEMORY_FAILURE
3469
3470 /* Should be called in hugetlb_lock */
3471 static int is_hugepage_on_freelist(struct page *hpage)
3472 {
3473 struct page *page;
3474 struct page *tmp;
3475 struct hstate *h = page_hstate(hpage);
3476 int nid = page_to_nid(hpage);
3477
3478 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3479 if (page == hpage)
3480 return 1;
3481 return 0;
3482 }
3483
3484 /*
3485 * This function is called from memory failure code.
3486 * Assume the caller holds page lock of the head page.
3487 */
3488 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3489 {
3490 struct hstate *h = page_hstate(hpage);
3491 int nid = page_to_nid(hpage);
3492 int ret = -EBUSY;
3493
3494 spin_lock(&hugetlb_lock);
3495 if (is_hugepage_on_freelist(hpage)) {
3496 /*
3497 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3498 * but dangling hpage->lru can trigger list-debug warnings
3499 * (this happens when we call unpoison_memory() on it),
3500 * so let it point to itself with list_del_init().
3501 */
3502 list_del_init(&hpage->lru);
3503 set_page_refcounted(hpage);
3504 h->free_huge_pages--;
3505 h->free_huge_pages_node[nid]--;
3506 ret = 0;
3507 }
3508 spin_unlock(&hugetlb_lock);
3509 return ret;
3510 }
3511 #endif
3512
3513 bool isolate_huge_page(struct page *page, struct list_head *list)
3514 {
3515 VM_BUG_ON_PAGE(!PageHead(page), page);
3516 if (!get_page_unless_zero(page))
3517 return false;
3518 spin_lock(&hugetlb_lock);
3519 list_move_tail(&page->lru, list);
3520 spin_unlock(&hugetlb_lock);
3521 return true;
3522 }
3523
3524 void putback_active_hugepage(struct page *page)
3525 {
3526 VM_BUG_ON_PAGE(!PageHead(page), page);
3527 spin_lock(&hugetlb_lock);
3528 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3529 spin_unlock(&hugetlb_lock);
3530 put_page(page);
3531 }
3532
3533 bool is_hugepage_active(struct page *page)
3534 {
3535 VM_BUG_ON_PAGE(!PageHuge(page), page);
3536 /*
3537 * This function can be called for a tail page because the caller,
3538 * scan_movable_pages, scans through a given pfn-range which typically
3539 * covers one memory block. In systems using gigantic hugepage (1GB
3540 * for x86_64,) a hugepage is larger than a memory block, and we don't
3541 * support migrating such large hugepages for now, so return false
3542 * when called for tail pages.
3543 */
3544 if (PageTail(page))
3545 return false;
3546 /*
3547 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3548 * so we should return false for them.
3549 */
3550 if (unlikely(PageHWPoison(page)))
3551 return false;
3552 return page_count(page) > 0;
3553 }