]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/hugetlb.c
mm/gup: rename "nonblocking" to "locked" where proper
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31
32 #include <asm/page.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlb.h>
35
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
43
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
47 /*
48 * Minimum page order among possible hugepage sizes, set to a proper value
49 * at boot time.
50 */
51 static unsigned int minimum_order __read_mostly = UINT_MAX;
52
53 __initdata LIST_HEAD(huge_boot_pages);
54
55 /* for command line parsing */
56 static struct hstate * __initdata parsed_hstate;
57 static unsigned long __initdata default_hstate_max_huge_pages;
58 static unsigned long __initdata default_hstate_size;
59 static bool __initdata parsed_valid_hugepagesz = true;
60
61 /*
62 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63 * free_huge_pages, and surplus_huge_pages.
64 */
65 DEFINE_SPINLOCK(hugetlb_lock);
66
67 /*
68 * Serializes faults on the same logical page. This is used to
69 * prevent spurious OOMs when the hugepage pool is fully utilized.
70 */
71 static int num_fault_mutexes;
72 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
73
74 /* Forward declaration */
75 static int hugetlb_acct_memory(struct hstate *h, long delta);
76
77 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
78 {
79 bool free = (spool->count == 0) && (spool->used_hpages == 0);
80
81 spin_unlock(&spool->lock);
82
83 /* If no pages are used, and no other handles to the subpool
84 * remain, give up any reservations mased on minimum size and
85 * free the subpool */
86 if (free) {
87 if (spool->min_hpages != -1)
88 hugetlb_acct_memory(spool->hstate,
89 -spool->min_hpages);
90 kfree(spool);
91 }
92 }
93
94 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
95 long min_hpages)
96 {
97 struct hugepage_subpool *spool;
98
99 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
100 if (!spool)
101 return NULL;
102
103 spin_lock_init(&spool->lock);
104 spool->count = 1;
105 spool->max_hpages = max_hpages;
106 spool->hstate = h;
107 spool->min_hpages = min_hpages;
108
109 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
110 kfree(spool);
111 return NULL;
112 }
113 spool->rsv_hpages = min_hpages;
114
115 return spool;
116 }
117
118 void hugepage_put_subpool(struct hugepage_subpool *spool)
119 {
120 spin_lock(&spool->lock);
121 BUG_ON(!spool->count);
122 spool->count--;
123 unlock_or_release_subpool(spool);
124 }
125
126 /*
127 * Subpool accounting for allocating and reserving pages.
128 * Return -ENOMEM if there are not enough resources to satisfy the
129 * the request. Otherwise, return the number of pages by which the
130 * global pools must be adjusted (upward). The returned value may
131 * only be different than the passed value (delta) in the case where
132 * a subpool minimum size must be manitained.
133 */
134 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
135 long delta)
136 {
137 long ret = delta;
138
139 if (!spool)
140 return ret;
141
142 spin_lock(&spool->lock);
143
144 if (spool->max_hpages != -1) { /* maximum size accounting */
145 if ((spool->used_hpages + delta) <= spool->max_hpages)
146 spool->used_hpages += delta;
147 else {
148 ret = -ENOMEM;
149 goto unlock_ret;
150 }
151 }
152
153 /* minimum size accounting */
154 if (spool->min_hpages != -1 && spool->rsv_hpages) {
155 if (delta > spool->rsv_hpages) {
156 /*
157 * Asking for more reserves than those already taken on
158 * behalf of subpool. Return difference.
159 */
160 ret = delta - spool->rsv_hpages;
161 spool->rsv_hpages = 0;
162 } else {
163 ret = 0; /* reserves already accounted for */
164 spool->rsv_hpages -= delta;
165 }
166 }
167
168 unlock_ret:
169 spin_unlock(&spool->lock);
170 return ret;
171 }
172
173 /*
174 * Subpool accounting for freeing and unreserving pages.
175 * Return the number of global page reservations that must be dropped.
176 * The return value may only be different than the passed value (delta)
177 * in the case where a subpool minimum size must be maintained.
178 */
179 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
180 long delta)
181 {
182 long ret = delta;
183
184 if (!spool)
185 return delta;
186
187 spin_lock(&spool->lock);
188
189 if (spool->max_hpages != -1) /* maximum size accounting */
190 spool->used_hpages -= delta;
191
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
194 if (spool->rsv_hpages + delta <= spool->min_hpages)
195 ret = 0;
196 else
197 ret = spool->rsv_hpages + delta - spool->min_hpages;
198
199 spool->rsv_hpages += delta;
200 if (spool->rsv_hpages > spool->min_hpages)
201 spool->rsv_hpages = spool->min_hpages;
202 }
203
204 /*
205 * If hugetlbfs_put_super couldn't free spool due to an outstanding
206 * quota reference, free it now.
207 */
208 unlock_or_release_subpool(spool);
209
210 return ret;
211 }
212
213 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
214 {
215 return HUGETLBFS_SB(inode->i_sb)->spool;
216 }
217
218 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
219 {
220 return subpool_inode(file_inode(vma->vm_file));
221 }
222
223 /*
224 * Region tracking -- allows tracking of reservations and instantiated pages
225 * across the pages in a mapping.
226 *
227 * The region data structures are embedded into a resv_map and protected
228 * by a resv_map's lock. The set of regions within the resv_map represent
229 * reservations for huge pages, or huge pages that have already been
230 * instantiated within the map. The from and to elements are huge page
231 * indicies into the associated mapping. from indicates the starting index
232 * of the region. to represents the first index past the end of the region.
233 *
234 * For example, a file region structure with from == 0 and to == 4 represents
235 * four huge pages in a mapping. It is important to note that the to element
236 * represents the first element past the end of the region. This is used in
237 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
238 *
239 * Interval notation of the form [from, to) will be used to indicate that
240 * the endpoint from is inclusive and to is exclusive.
241 */
242 struct file_region {
243 struct list_head link;
244 long from;
245 long to;
246 };
247
248 /* Must be called with resv->lock held. Calling this with count_only == true
249 * will count the number of pages to be added but will not modify the linked
250 * list.
251 */
252 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
253 bool count_only)
254 {
255 long chg = 0;
256 struct list_head *head = &resv->regions;
257 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
258
259 /* Locate the region we are before or in. */
260 list_for_each_entry(rg, head, link)
261 if (f <= rg->to)
262 break;
263
264 /* Round our left edge to the current segment if it encloses us. */
265 if (f > rg->from)
266 f = rg->from;
267
268 chg = t - f;
269
270 /* Check for and consume any regions we now overlap with. */
271 nrg = rg;
272 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
273 if (&rg->link == head)
274 break;
275 if (rg->from > t)
276 break;
277
278 /* We overlap with this area, if it extends further than
279 * us then we must extend ourselves. Account for its
280 * existing reservation.
281 */
282 if (rg->to > t) {
283 chg += rg->to - t;
284 t = rg->to;
285 }
286 chg -= rg->to - rg->from;
287
288 if (!count_only && rg != nrg) {
289 list_del(&rg->link);
290 kfree(rg);
291 }
292 }
293
294 if (!count_only) {
295 nrg->from = f;
296 nrg->to = t;
297 }
298
299 return chg;
300 }
301
302 /*
303 * Add the huge page range represented by [f, t) to the reserve
304 * map. Existing regions will be expanded to accommodate the specified
305 * range, or a region will be taken from the cache. Sufficient regions
306 * must exist in the cache due to the previous call to region_chg with
307 * the same range.
308 *
309 * Return the number of new huge pages added to the map. This
310 * number is greater than or equal to zero.
311 */
312 static long region_add(struct resv_map *resv, long f, long t)
313 {
314 struct list_head *head = &resv->regions;
315 struct file_region *rg, *nrg;
316 long add = 0;
317
318 spin_lock(&resv->lock);
319 /* Locate the region we are either in or before. */
320 list_for_each_entry(rg, head, link)
321 if (f <= rg->to)
322 break;
323
324 /*
325 * If no region exists which can be expanded to include the
326 * specified range, pull a region descriptor from the cache
327 * and use it for this range.
328 */
329 if (&rg->link == head || t < rg->from) {
330 VM_BUG_ON(resv->region_cache_count <= 0);
331
332 resv->region_cache_count--;
333 nrg = list_first_entry(&resv->region_cache, struct file_region,
334 link);
335 list_del(&nrg->link);
336
337 nrg->from = f;
338 nrg->to = t;
339 list_add(&nrg->link, rg->link.prev);
340
341 add += t - f;
342 goto out_locked;
343 }
344
345 add = add_reservation_in_range(resv, f, t, false);
346
347 out_locked:
348 resv->adds_in_progress--;
349 spin_unlock(&resv->lock);
350 VM_BUG_ON(add < 0);
351 return add;
352 }
353
354 /*
355 * Examine the existing reserve map and determine how many
356 * huge pages in the specified range [f, t) are NOT currently
357 * represented. This routine is called before a subsequent
358 * call to region_add that will actually modify the reserve
359 * map to add the specified range [f, t). region_chg does
360 * not change the number of huge pages represented by the
361 * map. A new file_region structure is added to the cache
362 * as a placeholder, so that the subsequent region_add
363 * call will have all the regions it needs and will not fail.
364 *
365 * Returns the number of huge pages that need to be added to the existing
366 * reservation map for the range [f, t). This number is greater or equal to
367 * zero. -ENOMEM is returned if a new file_region structure or cache entry
368 * is needed and can not be allocated.
369 */
370 static long region_chg(struct resv_map *resv, long f, long t)
371 {
372 long chg = 0;
373
374 spin_lock(&resv->lock);
375 retry_locked:
376 resv->adds_in_progress++;
377
378 /*
379 * Check for sufficient descriptors in the cache to accommodate
380 * the number of in progress add operations.
381 */
382 if (resv->adds_in_progress > resv->region_cache_count) {
383 struct file_region *trg;
384
385 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
386 /* Must drop lock to allocate a new descriptor. */
387 resv->adds_in_progress--;
388 spin_unlock(&resv->lock);
389
390 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
391 if (!trg)
392 return -ENOMEM;
393
394 spin_lock(&resv->lock);
395 list_add(&trg->link, &resv->region_cache);
396 resv->region_cache_count++;
397 goto retry_locked;
398 }
399
400 chg = add_reservation_in_range(resv, f, t, true);
401
402 spin_unlock(&resv->lock);
403 return chg;
404 }
405
406 /*
407 * Abort the in progress add operation. The adds_in_progress field
408 * of the resv_map keeps track of the operations in progress between
409 * calls to region_chg and region_add. Operations are sometimes
410 * aborted after the call to region_chg. In such cases, region_abort
411 * is called to decrement the adds_in_progress counter.
412 *
413 * NOTE: The range arguments [f, t) are not needed or used in this
414 * routine. They are kept to make reading the calling code easier as
415 * arguments will match the associated region_chg call.
416 */
417 static void region_abort(struct resv_map *resv, long f, long t)
418 {
419 spin_lock(&resv->lock);
420 VM_BUG_ON(!resv->region_cache_count);
421 resv->adds_in_progress--;
422 spin_unlock(&resv->lock);
423 }
424
425 /*
426 * Delete the specified range [f, t) from the reserve map. If the
427 * t parameter is LONG_MAX, this indicates that ALL regions after f
428 * should be deleted. Locate the regions which intersect [f, t)
429 * and either trim, delete or split the existing regions.
430 *
431 * Returns the number of huge pages deleted from the reserve map.
432 * In the normal case, the return value is zero or more. In the
433 * case where a region must be split, a new region descriptor must
434 * be allocated. If the allocation fails, -ENOMEM will be returned.
435 * NOTE: If the parameter t == LONG_MAX, then we will never split
436 * a region and possibly return -ENOMEM. Callers specifying
437 * t == LONG_MAX do not need to check for -ENOMEM error.
438 */
439 static long region_del(struct resv_map *resv, long f, long t)
440 {
441 struct list_head *head = &resv->regions;
442 struct file_region *rg, *trg;
443 struct file_region *nrg = NULL;
444 long del = 0;
445
446 retry:
447 spin_lock(&resv->lock);
448 list_for_each_entry_safe(rg, trg, head, link) {
449 /*
450 * Skip regions before the range to be deleted. file_region
451 * ranges are normally of the form [from, to). However, there
452 * may be a "placeholder" entry in the map which is of the form
453 * (from, to) with from == to. Check for placeholder entries
454 * at the beginning of the range to be deleted.
455 */
456 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
457 continue;
458
459 if (rg->from >= t)
460 break;
461
462 if (f > rg->from && t < rg->to) { /* Must split region */
463 /*
464 * Check for an entry in the cache before dropping
465 * lock and attempting allocation.
466 */
467 if (!nrg &&
468 resv->region_cache_count > resv->adds_in_progress) {
469 nrg = list_first_entry(&resv->region_cache,
470 struct file_region,
471 link);
472 list_del(&nrg->link);
473 resv->region_cache_count--;
474 }
475
476 if (!nrg) {
477 spin_unlock(&resv->lock);
478 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
479 if (!nrg)
480 return -ENOMEM;
481 goto retry;
482 }
483
484 del += t - f;
485
486 /* New entry for end of split region */
487 nrg->from = t;
488 nrg->to = rg->to;
489 INIT_LIST_HEAD(&nrg->link);
490
491 /* Original entry is trimmed */
492 rg->to = f;
493
494 list_add(&nrg->link, &rg->link);
495 nrg = NULL;
496 break;
497 }
498
499 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
500 del += rg->to - rg->from;
501 list_del(&rg->link);
502 kfree(rg);
503 continue;
504 }
505
506 if (f <= rg->from) { /* Trim beginning of region */
507 del += t - rg->from;
508 rg->from = t;
509 } else { /* Trim end of region */
510 del += rg->to - f;
511 rg->to = f;
512 }
513 }
514
515 spin_unlock(&resv->lock);
516 kfree(nrg);
517 return del;
518 }
519
520 /*
521 * A rare out of memory error was encountered which prevented removal of
522 * the reserve map region for a page. The huge page itself was free'ed
523 * and removed from the page cache. This routine will adjust the subpool
524 * usage count, and the global reserve count if needed. By incrementing
525 * these counts, the reserve map entry which could not be deleted will
526 * appear as a "reserved" entry instead of simply dangling with incorrect
527 * counts.
528 */
529 void hugetlb_fix_reserve_counts(struct inode *inode)
530 {
531 struct hugepage_subpool *spool = subpool_inode(inode);
532 long rsv_adjust;
533
534 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
535 if (rsv_adjust) {
536 struct hstate *h = hstate_inode(inode);
537
538 hugetlb_acct_memory(h, 1);
539 }
540 }
541
542 /*
543 * Count and return the number of huge pages in the reserve map
544 * that intersect with the range [f, t).
545 */
546 static long region_count(struct resv_map *resv, long f, long t)
547 {
548 struct list_head *head = &resv->regions;
549 struct file_region *rg;
550 long chg = 0;
551
552 spin_lock(&resv->lock);
553 /* Locate each segment we overlap with, and count that overlap. */
554 list_for_each_entry(rg, head, link) {
555 long seg_from;
556 long seg_to;
557
558 if (rg->to <= f)
559 continue;
560 if (rg->from >= t)
561 break;
562
563 seg_from = max(rg->from, f);
564 seg_to = min(rg->to, t);
565
566 chg += seg_to - seg_from;
567 }
568 spin_unlock(&resv->lock);
569
570 return chg;
571 }
572
573 /*
574 * Convert the address within this vma to the page offset within
575 * the mapping, in pagecache page units; huge pages here.
576 */
577 static pgoff_t vma_hugecache_offset(struct hstate *h,
578 struct vm_area_struct *vma, unsigned long address)
579 {
580 return ((address - vma->vm_start) >> huge_page_shift(h)) +
581 (vma->vm_pgoff >> huge_page_order(h));
582 }
583
584 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
585 unsigned long address)
586 {
587 return vma_hugecache_offset(hstate_vma(vma), vma, address);
588 }
589 EXPORT_SYMBOL_GPL(linear_hugepage_index);
590
591 /*
592 * Return the size of the pages allocated when backing a VMA. In the majority
593 * cases this will be same size as used by the page table entries.
594 */
595 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
596 {
597 if (vma->vm_ops && vma->vm_ops->pagesize)
598 return vma->vm_ops->pagesize(vma);
599 return PAGE_SIZE;
600 }
601 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
602
603 /*
604 * Return the page size being used by the MMU to back a VMA. In the majority
605 * of cases, the page size used by the kernel matches the MMU size. On
606 * architectures where it differs, an architecture-specific 'strong'
607 * version of this symbol is required.
608 */
609 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
610 {
611 return vma_kernel_pagesize(vma);
612 }
613
614 /*
615 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
616 * bits of the reservation map pointer, which are always clear due to
617 * alignment.
618 */
619 #define HPAGE_RESV_OWNER (1UL << 0)
620 #define HPAGE_RESV_UNMAPPED (1UL << 1)
621 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
622
623 /*
624 * These helpers are used to track how many pages are reserved for
625 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
626 * is guaranteed to have their future faults succeed.
627 *
628 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
629 * the reserve counters are updated with the hugetlb_lock held. It is safe
630 * to reset the VMA at fork() time as it is not in use yet and there is no
631 * chance of the global counters getting corrupted as a result of the values.
632 *
633 * The private mapping reservation is represented in a subtly different
634 * manner to a shared mapping. A shared mapping has a region map associated
635 * with the underlying file, this region map represents the backing file
636 * pages which have ever had a reservation assigned which this persists even
637 * after the page is instantiated. A private mapping has a region map
638 * associated with the original mmap which is attached to all VMAs which
639 * reference it, this region map represents those offsets which have consumed
640 * reservation ie. where pages have been instantiated.
641 */
642 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
643 {
644 return (unsigned long)vma->vm_private_data;
645 }
646
647 static void set_vma_private_data(struct vm_area_struct *vma,
648 unsigned long value)
649 {
650 vma->vm_private_data = (void *)value;
651 }
652
653 struct resv_map *resv_map_alloc(void)
654 {
655 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
656 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
657
658 if (!resv_map || !rg) {
659 kfree(resv_map);
660 kfree(rg);
661 return NULL;
662 }
663
664 kref_init(&resv_map->refs);
665 spin_lock_init(&resv_map->lock);
666 INIT_LIST_HEAD(&resv_map->regions);
667
668 resv_map->adds_in_progress = 0;
669
670 INIT_LIST_HEAD(&resv_map->region_cache);
671 list_add(&rg->link, &resv_map->region_cache);
672 resv_map->region_cache_count = 1;
673
674 return resv_map;
675 }
676
677 void resv_map_release(struct kref *ref)
678 {
679 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
680 struct list_head *head = &resv_map->region_cache;
681 struct file_region *rg, *trg;
682
683 /* Clear out any active regions before we release the map. */
684 region_del(resv_map, 0, LONG_MAX);
685
686 /* ... and any entries left in the cache */
687 list_for_each_entry_safe(rg, trg, head, link) {
688 list_del(&rg->link);
689 kfree(rg);
690 }
691
692 VM_BUG_ON(resv_map->adds_in_progress);
693
694 kfree(resv_map);
695 }
696
697 static inline struct resv_map *inode_resv_map(struct inode *inode)
698 {
699 /*
700 * At inode evict time, i_mapping may not point to the original
701 * address space within the inode. This original address space
702 * contains the pointer to the resv_map. So, always use the
703 * address space embedded within the inode.
704 * The VERY common case is inode->mapping == &inode->i_data but,
705 * this may not be true for device special inodes.
706 */
707 return (struct resv_map *)(&inode->i_data)->private_data;
708 }
709
710 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
711 {
712 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
713 if (vma->vm_flags & VM_MAYSHARE) {
714 struct address_space *mapping = vma->vm_file->f_mapping;
715 struct inode *inode = mapping->host;
716
717 return inode_resv_map(inode);
718
719 } else {
720 return (struct resv_map *)(get_vma_private_data(vma) &
721 ~HPAGE_RESV_MASK);
722 }
723 }
724
725 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
726 {
727 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
728 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
729
730 set_vma_private_data(vma, (get_vma_private_data(vma) &
731 HPAGE_RESV_MASK) | (unsigned long)map);
732 }
733
734 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
735 {
736 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
737 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
738
739 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
740 }
741
742 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
743 {
744 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
745
746 return (get_vma_private_data(vma) & flag) != 0;
747 }
748
749 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
750 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
751 {
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 if (!(vma->vm_flags & VM_MAYSHARE))
754 vma->vm_private_data = (void *)0;
755 }
756
757 /* Returns true if the VMA has associated reserve pages */
758 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
759 {
760 if (vma->vm_flags & VM_NORESERVE) {
761 /*
762 * This address is already reserved by other process(chg == 0),
763 * so, we should decrement reserved count. Without decrementing,
764 * reserve count remains after releasing inode, because this
765 * allocated page will go into page cache and is regarded as
766 * coming from reserved pool in releasing step. Currently, we
767 * don't have any other solution to deal with this situation
768 * properly, so add work-around here.
769 */
770 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
771 return true;
772 else
773 return false;
774 }
775
776 /* Shared mappings always use reserves */
777 if (vma->vm_flags & VM_MAYSHARE) {
778 /*
779 * We know VM_NORESERVE is not set. Therefore, there SHOULD
780 * be a region map for all pages. The only situation where
781 * there is no region map is if a hole was punched via
782 * fallocate. In this case, there really are no reverves to
783 * use. This situation is indicated if chg != 0.
784 */
785 if (chg)
786 return false;
787 else
788 return true;
789 }
790
791 /*
792 * Only the process that called mmap() has reserves for
793 * private mappings.
794 */
795 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
796 /*
797 * Like the shared case above, a hole punch or truncate
798 * could have been performed on the private mapping.
799 * Examine the value of chg to determine if reserves
800 * actually exist or were previously consumed.
801 * Very Subtle - The value of chg comes from a previous
802 * call to vma_needs_reserves(). The reserve map for
803 * private mappings has different (opposite) semantics
804 * than that of shared mappings. vma_needs_reserves()
805 * has already taken this difference in semantics into
806 * account. Therefore, the meaning of chg is the same
807 * as in the shared case above. Code could easily be
808 * combined, but keeping it separate draws attention to
809 * subtle differences.
810 */
811 if (chg)
812 return false;
813 else
814 return true;
815 }
816
817 return false;
818 }
819
820 static void enqueue_huge_page(struct hstate *h, struct page *page)
821 {
822 int nid = page_to_nid(page);
823 list_move(&page->lru, &h->hugepage_freelists[nid]);
824 h->free_huge_pages++;
825 h->free_huge_pages_node[nid]++;
826 }
827
828 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
829 {
830 struct page *page;
831
832 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
833 if (!PageHWPoison(page))
834 break;
835 /*
836 * if 'non-isolated free hugepage' not found on the list,
837 * the allocation fails.
838 */
839 if (&h->hugepage_freelists[nid] == &page->lru)
840 return NULL;
841 list_move(&page->lru, &h->hugepage_activelist);
842 set_page_refcounted(page);
843 h->free_huge_pages--;
844 h->free_huge_pages_node[nid]--;
845 return page;
846 }
847
848 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
849 nodemask_t *nmask)
850 {
851 unsigned int cpuset_mems_cookie;
852 struct zonelist *zonelist;
853 struct zone *zone;
854 struct zoneref *z;
855 int node = NUMA_NO_NODE;
856
857 zonelist = node_zonelist(nid, gfp_mask);
858
859 retry_cpuset:
860 cpuset_mems_cookie = read_mems_allowed_begin();
861 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
862 struct page *page;
863
864 if (!cpuset_zone_allowed(zone, gfp_mask))
865 continue;
866 /*
867 * no need to ask again on the same node. Pool is node rather than
868 * zone aware
869 */
870 if (zone_to_nid(zone) == node)
871 continue;
872 node = zone_to_nid(zone);
873
874 page = dequeue_huge_page_node_exact(h, node);
875 if (page)
876 return page;
877 }
878 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
879 goto retry_cpuset;
880
881 return NULL;
882 }
883
884 /* Movability of hugepages depends on migration support. */
885 static inline gfp_t htlb_alloc_mask(struct hstate *h)
886 {
887 if (hugepage_movable_supported(h))
888 return GFP_HIGHUSER_MOVABLE;
889 else
890 return GFP_HIGHUSER;
891 }
892
893 static struct page *dequeue_huge_page_vma(struct hstate *h,
894 struct vm_area_struct *vma,
895 unsigned long address, int avoid_reserve,
896 long chg)
897 {
898 struct page *page;
899 struct mempolicy *mpol;
900 gfp_t gfp_mask;
901 nodemask_t *nodemask;
902 int nid;
903
904 /*
905 * A child process with MAP_PRIVATE mappings created by their parent
906 * have no page reserves. This check ensures that reservations are
907 * not "stolen". The child may still get SIGKILLed
908 */
909 if (!vma_has_reserves(vma, chg) &&
910 h->free_huge_pages - h->resv_huge_pages == 0)
911 goto err;
912
913 /* If reserves cannot be used, ensure enough pages are in the pool */
914 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
915 goto err;
916
917 gfp_mask = htlb_alloc_mask(h);
918 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
919 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
920 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
921 SetPagePrivate(page);
922 h->resv_huge_pages--;
923 }
924
925 mpol_cond_put(mpol);
926 return page;
927
928 err:
929 return NULL;
930 }
931
932 /*
933 * common helper functions for hstate_next_node_to_{alloc|free}.
934 * We may have allocated or freed a huge page based on a different
935 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936 * be outside of *nodes_allowed. Ensure that we use an allowed
937 * node for alloc or free.
938 */
939 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941 nid = next_node_in(nid, *nodes_allowed);
942 VM_BUG_ON(nid >= MAX_NUMNODES);
943
944 return nid;
945 }
946
947 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
948 {
949 if (!node_isset(nid, *nodes_allowed))
950 nid = next_node_allowed(nid, nodes_allowed);
951 return nid;
952 }
953
954 /*
955 * returns the previously saved node ["this node"] from which to
956 * allocate a persistent huge page for the pool and advance the
957 * next node from which to allocate, handling wrap at end of node
958 * mask.
959 */
960 static int hstate_next_node_to_alloc(struct hstate *h,
961 nodemask_t *nodes_allowed)
962 {
963 int nid;
964
965 VM_BUG_ON(!nodes_allowed);
966
967 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
968 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
969
970 return nid;
971 }
972
973 /*
974 * helper for free_pool_huge_page() - return the previously saved
975 * node ["this node"] from which to free a huge page. Advance the
976 * next node id whether or not we find a free huge page to free so
977 * that the next attempt to free addresses the next node.
978 */
979 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
980 {
981 int nid;
982
983 VM_BUG_ON(!nodes_allowed);
984
985 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
986 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
987
988 return nid;
989 }
990
991 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
992 for (nr_nodes = nodes_weight(*mask); \
993 nr_nodes > 0 && \
994 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
995 nr_nodes--)
996
997 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
998 for (nr_nodes = nodes_weight(*mask); \
999 nr_nodes > 0 && \
1000 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1001 nr_nodes--)
1002
1003 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1004 static void destroy_compound_gigantic_page(struct page *page,
1005 unsigned int order)
1006 {
1007 int i;
1008 int nr_pages = 1 << order;
1009 struct page *p = page + 1;
1010
1011 atomic_set(compound_mapcount_ptr(page), 0);
1012 if (hpage_pincount_available(page))
1013 atomic_set(compound_pincount_ptr(page), 0);
1014
1015 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1016 clear_compound_head(p);
1017 set_page_refcounted(p);
1018 }
1019
1020 set_compound_order(page, 0);
1021 __ClearPageHead(page);
1022 }
1023
1024 static void free_gigantic_page(struct page *page, unsigned int order)
1025 {
1026 free_contig_range(page_to_pfn(page), 1 << order);
1027 }
1028
1029 #ifdef CONFIG_CONTIG_ALLOC
1030 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1031 int nid, nodemask_t *nodemask)
1032 {
1033 unsigned long nr_pages = 1UL << huge_page_order(h);
1034
1035 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1036 }
1037
1038 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1039 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1040 #else /* !CONFIG_CONTIG_ALLOC */
1041 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1042 int nid, nodemask_t *nodemask)
1043 {
1044 return NULL;
1045 }
1046 #endif /* CONFIG_CONTIG_ALLOC */
1047
1048 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1049 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1050 int nid, nodemask_t *nodemask)
1051 {
1052 return NULL;
1053 }
1054 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1055 static inline void destroy_compound_gigantic_page(struct page *page,
1056 unsigned int order) { }
1057 #endif
1058
1059 static void update_and_free_page(struct hstate *h, struct page *page)
1060 {
1061 int i;
1062
1063 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1064 return;
1065
1066 h->nr_huge_pages--;
1067 h->nr_huge_pages_node[page_to_nid(page)]--;
1068 for (i = 0; i < pages_per_huge_page(h); i++) {
1069 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1070 1 << PG_referenced | 1 << PG_dirty |
1071 1 << PG_active | 1 << PG_private |
1072 1 << PG_writeback);
1073 }
1074 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1075 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1076 set_page_refcounted(page);
1077 if (hstate_is_gigantic(h)) {
1078 destroy_compound_gigantic_page(page, huge_page_order(h));
1079 free_gigantic_page(page, huge_page_order(h));
1080 } else {
1081 __free_pages(page, huge_page_order(h));
1082 }
1083 }
1084
1085 struct hstate *size_to_hstate(unsigned long size)
1086 {
1087 struct hstate *h;
1088
1089 for_each_hstate(h) {
1090 if (huge_page_size(h) == size)
1091 return h;
1092 }
1093 return NULL;
1094 }
1095
1096 /*
1097 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1098 * to hstate->hugepage_activelist.)
1099 *
1100 * This function can be called for tail pages, but never returns true for them.
1101 */
1102 bool page_huge_active(struct page *page)
1103 {
1104 VM_BUG_ON_PAGE(!PageHuge(page), page);
1105 return PageHead(page) && PagePrivate(&page[1]);
1106 }
1107
1108 /* never called for tail page */
1109 static void set_page_huge_active(struct page *page)
1110 {
1111 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1112 SetPagePrivate(&page[1]);
1113 }
1114
1115 static void clear_page_huge_active(struct page *page)
1116 {
1117 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1118 ClearPagePrivate(&page[1]);
1119 }
1120
1121 /*
1122 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1123 * code
1124 */
1125 static inline bool PageHugeTemporary(struct page *page)
1126 {
1127 if (!PageHuge(page))
1128 return false;
1129
1130 return (unsigned long)page[2].mapping == -1U;
1131 }
1132
1133 static inline void SetPageHugeTemporary(struct page *page)
1134 {
1135 page[2].mapping = (void *)-1U;
1136 }
1137
1138 static inline void ClearPageHugeTemporary(struct page *page)
1139 {
1140 page[2].mapping = NULL;
1141 }
1142
1143 static void __free_huge_page(struct page *page)
1144 {
1145 /*
1146 * Can't pass hstate in here because it is called from the
1147 * compound page destructor.
1148 */
1149 struct hstate *h = page_hstate(page);
1150 int nid = page_to_nid(page);
1151 struct hugepage_subpool *spool =
1152 (struct hugepage_subpool *)page_private(page);
1153 bool restore_reserve;
1154
1155 VM_BUG_ON_PAGE(page_count(page), page);
1156 VM_BUG_ON_PAGE(page_mapcount(page), page);
1157
1158 set_page_private(page, 0);
1159 page->mapping = NULL;
1160 restore_reserve = PagePrivate(page);
1161 ClearPagePrivate(page);
1162
1163 /*
1164 * If PagePrivate() was set on page, page allocation consumed a
1165 * reservation. If the page was associated with a subpool, there
1166 * would have been a page reserved in the subpool before allocation
1167 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1168 * reservtion, do not call hugepage_subpool_put_pages() as this will
1169 * remove the reserved page from the subpool.
1170 */
1171 if (!restore_reserve) {
1172 /*
1173 * A return code of zero implies that the subpool will be
1174 * under its minimum size if the reservation is not restored
1175 * after page is free. Therefore, force restore_reserve
1176 * operation.
1177 */
1178 if (hugepage_subpool_put_pages(spool, 1) == 0)
1179 restore_reserve = true;
1180 }
1181
1182 spin_lock(&hugetlb_lock);
1183 clear_page_huge_active(page);
1184 hugetlb_cgroup_uncharge_page(hstate_index(h),
1185 pages_per_huge_page(h), page);
1186 if (restore_reserve)
1187 h->resv_huge_pages++;
1188
1189 if (PageHugeTemporary(page)) {
1190 list_del(&page->lru);
1191 ClearPageHugeTemporary(page);
1192 update_and_free_page(h, page);
1193 } else if (h->surplus_huge_pages_node[nid]) {
1194 /* remove the page from active list */
1195 list_del(&page->lru);
1196 update_and_free_page(h, page);
1197 h->surplus_huge_pages--;
1198 h->surplus_huge_pages_node[nid]--;
1199 } else {
1200 arch_clear_hugepage_flags(page);
1201 enqueue_huge_page(h, page);
1202 }
1203 spin_unlock(&hugetlb_lock);
1204 }
1205
1206 /*
1207 * As free_huge_page() can be called from a non-task context, we have
1208 * to defer the actual freeing in a workqueue to prevent potential
1209 * hugetlb_lock deadlock.
1210 *
1211 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1212 * be freed and frees them one-by-one. As the page->mapping pointer is
1213 * going to be cleared in __free_huge_page() anyway, it is reused as the
1214 * llist_node structure of a lockless linked list of huge pages to be freed.
1215 */
1216 static LLIST_HEAD(hpage_freelist);
1217
1218 static void free_hpage_workfn(struct work_struct *work)
1219 {
1220 struct llist_node *node;
1221 struct page *page;
1222
1223 node = llist_del_all(&hpage_freelist);
1224
1225 while (node) {
1226 page = container_of((struct address_space **)node,
1227 struct page, mapping);
1228 node = node->next;
1229 __free_huge_page(page);
1230 }
1231 }
1232 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1233
1234 void free_huge_page(struct page *page)
1235 {
1236 /*
1237 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1238 */
1239 if (!in_task()) {
1240 /*
1241 * Only call schedule_work() if hpage_freelist is previously
1242 * empty. Otherwise, schedule_work() had been called but the
1243 * workfn hasn't retrieved the list yet.
1244 */
1245 if (llist_add((struct llist_node *)&page->mapping,
1246 &hpage_freelist))
1247 schedule_work(&free_hpage_work);
1248 return;
1249 }
1250
1251 __free_huge_page(page);
1252 }
1253
1254 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1255 {
1256 INIT_LIST_HEAD(&page->lru);
1257 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1258 spin_lock(&hugetlb_lock);
1259 set_hugetlb_cgroup(page, NULL);
1260 h->nr_huge_pages++;
1261 h->nr_huge_pages_node[nid]++;
1262 spin_unlock(&hugetlb_lock);
1263 }
1264
1265 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1266 {
1267 int i;
1268 int nr_pages = 1 << order;
1269 struct page *p = page + 1;
1270
1271 /* we rely on prep_new_huge_page to set the destructor */
1272 set_compound_order(page, order);
1273 __ClearPageReserved(page);
1274 __SetPageHead(page);
1275 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1276 /*
1277 * For gigantic hugepages allocated through bootmem at
1278 * boot, it's safer to be consistent with the not-gigantic
1279 * hugepages and clear the PG_reserved bit from all tail pages
1280 * too. Otherwse drivers using get_user_pages() to access tail
1281 * pages may get the reference counting wrong if they see
1282 * PG_reserved set on a tail page (despite the head page not
1283 * having PG_reserved set). Enforcing this consistency between
1284 * head and tail pages allows drivers to optimize away a check
1285 * on the head page when they need know if put_page() is needed
1286 * after get_user_pages().
1287 */
1288 __ClearPageReserved(p);
1289 set_page_count(p, 0);
1290 set_compound_head(p, page);
1291 }
1292 atomic_set(compound_mapcount_ptr(page), -1);
1293
1294 if (hpage_pincount_available(page))
1295 atomic_set(compound_pincount_ptr(page), 0);
1296 }
1297
1298 /*
1299 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1300 * transparent huge pages. See the PageTransHuge() documentation for more
1301 * details.
1302 */
1303 int PageHuge(struct page *page)
1304 {
1305 if (!PageCompound(page))
1306 return 0;
1307
1308 page = compound_head(page);
1309 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1310 }
1311 EXPORT_SYMBOL_GPL(PageHuge);
1312
1313 /*
1314 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1315 * normal or transparent huge pages.
1316 */
1317 int PageHeadHuge(struct page *page_head)
1318 {
1319 if (!PageHead(page_head))
1320 return 0;
1321
1322 return get_compound_page_dtor(page_head) == free_huge_page;
1323 }
1324
1325 pgoff_t __basepage_index(struct page *page)
1326 {
1327 struct page *page_head = compound_head(page);
1328 pgoff_t index = page_index(page_head);
1329 unsigned long compound_idx;
1330
1331 if (!PageHuge(page_head))
1332 return page_index(page);
1333
1334 if (compound_order(page_head) >= MAX_ORDER)
1335 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1336 else
1337 compound_idx = page - page_head;
1338
1339 return (index << compound_order(page_head)) + compound_idx;
1340 }
1341
1342 static struct page *alloc_buddy_huge_page(struct hstate *h,
1343 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1344 nodemask_t *node_alloc_noretry)
1345 {
1346 int order = huge_page_order(h);
1347 struct page *page;
1348 bool alloc_try_hard = true;
1349
1350 /*
1351 * By default we always try hard to allocate the page with
1352 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1353 * a loop (to adjust global huge page counts) and previous allocation
1354 * failed, do not continue to try hard on the same node. Use the
1355 * node_alloc_noretry bitmap to manage this state information.
1356 */
1357 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1358 alloc_try_hard = false;
1359 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1360 if (alloc_try_hard)
1361 gfp_mask |= __GFP_RETRY_MAYFAIL;
1362 if (nid == NUMA_NO_NODE)
1363 nid = numa_mem_id();
1364 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1365 if (page)
1366 __count_vm_event(HTLB_BUDDY_PGALLOC);
1367 else
1368 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370 /*
1371 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1372 * indicates an overall state change. Clear bit so that we resume
1373 * normal 'try hard' allocations.
1374 */
1375 if (node_alloc_noretry && page && !alloc_try_hard)
1376 node_clear(nid, *node_alloc_noretry);
1377
1378 /*
1379 * If we tried hard to get a page but failed, set bit so that
1380 * subsequent attempts will not try as hard until there is an
1381 * overall state change.
1382 */
1383 if (node_alloc_noretry && !page && alloc_try_hard)
1384 node_set(nid, *node_alloc_noretry);
1385
1386 return page;
1387 }
1388
1389 /*
1390 * Common helper to allocate a fresh hugetlb page. All specific allocators
1391 * should use this function to get new hugetlb pages
1392 */
1393 static struct page *alloc_fresh_huge_page(struct hstate *h,
1394 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1395 nodemask_t *node_alloc_noretry)
1396 {
1397 struct page *page;
1398
1399 if (hstate_is_gigantic(h))
1400 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1401 else
1402 page = alloc_buddy_huge_page(h, gfp_mask,
1403 nid, nmask, node_alloc_noretry);
1404 if (!page)
1405 return NULL;
1406
1407 if (hstate_is_gigantic(h))
1408 prep_compound_gigantic_page(page, huge_page_order(h));
1409 prep_new_huge_page(h, page, page_to_nid(page));
1410
1411 return page;
1412 }
1413
1414 /*
1415 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1416 * manner.
1417 */
1418 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1419 nodemask_t *node_alloc_noretry)
1420 {
1421 struct page *page;
1422 int nr_nodes, node;
1423 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1424
1425 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1426 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1427 node_alloc_noretry);
1428 if (page)
1429 break;
1430 }
1431
1432 if (!page)
1433 return 0;
1434
1435 put_page(page); /* free it into the hugepage allocator */
1436
1437 return 1;
1438 }
1439
1440 /*
1441 * Free huge page from pool from next node to free.
1442 * Attempt to keep persistent huge pages more or less
1443 * balanced over allowed nodes.
1444 * Called with hugetlb_lock locked.
1445 */
1446 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1447 bool acct_surplus)
1448 {
1449 int nr_nodes, node;
1450 int ret = 0;
1451
1452 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1453 /*
1454 * If we're returning unused surplus pages, only examine
1455 * nodes with surplus pages.
1456 */
1457 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1458 !list_empty(&h->hugepage_freelists[node])) {
1459 struct page *page =
1460 list_entry(h->hugepage_freelists[node].next,
1461 struct page, lru);
1462 list_del(&page->lru);
1463 h->free_huge_pages--;
1464 h->free_huge_pages_node[node]--;
1465 if (acct_surplus) {
1466 h->surplus_huge_pages--;
1467 h->surplus_huge_pages_node[node]--;
1468 }
1469 update_and_free_page(h, page);
1470 ret = 1;
1471 break;
1472 }
1473 }
1474
1475 return ret;
1476 }
1477
1478 /*
1479 * Dissolve a given free hugepage into free buddy pages. This function does
1480 * nothing for in-use hugepages and non-hugepages.
1481 * This function returns values like below:
1482 *
1483 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1484 * (allocated or reserved.)
1485 * 0: successfully dissolved free hugepages or the page is not a
1486 * hugepage (considered as already dissolved)
1487 */
1488 int dissolve_free_huge_page(struct page *page)
1489 {
1490 int rc = -EBUSY;
1491
1492 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1493 if (!PageHuge(page))
1494 return 0;
1495
1496 spin_lock(&hugetlb_lock);
1497 if (!PageHuge(page)) {
1498 rc = 0;
1499 goto out;
1500 }
1501
1502 if (!page_count(page)) {
1503 struct page *head = compound_head(page);
1504 struct hstate *h = page_hstate(head);
1505 int nid = page_to_nid(head);
1506 if (h->free_huge_pages - h->resv_huge_pages == 0)
1507 goto out;
1508 /*
1509 * Move PageHWPoison flag from head page to the raw error page,
1510 * which makes any subpages rather than the error page reusable.
1511 */
1512 if (PageHWPoison(head) && page != head) {
1513 SetPageHWPoison(page);
1514 ClearPageHWPoison(head);
1515 }
1516 list_del(&head->lru);
1517 h->free_huge_pages--;
1518 h->free_huge_pages_node[nid]--;
1519 h->max_huge_pages--;
1520 update_and_free_page(h, head);
1521 rc = 0;
1522 }
1523 out:
1524 spin_unlock(&hugetlb_lock);
1525 return rc;
1526 }
1527
1528 /*
1529 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1530 * make specified memory blocks removable from the system.
1531 * Note that this will dissolve a free gigantic hugepage completely, if any
1532 * part of it lies within the given range.
1533 * Also note that if dissolve_free_huge_page() returns with an error, all
1534 * free hugepages that were dissolved before that error are lost.
1535 */
1536 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1537 {
1538 unsigned long pfn;
1539 struct page *page;
1540 int rc = 0;
1541
1542 if (!hugepages_supported())
1543 return rc;
1544
1545 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1546 page = pfn_to_page(pfn);
1547 rc = dissolve_free_huge_page(page);
1548 if (rc)
1549 break;
1550 }
1551
1552 return rc;
1553 }
1554
1555 /*
1556 * Allocates a fresh surplus page from the page allocator.
1557 */
1558 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1559 int nid, nodemask_t *nmask)
1560 {
1561 struct page *page = NULL;
1562
1563 if (hstate_is_gigantic(h))
1564 return NULL;
1565
1566 spin_lock(&hugetlb_lock);
1567 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1568 goto out_unlock;
1569 spin_unlock(&hugetlb_lock);
1570
1571 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1572 if (!page)
1573 return NULL;
1574
1575 spin_lock(&hugetlb_lock);
1576 /*
1577 * We could have raced with the pool size change.
1578 * Double check that and simply deallocate the new page
1579 * if we would end up overcommiting the surpluses. Abuse
1580 * temporary page to workaround the nasty free_huge_page
1581 * codeflow
1582 */
1583 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1584 SetPageHugeTemporary(page);
1585 spin_unlock(&hugetlb_lock);
1586 put_page(page);
1587 return NULL;
1588 } else {
1589 h->surplus_huge_pages++;
1590 h->surplus_huge_pages_node[page_to_nid(page)]++;
1591 }
1592
1593 out_unlock:
1594 spin_unlock(&hugetlb_lock);
1595
1596 return page;
1597 }
1598
1599 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1600 int nid, nodemask_t *nmask)
1601 {
1602 struct page *page;
1603
1604 if (hstate_is_gigantic(h))
1605 return NULL;
1606
1607 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1608 if (!page)
1609 return NULL;
1610
1611 /*
1612 * We do not account these pages as surplus because they are only
1613 * temporary and will be released properly on the last reference
1614 */
1615 SetPageHugeTemporary(page);
1616
1617 return page;
1618 }
1619
1620 /*
1621 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1622 */
1623 static
1624 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1625 struct vm_area_struct *vma, unsigned long addr)
1626 {
1627 struct page *page;
1628 struct mempolicy *mpol;
1629 gfp_t gfp_mask = htlb_alloc_mask(h);
1630 int nid;
1631 nodemask_t *nodemask;
1632
1633 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1634 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1635 mpol_cond_put(mpol);
1636
1637 return page;
1638 }
1639
1640 /* page migration callback function */
1641 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1642 {
1643 gfp_t gfp_mask = htlb_alloc_mask(h);
1644 struct page *page = NULL;
1645
1646 if (nid != NUMA_NO_NODE)
1647 gfp_mask |= __GFP_THISNODE;
1648
1649 spin_lock(&hugetlb_lock);
1650 if (h->free_huge_pages - h->resv_huge_pages > 0)
1651 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1652 spin_unlock(&hugetlb_lock);
1653
1654 if (!page)
1655 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1656
1657 return page;
1658 }
1659
1660 /* page migration callback function */
1661 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1662 nodemask_t *nmask)
1663 {
1664 gfp_t gfp_mask = htlb_alloc_mask(h);
1665
1666 spin_lock(&hugetlb_lock);
1667 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1668 struct page *page;
1669
1670 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1671 if (page) {
1672 spin_unlock(&hugetlb_lock);
1673 return page;
1674 }
1675 }
1676 spin_unlock(&hugetlb_lock);
1677
1678 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1679 }
1680
1681 /* mempolicy aware migration callback */
1682 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1683 unsigned long address)
1684 {
1685 struct mempolicy *mpol;
1686 nodemask_t *nodemask;
1687 struct page *page;
1688 gfp_t gfp_mask;
1689 int node;
1690
1691 gfp_mask = htlb_alloc_mask(h);
1692 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1693 page = alloc_huge_page_nodemask(h, node, nodemask);
1694 mpol_cond_put(mpol);
1695
1696 return page;
1697 }
1698
1699 /*
1700 * Increase the hugetlb pool such that it can accommodate a reservation
1701 * of size 'delta'.
1702 */
1703 static int gather_surplus_pages(struct hstate *h, int delta)
1704 {
1705 struct list_head surplus_list;
1706 struct page *page, *tmp;
1707 int ret, i;
1708 int needed, allocated;
1709 bool alloc_ok = true;
1710
1711 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1712 if (needed <= 0) {
1713 h->resv_huge_pages += delta;
1714 return 0;
1715 }
1716
1717 allocated = 0;
1718 INIT_LIST_HEAD(&surplus_list);
1719
1720 ret = -ENOMEM;
1721 retry:
1722 spin_unlock(&hugetlb_lock);
1723 for (i = 0; i < needed; i++) {
1724 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1725 NUMA_NO_NODE, NULL);
1726 if (!page) {
1727 alloc_ok = false;
1728 break;
1729 }
1730 list_add(&page->lru, &surplus_list);
1731 cond_resched();
1732 }
1733 allocated += i;
1734
1735 /*
1736 * After retaking hugetlb_lock, we need to recalculate 'needed'
1737 * because either resv_huge_pages or free_huge_pages may have changed.
1738 */
1739 spin_lock(&hugetlb_lock);
1740 needed = (h->resv_huge_pages + delta) -
1741 (h->free_huge_pages + allocated);
1742 if (needed > 0) {
1743 if (alloc_ok)
1744 goto retry;
1745 /*
1746 * We were not able to allocate enough pages to
1747 * satisfy the entire reservation so we free what
1748 * we've allocated so far.
1749 */
1750 goto free;
1751 }
1752 /*
1753 * The surplus_list now contains _at_least_ the number of extra pages
1754 * needed to accommodate the reservation. Add the appropriate number
1755 * of pages to the hugetlb pool and free the extras back to the buddy
1756 * allocator. Commit the entire reservation here to prevent another
1757 * process from stealing the pages as they are added to the pool but
1758 * before they are reserved.
1759 */
1760 needed += allocated;
1761 h->resv_huge_pages += delta;
1762 ret = 0;
1763
1764 /* Free the needed pages to the hugetlb pool */
1765 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1766 if ((--needed) < 0)
1767 break;
1768 /*
1769 * This page is now managed by the hugetlb allocator and has
1770 * no users -- drop the buddy allocator's reference.
1771 */
1772 put_page_testzero(page);
1773 VM_BUG_ON_PAGE(page_count(page), page);
1774 enqueue_huge_page(h, page);
1775 }
1776 free:
1777 spin_unlock(&hugetlb_lock);
1778
1779 /* Free unnecessary surplus pages to the buddy allocator */
1780 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1781 put_page(page);
1782 spin_lock(&hugetlb_lock);
1783
1784 return ret;
1785 }
1786
1787 /*
1788 * This routine has two main purposes:
1789 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1790 * in unused_resv_pages. This corresponds to the prior adjustments made
1791 * to the associated reservation map.
1792 * 2) Free any unused surplus pages that may have been allocated to satisfy
1793 * the reservation. As many as unused_resv_pages may be freed.
1794 *
1795 * Called with hugetlb_lock held. However, the lock could be dropped (and
1796 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1797 * we must make sure nobody else can claim pages we are in the process of
1798 * freeing. Do this by ensuring resv_huge_page always is greater than the
1799 * number of huge pages we plan to free when dropping the lock.
1800 */
1801 static void return_unused_surplus_pages(struct hstate *h,
1802 unsigned long unused_resv_pages)
1803 {
1804 unsigned long nr_pages;
1805
1806 /* Cannot return gigantic pages currently */
1807 if (hstate_is_gigantic(h))
1808 goto out;
1809
1810 /*
1811 * Part (or even all) of the reservation could have been backed
1812 * by pre-allocated pages. Only free surplus pages.
1813 */
1814 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1815
1816 /*
1817 * We want to release as many surplus pages as possible, spread
1818 * evenly across all nodes with memory. Iterate across these nodes
1819 * until we can no longer free unreserved surplus pages. This occurs
1820 * when the nodes with surplus pages have no free pages.
1821 * free_pool_huge_page() will balance the the freed pages across the
1822 * on-line nodes with memory and will handle the hstate accounting.
1823 *
1824 * Note that we decrement resv_huge_pages as we free the pages. If
1825 * we drop the lock, resv_huge_pages will still be sufficiently large
1826 * to cover subsequent pages we may free.
1827 */
1828 while (nr_pages--) {
1829 h->resv_huge_pages--;
1830 unused_resv_pages--;
1831 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1832 goto out;
1833 cond_resched_lock(&hugetlb_lock);
1834 }
1835
1836 out:
1837 /* Fully uncommit the reservation */
1838 h->resv_huge_pages -= unused_resv_pages;
1839 }
1840
1841
1842 /*
1843 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1844 * are used by the huge page allocation routines to manage reservations.
1845 *
1846 * vma_needs_reservation is called to determine if the huge page at addr
1847 * within the vma has an associated reservation. If a reservation is
1848 * needed, the value 1 is returned. The caller is then responsible for
1849 * managing the global reservation and subpool usage counts. After
1850 * the huge page has been allocated, vma_commit_reservation is called
1851 * to add the page to the reservation map. If the page allocation fails,
1852 * the reservation must be ended instead of committed. vma_end_reservation
1853 * is called in such cases.
1854 *
1855 * In the normal case, vma_commit_reservation returns the same value
1856 * as the preceding vma_needs_reservation call. The only time this
1857 * is not the case is if a reserve map was changed between calls. It
1858 * is the responsibility of the caller to notice the difference and
1859 * take appropriate action.
1860 *
1861 * vma_add_reservation is used in error paths where a reservation must
1862 * be restored when a newly allocated huge page must be freed. It is
1863 * to be called after calling vma_needs_reservation to determine if a
1864 * reservation exists.
1865 */
1866 enum vma_resv_mode {
1867 VMA_NEEDS_RESV,
1868 VMA_COMMIT_RESV,
1869 VMA_END_RESV,
1870 VMA_ADD_RESV,
1871 };
1872 static long __vma_reservation_common(struct hstate *h,
1873 struct vm_area_struct *vma, unsigned long addr,
1874 enum vma_resv_mode mode)
1875 {
1876 struct resv_map *resv;
1877 pgoff_t idx;
1878 long ret;
1879
1880 resv = vma_resv_map(vma);
1881 if (!resv)
1882 return 1;
1883
1884 idx = vma_hugecache_offset(h, vma, addr);
1885 switch (mode) {
1886 case VMA_NEEDS_RESV:
1887 ret = region_chg(resv, idx, idx + 1);
1888 break;
1889 case VMA_COMMIT_RESV:
1890 ret = region_add(resv, idx, idx + 1);
1891 break;
1892 case VMA_END_RESV:
1893 region_abort(resv, idx, idx + 1);
1894 ret = 0;
1895 break;
1896 case VMA_ADD_RESV:
1897 if (vma->vm_flags & VM_MAYSHARE)
1898 ret = region_add(resv, idx, idx + 1);
1899 else {
1900 region_abort(resv, idx, idx + 1);
1901 ret = region_del(resv, idx, idx + 1);
1902 }
1903 break;
1904 default:
1905 BUG();
1906 }
1907
1908 if (vma->vm_flags & VM_MAYSHARE)
1909 return ret;
1910 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1911 /*
1912 * In most cases, reserves always exist for private mappings.
1913 * However, a file associated with mapping could have been
1914 * hole punched or truncated after reserves were consumed.
1915 * As subsequent fault on such a range will not use reserves.
1916 * Subtle - The reserve map for private mappings has the
1917 * opposite meaning than that of shared mappings. If NO
1918 * entry is in the reserve map, it means a reservation exists.
1919 * If an entry exists in the reserve map, it means the
1920 * reservation has already been consumed. As a result, the
1921 * return value of this routine is the opposite of the
1922 * value returned from reserve map manipulation routines above.
1923 */
1924 if (ret)
1925 return 0;
1926 else
1927 return 1;
1928 }
1929 else
1930 return ret < 0 ? ret : 0;
1931 }
1932
1933 static long vma_needs_reservation(struct hstate *h,
1934 struct vm_area_struct *vma, unsigned long addr)
1935 {
1936 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1937 }
1938
1939 static long vma_commit_reservation(struct hstate *h,
1940 struct vm_area_struct *vma, unsigned long addr)
1941 {
1942 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1943 }
1944
1945 static void vma_end_reservation(struct hstate *h,
1946 struct vm_area_struct *vma, unsigned long addr)
1947 {
1948 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1949 }
1950
1951 static long vma_add_reservation(struct hstate *h,
1952 struct vm_area_struct *vma, unsigned long addr)
1953 {
1954 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1955 }
1956
1957 /*
1958 * This routine is called to restore a reservation on error paths. In the
1959 * specific error paths, a huge page was allocated (via alloc_huge_page)
1960 * and is about to be freed. If a reservation for the page existed,
1961 * alloc_huge_page would have consumed the reservation and set PagePrivate
1962 * in the newly allocated page. When the page is freed via free_huge_page,
1963 * the global reservation count will be incremented if PagePrivate is set.
1964 * However, free_huge_page can not adjust the reserve map. Adjust the
1965 * reserve map here to be consistent with global reserve count adjustments
1966 * to be made by free_huge_page.
1967 */
1968 static void restore_reserve_on_error(struct hstate *h,
1969 struct vm_area_struct *vma, unsigned long address,
1970 struct page *page)
1971 {
1972 if (unlikely(PagePrivate(page))) {
1973 long rc = vma_needs_reservation(h, vma, address);
1974
1975 if (unlikely(rc < 0)) {
1976 /*
1977 * Rare out of memory condition in reserve map
1978 * manipulation. Clear PagePrivate so that
1979 * global reserve count will not be incremented
1980 * by free_huge_page. This will make it appear
1981 * as though the reservation for this page was
1982 * consumed. This may prevent the task from
1983 * faulting in the page at a later time. This
1984 * is better than inconsistent global huge page
1985 * accounting of reserve counts.
1986 */
1987 ClearPagePrivate(page);
1988 } else if (rc) {
1989 rc = vma_add_reservation(h, vma, address);
1990 if (unlikely(rc < 0))
1991 /*
1992 * See above comment about rare out of
1993 * memory condition.
1994 */
1995 ClearPagePrivate(page);
1996 } else
1997 vma_end_reservation(h, vma, address);
1998 }
1999 }
2000
2001 struct page *alloc_huge_page(struct vm_area_struct *vma,
2002 unsigned long addr, int avoid_reserve)
2003 {
2004 struct hugepage_subpool *spool = subpool_vma(vma);
2005 struct hstate *h = hstate_vma(vma);
2006 struct page *page;
2007 long map_chg, map_commit;
2008 long gbl_chg;
2009 int ret, idx;
2010 struct hugetlb_cgroup *h_cg;
2011
2012 idx = hstate_index(h);
2013 /*
2014 * Examine the region/reserve map to determine if the process
2015 * has a reservation for the page to be allocated. A return
2016 * code of zero indicates a reservation exists (no change).
2017 */
2018 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2019 if (map_chg < 0)
2020 return ERR_PTR(-ENOMEM);
2021
2022 /*
2023 * Processes that did not create the mapping will have no
2024 * reserves as indicated by the region/reserve map. Check
2025 * that the allocation will not exceed the subpool limit.
2026 * Allocations for MAP_NORESERVE mappings also need to be
2027 * checked against any subpool limit.
2028 */
2029 if (map_chg || avoid_reserve) {
2030 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2031 if (gbl_chg < 0) {
2032 vma_end_reservation(h, vma, addr);
2033 return ERR_PTR(-ENOSPC);
2034 }
2035
2036 /*
2037 * Even though there was no reservation in the region/reserve
2038 * map, there could be reservations associated with the
2039 * subpool that can be used. This would be indicated if the
2040 * return value of hugepage_subpool_get_pages() is zero.
2041 * However, if avoid_reserve is specified we still avoid even
2042 * the subpool reservations.
2043 */
2044 if (avoid_reserve)
2045 gbl_chg = 1;
2046 }
2047
2048 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2049 if (ret)
2050 goto out_subpool_put;
2051
2052 spin_lock(&hugetlb_lock);
2053 /*
2054 * glb_chg is passed to indicate whether or not a page must be taken
2055 * from the global free pool (global change). gbl_chg == 0 indicates
2056 * a reservation exists for the allocation.
2057 */
2058 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2059 if (!page) {
2060 spin_unlock(&hugetlb_lock);
2061 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2062 if (!page)
2063 goto out_uncharge_cgroup;
2064 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2065 SetPagePrivate(page);
2066 h->resv_huge_pages--;
2067 }
2068 spin_lock(&hugetlb_lock);
2069 list_move(&page->lru, &h->hugepage_activelist);
2070 /* Fall through */
2071 }
2072 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2073 spin_unlock(&hugetlb_lock);
2074
2075 set_page_private(page, (unsigned long)spool);
2076
2077 map_commit = vma_commit_reservation(h, vma, addr);
2078 if (unlikely(map_chg > map_commit)) {
2079 /*
2080 * The page was added to the reservation map between
2081 * vma_needs_reservation and vma_commit_reservation.
2082 * This indicates a race with hugetlb_reserve_pages.
2083 * Adjust for the subpool count incremented above AND
2084 * in hugetlb_reserve_pages for the same page. Also,
2085 * the reservation count added in hugetlb_reserve_pages
2086 * no longer applies.
2087 */
2088 long rsv_adjust;
2089
2090 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2091 hugetlb_acct_memory(h, -rsv_adjust);
2092 }
2093 return page;
2094
2095 out_uncharge_cgroup:
2096 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2097 out_subpool_put:
2098 if (map_chg || avoid_reserve)
2099 hugepage_subpool_put_pages(spool, 1);
2100 vma_end_reservation(h, vma, addr);
2101 return ERR_PTR(-ENOSPC);
2102 }
2103
2104 int alloc_bootmem_huge_page(struct hstate *h)
2105 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2106 int __alloc_bootmem_huge_page(struct hstate *h)
2107 {
2108 struct huge_bootmem_page *m;
2109 int nr_nodes, node;
2110
2111 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2112 void *addr;
2113
2114 addr = memblock_alloc_try_nid_raw(
2115 huge_page_size(h), huge_page_size(h),
2116 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2117 if (addr) {
2118 /*
2119 * Use the beginning of the huge page to store the
2120 * huge_bootmem_page struct (until gather_bootmem
2121 * puts them into the mem_map).
2122 */
2123 m = addr;
2124 goto found;
2125 }
2126 }
2127 return 0;
2128
2129 found:
2130 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2131 /* Put them into a private list first because mem_map is not up yet */
2132 INIT_LIST_HEAD(&m->list);
2133 list_add(&m->list, &huge_boot_pages);
2134 m->hstate = h;
2135 return 1;
2136 }
2137
2138 static void __init prep_compound_huge_page(struct page *page,
2139 unsigned int order)
2140 {
2141 if (unlikely(order > (MAX_ORDER - 1)))
2142 prep_compound_gigantic_page(page, order);
2143 else
2144 prep_compound_page(page, order);
2145 }
2146
2147 /* Put bootmem huge pages into the standard lists after mem_map is up */
2148 static void __init gather_bootmem_prealloc(void)
2149 {
2150 struct huge_bootmem_page *m;
2151
2152 list_for_each_entry(m, &huge_boot_pages, list) {
2153 struct page *page = virt_to_page(m);
2154 struct hstate *h = m->hstate;
2155
2156 WARN_ON(page_count(page) != 1);
2157 prep_compound_huge_page(page, h->order);
2158 WARN_ON(PageReserved(page));
2159 prep_new_huge_page(h, page, page_to_nid(page));
2160 put_page(page); /* free it into the hugepage allocator */
2161
2162 /*
2163 * If we had gigantic hugepages allocated at boot time, we need
2164 * to restore the 'stolen' pages to totalram_pages in order to
2165 * fix confusing memory reports from free(1) and another
2166 * side-effects, like CommitLimit going negative.
2167 */
2168 if (hstate_is_gigantic(h))
2169 adjust_managed_page_count(page, 1 << h->order);
2170 cond_resched();
2171 }
2172 }
2173
2174 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2175 {
2176 unsigned long i;
2177 nodemask_t *node_alloc_noretry;
2178
2179 if (!hstate_is_gigantic(h)) {
2180 /*
2181 * Bit mask controlling how hard we retry per-node allocations.
2182 * Ignore errors as lower level routines can deal with
2183 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2184 * time, we are likely in bigger trouble.
2185 */
2186 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2187 GFP_KERNEL);
2188 } else {
2189 /* allocations done at boot time */
2190 node_alloc_noretry = NULL;
2191 }
2192
2193 /* bit mask controlling how hard we retry per-node allocations */
2194 if (node_alloc_noretry)
2195 nodes_clear(*node_alloc_noretry);
2196
2197 for (i = 0; i < h->max_huge_pages; ++i) {
2198 if (hstate_is_gigantic(h)) {
2199 if (!alloc_bootmem_huge_page(h))
2200 break;
2201 } else if (!alloc_pool_huge_page(h,
2202 &node_states[N_MEMORY],
2203 node_alloc_noretry))
2204 break;
2205 cond_resched();
2206 }
2207 if (i < h->max_huge_pages) {
2208 char buf[32];
2209
2210 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2211 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2212 h->max_huge_pages, buf, i);
2213 h->max_huge_pages = i;
2214 }
2215
2216 kfree(node_alloc_noretry);
2217 }
2218
2219 static void __init hugetlb_init_hstates(void)
2220 {
2221 struct hstate *h;
2222
2223 for_each_hstate(h) {
2224 if (minimum_order > huge_page_order(h))
2225 minimum_order = huge_page_order(h);
2226
2227 /* oversize hugepages were init'ed in early boot */
2228 if (!hstate_is_gigantic(h))
2229 hugetlb_hstate_alloc_pages(h);
2230 }
2231 VM_BUG_ON(minimum_order == UINT_MAX);
2232 }
2233
2234 static void __init report_hugepages(void)
2235 {
2236 struct hstate *h;
2237
2238 for_each_hstate(h) {
2239 char buf[32];
2240
2241 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2242 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2243 buf, h->free_huge_pages);
2244 }
2245 }
2246
2247 #ifdef CONFIG_HIGHMEM
2248 static void try_to_free_low(struct hstate *h, unsigned long count,
2249 nodemask_t *nodes_allowed)
2250 {
2251 int i;
2252
2253 if (hstate_is_gigantic(h))
2254 return;
2255
2256 for_each_node_mask(i, *nodes_allowed) {
2257 struct page *page, *next;
2258 struct list_head *freel = &h->hugepage_freelists[i];
2259 list_for_each_entry_safe(page, next, freel, lru) {
2260 if (count >= h->nr_huge_pages)
2261 return;
2262 if (PageHighMem(page))
2263 continue;
2264 list_del(&page->lru);
2265 update_and_free_page(h, page);
2266 h->free_huge_pages--;
2267 h->free_huge_pages_node[page_to_nid(page)]--;
2268 }
2269 }
2270 }
2271 #else
2272 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2273 nodemask_t *nodes_allowed)
2274 {
2275 }
2276 #endif
2277
2278 /*
2279 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2280 * balanced by operating on them in a round-robin fashion.
2281 * Returns 1 if an adjustment was made.
2282 */
2283 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2284 int delta)
2285 {
2286 int nr_nodes, node;
2287
2288 VM_BUG_ON(delta != -1 && delta != 1);
2289
2290 if (delta < 0) {
2291 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2292 if (h->surplus_huge_pages_node[node])
2293 goto found;
2294 }
2295 } else {
2296 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2297 if (h->surplus_huge_pages_node[node] <
2298 h->nr_huge_pages_node[node])
2299 goto found;
2300 }
2301 }
2302 return 0;
2303
2304 found:
2305 h->surplus_huge_pages += delta;
2306 h->surplus_huge_pages_node[node] += delta;
2307 return 1;
2308 }
2309
2310 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2311 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2312 nodemask_t *nodes_allowed)
2313 {
2314 unsigned long min_count, ret;
2315 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2316
2317 /*
2318 * Bit mask controlling how hard we retry per-node allocations.
2319 * If we can not allocate the bit mask, do not attempt to allocate
2320 * the requested huge pages.
2321 */
2322 if (node_alloc_noretry)
2323 nodes_clear(*node_alloc_noretry);
2324 else
2325 return -ENOMEM;
2326
2327 spin_lock(&hugetlb_lock);
2328
2329 /*
2330 * Check for a node specific request.
2331 * Changing node specific huge page count may require a corresponding
2332 * change to the global count. In any case, the passed node mask
2333 * (nodes_allowed) will restrict alloc/free to the specified node.
2334 */
2335 if (nid != NUMA_NO_NODE) {
2336 unsigned long old_count = count;
2337
2338 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2339 /*
2340 * User may have specified a large count value which caused the
2341 * above calculation to overflow. In this case, they wanted
2342 * to allocate as many huge pages as possible. Set count to
2343 * largest possible value to align with their intention.
2344 */
2345 if (count < old_count)
2346 count = ULONG_MAX;
2347 }
2348
2349 /*
2350 * Gigantic pages runtime allocation depend on the capability for large
2351 * page range allocation.
2352 * If the system does not provide this feature, return an error when
2353 * the user tries to allocate gigantic pages but let the user free the
2354 * boottime allocated gigantic pages.
2355 */
2356 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2357 if (count > persistent_huge_pages(h)) {
2358 spin_unlock(&hugetlb_lock);
2359 NODEMASK_FREE(node_alloc_noretry);
2360 return -EINVAL;
2361 }
2362 /* Fall through to decrease pool */
2363 }
2364
2365 /*
2366 * Increase the pool size
2367 * First take pages out of surplus state. Then make up the
2368 * remaining difference by allocating fresh huge pages.
2369 *
2370 * We might race with alloc_surplus_huge_page() here and be unable
2371 * to convert a surplus huge page to a normal huge page. That is
2372 * not critical, though, it just means the overall size of the
2373 * pool might be one hugepage larger than it needs to be, but
2374 * within all the constraints specified by the sysctls.
2375 */
2376 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2377 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2378 break;
2379 }
2380
2381 while (count > persistent_huge_pages(h)) {
2382 /*
2383 * If this allocation races such that we no longer need the
2384 * page, free_huge_page will handle it by freeing the page
2385 * and reducing the surplus.
2386 */
2387 spin_unlock(&hugetlb_lock);
2388
2389 /* yield cpu to avoid soft lockup */
2390 cond_resched();
2391
2392 ret = alloc_pool_huge_page(h, nodes_allowed,
2393 node_alloc_noretry);
2394 spin_lock(&hugetlb_lock);
2395 if (!ret)
2396 goto out;
2397
2398 /* Bail for signals. Probably ctrl-c from user */
2399 if (signal_pending(current))
2400 goto out;
2401 }
2402
2403 /*
2404 * Decrease the pool size
2405 * First return free pages to the buddy allocator (being careful
2406 * to keep enough around to satisfy reservations). Then place
2407 * pages into surplus state as needed so the pool will shrink
2408 * to the desired size as pages become free.
2409 *
2410 * By placing pages into the surplus state independent of the
2411 * overcommit value, we are allowing the surplus pool size to
2412 * exceed overcommit. There are few sane options here. Since
2413 * alloc_surplus_huge_page() is checking the global counter,
2414 * though, we'll note that we're not allowed to exceed surplus
2415 * and won't grow the pool anywhere else. Not until one of the
2416 * sysctls are changed, or the surplus pages go out of use.
2417 */
2418 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2419 min_count = max(count, min_count);
2420 try_to_free_low(h, min_count, nodes_allowed);
2421 while (min_count < persistent_huge_pages(h)) {
2422 if (!free_pool_huge_page(h, nodes_allowed, 0))
2423 break;
2424 cond_resched_lock(&hugetlb_lock);
2425 }
2426 while (count < persistent_huge_pages(h)) {
2427 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2428 break;
2429 }
2430 out:
2431 h->max_huge_pages = persistent_huge_pages(h);
2432 spin_unlock(&hugetlb_lock);
2433
2434 NODEMASK_FREE(node_alloc_noretry);
2435
2436 return 0;
2437 }
2438
2439 #define HSTATE_ATTR_RO(_name) \
2440 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2441
2442 #define HSTATE_ATTR(_name) \
2443 static struct kobj_attribute _name##_attr = \
2444 __ATTR(_name, 0644, _name##_show, _name##_store)
2445
2446 static struct kobject *hugepages_kobj;
2447 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2448
2449 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2450
2451 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2452 {
2453 int i;
2454
2455 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2456 if (hstate_kobjs[i] == kobj) {
2457 if (nidp)
2458 *nidp = NUMA_NO_NODE;
2459 return &hstates[i];
2460 }
2461
2462 return kobj_to_node_hstate(kobj, nidp);
2463 }
2464
2465 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2466 struct kobj_attribute *attr, char *buf)
2467 {
2468 struct hstate *h;
2469 unsigned long nr_huge_pages;
2470 int nid;
2471
2472 h = kobj_to_hstate(kobj, &nid);
2473 if (nid == NUMA_NO_NODE)
2474 nr_huge_pages = h->nr_huge_pages;
2475 else
2476 nr_huge_pages = h->nr_huge_pages_node[nid];
2477
2478 return sprintf(buf, "%lu\n", nr_huge_pages);
2479 }
2480
2481 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2482 struct hstate *h, int nid,
2483 unsigned long count, size_t len)
2484 {
2485 int err;
2486 nodemask_t nodes_allowed, *n_mask;
2487
2488 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2489 return -EINVAL;
2490
2491 if (nid == NUMA_NO_NODE) {
2492 /*
2493 * global hstate attribute
2494 */
2495 if (!(obey_mempolicy &&
2496 init_nodemask_of_mempolicy(&nodes_allowed)))
2497 n_mask = &node_states[N_MEMORY];
2498 else
2499 n_mask = &nodes_allowed;
2500 } else {
2501 /*
2502 * Node specific request. count adjustment happens in
2503 * set_max_huge_pages() after acquiring hugetlb_lock.
2504 */
2505 init_nodemask_of_node(&nodes_allowed, nid);
2506 n_mask = &nodes_allowed;
2507 }
2508
2509 err = set_max_huge_pages(h, count, nid, n_mask);
2510
2511 return err ? err : len;
2512 }
2513
2514 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2515 struct kobject *kobj, const char *buf,
2516 size_t len)
2517 {
2518 struct hstate *h;
2519 unsigned long count;
2520 int nid;
2521 int err;
2522
2523 err = kstrtoul(buf, 10, &count);
2524 if (err)
2525 return err;
2526
2527 h = kobj_to_hstate(kobj, &nid);
2528 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2529 }
2530
2531 static ssize_t nr_hugepages_show(struct kobject *kobj,
2532 struct kobj_attribute *attr, char *buf)
2533 {
2534 return nr_hugepages_show_common(kobj, attr, buf);
2535 }
2536
2537 static ssize_t nr_hugepages_store(struct kobject *kobj,
2538 struct kobj_attribute *attr, const char *buf, size_t len)
2539 {
2540 return nr_hugepages_store_common(false, kobj, buf, len);
2541 }
2542 HSTATE_ATTR(nr_hugepages);
2543
2544 #ifdef CONFIG_NUMA
2545
2546 /*
2547 * hstate attribute for optionally mempolicy-based constraint on persistent
2548 * huge page alloc/free.
2549 */
2550 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2551 struct kobj_attribute *attr, char *buf)
2552 {
2553 return nr_hugepages_show_common(kobj, attr, buf);
2554 }
2555
2556 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2557 struct kobj_attribute *attr, const char *buf, size_t len)
2558 {
2559 return nr_hugepages_store_common(true, kobj, buf, len);
2560 }
2561 HSTATE_ATTR(nr_hugepages_mempolicy);
2562 #endif
2563
2564
2565 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2566 struct kobj_attribute *attr, char *buf)
2567 {
2568 struct hstate *h = kobj_to_hstate(kobj, NULL);
2569 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2570 }
2571
2572 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2573 struct kobj_attribute *attr, const char *buf, size_t count)
2574 {
2575 int err;
2576 unsigned long input;
2577 struct hstate *h = kobj_to_hstate(kobj, NULL);
2578
2579 if (hstate_is_gigantic(h))
2580 return -EINVAL;
2581
2582 err = kstrtoul(buf, 10, &input);
2583 if (err)
2584 return err;
2585
2586 spin_lock(&hugetlb_lock);
2587 h->nr_overcommit_huge_pages = input;
2588 spin_unlock(&hugetlb_lock);
2589
2590 return count;
2591 }
2592 HSTATE_ATTR(nr_overcommit_hugepages);
2593
2594 static ssize_t free_hugepages_show(struct kobject *kobj,
2595 struct kobj_attribute *attr, char *buf)
2596 {
2597 struct hstate *h;
2598 unsigned long free_huge_pages;
2599 int nid;
2600
2601 h = kobj_to_hstate(kobj, &nid);
2602 if (nid == NUMA_NO_NODE)
2603 free_huge_pages = h->free_huge_pages;
2604 else
2605 free_huge_pages = h->free_huge_pages_node[nid];
2606
2607 return sprintf(buf, "%lu\n", free_huge_pages);
2608 }
2609 HSTATE_ATTR_RO(free_hugepages);
2610
2611 static ssize_t resv_hugepages_show(struct kobject *kobj,
2612 struct kobj_attribute *attr, char *buf)
2613 {
2614 struct hstate *h = kobj_to_hstate(kobj, NULL);
2615 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2616 }
2617 HSTATE_ATTR_RO(resv_hugepages);
2618
2619 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2620 struct kobj_attribute *attr, char *buf)
2621 {
2622 struct hstate *h;
2623 unsigned long surplus_huge_pages;
2624 int nid;
2625
2626 h = kobj_to_hstate(kobj, &nid);
2627 if (nid == NUMA_NO_NODE)
2628 surplus_huge_pages = h->surplus_huge_pages;
2629 else
2630 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2631
2632 return sprintf(buf, "%lu\n", surplus_huge_pages);
2633 }
2634 HSTATE_ATTR_RO(surplus_hugepages);
2635
2636 static struct attribute *hstate_attrs[] = {
2637 &nr_hugepages_attr.attr,
2638 &nr_overcommit_hugepages_attr.attr,
2639 &free_hugepages_attr.attr,
2640 &resv_hugepages_attr.attr,
2641 &surplus_hugepages_attr.attr,
2642 #ifdef CONFIG_NUMA
2643 &nr_hugepages_mempolicy_attr.attr,
2644 #endif
2645 NULL,
2646 };
2647
2648 static const struct attribute_group hstate_attr_group = {
2649 .attrs = hstate_attrs,
2650 };
2651
2652 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2653 struct kobject **hstate_kobjs,
2654 const struct attribute_group *hstate_attr_group)
2655 {
2656 int retval;
2657 int hi = hstate_index(h);
2658
2659 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2660 if (!hstate_kobjs[hi])
2661 return -ENOMEM;
2662
2663 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2664 if (retval)
2665 kobject_put(hstate_kobjs[hi]);
2666
2667 return retval;
2668 }
2669
2670 static void __init hugetlb_sysfs_init(void)
2671 {
2672 struct hstate *h;
2673 int err;
2674
2675 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2676 if (!hugepages_kobj)
2677 return;
2678
2679 for_each_hstate(h) {
2680 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2681 hstate_kobjs, &hstate_attr_group);
2682 if (err)
2683 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2684 }
2685 }
2686
2687 #ifdef CONFIG_NUMA
2688
2689 /*
2690 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2691 * with node devices in node_devices[] using a parallel array. The array
2692 * index of a node device or _hstate == node id.
2693 * This is here to avoid any static dependency of the node device driver, in
2694 * the base kernel, on the hugetlb module.
2695 */
2696 struct node_hstate {
2697 struct kobject *hugepages_kobj;
2698 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2699 };
2700 static struct node_hstate node_hstates[MAX_NUMNODES];
2701
2702 /*
2703 * A subset of global hstate attributes for node devices
2704 */
2705 static struct attribute *per_node_hstate_attrs[] = {
2706 &nr_hugepages_attr.attr,
2707 &free_hugepages_attr.attr,
2708 &surplus_hugepages_attr.attr,
2709 NULL,
2710 };
2711
2712 static const struct attribute_group per_node_hstate_attr_group = {
2713 .attrs = per_node_hstate_attrs,
2714 };
2715
2716 /*
2717 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2718 * Returns node id via non-NULL nidp.
2719 */
2720 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2721 {
2722 int nid;
2723
2724 for (nid = 0; nid < nr_node_ids; nid++) {
2725 struct node_hstate *nhs = &node_hstates[nid];
2726 int i;
2727 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2728 if (nhs->hstate_kobjs[i] == kobj) {
2729 if (nidp)
2730 *nidp = nid;
2731 return &hstates[i];
2732 }
2733 }
2734
2735 BUG();
2736 return NULL;
2737 }
2738
2739 /*
2740 * Unregister hstate attributes from a single node device.
2741 * No-op if no hstate attributes attached.
2742 */
2743 static void hugetlb_unregister_node(struct node *node)
2744 {
2745 struct hstate *h;
2746 struct node_hstate *nhs = &node_hstates[node->dev.id];
2747
2748 if (!nhs->hugepages_kobj)
2749 return; /* no hstate attributes */
2750
2751 for_each_hstate(h) {
2752 int idx = hstate_index(h);
2753 if (nhs->hstate_kobjs[idx]) {
2754 kobject_put(nhs->hstate_kobjs[idx]);
2755 nhs->hstate_kobjs[idx] = NULL;
2756 }
2757 }
2758
2759 kobject_put(nhs->hugepages_kobj);
2760 nhs->hugepages_kobj = NULL;
2761 }
2762
2763
2764 /*
2765 * Register hstate attributes for a single node device.
2766 * No-op if attributes already registered.
2767 */
2768 static void hugetlb_register_node(struct node *node)
2769 {
2770 struct hstate *h;
2771 struct node_hstate *nhs = &node_hstates[node->dev.id];
2772 int err;
2773
2774 if (nhs->hugepages_kobj)
2775 return; /* already allocated */
2776
2777 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2778 &node->dev.kobj);
2779 if (!nhs->hugepages_kobj)
2780 return;
2781
2782 for_each_hstate(h) {
2783 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2784 nhs->hstate_kobjs,
2785 &per_node_hstate_attr_group);
2786 if (err) {
2787 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2788 h->name, node->dev.id);
2789 hugetlb_unregister_node(node);
2790 break;
2791 }
2792 }
2793 }
2794
2795 /*
2796 * hugetlb init time: register hstate attributes for all registered node
2797 * devices of nodes that have memory. All on-line nodes should have
2798 * registered their associated device by this time.
2799 */
2800 static void __init hugetlb_register_all_nodes(void)
2801 {
2802 int nid;
2803
2804 for_each_node_state(nid, N_MEMORY) {
2805 struct node *node = node_devices[nid];
2806 if (node->dev.id == nid)
2807 hugetlb_register_node(node);
2808 }
2809
2810 /*
2811 * Let the node device driver know we're here so it can
2812 * [un]register hstate attributes on node hotplug.
2813 */
2814 register_hugetlbfs_with_node(hugetlb_register_node,
2815 hugetlb_unregister_node);
2816 }
2817 #else /* !CONFIG_NUMA */
2818
2819 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2820 {
2821 BUG();
2822 if (nidp)
2823 *nidp = -1;
2824 return NULL;
2825 }
2826
2827 static void hugetlb_register_all_nodes(void) { }
2828
2829 #endif
2830
2831 static int __init hugetlb_init(void)
2832 {
2833 int i;
2834
2835 if (!hugepages_supported())
2836 return 0;
2837
2838 if (!size_to_hstate(default_hstate_size)) {
2839 if (default_hstate_size != 0) {
2840 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2841 default_hstate_size, HPAGE_SIZE);
2842 }
2843
2844 default_hstate_size = HPAGE_SIZE;
2845 if (!size_to_hstate(default_hstate_size))
2846 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2847 }
2848 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2849 if (default_hstate_max_huge_pages) {
2850 if (!default_hstate.max_huge_pages)
2851 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2852 }
2853
2854 hugetlb_init_hstates();
2855 gather_bootmem_prealloc();
2856 report_hugepages();
2857
2858 hugetlb_sysfs_init();
2859 hugetlb_register_all_nodes();
2860 hugetlb_cgroup_file_init();
2861
2862 #ifdef CONFIG_SMP
2863 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2864 #else
2865 num_fault_mutexes = 1;
2866 #endif
2867 hugetlb_fault_mutex_table =
2868 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2869 GFP_KERNEL);
2870 BUG_ON(!hugetlb_fault_mutex_table);
2871
2872 for (i = 0; i < num_fault_mutexes; i++)
2873 mutex_init(&hugetlb_fault_mutex_table[i]);
2874 return 0;
2875 }
2876 subsys_initcall(hugetlb_init);
2877
2878 /* Should be called on processing a hugepagesz=... option */
2879 void __init hugetlb_bad_size(void)
2880 {
2881 parsed_valid_hugepagesz = false;
2882 }
2883
2884 void __init hugetlb_add_hstate(unsigned int order)
2885 {
2886 struct hstate *h;
2887 unsigned long i;
2888
2889 if (size_to_hstate(PAGE_SIZE << order)) {
2890 pr_warn("hugepagesz= specified twice, ignoring\n");
2891 return;
2892 }
2893 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2894 BUG_ON(order == 0);
2895 h = &hstates[hugetlb_max_hstate++];
2896 h->order = order;
2897 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2898 h->nr_huge_pages = 0;
2899 h->free_huge_pages = 0;
2900 for (i = 0; i < MAX_NUMNODES; ++i)
2901 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2902 INIT_LIST_HEAD(&h->hugepage_activelist);
2903 h->next_nid_to_alloc = first_memory_node;
2904 h->next_nid_to_free = first_memory_node;
2905 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2906 huge_page_size(h)/1024);
2907
2908 parsed_hstate = h;
2909 }
2910
2911 static int __init hugetlb_nrpages_setup(char *s)
2912 {
2913 unsigned long *mhp;
2914 static unsigned long *last_mhp;
2915
2916 if (!parsed_valid_hugepagesz) {
2917 pr_warn("hugepages = %s preceded by "
2918 "an unsupported hugepagesz, ignoring\n", s);
2919 parsed_valid_hugepagesz = true;
2920 return 1;
2921 }
2922 /*
2923 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2924 * so this hugepages= parameter goes to the "default hstate".
2925 */
2926 else if (!hugetlb_max_hstate)
2927 mhp = &default_hstate_max_huge_pages;
2928 else
2929 mhp = &parsed_hstate->max_huge_pages;
2930
2931 if (mhp == last_mhp) {
2932 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2933 return 1;
2934 }
2935
2936 if (sscanf(s, "%lu", mhp) <= 0)
2937 *mhp = 0;
2938
2939 /*
2940 * Global state is always initialized later in hugetlb_init.
2941 * But we need to allocate >= MAX_ORDER hstates here early to still
2942 * use the bootmem allocator.
2943 */
2944 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2945 hugetlb_hstate_alloc_pages(parsed_hstate);
2946
2947 last_mhp = mhp;
2948
2949 return 1;
2950 }
2951 __setup("hugepages=", hugetlb_nrpages_setup);
2952
2953 static int __init hugetlb_default_setup(char *s)
2954 {
2955 default_hstate_size = memparse(s, &s);
2956 return 1;
2957 }
2958 __setup("default_hugepagesz=", hugetlb_default_setup);
2959
2960 static unsigned int cpuset_mems_nr(unsigned int *array)
2961 {
2962 int node;
2963 unsigned int nr = 0;
2964
2965 for_each_node_mask(node, cpuset_current_mems_allowed)
2966 nr += array[node];
2967
2968 return nr;
2969 }
2970
2971 #ifdef CONFIG_SYSCTL
2972 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2973 struct ctl_table *table, int write,
2974 void __user *buffer, size_t *length, loff_t *ppos)
2975 {
2976 struct hstate *h = &default_hstate;
2977 unsigned long tmp = h->max_huge_pages;
2978 int ret;
2979
2980 if (!hugepages_supported())
2981 return -EOPNOTSUPP;
2982
2983 table->data = &tmp;
2984 table->maxlen = sizeof(unsigned long);
2985 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2986 if (ret)
2987 goto out;
2988
2989 if (write)
2990 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2991 NUMA_NO_NODE, tmp, *length);
2992 out:
2993 return ret;
2994 }
2995
2996 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2997 void __user *buffer, size_t *length, loff_t *ppos)
2998 {
2999
3000 return hugetlb_sysctl_handler_common(false, table, write,
3001 buffer, length, ppos);
3002 }
3003
3004 #ifdef CONFIG_NUMA
3005 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3006 void __user *buffer, size_t *length, loff_t *ppos)
3007 {
3008 return hugetlb_sysctl_handler_common(true, table, write,
3009 buffer, length, ppos);
3010 }
3011 #endif /* CONFIG_NUMA */
3012
3013 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3014 void __user *buffer,
3015 size_t *length, loff_t *ppos)
3016 {
3017 struct hstate *h = &default_hstate;
3018 unsigned long tmp;
3019 int ret;
3020
3021 if (!hugepages_supported())
3022 return -EOPNOTSUPP;
3023
3024 tmp = h->nr_overcommit_huge_pages;
3025
3026 if (write && hstate_is_gigantic(h))
3027 return -EINVAL;
3028
3029 table->data = &tmp;
3030 table->maxlen = sizeof(unsigned long);
3031 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3032 if (ret)
3033 goto out;
3034
3035 if (write) {
3036 spin_lock(&hugetlb_lock);
3037 h->nr_overcommit_huge_pages = tmp;
3038 spin_unlock(&hugetlb_lock);
3039 }
3040 out:
3041 return ret;
3042 }
3043
3044 #endif /* CONFIG_SYSCTL */
3045
3046 void hugetlb_report_meminfo(struct seq_file *m)
3047 {
3048 struct hstate *h;
3049 unsigned long total = 0;
3050
3051 if (!hugepages_supported())
3052 return;
3053
3054 for_each_hstate(h) {
3055 unsigned long count = h->nr_huge_pages;
3056
3057 total += (PAGE_SIZE << huge_page_order(h)) * count;
3058
3059 if (h == &default_hstate)
3060 seq_printf(m,
3061 "HugePages_Total: %5lu\n"
3062 "HugePages_Free: %5lu\n"
3063 "HugePages_Rsvd: %5lu\n"
3064 "HugePages_Surp: %5lu\n"
3065 "Hugepagesize: %8lu kB\n",
3066 count,
3067 h->free_huge_pages,
3068 h->resv_huge_pages,
3069 h->surplus_huge_pages,
3070 (PAGE_SIZE << huge_page_order(h)) / 1024);
3071 }
3072
3073 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3074 }
3075
3076 int hugetlb_report_node_meminfo(int nid, char *buf)
3077 {
3078 struct hstate *h = &default_hstate;
3079 if (!hugepages_supported())
3080 return 0;
3081 return sprintf(buf,
3082 "Node %d HugePages_Total: %5u\n"
3083 "Node %d HugePages_Free: %5u\n"
3084 "Node %d HugePages_Surp: %5u\n",
3085 nid, h->nr_huge_pages_node[nid],
3086 nid, h->free_huge_pages_node[nid],
3087 nid, h->surplus_huge_pages_node[nid]);
3088 }
3089
3090 void hugetlb_show_meminfo(void)
3091 {
3092 struct hstate *h;
3093 int nid;
3094
3095 if (!hugepages_supported())
3096 return;
3097
3098 for_each_node_state(nid, N_MEMORY)
3099 for_each_hstate(h)
3100 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3101 nid,
3102 h->nr_huge_pages_node[nid],
3103 h->free_huge_pages_node[nid],
3104 h->surplus_huge_pages_node[nid],
3105 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3106 }
3107
3108 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3109 {
3110 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3111 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3112 }
3113
3114 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3115 unsigned long hugetlb_total_pages(void)
3116 {
3117 struct hstate *h;
3118 unsigned long nr_total_pages = 0;
3119
3120 for_each_hstate(h)
3121 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3122 return nr_total_pages;
3123 }
3124
3125 static int hugetlb_acct_memory(struct hstate *h, long delta)
3126 {
3127 int ret = -ENOMEM;
3128
3129 spin_lock(&hugetlb_lock);
3130 /*
3131 * When cpuset is configured, it breaks the strict hugetlb page
3132 * reservation as the accounting is done on a global variable. Such
3133 * reservation is completely rubbish in the presence of cpuset because
3134 * the reservation is not checked against page availability for the
3135 * current cpuset. Application can still potentially OOM'ed by kernel
3136 * with lack of free htlb page in cpuset that the task is in.
3137 * Attempt to enforce strict accounting with cpuset is almost
3138 * impossible (or too ugly) because cpuset is too fluid that
3139 * task or memory node can be dynamically moved between cpusets.
3140 *
3141 * The change of semantics for shared hugetlb mapping with cpuset is
3142 * undesirable. However, in order to preserve some of the semantics,
3143 * we fall back to check against current free page availability as
3144 * a best attempt and hopefully to minimize the impact of changing
3145 * semantics that cpuset has.
3146 */
3147 if (delta > 0) {
3148 if (gather_surplus_pages(h, delta) < 0)
3149 goto out;
3150
3151 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3152 return_unused_surplus_pages(h, delta);
3153 goto out;
3154 }
3155 }
3156
3157 ret = 0;
3158 if (delta < 0)
3159 return_unused_surplus_pages(h, (unsigned long) -delta);
3160
3161 out:
3162 spin_unlock(&hugetlb_lock);
3163 return ret;
3164 }
3165
3166 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3167 {
3168 struct resv_map *resv = vma_resv_map(vma);
3169
3170 /*
3171 * This new VMA should share its siblings reservation map if present.
3172 * The VMA will only ever have a valid reservation map pointer where
3173 * it is being copied for another still existing VMA. As that VMA
3174 * has a reference to the reservation map it cannot disappear until
3175 * after this open call completes. It is therefore safe to take a
3176 * new reference here without additional locking.
3177 */
3178 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3179 kref_get(&resv->refs);
3180 }
3181
3182 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3183 {
3184 struct hstate *h = hstate_vma(vma);
3185 struct resv_map *resv = vma_resv_map(vma);
3186 struct hugepage_subpool *spool = subpool_vma(vma);
3187 unsigned long reserve, start, end;
3188 long gbl_reserve;
3189
3190 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3191 return;
3192
3193 start = vma_hugecache_offset(h, vma, vma->vm_start);
3194 end = vma_hugecache_offset(h, vma, vma->vm_end);
3195
3196 reserve = (end - start) - region_count(resv, start, end);
3197
3198 kref_put(&resv->refs, resv_map_release);
3199
3200 if (reserve) {
3201 /*
3202 * Decrement reserve counts. The global reserve count may be
3203 * adjusted if the subpool has a minimum size.
3204 */
3205 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3206 hugetlb_acct_memory(h, -gbl_reserve);
3207 }
3208 }
3209
3210 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3211 {
3212 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3213 return -EINVAL;
3214 return 0;
3215 }
3216
3217 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3218 {
3219 struct hstate *hstate = hstate_vma(vma);
3220
3221 return 1UL << huge_page_shift(hstate);
3222 }
3223
3224 /*
3225 * We cannot handle pagefaults against hugetlb pages at all. They cause
3226 * handle_mm_fault() to try to instantiate regular-sized pages in the
3227 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3228 * this far.
3229 */
3230 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3231 {
3232 BUG();
3233 return 0;
3234 }
3235
3236 /*
3237 * When a new function is introduced to vm_operations_struct and added
3238 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3239 * This is because under System V memory model, mappings created via
3240 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3241 * their original vm_ops are overwritten with shm_vm_ops.
3242 */
3243 const struct vm_operations_struct hugetlb_vm_ops = {
3244 .fault = hugetlb_vm_op_fault,
3245 .open = hugetlb_vm_op_open,
3246 .close = hugetlb_vm_op_close,
3247 .split = hugetlb_vm_op_split,
3248 .pagesize = hugetlb_vm_op_pagesize,
3249 };
3250
3251 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3252 int writable)
3253 {
3254 pte_t entry;
3255
3256 if (writable) {
3257 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3258 vma->vm_page_prot)));
3259 } else {
3260 entry = huge_pte_wrprotect(mk_huge_pte(page,
3261 vma->vm_page_prot));
3262 }
3263 entry = pte_mkyoung(entry);
3264 entry = pte_mkhuge(entry);
3265 entry = arch_make_huge_pte(entry, vma, page, writable);
3266
3267 return entry;
3268 }
3269
3270 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3271 unsigned long address, pte_t *ptep)
3272 {
3273 pte_t entry;
3274
3275 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3276 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3277 update_mmu_cache(vma, address, ptep);
3278 }
3279
3280 bool is_hugetlb_entry_migration(pte_t pte)
3281 {
3282 swp_entry_t swp;
3283
3284 if (huge_pte_none(pte) || pte_present(pte))
3285 return false;
3286 swp = pte_to_swp_entry(pte);
3287 if (non_swap_entry(swp) && is_migration_entry(swp))
3288 return true;
3289 else
3290 return false;
3291 }
3292
3293 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3294 {
3295 swp_entry_t swp;
3296
3297 if (huge_pte_none(pte) || pte_present(pte))
3298 return 0;
3299 swp = pte_to_swp_entry(pte);
3300 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3301 return 1;
3302 else
3303 return 0;
3304 }
3305
3306 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3307 struct vm_area_struct *vma)
3308 {
3309 pte_t *src_pte, *dst_pte, entry, dst_entry;
3310 struct page *ptepage;
3311 unsigned long addr;
3312 int cow;
3313 struct hstate *h = hstate_vma(vma);
3314 unsigned long sz = huge_page_size(h);
3315 struct mmu_notifier_range range;
3316 int ret = 0;
3317
3318 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3319
3320 if (cow) {
3321 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3322 vma->vm_start,
3323 vma->vm_end);
3324 mmu_notifier_invalidate_range_start(&range);
3325 }
3326
3327 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3328 spinlock_t *src_ptl, *dst_ptl;
3329 src_pte = huge_pte_offset(src, addr, sz);
3330 if (!src_pte)
3331 continue;
3332 dst_pte = huge_pte_alloc(dst, addr, sz);
3333 if (!dst_pte) {
3334 ret = -ENOMEM;
3335 break;
3336 }
3337
3338 /*
3339 * If the pagetables are shared don't copy or take references.
3340 * dst_pte == src_pte is the common case of src/dest sharing.
3341 *
3342 * However, src could have 'unshared' and dst shares with
3343 * another vma. If dst_pte !none, this implies sharing.
3344 * Check here before taking page table lock, and once again
3345 * after taking the lock below.
3346 */
3347 dst_entry = huge_ptep_get(dst_pte);
3348 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3349 continue;
3350
3351 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3352 src_ptl = huge_pte_lockptr(h, src, src_pte);
3353 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3354 entry = huge_ptep_get(src_pte);
3355 dst_entry = huge_ptep_get(dst_pte);
3356 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3357 /*
3358 * Skip if src entry none. Also, skip in the
3359 * unlikely case dst entry !none as this implies
3360 * sharing with another vma.
3361 */
3362 ;
3363 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3364 is_hugetlb_entry_hwpoisoned(entry))) {
3365 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3366
3367 if (is_write_migration_entry(swp_entry) && cow) {
3368 /*
3369 * COW mappings require pages in both
3370 * parent and child to be set to read.
3371 */
3372 make_migration_entry_read(&swp_entry);
3373 entry = swp_entry_to_pte(swp_entry);
3374 set_huge_swap_pte_at(src, addr, src_pte,
3375 entry, sz);
3376 }
3377 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3378 } else {
3379 if (cow) {
3380 /*
3381 * No need to notify as we are downgrading page
3382 * table protection not changing it to point
3383 * to a new page.
3384 *
3385 * See Documentation/vm/mmu_notifier.rst
3386 */
3387 huge_ptep_set_wrprotect(src, addr, src_pte);
3388 }
3389 entry = huge_ptep_get(src_pte);
3390 ptepage = pte_page(entry);
3391 get_page(ptepage);
3392 page_dup_rmap(ptepage, true);
3393 set_huge_pte_at(dst, addr, dst_pte, entry);
3394 hugetlb_count_add(pages_per_huge_page(h), dst);
3395 }
3396 spin_unlock(src_ptl);
3397 spin_unlock(dst_ptl);
3398 }
3399
3400 if (cow)
3401 mmu_notifier_invalidate_range_end(&range);
3402
3403 return ret;
3404 }
3405
3406 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3407 unsigned long start, unsigned long end,
3408 struct page *ref_page)
3409 {
3410 struct mm_struct *mm = vma->vm_mm;
3411 unsigned long address;
3412 pte_t *ptep;
3413 pte_t pte;
3414 spinlock_t *ptl;
3415 struct page *page;
3416 struct hstate *h = hstate_vma(vma);
3417 unsigned long sz = huge_page_size(h);
3418 struct mmu_notifier_range range;
3419
3420 WARN_ON(!is_vm_hugetlb_page(vma));
3421 BUG_ON(start & ~huge_page_mask(h));
3422 BUG_ON(end & ~huge_page_mask(h));
3423
3424 /*
3425 * This is a hugetlb vma, all the pte entries should point
3426 * to huge page.
3427 */
3428 tlb_change_page_size(tlb, sz);
3429 tlb_start_vma(tlb, vma);
3430
3431 /*
3432 * If sharing possible, alert mmu notifiers of worst case.
3433 */
3434 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3435 end);
3436 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3437 mmu_notifier_invalidate_range_start(&range);
3438 address = start;
3439 for (; address < end; address += sz) {
3440 ptep = huge_pte_offset(mm, address, sz);
3441 if (!ptep)
3442 continue;
3443
3444 ptl = huge_pte_lock(h, mm, ptep);
3445 if (huge_pmd_unshare(mm, &address, ptep)) {
3446 spin_unlock(ptl);
3447 /*
3448 * We just unmapped a page of PMDs by clearing a PUD.
3449 * The caller's TLB flush range should cover this area.
3450 */
3451 continue;
3452 }
3453
3454 pte = huge_ptep_get(ptep);
3455 if (huge_pte_none(pte)) {
3456 spin_unlock(ptl);
3457 continue;
3458 }
3459
3460 /*
3461 * Migrating hugepage or HWPoisoned hugepage is already
3462 * unmapped and its refcount is dropped, so just clear pte here.
3463 */
3464 if (unlikely(!pte_present(pte))) {
3465 huge_pte_clear(mm, address, ptep, sz);
3466 spin_unlock(ptl);
3467 continue;
3468 }
3469
3470 page = pte_page(pte);
3471 /*
3472 * If a reference page is supplied, it is because a specific
3473 * page is being unmapped, not a range. Ensure the page we
3474 * are about to unmap is the actual page of interest.
3475 */
3476 if (ref_page) {
3477 if (page != ref_page) {
3478 spin_unlock(ptl);
3479 continue;
3480 }
3481 /*
3482 * Mark the VMA as having unmapped its page so that
3483 * future faults in this VMA will fail rather than
3484 * looking like data was lost
3485 */
3486 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3487 }
3488
3489 pte = huge_ptep_get_and_clear(mm, address, ptep);
3490 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3491 if (huge_pte_dirty(pte))
3492 set_page_dirty(page);
3493
3494 hugetlb_count_sub(pages_per_huge_page(h), mm);
3495 page_remove_rmap(page, true);
3496
3497 spin_unlock(ptl);
3498 tlb_remove_page_size(tlb, page, huge_page_size(h));
3499 /*
3500 * Bail out after unmapping reference page if supplied
3501 */
3502 if (ref_page)
3503 break;
3504 }
3505 mmu_notifier_invalidate_range_end(&range);
3506 tlb_end_vma(tlb, vma);
3507 }
3508
3509 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3510 struct vm_area_struct *vma, unsigned long start,
3511 unsigned long end, struct page *ref_page)
3512 {
3513 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3514
3515 /*
3516 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3517 * test will fail on a vma being torn down, and not grab a page table
3518 * on its way out. We're lucky that the flag has such an appropriate
3519 * name, and can in fact be safely cleared here. We could clear it
3520 * before the __unmap_hugepage_range above, but all that's necessary
3521 * is to clear it before releasing the i_mmap_rwsem. This works
3522 * because in the context this is called, the VMA is about to be
3523 * destroyed and the i_mmap_rwsem is held.
3524 */
3525 vma->vm_flags &= ~VM_MAYSHARE;
3526 }
3527
3528 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3529 unsigned long end, struct page *ref_page)
3530 {
3531 struct mm_struct *mm;
3532 struct mmu_gather tlb;
3533 unsigned long tlb_start = start;
3534 unsigned long tlb_end = end;
3535
3536 /*
3537 * If shared PMDs were possibly used within this vma range, adjust
3538 * start/end for worst case tlb flushing.
3539 * Note that we can not be sure if PMDs are shared until we try to
3540 * unmap pages. However, we want to make sure TLB flushing covers
3541 * the largest possible range.
3542 */
3543 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3544
3545 mm = vma->vm_mm;
3546
3547 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3548 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3549 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3550 }
3551
3552 /*
3553 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3554 * mappping it owns the reserve page for. The intention is to unmap the page
3555 * from other VMAs and let the children be SIGKILLed if they are faulting the
3556 * same region.
3557 */
3558 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3559 struct page *page, unsigned long address)
3560 {
3561 struct hstate *h = hstate_vma(vma);
3562 struct vm_area_struct *iter_vma;
3563 struct address_space *mapping;
3564 pgoff_t pgoff;
3565
3566 /*
3567 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3568 * from page cache lookup which is in HPAGE_SIZE units.
3569 */
3570 address = address & huge_page_mask(h);
3571 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3572 vma->vm_pgoff;
3573 mapping = vma->vm_file->f_mapping;
3574
3575 /*
3576 * Take the mapping lock for the duration of the table walk. As
3577 * this mapping should be shared between all the VMAs,
3578 * __unmap_hugepage_range() is called as the lock is already held
3579 */
3580 i_mmap_lock_write(mapping);
3581 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3582 /* Do not unmap the current VMA */
3583 if (iter_vma == vma)
3584 continue;
3585
3586 /*
3587 * Shared VMAs have their own reserves and do not affect
3588 * MAP_PRIVATE accounting but it is possible that a shared
3589 * VMA is using the same page so check and skip such VMAs.
3590 */
3591 if (iter_vma->vm_flags & VM_MAYSHARE)
3592 continue;
3593
3594 /*
3595 * Unmap the page from other VMAs without their own reserves.
3596 * They get marked to be SIGKILLed if they fault in these
3597 * areas. This is because a future no-page fault on this VMA
3598 * could insert a zeroed page instead of the data existing
3599 * from the time of fork. This would look like data corruption
3600 */
3601 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3602 unmap_hugepage_range(iter_vma, address,
3603 address + huge_page_size(h), page);
3604 }
3605 i_mmap_unlock_write(mapping);
3606 }
3607
3608 /*
3609 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3610 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3611 * cannot race with other handlers or page migration.
3612 * Keep the pte_same checks anyway to make transition from the mutex easier.
3613 */
3614 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3615 unsigned long address, pte_t *ptep,
3616 struct page *pagecache_page, spinlock_t *ptl)
3617 {
3618 pte_t pte;
3619 struct hstate *h = hstate_vma(vma);
3620 struct page *old_page, *new_page;
3621 int outside_reserve = 0;
3622 vm_fault_t ret = 0;
3623 unsigned long haddr = address & huge_page_mask(h);
3624 struct mmu_notifier_range range;
3625
3626 pte = huge_ptep_get(ptep);
3627 old_page = pte_page(pte);
3628
3629 retry_avoidcopy:
3630 /* If no-one else is actually using this page, avoid the copy
3631 * and just make the page writable */
3632 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3633 page_move_anon_rmap(old_page, vma);
3634 set_huge_ptep_writable(vma, haddr, ptep);
3635 return 0;
3636 }
3637
3638 /*
3639 * If the process that created a MAP_PRIVATE mapping is about to
3640 * perform a COW due to a shared page count, attempt to satisfy
3641 * the allocation without using the existing reserves. The pagecache
3642 * page is used to determine if the reserve at this address was
3643 * consumed or not. If reserves were used, a partial faulted mapping
3644 * at the time of fork() could consume its reserves on COW instead
3645 * of the full address range.
3646 */
3647 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3648 old_page != pagecache_page)
3649 outside_reserve = 1;
3650
3651 get_page(old_page);
3652
3653 /*
3654 * Drop page table lock as buddy allocator may be called. It will
3655 * be acquired again before returning to the caller, as expected.
3656 */
3657 spin_unlock(ptl);
3658 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3659
3660 if (IS_ERR(new_page)) {
3661 /*
3662 * If a process owning a MAP_PRIVATE mapping fails to COW,
3663 * it is due to references held by a child and an insufficient
3664 * huge page pool. To guarantee the original mappers
3665 * reliability, unmap the page from child processes. The child
3666 * may get SIGKILLed if it later faults.
3667 */
3668 if (outside_reserve) {
3669 put_page(old_page);
3670 BUG_ON(huge_pte_none(pte));
3671 unmap_ref_private(mm, vma, old_page, haddr);
3672 BUG_ON(huge_pte_none(pte));
3673 spin_lock(ptl);
3674 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3675 if (likely(ptep &&
3676 pte_same(huge_ptep_get(ptep), pte)))
3677 goto retry_avoidcopy;
3678 /*
3679 * race occurs while re-acquiring page table
3680 * lock, and our job is done.
3681 */
3682 return 0;
3683 }
3684
3685 ret = vmf_error(PTR_ERR(new_page));
3686 goto out_release_old;
3687 }
3688
3689 /*
3690 * When the original hugepage is shared one, it does not have
3691 * anon_vma prepared.
3692 */
3693 if (unlikely(anon_vma_prepare(vma))) {
3694 ret = VM_FAULT_OOM;
3695 goto out_release_all;
3696 }
3697
3698 copy_user_huge_page(new_page, old_page, address, vma,
3699 pages_per_huge_page(h));
3700 __SetPageUptodate(new_page);
3701
3702 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3703 haddr + huge_page_size(h));
3704 mmu_notifier_invalidate_range_start(&range);
3705
3706 /*
3707 * Retake the page table lock to check for racing updates
3708 * before the page tables are altered
3709 */
3710 spin_lock(ptl);
3711 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3712 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3713 ClearPagePrivate(new_page);
3714
3715 /* Break COW */
3716 huge_ptep_clear_flush(vma, haddr, ptep);
3717 mmu_notifier_invalidate_range(mm, range.start, range.end);
3718 set_huge_pte_at(mm, haddr, ptep,
3719 make_huge_pte(vma, new_page, 1));
3720 page_remove_rmap(old_page, true);
3721 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3722 set_page_huge_active(new_page);
3723 /* Make the old page be freed below */
3724 new_page = old_page;
3725 }
3726 spin_unlock(ptl);
3727 mmu_notifier_invalidate_range_end(&range);
3728 out_release_all:
3729 restore_reserve_on_error(h, vma, haddr, new_page);
3730 put_page(new_page);
3731 out_release_old:
3732 put_page(old_page);
3733
3734 spin_lock(ptl); /* Caller expects lock to be held */
3735 return ret;
3736 }
3737
3738 /* Return the pagecache page at a given address within a VMA */
3739 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3740 struct vm_area_struct *vma, unsigned long address)
3741 {
3742 struct address_space *mapping;
3743 pgoff_t idx;
3744
3745 mapping = vma->vm_file->f_mapping;
3746 idx = vma_hugecache_offset(h, vma, address);
3747
3748 return find_lock_page(mapping, idx);
3749 }
3750
3751 /*
3752 * Return whether there is a pagecache page to back given address within VMA.
3753 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3754 */
3755 static bool hugetlbfs_pagecache_present(struct hstate *h,
3756 struct vm_area_struct *vma, unsigned long address)
3757 {
3758 struct address_space *mapping;
3759 pgoff_t idx;
3760 struct page *page;
3761
3762 mapping = vma->vm_file->f_mapping;
3763 idx = vma_hugecache_offset(h, vma, address);
3764
3765 page = find_get_page(mapping, idx);
3766 if (page)
3767 put_page(page);
3768 return page != NULL;
3769 }
3770
3771 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3772 pgoff_t idx)
3773 {
3774 struct inode *inode = mapping->host;
3775 struct hstate *h = hstate_inode(inode);
3776 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3777
3778 if (err)
3779 return err;
3780 ClearPagePrivate(page);
3781
3782 /*
3783 * set page dirty so that it will not be removed from cache/file
3784 * by non-hugetlbfs specific code paths.
3785 */
3786 set_page_dirty(page);
3787
3788 spin_lock(&inode->i_lock);
3789 inode->i_blocks += blocks_per_huge_page(h);
3790 spin_unlock(&inode->i_lock);
3791 return 0;
3792 }
3793
3794 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3795 struct vm_area_struct *vma,
3796 struct address_space *mapping, pgoff_t idx,
3797 unsigned long address, pte_t *ptep, unsigned int flags)
3798 {
3799 struct hstate *h = hstate_vma(vma);
3800 vm_fault_t ret = VM_FAULT_SIGBUS;
3801 int anon_rmap = 0;
3802 unsigned long size;
3803 struct page *page;
3804 pte_t new_pte;
3805 spinlock_t *ptl;
3806 unsigned long haddr = address & huge_page_mask(h);
3807 bool new_page = false;
3808
3809 /*
3810 * Currently, we are forced to kill the process in the event the
3811 * original mapper has unmapped pages from the child due to a failed
3812 * COW. Warn that such a situation has occurred as it may not be obvious
3813 */
3814 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3815 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3816 current->pid);
3817 return ret;
3818 }
3819
3820 /*
3821 * Use page lock to guard against racing truncation
3822 * before we get page_table_lock.
3823 */
3824 retry:
3825 page = find_lock_page(mapping, idx);
3826 if (!page) {
3827 size = i_size_read(mapping->host) >> huge_page_shift(h);
3828 if (idx >= size)
3829 goto out;
3830
3831 /*
3832 * Check for page in userfault range
3833 */
3834 if (userfaultfd_missing(vma)) {
3835 u32 hash;
3836 struct vm_fault vmf = {
3837 .vma = vma,
3838 .address = haddr,
3839 .flags = flags,
3840 /*
3841 * Hard to debug if it ends up being
3842 * used by a callee that assumes
3843 * something about the other
3844 * uninitialized fields... same as in
3845 * memory.c
3846 */
3847 };
3848
3849 /*
3850 * hugetlb_fault_mutex must be dropped before
3851 * handling userfault. Reacquire after handling
3852 * fault to make calling code simpler.
3853 */
3854 hash = hugetlb_fault_mutex_hash(mapping, idx);
3855 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3856 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3857 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3858 goto out;
3859 }
3860
3861 page = alloc_huge_page(vma, haddr, 0);
3862 if (IS_ERR(page)) {
3863 /*
3864 * Returning error will result in faulting task being
3865 * sent SIGBUS. The hugetlb fault mutex prevents two
3866 * tasks from racing to fault in the same page which
3867 * could result in false unable to allocate errors.
3868 * Page migration does not take the fault mutex, but
3869 * does a clear then write of pte's under page table
3870 * lock. Page fault code could race with migration,
3871 * notice the clear pte and try to allocate a page
3872 * here. Before returning error, get ptl and make
3873 * sure there really is no pte entry.
3874 */
3875 ptl = huge_pte_lock(h, mm, ptep);
3876 if (!huge_pte_none(huge_ptep_get(ptep))) {
3877 ret = 0;
3878 spin_unlock(ptl);
3879 goto out;
3880 }
3881 spin_unlock(ptl);
3882 ret = vmf_error(PTR_ERR(page));
3883 goto out;
3884 }
3885 clear_huge_page(page, address, pages_per_huge_page(h));
3886 __SetPageUptodate(page);
3887 new_page = true;
3888
3889 if (vma->vm_flags & VM_MAYSHARE) {
3890 int err = huge_add_to_page_cache(page, mapping, idx);
3891 if (err) {
3892 put_page(page);
3893 if (err == -EEXIST)
3894 goto retry;
3895 goto out;
3896 }
3897 } else {
3898 lock_page(page);
3899 if (unlikely(anon_vma_prepare(vma))) {
3900 ret = VM_FAULT_OOM;
3901 goto backout_unlocked;
3902 }
3903 anon_rmap = 1;
3904 }
3905 } else {
3906 /*
3907 * If memory error occurs between mmap() and fault, some process
3908 * don't have hwpoisoned swap entry for errored virtual address.
3909 * So we need to block hugepage fault by PG_hwpoison bit check.
3910 */
3911 if (unlikely(PageHWPoison(page))) {
3912 ret = VM_FAULT_HWPOISON |
3913 VM_FAULT_SET_HINDEX(hstate_index(h));
3914 goto backout_unlocked;
3915 }
3916 }
3917
3918 /*
3919 * If we are going to COW a private mapping later, we examine the
3920 * pending reservations for this page now. This will ensure that
3921 * any allocations necessary to record that reservation occur outside
3922 * the spinlock.
3923 */
3924 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3925 if (vma_needs_reservation(h, vma, haddr) < 0) {
3926 ret = VM_FAULT_OOM;
3927 goto backout_unlocked;
3928 }
3929 /* Just decrements count, does not deallocate */
3930 vma_end_reservation(h, vma, haddr);
3931 }
3932
3933 ptl = huge_pte_lock(h, mm, ptep);
3934 size = i_size_read(mapping->host) >> huge_page_shift(h);
3935 if (idx >= size)
3936 goto backout;
3937
3938 ret = 0;
3939 if (!huge_pte_none(huge_ptep_get(ptep)))
3940 goto backout;
3941
3942 if (anon_rmap) {
3943 ClearPagePrivate(page);
3944 hugepage_add_new_anon_rmap(page, vma, haddr);
3945 } else
3946 page_dup_rmap(page, true);
3947 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3948 && (vma->vm_flags & VM_SHARED)));
3949 set_huge_pte_at(mm, haddr, ptep, new_pte);
3950
3951 hugetlb_count_add(pages_per_huge_page(h), mm);
3952 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3953 /* Optimization, do the COW without a second fault */
3954 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3955 }
3956
3957 spin_unlock(ptl);
3958
3959 /*
3960 * Only make newly allocated pages active. Existing pages found
3961 * in the pagecache could be !page_huge_active() if they have been
3962 * isolated for migration.
3963 */
3964 if (new_page)
3965 set_page_huge_active(page);
3966
3967 unlock_page(page);
3968 out:
3969 return ret;
3970
3971 backout:
3972 spin_unlock(ptl);
3973 backout_unlocked:
3974 unlock_page(page);
3975 restore_reserve_on_error(h, vma, haddr, page);
3976 put_page(page);
3977 goto out;
3978 }
3979
3980 #ifdef CONFIG_SMP
3981 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3982 {
3983 unsigned long key[2];
3984 u32 hash;
3985
3986 key[0] = (unsigned long) mapping;
3987 key[1] = idx;
3988
3989 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
3990
3991 return hash & (num_fault_mutexes - 1);
3992 }
3993 #else
3994 /*
3995 * For uniprocesor systems we always use a single mutex, so just
3996 * return 0 and avoid the hashing overhead.
3997 */
3998 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3999 {
4000 return 0;
4001 }
4002 #endif
4003
4004 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4005 unsigned long address, unsigned int flags)
4006 {
4007 pte_t *ptep, entry;
4008 spinlock_t *ptl;
4009 vm_fault_t ret;
4010 u32 hash;
4011 pgoff_t idx;
4012 struct page *page = NULL;
4013 struct page *pagecache_page = NULL;
4014 struct hstate *h = hstate_vma(vma);
4015 struct address_space *mapping;
4016 int need_wait_lock = 0;
4017 unsigned long haddr = address & huge_page_mask(h);
4018
4019 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4020 if (ptep) {
4021 entry = huge_ptep_get(ptep);
4022 if (unlikely(is_hugetlb_entry_migration(entry))) {
4023 migration_entry_wait_huge(vma, mm, ptep);
4024 return 0;
4025 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4026 return VM_FAULT_HWPOISON_LARGE |
4027 VM_FAULT_SET_HINDEX(hstate_index(h));
4028 } else {
4029 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4030 if (!ptep)
4031 return VM_FAULT_OOM;
4032 }
4033
4034 mapping = vma->vm_file->f_mapping;
4035 idx = vma_hugecache_offset(h, vma, haddr);
4036
4037 /*
4038 * Serialize hugepage allocation and instantiation, so that we don't
4039 * get spurious allocation failures if two CPUs race to instantiate
4040 * the same page in the page cache.
4041 */
4042 hash = hugetlb_fault_mutex_hash(mapping, idx);
4043 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4044
4045 entry = huge_ptep_get(ptep);
4046 if (huge_pte_none(entry)) {
4047 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4048 goto out_mutex;
4049 }
4050
4051 ret = 0;
4052
4053 /*
4054 * entry could be a migration/hwpoison entry at this point, so this
4055 * check prevents the kernel from going below assuming that we have
4056 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4057 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4058 * handle it.
4059 */
4060 if (!pte_present(entry))
4061 goto out_mutex;
4062
4063 /*
4064 * If we are going to COW the mapping later, we examine the pending
4065 * reservations for this page now. This will ensure that any
4066 * allocations necessary to record that reservation occur outside the
4067 * spinlock. For private mappings, we also lookup the pagecache
4068 * page now as it is used to determine if a reservation has been
4069 * consumed.
4070 */
4071 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4072 if (vma_needs_reservation(h, vma, haddr) < 0) {
4073 ret = VM_FAULT_OOM;
4074 goto out_mutex;
4075 }
4076 /* Just decrements count, does not deallocate */
4077 vma_end_reservation(h, vma, haddr);
4078
4079 if (!(vma->vm_flags & VM_MAYSHARE))
4080 pagecache_page = hugetlbfs_pagecache_page(h,
4081 vma, haddr);
4082 }
4083
4084 ptl = huge_pte_lock(h, mm, ptep);
4085
4086 /* Check for a racing update before calling hugetlb_cow */
4087 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4088 goto out_ptl;
4089
4090 /*
4091 * hugetlb_cow() requires page locks of pte_page(entry) and
4092 * pagecache_page, so here we need take the former one
4093 * when page != pagecache_page or !pagecache_page.
4094 */
4095 page = pte_page(entry);
4096 if (page != pagecache_page)
4097 if (!trylock_page(page)) {
4098 need_wait_lock = 1;
4099 goto out_ptl;
4100 }
4101
4102 get_page(page);
4103
4104 if (flags & FAULT_FLAG_WRITE) {
4105 if (!huge_pte_write(entry)) {
4106 ret = hugetlb_cow(mm, vma, address, ptep,
4107 pagecache_page, ptl);
4108 goto out_put_page;
4109 }
4110 entry = huge_pte_mkdirty(entry);
4111 }
4112 entry = pte_mkyoung(entry);
4113 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4114 flags & FAULT_FLAG_WRITE))
4115 update_mmu_cache(vma, haddr, ptep);
4116 out_put_page:
4117 if (page != pagecache_page)
4118 unlock_page(page);
4119 put_page(page);
4120 out_ptl:
4121 spin_unlock(ptl);
4122
4123 if (pagecache_page) {
4124 unlock_page(pagecache_page);
4125 put_page(pagecache_page);
4126 }
4127 out_mutex:
4128 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4129 /*
4130 * Generally it's safe to hold refcount during waiting page lock. But
4131 * here we just wait to defer the next page fault to avoid busy loop and
4132 * the page is not used after unlocked before returning from the current
4133 * page fault. So we are safe from accessing freed page, even if we wait
4134 * here without taking refcount.
4135 */
4136 if (need_wait_lock)
4137 wait_on_page_locked(page);
4138 return ret;
4139 }
4140
4141 /*
4142 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4143 * modifications for huge pages.
4144 */
4145 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4146 pte_t *dst_pte,
4147 struct vm_area_struct *dst_vma,
4148 unsigned long dst_addr,
4149 unsigned long src_addr,
4150 struct page **pagep)
4151 {
4152 struct address_space *mapping;
4153 pgoff_t idx;
4154 unsigned long size;
4155 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4156 struct hstate *h = hstate_vma(dst_vma);
4157 pte_t _dst_pte;
4158 spinlock_t *ptl;
4159 int ret;
4160 struct page *page;
4161
4162 if (!*pagep) {
4163 ret = -ENOMEM;
4164 page = alloc_huge_page(dst_vma, dst_addr, 0);
4165 if (IS_ERR(page))
4166 goto out;
4167
4168 ret = copy_huge_page_from_user(page,
4169 (const void __user *) src_addr,
4170 pages_per_huge_page(h), false);
4171
4172 /* fallback to copy_from_user outside mmap_sem */
4173 if (unlikely(ret)) {
4174 ret = -ENOENT;
4175 *pagep = page;
4176 /* don't free the page */
4177 goto out;
4178 }
4179 } else {
4180 page = *pagep;
4181 *pagep = NULL;
4182 }
4183
4184 /*
4185 * The memory barrier inside __SetPageUptodate makes sure that
4186 * preceding stores to the page contents become visible before
4187 * the set_pte_at() write.
4188 */
4189 __SetPageUptodate(page);
4190
4191 mapping = dst_vma->vm_file->f_mapping;
4192 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4193
4194 /*
4195 * If shared, add to page cache
4196 */
4197 if (vm_shared) {
4198 size = i_size_read(mapping->host) >> huge_page_shift(h);
4199 ret = -EFAULT;
4200 if (idx >= size)
4201 goto out_release_nounlock;
4202
4203 /*
4204 * Serialization between remove_inode_hugepages() and
4205 * huge_add_to_page_cache() below happens through the
4206 * hugetlb_fault_mutex_table that here must be hold by
4207 * the caller.
4208 */
4209 ret = huge_add_to_page_cache(page, mapping, idx);
4210 if (ret)
4211 goto out_release_nounlock;
4212 }
4213
4214 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4215 spin_lock(ptl);
4216
4217 /*
4218 * Recheck the i_size after holding PT lock to make sure not
4219 * to leave any page mapped (as page_mapped()) beyond the end
4220 * of the i_size (remove_inode_hugepages() is strict about
4221 * enforcing that). If we bail out here, we'll also leave a
4222 * page in the radix tree in the vm_shared case beyond the end
4223 * of the i_size, but remove_inode_hugepages() will take care
4224 * of it as soon as we drop the hugetlb_fault_mutex_table.
4225 */
4226 size = i_size_read(mapping->host) >> huge_page_shift(h);
4227 ret = -EFAULT;
4228 if (idx >= size)
4229 goto out_release_unlock;
4230
4231 ret = -EEXIST;
4232 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4233 goto out_release_unlock;
4234
4235 if (vm_shared) {
4236 page_dup_rmap(page, true);
4237 } else {
4238 ClearPagePrivate(page);
4239 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4240 }
4241
4242 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4243 if (dst_vma->vm_flags & VM_WRITE)
4244 _dst_pte = huge_pte_mkdirty(_dst_pte);
4245 _dst_pte = pte_mkyoung(_dst_pte);
4246
4247 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4248
4249 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4250 dst_vma->vm_flags & VM_WRITE);
4251 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4252
4253 /* No need to invalidate - it was non-present before */
4254 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4255
4256 spin_unlock(ptl);
4257 set_page_huge_active(page);
4258 if (vm_shared)
4259 unlock_page(page);
4260 ret = 0;
4261 out:
4262 return ret;
4263 out_release_unlock:
4264 spin_unlock(ptl);
4265 if (vm_shared)
4266 unlock_page(page);
4267 out_release_nounlock:
4268 put_page(page);
4269 goto out;
4270 }
4271
4272 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4273 struct page **pages, struct vm_area_struct **vmas,
4274 unsigned long *position, unsigned long *nr_pages,
4275 long i, unsigned int flags, int *locked)
4276 {
4277 unsigned long pfn_offset;
4278 unsigned long vaddr = *position;
4279 unsigned long remainder = *nr_pages;
4280 struct hstate *h = hstate_vma(vma);
4281 int err = -EFAULT;
4282
4283 while (vaddr < vma->vm_end && remainder) {
4284 pte_t *pte;
4285 spinlock_t *ptl = NULL;
4286 int absent;
4287 struct page *page;
4288
4289 /*
4290 * If we have a pending SIGKILL, don't keep faulting pages and
4291 * potentially allocating memory.
4292 */
4293 if (fatal_signal_pending(current)) {
4294 remainder = 0;
4295 break;
4296 }
4297
4298 /*
4299 * Some archs (sparc64, sh*) have multiple pte_ts to
4300 * each hugepage. We have to make sure we get the
4301 * first, for the page indexing below to work.
4302 *
4303 * Note that page table lock is not held when pte is null.
4304 */
4305 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4306 huge_page_size(h));
4307 if (pte)
4308 ptl = huge_pte_lock(h, mm, pte);
4309 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4310
4311 /*
4312 * When coredumping, it suits get_dump_page if we just return
4313 * an error where there's an empty slot with no huge pagecache
4314 * to back it. This way, we avoid allocating a hugepage, and
4315 * the sparse dumpfile avoids allocating disk blocks, but its
4316 * huge holes still show up with zeroes where they need to be.
4317 */
4318 if (absent && (flags & FOLL_DUMP) &&
4319 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4320 if (pte)
4321 spin_unlock(ptl);
4322 remainder = 0;
4323 break;
4324 }
4325
4326 /*
4327 * We need call hugetlb_fault for both hugepages under migration
4328 * (in which case hugetlb_fault waits for the migration,) and
4329 * hwpoisoned hugepages (in which case we need to prevent the
4330 * caller from accessing to them.) In order to do this, we use
4331 * here is_swap_pte instead of is_hugetlb_entry_migration and
4332 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4333 * both cases, and because we can't follow correct pages
4334 * directly from any kind of swap entries.
4335 */
4336 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4337 ((flags & FOLL_WRITE) &&
4338 !huge_pte_write(huge_ptep_get(pte)))) {
4339 vm_fault_t ret;
4340 unsigned int fault_flags = 0;
4341
4342 if (pte)
4343 spin_unlock(ptl);
4344 if (flags & FOLL_WRITE)
4345 fault_flags |= FAULT_FLAG_WRITE;
4346 if (locked)
4347 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4348 if (flags & FOLL_NOWAIT)
4349 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4350 FAULT_FLAG_RETRY_NOWAIT;
4351 if (flags & FOLL_TRIED) {
4352 VM_WARN_ON_ONCE(fault_flags &
4353 FAULT_FLAG_ALLOW_RETRY);
4354 fault_flags |= FAULT_FLAG_TRIED;
4355 }
4356 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4357 if (ret & VM_FAULT_ERROR) {
4358 err = vm_fault_to_errno(ret, flags);
4359 remainder = 0;
4360 break;
4361 }
4362 if (ret & VM_FAULT_RETRY) {
4363 if (locked &&
4364 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4365 *locked = 0;
4366 *nr_pages = 0;
4367 /*
4368 * VM_FAULT_RETRY must not return an
4369 * error, it will return zero
4370 * instead.
4371 *
4372 * No need to update "position" as the
4373 * caller will not check it after
4374 * *nr_pages is set to 0.
4375 */
4376 return i;
4377 }
4378 continue;
4379 }
4380
4381 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4382 page = pte_page(huge_ptep_get(pte));
4383
4384 /*
4385 * If subpage information not requested, update counters
4386 * and skip the same_page loop below.
4387 */
4388 if (!pages && !vmas && !pfn_offset &&
4389 (vaddr + huge_page_size(h) < vma->vm_end) &&
4390 (remainder >= pages_per_huge_page(h))) {
4391 vaddr += huge_page_size(h);
4392 remainder -= pages_per_huge_page(h);
4393 i += pages_per_huge_page(h);
4394 spin_unlock(ptl);
4395 continue;
4396 }
4397
4398 same_page:
4399 if (pages) {
4400 pages[i] = mem_map_offset(page, pfn_offset);
4401 /*
4402 * try_grab_page() should always succeed here, because:
4403 * a) we hold the ptl lock, and b) we've just checked
4404 * that the huge page is present in the page tables. If
4405 * the huge page is present, then the tail pages must
4406 * also be present. The ptl prevents the head page and
4407 * tail pages from being rearranged in any way. So this
4408 * page must be available at this point, unless the page
4409 * refcount overflowed:
4410 */
4411 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4412 spin_unlock(ptl);
4413 remainder = 0;
4414 err = -ENOMEM;
4415 break;
4416 }
4417 }
4418
4419 if (vmas)
4420 vmas[i] = vma;
4421
4422 vaddr += PAGE_SIZE;
4423 ++pfn_offset;
4424 --remainder;
4425 ++i;
4426 if (vaddr < vma->vm_end && remainder &&
4427 pfn_offset < pages_per_huge_page(h)) {
4428 /*
4429 * We use pfn_offset to avoid touching the pageframes
4430 * of this compound page.
4431 */
4432 goto same_page;
4433 }
4434 spin_unlock(ptl);
4435 }
4436 *nr_pages = remainder;
4437 /*
4438 * setting position is actually required only if remainder is
4439 * not zero but it's faster not to add a "if (remainder)"
4440 * branch.
4441 */
4442 *position = vaddr;
4443
4444 return i ? i : err;
4445 }
4446
4447 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4448 /*
4449 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4450 * implement this.
4451 */
4452 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4453 #endif
4454
4455 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4456 unsigned long address, unsigned long end, pgprot_t newprot)
4457 {
4458 struct mm_struct *mm = vma->vm_mm;
4459 unsigned long start = address;
4460 pte_t *ptep;
4461 pte_t pte;
4462 struct hstate *h = hstate_vma(vma);
4463 unsigned long pages = 0;
4464 bool shared_pmd = false;
4465 struct mmu_notifier_range range;
4466
4467 /*
4468 * In the case of shared PMDs, the area to flush could be beyond
4469 * start/end. Set range.start/range.end to cover the maximum possible
4470 * range if PMD sharing is possible.
4471 */
4472 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4473 0, vma, mm, start, end);
4474 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4475
4476 BUG_ON(address >= end);
4477 flush_cache_range(vma, range.start, range.end);
4478
4479 mmu_notifier_invalidate_range_start(&range);
4480 i_mmap_lock_write(vma->vm_file->f_mapping);
4481 for (; address < end; address += huge_page_size(h)) {
4482 spinlock_t *ptl;
4483 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4484 if (!ptep)
4485 continue;
4486 ptl = huge_pte_lock(h, mm, ptep);
4487 if (huge_pmd_unshare(mm, &address, ptep)) {
4488 pages++;
4489 spin_unlock(ptl);
4490 shared_pmd = true;
4491 continue;
4492 }
4493 pte = huge_ptep_get(ptep);
4494 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4495 spin_unlock(ptl);
4496 continue;
4497 }
4498 if (unlikely(is_hugetlb_entry_migration(pte))) {
4499 swp_entry_t entry = pte_to_swp_entry(pte);
4500
4501 if (is_write_migration_entry(entry)) {
4502 pte_t newpte;
4503
4504 make_migration_entry_read(&entry);
4505 newpte = swp_entry_to_pte(entry);
4506 set_huge_swap_pte_at(mm, address, ptep,
4507 newpte, huge_page_size(h));
4508 pages++;
4509 }
4510 spin_unlock(ptl);
4511 continue;
4512 }
4513 if (!huge_pte_none(pte)) {
4514 pte_t old_pte;
4515
4516 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4517 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4518 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4519 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4520 pages++;
4521 }
4522 spin_unlock(ptl);
4523 }
4524 /*
4525 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4526 * may have cleared our pud entry and done put_page on the page table:
4527 * once we release i_mmap_rwsem, another task can do the final put_page
4528 * and that page table be reused and filled with junk. If we actually
4529 * did unshare a page of pmds, flush the range corresponding to the pud.
4530 */
4531 if (shared_pmd)
4532 flush_hugetlb_tlb_range(vma, range.start, range.end);
4533 else
4534 flush_hugetlb_tlb_range(vma, start, end);
4535 /*
4536 * No need to call mmu_notifier_invalidate_range() we are downgrading
4537 * page table protection not changing it to point to a new page.
4538 *
4539 * See Documentation/vm/mmu_notifier.rst
4540 */
4541 i_mmap_unlock_write(vma->vm_file->f_mapping);
4542 mmu_notifier_invalidate_range_end(&range);
4543
4544 return pages << h->order;
4545 }
4546
4547 int hugetlb_reserve_pages(struct inode *inode,
4548 long from, long to,
4549 struct vm_area_struct *vma,
4550 vm_flags_t vm_flags)
4551 {
4552 long ret, chg;
4553 struct hstate *h = hstate_inode(inode);
4554 struct hugepage_subpool *spool = subpool_inode(inode);
4555 struct resv_map *resv_map;
4556 long gbl_reserve;
4557
4558 /* This should never happen */
4559 if (from > to) {
4560 VM_WARN(1, "%s called with a negative range\n", __func__);
4561 return -EINVAL;
4562 }
4563
4564 /*
4565 * Only apply hugepage reservation if asked. At fault time, an
4566 * attempt will be made for VM_NORESERVE to allocate a page
4567 * without using reserves
4568 */
4569 if (vm_flags & VM_NORESERVE)
4570 return 0;
4571
4572 /*
4573 * Shared mappings base their reservation on the number of pages that
4574 * are already allocated on behalf of the file. Private mappings need
4575 * to reserve the full area even if read-only as mprotect() may be
4576 * called to make the mapping read-write. Assume !vma is a shm mapping
4577 */
4578 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4579 /*
4580 * resv_map can not be NULL as hugetlb_reserve_pages is only
4581 * called for inodes for which resv_maps were created (see
4582 * hugetlbfs_get_inode).
4583 */
4584 resv_map = inode_resv_map(inode);
4585
4586 chg = region_chg(resv_map, from, to);
4587
4588 } else {
4589 resv_map = resv_map_alloc();
4590 if (!resv_map)
4591 return -ENOMEM;
4592
4593 chg = to - from;
4594
4595 set_vma_resv_map(vma, resv_map);
4596 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4597 }
4598
4599 if (chg < 0) {
4600 ret = chg;
4601 goto out_err;
4602 }
4603
4604 /*
4605 * There must be enough pages in the subpool for the mapping. If
4606 * the subpool has a minimum size, there may be some global
4607 * reservations already in place (gbl_reserve).
4608 */
4609 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4610 if (gbl_reserve < 0) {
4611 ret = -ENOSPC;
4612 goto out_err;
4613 }
4614
4615 /*
4616 * Check enough hugepages are available for the reservation.
4617 * Hand the pages back to the subpool if there are not
4618 */
4619 ret = hugetlb_acct_memory(h, gbl_reserve);
4620 if (ret < 0) {
4621 /* put back original number of pages, chg */
4622 (void)hugepage_subpool_put_pages(spool, chg);
4623 goto out_err;
4624 }
4625
4626 /*
4627 * Account for the reservations made. Shared mappings record regions
4628 * that have reservations as they are shared by multiple VMAs.
4629 * When the last VMA disappears, the region map says how much
4630 * the reservation was and the page cache tells how much of
4631 * the reservation was consumed. Private mappings are per-VMA and
4632 * only the consumed reservations are tracked. When the VMA
4633 * disappears, the original reservation is the VMA size and the
4634 * consumed reservations are stored in the map. Hence, nothing
4635 * else has to be done for private mappings here
4636 */
4637 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4638 long add = region_add(resv_map, from, to);
4639
4640 if (unlikely(chg > add)) {
4641 /*
4642 * pages in this range were added to the reserve
4643 * map between region_chg and region_add. This
4644 * indicates a race with alloc_huge_page. Adjust
4645 * the subpool and reserve counts modified above
4646 * based on the difference.
4647 */
4648 long rsv_adjust;
4649
4650 rsv_adjust = hugepage_subpool_put_pages(spool,
4651 chg - add);
4652 hugetlb_acct_memory(h, -rsv_adjust);
4653 }
4654 }
4655 return 0;
4656 out_err:
4657 if (!vma || vma->vm_flags & VM_MAYSHARE)
4658 /* Don't call region_abort if region_chg failed */
4659 if (chg >= 0)
4660 region_abort(resv_map, from, to);
4661 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4662 kref_put(&resv_map->refs, resv_map_release);
4663 return ret;
4664 }
4665
4666 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4667 long freed)
4668 {
4669 struct hstate *h = hstate_inode(inode);
4670 struct resv_map *resv_map = inode_resv_map(inode);
4671 long chg = 0;
4672 struct hugepage_subpool *spool = subpool_inode(inode);
4673 long gbl_reserve;
4674
4675 /*
4676 * Since this routine can be called in the evict inode path for all
4677 * hugetlbfs inodes, resv_map could be NULL.
4678 */
4679 if (resv_map) {
4680 chg = region_del(resv_map, start, end);
4681 /*
4682 * region_del() can fail in the rare case where a region
4683 * must be split and another region descriptor can not be
4684 * allocated. If end == LONG_MAX, it will not fail.
4685 */
4686 if (chg < 0)
4687 return chg;
4688 }
4689
4690 spin_lock(&inode->i_lock);
4691 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4692 spin_unlock(&inode->i_lock);
4693
4694 /*
4695 * If the subpool has a minimum size, the number of global
4696 * reservations to be released may be adjusted.
4697 */
4698 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4699 hugetlb_acct_memory(h, -gbl_reserve);
4700
4701 return 0;
4702 }
4703
4704 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4705 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4706 struct vm_area_struct *vma,
4707 unsigned long addr, pgoff_t idx)
4708 {
4709 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4710 svma->vm_start;
4711 unsigned long sbase = saddr & PUD_MASK;
4712 unsigned long s_end = sbase + PUD_SIZE;
4713
4714 /* Allow segments to share if only one is marked locked */
4715 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4716 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4717
4718 /*
4719 * match the virtual addresses, permission and the alignment of the
4720 * page table page.
4721 */
4722 if (pmd_index(addr) != pmd_index(saddr) ||
4723 vm_flags != svm_flags ||
4724 sbase < svma->vm_start || svma->vm_end < s_end)
4725 return 0;
4726
4727 return saddr;
4728 }
4729
4730 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4731 {
4732 unsigned long base = addr & PUD_MASK;
4733 unsigned long end = base + PUD_SIZE;
4734
4735 /*
4736 * check on proper vm_flags and page table alignment
4737 */
4738 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4739 return true;
4740 return false;
4741 }
4742
4743 /*
4744 * Determine if start,end range within vma could be mapped by shared pmd.
4745 * If yes, adjust start and end to cover range associated with possible
4746 * shared pmd mappings.
4747 */
4748 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4749 unsigned long *start, unsigned long *end)
4750 {
4751 unsigned long check_addr = *start;
4752
4753 if (!(vma->vm_flags & VM_MAYSHARE))
4754 return;
4755
4756 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4757 unsigned long a_start = check_addr & PUD_MASK;
4758 unsigned long a_end = a_start + PUD_SIZE;
4759
4760 /*
4761 * If sharing is possible, adjust start/end if necessary.
4762 */
4763 if (range_in_vma(vma, a_start, a_end)) {
4764 if (a_start < *start)
4765 *start = a_start;
4766 if (a_end > *end)
4767 *end = a_end;
4768 }
4769 }
4770 }
4771
4772 /*
4773 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4774 * and returns the corresponding pte. While this is not necessary for the
4775 * !shared pmd case because we can allocate the pmd later as well, it makes the
4776 * code much cleaner. pmd allocation is essential for the shared case because
4777 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4778 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4779 * bad pmd for sharing.
4780 */
4781 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4782 {
4783 struct vm_area_struct *vma = find_vma(mm, addr);
4784 struct address_space *mapping = vma->vm_file->f_mapping;
4785 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4786 vma->vm_pgoff;
4787 struct vm_area_struct *svma;
4788 unsigned long saddr;
4789 pte_t *spte = NULL;
4790 pte_t *pte;
4791 spinlock_t *ptl;
4792
4793 if (!vma_shareable(vma, addr))
4794 return (pte_t *)pmd_alloc(mm, pud, addr);
4795
4796 i_mmap_lock_read(mapping);
4797 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4798 if (svma == vma)
4799 continue;
4800
4801 saddr = page_table_shareable(svma, vma, addr, idx);
4802 if (saddr) {
4803 spte = huge_pte_offset(svma->vm_mm, saddr,
4804 vma_mmu_pagesize(svma));
4805 if (spte) {
4806 get_page(virt_to_page(spte));
4807 break;
4808 }
4809 }
4810 }
4811
4812 if (!spte)
4813 goto out;
4814
4815 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4816 if (pud_none(*pud)) {
4817 pud_populate(mm, pud,
4818 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4819 mm_inc_nr_pmds(mm);
4820 } else {
4821 put_page(virt_to_page(spte));
4822 }
4823 spin_unlock(ptl);
4824 out:
4825 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4826 i_mmap_unlock_read(mapping);
4827 return pte;
4828 }
4829
4830 /*
4831 * unmap huge page backed by shared pte.
4832 *
4833 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4834 * indicated by page_count > 1, unmap is achieved by clearing pud and
4835 * decrementing the ref count. If count == 1, the pte page is not shared.
4836 *
4837 * called with page table lock held.
4838 *
4839 * returns: 1 successfully unmapped a shared pte page
4840 * 0 the underlying pte page is not shared, or it is the last user
4841 */
4842 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4843 {
4844 pgd_t *pgd = pgd_offset(mm, *addr);
4845 p4d_t *p4d = p4d_offset(pgd, *addr);
4846 pud_t *pud = pud_offset(p4d, *addr);
4847
4848 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4849 if (page_count(virt_to_page(ptep)) == 1)
4850 return 0;
4851
4852 pud_clear(pud);
4853 put_page(virt_to_page(ptep));
4854 mm_dec_nr_pmds(mm);
4855 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4856 return 1;
4857 }
4858 #define want_pmd_share() (1)
4859 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4860 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4861 {
4862 return NULL;
4863 }
4864
4865 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4866 {
4867 return 0;
4868 }
4869
4870 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4871 unsigned long *start, unsigned long *end)
4872 {
4873 }
4874 #define want_pmd_share() (0)
4875 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4876
4877 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4878 pte_t *huge_pte_alloc(struct mm_struct *mm,
4879 unsigned long addr, unsigned long sz)
4880 {
4881 pgd_t *pgd;
4882 p4d_t *p4d;
4883 pud_t *pud;
4884 pte_t *pte = NULL;
4885
4886 pgd = pgd_offset(mm, addr);
4887 p4d = p4d_alloc(mm, pgd, addr);
4888 if (!p4d)
4889 return NULL;
4890 pud = pud_alloc(mm, p4d, addr);
4891 if (pud) {
4892 if (sz == PUD_SIZE) {
4893 pte = (pte_t *)pud;
4894 } else {
4895 BUG_ON(sz != PMD_SIZE);
4896 if (want_pmd_share() && pud_none(*pud))
4897 pte = huge_pmd_share(mm, addr, pud);
4898 else
4899 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4900 }
4901 }
4902 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4903
4904 return pte;
4905 }
4906
4907 /*
4908 * huge_pte_offset() - Walk the page table to resolve the hugepage
4909 * entry at address @addr
4910 *
4911 * Return: Pointer to page table or swap entry (PUD or PMD) for
4912 * address @addr, or NULL if a p*d_none() entry is encountered and the
4913 * size @sz doesn't match the hugepage size at this level of the page
4914 * table.
4915 */
4916 pte_t *huge_pte_offset(struct mm_struct *mm,
4917 unsigned long addr, unsigned long sz)
4918 {
4919 pgd_t *pgd;
4920 p4d_t *p4d;
4921 pud_t *pud;
4922 pmd_t *pmd;
4923
4924 pgd = pgd_offset(mm, addr);
4925 if (!pgd_present(*pgd))
4926 return NULL;
4927 p4d = p4d_offset(pgd, addr);
4928 if (!p4d_present(*p4d))
4929 return NULL;
4930
4931 pud = pud_offset(p4d, addr);
4932 if (sz != PUD_SIZE && pud_none(*pud))
4933 return NULL;
4934 /* hugepage or swap? */
4935 if (pud_huge(*pud) || !pud_present(*pud))
4936 return (pte_t *)pud;
4937
4938 pmd = pmd_offset(pud, addr);
4939 if (sz != PMD_SIZE && pmd_none(*pmd))
4940 return NULL;
4941 /* hugepage or swap? */
4942 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4943 return (pte_t *)pmd;
4944
4945 return NULL;
4946 }
4947
4948 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4949
4950 /*
4951 * These functions are overwritable if your architecture needs its own
4952 * behavior.
4953 */
4954 struct page * __weak
4955 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4956 int write)
4957 {
4958 return ERR_PTR(-EINVAL);
4959 }
4960
4961 struct page * __weak
4962 follow_huge_pd(struct vm_area_struct *vma,
4963 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4964 {
4965 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4966 return NULL;
4967 }
4968
4969 struct page * __weak
4970 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4971 pmd_t *pmd, int flags)
4972 {
4973 struct page *page = NULL;
4974 spinlock_t *ptl;
4975 pte_t pte;
4976
4977 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
4978 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
4979 (FOLL_PIN | FOLL_GET)))
4980 return NULL;
4981
4982 retry:
4983 ptl = pmd_lockptr(mm, pmd);
4984 spin_lock(ptl);
4985 /*
4986 * make sure that the address range covered by this pmd is not
4987 * unmapped from other threads.
4988 */
4989 if (!pmd_huge(*pmd))
4990 goto out;
4991 pte = huge_ptep_get((pte_t *)pmd);
4992 if (pte_present(pte)) {
4993 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4994 /*
4995 * try_grab_page() should always succeed here, because: a) we
4996 * hold the pmd (ptl) lock, and b) we've just checked that the
4997 * huge pmd (head) page is present in the page tables. The ptl
4998 * prevents the head page and tail pages from being rearranged
4999 * in any way. So this page must be available at this point,
5000 * unless the page refcount overflowed:
5001 */
5002 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5003 page = NULL;
5004 goto out;
5005 }
5006 } else {
5007 if (is_hugetlb_entry_migration(pte)) {
5008 spin_unlock(ptl);
5009 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5010 goto retry;
5011 }
5012 /*
5013 * hwpoisoned entry is treated as no_page_table in
5014 * follow_page_mask().
5015 */
5016 }
5017 out:
5018 spin_unlock(ptl);
5019 return page;
5020 }
5021
5022 struct page * __weak
5023 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5024 pud_t *pud, int flags)
5025 {
5026 if (flags & (FOLL_GET | FOLL_PIN))
5027 return NULL;
5028
5029 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5030 }
5031
5032 struct page * __weak
5033 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5034 {
5035 if (flags & (FOLL_GET | FOLL_PIN))
5036 return NULL;
5037
5038 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5039 }
5040
5041 bool isolate_huge_page(struct page *page, struct list_head *list)
5042 {
5043 bool ret = true;
5044
5045 VM_BUG_ON_PAGE(!PageHead(page), page);
5046 spin_lock(&hugetlb_lock);
5047 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5048 ret = false;
5049 goto unlock;
5050 }
5051 clear_page_huge_active(page);
5052 list_move_tail(&page->lru, list);
5053 unlock:
5054 spin_unlock(&hugetlb_lock);
5055 return ret;
5056 }
5057
5058 void putback_active_hugepage(struct page *page)
5059 {
5060 VM_BUG_ON_PAGE(!PageHead(page), page);
5061 spin_lock(&hugetlb_lock);
5062 set_page_huge_active(page);
5063 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5064 spin_unlock(&hugetlb_lock);
5065 put_page(page);
5066 }
5067
5068 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5069 {
5070 struct hstate *h = page_hstate(oldpage);
5071
5072 hugetlb_cgroup_migrate(oldpage, newpage);
5073 set_page_owner_migrate_reason(newpage, reason);
5074
5075 /*
5076 * transfer temporary state of the new huge page. This is
5077 * reverse to other transitions because the newpage is going to
5078 * be final while the old one will be freed so it takes over
5079 * the temporary status.
5080 *
5081 * Also note that we have to transfer the per-node surplus state
5082 * here as well otherwise the global surplus count will not match
5083 * the per-node's.
5084 */
5085 if (PageHugeTemporary(newpage)) {
5086 int old_nid = page_to_nid(oldpage);
5087 int new_nid = page_to_nid(newpage);
5088
5089 SetPageHugeTemporary(oldpage);
5090 ClearPageHugeTemporary(newpage);
5091
5092 spin_lock(&hugetlb_lock);
5093 if (h->surplus_huge_pages_node[old_nid]) {
5094 h->surplus_huge_pages_node[old_nid]--;
5095 h->surplus_huge_pages_node[new_nid]++;
5096 }
5097 spin_unlock(&hugetlb_lock);
5098 }
5099 }