]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/hugetlb.c
mm, hugetlb: fix simple resv_huge_pages underflow on UFFDIO_COPY
[mirror_ubuntu-hirsute-kernel.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
72 */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 static inline bool PageHugeFreed(struct page *head)
83 {
84 return page_private(head + 4) == -1UL;
85 }
86
87 static inline void SetPageHugeFreed(struct page *head)
88 {
89 set_page_private(head + 4, -1UL);
90 }
91
92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94 set_page_private(head + 4, 0);
95 }
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101 {
102 bool free = (spool->count == 0) && (spool->used_hpages == 0);
103
104 spin_unlock(&spool->lock);
105
106 /* If no pages are used, and no other handles to the subpool
107 * remain, give up any reservations based on minimum size and
108 * free the subpool */
109 if (free) {
110 if (spool->min_hpages != -1)
111 hugetlb_acct_memory(spool->hstate,
112 -spool->min_hpages);
113 kfree(spool);
114 }
115 }
116
117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118 long min_hpages)
119 {
120 struct hugepage_subpool *spool;
121
122 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123 if (!spool)
124 return NULL;
125
126 spin_lock_init(&spool->lock);
127 spool->count = 1;
128 spool->max_hpages = max_hpages;
129 spool->hstate = h;
130 spool->min_hpages = min_hpages;
131
132 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133 kfree(spool);
134 return NULL;
135 }
136 spool->rsv_hpages = min_hpages;
137
138 return spool;
139 }
140
141 void hugepage_put_subpool(struct hugepage_subpool *spool)
142 {
143 spin_lock(&spool->lock);
144 BUG_ON(!spool->count);
145 spool->count--;
146 unlock_or_release_subpool(spool);
147 }
148
149 /*
150 * Subpool accounting for allocating and reserving pages.
151 * Return -ENOMEM if there are not enough resources to satisfy the
152 * request. Otherwise, return the number of pages by which the
153 * global pools must be adjusted (upward). The returned value may
154 * only be different than the passed value (delta) in the case where
155 * a subpool minimum size must be maintained.
156 */
157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158 long delta)
159 {
160 long ret = delta;
161
162 if (!spool)
163 return ret;
164
165 spin_lock(&spool->lock);
166
167 if (spool->max_hpages != -1) { /* maximum size accounting */
168 if ((spool->used_hpages + delta) <= spool->max_hpages)
169 spool->used_hpages += delta;
170 else {
171 ret = -ENOMEM;
172 goto unlock_ret;
173 }
174 }
175
176 /* minimum size accounting */
177 if (spool->min_hpages != -1 && spool->rsv_hpages) {
178 if (delta > spool->rsv_hpages) {
179 /*
180 * Asking for more reserves than those already taken on
181 * behalf of subpool. Return difference.
182 */
183 ret = delta - spool->rsv_hpages;
184 spool->rsv_hpages = 0;
185 } else {
186 ret = 0; /* reserves already accounted for */
187 spool->rsv_hpages -= delta;
188 }
189 }
190
191 unlock_ret:
192 spin_unlock(&spool->lock);
193 return ret;
194 }
195
196 /*
197 * Subpool accounting for freeing and unreserving pages.
198 * Return the number of global page reservations that must be dropped.
199 * The return value may only be different than the passed value (delta)
200 * in the case where a subpool minimum size must be maintained.
201 */
202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203 long delta)
204 {
205 long ret = delta;
206
207 if (!spool)
208 return delta;
209
210 spin_lock(&spool->lock);
211
212 if (spool->max_hpages != -1) /* maximum size accounting */
213 spool->used_hpages -= delta;
214
215 /* minimum size accounting */
216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217 if (spool->rsv_hpages + delta <= spool->min_hpages)
218 ret = 0;
219 else
220 ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222 spool->rsv_hpages += delta;
223 if (spool->rsv_hpages > spool->min_hpages)
224 spool->rsv_hpages = spool->min_hpages;
225 }
226
227 /*
228 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 * quota reference, free it now.
230 */
231 unlock_or_release_subpool(spool);
232
233 return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238 return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243 return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247 * it for use.
248 */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252 struct file_region *nrg = NULL;
253
254 VM_BUG_ON(resv->region_cache_count <= 0);
255
256 resv->region_cache_count--;
257 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258 list_del(&nrg->link);
259
260 nrg->from = from;
261 nrg->to = to;
262
263 return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270 nrg->reservation_counter = rg->reservation_counter;
271 nrg->css = rg->css;
272 if (rg->css)
273 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279 struct hstate *h,
280 struct resv_map *resv,
281 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284 if (h_cg) {
285 nrg->reservation_counter =
286 &h_cg->rsvd_hugepage[hstate_index(h)];
287 nrg->css = &h_cg->css;
288 /*
289 * The caller will hold exactly one h_cg->css reference for the
290 * whole contiguous reservation region. But this area might be
291 * scattered when there are already some file_regions reside in
292 * it. As a result, many file_regions may share only one css
293 * reference. In order to ensure that one file_region must hold
294 * exactly one h_cg->css reference, we should do css_get for
295 * each file_region and leave the reference held by caller
296 * untouched.
297 */
298 css_get(&h_cg->css);
299 if (!resv->pages_per_hpage)
300 resv->pages_per_hpage = pages_per_huge_page(h);
301 /* pages_per_hpage should be the same for all entries in
302 * a resv_map.
303 */
304 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305 } else {
306 nrg->reservation_counter = NULL;
307 nrg->css = NULL;
308 }
309 #endif
310 }
311
312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315 if (rg->css)
316 css_put(rg->css);
317 #endif
318 }
319
320 static bool has_same_uncharge_info(struct file_region *rg,
321 struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324 return rg && org &&
325 rg->reservation_counter == org->reservation_counter &&
326 rg->css == org->css;
327
328 #else
329 return true;
330 #endif
331 }
332
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335 struct file_region *nrg = NULL, *prg = NULL;
336
337 prg = list_prev_entry(rg, link);
338 if (&prg->link != &resv->regions && prg->to == rg->from &&
339 has_same_uncharge_info(prg, rg)) {
340 prg->to = rg->to;
341
342 list_del(&rg->link);
343 put_uncharge_info(rg);
344 kfree(rg);
345
346 rg = prg;
347 }
348
349 nrg = list_next_entry(rg, link);
350 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351 has_same_uncharge_info(nrg, rg)) {
352 nrg->from = rg->from;
353
354 list_del(&rg->link);
355 put_uncharge_info(rg);
356 kfree(rg);
357 }
358 }
359
360 /*
361 * Must be called with resv->lock held.
362 *
363 * Calling this with regions_needed != NULL will count the number of pages
364 * to be added but will not modify the linked list. And regions_needed will
365 * indicate the number of file_regions needed in the cache to carry out to add
366 * the regions for this range.
367 */
368 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
369 struct hugetlb_cgroup *h_cg,
370 struct hstate *h, long *regions_needed)
371 {
372 long add = 0;
373 struct list_head *head = &resv->regions;
374 long last_accounted_offset = f;
375 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
376
377 if (regions_needed)
378 *regions_needed = 0;
379
380 /* In this loop, we essentially handle an entry for the range
381 * [last_accounted_offset, rg->from), at every iteration, with some
382 * bounds checking.
383 */
384 list_for_each_entry_safe(rg, trg, head, link) {
385 /* Skip irrelevant regions that start before our range. */
386 if (rg->from < f) {
387 /* If this region ends after the last accounted offset,
388 * then we need to update last_accounted_offset.
389 */
390 if (rg->to > last_accounted_offset)
391 last_accounted_offset = rg->to;
392 continue;
393 }
394
395 /* When we find a region that starts beyond our range, we've
396 * finished.
397 */
398 if (rg->from > t)
399 break;
400
401 /* Add an entry for last_accounted_offset -> rg->from, and
402 * update last_accounted_offset.
403 */
404 if (rg->from > last_accounted_offset) {
405 add += rg->from - last_accounted_offset;
406 if (!regions_needed) {
407 nrg = get_file_region_entry_from_cache(
408 resv, last_accounted_offset, rg->from);
409 record_hugetlb_cgroup_uncharge_info(h_cg, h,
410 resv, nrg);
411 list_add(&nrg->link, rg->link.prev);
412 coalesce_file_region(resv, nrg);
413 } else
414 *regions_needed += 1;
415 }
416
417 last_accounted_offset = rg->to;
418 }
419
420 /* Handle the case where our range extends beyond
421 * last_accounted_offset.
422 */
423 if (last_accounted_offset < t) {
424 add += t - last_accounted_offset;
425 if (!regions_needed) {
426 nrg = get_file_region_entry_from_cache(
427 resv, last_accounted_offset, t);
428 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
429 list_add(&nrg->link, rg->link.prev);
430 coalesce_file_region(resv, nrg);
431 } else
432 *regions_needed += 1;
433 }
434
435 VM_BUG_ON(add < 0);
436 return add;
437 }
438
439 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
440 */
441 static int allocate_file_region_entries(struct resv_map *resv,
442 int regions_needed)
443 __must_hold(&resv->lock)
444 {
445 struct list_head allocated_regions;
446 int to_allocate = 0, i = 0;
447 struct file_region *trg = NULL, *rg = NULL;
448
449 VM_BUG_ON(regions_needed < 0);
450
451 INIT_LIST_HEAD(&allocated_regions);
452
453 /*
454 * Check for sufficient descriptors in the cache to accommodate
455 * the number of in progress add operations plus regions_needed.
456 *
457 * This is a while loop because when we drop the lock, some other call
458 * to region_add or region_del may have consumed some region_entries,
459 * so we keep looping here until we finally have enough entries for
460 * (adds_in_progress + regions_needed).
461 */
462 while (resv->region_cache_count <
463 (resv->adds_in_progress + regions_needed)) {
464 to_allocate = resv->adds_in_progress + regions_needed -
465 resv->region_cache_count;
466
467 /* At this point, we should have enough entries in the cache
468 * for all the existings adds_in_progress. We should only be
469 * needing to allocate for regions_needed.
470 */
471 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
472
473 spin_unlock(&resv->lock);
474 for (i = 0; i < to_allocate; i++) {
475 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
476 if (!trg)
477 goto out_of_memory;
478 list_add(&trg->link, &allocated_regions);
479 }
480
481 spin_lock(&resv->lock);
482
483 list_splice(&allocated_regions, &resv->region_cache);
484 resv->region_cache_count += to_allocate;
485 }
486
487 return 0;
488
489 out_of_memory:
490 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
491 list_del(&rg->link);
492 kfree(rg);
493 }
494 return -ENOMEM;
495 }
496
497 /*
498 * Add the huge page range represented by [f, t) to the reserve
499 * map. Regions will be taken from the cache to fill in this range.
500 * Sufficient regions should exist in the cache due to the previous
501 * call to region_chg with the same range, but in some cases the cache will not
502 * have sufficient entries due to races with other code doing region_add or
503 * region_del. The extra needed entries will be allocated.
504 *
505 * regions_needed is the out value provided by a previous call to region_chg.
506 *
507 * Return the number of new huge pages added to the map. This number is greater
508 * than or equal to zero. If file_region entries needed to be allocated for
509 * this operation and we were not able to allocate, it returns -ENOMEM.
510 * region_add of regions of length 1 never allocate file_regions and cannot
511 * fail; region_chg will always allocate at least 1 entry and a region_add for
512 * 1 page will only require at most 1 entry.
513 */
514 static long region_add(struct resv_map *resv, long f, long t,
515 long in_regions_needed, struct hstate *h,
516 struct hugetlb_cgroup *h_cg)
517 {
518 long add = 0, actual_regions_needed = 0;
519
520 spin_lock(&resv->lock);
521 retry:
522
523 /* Count how many regions are actually needed to execute this add. */
524 add_reservation_in_range(resv, f, t, NULL, NULL,
525 &actual_regions_needed);
526
527 /*
528 * Check for sufficient descriptors in the cache to accommodate
529 * this add operation. Note that actual_regions_needed may be greater
530 * than in_regions_needed, as the resv_map may have been modified since
531 * the region_chg call. In this case, we need to make sure that we
532 * allocate extra entries, such that we have enough for all the
533 * existing adds_in_progress, plus the excess needed for this
534 * operation.
535 */
536 if (actual_regions_needed > in_regions_needed &&
537 resv->region_cache_count <
538 resv->adds_in_progress +
539 (actual_regions_needed - in_regions_needed)) {
540 /* region_add operation of range 1 should never need to
541 * allocate file_region entries.
542 */
543 VM_BUG_ON(t - f <= 1);
544
545 if (allocate_file_region_entries(
546 resv, actual_regions_needed - in_regions_needed)) {
547 return -ENOMEM;
548 }
549
550 goto retry;
551 }
552
553 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
554
555 resv->adds_in_progress -= in_regions_needed;
556
557 spin_unlock(&resv->lock);
558 VM_BUG_ON(add < 0);
559 return add;
560 }
561
562 /*
563 * Examine the existing reserve map and determine how many
564 * huge pages in the specified range [f, t) are NOT currently
565 * represented. This routine is called before a subsequent
566 * call to region_add that will actually modify the reserve
567 * map to add the specified range [f, t). region_chg does
568 * not change the number of huge pages represented by the
569 * map. A number of new file_region structures is added to the cache as a
570 * placeholder, for the subsequent region_add call to use. At least 1
571 * file_region structure is added.
572 *
573 * out_regions_needed is the number of regions added to the
574 * resv->adds_in_progress. This value needs to be provided to a follow up call
575 * to region_add or region_abort for proper accounting.
576 *
577 * Returns the number of huge pages that need to be added to the existing
578 * reservation map for the range [f, t). This number is greater or equal to
579 * zero. -ENOMEM is returned if a new file_region structure or cache entry
580 * is needed and can not be allocated.
581 */
582 static long region_chg(struct resv_map *resv, long f, long t,
583 long *out_regions_needed)
584 {
585 long chg = 0;
586
587 spin_lock(&resv->lock);
588
589 /* Count how many hugepages in this range are NOT represented. */
590 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
591 out_regions_needed);
592
593 if (*out_regions_needed == 0)
594 *out_regions_needed = 1;
595
596 if (allocate_file_region_entries(resv, *out_regions_needed))
597 return -ENOMEM;
598
599 resv->adds_in_progress += *out_regions_needed;
600
601 spin_unlock(&resv->lock);
602 return chg;
603 }
604
605 /*
606 * Abort the in progress add operation. The adds_in_progress field
607 * of the resv_map keeps track of the operations in progress between
608 * calls to region_chg and region_add. Operations are sometimes
609 * aborted after the call to region_chg. In such cases, region_abort
610 * is called to decrement the adds_in_progress counter. regions_needed
611 * is the value returned by the region_chg call, it is used to decrement
612 * the adds_in_progress counter.
613 *
614 * NOTE: The range arguments [f, t) are not needed or used in this
615 * routine. They are kept to make reading the calling code easier as
616 * arguments will match the associated region_chg call.
617 */
618 static void region_abort(struct resv_map *resv, long f, long t,
619 long regions_needed)
620 {
621 spin_lock(&resv->lock);
622 VM_BUG_ON(!resv->region_cache_count);
623 resv->adds_in_progress -= regions_needed;
624 spin_unlock(&resv->lock);
625 }
626
627 /*
628 * Delete the specified range [f, t) from the reserve map. If the
629 * t parameter is LONG_MAX, this indicates that ALL regions after f
630 * should be deleted. Locate the regions which intersect [f, t)
631 * and either trim, delete or split the existing regions.
632 *
633 * Returns the number of huge pages deleted from the reserve map.
634 * In the normal case, the return value is zero or more. In the
635 * case where a region must be split, a new region descriptor must
636 * be allocated. If the allocation fails, -ENOMEM will be returned.
637 * NOTE: If the parameter t == LONG_MAX, then we will never split
638 * a region and possibly return -ENOMEM. Callers specifying
639 * t == LONG_MAX do not need to check for -ENOMEM error.
640 */
641 static long region_del(struct resv_map *resv, long f, long t)
642 {
643 struct list_head *head = &resv->regions;
644 struct file_region *rg, *trg;
645 struct file_region *nrg = NULL;
646 long del = 0;
647
648 retry:
649 spin_lock(&resv->lock);
650 list_for_each_entry_safe(rg, trg, head, link) {
651 /*
652 * Skip regions before the range to be deleted. file_region
653 * ranges are normally of the form [from, to). However, there
654 * may be a "placeholder" entry in the map which is of the form
655 * (from, to) with from == to. Check for placeholder entries
656 * at the beginning of the range to be deleted.
657 */
658 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
659 continue;
660
661 if (rg->from >= t)
662 break;
663
664 if (f > rg->from && t < rg->to) { /* Must split region */
665 /*
666 * Check for an entry in the cache before dropping
667 * lock and attempting allocation.
668 */
669 if (!nrg &&
670 resv->region_cache_count > resv->adds_in_progress) {
671 nrg = list_first_entry(&resv->region_cache,
672 struct file_region,
673 link);
674 list_del(&nrg->link);
675 resv->region_cache_count--;
676 }
677
678 if (!nrg) {
679 spin_unlock(&resv->lock);
680 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681 if (!nrg)
682 return -ENOMEM;
683 goto retry;
684 }
685
686 del += t - f;
687 hugetlb_cgroup_uncharge_file_region(
688 resv, rg, t - f, false);
689
690 /* New entry for end of split region */
691 nrg->from = t;
692 nrg->to = rg->to;
693
694 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695
696 INIT_LIST_HEAD(&nrg->link);
697
698 /* Original entry is trimmed */
699 rg->to = f;
700
701 list_add(&nrg->link, &rg->link);
702 nrg = NULL;
703 break;
704 }
705
706 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707 del += rg->to - rg->from;
708 hugetlb_cgroup_uncharge_file_region(resv, rg,
709 rg->to - rg->from, true);
710 list_del(&rg->link);
711 kfree(rg);
712 continue;
713 }
714
715 if (f <= rg->from) { /* Trim beginning of region */
716 hugetlb_cgroup_uncharge_file_region(resv, rg,
717 t - rg->from, false);
718
719 del += t - rg->from;
720 rg->from = t;
721 } else { /* Trim end of region */
722 hugetlb_cgroup_uncharge_file_region(resv, rg,
723 rg->to - f, false);
724
725 del += rg->to - f;
726 rg->to = f;
727 }
728 }
729
730 spin_unlock(&resv->lock);
731 kfree(nrg);
732 return del;
733 }
734
735 /*
736 * A rare out of memory error was encountered which prevented removal of
737 * the reserve map region for a page. The huge page itself was free'ed
738 * and removed from the page cache. This routine will adjust the subpool
739 * usage count, and the global reserve count if needed. By incrementing
740 * these counts, the reserve map entry which could not be deleted will
741 * appear as a "reserved" entry instead of simply dangling with incorrect
742 * counts.
743 */
744 void hugetlb_fix_reserve_counts(struct inode *inode)
745 {
746 struct hugepage_subpool *spool = subpool_inode(inode);
747 long rsv_adjust;
748 bool reserved = false;
749
750 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
751 if (rsv_adjust > 0) {
752 struct hstate *h = hstate_inode(inode);
753
754 if (!hugetlb_acct_memory(h, 1))
755 reserved = true;
756 } else if (!rsv_adjust) {
757 reserved = true;
758 }
759
760 if (!reserved)
761 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
762 }
763
764 /*
765 * Count and return the number of huge pages in the reserve map
766 * that intersect with the range [f, t).
767 */
768 static long region_count(struct resv_map *resv, long f, long t)
769 {
770 struct list_head *head = &resv->regions;
771 struct file_region *rg;
772 long chg = 0;
773
774 spin_lock(&resv->lock);
775 /* Locate each segment we overlap with, and count that overlap. */
776 list_for_each_entry(rg, head, link) {
777 long seg_from;
778 long seg_to;
779
780 if (rg->to <= f)
781 continue;
782 if (rg->from >= t)
783 break;
784
785 seg_from = max(rg->from, f);
786 seg_to = min(rg->to, t);
787
788 chg += seg_to - seg_from;
789 }
790 spin_unlock(&resv->lock);
791
792 return chg;
793 }
794
795 /*
796 * Convert the address within this vma to the page offset within
797 * the mapping, in pagecache page units; huge pages here.
798 */
799 static pgoff_t vma_hugecache_offset(struct hstate *h,
800 struct vm_area_struct *vma, unsigned long address)
801 {
802 return ((address - vma->vm_start) >> huge_page_shift(h)) +
803 (vma->vm_pgoff >> huge_page_order(h));
804 }
805
806 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807 unsigned long address)
808 {
809 return vma_hugecache_offset(hstate_vma(vma), vma, address);
810 }
811 EXPORT_SYMBOL_GPL(linear_hugepage_index);
812
813 /*
814 * Return the size of the pages allocated when backing a VMA. In the majority
815 * cases this will be same size as used by the page table entries.
816 */
817 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818 {
819 if (vma->vm_ops && vma->vm_ops->pagesize)
820 return vma->vm_ops->pagesize(vma);
821 return PAGE_SIZE;
822 }
823 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
824
825 /*
826 * Return the page size being used by the MMU to back a VMA. In the majority
827 * of cases, the page size used by the kernel matches the MMU size. On
828 * architectures where it differs, an architecture-specific 'strong'
829 * version of this symbol is required.
830 */
831 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
832 {
833 return vma_kernel_pagesize(vma);
834 }
835
836 /*
837 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
838 * bits of the reservation map pointer, which are always clear due to
839 * alignment.
840 */
841 #define HPAGE_RESV_OWNER (1UL << 0)
842 #define HPAGE_RESV_UNMAPPED (1UL << 1)
843 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
844
845 /*
846 * These helpers are used to track how many pages are reserved for
847 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848 * is guaranteed to have their future faults succeed.
849 *
850 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851 * the reserve counters are updated with the hugetlb_lock held. It is safe
852 * to reset the VMA at fork() time as it is not in use yet and there is no
853 * chance of the global counters getting corrupted as a result of the values.
854 *
855 * The private mapping reservation is represented in a subtly different
856 * manner to a shared mapping. A shared mapping has a region map associated
857 * with the underlying file, this region map represents the backing file
858 * pages which have ever had a reservation assigned which this persists even
859 * after the page is instantiated. A private mapping has a region map
860 * associated with the original mmap which is attached to all VMAs which
861 * reference it, this region map represents those offsets which have consumed
862 * reservation ie. where pages have been instantiated.
863 */
864 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865 {
866 return (unsigned long)vma->vm_private_data;
867 }
868
869 static void set_vma_private_data(struct vm_area_struct *vma,
870 unsigned long value)
871 {
872 vma->vm_private_data = (void *)value;
873 }
874
875 static void
876 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877 struct hugetlb_cgroup *h_cg,
878 struct hstate *h)
879 {
880 #ifdef CONFIG_CGROUP_HUGETLB
881 if (!h_cg || !h) {
882 resv_map->reservation_counter = NULL;
883 resv_map->pages_per_hpage = 0;
884 resv_map->css = NULL;
885 } else {
886 resv_map->reservation_counter =
887 &h_cg->rsvd_hugepage[hstate_index(h)];
888 resv_map->pages_per_hpage = pages_per_huge_page(h);
889 resv_map->css = &h_cg->css;
890 }
891 #endif
892 }
893
894 struct resv_map *resv_map_alloc(void)
895 {
896 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
897 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898
899 if (!resv_map || !rg) {
900 kfree(resv_map);
901 kfree(rg);
902 return NULL;
903 }
904
905 kref_init(&resv_map->refs);
906 spin_lock_init(&resv_map->lock);
907 INIT_LIST_HEAD(&resv_map->regions);
908
909 resv_map->adds_in_progress = 0;
910 /*
911 * Initialize these to 0. On shared mappings, 0's here indicate these
912 * fields don't do cgroup accounting. On private mappings, these will be
913 * re-initialized to the proper values, to indicate that hugetlb cgroup
914 * reservations are to be un-charged from here.
915 */
916 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
917
918 INIT_LIST_HEAD(&resv_map->region_cache);
919 list_add(&rg->link, &resv_map->region_cache);
920 resv_map->region_cache_count = 1;
921
922 return resv_map;
923 }
924
925 void resv_map_release(struct kref *ref)
926 {
927 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
928 struct list_head *head = &resv_map->region_cache;
929 struct file_region *rg, *trg;
930
931 /* Clear out any active regions before we release the map. */
932 region_del(resv_map, 0, LONG_MAX);
933
934 /* ... and any entries left in the cache */
935 list_for_each_entry_safe(rg, trg, head, link) {
936 list_del(&rg->link);
937 kfree(rg);
938 }
939
940 VM_BUG_ON(resv_map->adds_in_progress);
941
942 kfree(resv_map);
943 }
944
945 static inline struct resv_map *inode_resv_map(struct inode *inode)
946 {
947 /*
948 * At inode evict time, i_mapping may not point to the original
949 * address space within the inode. This original address space
950 * contains the pointer to the resv_map. So, always use the
951 * address space embedded within the inode.
952 * The VERY common case is inode->mapping == &inode->i_data but,
953 * this may not be true for device special inodes.
954 */
955 return (struct resv_map *)(&inode->i_data)->private_data;
956 }
957
958 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
959 {
960 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961 if (vma->vm_flags & VM_MAYSHARE) {
962 struct address_space *mapping = vma->vm_file->f_mapping;
963 struct inode *inode = mapping->host;
964
965 return inode_resv_map(inode);
966
967 } else {
968 return (struct resv_map *)(get_vma_private_data(vma) &
969 ~HPAGE_RESV_MASK);
970 }
971 }
972
973 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
974 {
975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977
978 set_vma_private_data(vma, (get_vma_private_data(vma) &
979 HPAGE_RESV_MASK) | (unsigned long)map);
980 }
981
982 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983 {
984 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
986
987 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
988 }
989
990 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991 {
992 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
993
994 return (get_vma_private_data(vma) & flag) != 0;
995 }
996
997 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
998 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999 {
1000 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1001 if (!(vma->vm_flags & VM_MAYSHARE))
1002 vma->vm_private_data = (void *)0;
1003 }
1004
1005 /* Returns true if the VMA has associated reserve pages */
1006 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1007 {
1008 if (vma->vm_flags & VM_NORESERVE) {
1009 /*
1010 * This address is already reserved by other process(chg == 0),
1011 * so, we should decrement reserved count. Without decrementing,
1012 * reserve count remains after releasing inode, because this
1013 * allocated page will go into page cache and is regarded as
1014 * coming from reserved pool in releasing step. Currently, we
1015 * don't have any other solution to deal with this situation
1016 * properly, so add work-around here.
1017 */
1018 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1019 return true;
1020 else
1021 return false;
1022 }
1023
1024 /* Shared mappings always use reserves */
1025 if (vma->vm_flags & VM_MAYSHARE) {
1026 /*
1027 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1028 * be a region map for all pages. The only situation where
1029 * there is no region map is if a hole was punched via
1030 * fallocate. In this case, there really are no reserves to
1031 * use. This situation is indicated if chg != 0.
1032 */
1033 if (chg)
1034 return false;
1035 else
1036 return true;
1037 }
1038
1039 /*
1040 * Only the process that called mmap() has reserves for
1041 * private mappings.
1042 */
1043 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044 /*
1045 * Like the shared case above, a hole punch or truncate
1046 * could have been performed on the private mapping.
1047 * Examine the value of chg to determine if reserves
1048 * actually exist or were previously consumed.
1049 * Very Subtle - The value of chg comes from a previous
1050 * call to vma_needs_reserves(). The reserve map for
1051 * private mappings has different (opposite) semantics
1052 * than that of shared mappings. vma_needs_reserves()
1053 * has already taken this difference in semantics into
1054 * account. Therefore, the meaning of chg is the same
1055 * as in the shared case above. Code could easily be
1056 * combined, but keeping it separate draws attention to
1057 * subtle differences.
1058 */
1059 if (chg)
1060 return false;
1061 else
1062 return true;
1063 }
1064
1065 return false;
1066 }
1067
1068 static void enqueue_huge_page(struct hstate *h, struct page *page)
1069 {
1070 int nid = page_to_nid(page);
1071 list_move(&page->lru, &h->hugepage_freelists[nid]);
1072 h->free_huge_pages++;
1073 h->free_huge_pages_node[nid]++;
1074 SetPageHugeFreed(page);
1075 }
1076
1077 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1078 {
1079 struct page *page;
1080 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1081
1082 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1083 if (nocma && is_migrate_cma_page(page))
1084 continue;
1085
1086 if (PageHWPoison(page))
1087 continue;
1088
1089 list_move(&page->lru, &h->hugepage_activelist);
1090 set_page_refcounted(page);
1091 ClearPageHugeFreed(page);
1092 h->free_huge_pages--;
1093 h->free_huge_pages_node[nid]--;
1094 return page;
1095 }
1096
1097 return NULL;
1098 }
1099
1100 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1101 nodemask_t *nmask)
1102 {
1103 unsigned int cpuset_mems_cookie;
1104 struct zonelist *zonelist;
1105 struct zone *zone;
1106 struct zoneref *z;
1107 int node = NUMA_NO_NODE;
1108
1109 zonelist = node_zonelist(nid, gfp_mask);
1110
1111 retry_cpuset:
1112 cpuset_mems_cookie = read_mems_allowed_begin();
1113 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1114 struct page *page;
1115
1116 if (!cpuset_zone_allowed(zone, gfp_mask))
1117 continue;
1118 /*
1119 * no need to ask again on the same node. Pool is node rather than
1120 * zone aware
1121 */
1122 if (zone_to_nid(zone) == node)
1123 continue;
1124 node = zone_to_nid(zone);
1125
1126 page = dequeue_huge_page_node_exact(h, node);
1127 if (page)
1128 return page;
1129 }
1130 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1131 goto retry_cpuset;
1132
1133 return NULL;
1134 }
1135
1136 static struct page *dequeue_huge_page_vma(struct hstate *h,
1137 struct vm_area_struct *vma,
1138 unsigned long address, int avoid_reserve,
1139 long chg)
1140 {
1141 struct page *page;
1142 struct mempolicy *mpol;
1143 gfp_t gfp_mask;
1144 nodemask_t *nodemask;
1145 int nid;
1146
1147 /*
1148 * A child process with MAP_PRIVATE mappings created by their parent
1149 * have no page reserves. This check ensures that reservations are
1150 * not "stolen". The child may still get SIGKILLed
1151 */
1152 if (!vma_has_reserves(vma, chg) &&
1153 h->free_huge_pages - h->resv_huge_pages == 0)
1154 goto err;
1155
1156 /* If reserves cannot be used, ensure enough pages are in the pool */
1157 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1158 goto err;
1159
1160 gfp_mask = htlb_alloc_mask(h);
1161 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1162 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1163 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1164 SetPagePrivate(page);
1165 h->resv_huge_pages--;
1166 }
1167
1168 mpol_cond_put(mpol);
1169 return page;
1170
1171 err:
1172 return NULL;
1173 }
1174
1175 /*
1176 * common helper functions for hstate_next_node_to_{alloc|free}.
1177 * We may have allocated or freed a huge page based on a different
1178 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1179 * be outside of *nodes_allowed. Ensure that we use an allowed
1180 * node for alloc or free.
1181 */
1182 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1183 {
1184 nid = next_node_in(nid, *nodes_allowed);
1185 VM_BUG_ON(nid >= MAX_NUMNODES);
1186
1187 return nid;
1188 }
1189
1190 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1191 {
1192 if (!node_isset(nid, *nodes_allowed))
1193 nid = next_node_allowed(nid, nodes_allowed);
1194 return nid;
1195 }
1196
1197 /*
1198 * returns the previously saved node ["this node"] from which to
1199 * allocate a persistent huge page for the pool and advance the
1200 * next node from which to allocate, handling wrap at end of node
1201 * mask.
1202 */
1203 static int hstate_next_node_to_alloc(struct hstate *h,
1204 nodemask_t *nodes_allowed)
1205 {
1206 int nid;
1207
1208 VM_BUG_ON(!nodes_allowed);
1209
1210 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1211 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1212
1213 return nid;
1214 }
1215
1216 /*
1217 * helper for free_pool_huge_page() - return the previously saved
1218 * node ["this node"] from which to free a huge page. Advance the
1219 * next node id whether or not we find a free huge page to free so
1220 * that the next attempt to free addresses the next node.
1221 */
1222 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1223 {
1224 int nid;
1225
1226 VM_BUG_ON(!nodes_allowed);
1227
1228 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1229 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1230
1231 return nid;
1232 }
1233
1234 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1235 for (nr_nodes = nodes_weight(*mask); \
1236 nr_nodes > 0 && \
1237 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1238 nr_nodes--)
1239
1240 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1241 for (nr_nodes = nodes_weight(*mask); \
1242 nr_nodes > 0 && \
1243 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1244 nr_nodes--)
1245
1246 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1247 static void destroy_compound_gigantic_page(struct page *page,
1248 unsigned int order)
1249 {
1250 int i;
1251 int nr_pages = 1 << order;
1252 struct page *p = page + 1;
1253
1254 atomic_set(compound_mapcount_ptr(page), 0);
1255 if (hpage_pincount_available(page))
1256 atomic_set(compound_pincount_ptr(page), 0);
1257
1258 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1259 clear_compound_head(p);
1260 set_page_refcounted(p);
1261 }
1262
1263 set_compound_order(page, 0);
1264 page[1].compound_nr = 0;
1265 __ClearPageHead(page);
1266 }
1267
1268 static void free_gigantic_page(struct page *page, unsigned int order)
1269 {
1270 /*
1271 * If the page isn't allocated using the cma allocator,
1272 * cma_release() returns false.
1273 */
1274 #ifdef CONFIG_CMA
1275 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1276 return;
1277 #endif
1278
1279 free_contig_range(page_to_pfn(page), 1 << order);
1280 }
1281
1282 #ifdef CONFIG_CONTIG_ALLOC
1283 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1284 int nid, nodemask_t *nodemask)
1285 {
1286 unsigned long nr_pages = 1UL << huge_page_order(h);
1287 if (nid == NUMA_NO_NODE)
1288 nid = numa_mem_id();
1289
1290 #ifdef CONFIG_CMA
1291 {
1292 struct page *page;
1293 int node;
1294
1295 if (hugetlb_cma[nid]) {
1296 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1297 huge_page_order(h), true);
1298 if (page)
1299 return page;
1300 }
1301
1302 if (!(gfp_mask & __GFP_THISNODE)) {
1303 for_each_node_mask(node, *nodemask) {
1304 if (node == nid || !hugetlb_cma[node])
1305 continue;
1306
1307 page = cma_alloc(hugetlb_cma[node], nr_pages,
1308 huge_page_order(h), true);
1309 if (page)
1310 return page;
1311 }
1312 }
1313 }
1314 #endif
1315
1316 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1317 }
1318
1319 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1320 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1321 #else /* !CONFIG_CONTIG_ALLOC */
1322 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1323 int nid, nodemask_t *nodemask)
1324 {
1325 return NULL;
1326 }
1327 #endif /* CONFIG_CONTIG_ALLOC */
1328
1329 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1330 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1331 int nid, nodemask_t *nodemask)
1332 {
1333 return NULL;
1334 }
1335 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1336 static inline void destroy_compound_gigantic_page(struct page *page,
1337 unsigned int order) { }
1338 #endif
1339
1340 static void update_and_free_page(struct hstate *h, struct page *page)
1341 {
1342 int i;
1343 struct page *subpage = page;
1344
1345 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1346 return;
1347
1348 h->nr_huge_pages--;
1349 h->nr_huge_pages_node[page_to_nid(page)]--;
1350 for (i = 0; i < pages_per_huge_page(h);
1351 i++, subpage = mem_map_next(subpage, page, i)) {
1352 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1353 1 << PG_referenced | 1 << PG_dirty |
1354 1 << PG_active | 1 << PG_private |
1355 1 << PG_writeback);
1356 }
1357 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1358 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1359 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1360 set_page_refcounted(page);
1361 if (hstate_is_gigantic(h)) {
1362 /*
1363 * Temporarily drop the hugetlb_lock, because
1364 * we might block in free_gigantic_page().
1365 */
1366 spin_unlock(&hugetlb_lock);
1367 destroy_compound_gigantic_page(page, huge_page_order(h));
1368 free_gigantic_page(page, huge_page_order(h));
1369 spin_lock(&hugetlb_lock);
1370 } else {
1371 __free_pages(page, huge_page_order(h));
1372 }
1373 }
1374
1375 struct hstate *size_to_hstate(unsigned long size)
1376 {
1377 struct hstate *h;
1378
1379 for_each_hstate(h) {
1380 if (huge_page_size(h) == size)
1381 return h;
1382 }
1383 return NULL;
1384 }
1385
1386 /*
1387 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1388 * to hstate->hugepage_activelist.)
1389 *
1390 * This function can be called for tail pages, but never returns true for them.
1391 */
1392 bool page_huge_active(struct page *page)
1393 {
1394 return PageHeadHuge(page) && PagePrivate(&page[1]);
1395 }
1396
1397 /* never called for tail page */
1398 void set_page_huge_active(struct page *page)
1399 {
1400 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1401 SetPagePrivate(&page[1]);
1402 }
1403
1404 static void clear_page_huge_active(struct page *page)
1405 {
1406 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1407 ClearPagePrivate(&page[1]);
1408 }
1409
1410 /*
1411 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1412 * code
1413 */
1414 static inline bool PageHugeTemporary(struct page *page)
1415 {
1416 if (!PageHuge(page))
1417 return false;
1418
1419 return (unsigned long)page[2].mapping == -1U;
1420 }
1421
1422 static inline void SetPageHugeTemporary(struct page *page)
1423 {
1424 page[2].mapping = (void *)-1U;
1425 }
1426
1427 static inline void ClearPageHugeTemporary(struct page *page)
1428 {
1429 page[2].mapping = NULL;
1430 }
1431
1432 static void __free_huge_page(struct page *page)
1433 {
1434 /*
1435 * Can't pass hstate in here because it is called from the
1436 * compound page destructor.
1437 */
1438 struct hstate *h = page_hstate(page);
1439 int nid = page_to_nid(page);
1440 struct hugepage_subpool *spool =
1441 (struct hugepage_subpool *)page_private(page);
1442 bool restore_reserve;
1443
1444 VM_BUG_ON_PAGE(page_count(page), page);
1445 VM_BUG_ON_PAGE(page_mapcount(page), page);
1446
1447 set_page_private(page, 0);
1448 page->mapping = NULL;
1449 restore_reserve = PagePrivate(page);
1450 ClearPagePrivate(page);
1451
1452 /*
1453 * If PagePrivate() was set on page, page allocation consumed a
1454 * reservation. If the page was associated with a subpool, there
1455 * would have been a page reserved in the subpool before allocation
1456 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1457 * reservtion, do not call hugepage_subpool_put_pages() as this will
1458 * remove the reserved page from the subpool.
1459 */
1460 if (!restore_reserve) {
1461 /*
1462 * A return code of zero implies that the subpool will be
1463 * under its minimum size if the reservation is not restored
1464 * after page is free. Therefore, force restore_reserve
1465 * operation.
1466 */
1467 if (hugepage_subpool_put_pages(spool, 1) == 0)
1468 restore_reserve = true;
1469 }
1470
1471 spin_lock(&hugetlb_lock);
1472 clear_page_huge_active(page);
1473 hugetlb_cgroup_uncharge_page(hstate_index(h),
1474 pages_per_huge_page(h), page);
1475 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1476 pages_per_huge_page(h), page);
1477 if (restore_reserve)
1478 h->resv_huge_pages++;
1479
1480 if (PageHugeTemporary(page)) {
1481 list_del(&page->lru);
1482 ClearPageHugeTemporary(page);
1483 update_and_free_page(h, page);
1484 } else if (h->surplus_huge_pages_node[nid]) {
1485 /* remove the page from active list */
1486 list_del(&page->lru);
1487 update_and_free_page(h, page);
1488 h->surplus_huge_pages--;
1489 h->surplus_huge_pages_node[nid]--;
1490 } else {
1491 arch_clear_hugepage_flags(page);
1492 enqueue_huge_page(h, page);
1493 }
1494 spin_unlock(&hugetlb_lock);
1495 }
1496
1497 /*
1498 * As free_huge_page() can be called from a non-task context, we have
1499 * to defer the actual freeing in a workqueue to prevent potential
1500 * hugetlb_lock deadlock.
1501 *
1502 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1503 * be freed and frees them one-by-one. As the page->mapping pointer is
1504 * going to be cleared in __free_huge_page() anyway, it is reused as the
1505 * llist_node structure of a lockless linked list of huge pages to be freed.
1506 */
1507 static LLIST_HEAD(hpage_freelist);
1508
1509 static void free_hpage_workfn(struct work_struct *work)
1510 {
1511 struct llist_node *node;
1512 struct page *page;
1513
1514 node = llist_del_all(&hpage_freelist);
1515
1516 while (node) {
1517 page = container_of((struct address_space **)node,
1518 struct page, mapping);
1519 node = node->next;
1520 __free_huge_page(page);
1521 }
1522 }
1523 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1524
1525 void free_huge_page(struct page *page)
1526 {
1527 /*
1528 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1529 */
1530 if (!in_task()) {
1531 /*
1532 * Only call schedule_work() if hpage_freelist is previously
1533 * empty. Otherwise, schedule_work() had been called but the
1534 * workfn hasn't retrieved the list yet.
1535 */
1536 if (llist_add((struct llist_node *)&page->mapping,
1537 &hpage_freelist))
1538 schedule_work(&free_hpage_work);
1539 return;
1540 }
1541
1542 __free_huge_page(page);
1543 }
1544
1545 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1546 {
1547 INIT_LIST_HEAD(&page->lru);
1548 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1549 set_hugetlb_cgroup(page, NULL);
1550 set_hugetlb_cgroup_rsvd(page, NULL);
1551 spin_lock(&hugetlb_lock);
1552 h->nr_huge_pages++;
1553 h->nr_huge_pages_node[nid]++;
1554 ClearPageHugeFreed(page);
1555 spin_unlock(&hugetlb_lock);
1556 }
1557
1558 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1559 {
1560 int i;
1561 int nr_pages = 1 << order;
1562 struct page *p = page + 1;
1563
1564 /* we rely on prep_new_huge_page to set the destructor */
1565 set_compound_order(page, order);
1566 __ClearPageReserved(page);
1567 __SetPageHead(page);
1568 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1569 /*
1570 * For gigantic hugepages allocated through bootmem at
1571 * boot, it's safer to be consistent with the not-gigantic
1572 * hugepages and clear the PG_reserved bit from all tail pages
1573 * too. Otherwise drivers using get_user_pages() to access tail
1574 * pages may get the reference counting wrong if they see
1575 * PG_reserved set on a tail page (despite the head page not
1576 * having PG_reserved set). Enforcing this consistency between
1577 * head and tail pages allows drivers to optimize away a check
1578 * on the head page when they need know if put_page() is needed
1579 * after get_user_pages().
1580 */
1581 __ClearPageReserved(p);
1582 set_page_count(p, 0);
1583 set_compound_head(p, page);
1584 }
1585 atomic_set(compound_mapcount_ptr(page), -1);
1586
1587 if (hpage_pincount_available(page))
1588 atomic_set(compound_pincount_ptr(page), 0);
1589 }
1590
1591 /*
1592 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1593 * transparent huge pages. See the PageTransHuge() documentation for more
1594 * details.
1595 */
1596 int PageHuge(struct page *page)
1597 {
1598 if (!PageCompound(page))
1599 return 0;
1600
1601 page = compound_head(page);
1602 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1603 }
1604 EXPORT_SYMBOL_GPL(PageHuge);
1605
1606 /*
1607 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1608 * normal or transparent huge pages.
1609 */
1610 int PageHeadHuge(struct page *page_head)
1611 {
1612 if (!PageHead(page_head))
1613 return 0;
1614
1615 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1616 }
1617
1618 /*
1619 * Find and lock address space (mapping) in write mode.
1620 *
1621 * Upon entry, the page is locked which means that page_mapping() is
1622 * stable. Due to locking order, we can only trylock_write. If we can
1623 * not get the lock, simply return NULL to caller.
1624 */
1625 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1626 {
1627 struct address_space *mapping = page_mapping(hpage);
1628
1629 if (!mapping)
1630 return mapping;
1631
1632 if (i_mmap_trylock_write(mapping))
1633 return mapping;
1634
1635 return NULL;
1636 }
1637
1638 pgoff_t __basepage_index(struct page *page)
1639 {
1640 struct page *page_head = compound_head(page);
1641 pgoff_t index = page_index(page_head);
1642 unsigned long compound_idx;
1643
1644 if (!PageHuge(page_head))
1645 return page_index(page);
1646
1647 if (compound_order(page_head) >= MAX_ORDER)
1648 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1649 else
1650 compound_idx = page - page_head;
1651
1652 return (index << compound_order(page_head)) + compound_idx;
1653 }
1654
1655 static struct page *alloc_buddy_huge_page(struct hstate *h,
1656 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1657 nodemask_t *node_alloc_noretry)
1658 {
1659 int order = huge_page_order(h);
1660 struct page *page;
1661 bool alloc_try_hard = true;
1662
1663 /*
1664 * By default we always try hard to allocate the page with
1665 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1666 * a loop (to adjust global huge page counts) and previous allocation
1667 * failed, do not continue to try hard on the same node. Use the
1668 * node_alloc_noretry bitmap to manage this state information.
1669 */
1670 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1671 alloc_try_hard = false;
1672 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1673 if (alloc_try_hard)
1674 gfp_mask |= __GFP_RETRY_MAYFAIL;
1675 if (nid == NUMA_NO_NODE)
1676 nid = numa_mem_id();
1677 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1678 if (page)
1679 __count_vm_event(HTLB_BUDDY_PGALLOC);
1680 else
1681 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1682
1683 /*
1684 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1685 * indicates an overall state change. Clear bit so that we resume
1686 * normal 'try hard' allocations.
1687 */
1688 if (node_alloc_noretry && page && !alloc_try_hard)
1689 node_clear(nid, *node_alloc_noretry);
1690
1691 /*
1692 * If we tried hard to get a page but failed, set bit so that
1693 * subsequent attempts will not try as hard until there is an
1694 * overall state change.
1695 */
1696 if (node_alloc_noretry && !page && alloc_try_hard)
1697 node_set(nid, *node_alloc_noretry);
1698
1699 return page;
1700 }
1701
1702 /*
1703 * Common helper to allocate a fresh hugetlb page. All specific allocators
1704 * should use this function to get new hugetlb pages
1705 */
1706 static struct page *alloc_fresh_huge_page(struct hstate *h,
1707 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1708 nodemask_t *node_alloc_noretry)
1709 {
1710 struct page *page;
1711
1712 if (hstate_is_gigantic(h))
1713 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1714 else
1715 page = alloc_buddy_huge_page(h, gfp_mask,
1716 nid, nmask, node_alloc_noretry);
1717 if (!page)
1718 return NULL;
1719
1720 if (hstate_is_gigantic(h))
1721 prep_compound_gigantic_page(page, huge_page_order(h));
1722 prep_new_huge_page(h, page, page_to_nid(page));
1723
1724 return page;
1725 }
1726
1727 /*
1728 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1729 * manner.
1730 */
1731 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1732 nodemask_t *node_alloc_noretry)
1733 {
1734 struct page *page;
1735 int nr_nodes, node;
1736 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1737
1738 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1739 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1740 node_alloc_noretry);
1741 if (page)
1742 break;
1743 }
1744
1745 if (!page)
1746 return 0;
1747
1748 put_page(page); /* free it into the hugepage allocator */
1749
1750 return 1;
1751 }
1752
1753 /*
1754 * Free huge page from pool from next node to free.
1755 * Attempt to keep persistent huge pages more or less
1756 * balanced over allowed nodes.
1757 * Called with hugetlb_lock locked.
1758 */
1759 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1760 bool acct_surplus)
1761 {
1762 int nr_nodes, node;
1763 int ret = 0;
1764
1765 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1766 /*
1767 * If we're returning unused surplus pages, only examine
1768 * nodes with surplus pages.
1769 */
1770 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1771 !list_empty(&h->hugepage_freelists[node])) {
1772 struct page *page =
1773 list_entry(h->hugepage_freelists[node].next,
1774 struct page, lru);
1775 list_del(&page->lru);
1776 h->free_huge_pages--;
1777 h->free_huge_pages_node[node]--;
1778 if (acct_surplus) {
1779 h->surplus_huge_pages--;
1780 h->surplus_huge_pages_node[node]--;
1781 }
1782 update_and_free_page(h, page);
1783 ret = 1;
1784 break;
1785 }
1786 }
1787
1788 return ret;
1789 }
1790
1791 /*
1792 * Dissolve a given free hugepage into free buddy pages. This function does
1793 * nothing for in-use hugepages and non-hugepages.
1794 * This function returns values like below:
1795 *
1796 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1797 * (allocated or reserved.)
1798 * 0: successfully dissolved free hugepages or the page is not a
1799 * hugepage (considered as already dissolved)
1800 */
1801 int dissolve_free_huge_page(struct page *page)
1802 {
1803 int rc = -EBUSY;
1804
1805 retry:
1806 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1807 if (!PageHuge(page))
1808 return 0;
1809
1810 spin_lock(&hugetlb_lock);
1811 if (!PageHuge(page)) {
1812 rc = 0;
1813 goto out;
1814 }
1815
1816 if (!page_count(page)) {
1817 struct page *head = compound_head(page);
1818 struct hstate *h = page_hstate(head);
1819 int nid = page_to_nid(head);
1820 if (h->free_huge_pages - h->resv_huge_pages == 0)
1821 goto out;
1822
1823 /*
1824 * We should make sure that the page is already on the free list
1825 * when it is dissolved.
1826 */
1827 if (unlikely(!PageHugeFreed(head))) {
1828 spin_unlock(&hugetlb_lock);
1829 cond_resched();
1830
1831 /*
1832 * Theoretically, we should return -EBUSY when we
1833 * encounter this race. In fact, we have a chance
1834 * to successfully dissolve the page if we do a
1835 * retry. Because the race window is quite small.
1836 * If we seize this opportunity, it is an optimization
1837 * for increasing the success rate of dissolving page.
1838 */
1839 goto retry;
1840 }
1841
1842 /*
1843 * Move PageHWPoison flag from head page to the raw error page,
1844 * which makes any subpages rather than the error page reusable.
1845 */
1846 if (PageHWPoison(head) && page != head) {
1847 SetPageHWPoison(page);
1848 ClearPageHWPoison(head);
1849 }
1850 list_del(&head->lru);
1851 h->free_huge_pages--;
1852 h->free_huge_pages_node[nid]--;
1853 h->max_huge_pages--;
1854 update_and_free_page(h, head);
1855 rc = 0;
1856 }
1857 out:
1858 spin_unlock(&hugetlb_lock);
1859 return rc;
1860 }
1861
1862 /*
1863 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1864 * make specified memory blocks removable from the system.
1865 * Note that this will dissolve a free gigantic hugepage completely, if any
1866 * part of it lies within the given range.
1867 * Also note that if dissolve_free_huge_page() returns with an error, all
1868 * free hugepages that were dissolved before that error are lost.
1869 */
1870 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1871 {
1872 unsigned long pfn;
1873 struct page *page;
1874 int rc = 0;
1875
1876 if (!hugepages_supported())
1877 return rc;
1878
1879 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1880 page = pfn_to_page(pfn);
1881 rc = dissolve_free_huge_page(page);
1882 if (rc)
1883 break;
1884 }
1885
1886 return rc;
1887 }
1888
1889 /*
1890 * Allocates a fresh surplus page from the page allocator.
1891 */
1892 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1893 int nid, nodemask_t *nmask)
1894 {
1895 struct page *page = NULL;
1896
1897 if (hstate_is_gigantic(h))
1898 return NULL;
1899
1900 spin_lock(&hugetlb_lock);
1901 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1902 goto out_unlock;
1903 spin_unlock(&hugetlb_lock);
1904
1905 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1906 if (!page)
1907 return NULL;
1908
1909 spin_lock(&hugetlb_lock);
1910 /*
1911 * We could have raced with the pool size change.
1912 * Double check that and simply deallocate the new page
1913 * if we would end up overcommiting the surpluses. Abuse
1914 * temporary page to workaround the nasty free_huge_page
1915 * codeflow
1916 */
1917 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1918 SetPageHugeTemporary(page);
1919 spin_unlock(&hugetlb_lock);
1920 put_page(page);
1921 return NULL;
1922 } else {
1923 h->surplus_huge_pages++;
1924 h->surplus_huge_pages_node[page_to_nid(page)]++;
1925 }
1926
1927 out_unlock:
1928 spin_unlock(&hugetlb_lock);
1929
1930 return page;
1931 }
1932
1933 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1934 int nid, nodemask_t *nmask)
1935 {
1936 struct page *page;
1937
1938 if (hstate_is_gigantic(h))
1939 return NULL;
1940
1941 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1942 if (!page)
1943 return NULL;
1944
1945 /*
1946 * We do not account these pages as surplus because they are only
1947 * temporary and will be released properly on the last reference
1948 */
1949 SetPageHugeTemporary(page);
1950
1951 return page;
1952 }
1953
1954 /*
1955 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1956 */
1957 static
1958 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1959 struct vm_area_struct *vma, unsigned long addr)
1960 {
1961 struct page *page;
1962 struct mempolicy *mpol;
1963 gfp_t gfp_mask = htlb_alloc_mask(h);
1964 int nid;
1965 nodemask_t *nodemask;
1966
1967 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1968 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1969 mpol_cond_put(mpol);
1970
1971 return page;
1972 }
1973
1974 /* page migration callback function */
1975 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1976 nodemask_t *nmask, gfp_t gfp_mask)
1977 {
1978 spin_lock(&hugetlb_lock);
1979 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1980 struct page *page;
1981
1982 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1983 if (page) {
1984 spin_unlock(&hugetlb_lock);
1985 return page;
1986 }
1987 }
1988 spin_unlock(&hugetlb_lock);
1989
1990 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1991 }
1992
1993 /* mempolicy aware migration callback */
1994 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1995 unsigned long address)
1996 {
1997 struct mempolicy *mpol;
1998 nodemask_t *nodemask;
1999 struct page *page;
2000 gfp_t gfp_mask;
2001 int node;
2002
2003 gfp_mask = htlb_alloc_mask(h);
2004 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2005 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2006 mpol_cond_put(mpol);
2007
2008 return page;
2009 }
2010
2011 /*
2012 * Increase the hugetlb pool such that it can accommodate a reservation
2013 * of size 'delta'.
2014 */
2015 static int gather_surplus_pages(struct hstate *h, long delta)
2016 __must_hold(&hugetlb_lock)
2017 {
2018 struct list_head surplus_list;
2019 struct page *page, *tmp;
2020 int ret;
2021 long i;
2022 long needed, allocated;
2023 bool alloc_ok = true;
2024
2025 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2026 if (needed <= 0) {
2027 h->resv_huge_pages += delta;
2028 return 0;
2029 }
2030
2031 allocated = 0;
2032 INIT_LIST_HEAD(&surplus_list);
2033
2034 ret = -ENOMEM;
2035 retry:
2036 spin_unlock(&hugetlb_lock);
2037 for (i = 0; i < needed; i++) {
2038 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2039 NUMA_NO_NODE, NULL);
2040 if (!page) {
2041 alloc_ok = false;
2042 break;
2043 }
2044 list_add(&page->lru, &surplus_list);
2045 cond_resched();
2046 }
2047 allocated += i;
2048
2049 /*
2050 * After retaking hugetlb_lock, we need to recalculate 'needed'
2051 * because either resv_huge_pages or free_huge_pages may have changed.
2052 */
2053 spin_lock(&hugetlb_lock);
2054 needed = (h->resv_huge_pages + delta) -
2055 (h->free_huge_pages + allocated);
2056 if (needed > 0) {
2057 if (alloc_ok)
2058 goto retry;
2059 /*
2060 * We were not able to allocate enough pages to
2061 * satisfy the entire reservation so we free what
2062 * we've allocated so far.
2063 */
2064 goto free;
2065 }
2066 /*
2067 * The surplus_list now contains _at_least_ the number of extra pages
2068 * needed to accommodate the reservation. Add the appropriate number
2069 * of pages to the hugetlb pool and free the extras back to the buddy
2070 * allocator. Commit the entire reservation here to prevent another
2071 * process from stealing the pages as they are added to the pool but
2072 * before they are reserved.
2073 */
2074 needed += allocated;
2075 h->resv_huge_pages += delta;
2076 ret = 0;
2077
2078 /* Free the needed pages to the hugetlb pool */
2079 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2080 int zeroed;
2081
2082 if ((--needed) < 0)
2083 break;
2084 /*
2085 * This page is now managed by the hugetlb allocator and has
2086 * no users -- drop the buddy allocator's reference.
2087 */
2088 zeroed = put_page_testzero(page);
2089 VM_BUG_ON_PAGE(!zeroed, page);
2090 enqueue_huge_page(h, page);
2091 }
2092 free:
2093 spin_unlock(&hugetlb_lock);
2094
2095 /* Free unnecessary surplus pages to the buddy allocator */
2096 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2097 put_page(page);
2098 spin_lock(&hugetlb_lock);
2099
2100 return ret;
2101 }
2102
2103 /*
2104 * This routine has two main purposes:
2105 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2106 * in unused_resv_pages. This corresponds to the prior adjustments made
2107 * to the associated reservation map.
2108 * 2) Free any unused surplus pages that may have been allocated to satisfy
2109 * the reservation. As many as unused_resv_pages may be freed.
2110 *
2111 * Called with hugetlb_lock held. However, the lock could be dropped (and
2112 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2113 * we must make sure nobody else can claim pages we are in the process of
2114 * freeing. Do this by ensuring resv_huge_page always is greater than the
2115 * number of huge pages we plan to free when dropping the lock.
2116 */
2117 static void return_unused_surplus_pages(struct hstate *h,
2118 unsigned long unused_resv_pages)
2119 {
2120 unsigned long nr_pages;
2121
2122 /* Cannot return gigantic pages currently */
2123 if (hstate_is_gigantic(h))
2124 goto out;
2125
2126 /*
2127 * Part (or even all) of the reservation could have been backed
2128 * by pre-allocated pages. Only free surplus pages.
2129 */
2130 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2131
2132 /*
2133 * We want to release as many surplus pages as possible, spread
2134 * evenly across all nodes with memory. Iterate across these nodes
2135 * until we can no longer free unreserved surplus pages. This occurs
2136 * when the nodes with surplus pages have no free pages.
2137 * free_pool_huge_page() will balance the freed pages across the
2138 * on-line nodes with memory and will handle the hstate accounting.
2139 *
2140 * Note that we decrement resv_huge_pages as we free the pages. If
2141 * we drop the lock, resv_huge_pages will still be sufficiently large
2142 * to cover subsequent pages we may free.
2143 */
2144 while (nr_pages--) {
2145 h->resv_huge_pages--;
2146 unused_resv_pages--;
2147 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2148 goto out;
2149 cond_resched_lock(&hugetlb_lock);
2150 }
2151
2152 out:
2153 /* Fully uncommit the reservation */
2154 h->resv_huge_pages -= unused_resv_pages;
2155 }
2156
2157
2158 /*
2159 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2160 * are used by the huge page allocation routines to manage reservations.
2161 *
2162 * vma_needs_reservation is called to determine if the huge page at addr
2163 * within the vma has an associated reservation. If a reservation is
2164 * needed, the value 1 is returned. The caller is then responsible for
2165 * managing the global reservation and subpool usage counts. After
2166 * the huge page has been allocated, vma_commit_reservation is called
2167 * to add the page to the reservation map. If the page allocation fails,
2168 * the reservation must be ended instead of committed. vma_end_reservation
2169 * is called in such cases.
2170 *
2171 * In the normal case, vma_commit_reservation returns the same value
2172 * as the preceding vma_needs_reservation call. The only time this
2173 * is not the case is if a reserve map was changed between calls. It
2174 * is the responsibility of the caller to notice the difference and
2175 * take appropriate action.
2176 *
2177 * vma_add_reservation is used in error paths where a reservation must
2178 * be restored when a newly allocated huge page must be freed. It is
2179 * to be called after calling vma_needs_reservation to determine if a
2180 * reservation exists.
2181 */
2182 enum vma_resv_mode {
2183 VMA_NEEDS_RESV,
2184 VMA_COMMIT_RESV,
2185 VMA_END_RESV,
2186 VMA_ADD_RESV,
2187 };
2188 static long __vma_reservation_common(struct hstate *h,
2189 struct vm_area_struct *vma, unsigned long addr,
2190 enum vma_resv_mode mode)
2191 {
2192 struct resv_map *resv;
2193 pgoff_t idx;
2194 long ret;
2195 long dummy_out_regions_needed;
2196
2197 resv = vma_resv_map(vma);
2198 if (!resv)
2199 return 1;
2200
2201 idx = vma_hugecache_offset(h, vma, addr);
2202 switch (mode) {
2203 case VMA_NEEDS_RESV:
2204 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2205 /* We assume that vma_reservation_* routines always operate on
2206 * 1 page, and that adding to resv map a 1 page entry can only
2207 * ever require 1 region.
2208 */
2209 VM_BUG_ON(dummy_out_regions_needed != 1);
2210 break;
2211 case VMA_COMMIT_RESV:
2212 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2213 /* region_add calls of range 1 should never fail. */
2214 VM_BUG_ON(ret < 0);
2215 break;
2216 case VMA_END_RESV:
2217 region_abort(resv, idx, idx + 1, 1);
2218 ret = 0;
2219 break;
2220 case VMA_ADD_RESV:
2221 if (vma->vm_flags & VM_MAYSHARE) {
2222 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2223 /* region_add calls of range 1 should never fail. */
2224 VM_BUG_ON(ret < 0);
2225 } else {
2226 region_abort(resv, idx, idx + 1, 1);
2227 ret = region_del(resv, idx, idx + 1);
2228 }
2229 break;
2230 default:
2231 BUG();
2232 }
2233
2234 if (vma->vm_flags & VM_MAYSHARE)
2235 return ret;
2236 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2237 /*
2238 * In most cases, reserves always exist for private mappings.
2239 * However, a file associated with mapping could have been
2240 * hole punched or truncated after reserves were consumed.
2241 * As subsequent fault on such a range will not use reserves.
2242 * Subtle - The reserve map for private mappings has the
2243 * opposite meaning than that of shared mappings. If NO
2244 * entry is in the reserve map, it means a reservation exists.
2245 * If an entry exists in the reserve map, it means the
2246 * reservation has already been consumed. As a result, the
2247 * return value of this routine is the opposite of the
2248 * value returned from reserve map manipulation routines above.
2249 */
2250 if (ret)
2251 return 0;
2252 else
2253 return 1;
2254 }
2255 else
2256 return ret < 0 ? ret : 0;
2257 }
2258
2259 static long vma_needs_reservation(struct hstate *h,
2260 struct vm_area_struct *vma, unsigned long addr)
2261 {
2262 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2263 }
2264
2265 static long vma_commit_reservation(struct hstate *h,
2266 struct vm_area_struct *vma, unsigned long addr)
2267 {
2268 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2269 }
2270
2271 static void vma_end_reservation(struct hstate *h,
2272 struct vm_area_struct *vma, unsigned long addr)
2273 {
2274 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2275 }
2276
2277 static long vma_add_reservation(struct hstate *h,
2278 struct vm_area_struct *vma, unsigned long addr)
2279 {
2280 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2281 }
2282
2283 /*
2284 * This routine is called to restore a reservation on error paths. In the
2285 * specific error paths, a huge page was allocated (via alloc_huge_page)
2286 * and is about to be freed. If a reservation for the page existed,
2287 * alloc_huge_page would have consumed the reservation and set PagePrivate
2288 * in the newly allocated page. When the page is freed via free_huge_page,
2289 * the global reservation count will be incremented if PagePrivate is set.
2290 * However, free_huge_page can not adjust the reserve map. Adjust the
2291 * reserve map here to be consistent with global reserve count adjustments
2292 * to be made by free_huge_page.
2293 */
2294 static void restore_reserve_on_error(struct hstate *h,
2295 struct vm_area_struct *vma, unsigned long address,
2296 struct page *page)
2297 {
2298 if (unlikely(PagePrivate(page))) {
2299 long rc = vma_needs_reservation(h, vma, address);
2300
2301 if (unlikely(rc < 0)) {
2302 /*
2303 * Rare out of memory condition in reserve map
2304 * manipulation. Clear PagePrivate so that
2305 * global reserve count will not be incremented
2306 * by free_huge_page. This will make it appear
2307 * as though the reservation for this page was
2308 * consumed. This may prevent the task from
2309 * faulting in the page at a later time. This
2310 * is better than inconsistent global huge page
2311 * accounting of reserve counts.
2312 */
2313 ClearPagePrivate(page);
2314 } else if (rc) {
2315 rc = vma_add_reservation(h, vma, address);
2316 if (unlikely(rc < 0))
2317 /*
2318 * See above comment about rare out of
2319 * memory condition.
2320 */
2321 ClearPagePrivate(page);
2322 } else
2323 vma_end_reservation(h, vma, address);
2324 }
2325 }
2326
2327 struct page *alloc_huge_page(struct vm_area_struct *vma,
2328 unsigned long addr, int avoid_reserve)
2329 {
2330 struct hugepage_subpool *spool = subpool_vma(vma);
2331 struct hstate *h = hstate_vma(vma);
2332 struct page *page;
2333 long map_chg, map_commit;
2334 long gbl_chg;
2335 int ret, idx;
2336 struct hugetlb_cgroup *h_cg;
2337 bool deferred_reserve;
2338
2339 idx = hstate_index(h);
2340 /*
2341 * Examine the region/reserve map to determine if the process
2342 * has a reservation for the page to be allocated. A return
2343 * code of zero indicates a reservation exists (no change).
2344 */
2345 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2346 if (map_chg < 0)
2347 return ERR_PTR(-ENOMEM);
2348
2349 /*
2350 * Processes that did not create the mapping will have no
2351 * reserves as indicated by the region/reserve map. Check
2352 * that the allocation will not exceed the subpool limit.
2353 * Allocations for MAP_NORESERVE mappings also need to be
2354 * checked against any subpool limit.
2355 */
2356 if (map_chg || avoid_reserve) {
2357 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2358 if (gbl_chg < 0) {
2359 vma_end_reservation(h, vma, addr);
2360 return ERR_PTR(-ENOSPC);
2361 }
2362
2363 /*
2364 * Even though there was no reservation in the region/reserve
2365 * map, there could be reservations associated with the
2366 * subpool that can be used. This would be indicated if the
2367 * return value of hugepage_subpool_get_pages() is zero.
2368 * However, if avoid_reserve is specified we still avoid even
2369 * the subpool reservations.
2370 */
2371 if (avoid_reserve)
2372 gbl_chg = 1;
2373 }
2374
2375 /* If this allocation is not consuming a reservation, charge it now.
2376 */
2377 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2378 if (deferred_reserve) {
2379 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2380 idx, pages_per_huge_page(h), &h_cg);
2381 if (ret)
2382 goto out_subpool_put;
2383 }
2384
2385 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2386 if (ret)
2387 goto out_uncharge_cgroup_reservation;
2388
2389 spin_lock(&hugetlb_lock);
2390 /*
2391 * glb_chg is passed to indicate whether or not a page must be taken
2392 * from the global free pool (global change). gbl_chg == 0 indicates
2393 * a reservation exists for the allocation.
2394 */
2395 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2396 if (!page) {
2397 spin_unlock(&hugetlb_lock);
2398 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2399 if (!page)
2400 goto out_uncharge_cgroup;
2401 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2402 SetPagePrivate(page);
2403 h->resv_huge_pages--;
2404 }
2405 spin_lock(&hugetlb_lock);
2406 list_add(&page->lru, &h->hugepage_activelist);
2407 /* Fall through */
2408 }
2409 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2410 /* If allocation is not consuming a reservation, also store the
2411 * hugetlb_cgroup pointer on the page.
2412 */
2413 if (deferred_reserve) {
2414 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2415 h_cg, page);
2416 }
2417
2418 spin_unlock(&hugetlb_lock);
2419
2420 set_page_private(page, (unsigned long)spool);
2421
2422 map_commit = vma_commit_reservation(h, vma, addr);
2423 if (unlikely(map_chg > map_commit)) {
2424 /*
2425 * The page was added to the reservation map between
2426 * vma_needs_reservation and vma_commit_reservation.
2427 * This indicates a race with hugetlb_reserve_pages.
2428 * Adjust for the subpool count incremented above AND
2429 * in hugetlb_reserve_pages for the same page. Also,
2430 * the reservation count added in hugetlb_reserve_pages
2431 * no longer applies.
2432 */
2433 long rsv_adjust;
2434
2435 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2436 hugetlb_acct_memory(h, -rsv_adjust);
2437 if (deferred_reserve)
2438 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2439 pages_per_huge_page(h), page);
2440 }
2441 return page;
2442
2443 out_uncharge_cgroup:
2444 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2445 out_uncharge_cgroup_reservation:
2446 if (deferred_reserve)
2447 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2448 h_cg);
2449 out_subpool_put:
2450 if (map_chg || avoid_reserve)
2451 hugepage_subpool_put_pages(spool, 1);
2452 vma_end_reservation(h, vma, addr);
2453 return ERR_PTR(-ENOSPC);
2454 }
2455
2456 int alloc_bootmem_huge_page(struct hstate *h)
2457 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2458 int __alloc_bootmem_huge_page(struct hstate *h)
2459 {
2460 struct huge_bootmem_page *m;
2461 int nr_nodes, node;
2462
2463 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2464 void *addr;
2465
2466 addr = memblock_alloc_try_nid_raw(
2467 huge_page_size(h), huge_page_size(h),
2468 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2469 if (addr) {
2470 /*
2471 * Use the beginning of the huge page to store the
2472 * huge_bootmem_page struct (until gather_bootmem
2473 * puts them into the mem_map).
2474 */
2475 m = addr;
2476 goto found;
2477 }
2478 }
2479 return 0;
2480
2481 found:
2482 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2483 /* Put them into a private list first because mem_map is not up yet */
2484 INIT_LIST_HEAD(&m->list);
2485 list_add(&m->list, &huge_boot_pages);
2486 m->hstate = h;
2487 return 1;
2488 }
2489
2490 static void __init prep_compound_huge_page(struct page *page,
2491 unsigned int order)
2492 {
2493 if (unlikely(order > (MAX_ORDER - 1)))
2494 prep_compound_gigantic_page(page, order);
2495 else
2496 prep_compound_page(page, order);
2497 }
2498
2499 /* Put bootmem huge pages into the standard lists after mem_map is up */
2500 static void __init gather_bootmem_prealloc(void)
2501 {
2502 struct huge_bootmem_page *m;
2503
2504 list_for_each_entry(m, &huge_boot_pages, list) {
2505 struct page *page = virt_to_page(m);
2506 struct hstate *h = m->hstate;
2507
2508 WARN_ON(page_count(page) != 1);
2509 prep_compound_huge_page(page, h->order);
2510 WARN_ON(PageReserved(page));
2511 prep_new_huge_page(h, page, page_to_nid(page));
2512 put_page(page); /* free it into the hugepage allocator */
2513
2514 /*
2515 * If we had gigantic hugepages allocated at boot time, we need
2516 * to restore the 'stolen' pages to totalram_pages in order to
2517 * fix confusing memory reports from free(1) and another
2518 * side-effects, like CommitLimit going negative.
2519 */
2520 if (hstate_is_gigantic(h))
2521 adjust_managed_page_count(page, 1 << h->order);
2522 cond_resched();
2523 }
2524 }
2525
2526 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2527 {
2528 unsigned long i;
2529 nodemask_t *node_alloc_noretry;
2530
2531 if (!hstate_is_gigantic(h)) {
2532 /*
2533 * Bit mask controlling how hard we retry per-node allocations.
2534 * Ignore errors as lower level routines can deal with
2535 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2536 * time, we are likely in bigger trouble.
2537 */
2538 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2539 GFP_KERNEL);
2540 } else {
2541 /* allocations done at boot time */
2542 node_alloc_noretry = NULL;
2543 }
2544
2545 /* bit mask controlling how hard we retry per-node allocations */
2546 if (node_alloc_noretry)
2547 nodes_clear(*node_alloc_noretry);
2548
2549 for (i = 0; i < h->max_huge_pages; ++i) {
2550 if (hstate_is_gigantic(h)) {
2551 if (hugetlb_cma_size) {
2552 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2553 goto free;
2554 }
2555 if (!alloc_bootmem_huge_page(h))
2556 break;
2557 } else if (!alloc_pool_huge_page(h,
2558 &node_states[N_MEMORY],
2559 node_alloc_noretry))
2560 break;
2561 cond_resched();
2562 }
2563 if (i < h->max_huge_pages) {
2564 char buf[32];
2565
2566 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2567 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2568 h->max_huge_pages, buf, i);
2569 h->max_huge_pages = i;
2570 }
2571 free:
2572 kfree(node_alloc_noretry);
2573 }
2574
2575 static void __init hugetlb_init_hstates(void)
2576 {
2577 struct hstate *h;
2578
2579 for_each_hstate(h) {
2580 if (minimum_order > huge_page_order(h))
2581 minimum_order = huge_page_order(h);
2582
2583 /* oversize hugepages were init'ed in early boot */
2584 if (!hstate_is_gigantic(h))
2585 hugetlb_hstate_alloc_pages(h);
2586 }
2587 VM_BUG_ON(minimum_order == UINT_MAX);
2588 }
2589
2590 static void __init report_hugepages(void)
2591 {
2592 struct hstate *h;
2593
2594 for_each_hstate(h) {
2595 char buf[32];
2596
2597 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2598 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2599 buf, h->free_huge_pages);
2600 }
2601 }
2602
2603 #ifdef CONFIG_HIGHMEM
2604 static void try_to_free_low(struct hstate *h, unsigned long count,
2605 nodemask_t *nodes_allowed)
2606 {
2607 int i;
2608
2609 if (hstate_is_gigantic(h))
2610 return;
2611
2612 for_each_node_mask(i, *nodes_allowed) {
2613 struct page *page, *next;
2614 struct list_head *freel = &h->hugepage_freelists[i];
2615 list_for_each_entry_safe(page, next, freel, lru) {
2616 if (count >= h->nr_huge_pages)
2617 return;
2618 if (PageHighMem(page))
2619 continue;
2620 list_del(&page->lru);
2621 update_and_free_page(h, page);
2622 h->free_huge_pages--;
2623 h->free_huge_pages_node[page_to_nid(page)]--;
2624 }
2625 }
2626 }
2627 #else
2628 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2629 nodemask_t *nodes_allowed)
2630 {
2631 }
2632 #endif
2633
2634 /*
2635 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2636 * balanced by operating on them in a round-robin fashion.
2637 * Returns 1 if an adjustment was made.
2638 */
2639 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2640 int delta)
2641 {
2642 int nr_nodes, node;
2643
2644 VM_BUG_ON(delta != -1 && delta != 1);
2645
2646 if (delta < 0) {
2647 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2648 if (h->surplus_huge_pages_node[node])
2649 goto found;
2650 }
2651 } else {
2652 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2653 if (h->surplus_huge_pages_node[node] <
2654 h->nr_huge_pages_node[node])
2655 goto found;
2656 }
2657 }
2658 return 0;
2659
2660 found:
2661 h->surplus_huge_pages += delta;
2662 h->surplus_huge_pages_node[node] += delta;
2663 return 1;
2664 }
2665
2666 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2667 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2668 nodemask_t *nodes_allowed)
2669 {
2670 unsigned long min_count, ret;
2671 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2672
2673 /*
2674 * Bit mask controlling how hard we retry per-node allocations.
2675 * If we can not allocate the bit mask, do not attempt to allocate
2676 * the requested huge pages.
2677 */
2678 if (node_alloc_noretry)
2679 nodes_clear(*node_alloc_noretry);
2680 else
2681 return -ENOMEM;
2682
2683 spin_lock(&hugetlb_lock);
2684
2685 /*
2686 * Check for a node specific request.
2687 * Changing node specific huge page count may require a corresponding
2688 * change to the global count. In any case, the passed node mask
2689 * (nodes_allowed) will restrict alloc/free to the specified node.
2690 */
2691 if (nid != NUMA_NO_NODE) {
2692 unsigned long old_count = count;
2693
2694 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2695 /*
2696 * User may have specified a large count value which caused the
2697 * above calculation to overflow. In this case, they wanted
2698 * to allocate as many huge pages as possible. Set count to
2699 * largest possible value to align with their intention.
2700 */
2701 if (count < old_count)
2702 count = ULONG_MAX;
2703 }
2704
2705 /*
2706 * Gigantic pages runtime allocation depend on the capability for large
2707 * page range allocation.
2708 * If the system does not provide this feature, return an error when
2709 * the user tries to allocate gigantic pages but let the user free the
2710 * boottime allocated gigantic pages.
2711 */
2712 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2713 if (count > persistent_huge_pages(h)) {
2714 spin_unlock(&hugetlb_lock);
2715 NODEMASK_FREE(node_alloc_noretry);
2716 return -EINVAL;
2717 }
2718 /* Fall through to decrease pool */
2719 }
2720
2721 /*
2722 * Increase the pool size
2723 * First take pages out of surplus state. Then make up the
2724 * remaining difference by allocating fresh huge pages.
2725 *
2726 * We might race with alloc_surplus_huge_page() here and be unable
2727 * to convert a surplus huge page to a normal huge page. That is
2728 * not critical, though, it just means the overall size of the
2729 * pool might be one hugepage larger than it needs to be, but
2730 * within all the constraints specified by the sysctls.
2731 */
2732 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2733 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2734 break;
2735 }
2736
2737 while (count > persistent_huge_pages(h)) {
2738 /*
2739 * If this allocation races such that we no longer need the
2740 * page, free_huge_page will handle it by freeing the page
2741 * and reducing the surplus.
2742 */
2743 spin_unlock(&hugetlb_lock);
2744
2745 /* yield cpu to avoid soft lockup */
2746 cond_resched();
2747
2748 ret = alloc_pool_huge_page(h, nodes_allowed,
2749 node_alloc_noretry);
2750 spin_lock(&hugetlb_lock);
2751 if (!ret)
2752 goto out;
2753
2754 /* Bail for signals. Probably ctrl-c from user */
2755 if (signal_pending(current))
2756 goto out;
2757 }
2758
2759 /*
2760 * Decrease the pool size
2761 * First return free pages to the buddy allocator (being careful
2762 * to keep enough around to satisfy reservations). Then place
2763 * pages into surplus state as needed so the pool will shrink
2764 * to the desired size as pages become free.
2765 *
2766 * By placing pages into the surplus state independent of the
2767 * overcommit value, we are allowing the surplus pool size to
2768 * exceed overcommit. There are few sane options here. Since
2769 * alloc_surplus_huge_page() is checking the global counter,
2770 * though, we'll note that we're not allowed to exceed surplus
2771 * and won't grow the pool anywhere else. Not until one of the
2772 * sysctls are changed, or the surplus pages go out of use.
2773 */
2774 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2775 min_count = max(count, min_count);
2776 try_to_free_low(h, min_count, nodes_allowed);
2777 while (min_count < persistent_huge_pages(h)) {
2778 if (!free_pool_huge_page(h, nodes_allowed, 0))
2779 break;
2780 cond_resched_lock(&hugetlb_lock);
2781 }
2782 while (count < persistent_huge_pages(h)) {
2783 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2784 break;
2785 }
2786 out:
2787 h->max_huge_pages = persistent_huge_pages(h);
2788 spin_unlock(&hugetlb_lock);
2789
2790 NODEMASK_FREE(node_alloc_noretry);
2791
2792 return 0;
2793 }
2794
2795 #define HSTATE_ATTR_RO(_name) \
2796 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2797
2798 #define HSTATE_ATTR(_name) \
2799 static struct kobj_attribute _name##_attr = \
2800 __ATTR(_name, 0644, _name##_show, _name##_store)
2801
2802 static struct kobject *hugepages_kobj;
2803 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2804
2805 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2806
2807 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2808 {
2809 int i;
2810
2811 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2812 if (hstate_kobjs[i] == kobj) {
2813 if (nidp)
2814 *nidp = NUMA_NO_NODE;
2815 return &hstates[i];
2816 }
2817
2818 return kobj_to_node_hstate(kobj, nidp);
2819 }
2820
2821 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2822 struct kobj_attribute *attr, char *buf)
2823 {
2824 struct hstate *h;
2825 unsigned long nr_huge_pages;
2826 int nid;
2827
2828 h = kobj_to_hstate(kobj, &nid);
2829 if (nid == NUMA_NO_NODE)
2830 nr_huge_pages = h->nr_huge_pages;
2831 else
2832 nr_huge_pages = h->nr_huge_pages_node[nid];
2833
2834 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2835 }
2836
2837 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2838 struct hstate *h, int nid,
2839 unsigned long count, size_t len)
2840 {
2841 int err;
2842 nodemask_t nodes_allowed, *n_mask;
2843
2844 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2845 return -EINVAL;
2846
2847 if (nid == NUMA_NO_NODE) {
2848 /*
2849 * global hstate attribute
2850 */
2851 if (!(obey_mempolicy &&
2852 init_nodemask_of_mempolicy(&nodes_allowed)))
2853 n_mask = &node_states[N_MEMORY];
2854 else
2855 n_mask = &nodes_allowed;
2856 } else {
2857 /*
2858 * Node specific request. count adjustment happens in
2859 * set_max_huge_pages() after acquiring hugetlb_lock.
2860 */
2861 init_nodemask_of_node(&nodes_allowed, nid);
2862 n_mask = &nodes_allowed;
2863 }
2864
2865 err = set_max_huge_pages(h, count, nid, n_mask);
2866
2867 return err ? err : len;
2868 }
2869
2870 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2871 struct kobject *kobj, const char *buf,
2872 size_t len)
2873 {
2874 struct hstate *h;
2875 unsigned long count;
2876 int nid;
2877 int err;
2878
2879 err = kstrtoul(buf, 10, &count);
2880 if (err)
2881 return err;
2882
2883 h = kobj_to_hstate(kobj, &nid);
2884 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2885 }
2886
2887 static ssize_t nr_hugepages_show(struct kobject *kobj,
2888 struct kobj_attribute *attr, char *buf)
2889 {
2890 return nr_hugepages_show_common(kobj, attr, buf);
2891 }
2892
2893 static ssize_t nr_hugepages_store(struct kobject *kobj,
2894 struct kobj_attribute *attr, const char *buf, size_t len)
2895 {
2896 return nr_hugepages_store_common(false, kobj, buf, len);
2897 }
2898 HSTATE_ATTR(nr_hugepages);
2899
2900 #ifdef CONFIG_NUMA
2901
2902 /*
2903 * hstate attribute for optionally mempolicy-based constraint on persistent
2904 * huge page alloc/free.
2905 */
2906 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2907 struct kobj_attribute *attr,
2908 char *buf)
2909 {
2910 return nr_hugepages_show_common(kobj, attr, buf);
2911 }
2912
2913 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2914 struct kobj_attribute *attr, const char *buf, size_t len)
2915 {
2916 return nr_hugepages_store_common(true, kobj, buf, len);
2917 }
2918 HSTATE_ATTR(nr_hugepages_mempolicy);
2919 #endif
2920
2921
2922 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2923 struct kobj_attribute *attr, char *buf)
2924 {
2925 struct hstate *h = kobj_to_hstate(kobj, NULL);
2926 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2927 }
2928
2929 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2930 struct kobj_attribute *attr, const char *buf, size_t count)
2931 {
2932 int err;
2933 unsigned long input;
2934 struct hstate *h = kobj_to_hstate(kobj, NULL);
2935
2936 if (hstate_is_gigantic(h))
2937 return -EINVAL;
2938
2939 err = kstrtoul(buf, 10, &input);
2940 if (err)
2941 return err;
2942
2943 spin_lock(&hugetlb_lock);
2944 h->nr_overcommit_huge_pages = input;
2945 spin_unlock(&hugetlb_lock);
2946
2947 return count;
2948 }
2949 HSTATE_ATTR(nr_overcommit_hugepages);
2950
2951 static ssize_t free_hugepages_show(struct kobject *kobj,
2952 struct kobj_attribute *attr, char *buf)
2953 {
2954 struct hstate *h;
2955 unsigned long free_huge_pages;
2956 int nid;
2957
2958 h = kobj_to_hstate(kobj, &nid);
2959 if (nid == NUMA_NO_NODE)
2960 free_huge_pages = h->free_huge_pages;
2961 else
2962 free_huge_pages = h->free_huge_pages_node[nid];
2963
2964 return sysfs_emit(buf, "%lu\n", free_huge_pages);
2965 }
2966 HSTATE_ATTR_RO(free_hugepages);
2967
2968 static ssize_t resv_hugepages_show(struct kobject *kobj,
2969 struct kobj_attribute *attr, char *buf)
2970 {
2971 struct hstate *h = kobj_to_hstate(kobj, NULL);
2972 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2973 }
2974 HSTATE_ATTR_RO(resv_hugepages);
2975
2976 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2977 struct kobj_attribute *attr, char *buf)
2978 {
2979 struct hstate *h;
2980 unsigned long surplus_huge_pages;
2981 int nid;
2982
2983 h = kobj_to_hstate(kobj, &nid);
2984 if (nid == NUMA_NO_NODE)
2985 surplus_huge_pages = h->surplus_huge_pages;
2986 else
2987 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2988
2989 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2990 }
2991 HSTATE_ATTR_RO(surplus_hugepages);
2992
2993 static struct attribute *hstate_attrs[] = {
2994 &nr_hugepages_attr.attr,
2995 &nr_overcommit_hugepages_attr.attr,
2996 &free_hugepages_attr.attr,
2997 &resv_hugepages_attr.attr,
2998 &surplus_hugepages_attr.attr,
2999 #ifdef CONFIG_NUMA
3000 &nr_hugepages_mempolicy_attr.attr,
3001 #endif
3002 NULL,
3003 };
3004
3005 static const struct attribute_group hstate_attr_group = {
3006 .attrs = hstate_attrs,
3007 };
3008
3009 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3010 struct kobject **hstate_kobjs,
3011 const struct attribute_group *hstate_attr_group)
3012 {
3013 int retval;
3014 int hi = hstate_index(h);
3015
3016 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3017 if (!hstate_kobjs[hi])
3018 return -ENOMEM;
3019
3020 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3021 if (retval) {
3022 kobject_put(hstate_kobjs[hi]);
3023 hstate_kobjs[hi] = NULL;
3024 }
3025
3026 return retval;
3027 }
3028
3029 static void __init hugetlb_sysfs_init(void)
3030 {
3031 struct hstate *h;
3032 int err;
3033
3034 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3035 if (!hugepages_kobj)
3036 return;
3037
3038 for_each_hstate(h) {
3039 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3040 hstate_kobjs, &hstate_attr_group);
3041 if (err)
3042 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3043 }
3044 }
3045
3046 #ifdef CONFIG_NUMA
3047
3048 /*
3049 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3050 * with node devices in node_devices[] using a parallel array. The array
3051 * index of a node device or _hstate == node id.
3052 * This is here to avoid any static dependency of the node device driver, in
3053 * the base kernel, on the hugetlb module.
3054 */
3055 struct node_hstate {
3056 struct kobject *hugepages_kobj;
3057 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3058 };
3059 static struct node_hstate node_hstates[MAX_NUMNODES];
3060
3061 /*
3062 * A subset of global hstate attributes for node devices
3063 */
3064 static struct attribute *per_node_hstate_attrs[] = {
3065 &nr_hugepages_attr.attr,
3066 &free_hugepages_attr.attr,
3067 &surplus_hugepages_attr.attr,
3068 NULL,
3069 };
3070
3071 static const struct attribute_group per_node_hstate_attr_group = {
3072 .attrs = per_node_hstate_attrs,
3073 };
3074
3075 /*
3076 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3077 * Returns node id via non-NULL nidp.
3078 */
3079 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3080 {
3081 int nid;
3082
3083 for (nid = 0; nid < nr_node_ids; nid++) {
3084 struct node_hstate *nhs = &node_hstates[nid];
3085 int i;
3086 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3087 if (nhs->hstate_kobjs[i] == kobj) {
3088 if (nidp)
3089 *nidp = nid;
3090 return &hstates[i];
3091 }
3092 }
3093
3094 BUG();
3095 return NULL;
3096 }
3097
3098 /*
3099 * Unregister hstate attributes from a single node device.
3100 * No-op if no hstate attributes attached.
3101 */
3102 static void hugetlb_unregister_node(struct node *node)
3103 {
3104 struct hstate *h;
3105 struct node_hstate *nhs = &node_hstates[node->dev.id];
3106
3107 if (!nhs->hugepages_kobj)
3108 return; /* no hstate attributes */
3109
3110 for_each_hstate(h) {
3111 int idx = hstate_index(h);
3112 if (nhs->hstate_kobjs[idx]) {
3113 kobject_put(nhs->hstate_kobjs[idx]);
3114 nhs->hstate_kobjs[idx] = NULL;
3115 }
3116 }
3117
3118 kobject_put(nhs->hugepages_kobj);
3119 nhs->hugepages_kobj = NULL;
3120 }
3121
3122
3123 /*
3124 * Register hstate attributes for a single node device.
3125 * No-op if attributes already registered.
3126 */
3127 static void hugetlb_register_node(struct node *node)
3128 {
3129 struct hstate *h;
3130 struct node_hstate *nhs = &node_hstates[node->dev.id];
3131 int err;
3132
3133 if (nhs->hugepages_kobj)
3134 return; /* already allocated */
3135
3136 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3137 &node->dev.kobj);
3138 if (!nhs->hugepages_kobj)
3139 return;
3140
3141 for_each_hstate(h) {
3142 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3143 nhs->hstate_kobjs,
3144 &per_node_hstate_attr_group);
3145 if (err) {
3146 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3147 h->name, node->dev.id);
3148 hugetlb_unregister_node(node);
3149 break;
3150 }
3151 }
3152 }
3153
3154 /*
3155 * hugetlb init time: register hstate attributes for all registered node
3156 * devices of nodes that have memory. All on-line nodes should have
3157 * registered their associated device by this time.
3158 */
3159 static void __init hugetlb_register_all_nodes(void)
3160 {
3161 int nid;
3162
3163 for_each_node_state(nid, N_MEMORY) {
3164 struct node *node = node_devices[nid];
3165 if (node->dev.id == nid)
3166 hugetlb_register_node(node);
3167 }
3168
3169 /*
3170 * Let the node device driver know we're here so it can
3171 * [un]register hstate attributes on node hotplug.
3172 */
3173 register_hugetlbfs_with_node(hugetlb_register_node,
3174 hugetlb_unregister_node);
3175 }
3176 #else /* !CONFIG_NUMA */
3177
3178 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3179 {
3180 BUG();
3181 if (nidp)
3182 *nidp = -1;
3183 return NULL;
3184 }
3185
3186 static void hugetlb_register_all_nodes(void) { }
3187
3188 #endif
3189
3190 static int __init hugetlb_init(void)
3191 {
3192 int i;
3193
3194 if (!hugepages_supported()) {
3195 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3196 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3197 return 0;
3198 }
3199
3200 /*
3201 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3202 * architectures depend on setup being done here.
3203 */
3204 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3205 if (!parsed_default_hugepagesz) {
3206 /*
3207 * If we did not parse a default huge page size, set
3208 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3209 * number of huge pages for this default size was implicitly
3210 * specified, set that here as well.
3211 * Note that the implicit setting will overwrite an explicit
3212 * setting. A warning will be printed in this case.
3213 */
3214 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3215 if (default_hstate_max_huge_pages) {
3216 if (default_hstate.max_huge_pages) {
3217 char buf[32];
3218
3219 string_get_size(huge_page_size(&default_hstate),
3220 1, STRING_UNITS_2, buf, 32);
3221 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3222 default_hstate.max_huge_pages, buf);
3223 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3224 default_hstate_max_huge_pages);
3225 }
3226 default_hstate.max_huge_pages =
3227 default_hstate_max_huge_pages;
3228 }
3229 }
3230
3231 hugetlb_cma_check();
3232 hugetlb_init_hstates();
3233 gather_bootmem_prealloc();
3234 report_hugepages();
3235
3236 hugetlb_sysfs_init();
3237 hugetlb_register_all_nodes();
3238 hugetlb_cgroup_file_init();
3239
3240 #ifdef CONFIG_SMP
3241 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3242 #else
3243 num_fault_mutexes = 1;
3244 #endif
3245 hugetlb_fault_mutex_table =
3246 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3247 GFP_KERNEL);
3248 BUG_ON(!hugetlb_fault_mutex_table);
3249
3250 for (i = 0; i < num_fault_mutexes; i++)
3251 mutex_init(&hugetlb_fault_mutex_table[i]);
3252 return 0;
3253 }
3254 subsys_initcall(hugetlb_init);
3255
3256 /* Overwritten by architectures with more huge page sizes */
3257 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3258 {
3259 return size == HPAGE_SIZE;
3260 }
3261
3262 void __init hugetlb_add_hstate(unsigned int order)
3263 {
3264 struct hstate *h;
3265 unsigned long i;
3266
3267 if (size_to_hstate(PAGE_SIZE << order)) {
3268 return;
3269 }
3270 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3271 BUG_ON(order == 0);
3272 h = &hstates[hugetlb_max_hstate++];
3273 h->order = order;
3274 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3275 for (i = 0; i < MAX_NUMNODES; ++i)
3276 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3277 INIT_LIST_HEAD(&h->hugepage_activelist);
3278 h->next_nid_to_alloc = first_memory_node;
3279 h->next_nid_to_free = first_memory_node;
3280 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3281 huge_page_size(h)/1024);
3282
3283 parsed_hstate = h;
3284 }
3285
3286 /*
3287 * hugepages command line processing
3288 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3289 * specification. If not, ignore the hugepages value. hugepages can also
3290 * be the first huge page command line option in which case it implicitly
3291 * specifies the number of huge pages for the default size.
3292 */
3293 static int __init hugepages_setup(char *s)
3294 {
3295 unsigned long *mhp;
3296 static unsigned long *last_mhp;
3297
3298 if (!parsed_valid_hugepagesz) {
3299 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3300 parsed_valid_hugepagesz = true;
3301 return 0;
3302 }
3303
3304 /*
3305 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3306 * yet, so this hugepages= parameter goes to the "default hstate".
3307 * Otherwise, it goes with the previously parsed hugepagesz or
3308 * default_hugepagesz.
3309 */
3310 else if (!hugetlb_max_hstate)
3311 mhp = &default_hstate_max_huge_pages;
3312 else
3313 mhp = &parsed_hstate->max_huge_pages;
3314
3315 if (mhp == last_mhp) {
3316 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3317 return 0;
3318 }
3319
3320 if (sscanf(s, "%lu", mhp) <= 0)
3321 *mhp = 0;
3322
3323 /*
3324 * Global state is always initialized later in hugetlb_init.
3325 * But we need to allocate >= MAX_ORDER hstates here early to still
3326 * use the bootmem allocator.
3327 */
3328 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3329 hugetlb_hstate_alloc_pages(parsed_hstate);
3330
3331 last_mhp = mhp;
3332
3333 return 1;
3334 }
3335 __setup("hugepages=", hugepages_setup);
3336
3337 /*
3338 * hugepagesz command line processing
3339 * A specific huge page size can only be specified once with hugepagesz.
3340 * hugepagesz is followed by hugepages on the command line. The global
3341 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3342 * hugepagesz argument was valid.
3343 */
3344 static int __init hugepagesz_setup(char *s)
3345 {
3346 unsigned long size;
3347 struct hstate *h;
3348
3349 parsed_valid_hugepagesz = false;
3350 size = (unsigned long)memparse(s, NULL);
3351
3352 if (!arch_hugetlb_valid_size(size)) {
3353 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3354 return 0;
3355 }
3356
3357 h = size_to_hstate(size);
3358 if (h) {
3359 /*
3360 * hstate for this size already exists. This is normally
3361 * an error, but is allowed if the existing hstate is the
3362 * default hstate. More specifically, it is only allowed if
3363 * the number of huge pages for the default hstate was not
3364 * previously specified.
3365 */
3366 if (!parsed_default_hugepagesz || h != &default_hstate ||
3367 default_hstate.max_huge_pages) {
3368 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3369 return 0;
3370 }
3371
3372 /*
3373 * No need to call hugetlb_add_hstate() as hstate already
3374 * exists. But, do set parsed_hstate so that a following
3375 * hugepages= parameter will be applied to this hstate.
3376 */
3377 parsed_hstate = h;
3378 parsed_valid_hugepagesz = true;
3379 return 1;
3380 }
3381
3382 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3383 parsed_valid_hugepagesz = true;
3384 return 1;
3385 }
3386 __setup("hugepagesz=", hugepagesz_setup);
3387
3388 /*
3389 * default_hugepagesz command line input
3390 * Only one instance of default_hugepagesz allowed on command line.
3391 */
3392 static int __init default_hugepagesz_setup(char *s)
3393 {
3394 unsigned long size;
3395
3396 parsed_valid_hugepagesz = false;
3397 if (parsed_default_hugepagesz) {
3398 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3399 return 0;
3400 }
3401
3402 size = (unsigned long)memparse(s, NULL);
3403
3404 if (!arch_hugetlb_valid_size(size)) {
3405 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3406 return 0;
3407 }
3408
3409 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3410 parsed_valid_hugepagesz = true;
3411 parsed_default_hugepagesz = true;
3412 default_hstate_idx = hstate_index(size_to_hstate(size));
3413
3414 /*
3415 * The number of default huge pages (for this size) could have been
3416 * specified as the first hugetlb parameter: hugepages=X. If so,
3417 * then default_hstate_max_huge_pages is set. If the default huge
3418 * page size is gigantic (>= MAX_ORDER), then the pages must be
3419 * allocated here from bootmem allocator.
3420 */
3421 if (default_hstate_max_huge_pages) {
3422 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3423 if (hstate_is_gigantic(&default_hstate))
3424 hugetlb_hstate_alloc_pages(&default_hstate);
3425 default_hstate_max_huge_pages = 0;
3426 }
3427
3428 return 1;
3429 }
3430 __setup("default_hugepagesz=", default_hugepagesz_setup);
3431
3432 static unsigned int allowed_mems_nr(struct hstate *h)
3433 {
3434 int node;
3435 unsigned int nr = 0;
3436 nodemask_t *mpol_allowed;
3437 unsigned int *array = h->free_huge_pages_node;
3438 gfp_t gfp_mask = htlb_alloc_mask(h);
3439
3440 mpol_allowed = policy_nodemask_current(gfp_mask);
3441
3442 for_each_node_mask(node, cpuset_current_mems_allowed) {
3443 if (!mpol_allowed ||
3444 (mpol_allowed && node_isset(node, *mpol_allowed)))
3445 nr += array[node];
3446 }
3447
3448 return nr;
3449 }
3450
3451 #ifdef CONFIG_SYSCTL
3452 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3453 void *buffer, size_t *length,
3454 loff_t *ppos, unsigned long *out)
3455 {
3456 struct ctl_table dup_table;
3457
3458 /*
3459 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3460 * can duplicate the @table and alter the duplicate of it.
3461 */
3462 dup_table = *table;
3463 dup_table.data = out;
3464
3465 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3466 }
3467
3468 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3469 struct ctl_table *table, int write,
3470 void *buffer, size_t *length, loff_t *ppos)
3471 {
3472 struct hstate *h = &default_hstate;
3473 unsigned long tmp = h->max_huge_pages;
3474 int ret;
3475
3476 if (!hugepages_supported())
3477 return -EOPNOTSUPP;
3478
3479 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3480 &tmp);
3481 if (ret)
3482 goto out;
3483
3484 if (write)
3485 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3486 NUMA_NO_NODE, tmp, *length);
3487 out:
3488 return ret;
3489 }
3490
3491 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3492 void *buffer, size_t *length, loff_t *ppos)
3493 {
3494
3495 return hugetlb_sysctl_handler_common(false, table, write,
3496 buffer, length, ppos);
3497 }
3498
3499 #ifdef CONFIG_NUMA
3500 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3501 void *buffer, size_t *length, loff_t *ppos)
3502 {
3503 return hugetlb_sysctl_handler_common(true, table, write,
3504 buffer, length, ppos);
3505 }
3506 #endif /* CONFIG_NUMA */
3507
3508 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3509 void *buffer, size_t *length, loff_t *ppos)
3510 {
3511 struct hstate *h = &default_hstate;
3512 unsigned long tmp;
3513 int ret;
3514
3515 if (!hugepages_supported())
3516 return -EOPNOTSUPP;
3517
3518 tmp = h->nr_overcommit_huge_pages;
3519
3520 if (write && hstate_is_gigantic(h))
3521 return -EINVAL;
3522
3523 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3524 &tmp);
3525 if (ret)
3526 goto out;
3527
3528 if (write) {
3529 spin_lock(&hugetlb_lock);
3530 h->nr_overcommit_huge_pages = tmp;
3531 spin_unlock(&hugetlb_lock);
3532 }
3533 out:
3534 return ret;
3535 }
3536
3537 #endif /* CONFIG_SYSCTL */
3538
3539 void hugetlb_report_meminfo(struct seq_file *m)
3540 {
3541 struct hstate *h;
3542 unsigned long total = 0;
3543
3544 if (!hugepages_supported())
3545 return;
3546
3547 for_each_hstate(h) {
3548 unsigned long count = h->nr_huge_pages;
3549
3550 total += (PAGE_SIZE << huge_page_order(h)) * count;
3551
3552 if (h == &default_hstate)
3553 seq_printf(m,
3554 "HugePages_Total: %5lu\n"
3555 "HugePages_Free: %5lu\n"
3556 "HugePages_Rsvd: %5lu\n"
3557 "HugePages_Surp: %5lu\n"
3558 "Hugepagesize: %8lu kB\n",
3559 count,
3560 h->free_huge_pages,
3561 h->resv_huge_pages,
3562 h->surplus_huge_pages,
3563 (PAGE_SIZE << huge_page_order(h)) / 1024);
3564 }
3565
3566 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3567 }
3568
3569 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3570 {
3571 struct hstate *h = &default_hstate;
3572
3573 if (!hugepages_supported())
3574 return 0;
3575
3576 return sysfs_emit_at(buf, len,
3577 "Node %d HugePages_Total: %5u\n"
3578 "Node %d HugePages_Free: %5u\n"
3579 "Node %d HugePages_Surp: %5u\n",
3580 nid, h->nr_huge_pages_node[nid],
3581 nid, h->free_huge_pages_node[nid],
3582 nid, h->surplus_huge_pages_node[nid]);
3583 }
3584
3585 void hugetlb_show_meminfo(void)
3586 {
3587 struct hstate *h;
3588 int nid;
3589
3590 if (!hugepages_supported())
3591 return;
3592
3593 for_each_node_state(nid, N_MEMORY)
3594 for_each_hstate(h)
3595 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3596 nid,
3597 h->nr_huge_pages_node[nid],
3598 h->free_huge_pages_node[nid],
3599 h->surplus_huge_pages_node[nid],
3600 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3601 }
3602
3603 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3604 {
3605 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3606 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3607 }
3608
3609 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3610 unsigned long hugetlb_total_pages(void)
3611 {
3612 struct hstate *h;
3613 unsigned long nr_total_pages = 0;
3614
3615 for_each_hstate(h)
3616 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3617 return nr_total_pages;
3618 }
3619
3620 static int hugetlb_acct_memory(struct hstate *h, long delta)
3621 {
3622 int ret = -ENOMEM;
3623
3624 spin_lock(&hugetlb_lock);
3625 /*
3626 * When cpuset is configured, it breaks the strict hugetlb page
3627 * reservation as the accounting is done on a global variable. Such
3628 * reservation is completely rubbish in the presence of cpuset because
3629 * the reservation is not checked against page availability for the
3630 * current cpuset. Application can still potentially OOM'ed by kernel
3631 * with lack of free htlb page in cpuset that the task is in.
3632 * Attempt to enforce strict accounting with cpuset is almost
3633 * impossible (or too ugly) because cpuset is too fluid that
3634 * task or memory node can be dynamically moved between cpusets.
3635 *
3636 * The change of semantics for shared hugetlb mapping with cpuset is
3637 * undesirable. However, in order to preserve some of the semantics,
3638 * we fall back to check against current free page availability as
3639 * a best attempt and hopefully to minimize the impact of changing
3640 * semantics that cpuset has.
3641 *
3642 * Apart from cpuset, we also have memory policy mechanism that
3643 * also determines from which node the kernel will allocate memory
3644 * in a NUMA system. So similar to cpuset, we also should consider
3645 * the memory policy of the current task. Similar to the description
3646 * above.
3647 */
3648 if (delta > 0) {
3649 if (gather_surplus_pages(h, delta) < 0)
3650 goto out;
3651
3652 if (delta > allowed_mems_nr(h)) {
3653 return_unused_surplus_pages(h, delta);
3654 goto out;
3655 }
3656 }
3657
3658 ret = 0;
3659 if (delta < 0)
3660 return_unused_surplus_pages(h, (unsigned long) -delta);
3661
3662 out:
3663 spin_unlock(&hugetlb_lock);
3664 return ret;
3665 }
3666
3667 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3668 {
3669 struct resv_map *resv = vma_resv_map(vma);
3670
3671 /*
3672 * This new VMA should share its siblings reservation map if present.
3673 * The VMA will only ever have a valid reservation map pointer where
3674 * it is being copied for another still existing VMA. As that VMA
3675 * has a reference to the reservation map it cannot disappear until
3676 * after this open call completes. It is therefore safe to take a
3677 * new reference here without additional locking.
3678 */
3679 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3680 kref_get(&resv->refs);
3681 }
3682
3683 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3684 {
3685 struct hstate *h = hstate_vma(vma);
3686 struct resv_map *resv = vma_resv_map(vma);
3687 struct hugepage_subpool *spool = subpool_vma(vma);
3688 unsigned long reserve, start, end;
3689 long gbl_reserve;
3690
3691 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3692 return;
3693
3694 start = vma_hugecache_offset(h, vma, vma->vm_start);
3695 end = vma_hugecache_offset(h, vma, vma->vm_end);
3696
3697 reserve = (end - start) - region_count(resv, start, end);
3698 hugetlb_cgroup_uncharge_counter(resv, start, end);
3699 if (reserve) {
3700 /*
3701 * Decrement reserve counts. The global reserve count may be
3702 * adjusted if the subpool has a minimum size.
3703 */
3704 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3705 hugetlb_acct_memory(h, -gbl_reserve);
3706 }
3707
3708 kref_put(&resv->refs, resv_map_release);
3709 }
3710
3711 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3712 {
3713 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3714 return -EINVAL;
3715 return 0;
3716 }
3717
3718 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3719 {
3720 struct hstate *hstate = hstate_vma(vma);
3721
3722 return 1UL << huge_page_shift(hstate);
3723 }
3724
3725 /*
3726 * We cannot handle pagefaults against hugetlb pages at all. They cause
3727 * handle_mm_fault() to try to instantiate regular-sized pages in the
3728 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3729 * this far.
3730 */
3731 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3732 {
3733 BUG();
3734 return 0;
3735 }
3736
3737 /*
3738 * When a new function is introduced to vm_operations_struct and added
3739 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3740 * This is because under System V memory model, mappings created via
3741 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3742 * their original vm_ops are overwritten with shm_vm_ops.
3743 */
3744 const struct vm_operations_struct hugetlb_vm_ops = {
3745 .fault = hugetlb_vm_op_fault,
3746 .open = hugetlb_vm_op_open,
3747 .close = hugetlb_vm_op_close,
3748 .may_split = hugetlb_vm_op_split,
3749 .pagesize = hugetlb_vm_op_pagesize,
3750 };
3751
3752 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3753 int writable)
3754 {
3755 pte_t entry;
3756
3757 if (writable) {
3758 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3759 vma->vm_page_prot)));
3760 } else {
3761 entry = huge_pte_wrprotect(mk_huge_pte(page,
3762 vma->vm_page_prot));
3763 }
3764 entry = pte_mkyoung(entry);
3765 entry = pte_mkhuge(entry);
3766 entry = arch_make_huge_pte(entry, vma, page, writable);
3767
3768 return entry;
3769 }
3770
3771 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3772 unsigned long address, pte_t *ptep)
3773 {
3774 pte_t entry;
3775
3776 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3777 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3778 update_mmu_cache(vma, address, ptep);
3779 }
3780
3781 bool is_hugetlb_entry_migration(pte_t pte)
3782 {
3783 swp_entry_t swp;
3784
3785 if (huge_pte_none(pte) || pte_present(pte))
3786 return false;
3787 swp = pte_to_swp_entry(pte);
3788 if (is_migration_entry(swp))
3789 return true;
3790 else
3791 return false;
3792 }
3793
3794 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3795 {
3796 swp_entry_t swp;
3797
3798 if (huge_pte_none(pte) || pte_present(pte))
3799 return false;
3800 swp = pte_to_swp_entry(pte);
3801 if (is_hwpoison_entry(swp))
3802 return true;
3803 else
3804 return false;
3805 }
3806
3807 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3808 struct vm_area_struct *vma)
3809 {
3810 pte_t *src_pte, *dst_pte, entry, dst_entry;
3811 struct page *ptepage;
3812 unsigned long addr;
3813 int cow;
3814 struct hstate *h = hstate_vma(vma);
3815 unsigned long sz = huge_page_size(h);
3816 struct address_space *mapping = vma->vm_file->f_mapping;
3817 struct mmu_notifier_range range;
3818 int ret = 0;
3819
3820 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3821
3822 if (cow) {
3823 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3824 vma->vm_start,
3825 vma->vm_end);
3826 mmu_notifier_invalidate_range_start(&range);
3827 } else {
3828 /*
3829 * For shared mappings i_mmap_rwsem must be held to call
3830 * huge_pte_alloc, otherwise the returned ptep could go
3831 * away if part of a shared pmd and another thread calls
3832 * huge_pmd_unshare.
3833 */
3834 i_mmap_lock_read(mapping);
3835 }
3836
3837 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3838 spinlock_t *src_ptl, *dst_ptl;
3839 src_pte = huge_pte_offset(src, addr, sz);
3840 if (!src_pte)
3841 continue;
3842 dst_pte = huge_pte_alloc(dst, addr, sz);
3843 if (!dst_pte) {
3844 ret = -ENOMEM;
3845 break;
3846 }
3847
3848 /*
3849 * If the pagetables are shared don't copy or take references.
3850 * dst_pte == src_pte is the common case of src/dest sharing.
3851 *
3852 * However, src could have 'unshared' and dst shares with
3853 * another vma. If dst_pte !none, this implies sharing.
3854 * Check here before taking page table lock, and once again
3855 * after taking the lock below.
3856 */
3857 dst_entry = huge_ptep_get(dst_pte);
3858 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3859 continue;
3860
3861 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3862 src_ptl = huge_pte_lockptr(h, src, src_pte);
3863 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3864 entry = huge_ptep_get(src_pte);
3865 dst_entry = huge_ptep_get(dst_pte);
3866 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3867 /*
3868 * Skip if src entry none. Also, skip in the
3869 * unlikely case dst entry !none as this implies
3870 * sharing with another vma.
3871 */
3872 ;
3873 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3874 is_hugetlb_entry_hwpoisoned(entry))) {
3875 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3876
3877 if (is_write_migration_entry(swp_entry) && cow) {
3878 /*
3879 * COW mappings require pages in both
3880 * parent and child to be set to read.
3881 */
3882 make_migration_entry_read(&swp_entry);
3883 entry = swp_entry_to_pte(swp_entry);
3884 set_huge_swap_pte_at(src, addr, src_pte,
3885 entry, sz);
3886 }
3887 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3888 } else {
3889 if (cow) {
3890 /*
3891 * No need to notify as we are downgrading page
3892 * table protection not changing it to point
3893 * to a new page.
3894 *
3895 * See Documentation/vm/mmu_notifier.rst
3896 */
3897 huge_ptep_set_wrprotect(src, addr, src_pte);
3898 }
3899 entry = huge_ptep_get(src_pte);
3900 ptepage = pte_page(entry);
3901 get_page(ptepage);
3902 page_dup_rmap(ptepage, true);
3903 set_huge_pte_at(dst, addr, dst_pte, entry);
3904 hugetlb_count_add(pages_per_huge_page(h), dst);
3905 }
3906 spin_unlock(src_ptl);
3907 spin_unlock(dst_ptl);
3908 }
3909
3910 if (cow)
3911 mmu_notifier_invalidate_range_end(&range);
3912 else
3913 i_mmap_unlock_read(mapping);
3914
3915 return ret;
3916 }
3917
3918 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3919 unsigned long start, unsigned long end,
3920 struct page *ref_page)
3921 {
3922 struct mm_struct *mm = vma->vm_mm;
3923 unsigned long address;
3924 pte_t *ptep;
3925 pte_t pte;
3926 spinlock_t *ptl;
3927 struct page *page;
3928 struct hstate *h = hstate_vma(vma);
3929 unsigned long sz = huge_page_size(h);
3930 struct mmu_notifier_range range;
3931
3932 WARN_ON(!is_vm_hugetlb_page(vma));
3933 BUG_ON(start & ~huge_page_mask(h));
3934 BUG_ON(end & ~huge_page_mask(h));
3935
3936 /*
3937 * This is a hugetlb vma, all the pte entries should point
3938 * to huge page.
3939 */
3940 tlb_change_page_size(tlb, sz);
3941 tlb_start_vma(tlb, vma);
3942
3943 /*
3944 * If sharing possible, alert mmu notifiers of worst case.
3945 */
3946 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3947 end);
3948 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3949 mmu_notifier_invalidate_range_start(&range);
3950 address = start;
3951 for (; address < end; address += sz) {
3952 ptep = huge_pte_offset(mm, address, sz);
3953 if (!ptep)
3954 continue;
3955
3956 ptl = huge_pte_lock(h, mm, ptep);
3957 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3958 spin_unlock(ptl);
3959 /*
3960 * We just unmapped a page of PMDs by clearing a PUD.
3961 * The caller's TLB flush range should cover this area.
3962 */
3963 continue;
3964 }
3965
3966 pte = huge_ptep_get(ptep);
3967 if (huge_pte_none(pte)) {
3968 spin_unlock(ptl);
3969 continue;
3970 }
3971
3972 /*
3973 * Migrating hugepage or HWPoisoned hugepage is already
3974 * unmapped and its refcount is dropped, so just clear pte here.
3975 */
3976 if (unlikely(!pte_present(pte))) {
3977 huge_pte_clear(mm, address, ptep, sz);
3978 spin_unlock(ptl);
3979 continue;
3980 }
3981
3982 page = pte_page(pte);
3983 /*
3984 * If a reference page is supplied, it is because a specific
3985 * page is being unmapped, not a range. Ensure the page we
3986 * are about to unmap is the actual page of interest.
3987 */
3988 if (ref_page) {
3989 if (page != ref_page) {
3990 spin_unlock(ptl);
3991 continue;
3992 }
3993 /*
3994 * Mark the VMA as having unmapped its page so that
3995 * future faults in this VMA will fail rather than
3996 * looking like data was lost
3997 */
3998 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3999 }
4000
4001 pte = huge_ptep_get_and_clear(mm, address, ptep);
4002 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4003 if (huge_pte_dirty(pte))
4004 set_page_dirty(page);
4005
4006 hugetlb_count_sub(pages_per_huge_page(h), mm);
4007 page_remove_rmap(page, true);
4008
4009 spin_unlock(ptl);
4010 tlb_remove_page_size(tlb, page, huge_page_size(h));
4011 /*
4012 * Bail out after unmapping reference page if supplied
4013 */
4014 if (ref_page)
4015 break;
4016 }
4017 mmu_notifier_invalidate_range_end(&range);
4018 tlb_end_vma(tlb, vma);
4019 }
4020
4021 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4022 struct vm_area_struct *vma, unsigned long start,
4023 unsigned long end, struct page *ref_page)
4024 {
4025 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4026
4027 /*
4028 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4029 * test will fail on a vma being torn down, and not grab a page table
4030 * on its way out. We're lucky that the flag has such an appropriate
4031 * name, and can in fact be safely cleared here. We could clear it
4032 * before the __unmap_hugepage_range above, but all that's necessary
4033 * is to clear it before releasing the i_mmap_rwsem. This works
4034 * because in the context this is called, the VMA is about to be
4035 * destroyed and the i_mmap_rwsem is held.
4036 */
4037 vma->vm_flags &= ~VM_MAYSHARE;
4038 }
4039
4040 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4041 unsigned long end, struct page *ref_page)
4042 {
4043 struct mm_struct *mm;
4044 struct mmu_gather tlb;
4045 unsigned long tlb_start = start;
4046 unsigned long tlb_end = end;
4047
4048 /*
4049 * If shared PMDs were possibly used within this vma range, adjust
4050 * start/end for worst case tlb flushing.
4051 * Note that we can not be sure if PMDs are shared until we try to
4052 * unmap pages. However, we want to make sure TLB flushing covers
4053 * the largest possible range.
4054 */
4055 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4056
4057 mm = vma->vm_mm;
4058
4059 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4060 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4061 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4062 }
4063
4064 /*
4065 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4066 * mappping it owns the reserve page for. The intention is to unmap the page
4067 * from other VMAs and let the children be SIGKILLed if they are faulting the
4068 * same region.
4069 */
4070 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4071 struct page *page, unsigned long address)
4072 {
4073 struct hstate *h = hstate_vma(vma);
4074 struct vm_area_struct *iter_vma;
4075 struct address_space *mapping;
4076 pgoff_t pgoff;
4077
4078 /*
4079 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4080 * from page cache lookup which is in HPAGE_SIZE units.
4081 */
4082 address = address & huge_page_mask(h);
4083 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4084 vma->vm_pgoff;
4085 mapping = vma->vm_file->f_mapping;
4086
4087 /*
4088 * Take the mapping lock for the duration of the table walk. As
4089 * this mapping should be shared between all the VMAs,
4090 * __unmap_hugepage_range() is called as the lock is already held
4091 */
4092 i_mmap_lock_write(mapping);
4093 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4094 /* Do not unmap the current VMA */
4095 if (iter_vma == vma)
4096 continue;
4097
4098 /*
4099 * Shared VMAs have their own reserves and do not affect
4100 * MAP_PRIVATE accounting but it is possible that a shared
4101 * VMA is using the same page so check and skip such VMAs.
4102 */
4103 if (iter_vma->vm_flags & VM_MAYSHARE)
4104 continue;
4105
4106 /*
4107 * Unmap the page from other VMAs without their own reserves.
4108 * They get marked to be SIGKILLed if they fault in these
4109 * areas. This is because a future no-page fault on this VMA
4110 * could insert a zeroed page instead of the data existing
4111 * from the time of fork. This would look like data corruption
4112 */
4113 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4114 unmap_hugepage_range(iter_vma, address,
4115 address + huge_page_size(h), page);
4116 }
4117 i_mmap_unlock_write(mapping);
4118 }
4119
4120 /*
4121 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4122 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4123 * cannot race with other handlers or page migration.
4124 * Keep the pte_same checks anyway to make transition from the mutex easier.
4125 */
4126 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4127 unsigned long address, pte_t *ptep,
4128 struct page *pagecache_page, spinlock_t *ptl)
4129 {
4130 pte_t pte;
4131 struct hstate *h = hstate_vma(vma);
4132 struct page *old_page, *new_page;
4133 int outside_reserve = 0;
4134 vm_fault_t ret = 0;
4135 unsigned long haddr = address & huge_page_mask(h);
4136 struct mmu_notifier_range range;
4137
4138 pte = huge_ptep_get(ptep);
4139 old_page = pte_page(pte);
4140
4141 retry_avoidcopy:
4142 /* If no-one else is actually using this page, avoid the copy
4143 * and just make the page writable */
4144 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4145 page_move_anon_rmap(old_page, vma);
4146 set_huge_ptep_writable(vma, haddr, ptep);
4147 return 0;
4148 }
4149
4150 /*
4151 * If the process that created a MAP_PRIVATE mapping is about to
4152 * perform a COW due to a shared page count, attempt to satisfy
4153 * the allocation without using the existing reserves. The pagecache
4154 * page is used to determine if the reserve at this address was
4155 * consumed or not. If reserves were used, a partial faulted mapping
4156 * at the time of fork() could consume its reserves on COW instead
4157 * of the full address range.
4158 */
4159 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4160 old_page != pagecache_page)
4161 outside_reserve = 1;
4162
4163 get_page(old_page);
4164
4165 /*
4166 * Drop page table lock as buddy allocator may be called. It will
4167 * be acquired again before returning to the caller, as expected.
4168 */
4169 spin_unlock(ptl);
4170 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4171
4172 if (IS_ERR(new_page)) {
4173 /*
4174 * If a process owning a MAP_PRIVATE mapping fails to COW,
4175 * it is due to references held by a child and an insufficient
4176 * huge page pool. To guarantee the original mappers
4177 * reliability, unmap the page from child processes. The child
4178 * may get SIGKILLed if it later faults.
4179 */
4180 if (outside_reserve) {
4181 struct address_space *mapping = vma->vm_file->f_mapping;
4182 pgoff_t idx;
4183 u32 hash;
4184
4185 put_page(old_page);
4186 BUG_ON(huge_pte_none(pte));
4187 /*
4188 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4189 * unmapping. unmapping needs to hold i_mmap_rwsem
4190 * in write mode. Dropping i_mmap_rwsem in read mode
4191 * here is OK as COW mappings do not interact with
4192 * PMD sharing.
4193 *
4194 * Reacquire both after unmap operation.
4195 */
4196 idx = vma_hugecache_offset(h, vma, haddr);
4197 hash = hugetlb_fault_mutex_hash(mapping, idx);
4198 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4199 i_mmap_unlock_read(mapping);
4200
4201 unmap_ref_private(mm, vma, old_page, haddr);
4202
4203 i_mmap_lock_read(mapping);
4204 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4205 spin_lock(ptl);
4206 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4207 if (likely(ptep &&
4208 pte_same(huge_ptep_get(ptep), pte)))
4209 goto retry_avoidcopy;
4210 /*
4211 * race occurs while re-acquiring page table
4212 * lock, and our job is done.
4213 */
4214 return 0;
4215 }
4216
4217 ret = vmf_error(PTR_ERR(new_page));
4218 goto out_release_old;
4219 }
4220
4221 /*
4222 * When the original hugepage is shared one, it does not have
4223 * anon_vma prepared.
4224 */
4225 if (unlikely(anon_vma_prepare(vma))) {
4226 ret = VM_FAULT_OOM;
4227 goto out_release_all;
4228 }
4229
4230 copy_user_huge_page(new_page, old_page, address, vma,
4231 pages_per_huge_page(h));
4232 __SetPageUptodate(new_page);
4233
4234 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4235 haddr + huge_page_size(h));
4236 mmu_notifier_invalidate_range_start(&range);
4237
4238 /*
4239 * Retake the page table lock to check for racing updates
4240 * before the page tables are altered
4241 */
4242 spin_lock(ptl);
4243 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4244 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4245 ClearPagePrivate(new_page);
4246
4247 /* Break COW */
4248 huge_ptep_clear_flush(vma, haddr, ptep);
4249 mmu_notifier_invalidate_range(mm, range.start, range.end);
4250 set_huge_pte_at(mm, haddr, ptep,
4251 make_huge_pte(vma, new_page, 1));
4252 page_remove_rmap(old_page, true);
4253 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4254 set_page_huge_active(new_page);
4255 /* Make the old page be freed below */
4256 new_page = old_page;
4257 }
4258 spin_unlock(ptl);
4259 mmu_notifier_invalidate_range_end(&range);
4260 out_release_all:
4261 restore_reserve_on_error(h, vma, haddr, new_page);
4262 put_page(new_page);
4263 out_release_old:
4264 put_page(old_page);
4265
4266 spin_lock(ptl); /* Caller expects lock to be held */
4267 return ret;
4268 }
4269
4270 /* Return the pagecache page at a given address within a VMA */
4271 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4272 struct vm_area_struct *vma, unsigned long address)
4273 {
4274 struct address_space *mapping;
4275 pgoff_t idx;
4276
4277 mapping = vma->vm_file->f_mapping;
4278 idx = vma_hugecache_offset(h, vma, address);
4279
4280 return find_lock_page(mapping, idx);
4281 }
4282
4283 /*
4284 * Return whether there is a pagecache page to back given address within VMA.
4285 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4286 */
4287 static bool hugetlbfs_pagecache_present(struct hstate *h,
4288 struct vm_area_struct *vma, unsigned long address)
4289 {
4290 struct address_space *mapping;
4291 pgoff_t idx;
4292 struct page *page;
4293
4294 mapping = vma->vm_file->f_mapping;
4295 idx = vma_hugecache_offset(h, vma, address);
4296
4297 page = find_get_page(mapping, idx);
4298 if (page)
4299 put_page(page);
4300 return page != NULL;
4301 }
4302
4303 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4304 pgoff_t idx)
4305 {
4306 struct inode *inode = mapping->host;
4307 struct hstate *h = hstate_inode(inode);
4308 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4309
4310 if (err)
4311 return err;
4312 ClearPagePrivate(page);
4313
4314 /*
4315 * set page dirty so that it will not be removed from cache/file
4316 * by non-hugetlbfs specific code paths.
4317 */
4318 set_page_dirty(page);
4319
4320 spin_lock(&inode->i_lock);
4321 inode->i_blocks += blocks_per_huge_page(h);
4322 spin_unlock(&inode->i_lock);
4323 return 0;
4324 }
4325
4326 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4327 struct vm_area_struct *vma,
4328 struct address_space *mapping, pgoff_t idx,
4329 unsigned long address, pte_t *ptep, unsigned int flags)
4330 {
4331 struct hstate *h = hstate_vma(vma);
4332 vm_fault_t ret = VM_FAULT_SIGBUS;
4333 int anon_rmap = 0;
4334 unsigned long size;
4335 struct page *page;
4336 pte_t new_pte;
4337 spinlock_t *ptl;
4338 unsigned long haddr = address & huge_page_mask(h);
4339 bool new_page = false;
4340
4341 /*
4342 * Currently, we are forced to kill the process in the event the
4343 * original mapper has unmapped pages from the child due to a failed
4344 * COW. Warn that such a situation has occurred as it may not be obvious
4345 */
4346 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4347 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4348 current->pid);
4349 return ret;
4350 }
4351
4352 /*
4353 * We can not race with truncation due to holding i_mmap_rwsem.
4354 * i_size is modified when holding i_mmap_rwsem, so check here
4355 * once for faults beyond end of file.
4356 */
4357 size = i_size_read(mapping->host) >> huge_page_shift(h);
4358 if (idx >= size)
4359 goto out;
4360
4361 retry:
4362 page = find_lock_page(mapping, idx);
4363 if (!page) {
4364 /*
4365 * Check for page in userfault range
4366 */
4367 if (userfaultfd_missing(vma)) {
4368 u32 hash;
4369 struct vm_fault vmf = {
4370 .vma = vma,
4371 .address = haddr,
4372 .flags = flags,
4373 /*
4374 * Hard to debug if it ends up being
4375 * used by a callee that assumes
4376 * something about the other
4377 * uninitialized fields... same as in
4378 * memory.c
4379 */
4380 };
4381
4382 /*
4383 * hugetlb_fault_mutex and i_mmap_rwsem must be
4384 * dropped before handling userfault. Reacquire
4385 * after handling fault to make calling code simpler.
4386 */
4387 hash = hugetlb_fault_mutex_hash(mapping, idx);
4388 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4389 i_mmap_unlock_read(mapping);
4390 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4391 i_mmap_lock_read(mapping);
4392 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4393 goto out;
4394 }
4395
4396 page = alloc_huge_page(vma, haddr, 0);
4397 if (IS_ERR(page)) {
4398 /*
4399 * Returning error will result in faulting task being
4400 * sent SIGBUS. The hugetlb fault mutex prevents two
4401 * tasks from racing to fault in the same page which
4402 * could result in false unable to allocate errors.
4403 * Page migration does not take the fault mutex, but
4404 * does a clear then write of pte's under page table
4405 * lock. Page fault code could race with migration,
4406 * notice the clear pte and try to allocate a page
4407 * here. Before returning error, get ptl and make
4408 * sure there really is no pte entry.
4409 */
4410 ptl = huge_pte_lock(h, mm, ptep);
4411 if (!huge_pte_none(huge_ptep_get(ptep))) {
4412 ret = 0;
4413 spin_unlock(ptl);
4414 goto out;
4415 }
4416 spin_unlock(ptl);
4417 ret = vmf_error(PTR_ERR(page));
4418 goto out;
4419 }
4420 clear_huge_page(page, address, pages_per_huge_page(h));
4421 __SetPageUptodate(page);
4422 new_page = true;
4423
4424 if (vma->vm_flags & VM_MAYSHARE) {
4425 int err = huge_add_to_page_cache(page, mapping, idx);
4426 if (err) {
4427 put_page(page);
4428 if (err == -EEXIST)
4429 goto retry;
4430 goto out;
4431 }
4432 } else {
4433 lock_page(page);
4434 if (unlikely(anon_vma_prepare(vma))) {
4435 ret = VM_FAULT_OOM;
4436 goto backout_unlocked;
4437 }
4438 anon_rmap = 1;
4439 }
4440 } else {
4441 /*
4442 * If memory error occurs between mmap() and fault, some process
4443 * don't have hwpoisoned swap entry for errored virtual address.
4444 * So we need to block hugepage fault by PG_hwpoison bit check.
4445 */
4446 if (unlikely(PageHWPoison(page))) {
4447 ret = VM_FAULT_HWPOISON_LARGE |
4448 VM_FAULT_SET_HINDEX(hstate_index(h));
4449 goto backout_unlocked;
4450 }
4451 }
4452
4453 /*
4454 * If we are going to COW a private mapping later, we examine the
4455 * pending reservations for this page now. This will ensure that
4456 * any allocations necessary to record that reservation occur outside
4457 * the spinlock.
4458 */
4459 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4460 if (vma_needs_reservation(h, vma, haddr) < 0) {
4461 ret = VM_FAULT_OOM;
4462 goto backout_unlocked;
4463 }
4464 /* Just decrements count, does not deallocate */
4465 vma_end_reservation(h, vma, haddr);
4466 }
4467
4468 ptl = huge_pte_lock(h, mm, ptep);
4469 ret = 0;
4470 if (!huge_pte_none(huge_ptep_get(ptep)))
4471 goto backout;
4472
4473 if (anon_rmap) {
4474 ClearPagePrivate(page);
4475 hugepage_add_new_anon_rmap(page, vma, haddr);
4476 } else
4477 page_dup_rmap(page, true);
4478 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4479 && (vma->vm_flags & VM_SHARED)));
4480 set_huge_pte_at(mm, haddr, ptep, new_pte);
4481
4482 hugetlb_count_add(pages_per_huge_page(h), mm);
4483 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4484 /* Optimization, do the COW without a second fault */
4485 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4486 }
4487
4488 spin_unlock(ptl);
4489
4490 /*
4491 * Only make newly allocated pages active. Existing pages found
4492 * in the pagecache could be !page_huge_active() if they have been
4493 * isolated for migration.
4494 */
4495 if (new_page)
4496 set_page_huge_active(page);
4497
4498 unlock_page(page);
4499 out:
4500 return ret;
4501
4502 backout:
4503 spin_unlock(ptl);
4504 backout_unlocked:
4505 unlock_page(page);
4506 restore_reserve_on_error(h, vma, haddr, page);
4507 put_page(page);
4508 goto out;
4509 }
4510
4511 #ifdef CONFIG_SMP
4512 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4513 {
4514 unsigned long key[2];
4515 u32 hash;
4516
4517 key[0] = (unsigned long) mapping;
4518 key[1] = idx;
4519
4520 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4521
4522 return hash & (num_fault_mutexes - 1);
4523 }
4524 #else
4525 /*
4526 * For uniprocesor systems we always use a single mutex, so just
4527 * return 0 and avoid the hashing overhead.
4528 */
4529 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4530 {
4531 return 0;
4532 }
4533 #endif
4534
4535 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4536 unsigned long address, unsigned int flags)
4537 {
4538 pte_t *ptep, entry;
4539 spinlock_t *ptl;
4540 vm_fault_t ret;
4541 u32 hash;
4542 pgoff_t idx;
4543 struct page *page = NULL;
4544 struct page *pagecache_page = NULL;
4545 struct hstate *h = hstate_vma(vma);
4546 struct address_space *mapping;
4547 int need_wait_lock = 0;
4548 unsigned long haddr = address & huge_page_mask(h);
4549
4550 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4551 if (ptep) {
4552 /*
4553 * Since we hold no locks, ptep could be stale. That is
4554 * OK as we are only making decisions based on content and
4555 * not actually modifying content here.
4556 */
4557 entry = huge_ptep_get(ptep);
4558 if (unlikely(is_hugetlb_entry_migration(entry))) {
4559 migration_entry_wait_huge(vma, mm, ptep);
4560 return 0;
4561 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4562 return VM_FAULT_HWPOISON_LARGE |
4563 VM_FAULT_SET_HINDEX(hstate_index(h));
4564 }
4565
4566 /*
4567 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4568 * until finished with ptep. This serves two purposes:
4569 * 1) It prevents huge_pmd_unshare from being called elsewhere
4570 * and making the ptep no longer valid.
4571 * 2) It synchronizes us with i_size modifications during truncation.
4572 *
4573 * ptep could have already be assigned via huge_pte_offset. That
4574 * is OK, as huge_pte_alloc will return the same value unless
4575 * something has changed.
4576 */
4577 mapping = vma->vm_file->f_mapping;
4578 i_mmap_lock_read(mapping);
4579 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4580 if (!ptep) {
4581 i_mmap_unlock_read(mapping);
4582 return VM_FAULT_OOM;
4583 }
4584
4585 /*
4586 * Serialize hugepage allocation and instantiation, so that we don't
4587 * get spurious allocation failures if two CPUs race to instantiate
4588 * the same page in the page cache.
4589 */
4590 idx = vma_hugecache_offset(h, vma, haddr);
4591 hash = hugetlb_fault_mutex_hash(mapping, idx);
4592 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4593
4594 entry = huge_ptep_get(ptep);
4595 if (huge_pte_none(entry)) {
4596 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4597 goto out_mutex;
4598 }
4599
4600 ret = 0;
4601
4602 /*
4603 * entry could be a migration/hwpoison entry at this point, so this
4604 * check prevents the kernel from going below assuming that we have
4605 * an active hugepage in pagecache. This goto expects the 2nd page
4606 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4607 * properly handle it.
4608 */
4609 if (!pte_present(entry))
4610 goto out_mutex;
4611
4612 /*
4613 * If we are going to COW the mapping later, we examine the pending
4614 * reservations for this page now. This will ensure that any
4615 * allocations necessary to record that reservation occur outside the
4616 * spinlock. For private mappings, we also lookup the pagecache
4617 * page now as it is used to determine if a reservation has been
4618 * consumed.
4619 */
4620 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4621 if (vma_needs_reservation(h, vma, haddr) < 0) {
4622 ret = VM_FAULT_OOM;
4623 goto out_mutex;
4624 }
4625 /* Just decrements count, does not deallocate */
4626 vma_end_reservation(h, vma, haddr);
4627
4628 if (!(vma->vm_flags & VM_MAYSHARE))
4629 pagecache_page = hugetlbfs_pagecache_page(h,
4630 vma, haddr);
4631 }
4632
4633 ptl = huge_pte_lock(h, mm, ptep);
4634
4635 /* Check for a racing update before calling hugetlb_cow */
4636 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4637 goto out_ptl;
4638
4639 /*
4640 * hugetlb_cow() requires page locks of pte_page(entry) and
4641 * pagecache_page, so here we need take the former one
4642 * when page != pagecache_page or !pagecache_page.
4643 */
4644 page = pte_page(entry);
4645 if (page != pagecache_page)
4646 if (!trylock_page(page)) {
4647 need_wait_lock = 1;
4648 goto out_ptl;
4649 }
4650
4651 get_page(page);
4652
4653 if (flags & FAULT_FLAG_WRITE) {
4654 if (!huge_pte_write(entry)) {
4655 ret = hugetlb_cow(mm, vma, address, ptep,
4656 pagecache_page, ptl);
4657 goto out_put_page;
4658 }
4659 entry = huge_pte_mkdirty(entry);
4660 }
4661 entry = pte_mkyoung(entry);
4662 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4663 flags & FAULT_FLAG_WRITE))
4664 update_mmu_cache(vma, haddr, ptep);
4665 out_put_page:
4666 if (page != pagecache_page)
4667 unlock_page(page);
4668 put_page(page);
4669 out_ptl:
4670 spin_unlock(ptl);
4671
4672 if (pagecache_page) {
4673 unlock_page(pagecache_page);
4674 put_page(pagecache_page);
4675 }
4676 out_mutex:
4677 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4678 i_mmap_unlock_read(mapping);
4679 /*
4680 * Generally it's safe to hold refcount during waiting page lock. But
4681 * here we just wait to defer the next page fault to avoid busy loop and
4682 * the page is not used after unlocked before returning from the current
4683 * page fault. So we are safe from accessing freed page, even if we wait
4684 * here without taking refcount.
4685 */
4686 if (need_wait_lock)
4687 wait_on_page_locked(page);
4688 return ret;
4689 }
4690
4691 /*
4692 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4693 * modifications for huge pages.
4694 */
4695 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4696 pte_t *dst_pte,
4697 struct vm_area_struct *dst_vma,
4698 unsigned long dst_addr,
4699 unsigned long src_addr,
4700 struct page **pagep)
4701 {
4702 struct address_space *mapping;
4703 pgoff_t idx;
4704 unsigned long size;
4705 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4706 struct hstate *h = hstate_vma(dst_vma);
4707 pte_t _dst_pte;
4708 spinlock_t *ptl;
4709 int ret;
4710 struct page *page;
4711
4712 if (!*pagep) {
4713 /* If a page already exists, then it's UFFDIO_COPY for
4714 * a non-missing case. Return -EEXIST.
4715 */
4716 if (vm_shared &&
4717 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4718 ret = -EEXIST;
4719 goto out;
4720 }
4721
4722 page = alloc_huge_page(dst_vma, dst_addr, 0);
4723 if (IS_ERR(page)) {
4724 ret = -ENOMEM;
4725 goto out;
4726 }
4727
4728 ret = copy_huge_page_from_user(page,
4729 (const void __user *) src_addr,
4730 pages_per_huge_page(h), false);
4731
4732 /* fallback to copy_from_user outside mmap_lock */
4733 if (unlikely(ret)) {
4734 ret = -ENOENT;
4735 *pagep = page;
4736 /* don't free the page */
4737 goto out;
4738 }
4739 } else {
4740 page = *pagep;
4741 *pagep = NULL;
4742 }
4743
4744 /*
4745 * The memory barrier inside __SetPageUptodate makes sure that
4746 * preceding stores to the page contents become visible before
4747 * the set_pte_at() write.
4748 */
4749 __SetPageUptodate(page);
4750
4751 mapping = dst_vma->vm_file->f_mapping;
4752 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4753
4754 /*
4755 * If shared, add to page cache
4756 */
4757 if (vm_shared) {
4758 size = i_size_read(mapping->host) >> huge_page_shift(h);
4759 ret = -EFAULT;
4760 if (idx >= size)
4761 goto out_release_nounlock;
4762
4763 /*
4764 * Serialization between remove_inode_hugepages() and
4765 * huge_add_to_page_cache() below happens through the
4766 * hugetlb_fault_mutex_table that here must be hold by
4767 * the caller.
4768 */
4769 ret = huge_add_to_page_cache(page, mapping, idx);
4770 if (ret)
4771 goto out_release_nounlock;
4772 }
4773
4774 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4775 spin_lock(ptl);
4776
4777 /*
4778 * Recheck the i_size after holding PT lock to make sure not
4779 * to leave any page mapped (as page_mapped()) beyond the end
4780 * of the i_size (remove_inode_hugepages() is strict about
4781 * enforcing that). If we bail out here, we'll also leave a
4782 * page in the radix tree in the vm_shared case beyond the end
4783 * of the i_size, but remove_inode_hugepages() will take care
4784 * of it as soon as we drop the hugetlb_fault_mutex_table.
4785 */
4786 size = i_size_read(mapping->host) >> huge_page_shift(h);
4787 ret = -EFAULT;
4788 if (idx >= size)
4789 goto out_release_unlock;
4790
4791 ret = -EEXIST;
4792 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4793 goto out_release_unlock;
4794
4795 if (vm_shared) {
4796 page_dup_rmap(page, true);
4797 } else {
4798 ClearPagePrivate(page);
4799 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4800 }
4801
4802 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4803 if (dst_vma->vm_flags & VM_WRITE)
4804 _dst_pte = huge_pte_mkdirty(_dst_pte);
4805 _dst_pte = pte_mkyoung(_dst_pte);
4806
4807 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4808
4809 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4810 dst_vma->vm_flags & VM_WRITE);
4811 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4812
4813 /* No need to invalidate - it was non-present before */
4814 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4815
4816 spin_unlock(ptl);
4817 set_page_huge_active(page);
4818 if (vm_shared)
4819 unlock_page(page);
4820 ret = 0;
4821 out:
4822 return ret;
4823 out_release_unlock:
4824 spin_unlock(ptl);
4825 if (vm_shared)
4826 unlock_page(page);
4827 out_release_nounlock:
4828 put_page(page);
4829 goto out;
4830 }
4831
4832 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4833 struct page **pages, struct vm_area_struct **vmas,
4834 unsigned long *position, unsigned long *nr_pages,
4835 long i, unsigned int flags, int *locked)
4836 {
4837 unsigned long pfn_offset;
4838 unsigned long vaddr = *position;
4839 unsigned long remainder = *nr_pages;
4840 struct hstate *h = hstate_vma(vma);
4841 int err = -EFAULT;
4842
4843 while (vaddr < vma->vm_end && remainder) {
4844 pte_t *pte;
4845 spinlock_t *ptl = NULL;
4846 int absent;
4847 struct page *page;
4848
4849 /*
4850 * If we have a pending SIGKILL, don't keep faulting pages and
4851 * potentially allocating memory.
4852 */
4853 if (fatal_signal_pending(current)) {
4854 remainder = 0;
4855 break;
4856 }
4857
4858 /*
4859 * Some archs (sparc64, sh*) have multiple pte_ts to
4860 * each hugepage. We have to make sure we get the
4861 * first, for the page indexing below to work.
4862 *
4863 * Note that page table lock is not held when pte is null.
4864 */
4865 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4866 huge_page_size(h));
4867 if (pte)
4868 ptl = huge_pte_lock(h, mm, pte);
4869 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4870
4871 /*
4872 * When coredumping, it suits get_dump_page if we just return
4873 * an error where there's an empty slot with no huge pagecache
4874 * to back it. This way, we avoid allocating a hugepage, and
4875 * the sparse dumpfile avoids allocating disk blocks, but its
4876 * huge holes still show up with zeroes where they need to be.
4877 */
4878 if (absent && (flags & FOLL_DUMP) &&
4879 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4880 if (pte)
4881 spin_unlock(ptl);
4882 remainder = 0;
4883 break;
4884 }
4885
4886 /*
4887 * We need call hugetlb_fault for both hugepages under migration
4888 * (in which case hugetlb_fault waits for the migration,) and
4889 * hwpoisoned hugepages (in which case we need to prevent the
4890 * caller from accessing to them.) In order to do this, we use
4891 * here is_swap_pte instead of is_hugetlb_entry_migration and
4892 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4893 * both cases, and because we can't follow correct pages
4894 * directly from any kind of swap entries.
4895 */
4896 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4897 ((flags & FOLL_WRITE) &&
4898 !huge_pte_write(huge_ptep_get(pte)))) {
4899 vm_fault_t ret;
4900 unsigned int fault_flags = 0;
4901
4902 if (pte)
4903 spin_unlock(ptl);
4904 if (flags & FOLL_WRITE)
4905 fault_flags |= FAULT_FLAG_WRITE;
4906 if (locked)
4907 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4908 FAULT_FLAG_KILLABLE;
4909 if (flags & FOLL_NOWAIT)
4910 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4911 FAULT_FLAG_RETRY_NOWAIT;
4912 if (flags & FOLL_TRIED) {
4913 /*
4914 * Note: FAULT_FLAG_ALLOW_RETRY and
4915 * FAULT_FLAG_TRIED can co-exist
4916 */
4917 fault_flags |= FAULT_FLAG_TRIED;
4918 }
4919 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4920 if (ret & VM_FAULT_ERROR) {
4921 err = vm_fault_to_errno(ret, flags);
4922 remainder = 0;
4923 break;
4924 }
4925 if (ret & VM_FAULT_RETRY) {
4926 if (locked &&
4927 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4928 *locked = 0;
4929 *nr_pages = 0;
4930 /*
4931 * VM_FAULT_RETRY must not return an
4932 * error, it will return zero
4933 * instead.
4934 *
4935 * No need to update "position" as the
4936 * caller will not check it after
4937 * *nr_pages is set to 0.
4938 */
4939 return i;
4940 }
4941 continue;
4942 }
4943
4944 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4945 page = pte_page(huge_ptep_get(pte));
4946
4947 /*
4948 * If subpage information not requested, update counters
4949 * and skip the same_page loop below.
4950 */
4951 if (!pages && !vmas && !pfn_offset &&
4952 (vaddr + huge_page_size(h) < vma->vm_end) &&
4953 (remainder >= pages_per_huge_page(h))) {
4954 vaddr += huge_page_size(h);
4955 remainder -= pages_per_huge_page(h);
4956 i += pages_per_huge_page(h);
4957 spin_unlock(ptl);
4958 continue;
4959 }
4960
4961 same_page:
4962 if (pages) {
4963 pages[i] = mem_map_offset(page, pfn_offset);
4964 /*
4965 * try_grab_page() should always succeed here, because:
4966 * a) we hold the ptl lock, and b) we've just checked
4967 * that the huge page is present in the page tables. If
4968 * the huge page is present, then the tail pages must
4969 * also be present. The ptl prevents the head page and
4970 * tail pages from being rearranged in any way. So this
4971 * page must be available at this point, unless the page
4972 * refcount overflowed:
4973 */
4974 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4975 spin_unlock(ptl);
4976 remainder = 0;
4977 err = -ENOMEM;
4978 break;
4979 }
4980 }
4981
4982 if (vmas)
4983 vmas[i] = vma;
4984
4985 vaddr += PAGE_SIZE;
4986 ++pfn_offset;
4987 --remainder;
4988 ++i;
4989 if (vaddr < vma->vm_end && remainder &&
4990 pfn_offset < pages_per_huge_page(h)) {
4991 /*
4992 * We use pfn_offset to avoid touching the pageframes
4993 * of this compound page.
4994 */
4995 goto same_page;
4996 }
4997 spin_unlock(ptl);
4998 }
4999 *nr_pages = remainder;
5000 /*
5001 * setting position is actually required only if remainder is
5002 * not zero but it's faster not to add a "if (remainder)"
5003 * branch.
5004 */
5005 *position = vaddr;
5006
5007 return i ? i : err;
5008 }
5009
5010 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
5011 /*
5012 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
5013 * implement this.
5014 */
5015 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
5016 #endif
5017
5018 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5019 unsigned long address, unsigned long end, pgprot_t newprot)
5020 {
5021 struct mm_struct *mm = vma->vm_mm;
5022 unsigned long start = address;
5023 pte_t *ptep;
5024 pte_t pte;
5025 struct hstate *h = hstate_vma(vma);
5026 unsigned long pages = 0;
5027 bool shared_pmd = false;
5028 struct mmu_notifier_range range;
5029
5030 /*
5031 * In the case of shared PMDs, the area to flush could be beyond
5032 * start/end. Set range.start/range.end to cover the maximum possible
5033 * range if PMD sharing is possible.
5034 */
5035 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5036 0, vma, mm, start, end);
5037 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5038
5039 BUG_ON(address >= end);
5040 flush_cache_range(vma, range.start, range.end);
5041
5042 mmu_notifier_invalidate_range_start(&range);
5043 i_mmap_lock_write(vma->vm_file->f_mapping);
5044 for (; address < end; address += huge_page_size(h)) {
5045 spinlock_t *ptl;
5046 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5047 if (!ptep)
5048 continue;
5049 ptl = huge_pte_lock(h, mm, ptep);
5050 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5051 pages++;
5052 spin_unlock(ptl);
5053 shared_pmd = true;
5054 continue;
5055 }
5056 pte = huge_ptep_get(ptep);
5057 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5058 spin_unlock(ptl);
5059 continue;
5060 }
5061 if (unlikely(is_hugetlb_entry_migration(pte))) {
5062 swp_entry_t entry = pte_to_swp_entry(pte);
5063
5064 if (is_write_migration_entry(entry)) {
5065 pte_t newpte;
5066
5067 make_migration_entry_read(&entry);
5068 newpte = swp_entry_to_pte(entry);
5069 set_huge_swap_pte_at(mm, address, ptep,
5070 newpte, huge_page_size(h));
5071 pages++;
5072 }
5073 spin_unlock(ptl);
5074 continue;
5075 }
5076 if (!huge_pte_none(pte)) {
5077 pte_t old_pte;
5078
5079 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5080 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5081 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5082 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5083 pages++;
5084 }
5085 spin_unlock(ptl);
5086 }
5087 /*
5088 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5089 * may have cleared our pud entry and done put_page on the page table:
5090 * once we release i_mmap_rwsem, another task can do the final put_page
5091 * and that page table be reused and filled with junk. If we actually
5092 * did unshare a page of pmds, flush the range corresponding to the pud.
5093 */
5094 if (shared_pmd)
5095 flush_hugetlb_tlb_range(vma, range.start, range.end);
5096 else
5097 flush_hugetlb_tlb_range(vma, start, end);
5098 /*
5099 * No need to call mmu_notifier_invalidate_range() we are downgrading
5100 * page table protection not changing it to point to a new page.
5101 *
5102 * See Documentation/vm/mmu_notifier.rst
5103 */
5104 i_mmap_unlock_write(vma->vm_file->f_mapping);
5105 mmu_notifier_invalidate_range_end(&range);
5106
5107 return pages << h->order;
5108 }
5109
5110 int hugetlb_reserve_pages(struct inode *inode,
5111 long from, long to,
5112 struct vm_area_struct *vma,
5113 vm_flags_t vm_flags)
5114 {
5115 long ret, chg, add = -1;
5116 struct hstate *h = hstate_inode(inode);
5117 struct hugepage_subpool *spool = subpool_inode(inode);
5118 struct resv_map *resv_map;
5119 struct hugetlb_cgroup *h_cg = NULL;
5120 long gbl_reserve, regions_needed = 0;
5121
5122 /* This should never happen */
5123 if (from > to) {
5124 VM_WARN(1, "%s called with a negative range\n", __func__);
5125 return -EINVAL;
5126 }
5127
5128 /*
5129 * Only apply hugepage reservation if asked. At fault time, an
5130 * attempt will be made for VM_NORESERVE to allocate a page
5131 * without using reserves
5132 */
5133 if (vm_flags & VM_NORESERVE)
5134 return 0;
5135
5136 /*
5137 * Shared mappings base their reservation on the number of pages that
5138 * are already allocated on behalf of the file. Private mappings need
5139 * to reserve the full area even if read-only as mprotect() may be
5140 * called to make the mapping read-write. Assume !vma is a shm mapping
5141 */
5142 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5143 /*
5144 * resv_map can not be NULL as hugetlb_reserve_pages is only
5145 * called for inodes for which resv_maps were created (see
5146 * hugetlbfs_get_inode).
5147 */
5148 resv_map = inode_resv_map(inode);
5149
5150 chg = region_chg(resv_map, from, to, &regions_needed);
5151
5152 } else {
5153 /* Private mapping. */
5154 resv_map = resv_map_alloc();
5155 if (!resv_map)
5156 return -ENOMEM;
5157
5158 chg = to - from;
5159
5160 set_vma_resv_map(vma, resv_map);
5161 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5162 }
5163
5164 if (chg < 0) {
5165 ret = chg;
5166 goto out_err;
5167 }
5168
5169 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5170 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5171
5172 if (ret < 0) {
5173 ret = -ENOMEM;
5174 goto out_err;
5175 }
5176
5177 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5178 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5179 * of the resv_map.
5180 */
5181 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5182 }
5183
5184 /*
5185 * There must be enough pages in the subpool for the mapping. If
5186 * the subpool has a minimum size, there may be some global
5187 * reservations already in place (gbl_reserve).
5188 */
5189 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5190 if (gbl_reserve < 0) {
5191 ret = -ENOSPC;
5192 goto out_uncharge_cgroup;
5193 }
5194
5195 /*
5196 * Check enough hugepages are available for the reservation.
5197 * Hand the pages back to the subpool if there are not
5198 */
5199 ret = hugetlb_acct_memory(h, gbl_reserve);
5200 if (ret < 0) {
5201 goto out_put_pages;
5202 }
5203
5204 /*
5205 * Account for the reservations made. Shared mappings record regions
5206 * that have reservations as they are shared by multiple VMAs.
5207 * When the last VMA disappears, the region map says how much
5208 * the reservation was and the page cache tells how much of
5209 * the reservation was consumed. Private mappings are per-VMA and
5210 * only the consumed reservations are tracked. When the VMA
5211 * disappears, the original reservation is the VMA size and the
5212 * consumed reservations are stored in the map. Hence, nothing
5213 * else has to be done for private mappings here
5214 */
5215 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5216 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5217
5218 if (unlikely(add < 0)) {
5219 hugetlb_acct_memory(h, -gbl_reserve);
5220 ret = add;
5221 goto out_put_pages;
5222 } else if (unlikely(chg > add)) {
5223 /*
5224 * pages in this range were added to the reserve
5225 * map between region_chg and region_add. This
5226 * indicates a race with alloc_huge_page. Adjust
5227 * the subpool and reserve counts modified above
5228 * based on the difference.
5229 */
5230 long rsv_adjust;
5231
5232 /*
5233 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5234 * reference to h_cg->css. See comment below for detail.
5235 */
5236 hugetlb_cgroup_uncharge_cgroup_rsvd(
5237 hstate_index(h),
5238 (chg - add) * pages_per_huge_page(h), h_cg);
5239
5240 rsv_adjust = hugepage_subpool_put_pages(spool,
5241 chg - add);
5242 hugetlb_acct_memory(h, -rsv_adjust);
5243 } else if (h_cg) {
5244 /*
5245 * The file_regions will hold their own reference to
5246 * h_cg->css. So we should release the reference held
5247 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5248 * done.
5249 */
5250 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5251 }
5252 }
5253 return 0;
5254 out_put_pages:
5255 /* put back original number of pages, chg */
5256 (void)hugepage_subpool_put_pages(spool, chg);
5257 out_uncharge_cgroup:
5258 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5259 chg * pages_per_huge_page(h), h_cg);
5260 out_err:
5261 if (!vma || vma->vm_flags & VM_MAYSHARE)
5262 /* Only call region_abort if the region_chg succeeded but the
5263 * region_add failed or didn't run.
5264 */
5265 if (chg >= 0 && add < 0)
5266 region_abort(resv_map, from, to, regions_needed);
5267 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5268 kref_put(&resv_map->refs, resv_map_release);
5269 return ret;
5270 }
5271
5272 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5273 long freed)
5274 {
5275 struct hstate *h = hstate_inode(inode);
5276 struct resv_map *resv_map = inode_resv_map(inode);
5277 long chg = 0;
5278 struct hugepage_subpool *spool = subpool_inode(inode);
5279 long gbl_reserve;
5280
5281 /*
5282 * Since this routine can be called in the evict inode path for all
5283 * hugetlbfs inodes, resv_map could be NULL.
5284 */
5285 if (resv_map) {
5286 chg = region_del(resv_map, start, end);
5287 /*
5288 * region_del() can fail in the rare case where a region
5289 * must be split and another region descriptor can not be
5290 * allocated. If end == LONG_MAX, it will not fail.
5291 */
5292 if (chg < 0)
5293 return chg;
5294 }
5295
5296 spin_lock(&inode->i_lock);
5297 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5298 spin_unlock(&inode->i_lock);
5299
5300 /*
5301 * If the subpool has a minimum size, the number of global
5302 * reservations to be released may be adjusted.
5303 */
5304 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5305 hugetlb_acct_memory(h, -gbl_reserve);
5306
5307 return 0;
5308 }
5309
5310 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5311 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5312 struct vm_area_struct *vma,
5313 unsigned long addr, pgoff_t idx)
5314 {
5315 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5316 svma->vm_start;
5317 unsigned long sbase = saddr & PUD_MASK;
5318 unsigned long s_end = sbase + PUD_SIZE;
5319
5320 /* Allow segments to share if only one is marked locked */
5321 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5322 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5323
5324 /*
5325 * match the virtual addresses, permission and the alignment of the
5326 * page table page.
5327 */
5328 if (pmd_index(addr) != pmd_index(saddr) ||
5329 vm_flags != svm_flags ||
5330 sbase < svma->vm_start || svma->vm_end < s_end)
5331 return 0;
5332
5333 return saddr;
5334 }
5335
5336 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5337 {
5338 unsigned long base = addr & PUD_MASK;
5339 unsigned long end = base + PUD_SIZE;
5340
5341 /*
5342 * check on proper vm_flags and page table alignment
5343 */
5344 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5345 return true;
5346 return false;
5347 }
5348
5349 /*
5350 * Determine if start,end range within vma could be mapped by shared pmd.
5351 * If yes, adjust start and end to cover range associated with possible
5352 * shared pmd mappings.
5353 */
5354 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5355 unsigned long *start, unsigned long *end)
5356 {
5357 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5358 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5359
5360 /*
5361 * vma need span at least one aligned PUD size and the start,end range
5362 * must at least partialy within it.
5363 */
5364 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5365 (*end <= v_start) || (*start >= v_end))
5366 return;
5367
5368 /* Extend the range to be PUD aligned for a worst case scenario */
5369 if (*start > v_start)
5370 *start = ALIGN_DOWN(*start, PUD_SIZE);
5371
5372 if (*end < v_end)
5373 *end = ALIGN(*end, PUD_SIZE);
5374 }
5375
5376 /*
5377 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5378 * and returns the corresponding pte. While this is not necessary for the
5379 * !shared pmd case because we can allocate the pmd later as well, it makes the
5380 * code much cleaner.
5381 *
5382 * This routine must be called with i_mmap_rwsem held in at least read mode if
5383 * sharing is possible. For hugetlbfs, this prevents removal of any page
5384 * table entries associated with the address space. This is important as we
5385 * are setting up sharing based on existing page table entries (mappings).
5386 *
5387 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5388 * huge_pte_alloc know that sharing is not possible and do not take
5389 * i_mmap_rwsem as a performance optimization. This is handled by the
5390 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5391 * only required for subsequent processing.
5392 */
5393 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5394 {
5395 struct vm_area_struct *vma = find_vma(mm, addr);
5396 struct address_space *mapping = vma->vm_file->f_mapping;
5397 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5398 vma->vm_pgoff;
5399 struct vm_area_struct *svma;
5400 unsigned long saddr;
5401 pte_t *spte = NULL;
5402 pte_t *pte;
5403 spinlock_t *ptl;
5404
5405 if (!vma_shareable(vma, addr))
5406 return (pte_t *)pmd_alloc(mm, pud, addr);
5407
5408 i_mmap_assert_locked(mapping);
5409 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5410 if (svma == vma)
5411 continue;
5412
5413 saddr = page_table_shareable(svma, vma, addr, idx);
5414 if (saddr) {
5415 spte = huge_pte_offset(svma->vm_mm, saddr,
5416 vma_mmu_pagesize(svma));
5417 if (spte) {
5418 get_page(virt_to_page(spte));
5419 break;
5420 }
5421 }
5422 }
5423
5424 if (!spte)
5425 goto out;
5426
5427 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5428 if (pud_none(*pud)) {
5429 pud_populate(mm, pud,
5430 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5431 mm_inc_nr_pmds(mm);
5432 } else {
5433 put_page(virt_to_page(spte));
5434 }
5435 spin_unlock(ptl);
5436 out:
5437 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5438 return pte;
5439 }
5440
5441 /*
5442 * unmap huge page backed by shared pte.
5443 *
5444 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5445 * indicated by page_count > 1, unmap is achieved by clearing pud and
5446 * decrementing the ref count. If count == 1, the pte page is not shared.
5447 *
5448 * Called with page table lock held and i_mmap_rwsem held in write mode.
5449 *
5450 * returns: 1 successfully unmapped a shared pte page
5451 * 0 the underlying pte page is not shared, or it is the last user
5452 */
5453 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5454 unsigned long *addr, pte_t *ptep)
5455 {
5456 pgd_t *pgd = pgd_offset(mm, *addr);
5457 p4d_t *p4d = p4d_offset(pgd, *addr);
5458 pud_t *pud = pud_offset(p4d, *addr);
5459
5460 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5461 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5462 if (page_count(virt_to_page(ptep)) == 1)
5463 return 0;
5464
5465 pud_clear(pud);
5466 put_page(virt_to_page(ptep));
5467 mm_dec_nr_pmds(mm);
5468 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5469 return 1;
5470 }
5471 #define want_pmd_share() (1)
5472 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5473 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5474 {
5475 return NULL;
5476 }
5477
5478 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5479 unsigned long *addr, pte_t *ptep)
5480 {
5481 return 0;
5482 }
5483
5484 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5485 unsigned long *start, unsigned long *end)
5486 {
5487 }
5488 #define want_pmd_share() (0)
5489 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5490
5491 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5492 pte_t *huge_pte_alloc(struct mm_struct *mm,
5493 unsigned long addr, unsigned long sz)
5494 {
5495 pgd_t *pgd;
5496 p4d_t *p4d;
5497 pud_t *pud;
5498 pte_t *pte = NULL;
5499
5500 pgd = pgd_offset(mm, addr);
5501 p4d = p4d_alloc(mm, pgd, addr);
5502 if (!p4d)
5503 return NULL;
5504 pud = pud_alloc(mm, p4d, addr);
5505 if (pud) {
5506 if (sz == PUD_SIZE) {
5507 pte = (pte_t *)pud;
5508 } else {
5509 BUG_ON(sz != PMD_SIZE);
5510 if (want_pmd_share() && pud_none(*pud))
5511 pte = huge_pmd_share(mm, addr, pud);
5512 else
5513 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5514 }
5515 }
5516 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5517
5518 return pte;
5519 }
5520
5521 /*
5522 * huge_pte_offset() - Walk the page table to resolve the hugepage
5523 * entry at address @addr
5524 *
5525 * Return: Pointer to page table entry (PUD or PMD) for
5526 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5527 * size @sz doesn't match the hugepage size at this level of the page
5528 * table.
5529 */
5530 pte_t *huge_pte_offset(struct mm_struct *mm,
5531 unsigned long addr, unsigned long sz)
5532 {
5533 pgd_t *pgd;
5534 p4d_t *p4d;
5535 pud_t *pud;
5536 pmd_t *pmd;
5537
5538 pgd = pgd_offset(mm, addr);
5539 if (!pgd_present(*pgd))
5540 return NULL;
5541 p4d = p4d_offset(pgd, addr);
5542 if (!p4d_present(*p4d))
5543 return NULL;
5544
5545 pud = pud_offset(p4d, addr);
5546 if (sz == PUD_SIZE)
5547 /* must be pud huge, non-present or none */
5548 return (pte_t *)pud;
5549 if (!pud_present(*pud))
5550 return NULL;
5551 /* must have a valid entry and size to go further */
5552
5553 pmd = pmd_offset(pud, addr);
5554 /* must be pmd huge, non-present or none */
5555 return (pte_t *)pmd;
5556 }
5557
5558 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5559
5560 /*
5561 * These functions are overwritable if your architecture needs its own
5562 * behavior.
5563 */
5564 struct page * __weak
5565 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5566 int write)
5567 {
5568 return ERR_PTR(-EINVAL);
5569 }
5570
5571 struct page * __weak
5572 follow_huge_pd(struct vm_area_struct *vma,
5573 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5574 {
5575 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5576 return NULL;
5577 }
5578
5579 struct page * __weak
5580 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5581 pmd_t *pmd, int flags)
5582 {
5583 struct page *page = NULL;
5584 spinlock_t *ptl;
5585 pte_t pte;
5586
5587 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5588 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5589 (FOLL_PIN | FOLL_GET)))
5590 return NULL;
5591
5592 retry:
5593 ptl = pmd_lockptr(mm, pmd);
5594 spin_lock(ptl);
5595 /*
5596 * make sure that the address range covered by this pmd is not
5597 * unmapped from other threads.
5598 */
5599 if (!pmd_huge(*pmd))
5600 goto out;
5601 pte = huge_ptep_get((pte_t *)pmd);
5602 if (pte_present(pte)) {
5603 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5604 /*
5605 * try_grab_page() should always succeed here, because: a) we
5606 * hold the pmd (ptl) lock, and b) we've just checked that the
5607 * huge pmd (head) page is present in the page tables. The ptl
5608 * prevents the head page and tail pages from being rearranged
5609 * in any way. So this page must be available at this point,
5610 * unless the page refcount overflowed:
5611 */
5612 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5613 page = NULL;
5614 goto out;
5615 }
5616 } else {
5617 if (is_hugetlb_entry_migration(pte)) {
5618 spin_unlock(ptl);
5619 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5620 goto retry;
5621 }
5622 /*
5623 * hwpoisoned entry is treated as no_page_table in
5624 * follow_page_mask().
5625 */
5626 }
5627 out:
5628 spin_unlock(ptl);
5629 return page;
5630 }
5631
5632 struct page * __weak
5633 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5634 pud_t *pud, int flags)
5635 {
5636 if (flags & (FOLL_GET | FOLL_PIN))
5637 return NULL;
5638
5639 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5640 }
5641
5642 struct page * __weak
5643 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5644 {
5645 if (flags & (FOLL_GET | FOLL_PIN))
5646 return NULL;
5647
5648 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5649 }
5650
5651 bool isolate_huge_page(struct page *page, struct list_head *list)
5652 {
5653 bool ret = true;
5654
5655 spin_lock(&hugetlb_lock);
5656 if (!PageHeadHuge(page) || !page_huge_active(page) ||
5657 !get_page_unless_zero(page)) {
5658 ret = false;
5659 goto unlock;
5660 }
5661 clear_page_huge_active(page);
5662 list_move_tail(&page->lru, list);
5663 unlock:
5664 spin_unlock(&hugetlb_lock);
5665 return ret;
5666 }
5667
5668 void putback_active_hugepage(struct page *page)
5669 {
5670 VM_BUG_ON_PAGE(!PageHead(page), page);
5671 spin_lock(&hugetlb_lock);
5672 set_page_huge_active(page);
5673 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5674 spin_unlock(&hugetlb_lock);
5675 put_page(page);
5676 }
5677
5678 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5679 {
5680 struct hstate *h = page_hstate(oldpage);
5681
5682 hugetlb_cgroup_migrate(oldpage, newpage);
5683 set_page_owner_migrate_reason(newpage, reason);
5684
5685 /*
5686 * transfer temporary state of the new huge page. This is
5687 * reverse to other transitions because the newpage is going to
5688 * be final while the old one will be freed so it takes over
5689 * the temporary status.
5690 *
5691 * Also note that we have to transfer the per-node surplus state
5692 * here as well otherwise the global surplus count will not match
5693 * the per-node's.
5694 */
5695 if (PageHugeTemporary(newpage)) {
5696 int old_nid = page_to_nid(oldpage);
5697 int new_nid = page_to_nid(newpage);
5698
5699 SetPageHugeTemporary(oldpage);
5700 ClearPageHugeTemporary(newpage);
5701
5702 spin_lock(&hugetlb_lock);
5703 if (h->surplus_huge_pages_node[old_nid]) {
5704 h->surplus_huge_pages_node[old_nid]--;
5705 h->surplus_huge_pages_node[new_nid]++;
5706 }
5707 spin_unlock(&hugetlb_lock);
5708 }
5709 }
5710
5711 #ifdef CONFIG_CMA
5712 static bool cma_reserve_called __initdata;
5713
5714 static int __init cmdline_parse_hugetlb_cma(char *p)
5715 {
5716 hugetlb_cma_size = memparse(p, &p);
5717 return 0;
5718 }
5719
5720 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5721
5722 void __init hugetlb_cma_reserve(int order)
5723 {
5724 unsigned long size, reserved, per_node;
5725 int nid;
5726
5727 cma_reserve_called = true;
5728
5729 if (!hugetlb_cma_size)
5730 return;
5731
5732 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5733 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5734 (PAGE_SIZE << order) / SZ_1M);
5735 return;
5736 }
5737
5738 /*
5739 * If 3 GB area is requested on a machine with 4 numa nodes,
5740 * let's allocate 1 GB on first three nodes and ignore the last one.
5741 */
5742 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5743 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5744 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5745
5746 reserved = 0;
5747 for_each_node_state(nid, N_ONLINE) {
5748 int res;
5749 char name[CMA_MAX_NAME];
5750
5751 size = min(per_node, hugetlb_cma_size - reserved);
5752 size = round_up(size, PAGE_SIZE << order);
5753
5754 snprintf(name, sizeof(name), "hugetlb%d", nid);
5755 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5756 0, false, name,
5757 &hugetlb_cma[nid], nid);
5758 if (res) {
5759 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5760 res, nid);
5761 continue;
5762 }
5763
5764 reserved += size;
5765 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5766 size / SZ_1M, nid);
5767
5768 if (reserved >= hugetlb_cma_size)
5769 break;
5770 }
5771 }
5772
5773 void __init hugetlb_cma_check(void)
5774 {
5775 if (!hugetlb_cma_size || cma_reserve_called)
5776 return;
5777
5778 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5779 }
5780
5781 #endif /* CONFIG_CMA */