]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/hugetlb.c
drm/ingenic: Validate mode in a .mode_valid callback
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 #include <linux/cma.h>
32
33 #include <asm/page.h>
34 #include <asm/tlb.h>
35
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
43
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
47
48 static struct cma *hugetlb_cma[MAX_NUMNODES];
49
50 /*
51 * Minimum page order among possible hugepage sizes, set to a proper value
52 * at boot time.
53 */
54 static unsigned int minimum_order __read_mostly = UINT_MAX;
55
56 __initdata LIST_HEAD(huge_boot_pages);
57
58 /* for command line parsing */
59 static struct hstate * __initdata parsed_hstate;
60 static unsigned long __initdata default_hstate_max_huge_pages;
61 static bool __initdata parsed_valid_hugepagesz = true;
62 static bool __initdata parsed_default_hugepagesz;
63
64 /*
65 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
66 * free_huge_pages, and surplus_huge_pages.
67 */
68 DEFINE_SPINLOCK(hugetlb_lock);
69
70 /*
71 * Serializes faults on the same logical page. This is used to
72 * prevent spurious OOMs when the hugepage pool is fully utilized.
73 */
74 static int num_fault_mutexes;
75 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
76
77 /* Forward declaration */
78 static int hugetlb_acct_memory(struct hstate *h, long delta);
79
80 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
81 {
82 bool free = (spool->count == 0) && (spool->used_hpages == 0);
83
84 spin_unlock(&spool->lock);
85
86 /* If no pages are used, and no other handles to the subpool
87 * remain, give up any reservations based on minimum size and
88 * free the subpool */
89 if (free) {
90 if (spool->min_hpages != -1)
91 hugetlb_acct_memory(spool->hstate,
92 -spool->min_hpages);
93 kfree(spool);
94 }
95 }
96
97 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
98 long min_hpages)
99 {
100 struct hugepage_subpool *spool;
101
102 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
103 if (!spool)
104 return NULL;
105
106 spin_lock_init(&spool->lock);
107 spool->count = 1;
108 spool->max_hpages = max_hpages;
109 spool->hstate = h;
110 spool->min_hpages = min_hpages;
111
112 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
113 kfree(spool);
114 return NULL;
115 }
116 spool->rsv_hpages = min_hpages;
117
118 return spool;
119 }
120
121 void hugepage_put_subpool(struct hugepage_subpool *spool)
122 {
123 spin_lock(&spool->lock);
124 BUG_ON(!spool->count);
125 spool->count--;
126 unlock_or_release_subpool(spool);
127 }
128
129 /*
130 * Subpool accounting for allocating and reserving pages.
131 * Return -ENOMEM if there are not enough resources to satisfy the
132 * the request. Otherwise, return the number of pages by which the
133 * global pools must be adjusted (upward). The returned value may
134 * only be different than the passed value (delta) in the case where
135 * a subpool minimum size must be maintained.
136 */
137 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
138 long delta)
139 {
140 long ret = delta;
141
142 if (!spool)
143 return ret;
144
145 spin_lock(&spool->lock);
146
147 if (spool->max_hpages != -1) { /* maximum size accounting */
148 if ((spool->used_hpages + delta) <= spool->max_hpages)
149 spool->used_hpages += delta;
150 else {
151 ret = -ENOMEM;
152 goto unlock_ret;
153 }
154 }
155
156 /* minimum size accounting */
157 if (spool->min_hpages != -1 && spool->rsv_hpages) {
158 if (delta > spool->rsv_hpages) {
159 /*
160 * Asking for more reserves than those already taken on
161 * behalf of subpool. Return difference.
162 */
163 ret = delta - spool->rsv_hpages;
164 spool->rsv_hpages = 0;
165 } else {
166 ret = 0; /* reserves already accounted for */
167 spool->rsv_hpages -= delta;
168 }
169 }
170
171 unlock_ret:
172 spin_unlock(&spool->lock);
173 return ret;
174 }
175
176 /*
177 * Subpool accounting for freeing and unreserving pages.
178 * Return the number of global page reservations that must be dropped.
179 * The return value may only be different than the passed value (delta)
180 * in the case where a subpool minimum size must be maintained.
181 */
182 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
183 long delta)
184 {
185 long ret = delta;
186
187 if (!spool)
188 return delta;
189
190 spin_lock(&spool->lock);
191
192 if (spool->max_hpages != -1) /* maximum size accounting */
193 spool->used_hpages -= delta;
194
195 /* minimum size accounting */
196 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
197 if (spool->rsv_hpages + delta <= spool->min_hpages)
198 ret = 0;
199 else
200 ret = spool->rsv_hpages + delta - spool->min_hpages;
201
202 spool->rsv_hpages += delta;
203 if (spool->rsv_hpages > spool->min_hpages)
204 spool->rsv_hpages = spool->min_hpages;
205 }
206
207 /*
208 * If hugetlbfs_put_super couldn't free spool due to an outstanding
209 * quota reference, free it now.
210 */
211 unlock_or_release_subpool(spool);
212
213 return ret;
214 }
215
216 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
217 {
218 return HUGETLBFS_SB(inode->i_sb)->spool;
219 }
220
221 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
222 {
223 return subpool_inode(file_inode(vma->vm_file));
224 }
225
226 /* Helper that removes a struct file_region from the resv_map cache and returns
227 * it for use.
228 */
229 static struct file_region *
230 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
231 {
232 struct file_region *nrg = NULL;
233
234 VM_BUG_ON(resv->region_cache_count <= 0);
235
236 resv->region_cache_count--;
237 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
238 VM_BUG_ON(!nrg);
239 list_del(&nrg->link);
240
241 nrg->from = from;
242 nrg->to = to;
243
244 return nrg;
245 }
246
247 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
248 struct file_region *rg)
249 {
250 #ifdef CONFIG_CGROUP_HUGETLB
251 nrg->reservation_counter = rg->reservation_counter;
252 nrg->css = rg->css;
253 if (rg->css)
254 css_get(rg->css);
255 #endif
256 }
257
258 /* Helper that records hugetlb_cgroup uncharge info. */
259 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
260 struct hstate *h,
261 struct resv_map *resv,
262 struct file_region *nrg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265 if (h_cg) {
266 nrg->reservation_counter =
267 &h_cg->rsvd_hugepage[hstate_index(h)];
268 nrg->css = &h_cg->css;
269 if (!resv->pages_per_hpage)
270 resv->pages_per_hpage = pages_per_huge_page(h);
271 /* pages_per_hpage should be the same for all entries in
272 * a resv_map.
273 */
274 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
275 } else {
276 nrg->reservation_counter = NULL;
277 nrg->css = NULL;
278 }
279 #endif
280 }
281
282 static bool has_same_uncharge_info(struct file_region *rg,
283 struct file_region *org)
284 {
285 #ifdef CONFIG_CGROUP_HUGETLB
286 return rg && org &&
287 rg->reservation_counter == org->reservation_counter &&
288 rg->css == org->css;
289
290 #else
291 return true;
292 #endif
293 }
294
295 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
296 {
297 struct file_region *nrg = NULL, *prg = NULL;
298
299 prg = list_prev_entry(rg, link);
300 if (&prg->link != &resv->regions && prg->to == rg->from &&
301 has_same_uncharge_info(prg, rg)) {
302 prg->to = rg->to;
303
304 list_del(&rg->link);
305 kfree(rg);
306
307 coalesce_file_region(resv, prg);
308 return;
309 }
310
311 nrg = list_next_entry(rg, link);
312 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
313 has_same_uncharge_info(nrg, rg)) {
314 nrg->from = rg->from;
315
316 list_del(&rg->link);
317 kfree(rg);
318
319 coalesce_file_region(resv, nrg);
320 return;
321 }
322 }
323
324 /* Must be called with resv->lock held. Calling this with count_only == true
325 * will count the number of pages to be added but will not modify the linked
326 * list. If regions_needed != NULL and count_only == true, then regions_needed
327 * will indicate the number of file_regions needed in the cache to carry out to
328 * add the regions for this range.
329 */
330 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
331 struct hugetlb_cgroup *h_cg,
332 struct hstate *h, long *regions_needed,
333 bool count_only)
334 {
335 long add = 0;
336 struct list_head *head = &resv->regions;
337 long last_accounted_offset = f;
338 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
339
340 if (regions_needed)
341 *regions_needed = 0;
342
343 /* In this loop, we essentially handle an entry for the range
344 * [last_accounted_offset, rg->from), at every iteration, with some
345 * bounds checking.
346 */
347 list_for_each_entry_safe(rg, trg, head, link) {
348 /* Skip irrelevant regions that start before our range. */
349 if (rg->from < f) {
350 /* If this region ends after the last accounted offset,
351 * then we need to update last_accounted_offset.
352 */
353 if (rg->to > last_accounted_offset)
354 last_accounted_offset = rg->to;
355 continue;
356 }
357
358 /* When we find a region that starts beyond our range, we've
359 * finished.
360 */
361 if (rg->from > t)
362 break;
363
364 /* Add an entry for last_accounted_offset -> rg->from, and
365 * update last_accounted_offset.
366 */
367 if (rg->from > last_accounted_offset) {
368 add += rg->from - last_accounted_offset;
369 if (!count_only) {
370 nrg = get_file_region_entry_from_cache(
371 resv, last_accounted_offset, rg->from);
372 record_hugetlb_cgroup_uncharge_info(h_cg, h,
373 resv, nrg);
374 list_add(&nrg->link, rg->link.prev);
375 coalesce_file_region(resv, nrg);
376 } else if (regions_needed)
377 *regions_needed += 1;
378 }
379
380 last_accounted_offset = rg->to;
381 }
382
383 /* Handle the case where our range extends beyond
384 * last_accounted_offset.
385 */
386 if (last_accounted_offset < t) {
387 add += t - last_accounted_offset;
388 if (!count_only) {
389 nrg = get_file_region_entry_from_cache(
390 resv, last_accounted_offset, t);
391 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
392 list_add(&nrg->link, rg->link.prev);
393 coalesce_file_region(resv, nrg);
394 } else if (regions_needed)
395 *regions_needed += 1;
396 }
397
398 VM_BUG_ON(add < 0);
399 return add;
400 }
401
402 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
403 */
404 static int allocate_file_region_entries(struct resv_map *resv,
405 int regions_needed)
406 __must_hold(&resv->lock)
407 {
408 struct list_head allocated_regions;
409 int to_allocate = 0, i = 0;
410 struct file_region *trg = NULL, *rg = NULL;
411
412 VM_BUG_ON(regions_needed < 0);
413
414 INIT_LIST_HEAD(&allocated_regions);
415
416 /*
417 * Check for sufficient descriptors in the cache to accommodate
418 * the number of in progress add operations plus regions_needed.
419 *
420 * This is a while loop because when we drop the lock, some other call
421 * to region_add or region_del may have consumed some region_entries,
422 * so we keep looping here until we finally have enough entries for
423 * (adds_in_progress + regions_needed).
424 */
425 while (resv->region_cache_count <
426 (resv->adds_in_progress + regions_needed)) {
427 to_allocate = resv->adds_in_progress + regions_needed -
428 resv->region_cache_count;
429
430 /* At this point, we should have enough entries in the cache
431 * for all the existings adds_in_progress. We should only be
432 * needing to allocate for regions_needed.
433 */
434 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
435
436 spin_unlock(&resv->lock);
437 for (i = 0; i < to_allocate; i++) {
438 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
439 if (!trg)
440 goto out_of_memory;
441 list_add(&trg->link, &allocated_regions);
442 }
443
444 spin_lock(&resv->lock);
445
446 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
447 list_del(&rg->link);
448 list_add(&rg->link, &resv->region_cache);
449 resv->region_cache_count++;
450 }
451 }
452
453 return 0;
454
455 out_of_memory:
456 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
457 list_del(&rg->link);
458 kfree(rg);
459 }
460 return -ENOMEM;
461 }
462
463 /*
464 * Add the huge page range represented by [f, t) to the reserve
465 * map. Regions will be taken from the cache to fill in this range.
466 * Sufficient regions should exist in the cache due to the previous
467 * call to region_chg with the same range, but in some cases the cache will not
468 * have sufficient entries due to races with other code doing region_add or
469 * region_del. The extra needed entries will be allocated.
470 *
471 * regions_needed is the out value provided by a previous call to region_chg.
472 *
473 * Return the number of new huge pages added to the map. This number is greater
474 * than or equal to zero. If file_region entries needed to be allocated for
475 * this operation and we were not able to allocate, it returns -ENOMEM.
476 * region_add of regions of length 1 never allocate file_regions and cannot
477 * fail; region_chg will always allocate at least 1 entry and a region_add for
478 * 1 page will only require at most 1 entry.
479 */
480 static long region_add(struct resv_map *resv, long f, long t,
481 long in_regions_needed, struct hstate *h,
482 struct hugetlb_cgroup *h_cg)
483 {
484 long add = 0, actual_regions_needed = 0;
485
486 spin_lock(&resv->lock);
487 retry:
488
489 /* Count how many regions are actually needed to execute this add. */
490 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
491 true);
492
493 /*
494 * Check for sufficient descriptors in the cache to accommodate
495 * this add operation. Note that actual_regions_needed may be greater
496 * than in_regions_needed, as the resv_map may have been modified since
497 * the region_chg call. In this case, we need to make sure that we
498 * allocate extra entries, such that we have enough for all the
499 * existing adds_in_progress, plus the excess needed for this
500 * operation.
501 */
502 if (actual_regions_needed > in_regions_needed &&
503 resv->region_cache_count <
504 resv->adds_in_progress +
505 (actual_regions_needed - in_regions_needed)) {
506 /* region_add operation of range 1 should never need to
507 * allocate file_region entries.
508 */
509 VM_BUG_ON(t - f <= 1);
510
511 if (allocate_file_region_entries(
512 resv, actual_regions_needed - in_regions_needed)) {
513 return -ENOMEM;
514 }
515
516 goto retry;
517 }
518
519 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
520
521 resv->adds_in_progress -= in_regions_needed;
522
523 spin_unlock(&resv->lock);
524 VM_BUG_ON(add < 0);
525 return add;
526 }
527
528 /*
529 * Examine the existing reserve map and determine how many
530 * huge pages in the specified range [f, t) are NOT currently
531 * represented. This routine is called before a subsequent
532 * call to region_add that will actually modify the reserve
533 * map to add the specified range [f, t). region_chg does
534 * not change the number of huge pages represented by the
535 * map. A number of new file_region structures is added to the cache as a
536 * placeholder, for the subsequent region_add call to use. At least 1
537 * file_region structure is added.
538 *
539 * out_regions_needed is the number of regions added to the
540 * resv->adds_in_progress. This value needs to be provided to a follow up call
541 * to region_add or region_abort for proper accounting.
542 *
543 * Returns the number of huge pages that need to be added to the existing
544 * reservation map for the range [f, t). This number is greater or equal to
545 * zero. -ENOMEM is returned if a new file_region structure or cache entry
546 * is needed and can not be allocated.
547 */
548 static long region_chg(struct resv_map *resv, long f, long t,
549 long *out_regions_needed)
550 {
551 long chg = 0;
552
553 spin_lock(&resv->lock);
554
555 /* Count how many hugepages in this range are NOT respresented. */
556 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
557 out_regions_needed, true);
558
559 if (*out_regions_needed == 0)
560 *out_regions_needed = 1;
561
562 if (allocate_file_region_entries(resv, *out_regions_needed))
563 return -ENOMEM;
564
565 resv->adds_in_progress += *out_regions_needed;
566
567 spin_unlock(&resv->lock);
568 return chg;
569 }
570
571 /*
572 * Abort the in progress add operation. The adds_in_progress field
573 * of the resv_map keeps track of the operations in progress between
574 * calls to region_chg and region_add. Operations are sometimes
575 * aborted after the call to region_chg. In such cases, region_abort
576 * is called to decrement the adds_in_progress counter. regions_needed
577 * is the value returned by the region_chg call, it is used to decrement
578 * the adds_in_progress counter.
579 *
580 * NOTE: The range arguments [f, t) are not needed or used in this
581 * routine. They are kept to make reading the calling code easier as
582 * arguments will match the associated region_chg call.
583 */
584 static void region_abort(struct resv_map *resv, long f, long t,
585 long regions_needed)
586 {
587 spin_lock(&resv->lock);
588 VM_BUG_ON(!resv->region_cache_count);
589 resv->adds_in_progress -= regions_needed;
590 spin_unlock(&resv->lock);
591 }
592
593 /*
594 * Delete the specified range [f, t) from the reserve map. If the
595 * t parameter is LONG_MAX, this indicates that ALL regions after f
596 * should be deleted. Locate the regions which intersect [f, t)
597 * and either trim, delete or split the existing regions.
598 *
599 * Returns the number of huge pages deleted from the reserve map.
600 * In the normal case, the return value is zero or more. In the
601 * case where a region must be split, a new region descriptor must
602 * be allocated. If the allocation fails, -ENOMEM will be returned.
603 * NOTE: If the parameter t == LONG_MAX, then we will never split
604 * a region and possibly return -ENOMEM. Callers specifying
605 * t == LONG_MAX do not need to check for -ENOMEM error.
606 */
607 static long region_del(struct resv_map *resv, long f, long t)
608 {
609 struct list_head *head = &resv->regions;
610 struct file_region *rg, *trg;
611 struct file_region *nrg = NULL;
612 long del = 0;
613
614 retry:
615 spin_lock(&resv->lock);
616 list_for_each_entry_safe(rg, trg, head, link) {
617 /*
618 * Skip regions before the range to be deleted. file_region
619 * ranges are normally of the form [from, to). However, there
620 * may be a "placeholder" entry in the map which is of the form
621 * (from, to) with from == to. Check for placeholder entries
622 * at the beginning of the range to be deleted.
623 */
624 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
625 continue;
626
627 if (rg->from >= t)
628 break;
629
630 if (f > rg->from && t < rg->to) { /* Must split region */
631 /*
632 * Check for an entry in the cache before dropping
633 * lock and attempting allocation.
634 */
635 if (!nrg &&
636 resv->region_cache_count > resv->adds_in_progress) {
637 nrg = list_first_entry(&resv->region_cache,
638 struct file_region,
639 link);
640 list_del(&nrg->link);
641 resv->region_cache_count--;
642 }
643
644 if (!nrg) {
645 spin_unlock(&resv->lock);
646 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
647 if (!nrg)
648 return -ENOMEM;
649 goto retry;
650 }
651
652 del += t - f;
653
654 /* New entry for end of split region */
655 nrg->from = t;
656 nrg->to = rg->to;
657
658 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
659
660 INIT_LIST_HEAD(&nrg->link);
661
662 /* Original entry is trimmed */
663 rg->to = f;
664
665 hugetlb_cgroup_uncharge_file_region(
666 resv, rg, nrg->to - nrg->from);
667
668 list_add(&nrg->link, &rg->link);
669 nrg = NULL;
670 break;
671 }
672
673 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
674 del += rg->to - rg->from;
675 hugetlb_cgroup_uncharge_file_region(resv, rg,
676 rg->to - rg->from);
677 list_del(&rg->link);
678 kfree(rg);
679 continue;
680 }
681
682 if (f <= rg->from) { /* Trim beginning of region */
683 del += t - rg->from;
684 rg->from = t;
685
686 hugetlb_cgroup_uncharge_file_region(resv, rg,
687 t - rg->from);
688 } else { /* Trim end of region */
689 del += rg->to - f;
690 rg->to = f;
691
692 hugetlb_cgroup_uncharge_file_region(resv, rg,
693 rg->to - f);
694 }
695 }
696
697 spin_unlock(&resv->lock);
698 kfree(nrg);
699 return del;
700 }
701
702 /*
703 * A rare out of memory error was encountered which prevented removal of
704 * the reserve map region for a page. The huge page itself was free'ed
705 * and removed from the page cache. This routine will adjust the subpool
706 * usage count, and the global reserve count if needed. By incrementing
707 * these counts, the reserve map entry which could not be deleted will
708 * appear as a "reserved" entry instead of simply dangling with incorrect
709 * counts.
710 */
711 void hugetlb_fix_reserve_counts(struct inode *inode)
712 {
713 struct hugepage_subpool *spool = subpool_inode(inode);
714 long rsv_adjust;
715
716 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
717 if (rsv_adjust) {
718 struct hstate *h = hstate_inode(inode);
719
720 hugetlb_acct_memory(h, 1);
721 }
722 }
723
724 /*
725 * Count and return the number of huge pages in the reserve map
726 * that intersect with the range [f, t).
727 */
728 static long region_count(struct resv_map *resv, long f, long t)
729 {
730 struct list_head *head = &resv->regions;
731 struct file_region *rg;
732 long chg = 0;
733
734 spin_lock(&resv->lock);
735 /* Locate each segment we overlap with, and count that overlap. */
736 list_for_each_entry(rg, head, link) {
737 long seg_from;
738 long seg_to;
739
740 if (rg->to <= f)
741 continue;
742 if (rg->from >= t)
743 break;
744
745 seg_from = max(rg->from, f);
746 seg_to = min(rg->to, t);
747
748 chg += seg_to - seg_from;
749 }
750 spin_unlock(&resv->lock);
751
752 return chg;
753 }
754
755 /*
756 * Convert the address within this vma to the page offset within
757 * the mapping, in pagecache page units; huge pages here.
758 */
759 static pgoff_t vma_hugecache_offset(struct hstate *h,
760 struct vm_area_struct *vma, unsigned long address)
761 {
762 return ((address - vma->vm_start) >> huge_page_shift(h)) +
763 (vma->vm_pgoff >> huge_page_order(h));
764 }
765
766 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
767 unsigned long address)
768 {
769 return vma_hugecache_offset(hstate_vma(vma), vma, address);
770 }
771 EXPORT_SYMBOL_GPL(linear_hugepage_index);
772
773 /*
774 * Return the size of the pages allocated when backing a VMA. In the majority
775 * cases this will be same size as used by the page table entries.
776 */
777 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
778 {
779 if (vma->vm_ops && vma->vm_ops->pagesize)
780 return vma->vm_ops->pagesize(vma);
781 return PAGE_SIZE;
782 }
783 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
784
785 /*
786 * Return the page size being used by the MMU to back a VMA. In the majority
787 * of cases, the page size used by the kernel matches the MMU size. On
788 * architectures where it differs, an architecture-specific 'strong'
789 * version of this symbol is required.
790 */
791 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
792 {
793 return vma_kernel_pagesize(vma);
794 }
795
796 /*
797 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
798 * bits of the reservation map pointer, which are always clear due to
799 * alignment.
800 */
801 #define HPAGE_RESV_OWNER (1UL << 0)
802 #define HPAGE_RESV_UNMAPPED (1UL << 1)
803 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
804
805 /*
806 * These helpers are used to track how many pages are reserved for
807 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
808 * is guaranteed to have their future faults succeed.
809 *
810 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
811 * the reserve counters are updated with the hugetlb_lock held. It is safe
812 * to reset the VMA at fork() time as it is not in use yet and there is no
813 * chance of the global counters getting corrupted as a result of the values.
814 *
815 * The private mapping reservation is represented in a subtly different
816 * manner to a shared mapping. A shared mapping has a region map associated
817 * with the underlying file, this region map represents the backing file
818 * pages which have ever had a reservation assigned which this persists even
819 * after the page is instantiated. A private mapping has a region map
820 * associated with the original mmap which is attached to all VMAs which
821 * reference it, this region map represents those offsets which have consumed
822 * reservation ie. where pages have been instantiated.
823 */
824 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
825 {
826 return (unsigned long)vma->vm_private_data;
827 }
828
829 static void set_vma_private_data(struct vm_area_struct *vma,
830 unsigned long value)
831 {
832 vma->vm_private_data = (void *)value;
833 }
834
835 static void
836 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
837 struct hugetlb_cgroup *h_cg,
838 struct hstate *h)
839 {
840 #ifdef CONFIG_CGROUP_HUGETLB
841 if (!h_cg || !h) {
842 resv_map->reservation_counter = NULL;
843 resv_map->pages_per_hpage = 0;
844 resv_map->css = NULL;
845 } else {
846 resv_map->reservation_counter =
847 &h_cg->rsvd_hugepage[hstate_index(h)];
848 resv_map->pages_per_hpage = pages_per_huge_page(h);
849 resv_map->css = &h_cg->css;
850 }
851 #endif
852 }
853
854 struct resv_map *resv_map_alloc(void)
855 {
856 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
857 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
858
859 if (!resv_map || !rg) {
860 kfree(resv_map);
861 kfree(rg);
862 return NULL;
863 }
864
865 kref_init(&resv_map->refs);
866 spin_lock_init(&resv_map->lock);
867 INIT_LIST_HEAD(&resv_map->regions);
868
869 resv_map->adds_in_progress = 0;
870 /*
871 * Initialize these to 0. On shared mappings, 0's here indicate these
872 * fields don't do cgroup accounting. On private mappings, these will be
873 * re-initialized to the proper values, to indicate that hugetlb cgroup
874 * reservations are to be un-charged from here.
875 */
876 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
877
878 INIT_LIST_HEAD(&resv_map->region_cache);
879 list_add(&rg->link, &resv_map->region_cache);
880 resv_map->region_cache_count = 1;
881
882 return resv_map;
883 }
884
885 void resv_map_release(struct kref *ref)
886 {
887 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
888 struct list_head *head = &resv_map->region_cache;
889 struct file_region *rg, *trg;
890
891 /* Clear out any active regions before we release the map. */
892 region_del(resv_map, 0, LONG_MAX);
893
894 /* ... and any entries left in the cache */
895 list_for_each_entry_safe(rg, trg, head, link) {
896 list_del(&rg->link);
897 kfree(rg);
898 }
899
900 VM_BUG_ON(resv_map->adds_in_progress);
901
902 kfree(resv_map);
903 }
904
905 static inline struct resv_map *inode_resv_map(struct inode *inode)
906 {
907 /*
908 * At inode evict time, i_mapping may not point to the original
909 * address space within the inode. This original address space
910 * contains the pointer to the resv_map. So, always use the
911 * address space embedded within the inode.
912 * The VERY common case is inode->mapping == &inode->i_data but,
913 * this may not be true for device special inodes.
914 */
915 return (struct resv_map *)(&inode->i_data)->private_data;
916 }
917
918 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
919 {
920 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
921 if (vma->vm_flags & VM_MAYSHARE) {
922 struct address_space *mapping = vma->vm_file->f_mapping;
923 struct inode *inode = mapping->host;
924
925 return inode_resv_map(inode);
926
927 } else {
928 return (struct resv_map *)(get_vma_private_data(vma) &
929 ~HPAGE_RESV_MASK);
930 }
931 }
932
933 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
934 {
935 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
936 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
937
938 set_vma_private_data(vma, (get_vma_private_data(vma) &
939 HPAGE_RESV_MASK) | (unsigned long)map);
940 }
941
942 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
943 {
944 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
945 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
946
947 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
948 }
949
950 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
951 {
952 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
953
954 return (get_vma_private_data(vma) & flag) != 0;
955 }
956
957 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
958 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
959 {
960 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961 if (!(vma->vm_flags & VM_MAYSHARE))
962 vma->vm_private_data = (void *)0;
963 }
964
965 /* Returns true if the VMA has associated reserve pages */
966 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
967 {
968 if (vma->vm_flags & VM_NORESERVE) {
969 /*
970 * This address is already reserved by other process(chg == 0),
971 * so, we should decrement reserved count. Without decrementing,
972 * reserve count remains after releasing inode, because this
973 * allocated page will go into page cache and is regarded as
974 * coming from reserved pool in releasing step. Currently, we
975 * don't have any other solution to deal with this situation
976 * properly, so add work-around here.
977 */
978 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
979 return true;
980 else
981 return false;
982 }
983
984 /* Shared mappings always use reserves */
985 if (vma->vm_flags & VM_MAYSHARE) {
986 /*
987 * We know VM_NORESERVE is not set. Therefore, there SHOULD
988 * be a region map for all pages. The only situation where
989 * there is no region map is if a hole was punched via
990 * fallocate. In this case, there really are no reserves to
991 * use. This situation is indicated if chg != 0.
992 */
993 if (chg)
994 return false;
995 else
996 return true;
997 }
998
999 /*
1000 * Only the process that called mmap() has reserves for
1001 * private mappings.
1002 */
1003 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1004 /*
1005 * Like the shared case above, a hole punch or truncate
1006 * could have been performed on the private mapping.
1007 * Examine the value of chg to determine if reserves
1008 * actually exist or were previously consumed.
1009 * Very Subtle - The value of chg comes from a previous
1010 * call to vma_needs_reserves(). The reserve map for
1011 * private mappings has different (opposite) semantics
1012 * than that of shared mappings. vma_needs_reserves()
1013 * has already taken this difference in semantics into
1014 * account. Therefore, the meaning of chg is the same
1015 * as in the shared case above. Code could easily be
1016 * combined, but keeping it separate draws attention to
1017 * subtle differences.
1018 */
1019 if (chg)
1020 return false;
1021 else
1022 return true;
1023 }
1024
1025 return false;
1026 }
1027
1028 static void enqueue_huge_page(struct hstate *h, struct page *page)
1029 {
1030 int nid = page_to_nid(page);
1031 list_move(&page->lru, &h->hugepage_freelists[nid]);
1032 h->free_huge_pages++;
1033 h->free_huge_pages_node[nid]++;
1034 }
1035
1036 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1037 {
1038 struct page *page;
1039
1040 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1041 if (!PageHWPoison(page))
1042 break;
1043 /*
1044 * if 'non-isolated free hugepage' not found on the list,
1045 * the allocation fails.
1046 */
1047 if (&h->hugepage_freelists[nid] == &page->lru)
1048 return NULL;
1049 list_move(&page->lru, &h->hugepage_activelist);
1050 set_page_refcounted(page);
1051 h->free_huge_pages--;
1052 h->free_huge_pages_node[nid]--;
1053 return page;
1054 }
1055
1056 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1057 nodemask_t *nmask)
1058 {
1059 unsigned int cpuset_mems_cookie;
1060 struct zonelist *zonelist;
1061 struct zone *zone;
1062 struct zoneref *z;
1063 int node = NUMA_NO_NODE;
1064
1065 zonelist = node_zonelist(nid, gfp_mask);
1066
1067 retry_cpuset:
1068 cpuset_mems_cookie = read_mems_allowed_begin();
1069 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1070 struct page *page;
1071
1072 if (!cpuset_zone_allowed(zone, gfp_mask))
1073 continue;
1074 /*
1075 * no need to ask again on the same node. Pool is node rather than
1076 * zone aware
1077 */
1078 if (zone_to_nid(zone) == node)
1079 continue;
1080 node = zone_to_nid(zone);
1081
1082 page = dequeue_huge_page_node_exact(h, node);
1083 if (page)
1084 return page;
1085 }
1086 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1087 goto retry_cpuset;
1088
1089 return NULL;
1090 }
1091
1092 /* Movability of hugepages depends on migration support. */
1093 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1094 {
1095 if (hugepage_movable_supported(h))
1096 return GFP_HIGHUSER_MOVABLE;
1097 else
1098 return GFP_HIGHUSER;
1099 }
1100
1101 static struct page *dequeue_huge_page_vma(struct hstate *h,
1102 struct vm_area_struct *vma,
1103 unsigned long address, int avoid_reserve,
1104 long chg)
1105 {
1106 struct page *page;
1107 struct mempolicy *mpol;
1108 gfp_t gfp_mask;
1109 nodemask_t *nodemask;
1110 int nid;
1111
1112 /*
1113 * A child process with MAP_PRIVATE mappings created by their parent
1114 * have no page reserves. This check ensures that reservations are
1115 * not "stolen". The child may still get SIGKILLed
1116 */
1117 if (!vma_has_reserves(vma, chg) &&
1118 h->free_huge_pages - h->resv_huge_pages == 0)
1119 goto err;
1120
1121 /* If reserves cannot be used, ensure enough pages are in the pool */
1122 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1123 goto err;
1124
1125 gfp_mask = htlb_alloc_mask(h);
1126 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1127 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1128 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1129 SetPagePrivate(page);
1130 h->resv_huge_pages--;
1131 }
1132
1133 mpol_cond_put(mpol);
1134 return page;
1135
1136 err:
1137 return NULL;
1138 }
1139
1140 /*
1141 * common helper functions for hstate_next_node_to_{alloc|free}.
1142 * We may have allocated or freed a huge page based on a different
1143 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1144 * be outside of *nodes_allowed. Ensure that we use an allowed
1145 * node for alloc or free.
1146 */
1147 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1148 {
1149 nid = next_node_in(nid, *nodes_allowed);
1150 VM_BUG_ON(nid >= MAX_NUMNODES);
1151
1152 return nid;
1153 }
1154
1155 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1156 {
1157 if (!node_isset(nid, *nodes_allowed))
1158 nid = next_node_allowed(nid, nodes_allowed);
1159 return nid;
1160 }
1161
1162 /*
1163 * returns the previously saved node ["this node"] from which to
1164 * allocate a persistent huge page for the pool and advance the
1165 * next node from which to allocate, handling wrap at end of node
1166 * mask.
1167 */
1168 static int hstate_next_node_to_alloc(struct hstate *h,
1169 nodemask_t *nodes_allowed)
1170 {
1171 int nid;
1172
1173 VM_BUG_ON(!nodes_allowed);
1174
1175 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1176 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1177
1178 return nid;
1179 }
1180
1181 /*
1182 * helper for free_pool_huge_page() - return the previously saved
1183 * node ["this node"] from which to free a huge page. Advance the
1184 * next node id whether or not we find a free huge page to free so
1185 * that the next attempt to free addresses the next node.
1186 */
1187 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1188 {
1189 int nid;
1190
1191 VM_BUG_ON(!nodes_allowed);
1192
1193 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1194 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1195
1196 return nid;
1197 }
1198
1199 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1200 for (nr_nodes = nodes_weight(*mask); \
1201 nr_nodes > 0 && \
1202 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1203 nr_nodes--)
1204
1205 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1206 for (nr_nodes = nodes_weight(*mask); \
1207 nr_nodes > 0 && \
1208 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1209 nr_nodes--)
1210
1211 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1212 static void destroy_compound_gigantic_page(struct page *page,
1213 unsigned int order)
1214 {
1215 int i;
1216 int nr_pages = 1 << order;
1217 struct page *p = page + 1;
1218
1219 atomic_set(compound_mapcount_ptr(page), 0);
1220 if (hpage_pincount_available(page))
1221 atomic_set(compound_pincount_ptr(page), 0);
1222
1223 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1224 clear_compound_head(p);
1225 set_page_refcounted(p);
1226 }
1227
1228 set_compound_order(page, 0);
1229 __ClearPageHead(page);
1230 }
1231
1232 static void free_gigantic_page(struct page *page, unsigned int order)
1233 {
1234 /*
1235 * If the page isn't allocated using the cma allocator,
1236 * cma_release() returns false.
1237 */
1238 if (IS_ENABLED(CONFIG_CMA) &&
1239 cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1240 return;
1241
1242 free_contig_range(page_to_pfn(page), 1 << order);
1243 }
1244
1245 #ifdef CONFIG_CONTIG_ALLOC
1246 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1247 int nid, nodemask_t *nodemask)
1248 {
1249 unsigned long nr_pages = 1UL << huge_page_order(h);
1250
1251 if (IS_ENABLED(CONFIG_CMA)) {
1252 struct page *page;
1253 int node;
1254
1255 for_each_node_mask(node, *nodemask) {
1256 if (!hugetlb_cma[node])
1257 continue;
1258
1259 page = cma_alloc(hugetlb_cma[node], nr_pages,
1260 huge_page_order(h), true);
1261 if (page)
1262 return page;
1263 }
1264 }
1265
1266 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1267 }
1268
1269 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1270 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1271 #else /* !CONFIG_CONTIG_ALLOC */
1272 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1273 int nid, nodemask_t *nodemask)
1274 {
1275 return NULL;
1276 }
1277 #endif /* CONFIG_CONTIG_ALLOC */
1278
1279 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1280 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1281 int nid, nodemask_t *nodemask)
1282 {
1283 return NULL;
1284 }
1285 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1286 static inline void destroy_compound_gigantic_page(struct page *page,
1287 unsigned int order) { }
1288 #endif
1289
1290 static void update_and_free_page(struct hstate *h, struct page *page)
1291 {
1292 int i;
1293
1294 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1295 return;
1296
1297 h->nr_huge_pages--;
1298 h->nr_huge_pages_node[page_to_nid(page)]--;
1299 for (i = 0; i < pages_per_huge_page(h); i++) {
1300 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1301 1 << PG_referenced | 1 << PG_dirty |
1302 1 << PG_active | 1 << PG_private |
1303 1 << PG_writeback);
1304 }
1305 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1306 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1307 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1308 set_page_refcounted(page);
1309 if (hstate_is_gigantic(h)) {
1310 /*
1311 * Temporarily drop the hugetlb_lock, because
1312 * we might block in free_gigantic_page().
1313 */
1314 spin_unlock(&hugetlb_lock);
1315 destroy_compound_gigantic_page(page, huge_page_order(h));
1316 free_gigantic_page(page, huge_page_order(h));
1317 spin_lock(&hugetlb_lock);
1318 } else {
1319 __free_pages(page, huge_page_order(h));
1320 }
1321 }
1322
1323 struct hstate *size_to_hstate(unsigned long size)
1324 {
1325 struct hstate *h;
1326
1327 for_each_hstate(h) {
1328 if (huge_page_size(h) == size)
1329 return h;
1330 }
1331 return NULL;
1332 }
1333
1334 /*
1335 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1336 * to hstate->hugepage_activelist.)
1337 *
1338 * This function can be called for tail pages, but never returns true for them.
1339 */
1340 bool page_huge_active(struct page *page)
1341 {
1342 VM_BUG_ON_PAGE(!PageHuge(page), page);
1343 return PageHead(page) && PagePrivate(&page[1]);
1344 }
1345
1346 /* never called for tail page */
1347 static void set_page_huge_active(struct page *page)
1348 {
1349 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1350 SetPagePrivate(&page[1]);
1351 }
1352
1353 static void clear_page_huge_active(struct page *page)
1354 {
1355 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1356 ClearPagePrivate(&page[1]);
1357 }
1358
1359 /*
1360 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1361 * code
1362 */
1363 static inline bool PageHugeTemporary(struct page *page)
1364 {
1365 if (!PageHuge(page))
1366 return false;
1367
1368 return (unsigned long)page[2].mapping == -1U;
1369 }
1370
1371 static inline void SetPageHugeTemporary(struct page *page)
1372 {
1373 page[2].mapping = (void *)-1U;
1374 }
1375
1376 static inline void ClearPageHugeTemporary(struct page *page)
1377 {
1378 page[2].mapping = NULL;
1379 }
1380
1381 static void __free_huge_page(struct page *page)
1382 {
1383 /*
1384 * Can't pass hstate in here because it is called from the
1385 * compound page destructor.
1386 */
1387 struct hstate *h = page_hstate(page);
1388 int nid = page_to_nid(page);
1389 struct hugepage_subpool *spool =
1390 (struct hugepage_subpool *)page_private(page);
1391 bool restore_reserve;
1392
1393 VM_BUG_ON_PAGE(page_count(page), page);
1394 VM_BUG_ON_PAGE(page_mapcount(page), page);
1395
1396 set_page_private(page, 0);
1397 page->mapping = NULL;
1398 restore_reserve = PagePrivate(page);
1399 ClearPagePrivate(page);
1400
1401 /*
1402 * If PagePrivate() was set on page, page allocation consumed a
1403 * reservation. If the page was associated with a subpool, there
1404 * would have been a page reserved in the subpool before allocation
1405 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1406 * reservtion, do not call hugepage_subpool_put_pages() as this will
1407 * remove the reserved page from the subpool.
1408 */
1409 if (!restore_reserve) {
1410 /*
1411 * A return code of zero implies that the subpool will be
1412 * under its minimum size if the reservation is not restored
1413 * after page is free. Therefore, force restore_reserve
1414 * operation.
1415 */
1416 if (hugepage_subpool_put_pages(spool, 1) == 0)
1417 restore_reserve = true;
1418 }
1419
1420 spin_lock(&hugetlb_lock);
1421 clear_page_huge_active(page);
1422 hugetlb_cgroup_uncharge_page(hstate_index(h),
1423 pages_per_huge_page(h), page);
1424 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1425 pages_per_huge_page(h), page);
1426 if (restore_reserve)
1427 h->resv_huge_pages++;
1428
1429 if (PageHugeTemporary(page)) {
1430 list_del(&page->lru);
1431 ClearPageHugeTemporary(page);
1432 update_and_free_page(h, page);
1433 } else if (h->surplus_huge_pages_node[nid]) {
1434 /* remove the page from active list */
1435 list_del(&page->lru);
1436 update_and_free_page(h, page);
1437 h->surplus_huge_pages--;
1438 h->surplus_huge_pages_node[nid]--;
1439 } else {
1440 arch_clear_hugepage_flags(page);
1441 enqueue_huge_page(h, page);
1442 }
1443 spin_unlock(&hugetlb_lock);
1444 }
1445
1446 /*
1447 * As free_huge_page() can be called from a non-task context, we have
1448 * to defer the actual freeing in a workqueue to prevent potential
1449 * hugetlb_lock deadlock.
1450 *
1451 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1452 * be freed and frees them one-by-one. As the page->mapping pointer is
1453 * going to be cleared in __free_huge_page() anyway, it is reused as the
1454 * llist_node structure of a lockless linked list of huge pages to be freed.
1455 */
1456 static LLIST_HEAD(hpage_freelist);
1457
1458 static void free_hpage_workfn(struct work_struct *work)
1459 {
1460 struct llist_node *node;
1461 struct page *page;
1462
1463 node = llist_del_all(&hpage_freelist);
1464
1465 while (node) {
1466 page = container_of((struct address_space **)node,
1467 struct page, mapping);
1468 node = node->next;
1469 __free_huge_page(page);
1470 }
1471 }
1472 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1473
1474 void free_huge_page(struct page *page)
1475 {
1476 /*
1477 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1478 */
1479 if (!in_task()) {
1480 /*
1481 * Only call schedule_work() if hpage_freelist is previously
1482 * empty. Otherwise, schedule_work() had been called but the
1483 * workfn hasn't retrieved the list yet.
1484 */
1485 if (llist_add((struct llist_node *)&page->mapping,
1486 &hpage_freelist))
1487 schedule_work(&free_hpage_work);
1488 return;
1489 }
1490
1491 __free_huge_page(page);
1492 }
1493
1494 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1495 {
1496 INIT_LIST_HEAD(&page->lru);
1497 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1498 spin_lock(&hugetlb_lock);
1499 set_hugetlb_cgroup(page, NULL);
1500 set_hugetlb_cgroup_rsvd(page, NULL);
1501 h->nr_huge_pages++;
1502 h->nr_huge_pages_node[nid]++;
1503 spin_unlock(&hugetlb_lock);
1504 }
1505
1506 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1507 {
1508 int i;
1509 int nr_pages = 1 << order;
1510 struct page *p = page + 1;
1511
1512 /* we rely on prep_new_huge_page to set the destructor */
1513 set_compound_order(page, order);
1514 __ClearPageReserved(page);
1515 __SetPageHead(page);
1516 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1517 /*
1518 * For gigantic hugepages allocated through bootmem at
1519 * boot, it's safer to be consistent with the not-gigantic
1520 * hugepages and clear the PG_reserved bit from all tail pages
1521 * too. Otherwise drivers using get_user_pages() to access tail
1522 * pages may get the reference counting wrong if they see
1523 * PG_reserved set on a tail page (despite the head page not
1524 * having PG_reserved set). Enforcing this consistency between
1525 * head and tail pages allows drivers to optimize away a check
1526 * on the head page when they need know if put_page() is needed
1527 * after get_user_pages().
1528 */
1529 __ClearPageReserved(p);
1530 set_page_count(p, 0);
1531 set_compound_head(p, page);
1532 }
1533 atomic_set(compound_mapcount_ptr(page), -1);
1534
1535 if (hpage_pincount_available(page))
1536 atomic_set(compound_pincount_ptr(page), 0);
1537 }
1538
1539 /*
1540 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1541 * transparent huge pages. See the PageTransHuge() documentation for more
1542 * details.
1543 */
1544 int PageHuge(struct page *page)
1545 {
1546 if (!PageCompound(page))
1547 return 0;
1548
1549 page = compound_head(page);
1550 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1551 }
1552 EXPORT_SYMBOL_GPL(PageHuge);
1553
1554 /*
1555 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1556 * normal or transparent huge pages.
1557 */
1558 int PageHeadHuge(struct page *page_head)
1559 {
1560 if (!PageHead(page_head))
1561 return 0;
1562
1563 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1564 }
1565
1566 /*
1567 * Find address_space associated with hugetlbfs page.
1568 * Upon entry page is locked and page 'was' mapped although mapped state
1569 * could change. If necessary, use anon_vma to find vma and associated
1570 * address space. The returned mapping may be stale, but it can not be
1571 * invalid as page lock (which is held) is required to destroy mapping.
1572 */
1573 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1574 {
1575 struct anon_vma *anon_vma;
1576 pgoff_t pgoff_start, pgoff_end;
1577 struct anon_vma_chain *avc;
1578 struct address_space *mapping = page_mapping(hpage);
1579
1580 /* Simple file based mapping */
1581 if (mapping)
1582 return mapping;
1583
1584 /*
1585 * Even anonymous hugetlbfs mappings are associated with an
1586 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1587 * code). Find a vma associated with the anonymous vma, and
1588 * use the file pointer to get address_space.
1589 */
1590 anon_vma = page_lock_anon_vma_read(hpage);
1591 if (!anon_vma)
1592 return mapping; /* NULL */
1593
1594 /* Use first found vma */
1595 pgoff_start = page_to_pgoff(hpage);
1596 pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1597 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1598 pgoff_start, pgoff_end) {
1599 struct vm_area_struct *vma = avc->vma;
1600
1601 mapping = vma->vm_file->f_mapping;
1602 break;
1603 }
1604
1605 anon_vma_unlock_read(anon_vma);
1606 return mapping;
1607 }
1608
1609 /*
1610 * Find and lock address space (mapping) in write mode.
1611 *
1612 * Upon entry, the page is locked which allows us to find the mapping
1613 * even in the case of an anon page. However, locking order dictates
1614 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1615 * specific. So, we first try to lock the sema while still holding the
1616 * page lock. If this works, great! If not, then we need to drop the
1617 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1618 * course, need to revalidate state along the way.
1619 */
1620 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1621 {
1622 struct address_space *mapping, *mapping2;
1623
1624 mapping = _get_hugetlb_page_mapping(hpage);
1625 retry:
1626 if (!mapping)
1627 return mapping;
1628
1629 /*
1630 * If no contention, take lock and return
1631 */
1632 if (i_mmap_trylock_write(mapping))
1633 return mapping;
1634
1635 /*
1636 * Must drop page lock and wait on mapping sema.
1637 * Note: Once page lock is dropped, mapping could become invalid.
1638 * As a hack, increase map count until we lock page again.
1639 */
1640 atomic_inc(&hpage->_mapcount);
1641 unlock_page(hpage);
1642 i_mmap_lock_write(mapping);
1643 lock_page(hpage);
1644 atomic_add_negative(-1, &hpage->_mapcount);
1645
1646 /* verify page is still mapped */
1647 if (!page_mapped(hpage)) {
1648 i_mmap_unlock_write(mapping);
1649 return NULL;
1650 }
1651
1652 /*
1653 * Get address space again and verify it is the same one
1654 * we locked. If not, drop lock and retry.
1655 */
1656 mapping2 = _get_hugetlb_page_mapping(hpage);
1657 if (mapping2 != mapping) {
1658 i_mmap_unlock_write(mapping);
1659 mapping = mapping2;
1660 goto retry;
1661 }
1662
1663 return mapping;
1664 }
1665
1666 pgoff_t __basepage_index(struct page *page)
1667 {
1668 struct page *page_head = compound_head(page);
1669 pgoff_t index = page_index(page_head);
1670 unsigned long compound_idx;
1671
1672 if (!PageHuge(page_head))
1673 return page_index(page);
1674
1675 if (compound_order(page_head) >= MAX_ORDER)
1676 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1677 else
1678 compound_idx = page - page_head;
1679
1680 return (index << compound_order(page_head)) + compound_idx;
1681 }
1682
1683 static struct page *alloc_buddy_huge_page(struct hstate *h,
1684 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1685 nodemask_t *node_alloc_noretry)
1686 {
1687 int order = huge_page_order(h);
1688 struct page *page;
1689 bool alloc_try_hard = true;
1690
1691 /*
1692 * By default we always try hard to allocate the page with
1693 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1694 * a loop (to adjust global huge page counts) and previous allocation
1695 * failed, do not continue to try hard on the same node. Use the
1696 * node_alloc_noretry bitmap to manage this state information.
1697 */
1698 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1699 alloc_try_hard = false;
1700 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1701 if (alloc_try_hard)
1702 gfp_mask |= __GFP_RETRY_MAYFAIL;
1703 if (nid == NUMA_NO_NODE)
1704 nid = numa_mem_id();
1705 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1706 if (page)
1707 __count_vm_event(HTLB_BUDDY_PGALLOC);
1708 else
1709 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1710
1711 /*
1712 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1713 * indicates an overall state change. Clear bit so that we resume
1714 * normal 'try hard' allocations.
1715 */
1716 if (node_alloc_noretry && page && !alloc_try_hard)
1717 node_clear(nid, *node_alloc_noretry);
1718
1719 /*
1720 * If we tried hard to get a page but failed, set bit so that
1721 * subsequent attempts will not try as hard until there is an
1722 * overall state change.
1723 */
1724 if (node_alloc_noretry && !page && alloc_try_hard)
1725 node_set(nid, *node_alloc_noretry);
1726
1727 return page;
1728 }
1729
1730 /*
1731 * Common helper to allocate a fresh hugetlb page. All specific allocators
1732 * should use this function to get new hugetlb pages
1733 */
1734 static struct page *alloc_fresh_huge_page(struct hstate *h,
1735 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1736 nodemask_t *node_alloc_noretry)
1737 {
1738 struct page *page;
1739
1740 if (hstate_is_gigantic(h))
1741 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1742 else
1743 page = alloc_buddy_huge_page(h, gfp_mask,
1744 nid, nmask, node_alloc_noretry);
1745 if (!page)
1746 return NULL;
1747
1748 if (hstate_is_gigantic(h))
1749 prep_compound_gigantic_page(page, huge_page_order(h));
1750 prep_new_huge_page(h, page, page_to_nid(page));
1751
1752 return page;
1753 }
1754
1755 /*
1756 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1757 * manner.
1758 */
1759 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1760 nodemask_t *node_alloc_noretry)
1761 {
1762 struct page *page;
1763 int nr_nodes, node;
1764 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1765
1766 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1767 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1768 node_alloc_noretry);
1769 if (page)
1770 break;
1771 }
1772
1773 if (!page)
1774 return 0;
1775
1776 put_page(page); /* free it into the hugepage allocator */
1777
1778 return 1;
1779 }
1780
1781 /*
1782 * Free huge page from pool from next node to free.
1783 * Attempt to keep persistent huge pages more or less
1784 * balanced over allowed nodes.
1785 * Called with hugetlb_lock locked.
1786 */
1787 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1788 bool acct_surplus)
1789 {
1790 int nr_nodes, node;
1791 int ret = 0;
1792
1793 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1794 /*
1795 * If we're returning unused surplus pages, only examine
1796 * nodes with surplus pages.
1797 */
1798 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1799 !list_empty(&h->hugepage_freelists[node])) {
1800 struct page *page =
1801 list_entry(h->hugepage_freelists[node].next,
1802 struct page, lru);
1803 list_del(&page->lru);
1804 h->free_huge_pages--;
1805 h->free_huge_pages_node[node]--;
1806 if (acct_surplus) {
1807 h->surplus_huge_pages--;
1808 h->surplus_huge_pages_node[node]--;
1809 }
1810 update_and_free_page(h, page);
1811 ret = 1;
1812 break;
1813 }
1814 }
1815
1816 return ret;
1817 }
1818
1819 /*
1820 * Dissolve a given free hugepage into free buddy pages. This function does
1821 * nothing for in-use hugepages and non-hugepages.
1822 * This function returns values like below:
1823 *
1824 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1825 * (allocated or reserved.)
1826 * 0: successfully dissolved free hugepages or the page is not a
1827 * hugepage (considered as already dissolved)
1828 */
1829 int dissolve_free_huge_page(struct page *page)
1830 {
1831 int rc = -EBUSY;
1832
1833 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1834 if (!PageHuge(page))
1835 return 0;
1836
1837 spin_lock(&hugetlb_lock);
1838 if (!PageHuge(page)) {
1839 rc = 0;
1840 goto out;
1841 }
1842
1843 if (!page_count(page)) {
1844 struct page *head = compound_head(page);
1845 struct hstate *h = page_hstate(head);
1846 int nid = page_to_nid(head);
1847 if (h->free_huge_pages - h->resv_huge_pages == 0)
1848 goto out;
1849 /*
1850 * Move PageHWPoison flag from head page to the raw error page,
1851 * which makes any subpages rather than the error page reusable.
1852 */
1853 if (PageHWPoison(head) && page != head) {
1854 SetPageHWPoison(page);
1855 ClearPageHWPoison(head);
1856 }
1857 list_del(&head->lru);
1858 h->free_huge_pages--;
1859 h->free_huge_pages_node[nid]--;
1860 h->max_huge_pages--;
1861 update_and_free_page(h, head);
1862 rc = 0;
1863 }
1864 out:
1865 spin_unlock(&hugetlb_lock);
1866 return rc;
1867 }
1868
1869 /*
1870 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1871 * make specified memory blocks removable from the system.
1872 * Note that this will dissolve a free gigantic hugepage completely, if any
1873 * part of it lies within the given range.
1874 * Also note that if dissolve_free_huge_page() returns with an error, all
1875 * free hugepages that were dissolved before that error are lost.
1876 */
1877 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1878 {
1879 unsigned long pfn;
1880 struct page *page;
1881 int rc = 0;
1882
1883 if (!hugepages_supported())
1884 return rc;
1885
1886 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1887 page = pfn_to_page(pfn);
1888 rc = dissolve_free_huge_page(page);
1889 if (rc)
1890 break;
1891 }
1892
1893 return rc;
1894 }
1895
1896 /*
1897 * Allocates a fresh surplus page from the page allocator.
1898 */
1899 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1900 int nid, nodemask_t *nmask)
1901 {
1902 struct page *page = NULL;
1903
1904 if (hstate_is_gigantic(h))
1905 return NULL;
1906
1907 spin_lock(&hugetlb_lock);
1908 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1909 goto out_unlock;
1910 spin_unlock(&hugetlb_lock);
1911
1912 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1913 if (!page)
1914 return NULL;
1915
1916 spin_lock(&hugetlb_lock);
1917 /*
1918 * We could have raced with the pool size change.
1919 * Double check that and simply deallocate the new page
1920 * if we would end up overcommiting the surpluses. Abuse
1921 * temporary page to workaround the nasty free_huge_page
1922 * codeflow
1923 */
1924 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1925 SetPageHugeTemporary(page);
1926 spin_unlock(&hugetlb_lock);
1927 put_page(page);
1928 return NULL;
1929 } else {
1930 h->surplus_huge_pages++;
1931 h->surplus_huge_pages_node[page_to_nid(page)]++;
1932 }
1933
1934 out_unlock:
1935 spin_unlock(&hugetlb_lock);
1936
1937 return page;
1938 }
1939
1940 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1941 int nid, nodemask_t *nmask)
1942 {
1943 struct page *page;
1944
1945 if (hstate_is_gigantic(h))
1946 return NULL;
1947
1948 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1949 if (!page)
1950 return NULL;
1951
1952 /*
1953 * We do not account these pages as surplus because they are only
1954 * temporary and will be released properly on the last reference
1955 */
1956 SetPageHugeTemporary(page);
1957
1958 return page;
1959 }
1960
1961 /*
1962 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1963 */
1964 static
1965 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1966 struct vm_area_struct *vma, unsigned long addr)
1967 {
1968 struct page *page;
1969 struct mempolicy *mpol;
1970 gfp_t gfp_mask = htlb_alloc_mask(h);
1971 int nid;
1972 nodemask_t *nodemask;
1973
1974 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1975 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1976 mpol_cond_put(mpol);
1977
1978 return page;
1979 }
1980
1981 /* page migration callback function */
1982 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1983 {
1984 gfp_t gfp_mask = htlb_alloc_mask(h);
1985 struct page *page = NULL;
1986
1987 if (nid != NUMA_NO_NODE)
1988 gfp_mask |= __GFP_THISNODE;
1989
1990 spin_lock(&hugetlb_lock);
1991 if (h->free_huge_pages - h->resv_huge_pages > 0)
1992 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1993 spin_unlock(&hugetlb_lock);
1994
1995 if (!page)
1996 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1997
1998 return page;
1999 }
2000
2001 /* page migration callback function */
2002 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2003 nodemask_t *nmask)
2004 {
2005 gfp_t gfp_mask = htlb_alloc_mask(h);
2006
2007 spin_lock(&hugetlb_lock);
2008 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2009 struct page *page;
2010
2011 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2012 if (page) {
2013 spin_unlock(&hugetlb_lock);
2014 return page;
2015 }
2016 }
2017 spin_unlock(&hugetlb_lock);
2018
2019 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2020 }
2021
2022 /* mempolicy aware migration callback */
2023 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2024 unsigned long address)
2025 {
2026 struct mempolicy *mpol;
2027 nodemask_t *nodemask;
2028 struct page *page;
2029 gfp_t gfp_mask;
2030 int node;
2031
2032 gfp_mask = htlb_alloc_mask(h);
2033 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2034 page = alloc_huge_page_nodemask(h, node, nodemask);
2035 mpol_cond_put(mpol);
2036
2037 return page;
2038 }
2039
2040 /*
2041 * Increase the hugetlb pool such that it can accommodate a reservation
2042 * of size 'delta'.
2043 */
2044 static int gather_surplus_pages(struct hstate *h, int delta)
2045 __must_hold(&hugetlb_lock)
2046 {
2047 struct list_head surplus_list;
2048 struct page *page, *tmp;
2049 int ret, i;
2050 int needed, allocated;
2051 bool alloc_ok = true;
2052
2053 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2054 if (needed <= 0) {
2055 h->resv_huge_pages += delta;
2056 return 0;
2057 }
2058
2059 allocated = 0;
2060 INIT_LIST_HEAD(&surplus_list);
2061
2062 ret = -ENOMEM;
2063 retry:
2064 spin_unlock(&hugetlb_lock);
2065 for (i = 0; i < needed; i++) {
2066 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2067 NUMA_NO_NODE, NULL);
2068 if (!page) {
2069 alloc_ok = false;
2070 break;
2071 }
2072 list_add(&page->lru, &surplus_list);
2073 cond_resched();
2074 }
2075 allocated += i;
2076
2077 /*
2078 * After retaking hugetlb_lock, we need to recalculate 'needed'
2079 * because either resv_huge_pages or free_huge_pages may have changed.
2080 */
2081 spin_lock(&hugetlb_lock);
2082 needed = (h->resv_huge_pages + delta) -
2083 (h->free_huge_pages + allocated);
2084 if (needed > 0) {
2085 if (alloc_ok)
2086 goto retry;
2087 /*
2088 * We were not able to allocate enough pages to
2089 * satisfy the entire reservation so we free what
2090 * we've allocated so far.
2091 */
2092 goto free;
2093 }
2094 /*
2095 * The surplus_list now contains _at_least_ the number of extra pages
2096 * needed to accommodate the reservation. Add the appropriate number
2097 * of pages to the hugetlb pool and free the extras back to the buddy
2098 * allocator. Commit the entire reservation here to prevent another
2099 * process from stealing the pages as they are added to the pool but
2100 * before they are reserved.
2101 */
2102 needed += allocated;
2103 h->resv_huge_pages += delta;
2104 ret = 0;
2105
2106 /* Free the needed pages to the hugetlb pool */
2107 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2108 if ((--needed) < 0)
2109 break;
2110 /*
2111 * This page is now managed by the hugetlb allocator and has
2112 * no users -- drop the buddy allocator's reference.
2113 */
2114 put_page_testzero(page);
2115 VM_BUG_ON_PAGE(page_count(page), page);
2116 enqueue_huge_page(h, page);
2117 }
2118 free:
2119 spin_unlock(&hugetlb_lock);
2120
2121 /* Free unnecessary surplus pages to the buddy allocator */
2122 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2123 put_page(page);
2124 spin_lock(&hugetlb_lock);
2125
2126 return ret;
2127 }
2128
2129 /*
2130 * This routine has two main purposes:
2131 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2132 * in unused_resv_pages. This corresponds to the prior adjustments made
2133 * to the associated reservation map.
2134 * 2) Free any unused surplus pages that may have been allocated to satisfy
2135 * the reservation. As many as unused_resv_pages may be freed.
2136 *
2137 * Called with hugetlb_lock held. However, the lock could be dropped (and
2138 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2139 * we must make sure nobody else can claim pages we are in the process of
2140 * freeing. Do this by ensuring resv_huge_page always is greater than the
2141 * number of huge pages we plan to free when dropping the lock.
2142 */
2143 static void return_unused_surplus_pages(struct hstate *h,
2144 unsigned long unused_resv_pages)
2145 {
2146 unsigned long nr_pages;
2147
2148 /* Cannot return gigantic pages currently */
2149 if (hstate_is_gigantic(h))
2150 goto out;
2151
2152 /*
2153 * Part (or even all) of the reservation could have been backed
2154 * by pre-allocated pages. Only free surplus pages.
2155 */
2156 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2157
2158 /*
2159 * We want to release as many surplus pages as possible, spread
2160 * evenly across all nodes with memory. Iterate across these nodes
2161 * until we can no longer free unreserved surplus pages. This occurs
2162 * when the nodes with surplus pages have no free pages.
2163 * free_pool_huge_page() will balance the the freed pages across the
2164 * on-line nodes with memory and will handle the hstate accounting.
2165 *
2166 * Note that we decrement resv_huge_pages as we free the pages. If
2167 * we drop the lock, resv_huge_pages will still be sufficiently large
2168 * to cover subsequent pages we may free.
2169 */
2170 while (nr_pages--) {
2171 h->resv_huge_pages--;
2172 unused_resv_pages--;
2173 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2174 goto out;
2175 cond_resched_lock(&hugetlb_lock);
2176 }
2177
2178 out:
2179 /* Fully uncommit the reservation */
2180 h->resv_huge_pages -= unused_resv_pages;
2181 }
2182
2183
2184 /*
2185 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2186 * are used by the huge page allocation routines to manage reservations.
2187 *
2188 * vma_needs_reservation is called to determine if the huge page at addr
2189 * within the vma has an associated reservation. If a reservation is
2190 * needed, the value 1 is returned. The caller is then responsible for
2191 * managing the global reservation and subpool usage counts. After
2192 * the huge page has been allocated, vma_commit_reservation is called
2193 * to add the page to the reservation map. If the page allocation fails,
2194 * the reservation must be ended instead of committed. vma_end_reservation
2195 * is called in such cases.
2196 *
2197 * In the normal case, vma_commit_reservation returns the same value
2198 * as the preceding vma_needs_reservation call. The only time this
2199 * is not the case is if a reserve map was changed between calls. It
2200 * is the responsibility of the caller to notice the difference and
2201 * take appropriate action.
2202 *
2203 * vma_add_reservation is used in error paths where a reservation must
2204 * be restored when a newly allocated huge page must be freed. It is
2205 * to be called after calling vma_needs_reservation to determine if a
2206 * reservation exists.
2207 */
2208 enum vma_resv_mode {
2209 VMA_NEEDS_RESV,
2210 VMA_COMMIT_RESV,
2211 VMA_END_RESV,
2212 VMA_ADD_RESV,
2213 };
2214 static long __vma_reservation_common(struct hstate *h,
2215 struct vm_area_struct *vma, unsigned long addr,
2216 enum vma_resv_mode mode)
2217 {
2218 struct resv_map *resv;
2219 pgoff_t idx;
2220 long ret;
2221 long dummy_out_regions_needed;
2222
2223 resv = vma_resv_map(vma);
2224 if (!resv)
2225 return 1;
2226
2227 idx = vma_hugecache_offset(h, vma, addr);
2228 switch (mode) {
2229 case VMA_NEEDS_RESV:
2230 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2231 /* We assume that vma_reservation_* routines always operate on
2232 * 1 page, and that adding to resv map a 1 page entry can only
2233 * ever require 1 region.
2234 */
2235 VM_BUG_ON(dummy_out_regions_needed != 1);
2236 break;
2237 case VMA_COMMIT_RESV:
2238 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2239 /* region_add calls of range 1 should never fail. */
2240 VM_BUG_ON(ret < 0);
2241 break;
2242 case VMA_END_RESV:
2243 region_abort(resv, idx, idx + 1, 1);
2244 ret = 0;
2245 break;
2246 case VMA_ADD_RESV:
2247 if (vma->vm_flags & VM_MAYSHARE) {
2248 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2249 /* region_add calls of range 1 should never fail. */
2250 VM_BUG_ON(ret < 0);
2251 } else {
2252 region_abort(resv, idx, idx + 1, 1);
2253 ret = region_del(resv, idx, idx + 1);
2254 }
2255 break;
2256 default:
2257 BUG();
2258 }
2259
2260 if (vma->vm_flags & VM_MAYSHARE)
2261 return ret;
2262 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2263 /*
2264 * In most cases, reserves always exist for private mappings.
2265 * However, a file associated with mapping could have been
2266 * hole punched or truncated after reserves were consumed.
2267 * As subsequent fault on such a range will not use reserves.
2268 * Subtle - The reserve map for private mappings has the
2269 * opposite meaning than that of shared mappings. If NO
2270 * entry is in the reserve map, it means a reservation exists.
2271 * If an entry exists in the reserve map, it means the
2272 * reservation has already been consumed. As a result, the
2273 * return value of this routine is the opposite of the
2274 * value returned from reserve map manipulation routines above.
2275 */
2276 if (ret)
2277 return 0;
2278 else
2279 return 1;
2280 }
2281 else
2282 return ret < 0 ? ret : 0;
2283 }
2284
2285 static long vma_needs_reservation(struct hstate *h,
2286 struct vm_area_struct *vma, unsigned long addr)
2287 {
2288 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2289 }
2290
2291 static long vma_commit_reservation(struct hstate *h,
2292 struct vm_area_struct *vma, unsigned long addr)
2293 {
2294 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2295 }
2296
2297 static void vma_end_reservation(struct hstate *h,
2298 struct vm_area_struct *vma, unsigned long addr)
2299 {
2300 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2301 }
2302
2303 static long vma_add_reservation(struct hstate *h,
2304 struct vm_area_struct *vma, unsigned long addr)
2305 {
2306 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2307 }
2308
2309 /*
2310 * This routine is called to restore a reservation on error paths. In the
2311 * specific error paths, a huge page was allocated (via alloc_huge_page)
2312 * and is about to be freed. If a reservation for the page existed,
2313 * alloc_huge_page would have consumed the reservation and set PagePrivate
2314 * in the newly allocated page. When the page is freed via free_huge_page,
2315 * the global reservation count will be incremented if PagePrivate is set.
2316 * However, free_huge_page can not adjust the reserve map. Adjust the
2317 * reserve map here to be consistent with global reserve count adjustments
2318 * to be made by free_huge_page.
2319 */
2320 static void restore_reserve_on_error(struct hstate *h,
2321 struct vm_area_struct *vma, unsigned long address,
2322 struct page *page)
2323 {
2324 if (unlikely(PagePrivate(page))) {
2325 long rc = vma_needs_reservation(h, vma, address);
2326
2327 if (unlikely(rc < 0)) {
2328 /*
2329 * Rare out of memory condition in reserve map
2330 * manipulation. Clear PagePrivate so that
2331 * global reserve count will not be incremented
2332 * by free_huge_page. This will make it appear
2333 * as though the reservation for this page was
2334 * consumed. This may prevent the task from
2335 * faulting in the page at a later time. This
2336 * is better than inconsistent global huge page
2337 * accounting of reserve counts.
2338 */
2339 ClearPagePrivate(page);
2340 } else if (rc) {
2341 rc = vma_add_reservation(h, vma, address);
2342 if (unlikely(rc < 0))
2343 /*
2344 * See above comment about rare out of
2345 * memory condition.
2346 */
2347 ClearPagePrivate(page);
2348 } else
2349 vma_end_reservation(h, vma, address);
2350 }
2351 }
2352
2353 struct page *alloc_huge_page(struct vm_area_struct *vma,
2354 unsigned long addr, int avoid_reserve)
2355 {
2356 struct hugepage_subpool *spool = subpool_vma(vma);
2357 struct hstate *h = hstate_vma(vma);
2358 struct page *page;
2359 long map_chg, map_commit;
2360 long gbl_chg;
2361 int ret, idx;
2362 struct hugetlb_cgroup *h_cg;
2363 bool deferred_reserve;
2364
2365 idx = hstate_index(h);
2366 /*
2367 * Examine the region/reserve map to determine if the process
2368 * has a reservation for the page to be allocated. A return
2369 * code of zero indicates a reservation exists (no change).
2370 */
2371 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2372 if (map_chg < 0)
2373 return ERR_PTR(-ENOMEM);
2374
2375 /*
2376 * Processes that did not create the mapping will have no
2377 * reserves as indicated by the region/reserve map. Check
2378 * that the allocation will not exceed the subpool limit.
2379 * Allocations for MAP_NORESERVE mappings also need to be
2380 * checked against any subpool limit.
2381 */
2382 if (map_chg || avoid_reserve) {
2383 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2384 if (gbl_chg < 0) {
2385 vma_end_reservation(h, vma, addr);
2386 return ERR_PTR(-ENOSPC);
2387 }
2388
2389 /*
2390 * Even though there was no reservation in the region/reserve
2391 * map, there could be reservations associated with the
2392 * subpool that can be used. This would be indicated if the
2393 * return value of hugepage_subpool_get_pages() is zero.
2394 * However, if avoid_reserve is specified we still avoid even
2395 * the subpool reservations.
2396 */
2397 if (avoid_reserve)
2398 gbl_chg = 1;
2399 }
2400
2401 /* If this allocation is not consuming a reservation, charge it now.
2402 */
2403 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2404 if (deferred_reserve) {
2405 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2406 idx, pages_per_huge_page(h), &h_cg);
2407 if (ret)
2408 goto out_subpool_put;
2409 }
2410
2411 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2412 if (ret)
2413 goto out_uncharge_cgroup_reservation;
2414
2415 spin_lock(&hugetlb_lock);
2416 /*
2417 * glb_chg is passed to indicate whether or not a page must be taken
2418 * from the global free pool (global change). gbl_chg == 0 indicates
2419 * a reservation exists for the allocation.
2420 */
2421 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2422 if (!page) {
2423 spin_unlock(&hugetlb_lock);
2424 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2425 if (!page)
2426 goto out_uncharge_cgroup;
2427 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2428 SetPagePrivate(page);
2429 h->resv_huge_pages--;
2430 }
2431 spin_lock(&hugetlb_lock);
2432 list_move(&page->lru, &h->hugepage_activelist);
2433 /* Fall through */
2434 }
2435 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2436 /* If allocation is not consuming a reservation, also store the
2437 * hugetlb_cgroup pointer on the page.
2438 */
2439 if (deferred_reserve) {
2440 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2441 h_cg, page);
2442 }
2443
2444 spin_unlock(&hugetlb_lock);
2445
2446 set_page_private(page, (unsigned long)spool);
2447
2448 map_commit = vma_commit_reservation(h, vma, addr);
2449 if (unlikely(map_chg > map_commit)) {
2450 /*
2451 * The page was added to the reservation map between
2452 * vma_needs_reservation and vma_commit_reservation.
2453 * This indicates a race with hugetlb_reserve_pages.
2454 * Adjust for the subpool count incremented above AND
2455 * in hugetlb_reserve_pages for the same page. Also,
2456 * the reservation count added in hugetlb_reserve_pages
2457 * no longer applies.
2458 */
2459 long rsv_adjust;
2460
2461 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2462 hugetlb_acct_memory(h, -rsv_adjust);
2463 }
2464 return page;
2465
2466 out_uncharge_cgroup:
2467 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2468 out_uncharge_cgroup_reservation:
2469 if (deferred_reserve)
2470 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2471 h_cg);
2472 out_subpool_put:
2473 if (map_chg || avoid_reserve)
2474 hugepage_subpool_put_pages(spool, 1);
2475 vma_end_reservation(h, vma, addr);
2476 return ERR_PTR(-ENOSPC);
2477 }
2478
2479 int alloc_bootmem_huge_page(struct hstate *h)
2480 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2481 int __alloc_bootmem_huge_page(struct hstate *h)
2482 {
2483 struct huge_bootmem_page *m;
2484 int nr_nodes, node;
2485
2486 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2487 void *addr;
2488
2489 addr = memblock_alloc_try_nid_raw(
2490 huge_page_size(h), huge_page_size(h),
2491 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2492 if (addr) {
2493 /*
2494 * Use the beginning of the huge page to store the
2495 * huge_bootmem_page struct (until gather_bootmem
2496 * puts them into the mem_map).
2497 */
2498 m = addr;
2499 goto found;
2500 }
2501 }
2502 return 0;
2503
2504 found:
2505 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2506 /* Put them into a private list first because mem_map is not up yet */
2507 INIT_LIST_HEAD(&m->list);
2508 list_add(&m->list, &huge_boot_pages);
2509 m->hstate = h;
2510 return 1;
2511 }
2512
2513 static void __init prep_compound_huge_page(struct page *page,
2514 unsigned int order)
2515 {
2516 if (unlikely(order > (MAX_ORDER - 1)))
2517 prep_compound_gigantic_page(page, order);
2518 else
2519 prep_compound_page(page, order);
2520 }
2521
2522 /* Put bootmem huge pages into the standard lists after mem_map is up */
2523 static void __init gather_bootmem_prealloc(void)
2524 {
2525 struct huge_bootmem_page *m;
2526
2527 list_for_each_entry(m, &huge_boot_pages, list) {
2528 struct page *page = virt_to_page(m);
2529 struct hstate *h = m->hstate;
2530
2531 WARN_ON(page_count(page) != 1);
2532 prep_compound_huge_page(page, h->order);
2533 WARN_ON(PageReserved(page));
2534 prep_new_huge_page(h, page, page_to_nid(page));
2535 put_page(page); /* free it into the hugepage allocator */
2536
2537 /*
2538 * If we had gigantic hugepages allocated at boot time, we need
2539 * to restore the 'stolen' pages to totalram_pages in order to
2540 * fix confusing memory reports from free(1) and another
2541 * side-effects, like CommitLimit going negative.
2542 */
2543 if (hstate_is_gigantic(h))
2544 adjust_managed_page_count(page, 1 << h->order);
2545 cond_resched();
2546 }
2547 }
2548
2549 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2550 {
2551 unsigned long i;
2552 nodemask_t *node_alloc_noretry;
2553
2554 if (!hstate_is_gigantic(h)) {
2555 /*
2556 * Bit mask controlling how hard we retry per-node allocations.
2557 * Ignore errors as lower level routines can deal with
2558 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2559 * time, we are likely in bigger trouble.
2560 */
2561 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2562 GFP_KERNEL);
2563 } else {
2564 /* allocations done at boot time */
2565 node_alloc_noretry = NULL;
2566 }
2567
2568 /* bit mask controlling how hard we retry per-node allocations */
2569 if (node_alloc_noretry)
2570 nodes_clear(*node_alloc_noretry);
2571
2572 for (i = 0; i < h->max_huge_pages; ++i) {
2573 if (hstate_is_gigantic(h)) {
2574 if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) {
2575 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2576 break;
2577 }
2578 if (!alloc_bootmem_huge_page(h))
2579 break;
2580 } else if (!alloc_pool_huge_page(h,
2581 &node_states[N_MEMORY],
2582 node_alloc_noretry))
2583 break;
2584 cond_resched();
2585 }
2586 if (i < h->max_huge_pages) {
2587 char buf[32];
2588
2589 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2590 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2591 h->max_huge_pages, buf, i);
2592 h->max_huge_pages = i;
2593 }
2594
2595 kfree(node_alloc_noretry);
2596 }
2597
2598 static void __init hugetlb_init_hstates(void)
2599 {
2600 struct hstate *h;
2601
2602 for_each_hstate(h) {
2603 if (minimum_order > huge_page_order(h))
2604 minimum_order = huge_page_order(h);
2605
2606 /* oversize hugepages were init'ed in early boot */
2607 if (!hstate_is_gigantic(h))
2608 hugetlb_hstate_alloc_pages(h);
2609 }
2610 VM_BUG_ON(minimum_order == UINT_MAX);
2611 }
2612
2613 static void __init report_hugepages(void)
2614 {
2615 struct hstate *h;
2616
2617 for_each_hstate(h) {
2618 char buf[32];
2619
2620 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2621 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2622 buf, h->free_huge_pages);
2623 }
2624 }
2625
2626 #ifdef CONFIG_HIGHMEM
2627 static void try_to_free_low(struct hstate *h, unsigned long count,
2628 nodemask_t *nodes_allowed)
2629 {
2630 int i;
2631
2632 if (hstate_is_gigantic(h))
2633 return;
2634
2635 for_each_node_mask(i, *nodes_allowed) {
2636 struct page *page, *next;
2637 struct list_head *freel = &h->hugepage_freelists[i];
2638 list_for_each_entry_safe(page, next, freel, lru) {
2639 if (count >= h->nr_huge_pages)
2640 return;
2641 if (PageHighMem(page))
2642 continue;
2643 list_del(&page->lru);
2644 update_and_free_page(h, page);
2645 h->free_huge_pages--;
2646 h->free_huge_pages_node[page_to_nid(page)]--;
2647 }
2648 }
2649 }
2650 #else
2651 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2652 nodemask_t *nodes_allowed)
2653 {
2654 }
2655 #endif
2656
2657 /*
2658 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2659 * balanced by operating on them in a round-robin fashion.
2660 * Returns 1 if an adjustment was made.
2661 */
2662 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2663 int delta)
2664 {
2665 int nr_nodes, node;
2666
2667 VM_BUG_ON(delta != -1 && delta != 1);
2668
2669 if (delta < 0) {
2670 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2671 if (h->surplus_huge_pages_node[node])
2672 goto found;
2673 }
2674 } else {
2675 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2676 if (h->surplus_huge_pages_node[node] <
2677 h->nr_huge_pages_node[node])
2678 goto found;
2679 }
2680 }
2681 return 0;
2682
2683 found:
2684 h->surplus_huge_pages += delta;
2685 h->surplus_huge_pages_node[node] += delta;
2686 return 1;
2687 }
2688
2689 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2690 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2691 nodemask_t *nodes_allowed)
2692 {
2693 unsigned long min_count, ret;
2694 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2695
2696 /*
2697 * Bit mask controlling how hard we retry per-node allocations.
2698 * If we can not allocate the bit mask, do not attempt to allocate
2699 * the requested huge pages.
2700 */
2701 if (node_alloc_noretry)
2702 nodes_clear(*node_alloc_noretry);
2703 else
2704 return -ENOMEM;
2705
2706 spin_lock(&hugetlb_lock);
2707
2708 /*
2709 * Check for a node specific request.
2710 * Changing node specific huge page count may require a corresponding
2711 * change to the global count. In any case, the passed node mask
2712 * (nodes_allowed) will restrict alloc/free to the specified node.
2713 */
2714 if (nid != NUMA_NO_NODE) {
2715 unsigned long old_count = count;
2716
2717 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2718 /*
2719 * User may have specified a large count value which caused the
2720 * above calculation to overflow. In this case, they wanted
2721 * to allocate as many huge pages as possible. Set count to
2722 * largest possible value to align with their intention.
2723 */
2724 if (count < old_count)
2725 count = ULONG_MAX;
2726 }
2727
2728 /*
2729 * Gigantic pages runtime allocation depend on the capability for large
2730 * page range allocation.
2731 * If the system does not provide this feature, return an error when
2732 * the user tries to allocate gigantic pages but let the user free the
2733 * boottime allocated gigantic pages.
2734 */
2735 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2736 if (count > persistent_huge_pages(h)) {
2737 spin_unlock(&hugetlb_lock);
2738 NODEMASK_FREE(node_alloc_noretry);
2739 return -EINVAL;
2740 }
2741 /* Fall through to decrease pool */
2742 }
2743
2744 /*
2745 * Increase the pool size
2746 * First take pages out of surplus state. Then make up the
2747 * remaining difference by allocating fresh huge pages.
2748 *
2749 * We might race with alloc_surplus_huge_page() here and be unable
2750 * to convert a surplus huge page to a normal huge page. That is
2751 * not critical, though, it just means the overall size of the
2752 * pool might be one hugepage larger than it needs to be, but
2753 * within all the constraints specified by the sysctls.
2754 */
2755 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2756 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2757 break;
2758 }
2759
2760 while (count > persistent_huge_pages(h)) {
2761 /*
2762 * If this allocation races such that we no longer need the
2763 * page, free_huge_page will handle it by freeing the page
2764 * and reducing the surplus.
2765 */
2766 spin_unlock(&hugetlb_lock);
2767
2768 /* yield cpu to avoid soft lockup */
2769 cond_resched();
2770
2771 ret = alloc_pool_huge_page(h, nodes_allowed,
2772 node_alloc_noretry);
2773 spin_lock(&hugetlb_lock);
2774 if (!ret)
2775 goto out;
2776
2777 /* Bail for signals. Probably ctrl-c from user */
2778 if (signal_pending(current))
2779 goto out;
2780 }
2781
2782 /*
2783 * Decrease the pool size
2784 * First return free pages to the buddy allocator (being careful
2785 * to keep enough around to satisfy reservations). Then place
2786 * pages into surplus state as needed so the pool will shrink
2787 * to the desired size as pages become free.
2788 *
2789 * By placing pages into the surplus state independent of the
2790 * overcommit value, we are allowing the surplus pool size to
2791 * exceed overcommit. There are few sane options here. Since
2792 * alloc_surplus_huge_page() is checking the global counter,
2793 * though, we'll note that we're not allowed to exceed surplus
2794 * and won't grow the pool anywhere else. Not until one of the
2795 * sysctls are changed, or the surplus pages go out of use.
2796 */
2797 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2798 min_count = max(count, min_count);
2799 try_to_free_low(h, min_count, nodes_allowed);
2800 while (min_count < persistent_huge_pages(h)) {
2801 if (!free_pool_huge_page(h, nodes_allowed, 0))
2802 break;
2803 cond_resched_lock(&hugetlb_lock);
2804 }
2805 while (count < persistent_huge_pages(h)) {
2806 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2807 break;
2808 }
2809 out:
2810 h->max_huge_pages = persistent_huge_pages(h);
2811 spin_unlock(&hugetlb_lock);
2812
2813 NODEMASK_FREE(node_alloc_noretry);
2814
2815 return 0;
2816 }
2817
2818 #define HSTATE_ATTR_RO(_name) \
2819 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2820
2821 #define HSTATE_ATTR(_name) \
2822 static struct kobj_attribute _name##_attr = \
2823 __ATTR(_name, 0644, _name##_show, _name##_store)
2824
2825 static struct kobject *hugepages_kobj;
2826 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2827
2828 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2829
2830 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2831 {
2832 int i;
2833
2834 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2835 if (hstate_kobjs[i] == kobj) {
2836 if (nidp)
2837 *nidp = NUMA_NO_NODE;
2838 return &hstates[i];
2839 }
2840
2841 return kobj_to_node_hstate(kobj, nidp);
2842 }
2843
2844 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2845 struct kobj_attribute *attr, char *buf)
2846 {
2847 struct hstate *h;
2848 unsigned long nr_huge_pages;
2849 int nid;
2850
2851 h = kobj_to_hstate(kobj, &nid);
2852 if (nid == NUMA_NO_NODE)
2853 nr_huge_pages = h->nr_huge_pages;
2854 else
2855 nr_huge_pages = h->nr_huge_pages_node[nid];
2856
2857 return sprintf(buf, "%lu\n", nr_huge_pages);
2858 }
2859
2860 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2861 struct hstate *h, int nid,
2862 unsigned long count, size_t len)
2863 {
2864 int err;
2865 nodemask_t nodes_allowed, *n_mask;
2866
2867 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2868 return -EINVAL;
2869
2870 if (nid == NUMA_NO_NODE) {
2871 /*
2872 * global hstate attribute
2873 */
2874 if (!(obey_mempolicy &&
2875 init_nodemask_of_mempolicy(&nodes_allowed)))
2876 n_mask = &node_states[N_MEMORY];
2877 else
2878 n_mask = &nodes_allowed;
2879 } else {
2880 /*
2881 * Node specific request. count adjustment happens in
2882 * set_max_huge_pages() after acquiring hugetlb_lock.
2883 */
2884 init_nodemask_of_node(&nodes_allowed, nid);
2885 n_mask = &nodes_allowed;
2886 }
2887
2888 err = set_max_huge_pages(h, count, nid, n_mask);
2889
2890 return err ? err : len;
2891 }
2892
2893 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2894 struct kobject *kobj, const char *buf,
2895 size_t len)
2896 {
2897 struct hstate *h;
2898 unsigned long count;
2899 int nid;
2900 int err;
2901
2902 err = kstrtoul(buf, 10, &count);
2903 if (err)
2904 return err;
2905
2906 h = kobj_to_hstate(kobj, &nid);
2907 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2908 }
2909
2910 static ssize_t nr_hugepages_show(struct kobject *kobj,
2911 struct kobj_attribute *attr, char *buf)
2912 {
2913 return nr_hugepages_show_common(kobj, attr, buf);
2914 }
2915
2916 static ssize_t nr_hugepages_store(struct kobject *kobj,
2917 struct kobj_attribute *attr, const char *buf, size_t len)
2918 {
2919 return nr_hugepages_store_common(false, kobj, buf, len);
2920 }
2921 HSTATE_ATTR(nr_hugepages);
2922
2923 #ifdef CONFIG_NUMA
2924
2925 /*
2926 * hstate attribute for optionally mempolicy-based constraint on persistent
2927 * huge page alloc/free.
2928 */
2929 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2930 struct kobj_attribute *attr, char *buf)
2931 {
2932 return nr_hugepages_show_common(kobj, attr, buf);
2933 }
2934
2935 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2936 struct kobj_attribute *attr, const char *buf, size_t len)
2937 {
2938 return nr_hugepages_store_common(true, kobj, buf, len);
2939 }
2940 HSTATE_ATTR(nr_hugepages_mempolicy);
2941 #endif
2942
2943
2944 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2945 struct kobj_attribute *attr, char *buf)
2946 {
2947 struct hstate *h = kobj_to_hstate(kobj, NULL);
2948 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2949 }
2950
2951 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2952 struct kobj_attribute *attr, const char *buf, size_t count)
2953 {
2954 int err;
2955 unsigned long input;
2956 struct hstate *h = kobj_to_hstate(kobj, NULL);
2957
2958 if (hstate_is_gigantic(h))
2959 return -EINVAL;
2960
2961 err = kstrtoul(buf, 10, &input);
2962 if (err)
2963 return err;
2964
2965 spin_lock(&hugetlb_lock);
2966 h->nr_overcommit_huge_pages = input;
2967 spin_unlock(&hugetlb_lock);
2968
2969 return count;
2970 }
2971 HSTATE_ATTR(nr_overcommit_hugepages);
2972
2973 static ssize_t free_hugepages_show(struct kobject *kobj,
2974 struct kobj_attribute *attr, char *buf)
2975 {
2976 struct hstate *h;
2977 unsigned long free_huge_pages;
2978 int nid;
2979
2980 h = kobj_to_hstate(kobj, &nid);
2981 if (nid == NUMA_NO_NODE)
2982 free_huge_pages = h->free_huge_pages;
2983 else
2984 free_huge_pages = h->free_huge_pages_node[nid];
2985
2986 return sprintf(buf, "%lu\n", free_huge_pages);
2987 }
2988 HSTATE_ATTR_RO(free_hugepages);
2989
2990 static ssize_t resv_hugepages_show(struct kobject *kobj,
2991 struct kobj_attribute *attr, char *buf)
2992 {
2993 struct hstate *h = kobj_to_hstate(kobj, NULL);
2994 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2995 }
2996 HSTATE_ATTR_RO(resv_hugepages);
2997
2998 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2999 struct kobj_attribute *attr, char *buf)
3000 {
3001 struct hstate *h;
3002 unsigned long surplus_huge_pages;
3003 int nid;
3004
3005 h = kobj_to_hstate(kobj, &nid);
3006 if (nid == NUMA_NO_NODE)
3007 surplus_huge_pages = h->surplus_huge_pages;
3008 else
3009 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3010
3011 return sprintf(buf, "%lu\n", surplus_huge_pages);
3012 }
3013 HSTATE_ATTR_RO(surplus_hugepages);
3014
3015 static struct attribute *hstate_attrs[] = {
3016 &nr_hugepages_attr.attr,
3017 &nr_overcommit_hugepages_attr.attr,
3018 &free_hugepages_attr.attr,
3019 &resv_hugepages_attr.attr,
3020 &surplus_hugepages_attr.attr,
3021 #ifdef CONFIG_NUMA
3022 &nr_hugepages_mempolicy_attr.attr,
3023 #endif
3024 NULL,
3025 };
3026
3027 static const struct attribute_group hstate_attr_group = {
3028 .attrs = hstate_attrs,
3029 };
3030
3031 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3032 struct kobject **hstate_kobjs,
3033 const struct attribute_group *hstate_attr_group)
3034 {
3035 int retval;
3036 int hi = hstate_index(h);
3037
3038 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3039 if (!hstate_kobjs[hi])
3040 return -ENOMEM;
3041
3042 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3043 if (retval)
3044 kobject_put(hstate_kobjs[hi]);
3045
3046 return retval;
3047 }
3048
3049 static void __init hugetlb_sysfs_init(void)
3050 {
3051 struct hstate *h;
3052 int err;
3053
3054 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3055 if (!hugepages_kobj)
3056 return;
3057
3058 for_each_hstate(h) {
3059 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3060 hstate_kobjs, &hstate_attr_group);
3061 if (err)
3062 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3063 }
3064 }
3065
3066 #ifdef CONFIG_NUMA
3067
3068 /*
3069 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3070 * with node devices in node_devices[] using a parallel array. The array
3071 * index of a node device or _hstate == node id.
3072 * This is here to avoid any static dependency of the node device driver, in
3073 * the base kernel, on the hugetlb module.
3074 */
3075 struct node_hstate {
3076 struct kobject *hugepages_kobj;
3077 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3078 };
3079 static struct node_hstate node_hstates[MAX_NUMNODES];
3080
3081 /*
3082 * A subset of global hstate attributes for node devices
3083 */
3084 static struct attribute *per_node_hstate_attrs[] = {
3085 &nr_hugepages_attr.attr,
3086 &free_hugepages_attr.attr,
3087 &surplus_hugepages_attr.attr,
3088 NULL,
3089 };
3090
3091 static const struct attribute_group per_node_hstate_attr_group = {
3092 .attrs = per_node_hstate_attrs,
3093 };
3094
3095 /*
3096 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3097 * Returns node id via non-NULL nidp.
3098 */
3099 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3100 {
3101 int nid;
3102
3103 for (nid = 0; nid < nr_node_ids; nid++) {
3104 struct node_hstate *nhs = &node_hstates[nid];
3105 int i;
3106 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3107 if (nhs->hstate_kobjs[i] == kobj) {
3108 if (nidp)
3109 *nidp = nid;
3110 return &hstates[i];
3111 }
3112 }
3113
3114 BUG();
3115 return NULL;
3116 }
3117
3118 /*
3119 * Unregister hstate attributes from a single node device.
3120 * No-op if no hstate attributes attached.
3121 */
3122 static void hugetlb_unregister_node(struct node *node)
3123 {
3124 struct hstate *h;
3125 struct node_hstate *nhs = &node_hstates[node->dev.id];
3126
3127 if (!nhs->hugepages_kobj)
3128 return; /* no hstate attributes */
3129
3130 for_each_hstate(h) {
3131 int idx = hstate_index(h);
3132 if (nhs->hstate_kobjs[idx]) {
3133 kobject_put(nhs->hstate_kobjs[idx]);
3134 nhs->hstate_kobjs[idx] = NULL;
3135 }
3136 }
3137
3138 kobject_put(nhs->hugepages_kobj);
3139 nhs->hugepages_kobj = NULL;
3140 }
3141
3142
3143 /*
3144 * Register hstate attributes for a single node device.
3145 * No-op if attributes already registered.
3146 */
3147 static void hugetlb_register_node(struct node *node)
3148 {
3149 struct hstate *h;
3150 struct node_hstate *nhs = &node_hstates[node->dev.id];
3151 int err;
3152
3153 if (nhs->hugepages_kobj)
3154 return; /* already allocated */
3155
3156 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3157 &node->dev.kobj);
3158 if (!nhs->hugepages_kobj)
3159 return;
3160
3161 for_each_hstate(h) {
3162 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3163 nhs->hstate_kobjs,
3164 &per_node_hstate_attr_group);
3165 if (err) {
3166 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3167 h->name, node->dev.id);
3168 hugetlb_unregister_node(node);
3169 break;
3170 }
3171 }
3172 }
3173
3174 /*
3175 * hugetlb init time: register hstate attributes for all registered node
3176 * devices of nodes that have memory. All on-line nodes should have
3177 * registered their associated device by this time.
3178 */
3179 static void __init hugetlb_register_all_nodes(void)
3180 {
3181 int nid;
3182
3183 for_each_node_state(nid, N_MEMORY) {
3184 struct node *node = node_devices[nid];
3185 if (node->dev.id == nid)
3186 hugetlb_register_node(node);
3187 }
3188
3189 /*
3190 * Let the node device driver know we're here so it can
3191 * [un]register hstate attributes on node hotplug.
3192 */
3193 register_hugetlbfs_with_node(hugetlb_register_node,
3194 hugetlb_unregister_node);
3195 }
3196 #else /* !CONFIG_NUMA */
3197
3198 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3199 {
3200 BUG();
3201 if (nidp)
3202 *nidp = -1;
3203 return NULL;
3204 }
3205
3206 static void hugetlb_register_all_nodes(void) { }
3207
3208 #endif
3209
3210 static int __init hugetlb_init(void)
3211 {
3212 int i;
3213
3214 if (!hugepages_supported()) {
3215 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3216 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3217 return 0;
3218 }
3219
3220 /*
3221 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3222 * architectures depend on setup being done here.
3223 */
3224 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3225 if (!parsed_default_hugepagesz) {
3226 /*
3227 * If we did not parse a default huge page size, set
3228 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3229 * number of huge pages for this default size was implicitly
3230 * specified, set that here as well.
3231 * Note that the implicit setting will overwrite an explicit
3232 * setting. A warning will be printed in this case.
3233 */
3234 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3235 if (default_hstate_max_huge_pages) {
3236 if (default_hstate.max_huge_pages) {
3237 char buf[32];
3238
3239 string_get_size(huge_page_size(&default_hstate),
3240 1, STRING_UNITS_2, buf, 32);
3241 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3242 default_hstate.max_huge_pages, buf);
3243 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3244 default_hstate_max_huge_pages);
3245 }
3246 default_hstate.max_huge_pages =
3247 default_hstate_max_huge_pages;
3248 }
3249 }
3250
3251 hugetlb_cma_check();
3252 hugetlb_init_hstates();
3253 gather_bootmem_prealloc();
3254 report_hugepages();
3255
3256 hugetlb_sysfs_init();
3257 hugetlb_register_all_nodes();
3258 hugetlb_cgroup_file_init();
3259
3260 #ifdef CONFIG_SMP
3261 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3262 #else
3263 num_fault_mutexes = 1;
3264 #endif
3265 hugetlb_fault_mutex_table =
3266 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3267 GFP_KERNEL);
3268 BUG_ON(!hugetlb_fault_mutex_table);
3269
3270 for (i = 0; i < num_fault_mutexes; i++)
3271 mutex_init(&hugetlb_fault_mutex_table[i]);
3272 return 0;
3273 }
3274 subsys_initcall(hugetlb_init);
3275
3276 /* Overwritten by architectures with more huge page sizes */
3277 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3278 {
3279 return size == HPAGE_SIZE;
3280 }
3281
3282 void __init hugetlb_add_hstate(unsigned int order)
3283 {
3284 struct hstate *h;
3285 unsigned long i;
3286
3287 if (size_to_hstate(PAGE_SIZE << order)) {
3288 return;
3289 }
3290 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3291 BUG_ON(order == 0);
3292 h = &hstates[hugetlb_max_hstate++];
3293 h->order = order;
3294 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3295 h->nr_huge_pages = 0;
3296 h->free_huge_pages = 0;
3297 for (i = 0; i < MAX_NUMNODES; ++i)
3298 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3299 INIT_LIST_HEAD(&h->hugepage_activelist);
3300 h->next_nid_to_alloc = first_memory_node;
3301 h->next_nid_to_free = first_memory_node;
3302 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3303 huge_page_size(h)/1024);
3304
3305 parsed_hstate = h;
3306 }
3307
3308 /*
3309 * hugepages command line processing
3310 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3311 * specification. If not, ignore the hugepages value. hugepages can also
3312 * be the first huge page command line option in which case it implicitly
3313 * specifies the number of huge pages for the default size.
3314 */
3315 static int __init hugepages_setup(char *s)
3316 {
3317 unsigned long *mhp;
3318 static unsigned long *last_mhp;
3319
3320 if (!parsed_valid_hugepagesz) {
3321 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3322 parsed_valid_hugepagesz = true;
3323 return 0;
3324 }
3325
3326 /*
3327 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3328 * yet, so this hugepages= parameter goes to the "default hstate".
3329 * Otherwise, it goes with the previously parsed hugepagesz or
3330 * default_hugepagesz.
3331 */
3332 else if (!hugetlb_max_hstate)
3333 mhp = &default_hstate_max_huge_pages;
3334 else
3335 mhp = &parsed_hstate->max_huge_pages;
3336
3337 if (mhp == last_mhp) {
3338 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3339 return 0;
3340 }
3341
3342 if (sscanf(s, "%lu", mhp) <= 0)
3343 *mhp = 0;
3344
3345 /*
3346 * Global state is always initialized later in hugetlb_init.
3347 * But we need to allocate >= MAX_ORDER hstates here early to still
3348 * use the bootmem allocator.
3349 */
3350 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3351 hugetlb_hstate_alloc_pages(parsed_hstate);
3352
3353 last_mhp = mhp;
3354
3355 return 1;
3356 }
3357 __setup("hugepages=", hugepages_setup);
3358
3359 /*
3360 * hugepagesz command line processing
3361 * A specific huge page size can only be specified once with hugepagesz.
3362 * hugepagesz is followed by hugepages on the command line. The global
3363 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3364 * hugepagesz argument was valid.
3365 */
3366 static int __init hugepagesz_setup(char *s)
3367 {
3368 unsigned long size;
3369 struct hstate *h;
3370
3371 parsed_valid_hugepagesz = false;
3372 size = (unsigned long)memparse(s, NULL);
3373
3374 if (!arch_hugetlb_valid_size(size)) {
3375 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3376 return 0;
3377 }
3378
3379 h = size_to_hstate(size);
3380 if (h) {
3381 /*
3382 * hstate for this size already exists. This is normally
3383 * an error, but is allowed if the existing hstate is the
3384 * default hstate. More specifically, it is only allowed if
3385 * the number of huge pages for the default hstate was not
3386 * previously specified.
3387 */
3388 if (!parsed_default_hugepagesz || h != &default_hstate ||
3389 default_hstate.max_huge_pages) {
3390 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3391 return 0;
3392 }
3393
3394 /*
3395 * No need to call hugetlb_add_hstate() as hstate already
3396 * exists. But, do set parsed_hstate so that a following
3397 * hugepages= parameter will be applied to this hstate.
3398 */
3399 parsed_hstate = h;
3400 parsed_valid_hugepagesz = true;
3401 return 1;
3402 }
3403
3404 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3405 parsed_valid_hugepagesz = true;
3406 return 1;
3407 }
3408 __setup("hugepagesz=", hugepagesz_setup);
3409
3410 /*
3411 * default_hugepagesz command line input
3412 * Only one instance of default_hugepagesz allowed on command line.
3413 */
3414 static int __init default_hugepagesz_setup(char *s)
3415 {
3416 unsigned long size;
3417
3418 parsed_valid_hugepagesz = false;
3419 if (parsed_default_hugepagesz) {
3420 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3421 return 0;
3422 }
3423
3424 size = (unsigned long)memparse(s, NULL);
3425
3426 if (!arch_hugetlb_valid_size(size)) {
3427 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3428 return 0;
3429 }
3430
3431 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3432 parsed_valid_hugepagesz = true;
3433 parsed_default_hugepagesz = true;
3434 default_hstate_idx = hstate_index(size_to_hstate(size));
3435
3436 /*
3437 * The number of default huge pages (for this size) could have been
3438 * specified as the first hugetlb parameter: hugepages=X. If so,
3439 * then default_hstate_max_huge_pages is set. If the default huge
3440 * page size is gigantic (>= MAX_ORDER), then the pages must be
3441 * allocated here from bootmem allocator.
3442 */
3443 if (default_hstate_max_huge_pages) {
3444 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3445 if (hstate_is_gigantic(&default_hstate))
3446 hugetlb_hstate_alloc_pages(&default_hstate);
3447 default_hstate_max_huge_pages = 0;
3448 }
3449
3450 return 1;
3451 }
3452 __setup("default_hugepagesz=", default_hugepagesz_setup);
3453
3454 static unsigned int cpuset_mems_nr(unsigned int *array)
3455 {
3456 int node;
3457 unsigned int nr = 0;
3458
3459 for_each_node_mask(node, cpuset_current_mems_allowed)
3460 nr += array[node];
3461
3462 return nr;
3463 }
3464
3465 #ifdef CONFIG_SYSCTL
3466 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3467 struct ctl_table *table, int write,
3468 void *buffer, size_t *length, loff_t *ppos)
3469 {
3470 struct hstate *h = &default_hstate;
3471 unsigned long tmp = h->max_huge_pages;
3472 int ret;
3473
3474 if (!hugepages_supported())
3475 return -EOPNOTSUPP;
3476
3477 table->data = &tmp;
3478 table->maxlen = sizeof(unsigned long);
3479 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3480 if (ret)
3481 goto out;
3482
3483 if (write)
3484 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3485 NUMA_NO_NODE, tmp, *length);
3486 out:
3487 return ret;
3488 }
3489
3490 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3491 void *buffer, size_t *length, loff_t *ppos)
3492 {
3493
3494 return hugetlb_sysctl_handler_common(false, table, write,
3495 buffer, length, ppos);
3496 }
3497
3498 #ifdef CONFIG_NUMA
3499 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3500 void *buffer, size_t *length, loff_t *ppos)
3501 {
3502 return hugetlb_sysctl_handler_common(true, table, write,
3503 buffer, length, ppos);
3504 }
3505 #endif /* CONFIG_NUMA */
3506
3507 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3508 void *buffer, size_t *length, loff_t *ppos)
3509 {
3510 struct hstate *h = &default_hstate;
3511 unsigned long tmp;
3512 int ret;
3513
3514 if (!hugepages_supported())
3515 return -EOPNOTSUPP;
3516
3517 tmp = h->nr_overcommit_huge_pages;
3518
3519 if (write && hstate_is_gigantic(h))
3520 return -EINVAL;
3521
3522 table->data = &tmp;
3523 table->maxlen = sizeof(unsigned long);
3524 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3525 if (ret)
3526 goto out;
3527
3528 if (write) {
3529 spin_lock(&hugetlb_lock);
3530 h->nr_overcommit_huge_pages = tmp;
3531 spin_unlock(&hugetlb_lock);
3532 }
3533 out:
3534 return ret;
3535 }
3536
3537 #endif /* CONFIG_SYSCTL */
3538
3539 void hugetlb_report_meminfo(struct seq_file *m)
3540 {
3541 struct hstate *h;
3542 unsigned long total = 0;
3543
3544 if (!hugepages_supported())
3545 return;
3546
3547 for_each_hstate(h) {
3548 unsigned long count = h->nr_huge_pages;
3549
3550 total += (PAGE_SIZE << huge_page_order(h)) * count;
3551
3552 if (h == &default_hstate)
3553 seq_printf(m,
3554 "HugePages_Total: %5lu\n"
3555 "HugePages_Free: %5lu\n"
3556 "HugePages_Rsvd: %5lu\n"
3557 "HugePages_Surp: %5lu\n"
3558 "Hugepagesize: %8lu kB\n",
3559 count,
3560 h->free_huge_pages,
3561 h->resv_huge_pages,
3562 h->surplus_huge_pages,
3563 (PAGE_SIZE << huge_page_order(h)) / 1024);
3564 }
3565
3566 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3567 }
3568
3569 int hugetlb_report_node_meminfo(int nid, char *buf)
3570 {
3571 struct hstate *h = &default_hstate;
3572 if (!hugepages_supported())
3573 return 0;
3574 return sprintf(buf,
3575 "Node %d HugePages_Total: %5u\n"
3576 "Node %d HugePages_Free: %5u\n"
3577 "Node %d HugePages_Surp: %5u\n",
3578 nid, h->nr_huge_pages_node[nid],
3579 nid, h->free_huge_pages_node[nid],
3580 nid, h->surplus_huge_pages_node[nid]);
3581 }
3582
3583 void hugetlb_show_meminfo(void)
3584 {
3585 struct hstate *h;
3586 int nid;
3587
3588 if (!hugepages_supported())
3589 return;
3590
3591 for_each_node_state(nid, N_MEMORY)
3592 for_each_hstate(h)
3593 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3594 nid,
3595 h->nr_huge_pages_node[nid],
3596 h->free_huge_pages_node[nid],
3597 h->surplus_huge_pages_node[nid],
3598 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3599 }
3600
3601 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3602 {
3603 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3604 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3605 }
3606
3607 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3608 unsigned long hugetlb_total_pages(void)
3609 {
3610 struct hstate *h;
3611 unsigned long nr_total_pages = 0;
3612
3613 for_each_hstate(h)
3614 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3615 return nr_total_pages;
3616 }
3617
3618 static int hugetlb_acct_memory(struct hstate *h, long delta)
3619 {
3620 int ret = -ENOMEM;
3621
3622 spin_lock(&hugetlb_lock);
3623 /*
3624 * When cpuset is configured, it breaks the strict hugetlb page
3625 * reservation as the accounting is done on a global variable. Such
3626 * reservation is completely rubbish in the presence of cpuset because
3627 * the reservation is not checked against page availability for the
3628 * current cpuset. Application can still potentially OOM'ed by kernel
3629 * with lack of free htlb page in cpuset that the task is in.
3630 * Attempt to enforce strict accounting with cpuset is almost
3631 * impossible (or too ugly) because cpuset is too fluid that
3632 * task or memory node can be dynamically moved between cpusets.
3633 *
3634 * The change of semantics for shared hugetlb mapping with cpuset is
3635 * undesirable. However, in order to preserve some of the semantics,
3636 * we fall back to check against current free page availability as
3637 * a best attempt and hopefully to minimize the impact of changing
3638 * semantics that cpuset has.
3639 */
3640 if (delta > 0) {
3641 if (gather_surplus_pages(h, delta) < 0)
3642 goto out;
3643
3644 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3645 return_unused_surplus_pages(h, delta);
3646 goto out;
3647 }
3648 }
3649
3650 ret = 0;
3651 if (delta < 0)
3652 return_unused_surplus_pages(h, (unsigned long) -delta);
3653
3654 out:
3655 spin_unlock(&hugetlb_lock);
3656 return ret;
3657 }
3658
3659 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3660 {
3661 struct resv_map *resv = vma_resv_map(vma);
3662
3663 /*
3664 * This new VMA should share its siblings reservation map if present.
3665 * The VMA will only ever have a valid reservation map pointer where
3666 * it is being copied for another still existing VMA. As that VMA
3667 * has a reference to the reservation map it cannot disappear until
3668 * after this open call completes. It is therefore safe to take a
3669 * new reference here without additional locking.
3670 */
3671 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3672 kref_get(&resv->refs);
3673 }
3674
3675 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3676 {
3677 struct hstate *h = hstate_vma(vma);
3678 struct resv_map *resv = vma_resv_map(vma);
3679 struct hugepage_subpool *spool = subpool_vma(vma);
3680 unsigned long reserve, start, end;
3681 long gbl_reserve;
3682
3683 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3684 return;
3685
3686 start = vma_hugecache_offset(h, vma, vma->vm_start);
3687 end = vma_hugecache_offset(h, vma, vma->vm_end);
3688
3689 reserve = (end - start) - region_count(resv, start, end);
3690 hugetlb_cgroup_uncharge_counter(resv, start, end);
3691 if (reserve) {
3692 /*
3693 * Decrement reserve counts. The global reserve count may be
3694 * adjusted if the subpool has a minimum size.
3695 */
3696 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3697 hugetlb_acct_memory(h, -gbl_reserve);
3698 }
3699
3700 kref_put(&resv->refs, resv_map_release);
3701 }
3702
3703 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3704 {
3705 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3706 return -EINVAL;
3707 return 0;
3708 }
3709
3710 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3711 {
3712 struct hstate *hstate = hstate_vma(vma);
3713
3714 return 1UL << huge_page_shift(hstate);
3715 }
3716
3717 /*
3718 * We cannot handle pagefaults against hugetlb pages at all. They cause
3719 * handle_mm_fault() to try to instantiate regular-sized pages in the
3720 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3721 * this far.
3722 */
3723 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3724 {
3725 BUG();
3726 return 0;
3727 }
3728
3729 /*
3730 * When a new function is introduced to vm_operations_struct and added
3731 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3732 * This is because under System V memory model, mappings created via
3733 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3734 * their original vm_ops are overwritten with shm_vm_ops.
3735 */
3736 const struct vm_operations_struct hugetlb_vm_ops = {
3737 .fault = hugetlb_vm_op_fault,
3738 .open = hugetlb_vm_op_open,
3739 .close = hugetlb_vm_op_close,
3740 .split = hugetlb_vm_op_split,
3741 .pagesize = hugetlb_vm_op_pagesize,
3742 };
3743
3744 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3745 int writable)
3746 {
3747 pte_t entry;
3748
3749 if (writable) {
3750 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3751 vma->vm_page_prot)));
3752 } else {
3753 entry = huge_pte_wrprotect(mk_huge_pte(page,
3754 vma->vm_page_prot));
3755 }
3756 entry = pte_mkyoung(entry);
3757 entry = pte_mkhuge(entry);
3758 entry = arch_make_huge_pte(entry, vma, page, writable);
3759
3760 return entry;
3761 }
3762
3763 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3764 unsigned long address, pte_t *ptep)
3765 {
3766 pte_t entry;
3767
3768 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3769 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3770 update_mmu_cache(vma, address, ptep);
3771 }
3772
3773 bool is_hugetlb_entry_migration(pte_t pte)
3774 {
3775 swp_entry_t swp;
3776
3777 if (huge_pte_none(pte) || pte_present(pte))
3778 return false;
3779 swp = pte_to_swp_entry(pte);
3780 if (non_swap_entry(swp) && is_migration_entry(swp))
3781 return true;
3782 else
3783 return false;
3784 }
3785
3786 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3787 {
3788 swp_entry_t swp;
3789
3790 if (huge_pte_none(pte) || pte_present(pte))
3791 return 0;
3792 swp = pte_to_swp_entry(pte);
3793 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3794 return 1;
3795 else
3796 return 0;
3797 }
3798
3799 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3800 struct vm_area_struct *vma)
3801 {
3802 pte_t *src_pte, *dst_pte, entry, dst_entry;
3803 struct page *ptepage;
3804 unsigned long addr;
3805 int cow;
3806 struct hstate *h = hstate_vma(vma);
3807 unsigned long sz = huge_page_size(h);
3808 struct address_space *mapping = vma->vm_file->f_mapping;
3809 struct mmu_notifier_range range;
3810 int ret = 0;
3811
3812 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3813
3814 if (cow) {
3815 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3816 vma->vm_start,
3817 vma->vm_end);
3818 mmu_notifier_invalidate_range_start(&range);
3819 } else {
3820 /*
3821 * For shared mappings i_mmap_rwsem must be held to call
3822 * huge_pte_alloc, otherwise the returned ptep could go
3823 * away if part of a shared pmd and another thread calls
3824 * huge_pmd_unshare.
3825 */
3826 i_mmap_lock_read(mapping);
3827 }
3828
3829 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3830 spinlock_t *src_ptl, *dst_ptl;
3831 src_pte = huge_pte_offset(src, addr, sz);
3832 if (!src_pte)
3833 continue;
3834 dst_pte = huge_pte_alloc(dst, addr, sz);
3835 if (!dst_pte) {
3836 ret = -ENOMEM;
3837 break;
3838 }
3839
3840 /*
3841 * If the pagetables are shared don't copy or take references.
3842 * dst_pte == src_pte is the common case of src/dest sharing.
3843 *
3844 * However, src could have 'unshared' and dst shares with
3845 * another vma. If dst_pte !none, this implies sharing.
3846 * Check here before taking page table lock, and once again
3847 * after taking the lock below.
3848 */
3849 dst_entry = huge_ptep_get(dst_pte);
3850 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3851 continue;
3852
3853 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3854 src_ptl = huge_pte_lockptr(h, src, src_pte);
3855 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3856 entry = huge_ptep_get(src_pte);
3857 dst_entry = huge_ptep_get(dst_pte);
3858 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3859 /*
3860 * Skip if src entry none. Also, skip in the
3861 * unlikely case dst entry !none as this implies
3862 * sharing with another vma.
3863 */
3864 ;
3865 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3866 is_hugetlb_entry_hwpoisoned(entry))) {
3867 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3868
3869 if (is_write_migration_entry(swp_entry) && cow) {
3870 /*
3871 * COW mappings require pages in both
3872 * parent and child to be set to read.
3873 */
3874 make_migration_entry_read(&swp_entry);
3875 entry = swp_entry_to_pte(swp_entry);
3876 set_huge_swap_pte_at(src, addr, src_pte,
3877 entry, sz);
3878 }
3879 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3880 } else {
3881 if (cow) {
3882 /*
3883 * No need to notify as we are downgrading page
3884 * table protection not changing it to point
3885 * to a new page.
3886 *
3887 * See Documentation/vm/mmu_notifier.rst
3888 */
3889 huge_ptep_set_wrprotect(src, addr, src_pte);
3890 }
3891 entry = huge_ptep_get(src_pte);
3892 ptepage = pte_page(entry);
3893 get_page(ptepage);
3894 page_dup_rmap(ptepage, true);
3895 set_huge_pte_at(dst, addr, dst_pte, entry);
3896 hugetlb_count_add(pages_per_huge_page(h), dst);
3897 }
3898 spin_unlock(src_ptl);
3899 spin_unlock(dst_ptl);
3900 }
3901
3902 if (cow)
3903 mmu_notifier_invalidate_range_end(&range);
3904 else
3905 i_mmap_unlock_read(mapping);
3906
3907 return ret;
3908 }
3909
3910 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3911 unsigned long start, unsigned long end,
3912 struct page *ref_page)
3913 {
3914 struct mm_struct *mm = vma->vm_mm;
3915 unsigned long address;
3916 pte_t *ptep;
3917 pte_t pte;
3918 spinlock_t *ptl;
3919 struct page *page;
3920 struct hstate *h = hstate_vma(vma);
3921 unsigned long sz = huge_page_size(h);
3922 struct mmu_notifier_range range;
3923
3924 WARN_ON(!is_vm_hugetlb_page(vma));
3925 BUG_ON(start & ~huge_page_mask(h));
3926 BUG_ON(end & ~huge_page_mask(h));
3927
3928 /*
3929 * This is a hugetlb vma, all the pte entries should point
3930 * to huge page.
3931 */
3932 tlb_change_page_size(tlb, sz);
3933 tlb_start_vma(tlb, vma);
3934
3935 /*
3936 * If sharing possible, alert mmu notifiers of worst case.
3937 */
3938 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3939 end);
3940 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3941 mmu_notifier_invalidate_range_start(&range);
3942 address = start;
3943 for (; address < end; address += sz) {
3944 ptep = huge_pte_offset(mm, address, sz);
3945 if (!ptep)
3946 continue;
3947
3948 ptl = huge_pte_lock(h, mm, ptep);
3949 if (huge_pmd_unshare(mm, &address, ptep)) {
3950 spin_unlock(ptl);
3951 /*
3952 * We just unmapped a page of PMDs by clearing a PUD.
3953 * The caller's TLB flush range should cover this area.
3954 */
3955 continue;
3956 }
3957
3958 pte = huge_ptep_get(ptep);
3959 if (huge_pte_none(pte)) {
3960 spin_unlock(ptl);
3961 continue;
3962 }
3963
3964 /*
3965 * Migrating hugepage or HWPoisoned hugepage is already
3966 * unmapped and its refcount is dropped, so just clear pte here.
3967 */
3968 if (unlikely(!pte_present(pte))) {
3969 huge_pte_clear(mm, address, ptep, sz);
3970 spin_unlock(ptl);
3971 continue;
3972 }
3973
3974 page = pte_page(pte);
3975 /*
3976 * If a reference page is supplied, it is because a specific
3977 * page is being unmapped, not a range. Ensure the page we
3978 * are about to unmap is the actual page of interest.
3979 */
3980 if (ref_page) {
3981 if (page != ref_page) {
3982 spin_unlock(ptl);
3983 continue;
3984 }
3985 /*
3986 * Mark the VMA as having unmapped its page so that
3987 * future faults in this VMA will fail rather than
3988 * looking like data was lost
3989 */
3990 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3991 }
3992
3993 pte = huge_ptep_get_and_clear(mm, address, ptep);
3994 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3995 if (huge_pte_dirty(pte))
3996 set_page_dirty(page);
3997
3998 hugetlb_count_sub(pages_per_huge_page(h), mm);
3999 page_remove_rmap(page, true);
4000
4001 spin_unlock(ptl);
4002 tlb_remove_page_size(tlb, page, huge_page_size(h));
4003 /*
4004 * Bail out after unmapping reference page if supplied
4005 */
4006 if (ref_page)
4007 break;
4008 }
4009 mmu_notifier_invalidate_range_end(&range);
4010 tlb_end_vma(tlb, vma);
4011 }
4012
4013 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4014 struct vm_area_struct *vma, unsigned long start,
4015 unsigned long end, struct page *ref_page)
4016 {
4017 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4018
4019 /*
4020 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4021 * test will fail on a vma being torn down, and not grab a page table
4022 * on its way out. We're lucky that the flag has such an appropriate
4023 * name, and can in fact be safely cleared here. We could clear it
4024 * before the __unmap_hugepage_range above, but all that's necessary
4025 * is to clear it before releasing the i_mmap_rwsem. This works
4026 * because in the context this is called, the VMA is about to be
4027 * destroyed and the i_mmap_rwsem is held.
4028 */
4029 vma->vm_flags &= ~VM_MAYSHARE;
4030 }
4031
4032 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4033 unsigned long end, struct page *ref_page)
4034 {
4035 struct mm_struct *mm;
4036 struct mmu_gather tlb;
4037 unsigned long tlb_start = start;
4038 unsigned long tlb_end = end;
4039
4040 /*
4041 * If shared PMDs were possibly used within this vma range, adjust
4042 * start/end for worst case tlb flushing.
4043 * Note that we can not be sure if PMDs are shared until we try to
4044 * unmap pages. However, we want to make sure TLB flushing covers
4045 * the largest possible range.
4046 */
4047 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4048
4049 mm = vma->vm_mm;
4050
4051 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4052 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4053 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4054 }
4055
4056 /*
4057 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4058 * mappping it owns the reserve page for. The intention is to unmap the page
4059 * from other VMAs and let the children be SIGKILLed if they are faulting the
4060 * same region.
4061 */
4062 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4063 struct page *page, unsigned long address)
4064 {
4065 struct hstate *h = hstate_vma(vma);
4066 struct vm_area_struct *iter_vma;
4067 struct address_space *mapping;
4068 pgoff_t pgoff;
4069
4070 /*
4071 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4072 * from page cache lookup which is in HPAGE_SIZE units.
4073 */
4074 address = address & huge_page_mask(h);
4075 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4076 vma->vm_pgoff;
4077 mapping = vma->vm_file->f_mapping;
4078
4079 /*
4080 * Take the mapping lock for the duration of the table walk. As
4081 * this mapping should be shared between all the VMAs,
4082 * __unmap_hugepage_range() is called as the lock is already held
4083 */
4084 i_mmap_lock_write(mapping);
4085 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4086 /* Do not unmap the current VMA */
4087 if (iter_vma == vma)
4088 continue;
4089
4090 /*
4091 * Shared VMAs have their own reserves and do not affect
4092 * MAP_PRIVATE accounting but it is possible that a shared
4093 * VMA is using the same page so check and skip such VMAs.
4094 */
4095 if (iter_vma->vm_flags & VM_MAYSHARE)
4096 continue;
4097
4098 /*
4099 * Unmap the page from other VMAs without their own reserves.
4100 * They get marked to be SIGKILLed if they fault in these
4101 * areas. This is because a future no-page fault on this VMA
4102 * could insert a zeroed page instead of the data existing
4103 * from the time of fork. This would look like data corruption
4104 */
4105 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4106 unmap_hugepage_range(iter_vma, address,
4107 address + huge_page_size(h), page);
4108 }
4109 i_mmap_unlock_write(mapping);
4110 }
4111
4112 /*
4113 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4114 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4115 * cannot race with other handlers or page migration.
4116 * Keep the pte_same checks anyway to make transition from the mutex easier.
4117 */
4118 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4119 unsigned long address, pte_t *ptep,
4120 struct page *pagecache_page, spinlock_t *ptl)
4121 {
4122 pte_t pte;
4123 struct hstate *h = hstate_vma(vma);
4124 struct page *old_page, *new_page;
4125 int outside_reserve = 0;
4126 vm_fault_t ret = 0;
4127 unsigned long haddr = address & huge_page_mask(h);
4128 struct mmu_notifier_range range;
4129
4130 pte = huge_ptep_get(ptep);
4131 old_page = pte_page(pte);
4132
4133 retry_avoidcopy:
4134 /* If no-one else is actually using this page, avoid the copy
4135 * and just make the page writable */
4136 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4137 page_move_anon_rmap(old_page, vma);
4138 set_huge_ptep_writable(vma, haddr, ptep);
4139 return 0;
4140 }
4141
4142 /*
4143 * If the process that created a MAP_PRIVATE mapping is about to
4144 * perform a COW due to a shared page count, attempt to satisfy
4145 * the allocation without using the existing reserves. The pagecache
4146 * page is used to determine if the reserve at this address was
4147 * consumed or not. If reserves were used, a partial faulted mapping
4148 * at the time of fork() could consume its reserves on COW instead
4149 * of the full address range.
4150 */
4151 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4152 old_page != pagecache_page)
4153 outside_reserve = 1;
4154
4155 get_page(old_page);
4156
4157 /*
4158 * Drop page table lock as buddy allocator may be called. It will
4159 * be acquired again before returning to the caller, as expected.
4160 */
4161 spin_unlock(ptl);
4162 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4163
4164 if (IS_ERR(new_page)) {
4165 /*
4166 * If a process owning a MAP_PRIVATE mapping fails to COW,
4167 * it is due to references held by a child and an insufficient
4168 * huge page pool. To guarantee the original mappers
4169 * reliability, unmap the page from child processes. The child
4170 * may get SIGKILLed if it later faults.
4171 */
4172 if (outside_reserve) {
4173 put_page(old_page);
4174 BUG_ON(huge_pte_none(pte));
4175 unmap_ref_private(mm, vma, old_page, haddr);
4176 BUG_ON(huge_pte_none(pte));
4177 spin_lock(ptl);
4178 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4179 if (likely(ptep &&
4180 pte_same(huge_ptep_get(ptep), pte)))
4181 goto retry_avoidcopy;
4182 /*
4183 * race occurs while re-acquiring page table
4184 * lock, and our job is done.
4185 */
4186 return 0;
4187 }
4188
4189 ret = vmf_error(PTR_ERR(new_page));
4190 goto out_release_old;
4191 }
4192
4193 /*
4194 * When the original hugepage is shared one, it does not have
4195 * anon_vma prepared.
4196 */
4197 if (unlikely(anon_vma_prepare(vma))) {
4198 ret = VM_FAULT_OOM;
4199 goto out_release_all;
4200 }
4201
4202 copy_user_huge_page(new_page, old_page, address, vma,
4203 pages_per_huge_page(h));
4204 __SetPageUptodate(new_page);
4205
4206 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4207 haddr + huge_page_size(h));
4208 mmu_notifier_invalidate_range_start(&range);
4209
4210 /*
4211 * Retake the page table lock to check for racing updates
4212 * before the page tables are altered
4213 */
4214 spin_lock(ptl);
4215 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4216 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4217 ClearPagePrivate(new_page);
4218
4219 /* Break COW */
4220 huge_ptep_clear_flush(vma, haddr, ptep);
4221 mmu_notifier_invalidate_range(mm, range.start, range.end);
4222 set_huge_pte_at(mm, haddr, ptep,
4223 make_huge_pte(vma, new_page, 1));
4224 page_remove_rmap(old_page, true);
4225 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4226 set_page_huge_active(new_page);
4227 /* Make the old page be freed below */
4228 new_page = old_page;
4229 }
4230 spin_unlock(ptl);
4231 mmu_notifier_invalidate_range_end(&range);
4232 out_release_all:
4233 restore_reserve_on_error(h, vma, haddr, new_page);
4234 put_page(new_page);
4235 out_release_old:
4236 put_page(old_page);
4237
4238 spin_lock(ptl); /* Caller expects lock to be held */
4239 return ret;
4240 }
4241
4242 /* Return the pagecache page at a given address within a VMA */
4243 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4244 struct vm_area_struct *vma, unsigned long address)
4245 {
4246 struct address_space *mapping;
4247 pgoff_t idx;
4248
4249 mapping = vma->vm_file->f_mapping;
4250 idx = vma_hugecache_offset(h, vma, address);
4251
4252 return find_lock_page(mapping, idx);
4253 }
4254
4255 /*
4256 * Return whether there is a pagecache page to back given address within VMA.
4257 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4258 */
4259 static bool hugetlbfs_pagecache_present(struct hstate *h,
4260 struct vm_area_struct *vma, unsigned long address)
4261 {
4262 struct address_space *mapping;
4263 pgoff_t idx;
4264 struct page *page;
4265
4266 mapping = vma->vm_file->f_mapping;
4267 idx = vma_hugecache_offset(h, vma, address);
4268
4269 page = find_get_page(mapping, idx);
4270 if (page)
4271 put_page(page);
4272 return page != NULL;
4273 }
4274
4275 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4276 pgoff_t idx)
4277 {
4278 struct inode *inode = mapping->host;
4279 struct hstate *h = hstate_inode(inode);
4280 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4281
4282 if (err)
4283 return err;
4284 ClearPagePrivate(page);
4285
4286 /*
4287 * set page dirty so that it will not be removed from cache/file
4288 * by non-hugetlbfs specific code paths.
4289 */
4290 set_page_dirty(page);
4291
4292 spin_lock(&inode->i_lock);
4293 inode->i_blocks += blocks_per_huge_page(h);
4294 spin_unlock(&inode->i_lock);
4295 return 0;
4296 }
4297
4298 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4299 struct vm_area_struct *vma,
4300 struct address_space *mapping, pgoff_t idx,
4301 unsigned long address, pte_t *ptep, unsigned int flags)
4302 {
4303 struct hstate *h = hstate_vma(vma);
4304 vm_fault_t ret = VM_FAULT_SIGBUS;
4305 int anon_rmap = 0;
4306 unsigned long size;
4307 struct page *page;
4308 pte_t new_pte;
4309 spinlock_t *ptl;
4310 unsigned long haddr = address & huge_page_mask(h);
4311 bool new_page = false;
4312
4313 /*
4314 * Currently, we are forced to kill the process in the event the
4315 * original mapper has unmapped pages from the child due to a failed
4316 * COW. Warn that such a situation has occurred as it may not be obvious
4317 */
4318 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4319 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4320 current->pid);
4321 return ret;
4322 }
4323
4324 /*
4325 * We can not race with truncation due to holding i_mmap_rwsem.
4326 * i_size is modified when holding i_mmap_rwsem, so check here
4327 * once for faults beyond end of file.
4328 */
4329 size = i_size_read(mapping->host) >> huge_page_shift(h);
4330 if (idx >= size)
4331 goto out;
4332
4333 retry:
4334 page = find_lock_page(mapping, idx);
4335 if (!page) {
4336 /*
4337 * Check for page in userfault range
4338 */
4339 if (userfaultfd_missing(vma)) {
4340 u32 hash;
4341 struct vm_fault vmf = {
4342 .vma = vma,
4343 .address = haddr,
4344 .flags = flags,
4345 /*
4346 * Hard to debug if it ends up being
4347 * used by a callee that assumes
4348 * something about the other
4349 * uninitialized fields... same as in
4350 * memory.c
4351 */
4352 };
4353
4354 /*
4355 * hugetlb_fault_mutex and i_mmap_rwsem must be
4356 * dropped before handling userfault. Reacquire
4357 * after handling fault to make calling code simpler.
4358 */
4359 hash = hugetlb_fault_mutex_hash(mapping, idx);
4360 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4361 i_mmap_unlock_read(mapping);
4362 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4363 i_mmap_lock_read(mapping);
4364 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4365 goto out;
4366 }
4367
4368 page = alloc_huge_page(vma, haddr, 0);
4369 if (IS_ERR(page)) {
4370 /*
4371 * Returning error will result in faulting task being
4372 * sent SIGBUS. The hugetlb fault mutex prevents two
4373 * tasks from racing to fault in the same page which
4374 * could result in false unable to allocate errors.
4375 * Page migration does not take the fault mutex, but
4376 * does a clear then write of pte's under page table
4377 * lock. Page fault code could race with migration,
4378 * notice the clear pte and try to allocate a page
4379 * here. Before returning error, get ptl and make
4380 * sure there really is no pte entry.
4381 */
4382 ptl = huge_pte_lock(h, mm, ptep);
4383 if (!huge_pte_none(huge_ptep_get(ptep))) {
4384 ret = 0;
4385 spin_unlock(ptl);
4386 goto out;
4387 }
4388 spin_unlock(ptl);
4389 ret = vmf_error(PTR_ERR(page));
4390 goto out;
4391 }
4392 clear_huge_page(page, address, pages_per_huge_page(h));
4393 __SetPageUptodate(page);
4394 new_page = true;
4395
4396 if (vma->vm_flags & VM_MAYSHARE) {
4397 int err = huge_add_to_page_cache(page, mapping, idx);
4398 if (err) {
4399 put_page(page);
4400 if (err == -EEXIST)
4401 goto retry;
4402 goto out;
4403 }
4404 } else {
4405 lock_page(page);
4406 if (unlikely(anon_vma_prepare(vma))) {
4407 ret = VM_FAULT_OOM;
4408 goto backout_unlocked;
4409 }
4410 anon_rmap = 1;
4411 }
4412 } else {
4413 /*
4414 * If memory error occurs between mmap() and fault, some process
4415 * don't have hwpoisoned swap entry for errored virtual address.
4416 * So we need to block hugepage fault by PG_hwpoison bit check.
4417 */
4418 if (unlikely(PageHWPoison(page))) {
4419 ret = VM_FAULT_HWPOISON |
4420 VM_FAULT_SET_HINDEX(hstate_index(h));
4421 goto backout_unlocked;
4422 }
4423 }
4424
4425 /*
4426 * If we are going to COW a private mapping later, we examine the
4427 * pending reservations for this page now. This will ensure that
4428 * any allocations necessary to record that reservation occur outside
4429 * the spinlock.
4430 */
4431 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4432 if (vma_needs_reservation(h, vma, haddr) < 0) {
4433 ret = VM_FAULT_OOM;
4434 goto backout_unlocked;
4435 }
4436 /* Just decrements count, does not deallocate */
4437 vma_end_reservation(h, vma, haddr);
4438 }
4439
4440 ptl = huge_pte_lock(h, mm, ptep);
4441 ret = 0;
4442 if (!huge_pte_none(huge_ptep_get(ptep)))
4443 goto backout;
4444
4445 if (anon_rmap) {
4446 ClearPagePrivate(page);
4447 hugepage_add_new_anon_rmap(page, vma, haddr);
4448 } else
4449 page_dup_rmap(page, true);
4450 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4451 && (vma->vm_flags & VM_SHARED)));
4452 set_huge_pte_at(mm, haddr, ptep, new_pte);
4453
4454 hugetlb_count_add(pages_per_huge_page(h), mm);
4455 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4456 /* Optimization, do the COW without a second fault */
4457 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4458 }
4459
4460 spin_unlock(ptl);
4461
4462 /*
4463 * Only make newly allocated pages active. Existing pages found
4464 * in the pagecache could be !page_huge_active() if they have been
4465 * isolated for migration.
4466 */
4467 if (new_page)
4468 set_page_huge_active(page);
4469
4470 unlock_page(page);
4471 out:
4472 return ret;
4473
4474 backout:
4475 spin_unlock(ptl);
4476 backout_unlocked:
4477 unlock_page(page);
4478 restore_reserve_on_error(h, vma, haddr, page);
4479 put_page(page);
4480 goto out;
4481 }
4482
4483 #ifdef CONFIG_SMP
4484 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4485 {
4486 unsigned long key[2];
4487 u32 hash;
4488
4489 key[0] = (unsigned long) mapping;
4490 key[1] = idx;
4491
4492 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4493
4494 return hash & (num_fault_mutexes - 1);
4495 }
4496 #else
4497 /*
4498 * For uniprocesor systems we always use a single mutex, so just
4499 * return 0 and avoid the hashing overhead.
4500 */
4501 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4502 {
4503 return 0;
4504 }
4505 #endif
4506
4507 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4508 unsigned long address, unsigned int flags)
4509 {
4510 pte_t *ptep, entry;
4511 spinlock_t *ptl;
4512 vm_fault_t ret;
4513 u32 hash;
4514 pgoff_t idx;
4515 struct page *page = NULL;
4516 struct page *pagecache_page = NULL;
4517 struct hstate *h = hstate_vma(vma);
4518 struct address_space *mapping;
4519 int need_wait_lock = 0;
4520 unsigned long haddr = address & huge_page_mask(h);
4521
4522 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4523 if (ptep) {
4524 /*
4525 * Since we hold no locks, ptep could be stale. That is
4526 * OK as we are only making decisions based on content and
4527 * not actually modifying content here.
4528 */
4529 entry = huge_ptep_get(ptep);
4530 if (unlikely(is_hugetlb_entry_migration(entry))) {
4531 migration_entry_wait_huge(vma, mm, ptep);
4532 return 0;
4533 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4534 return VM_FAULT_HWPOISON_LARGE |
4535 VM_FAULT_SET_HINDEX(hstate_index(h));
4536 } else {
4537 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4538 if (!ptep)
4539 return VM_FAULT_OOM;
4540 }
4541
4542 /*
4543 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4544 * until finished with ptep. This serves two purposes:
4545 * 1) It prevents huge_pmd_unshare from being called elsewhere
4546 * and making the ptep no longer valid.
4547 * 2) It synchronizes us with i_size modifications during truncation.
4548 *
4549 * ptep could have already be assigned via huge_pte_offset. That
4550 * is OK, as huge_pte_alloc will return the same value unless
4551 * something has changed.
4552 */
4553 mapping = vma->vm_file->f_mapping;
4554 i_mmap_lock_read(mapping);
4555 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4556 if (!ptep) {
4557 i_mmap_unlock_read(mapping);
4558 return VM_FAULT_OOM;
4559 }
4560
4561 /*
4562 * Serialize hugepage allocation and instantiation, so that we don't
4563 * get spurious allocation failures if two CPUs race to instantiate
4564 * the same page in the page cache.
4565 */
4566 idx = vma_hugecache_offset(h, vma, haddr);
4567 hash = hugetlb_fault_mutex_hash(mapping, idx);
4568 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4569
4570 entry = huge_ptep_get(ptep);
4571 if (huge_pte_none(entry)) {
4572 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4573 goto out_mutex;
4574 }
4575
4576 ret = 0;
4577
4578 /*
4579 * entry could be a migration/hwpoison entry at this point, so this
4580 * check prevents the kernel from going below assuming that we have
4581 * an active hugepage in pagecache. This goto expects the 2nd page
4582 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4583 * properly handle it.
4584 */
4585 if (!pte_present(entry))
4586 goto out_mutex;
4587
4588 /*
4589 * If we are going to COW the mapping later, we examine the pending
4590 * reservations for this page now. This will ensure that any
4591 * allocations necessary to record that reservation occur outside the
4592 * spinlock. For private mappings, we also lookup the pagecache
4593 * page now as it is used to determine if a reservation has been
4594 * consumed.
4595 */
4596 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4597 if (vma_needs_reservation(h, vma, haddr) < 0) {
4598 ret = VM_FAULT_OOM;
4599 goto out_mutex;
4600 }
4601 /* Just decrements count, does not deallocate */
4602 vma_end_reservation(h, vma, haddr);
4603
4604 if (!(vma->vm_flags & VM_MAYSHARE))
4605 pagecache_page = hugetlbfs_pagecache_page(h,
4606 vma, haddr);
4607 }
4608
4609 ptl = huge_pte_lock(h, mm, ptep);
4610
4611 /* Check for a racing update before calling hugetlb_cow */
4612 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4613 goto out_ptl;
4614
4615 /*
4616 * hugetlb_cow() requires page locks of pte_page(entry) and
4617 * pagecache_page, so here we need take the former one
4618 * when page != pagecache_page or !pagecache_page.
4619 */
4620 page = pte_page(entry);
4621 if (page != pagecache_page)
4622 if (!trylock_page(page)) {
4623 need_wait_lock = 1;
4624 goto out_ptl;
4625 }
4626
4627 get_page(page);
4628
4629 if (flags & FAULT_FLAG_WRITE) {
4630 if (!huge_pte_write(entry)) {
4631 ret = hugetlb_cow(mm, vma, address, ptep,
4632 pagecache_page, ptl);
4633 goto out_put_page;
4634 }
4635 entry = huge_pte_mkdirty(entry);
4636 }
4637 entry = pte_mkyoung(entry);
4638 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4639 flags & FAULT_FLAG_WRITE))
4640 update_mmu_cache(vma, haddr, ptep);
4641 out_put_page:
4642 if (page != pagecache_page)
4643 unlock_page(page);
4644 put_page(page);
4645 out_ptl:
4646 spin_unlock(ptl);
4647
4648 if (pagecache_page) {
4649 unlock_page(pagecache_page);
4650 put_page(pagecache_page);
4651 }
4652 out_mutex:
4653 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4654 i_mmap_unlock_read(mapping);
4655 /*
4656 * Generally it's safe to hold refcount during waiting page lock. But
4657 * here we just wait to defer the next page fault to avoid busy loop and
4658 * the page is not used after unlocked before returning from the current
4659 * page fault. So we are safe from accessing freed page, even if we wait
4660 * here without taking refcount.
4661 */
4662 if (need_wait_lock)
4663 wait_on_page_locked(page);
4664 return ret;
4665 }
4666
4667 /*
4668 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4669 * modifications for huge pages.
4670 */
4671 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4672 pte_t *dst_pte,
4673 struct vm_area_struct *dst_vma,
4674 unsigned long dst_addr,
4675 unsigned long src_addr,
4676 struct page **pagep)
4677 {
4678 struct address_space *mapping;
4679 pgoff_t idx;
4680 unsigned long size;
4681 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4682 struct hstate *h = hstate_vma(dst_vma);
4683 pte_t _dst_pte;
4684 spinlock_t *ptl;
4685 int ret;
4686 struct page *page;
4687
4688 if (!*pagep) {
4689 ret = -ENOMEM;
4690 page = alloc_huge_page(dst_vma, dst_addr, 0);
4691 if (IS_ERR(page))
4692 goto out;
4693
4694 ret = copy_huge_page_from_user(page,
4695 (const void __user *) src_addr,
4696 pages_per_huge_page(h), false);
4697
4698 /* fallback to copy_from_user outside mmap_lock */
4699 if (unlikely(ret)) {
4700 ret = -ENOENT;
4701 *pagep = page;
4702 /* don't free the page */
4703 goto out;
4704 }
4705 } else {
4706 page = *pagep;
4707 *pagep = NULL;
4708 }
4709
4710 /*
4711 * The memory barrier inside __SetPageUptodate makes sure that
4712 * preceding stores to the page contents become visible before
4713 * the set_pte_at() write.
4714 */
4715 __SetPageUptodate(page);
4716
4717 mapping = dst_vma->vm_file->f_mapping;
4718 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4719
4720 /*
4721 * If shared, add to page cache
4722 */
4723 if (vm_shared) {
4724 size = i_size_read(mapping->host) >> huge_page_shift(h);
4725 ret = -EFAULT;
4726 if (idx >= size)
4727 goto out_release_nounlock;
4728
4729 /*
4730 * Serialization between remove_inode_hugepages() and
4731 * huge_add_to_page_cache() below happens through the
4732 * hugetlb_fault_mutex_table that here must be hold by
4733 * the caller.
4734 */
4735 ret = huge_add_to_page_cache(page, mapping, idx);
4736 if (ret)
4737 goto out_release_nounlock;
4738 }
4739
4740 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4741 spin_lock(ptl);
4742
4743 /*
4744 * Recheck the i_size after holding PT lock to make sure not
4745 * to leave any page mapped (as page_mapped()) beyond the end
4746 * of the i_size (remove_inode_hugepages() is strict about
4747 * enforcing that). If we bail out here, we'll also leave a
4748 * page in the radix tree in the vm_shared case beyond the end
4749 * of the i_size, but remove_inode_hugepages() will take care
4750 * of it as soon as we drop the hugetlb_fault_mutex_table.
4751 */
4752 size = i_size_read(mapping->host) >> huge_page_shift(h);
4753 ret = -EFAULT;
4754 if (idx >= size)
4755 goto out_release_unlock;
4756
4757 ret = -EEXIST;
4758 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4759 goto out_release_unlock;
4760
4761 if (vm_shared) {
4762 page_dup_rmap(page, true);
4763 } else {
4764 ClearPagePrivate(page);
4765 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4766 }
4767
4768 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4769 if (dst_vma->vm_flags & VM_WRITE)
4770 _dst_pte = huge_pte_mkdirty(_dst_pte);
4771 _dst_pte = pte_mkyoung(_dst_pte);
4772
4773 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4774
4775 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4776 dst_vma->vm_flags & VM_WRITE);
4777 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4778
4779 /* No need to invalidate - it was non-present before */
4780 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4781
4782 spin_unlock(ptl);
4783 set_page_huge_active(page);
4784 if (vm_shared)
4785 unlock_page(page);
4786 ret = 0;
4787 out:
4788 return ret;
4789 out_release_unlock:
4790 spin_unlock(ptl);
4791 if (vm_shared)
4792 unlock_page(page);
4793 out_release_nounlock:
4794 put_page(page);
4795 goto out;
4796 }
4797
4798 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4799 struct page **pages, struct vm_area_struct **vmas,
4800 unsigned long *position, unsigned long *nr_pages,
4801 long i, unsigned int flags, int *locked)
4802 {
4803 unsigned long pfn_offset;
4804 unsigned long vaddr = *position;
4805 unsigned long remainder = *nr_pages;
4806 struct hstate *h = hstate_vma(vma);
4807 int err = -EFAULT;
4808
4809 while (vaddr < vma->vm_end && remainder) {
4810 pte_t *pte;
4811 spinlock_t *ptl = NULL;
4812 int absent;
4813 struct page *page;
4814
4815 /*
4816 * If we have a pending SIGKILL, don't keep faulting pages and
4817 * potentially allocating memory.
4818 */
4819 if (fatal_signal_pending(current)) {
4820 remainder = 0;
4821 break;
4822 }
4823
4824 /*
4825 * Some archs (sparc64, sh*) have multiple pte_ts to
4826 * each hugepage. We have to make sure we get the
4827 * first, for the page indexing below to work.
4828 *
4829 * Note that page table lock is not held when pte is null.
4830 */
4831 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4832 huge_page_size(h));
4833 if (pte)
4834 ptl = huge_pte_lock(h, mm, pte);
4835 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4836
4837 /*
4838 * When coredumping, it suits get_dump_page if we just return
4839 * an error where there's an empty slot with no huge pagecache
4840 * to back it. This way, we avoid allocating a hugepage, and
4841 * the sparse dumpfile avoids allocating disk blocks, but its
4842 * huge holes still show up with zeroes where they need to be.
4843 */
4844 if (absent && (flags & FOLL_DUMP) &&
4845 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4846 if (pte)
4847 spin_unlock(ptl);
4848 remainder = 0;
4849 break;
4850 }
4851
4852 /*
4853 * We need call hugetlb_fault for both hugepages under migration
4854 * (in which case hugetlb_fault waits for the migration,) and
4855 * hwpoisoned hugepages (in which case we need to prevent the
4856 * caller from accessing to them.) In order to do this, we use
4857 * here is_swap_pte instead of is_hugetlb_entry_migration and
4858 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4859 * both cases, and because we can't follow correct pages
4860 * directly from any kind of swap entries.
4861 */
4862 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4863 ((flags & FOLL_WRITE) &&
4864 !huge_pte_write(huge_ptep_get(pte)))) {
4865 vm_fault_t ret;
4866 unsigned int fault_flags = 0;
4867
4868 if (pte)
4869 spin_unlock(ptl);
4870 if (flags & FOLL_WRITE)
4871 fault_flags |= FAULT_FLAG_WRITE;
4872 if (locked)
4873 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4874 FAULT_FLAG_KILLABLE;
4875 if (flags & FOLL_NOWAIT)
4876 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4877 FAULT_FLAG_RETRY_NOWAIT;
4878 if (flags & FOLL_TRIED) {
4879 /*
4880 * Note: FAULT_FLAG_ALLOW_RETRY and
4881 * FAULT_FLAG_TRIED can co-exist
4882 */
4883 fault_flags |= FAULT_FLAG_TRIED;
4884 }
4885 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4886 if (ret & VM_FAULT_ERROR) {
4887 err = vm_fault_to_errno(ret, flags);
4888 remainder = 0;
4889 break;
4890 }
4891 if (ret & VM_FAULT_RETRY) {
4892 if (locked &&
4893 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4894 *locked = 0;
4895 *nr_pages = 0;
4896 /*
4897 * VM_FAULT_RETRY must not return an
4898 * error, it will return zero
4899 * instead.
4900 *
4901 * No need to update "position" as the
4902 * caller will not check it after
4903 * *nr_pages is set to 0.
4904 */
4905 return i;
4906 }
4907 continue;
4908 }
4909
4910 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4911 page = pte_page(huge_ptep_get(pte));
4912
4913 /*
4914 * If subpage information not requested, update counters
4915 * and skip the same_page loop below.
4916 */
4917 if (!pages && !vmas && !pfn_offset &&
4918 (vaddr + huge_page_size(h) < vma->vm_end) &&
4919 (remainder >= pages_per_huge_page(h))) {
4920 vaddr += huge_page_size(h);
4921 remainder -= pages_per_huge_page(h);
4922 i += pages_per_huge_page(h);
4923 spin_unlock(ptl);
4924 continue;
4925 }
4926
4927 same_page:
4928 if (pages) {
4929 pages[i] = mem_map_offset(page, pfn_offset);
4930 /*
4931 * try_grab_page() should always succeed here, because:
4932 * a) we hold the ptl lock, and b) we've just checked
4933 * that the huge page is present in the page tables. If
4934 * the huge page is present, then the tail pages must
4935 * also be present. The ptl prevents the head page and
4936 * tail pages from being rearranged in any way. So this
4937 * page must be available at this point, unless the page
4938 * refcount overflowed:
4939 */
4940 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4941 spin_unlock(ptl);
4942 remainder = 0;
4943 err = -ENOMEM;
4944 break;
4945 }
4946 }
4947
4948 if (vmas)
4949 vmas[i] = vma;
4950
4951 vaddr += PAGE_SIZE;
4952 ++pfn_offset;
4953 --remainder;
4954 ++i;
4955 if (vaddr < vma->vm_end && remainder &&
4956 pfn_offset < pages_per_huge_page(h)) {
4957 /*
4958 * We use pfn_offset to avoid touching the pageframes
4959 * of this compound page.
4960 */
4961 goto same_page;
4962 }
4963 spin_unlock(ptl);
4964 }
4965 *nr_pages = remainder;
4966 /*
4967 * setting position is actually required only if remainder is
4968 * not zero but it's faster not to add a "if (remainder)"
4969 * branch.
4970 */
4971 *position = vaddr;
4972
4973 return i ? i : err;
4974 }
4975
4976 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4977 /*
4978 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4979 * implement this.
4980 */
4981 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4982 #endif
4983
4984 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4985 unsigned long address, unsigned long end, pgprot_t newprot)
4986 {
4987 struct mm_struct *mm = vma->vm_mm;
4988 unsigned long start = address;
4989 pte_t *ptep;
4990 pte_t pte;
4991 struct hstate *h = hstate_vma(vma);
4992 unsigned long pages = 0;
4993 bool shared_pmd = false;
4994 struct mmu_notifier_range range;
4995
4996 /*
4997 * In the case of shared PMDs, the area to flush could be beyond
4998 * start/end. Set range.start/range.end to cover the maximum possible
4999 * range if PMD sharing is possible.
5000 */
5001 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5002 0, vma, mm, start, end);
5003 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5004
5005 BUG_ON(address >= end);
5006 flush_cache_range(vma, range.start, range.end);
5007
5008 mmu_notifier_invalidate_range_start(&range);
5009 i_mmap_lock_write(vma->vm_file->f_mapping);
5010 for (; address < end; address += huge_page_size(h)) {
5011 spinlock_t *ptl;
5012 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5013 if (!ptep)
5014 continue;
5015 ptl = huge_pte_lock(h, mm, ptep);
5016 if (huge_pmd_unshare(mm, &address, ptep)) {
5017 pages++;
5018 spin_unlock(ptl);
5019 shared_pmd = true;
5020 continue;
5021 }
5022 pte = huge_ptep_get(ptep);
5023 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5024 spin_unlock(ptl);
5025 continue;
5026 }
5027 if (unlikely(is_hugetlb_entry_migration(pte))) {
5028 swp_entry_t entry = pte_to_swp_entry(pte);
5029
5030 if (is_write_migration_entry(entry)) {
5031 pte_t newpte;
5032
5033 make_migration_entry_read(&entry);
5034 newpte = swp_entry_to_pte(entry);
5035 set_huge_swap_pte_at(mm, address, ptep,
5036 newpte, huge_page_size(h));
5037 pages++;
5038 }
5039 spin_unlock(ptl);
5040 continue;
5041 }
5042 if (!huge_pte_none(pte)) {
5043 pte_t old_pte;
5044
5045 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5046 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5047 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5048 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5049 pages++;
5050 }
5051 spin_unlock(ptl);
5052 }
5053 /*
5054 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5055 * may have cleared our pud entry and done put_page on the page table:
5056 * once we release i_mmap_rwsem, another task can do the final put_page
5057 * and that page table be reused and filled with junk. If we actually
5058 * did unshare a page of pmds, flush the range corresponding to the pud.
5059 */
5060 if (shared_pmd)
5061 flush_hugetlb_tlb_range(vma, range.start, range.end);
5062 else
5063 flush_hugetlb_tlb_range(vma, start, end);
5064 /*
5065 * No need to call mmu_notifier_invalidate_range() we are downgrading
5066 * page table protection not changing it to point to a new page.
5067 *
5068 * See Documentation/vm/mmu_notifier.rst
5069 */
5070 i_mmap_unlock_write(vma->vm_file->f_mapping);
5071 mmu_notifier_invalidate_range_end(&range);
5072
5073 return pages << h->order;
5074 }
5075
5076 int hugetlb_reserve_pages(struct inode *inode,
5077 long from, long to,
5078 struct vm_area_struct *vma,
5079 vm_flags_t vm_flags)
5080 {
5081 long ret, chg, add = -1;
5082 struct hstate *h = hstate_inode(inode);
5083 struct hugepage_subpool *spool = subpool_inode(inode);
5084 struct resv_map *resv_map;
5085 struct hugetlb_cgroup *h_cg = NULL;
5086 long gbl_reserve, regions_needed = 0;
5087
5088 /* This should never happen */
5089 if (from > to) {
5090 VM_WARN(1, "%s called with a negative range\n", __func__);
5091 return -EINVAL;
5092 }
5093
5094 /*
5095 * Only apply hugepage reservation if asked. At fault time, an
5096 * attempt will be made for VM_NORESERVE to allocate a page
5097 * without using reserves
5098 */
5099 if (vm_flags & VM_NORESERVE)
5100 return 0;
5101
5102 /*
5103 * Shared mappings base their reservation on the number of pages that
5104 * are already allocated on behalf of the file. Private mappings need
5105 * to reserve the full area even if read-only as mprotect() may be
5106 * called to make the mapping read-write. Assume !vma is a shm mapping
5107 */
5108 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5109 /*
5110 * resv_map can not be NULL as hugetlb_reserve_pages is only
5111 * called for inodes for which resv_maps were created (see
5112 * hugetlbfs_get_inode).
5113 */
5114 resv_map = inode_resv_map(inode);
5115
5116 chg = region_chg(resv_map, from, to, &regions_needed);
5117
5118 } else {
5119 /* Private mapping. */
5120 resv_map = resv_map_alloc();
5121 if (!resv_map)
5122 return -ENOMEM;
5123
5124 chg = to - from;
5125
5126 set_vma_resv_map(vma, resv_map);
5127 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5128 }
5129
5130 if (chg < 0) {
5131 ret = chg;
5132 goto out_err;
5133 }
5134
5135 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5136 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5137
5138 if (ret < 0) {
5139 ret = -ENOMEM;
5140 goto out_err;
5141 }
5142
5143 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5144 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5145 * of the resv_map.
5146 */
5147 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5148 }
5149
5150 /*
5151 * There must be enough pages in the subpool for the mapping. If
5152 * the subpool has a minimum size, there may be some global
5153 * reservations already in place (gbl_reserve).
5154 */
5155 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5156 if (gbl_reserve < 0) {
5157 ret = -ENOSPC;
5158 goto out_uncharge_cgroup;
5159 }
5160
5161 /*
5162 * Check enough hugepages are available for the reservation.
5163 * Hand the pages back to the subpool if there are not
5164 */
5165 ret = hugetlb_acct_memory(h, gbl_reserve);
5166 if (ret < 0) {
5167 goto out_put_pages;
5168 }
5169
5170 /*
5171 * Account for the reservations made. Shared mappings record regions
5172 * that have reservations as they are shared by multiple VMAs.
5173 * When the last VMA disappears, the region map says how much
5174 * the reservation was and the page cache tells how much of
5175 * the reservation was consumed. Private mappings are per-VMA and
5176 * only the consumed reservations are tracked. When the VMA
5177 * disappears, the original reservation is the VMA size and the
5178 * consumed reservations are stored in the map. Hence, nothing
5179 * else has to be done for private mappings here
5180 */
5181 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5182 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5183
5184 if (unlikely(add < 0)) {
5185 hugetlb_acct_memory(h, -gbl_reserve);
5186 goto out_put_pages;
5187 } else if (unlikely(chg > add)) {
5188 /*
5189 * pages in this range were added to the reserve
5190 * map between region_chg and region_add. This
5191 * indicates a race with alloc_huge_page. Adjust
5192 * the subpool and reserve counts modified above
5193 * based on the difference.
5194 */
5195 long rsv_adjust;
5196
5197 hugetlb_cgroup_uncharge_cgroup_rsvd(
5198 hstate_index(h),
5199 (chg - add) * pages_per_huge_page(h), h_cg);
5200
5201 rsv_adjust = hugepage_subpool_put_pages(spool,
5202 chg - add);
5203 hugetlb_acct_memory(h, -rsv_adjust);
5204 }
5205 }
5206 return 0;
5207 out_put_pages:
5208 /* put back original number of pages, chg */
5209 (void)hugepage_subpool_put_pages(spool, chg);
5210 out_uncharge_cgroup:
5211 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5212 chg * pages_per_huge_page(h), h_cg);
5213 out_err:
5214 if (!vma || vma->vm_flags & VM_MAYSHARE)
5215 /* Only call region_abort if the region_chg succeeded but the
5216 * region_add failed or didn't run.
5217 */
5218 if (chg >= 0 && add < 0)
5219 region_abort(resv_map, from, to, regions_needed);
5220 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5221 kref_put(&resv_map->refs, resv_map_release);
5222 return ret;
5223 }
5224
5225 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5226 long freed)
5227 {
5228 struct hstate *h = hstate_inode(inode);
5229 struct resv_map *resv_map = inode_resv_map(inode);
5230 long chg = 0;
5231 struct hugepage_subpool *spool = subpool_inode(inode);
5232 long gbl_reserve;
5233
5234 /*
5235 * Since this routine can be called in the evict inode path for all
5236 * hugetlbfs inodes, resv_map could be NULL.
5237 */
5238 if (resv_map) {
5239 chg = region_del(resv_map, start, end);
5240 /*
5241 * region_del() can fail in the rare case where a region
5242 * must be split and another region descriptor can not be
5243 * allocated. If end == LONG_MAX, it will not fail.
5244 */
5245 if (chg < 0)
5246 return chg;
5247 }
5248
5249 spin_lock(&inode->i_lock);
5250 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5251 spin_unlock(&inode->i_lock);
5252
5253 /*
5254 * If the subpool has a minimum size, the number of global
5255 * reservations to be released may be adjusted.
5256 */
5257 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5258 hugetlb_acct_memory(h, -gbl_reserve);
5259
5260 return 0;
5261 }
5262
5263 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5264 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5265 struct vm_area_struct *vma,
5266 unsigned long addr, pgoff_t idx)
5267 {
5268 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5269 svma->vm_start;
5270 unsigned long sbase = saddr & PUD_MASK;
5271 unsigned long s_end = sbase + PUD_SIZE;
5272
5273 /* Allow segments to share if only one is marked locked */
5274 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5275 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5276
5277 /*
5278 * match the virtual addresses, permission and the alignment of the
5279 * page table page.
5280 */
5281 if (pmd_index(addr) != pmd_index(saddr) ||
5282 vm_flags != svm_flags ||
5283 sbase < svma->vm_start || svma->vm_end < s_end)
5284 return 0;
5285
5286 return saddr;
5287 }
5288
5289 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5290 {
5291 unsigned long base = addr & PUD_MASK;
5292 unsigned long end = base + PUD_SIZE;
5293
5294 /*
5295 * check on proper vm_flags and page table alignment
5296 */
5297 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5298 return true;
5299 return false;
5300 }
5301
5302 /*
5303 * Determine if start,end range within vma could be mapped by shared pmd.
5304 * If yes, adjust start and end to cover range associated with possible
5305 * shared pmd mappings.
5306 */
5307 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5308 unsigned long *start, unsigned long *end)
5309 {
5310 unsigned long check_addr;
5311
5312 if (!(vma->vm_flags & VM_MAYSHARE))
5313 return;
5314
5315 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5316 unsigned long a_start = check_addr & PUD_MASK;
5317 unsigned long a_end = a_start + PUD_SIZE;
5318
5319 /*
5320 * If sharing is possible, adjust start/end if necessary.
5321 */
5322 if (range_in_vma(vma, a_start, a_end)) {
5323 if (a_start < *start)
5324 *start = a_start;
5325 if (a_end > *end)
5326 *end = a_end;
5327 }
5328 }
5329 }
5330
5331 /*
5332 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5333 * and returns the corresponding pte. While this is not necessary for the
5334 * !shared pmd case because we can allocate the pmd later as well, it makes the
5335 * code much cleaner.
5336 *
5337 * This routine must be called with i_mmap_rwsem held in at least read mode.
5338 * For hugetlbfs, this prevents removal of any page table entries associated
5339 * with the address space. This is important as we are setting up sharing
5340 * based on existing page table entries (mappings).
5341 */
5342 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5343 {
5344 struct vm_area_struct *vma = find_vma(mm, addr);
5345 struct address_space *mapping = vma->vm_file->f_mapping;
5346 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5347 vma->vm_pgoff;
5348 struct vm_area_struct *svma;
5349 unsigned long saddr;
5350 pte_t *spte = NULL;
5351 pte_t *pte;
5352 spinlock_t *ptl;
5353
5354 if (!vma_shareable(vma, addr))
5355 return (pte_t *)pmd_alloc(mm, pud, addr);
5356
5357 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5358 if (svma == vma)
5359 continue;
5360
5361 saddr = page_table_shareable(svma, vma, addr, idx);
5362 if (saddr) {
5363 spte = huge_pte_offset(svma->vm_mm, saddr,
5364 vma_mmu_pagesize(svma));
5365 if (spte) {
5366 get_page(virt_to_page(spte));
5367 break;
5368 }
5369 }
5370 }
5371
5372 if (!spte)
5373 goto out;
5374
5375 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5376 if (pud_none(*pud)) {
5377 pud_populate(mm, pud,
5378 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5379 mm_inc_nr_pmds(mm);
5380 } else {
5381 put_page(virt_to_page(spte));
5382 }
5383 spin_unlock(ptl);
5384 out:
5385 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5386 return pte;
5387 }
5388
5389 /*
5390 * unmap huge page backed by shared pte.
5391 *
5392 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5393 * indicated by page_count > 1, unmap is achieved by clearing pud and
5394 * decrementing the ref count. If count == 1, the pte page is not shared.
5395 *
5396 * Called with page table lock held and i_mmap_rwsem held in write mode.
5397 *
5398 * returns: 1 successfully unmapped a shared pte page
5399 * 0 the underlying pte page is not shared, or it is the last user
5400 */
5401 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5402 {
5403 pgd_t *pgd = pgd_offset(mm, *addr);
5404 p4d_t *p4d = p4d_offset(pgd, *addr);
5405 pud_t *pud = pud_offset(p4d, *addr);
5406
5407 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5408 if (page_count(virt_to_page(ptep)) == 1)
5409 return 0;
5410
5411 pud_clear(pud);
5412 put_page(virt_to_page(ptep));
5413 mm_dec_nr_pmds(mm);
5414 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5415 return 1;
5416 }
5417 #define want_pmd_share() (1)
5418 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5419 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5420 {
5421 return NULL;
5422 }
5423
5424 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5425 {
5426 return 0;
5427 }
5428
5429 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5430 unsigned long *start, unsigned long *end)
5431 {
5432 }
5433 #define want_pmd_share() (0)
5434 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435
5436 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5437 pte_t *huge_pte_alloc(struct mm_struct *mm,
5438 unsigned long addr, unsigned long sz)
5439 {
5440 pgd_t *pgd;
5441 p4d_t *p4d;
5442 pud_t *pud;
5443 pte_t *pte = NULL;
5444
5445 pgd = pgd_offset(mm, addr);
5446 p4d = p4d_alloc(mm, pgd, addr);
5447 if (!p4d)
5448 return NULL;
5449 pud = pud_alloc(mm, p4d, addr);
5450 if (pud) {
5451 if (sz == PUD_SIZE) {
5452 pte = (pte_t *)pud;
5453 } else {
5454 BUG_ON(sz != PMD_SIZE);
5455 if (want_pmd_share() && pud_none(*pud))
5456 pte = huge_pmd_share(mm, addr, pud);
5457 else
5458 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5459 }
5460 }
5461 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5462
5463 return pte;
5464 }
5465
5466 /*
5467 * huge_pte_offset() - Walk the page table to resolve the hugepage
5468 * entry at address @addr
5469 *
5470 * Return: Pointer to page table entry (PUD or PMD) for
5471 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5472 * size @sz doesn't match the hugepage size at this level of the page
5473 * table.
5474 */
5475 pte_t *huge_pte_offset(struct mm_struct *mm,
5476 unsigned long addr, unsigned long sz)
5477 {
5478 pgd_t *pgd;
5479 p4d_t *p4d;
5480 pud_t *pud;
5481 pmd_t *pmd;
5482
5483 pgd = pgd_offset(mm, addr);
5484 if (!pgd_present(*pgd))
5485 return NULL;
5486 p4d = p4d_offset(pgd, addr);
5487 if (!p4d_present(*p4d))
5488 return NULL;
5489
5490 pud = pud_offset(p4d, addr);
5491 if (sz == PUD_SIZE)
5492 /* must be pud huge, non-present or none */
5493 return (pte_t *)pud;
5494 if (!pud_present(*pud))
5495 return NULL;
5496 /* must have a valid entry and size to go further */
5497
5498 pmd = pmd_offset(pud, addr);
5499 /* must be pmd huge, non-present or none */
5500 return (pte_t *)pmd;
5501 }
5502
5503 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5504
5505 /*
5506 * These functions are overwritable if your architecture needs its own
5507 * behavior.
5508 */
5509 struct page * __weak
5510 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5511 int write)
5512 {
5513 return ERR_PTR(-EINVAL);
5514 }
5515
5516 struct page * __weak
5517 follow_huge_pd(struct vm_area_struct *vma,
5518 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5519 {
5520 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5521 return NULL;
5522 }
5523
5524 struct page * __weak
5525 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5526 pmd_t *pmd, int flags)
5527 {
5528 struct page *page = NULL;
5529 spinlock_t *ptl;
5530 pte_t pte;
5531
5532 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5533 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5534 (FOLL_PIN | FOLL_GET)))
5535 return NULL;
5536
5537 retry:
5538 ptl = pmd_lockptr(mm, pmd);
5539 spin_lock(ptl);
5540 /*
5541 * make sure that the address range covered by this pmd is not
5542 * unmapped from other threads.
5543 */
5544 if (!pmd_huge(*pmd))
5545 goto out;
5546 pte = huge_ptep_get((pte_t *)pmd);
5547 if (pte_present(pte)) {
5548 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5549 /*
5550 * try_grab_page() should always succeed here, because: a) we
5551 * hold the pmd (ptl) lock, and b) we've just checked that the
5552 * huge pmd (head) page is present in the page tables. The ptl
5553 * prevents the head page and tail pages from being rearranged
5554 * in any way. So this page must be available at this point,
5555 * unless the page refcount overflowed:
5556 */
5557 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5558 page = NULL;
5559 goto out;
5560 }
5561 } else {
5562 if (is_hugetlb_entry_migration(pte)) {
5563 spin_unlock(ptl);
5564 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5565 goto retry;
5566 }
5567 /*
5568 * hwpoisoned entry is treated as no_page_table in
5569 * follow_page_mask().
5570 */
5571 }
5572 out:
5573 spin_unlock(ptl);
5574 return page;
5575 }
5576
5577 struct page * __weak
5578 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5579 pud_t *pud, int flags)
5580 {
5581 if (flags & (FOLL_GET | FOLL_PIN))
5582 return NULL;
5583
5584 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5585 }
5586
5587 struct page * __weak
5588 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5589 {
5590 if (flags & (FOLL_GET | FOLL_PIN))
5591 return NULL;
5592
5593 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5594 }
5595
5596 bool isolate_huge_page(struct page *page, struct list_head *list)
5597 {
5598 bool ret = true;
5599
5600 VM_BUG_ON_PAGE(!PageHead(page), page);
5601 spin_lock(&hugetlb_lock);
5602 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5603 ret = false;
5604 goto unlock;
5605 }
5606 clear_page_huge_active(page);
5607 list_move_tail(&page->lru, list);
5608 unlock:
5609 spin_unlock(&hugetlb_lock);
5610 return ret;
5611 }
5612
5613 void putback_active_hugepage(struct page *page)
5614 {
5615 VM_BUG_ON_PAGE(!PageHead(page), page);
5616 spin_lock(&hugetlb_lock);
5617 set_page_huge_active(page);
5618 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5619 spin_unlock(&hugetlb_lock);
5620 put_page(page);
5621 }
5622
5623 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5624 {
5625 struct hstate *h = page_hstate(oldpage);
5626
5627 hugetlb_cgroup_migrate(oldpage, newpage);
5628 set_page_owner_migrate_reason(newpage, reason);
5629
5630 /*
5631 * transfer temporary state of the new huge page. This is
5632 * reverse to other transitions because the newpage is going to
5633 * be final while the old one will be freed so it takes over
5634 * the temporary status.
5635 *
5636 * Also note that we have to transfer the per-node surplus state
5637 * here as well otherwise the global surplus count will not match
5638 * the per-node's.
5639 */
5640 if (PageHugeTemporary(newpage)) {
5641 int old_nid = page_to_nid(oldpage);
5642 int new_nid = page_to_nid(newpage);
5643
5644 SetPageHugeTemporary(oldpage);
5645 ClearPageHugeTemporary(newpage);
5646
5647 spin_lock(&hugetlb_lock);
5648 if (h->surplus_huge_pages_node[old_nid]) {
5649 h->surplus_huge_pages_node[old_nid]--;
5650 h->surplus_huge_pages_node[new_nid]++;
5651 }
5652 spin_unlock(&hugetlb_lock);
5653 }
5654 }
5655
5656 #ifdef CONFIG_CMA
5657 static unsigned long hugetlb_cma_size __initdata;
5658 static bool cma_reserve_called __initdata;
5659
5660 static int __init cmdline_parse_hugetlb_cma(char *p)
5661 {
5662 hugetlb_cma_size = memparse(p, &p);
5663 return 0;
5664 }
5665
5666 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5667
5668 void __init hugetlb_cma_reserve(int order)
5669 {
5670 unsigned long size, reserved, per_node;
5671 int nid;
5672
5673 cma_reserve_called = true;
5674
5675 if (!hugetlb_cma_size)
5676 return;
5677
5678 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5679 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5680 (PAGE_SIZE << order) / SZ_1M);
5681 return;
5682 }
5683
5684 /*
5685 * If 3 GB area is requested on a machine with 4 numa nodes,
5686 * let's allocate 1 GB on first three nodes and ignore the last one.
5687 */
5688 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5689 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5690 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5691
5692 reserved = 0;
5693 for_each_node_state(nid, N_ONLINE) {
5694 int res;
5695
5696 size = min(per_node, hugetlb_cma_size - reserved);
5697 size = round_up(size, PAGE_SIZE << order);
5698
5699 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5700 0, false, "hugetlb",
5701 &hugetlb_cma[nid], nid);
5702 if (res) {
5703 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5704 res, nid);
5705 continue;
5706 }
5707
5708 reserved += size;
5709 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5710 size / SZ_1M, nid);
5711
5712 if (reserved >= hugetlb_cma_size)
5713 break;
5714 }
5715 }
5716
5717 void __init hugetlb_cma_check(void)
5718 {
5719 if (!hugetlb_cma_size || cma_reserve_called)
5720 return;
5721
5722 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5723 }
5724
5725 #endif /* CONFIG_CMA */