]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hugetlb.c
mm: hugetlb: bail out unmapping after serving reference page
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 /*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
69 */
70 struct file_region {
71 struct list_head link;
72 long from;
73 long to;
74 };
75
76 static long region_add(struct list_head *head, long f, long t)
77 {
78 struct file_region *rg, *nrg, *trg;
79
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
84
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
88
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
96
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
105 }
106 }
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
110 }
111
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114 struct file_region *rg, *nrg;
115 long chg = 0;
116
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
121
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
133
134 return t - f;
135 }
136
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
141
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
148
149 /* We overlap with this area, if it extends further than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
155 }
156 chg -= rg->to - rg->from;
157 }
158 return chg;
159 }
160
161 static long region_truncate(struct list_head *head, long end)
162 {
163 struct file_region *rg, *trg;
164 long chg = 0;
165
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
172
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
178 }
179
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 return chg;
189 }
190
191 static long region_count(struct list_head *head, long f, long t)
192 {
193 struct file_region *rg;
194 long chg = 0;
195
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
200
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
205
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
208
209 chg += seg_to - seg_from;
210 }
211
212 return chg;
213 }
214
215 /*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
221 {
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
224 }
225
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
228 {
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231
232 /*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238 struct hstate *hstate;
239
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
242
243 hstate = hstate_vma(vma);
244
245 return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249 /*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258 return vma_kernel_pagesize(vma);
259 }
260 #endif
261
262 /*
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271 /*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
289 */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292 return (unsigned long)vma->vm_private_data;
293 }
294
295 static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
297 {
298 vma->vm_private_data = (void *)value;
299 }
300
301 struct resv_map {
302 struct kref refs;
303 struct list_head regions;
304 };
305
306 static struct resv_map *resv_map_alloc(void)
307 {
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
311
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
314
315 return resv_map;
316 }
317
318 static void resv_map_release(struct kref *ref)
319 {
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
325 }
326
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 if (!(vma->vm_flags & VM_MAYSHARE))
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
333 return NULL;
334 }
335
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357 return (get_vma_private_data(vma) & flag) != 0;
358 }
359
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
363 {
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
366
367 if (vma->vm_flags & VM_MAYSHARE) {
368 /* Shared mappings always use reserves */
369 h->resv_huge_pages--;
370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 /*
372 * Only the process that called mmap() has reserves for
373 * private mappings.
374 */
375 h->resv_huge_pages--;
376 }
377 }
378
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
383 if (!(vma->vm_flags & VM_MAYSHARE))
384 vma->vm_private_data = (void *)0;
385 }
386
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390 if (vma->vm_flags & VM_MAYSHARE)
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
395 }
396
397 static void copy_gigantic_page(struct page *dst, struct page *src)
398 {
399 int i;
400 struct hstate *h = page_hstate(src);
401 struct page *dst_base = dst;
402 struct page *src_base = src;
403
404 for (i = 0; i < pages_per_huge_page(h); ) {
405 cond_resched();
406 copy_highpage(dst, src);
407
408 i++;
409 dst = mem_map_next(dst, dst_base, i);
410 src = mem_map_next(src, src_base, i);
411 }
412 }
413
414 void copy_huge_page(struct page *dst, struct page *src)
415 {
416 int i;
417 struct hstate *h = page_hstate(src);
418
419 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420 copy_gigantic_page(dst, src);
421 return;
422 }
423
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); i++) {
426 cond_resched();
427 copy_highpage(dst + i, src + i);
428 }
429 }
430
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
432 {
433 int nid = page_to_nid(page);
434 list_add(&page->lru, &h->hugepage_freelists[nid]);
435 h->free_huge_pages++;
436 h->free_huge_pages_node[nid]++;
437 }
438
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440 {
441 struct page *page;
442
443 if (list_empty(&h->hugepage_freelists[nid]))
444 return NULL;
445 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446 list_del(&page->lru);
447 set_page_refcounted(page);
448 h->free_huge_pages--;
449 h->free_huge_pages_node[nid]--;
450 return page;
451 }
452
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454 struct vm_area_struct *vma,
455 unsigned long address, int avoid_reserve)
456 {
457 struct page *page = NULL;
458 struct mempolicy *mpol;
459 nodemask_t *nodemask;
460 struct zonelist *zonelist;
461 struct zone *zone;
462 struct zoneref *z;
463
464 get_mems_allowed();
465 zonelist = huge_zonelist(vma, address,
466 htlb_alloc_mask, &mpol, &nodemask);
467 /*
468 * A child process with MAP_PRIVATE mappings created by their parent
469 * have no page reserves. This check ensures that reservations are
470 * not "stolen". The child may still get SIGKILLed
471 */
472 if (!vma_has_reserves(vma) &&
473 h->free_huge_pages - h->resv_huge_pages == 0)
474 goto err;
475
476 /* If reserves cannot be used, ensure enough pages are in the pool */
477 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478 goto err;
479
480 for_each_zone_zonelist_nodemask(zone, z, zonelist,
481 MAX_NR_ZONES - 1, nodemask) {
482 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483 page = dequeue_huge_page_node(h, zone_to_nid(zone));
484 if (page) {
485 if (!avoid_reserve)
486 decrement_hugepage_resv_vma(h, vma);
487 break;
488 }
489 }
490 }
491 err:
492 mpol_cond_put(mpol);
493 put_mems_allowed();
494 return page;
495 }
496
497 static void update_and_free_page(struct hstate *h, struct page *page)
498 {
499 int i;
500
501 VM_BUG_ON(h->order >= MAX_ORDER);
502
503 h->nr_huge_pages--;
504 h->nr_huge_pages_node[page_to_nid(page)]--;
505 for (i = 0; i < pages_per_huge_page(h); i++) {
506 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
507 1 << PG_referenced | 1 << PG_dirty |
508 1 << PG_active | 1 << PG_reserved |
509 1 << PG_private | 1 << PG_writeback);
510 }
511 set_compound_page_dtor(page, NULL);
512 set_page_refcounted(page);
513 arch_release_hugepage(page);
514 __free_pages(page, huge_page_order(h));
515 }
516
517 struct hstate *size_to_hstate(unsigned long size)
518 {
519 struct hstate *h;
520
521 for_each_hstate(h) {
522 if (huge_page_size(h) == size)
523 return h;
524 }
525 return NULL;
526 }
527
528 static void free_huge_page(struct page *page)
529 {
530 /*
531 * Can't pass hstate in here because it is called from the
532 * compound page destructor.
533 */
534 struct hstate *h = page_hstate(page);
535 int nid = page_to_nid(page);
536 struct address_space *mapping;
537
538 mapping = (struct address_space *) page_private(page);
539 set_page_private(page, 0);
540 page->mapping = NULL;
541 BUG_ON(page_count(page));
542 BUG_ON(page_mapcount(page));
543 INIT_LIST_HEAD(&page->lru);
544
545 spin_lock(&hugetlb_lock);
546 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
547 update_and_free_page(h, page);
548 h->surplus_huge_pages--;
549 h->surplus_huge_pages_node[nid]--;
550 } else {
551 enqueue_huge_page(h, page);
552 }
553 spin_unlock(&hugetlb_lock);
554 if (mapping)
555 hugetlb_put_quota(mapping, 1);
556 }
557
558 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
559 {
560 set_compound_page_dtor(page, free_huge_page);
561 spin_lock(&hugetlb_lock);
562 h->nr_huge_pages++;
563 h->nr_huge_pages_node[nid]++;
564 spin_unlock(&hugetlb_lock);
565 put_page(page); /* free it into the hugepage allocator */
566 }
567
568 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
569 {
570 int i;
571 int nr_pages = 1 << order;
572 struct page *p = page + 1;
573
574 /* we rely on prep_new_huge_page to set the destructor */
575 set_compound_order(page, order);
576 __SetPageHead(page);
577 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
578 __SetPageTail(p);
579 set_page_count(p, 0);
580 p->first_page = page;
581 }
582 }
583
584 int PageHuge(struct page *page)
585 {
586 compound_page_dtor *dtor;
587
588 if (!PageCompound(page))
589 return 0;
590
591 page = compound_head(page);
592 dtor = get_compound_page_dtor(page);
593
594 return dtor == free_huge_page;
595 }
596 EXPORT_SYMBOL_GPL(PageHuge);
597
598 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
599 {
600 struct page *page;
601
602 if (h->order >= MAX_ORDER)
603 return NULL;
604
605 page = alloc_pages_exact_node(nid,
606 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
607 __GFP_REPEAT|__GFP_NOWARN,
608 huge_page_order(h));
609 if (page) {
610 if (arch_prepare_hugepage(page)) {
611 __free_pages(page, huge_page_order(h));
612 return NULL;
613 }
614 prep_new_huge_page(h, page, nid);
615 }
616
617 return page;
618 }
619
620 /*
621 * common helper functions for hstate_next_node_to_{alloc|free}.
622 * We may have allocated or freed a huge page based on a different
623 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
624 * be outside of *nodes_allowed. Ensure that we use an allowed
625 * node for alloc or free.
626 */
627 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
628 {
629 nid = next_node(nid, *nodes_allowed);
630 if (nid == MAX_NUMNODES)
631 nid = first_node(*nodes_allowed);
632 VM_BUG_ON(nid >= MAX_NUMNODES);
633
634 return nid;
635 }
636
637 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
638 {
639 if (!node_isset(nid, *nodes_allowed))
640 nid = next_node_allowed(nid, nodes_allowed);
641 return nid;
642 }
643
644 /*
645 * returns the previously saved node ["this node"] from which to
646 * allocate a persistent huge page for the pool and advance the
647 * next node from which to allocate, handling wrap at end of node
648 * mask.
649 */
650 static int hstate_next_node_to_alloc(struct hstate *h,
651 nodemask_t *nodes_allowed)
652 {
653 int nid;
654
655 VM_BUG_ON(!nodes_allowed);
656
657 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
658 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
659
660 return nid;
661 }
662
663 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
664 {
665 struct page *page;
666 int start_nid;
667 int next_nid;
668 int ret = 0;
669
670 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
671 next_nid = start_nid;
672
673 do {
674 page = alloc_fresh_huge_page_node(h, next_nid);
675 if (page) {
676 ret = 1;
677 break;
678 }
679 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
680 } while (next_nid != start_nid);
681
682 if (ret)
683 count_vm_event(HTLB_BUDDY_PGALLOC);
684 else
685 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686
687 return ret;
688 }
689
690 /*
691 * helper for free_pool_huge_page() - return the previously saved
692 * node ["this node"] from which to free a huge page. Advance the
693 * next node id whether or not we find a free huge page to free so
694 * that the next attempt to free addresses the next node.
695 */
696 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
697 {
698 int nid;
699
700 VM_BUG_ON(!nodes_allowed);
701
702 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
703 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
704
705 return nid;
706 }
707
708 /*
709 * Free huge page from pool from next node to free.
710 * Attempt to keep persistent huge pages more or less
711 * balanced over allowed nodes.
712 * Called with hugetlb_lock locked.
713 */
714 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
715 bool acct_surplus)
716 {
717 int start_nid;
718 int next_nid;
719 int ret = 0;
720
721 start_nid = hstate_next_node_to_free(h, nodes_allowed);
722 next_nid = start_nid;
723
724 do {
725 /*
726 * If we're returning unused surplus pages, only examine
727 * nodes with surplus pages.
728 */
729 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
730 !list_empty(&h->hugepage_freelists[next_nid])) {
731 struct page *page =
732 list_entry(h->hugepage_freelists[next_nid].next,
733 struct page, lru);
734 list_del(&page->lru);
735 h->free_huge_pages--;
736 h->free_huge_pages_node[next_nid]--;
737 if (acct_surplus) {
738 h->surplus_huge_pages--;
739 h->surplus_huge_pages_node[next_nid]--;
740 }
741 update_and_free_page(h, page);
742 ret = 1;
743 break;
744 }
745 next_nid = hstate_next_node_to_free(h, nodes_allowed);
746 } while (next_nid != start_nid);
747
748 return ret;
749 }
750
751 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
752 {
753 struct page *page;
754 unsigned int r_nid;
755
756 if (h->order >= MAX_ORDER)
757 return NULL;
758
759 /*
760 * Assume we will successfully allocate the surplus page to
761 * prevent racing processes from causing the surplus to exceed
762 * overcommit
763 *
764 * This however introduces a different race, where a process B
765 * tries to grow the static hugepage pool while alloc_pages() is
766 * called by process A. B will only examine the per-node
767 * counters in determining if surplus huge pages can be
768 * converted to normal huge pages in adjust_pool_surplus(). A
769 * won't be able to increment the per-node counter, until the
770 * lock is dropped by B, but B doesn't drop hugetlb_lock until
771 * no more huge pages can be converted from surplus to normal
772 * state (and doesn't try to convert again). Thus, we have a
773 * case where a surplus huge page exists, the pool is grown, and
774 * the surplus huge page still exists after, even though it
775 * should just have been converted to a normal huge page. This
776 * does not leak memory, though, as the hugepage will be freed
777 * once it is out of use. It also does not allow the counters to
778 * go out of whack in adjust_pool_surplus() as we don't modify
779 * the node values until we've gotten the hugepage and only the
780 * per-node value is checked there.
781 */
782 spin_lock(&hugetlb_lock);
783 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
784 spin_unlock(&hugetlb_lock);
785 return NULL;
786 } else {
787 h->nr_huge_pages++;
788 h->surplus_huge_pages++;
789 }
790 spin_unlock(&hugetlb_lock);
791
792 if (nid == NUMA_NO_NODE)
793 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
794 __GFP_REPEAT|__GFP_NOWARN,
795 huge_page_order(h));
796 else
797 page = alloc_pages_exact_node(nid,
798 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
799 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
800
801 if (page && arch_prepare_hugepage(page)) {
802 __free_pages(page, huge_page_order(h));
803 page = NULL;
804 }
805
806 spin_lock(&hugetlb_lock);
807 if (page) {
808 r_nid = page_to_nid(page);
809 set_compound_page_dtor(page, free_huge_page);
810 /*
811 * We incremented the global counters already
812 */
813 h->nr_huge_pages_node[r_nid]++;
814 h->surplus_huge_pages_node[r_nid]++;
815 __count_vm_event(HTLB_BUDDY_PGALLOC);
816 } else {
817 h->nr_huge_pages--;
818 h->surplus_huge_pages--;
819 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
820 }
821 spin_unlock(&hugetlb_lock);
822
823 return page;
824 }
825
826 /*
827 * This allocation function is useful in the context where vma is irrelevant.
828 * E.g. soft-offlining uses this function because it only cares physical
829 * address of error page.
830 */
831 struct page *alloc_huge_page_node(struct hstate *h, int nid)
832 {
833 struct page *page;
834
835 spin_lock(&hugetlb_lock);
836 page = dequeue_huge_page_node(h, nid);
837 spin_unlock(&hugetlb_lock);
838
839 if (!page)
840 page = alloc_buddy_huge_page(h, nid);
841
842 return page;
843 }
844
845 /*
846 * Increase the hugetlb pool such that it can accommodate a reservation
847 * of size 'delta'.
848 */
849 static int gather_surplus_pages(struct hstate *h, int delta)
850 {
851 struct list_head surplus_list;
852 struct page *page, *tmp;
853 int ret, i;
854 int needed, allocated;
855 bool alloc_ok = true;
856
857 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
858 if (needed <= 0) {
859 h->resv_huge_pages += delta;
860 return 0;
861 }
862
863 allocated = 0;
864 INIT_LIST_HEAD(&surplus_list);
865
866 ret = -ENOMEM;
867 retry:
868 spin_unlock(&hugetlb_lock);
869 for (i = 0; i < needed; i++) {
870 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
871 if (!page) {
872 alloc_ok = false;
873 break;
874 }
875 list_add(&page->lru, &surplus_list);
876 }
877 allocated += i;
878
879 /*
880 * After retaking hugetlb_lock, we need to recalculate 'needed'
881 * because either resv_huge_pages or free_huge_pages may have changed.
882 */
883 spin_lock(&hugetlb_lock);
884 needed = (h->resv_huge_pages + delta) -
885 (h->free_huge_pages + allocated);
886 if (needed > 0) {
887 if (alloc_ok)
888 goto retry;
889 /*
890 * We were not able to allocate enough pages to
891 * satisfy the entire reservation so we free what
892 * we've allocated so far.
893 */
894 goto free;
895 }
896 /*
897 * The surplus_list now contains _at_least_ the number of extra pages
898 * needed to accommodate the reservation. Add the appropriate number
899 * of pages to the hugetlb pool and free the extras back to the buddy
900 * allocator. Commit the entire reservation here to prevent another
901 * process from stealing the pages as they are added to the pool but
902 * before they are reserved.
903 */
904 needed += allocated;
905 h->resv_huge_pages += delta;
906 ret = 0;
907
908 /* Free the needed pages to the hugetlb pool */
909 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
910 if ((--needed) < 0)
911 break;
912 list_del(&page->lru);
913 /*
914 * This page is now managed by the hugetlb allocator and has
915 * no users -- drop the buddy allocator's reference.
916 */
917 put_page_testzero(page);
918 VM_BUG_ON(page_count(page));
919 enqueue_huge_page(h, page);
920 }
921 free:
922 spin_unlock(&hugetlb_lock);
923
924 /* Free unnecessary surplus pages to the buddy allocator */
925 if (!list_empty(&surplus_list)) {
926 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
927 list_del(&page->lru);
928 put_page(page);
929 }
930 }
931 spin_lock(&hugetlb_lock);
932
933 return ret;
934 }
935
936 /*
937 * When releasing a hugetlb pool reservation, any surplus pages that were
938 * allocated to satisfy the reservation must be explicitly freed if they were
939 * never used.
940 * Called with hugetlb_lock held.
941 */
942 static void return_unused_surplus_pages(struct hstate *h,
943 unsigned long unused_resv_pages)
944 {
945 unsigned long nr_pages;
946
947 /* Uncommit the reservation */
948 h->resv_huge_pages -= unused_resv_pages;
949
950 /* Cannot return gigantic pages currently */
951 if (h->order >= MAX_ORDER)
952 return;
953
954 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
955
956 /*
957 * We want to release as many surplus pages as possible, spread
958 * evenly across all nodes with memory. Iterate across these nodes
959 * until we can no longer free unreserved surplus pages. This occurs
960 * when the nodes with surplus pages have no free pages.
961 * free_pool_huge_page() will balance the the freed pages across the
962 * on-line nodes with memory and will handle the hstate accounting.
963 */
964 while (nr_pages--) {
965 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
966 break;
967 }
968 }
969
970 /*
971 * Determine if the huge page at addr within the vma has an associated
972 * reservation. Where it does not we will need to logically increase
973 * reservation and actually increase quota before an allocation can occur.
974 * Where any new reservation would be required the reservation change is
975 * prepared, but not committed. Once the page has been quota'd allocated
976 * an instantiated the change should be committed via vma_commit_reservation.
977 * No action is required on failure.
978 */
979 static long vma_needs_reservation(struct hstate *h,
980 struct vm_area_struct *vma, unsigned long addr)
981 {
982 struct address_space *mapping = vma->vm_file->f_mapping;
983 struct inode *inode = mapping->host;
984
985 if (vma->vm_flags & VM_MAYSHARE) {
986 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
987 return region_chg(&inode->i_mapping->private_list,
988 idx, idx + 1);
989
990 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
991 return 1;
992
993 } else {
994 long err;
995 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
996 struct resv_map *reservations = vma_resv_map(vma);
997
998 err = region_chg(&reservations->regions, idx, idx + 1);
999 if (err < 0)
1000 return err;
1001 return 0;
1002 }
1003 }
1004 static void vma_commit_reservation(struct hstate *h,
1005 struct vm_area_struct *vma, unsigned long addr)
1006 {
1007 struct address_space *mapping = vma->vm_file->f_mapping;
1008 struct inode *inode = mapping->host;
1009
1010 if (vma->vm_flags & VM_MAYSHARE) {
1011 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1012 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1013
1014 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1015 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1016 struct resv_map *reservations = vma_resv_map(vma);
1017
1018 /* Mark this page used in the map. */
1019 region_add(&reservations->regions, idx, idx + 1);
1020 }
1021 }
1022
1023 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1024 unsigned long addr, int avoid_reserve)
1025 {
1026 struct hstate *h = hstate_vma(vma);
1027 struct page *page;
1028 struct address_space *mapping = vma->vm_file->f_mapping;
1029 struct inode *inode = mapping->host;
1030 long chg;
1031
1032 /*
1033 * Processes that did not create the mapping will have no reserves and
1034 * will not have accounted against quota. Check that the quota can be
1035 * made before satisfying the allocation
1036 * MAP_NORESERVE mappings may also need pages and quota allocated
1037 * if no reserve mapping overlaps.
1038 */
1039 chg = vma_needs_reservation(h, vma, addr);
1040 if (chg < 0)
1041 return ERR_PTR(-VM_FAULT_OOM);
1042 if (chg)
1043 if (hugetlb_get_quota(inode->i_mapping, chg))
1044 return ERR_PTR(-VM_FAULT_SIGBUS);
1045
1046 spin_lock(&hugetlb_lock);
1047 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1048 spin_unlock(&hugetlb_lock);
1049
1050 if (!page) {
1051 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1052 if (!page) {
1053 hugetlb_put_quota(inode->i_mapping, chg);
1054 return ERR_PTR(-VM_FAULT_SIGBUS);
1055 }
1056 }
1057
1058 set_page_private(page, (unsigned long) mapping);
1059
1060 vma_commit_reservation(h, vma, addr);
1061
1062 return page;
1063 }
1064
1065 int __weak alloc_bootmem_huge_page(struct hstate *h)
1066 {
1067 struct huge_bootmem_page *m;
1068 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1069
1070 while (nr_nodes) {
1071 void *addr;
1072
1073 addr = __alloc_bootmem_node_nopanic(
1074 NODE_DATA(hstate_next_node_to_alloc(h,
1075 &node_states[N_HIGH_MEMORY])),
1076 huge_page_size(h), huge_page_size(h), 0);
1077
1078 if (addr) {
1079 /*
1080 * Use the beginning of the huge page to store the
1081 * huge_bootmem_page struct (until gather_bootmem
1082 * puts them into the mem_map).
1083 */
1084 m = addr;
1085 goto found;
1086 }
1087 nr_nodes--;
1088 }
1089 return 0;
1090
1091 found:
1092 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1093 /* Put them into a private list first because mem_map is not up yet */
1094 list_add(&m->list, &huge_boot_pages);
1095 m->hstate = h;
1096 return 1;
1097 }
1098
1099 static void prep_compound_huge_page(struct page *page, int order)
1100 {
1101 if (unlikely(order > (MAX_ORDER - 1)))
1102 prep_compound_gigantic_page(page, order);
1103 else
1104 prep_compound_page(page, order);
1105 }
1106
1107 /* Put bootmem huge pages into the standard lists after mem_map is up */
1108 static void __init gather_bootmem_prealloc(void)
1109 {
1110 struct huge_bootmem_page *m;
1111
1112 list_for_each_entry(m, &huge_boot_pages, list) {
1113 struct hstate *h = m->hstate;
1114 struct page *page;
1115
1116 #ifdef CONFIG_HIGHMEM
1117 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1118 free_bootmem_late((unsigned long)m,
1119 sizeof(struct huge_bootmem_page));
1120 #else
1121 page = virt_to_page(m);
1122 #endif
1123 __ClearPageReserved(page);
1124 WARN_ON(page_count(page) != 1);
1125 prep_compound_huge_page(page, h->order);
1126 prep_new_huge_page(h, page, page_to_nid(page));
1127 /*
1128 * If we had gigantic hugepages allocated at boot time, we need
1129 * to restore the 'stolen' pages to totalram_pages in order to
1130 * fix confusing memory reports from free(1) and another
1131 * side-effects, like CommitLimit going negative.
1132 */
1133 if (h->order > (MAX_ORDER - 1))
1134 totalram_pages += 1 << h->order;
1135 }
1136 }
1137
1138 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1139 {
1140 unsigned long i;
1141
1142 for (i = 0; i < h->max_huge_pages; ++i) {
1143 if (h->order >= MAX_ORDER) {
1144 if (!alloc_bootmem_huge_page(h))
1145 break;
1146 } else if (!alloc_fresh_huge_page(h,
1147 &node_states[N_HIGH_MEMORY]))
1148 break;
1149 }
1150 h->max_huge_pages = i;
1151 }
1152
1153 static void __init hugetlb_init_hstates(void)
1154 {
1155 struct hstate *h;
1156
1157 for_each_hstate(h) {
1158 /* oversize hugepages were init'ed in early boot */
1159 if (h->order < MAX_ORDER)
1160 hugetlb_hstate_alloc_pages(h);
1161 }
1162 }
1163
1164 static char * __init memfmt(char *buf, unsigned long n)
1165 {
1166 if (n >= (1UL << 30))
1167 sprintf(buf, "%lu GB", n >> 30);
1168 else if (n >= (1UL << 20))
1169 sprintf(buf, "%lu MB", n >> 20);
1170 else
1171 sprintf(buf, "%lu KB", n >> 10);
1172 return buf;
1173 }
1174
1175 static void __init report_hugepages(void)
1176 {
1177 struct hstate *h;
1178
1179 for_each_hstate(h) {
1180 char buf[32];
1181 printk(KERN_INFO "HugeTLB registered %s page size, "
1182 "pre-allocated %ld pages\n",
1183 memfmt(buf, huge_page_size(h)),
1184 h->free_huge_pages);
1185 }
1186 }
1187
1188 #ifdef CONFIG_HIGHMEM
1189 static void try_to_free_low(struct hstate *h, unsigned long count,
1190 nodemask_t *nodes_allowed)
1191 {
1192 int i;
1193
1194 if (h->order >= MAX_ORDER)
1195 return;
1196
1197 for_each_node_mask(i, *nodes_allowed) {
1198 struct page *page, *next;
1199 struct list_head *freel = &h->hugepage_freelists[i];
1200 list_for_each_entry_safe(page, next, freel, lru) {
1201 if (count >= h->nr_huge_pages)
1202 return;
1203 if (PageHighMem(page))
1204 continue;
1205 list_del(&page->lru);
1206 update_and_free_page(h, page);
1207 h->free_huge_pages--;
1208 h->free_huge_pages_node[page_to_nid(page)]--;
1209 }
1210 }
1211 }
1212 #else
1213 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1214 nodemask_t *nodes_allowed)
1215 {
1216 }
1217 #endif
1218
1219 /*
1220 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1221 * balanced by operating on them in a round-robin fashion.
1222 * Returns 1 if an adjustment was made.
1223 */
1224 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1225 int delta)
1226 {
1227 int start_nid, next_nid;
1228 int ret = 0;
1229
1230 VM_BUG_ON(delta != -1 && delta != 1);
1231
1232 if (delta < 0)
1233 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1234 else
1235 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1236 next_nid = start_nid;
1237
1238 do {
1239 int nid = next_nid;
1240 if (delta < 0) {
1241 /*
1242 * To shrink on this node, there must be a surplus page
1243 */
1244 if (!h->surplus_huge_pages_node[nid]) {
1245 next_nid = hstate_next_node_to_alloc(h,
1246 nodes_allowed);
1247 continue;
1248 }
1249 }
1250 if (delta > 0) {
1251 /*
1252 * Surplus cannot exceed the total number of pages
1253 */
1254 if (h->surplus_huge_pages_node[nid] >=
1255 h->nr_huge_pages_node[nid]) {
1256 next_nid = hstate_next_node_to_free(h,
1257 nodes_allowed);
1258 continue;
1259 }
1260 }
1261
1262 h->surplus_huge_pages += delta;
1263 h->surplus_huge_pages_node[nid] += delta;
1264 ret = 1;
1265 break;
1266 } while (next_nid != start_nid);
1267
1268 return ret;
1269 }
1270
1271 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1272 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1273 nodemask_t *nodes_allowed)
1274 {
1275 unsigned long min_count, ret;
1276
1277 if (h->order >= MAX_ORDER)
1278 return h->max_huge_pages;
1279
1280 /*
1281 * Increase the pool size
1282 * First take pages out of surplus state. Then make up the
1283 * remaining difference by allocating fresh huge pages.
1284 *
1285 * We might race with alloc_buddy_huge_page() here and be unable
1286 * to convert a surplus huge page to a normal huge page. That is
1287 * not critical, though, it just means the overall size of the
1288 * pool might be one hugepage larger than it needs to be, but
1289 * within all the constraints specified by the sysctls.
1290 */
1291 spin_lock(&hugetlb_lock);
1292 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1293 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1294 break;
1295 }
1296
1297 while (count > persistent_huge_pages(h)) {
1298 /*
1299 * If this allocation races such that we no longer need the
1300 * page, free_huge_page will handle it by freeing the page
1301 * and reducing the surplus.
1302 */
1303 spin_unlock(&hugetlb_lock);
1304 ret = alloc_fresh_huge_page(h, nodes_allowed);
1305 spin_lock(&hugetlb_lock);
1306 if (!ret)
1307 goto out;
1308
1309 /* Bail for signals. Probably ctrl-c from user */
1310 if (signal_pending(current))
1311 goto out;
1312 }
1313
1314 /*
1315 * Decrease the pool size
1316 * First return free pages to the buddy allocator (being careful
1317 * to keep enough around to satisfy reservations). Then place
1318 * pages into surplus state as needed so the pool will shrink
1319 * to the desired size as pages become free.
1320 *
1321 * By placing pages into the surplus state independent of the
1322 * overcommit value, we are allowing the surplus pool size to
1323 * exceed overcommit. There are few sane options here. Since
1324 * alloc_buddy_huge_page() is checking the global counter,
1325 * though, we'll note that we're not allowed to exceed surplus
1326 * and won't grow the pool anywhere else. Not until one of the
1327 * sysctls are changed, or the surplus pages go out of use.
1328 */
1329 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1330 min_count = max(count, min_count);
1331 try_to_free_low(h, min_count, nodes_allowed);
1332 while (min_count < persistent_huge_pages(h)) {
1333 if (!free_pool_huge_page(h, nodes_allowed, 0))
1334 break;
1335 }
1336 while (count < persistent_huge_pages(h)) {
1337 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1338 break;
1339 }
1340 out:
1341 ret = persistent_huge_pages(h);
1342 spin_unlock(&hugetlb_lock);
1343 return ret;
1344 }
1345
1346 #define HSTATE_ATTR_RO(_name) \
1347 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1348
1349 #define HSTATE_ATTR(_name) \
1350 static struct kobj_attribute _name##_attr = \
1351 __ATTR(_name, 0644, _name##_show, _name##_store)
1352
1353 static struct kobject *hugepages_kobj;
1354 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1355
1356 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1357
1358 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1359 {
1360 int i;
1361
1362 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1363 if (hstate_kobjs[i] == kobj) {
1364 if (nidp)
1365 *nidp = NUMA_NO_NODE;
1366 return &hstates[i];
1367 }
1368
1369 return kobj_to_node_hstate(kobj, nidp);
1370 }
1371
1372 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1373 struct kobj_attribute *attr, char *buf)
1374 {
1375 struct hstate *h;
1376 unsigned long nr_huge_pages;
1377 int nid;
1378
1379 h = kobj_to_hstate(kobj, &nid);
1380 if (nid == NUMA_NO_NODE)
1381 nr_huge_pages = h->nr_huge_pages;
1382 else
1383 nr_huge_pages = h->nr_huge_pages_node[nid];
1384
1385 return sprintf(buf, "%lu\n", nr_huge_pages);
1386 }
1387
1388 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1389 struct kobject *kobj, struct kobj_attribute *attr,
1390 const char *buf, size_t len)
1391 {
1392 int err;
1393 int nid;
1394 unsigned long count;
1395 struct hstate *h;
1396 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1397
1398 err = strict_strtoul(buf, 10, &count);
1399 if (err)
1400 goto out;
1401
1402 h = kobj_to_hstate(kobj, &nid);
1403 if (h->order >= MAX_ORDER) {
1404 err = -EINVAL;
1405 goto out;
1406 }
1407
1408 if (nid == NUMA_NO_NODE) {
1409 /*
1410 * global hstate attribute
1411 */
1412 if (!(obey_mempolicy &&
1413 init_nodemask_of_mempolicy(nodes_allowed))) {
1414 NODEMASK_FREE(nodes_allowed);
1415 nodes_allowed = &node_states[N_HIGH_MEMORY];
1416 }
1417 } else if (nodes_allowed) {
1418 /*
1419 * per node hstate attribute: adjust count to global,
1420 * but restrict alloc/free to the specified node.
1421 */
1422 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1423 init_nodemask_of_node(nodes_allowed, nid);
1424 } else
1425 nodes_allowed = &node_states[N_HIGH_MEMORY];
1426
1427 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1428
1429 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1430 NODEMASK_FREE(nodes_allowed);
1431
1432 return len;
1433 out:
1434 NODEMASK_FREE(nodes_allowed);
1435 return err;
1436 }
1437
1438 static ssize_t nr_hugepages_show(struct kobject *kobj,
1439 struct kobj_attribute *attr, char *buf)
1440 {
1441 return nr_hugepages_show_common(kobj, attr, buf);
1442 }
1443
1444 static ssize_t nr_hugepages_store(struct kobject *kobj,
1445 struct kobj_attribute *attr, const char *buf, size_t len)
1446 {
1447 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1448 }
1449 HSTATE_ATTR(nr_hugepages);
1450
1451 #ifdef CONFIG_NUMA
1452
1453 /*
1454 * hstate attribute for optionally mempolicy-based constraint on persistent
1455 * huge page alloc/free.
1456 */
1457 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1458 struct kobj_attribute *attr, char *buf)
1459 {
1460 return nr_hugepages_show_common(kobj, attr, buf);
1461 }
1462
1463 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1464 struct kobj_attribute *attr, const char *buf, size_t len)
1465 {
1466 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1467 }
1468 HSTATE_ATTR(nr_hugepages_mempolicy);
1469 #endif
1470
1471
1472 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1473 struct kobj_attribute *attr, char *buf)
1474 {
1475 struct hstate *h = kobj_to_hstate(kobj, NULL);
1476 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1477 }
1478
1479 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1480 struct kobj_attribute *attr, const char *buf, size_t count)
1481 {
1482 int err;
1483 unsigned long input;
1484 struct hstate *h = kobj_to_hstate(kobj, NULL);
1485
1486 if (h->order >= MAX_ORDER)
1487 return -EINVAL;
1488
1489 err = strict_strtoul(buf, 10, &input);
1490 if (err)
1491 return err;
1492
1493 spin_lock(&hugetlb_lock);
1494 h->nr_overcommit_huge_pages = input;
1495 spin_unlock(&hugetlb_lock);
1496
1497 return count;
1498 }
1499 HSTATE_ATTR(nr_overcommit_hugepages);
1500
1501 static ssize_t free_hugepages_show(struct kobject *kobj,
1502 struct kobj_attribute *attr, char *buf)
1503 {
1504 struct hstate *h;
1505 unsigned long free_huge_pages;
1506 int nid;
1507
1508 h = kobj_to_hstate(kobj, &nid);
1509 if (nid == NUMA_NO_NODE)
1510 free_huge_pages = h->free_huge_pages;
1511 else
1512 free_huge_pages = h->free_huge_pages_node[nid];
1513
1514 return sprintf(buf, "%lu\n", free_huge_pages);
1515 }
1516 HSTATE_ATTR_RO(free_hugepages);
1517
1518 static ssize_t resv_hugepages_show(struct kobject *kobj,
1519 struct kobj_attribute *attr, char *buf)
1520 {
1521 struct hstate *h = kobj_to_hstate(kobj, NULL);
1522 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1523 }
1524 HSTATE_ATTR_RO(resv_hugepages);
1525
1526 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1527 struct kobj_attribute *attr, char *buf)
1528 {
1529 struct hstate *h;
1530 unsigned long surplus_huge_pages;
1531 int nid;
1532
1533 h = kobj_to_hstate(kobj, &nid);
1534 if (nid == NUMA_NO_NODE)
1535 surplus_huge_pages = h->surplus_huge_pages;
1536 else
1537 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1538
1539 return sprintf(buf, "%lu\n", surplus_huge_pages);
1540 }
1541 HSTATE_ATTR_RO(surplus_hugepages);
1542
1543 static struct attribute *hstate_attrs[] = {
1544 &nr_hugepages_attr.attr,
1545 &nr_overcommit_hugepages_attr.attr,
1546 &free_hugepages_attr.attr,
1547 &resv_hugepages_attr.attr,
1548 &surplus_hugepages_attr.attr,
1549 #ifdef CONFIG_NUMA
1550 &nr_hugepages_mempolicy_attr.attr,
1551 #endif
1552 NULL,
1553 };
1554
1555 static struct attribute_group hstate_attr_group = {
1556 .attrs = hstate_attrs,
1557 };
1558
1559 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1560 struct kobject **hstate_kobjs,
1561 struct attribute_group *hstate_attr_group)
1562 {
1563 int retval;
1564 int hi = h - hstates;
1565
1566 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1567 if (!hstate_kobjs[hi])
1568 return -ENOMEM;
1569
1570 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1571 if (retval)
1572 kobject_put(hstate_kobjs[hi]);
1573
1574 return retval;
1575 }
1576
1577 static void __init hugetlb_sysfs_init(void)
1578 {
1579 struct hstate *h;
1580 int err;
1581
1582 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1583 if (!hugepages_kobj)
1584 return;
1585
1586 for_each_hstate(h) {
1587 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1588 hstate_kobjs, &hstate_attr_group);
1589 if (err)
1590 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1591 h->name);
1592 }
1593 }
1594
1595 #ifdef CONFIG_NUMA
1596
1597 /*
1598 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1599 * with node devices in node_devices[] using a parallel array. The array
1600 * index of a node device or _hstate == node id.
1601 * This is here to avoid any static dependency of the node device driver, in
1602 * the base kernel, on the hugetlb module.
1603 */
1604 struct node_hstate {
1605 struct kobject *hugepages_kobj;
1606 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1607 };
1608 struct node_hstate node_hstates[MAX_NUMNODES];
1609
1610 /*
1611 * A subset of global hstate attributes for node devices
1612 */
1613 static struct attribute *per_node_hstate_attrs[] = {
1614 &nr_hugepages_attr.attr,
1615 &free_hugepages_attr.attr,
1616 &surplus_hugepages_attr.attr,
1617 NULL,
1618 };
1619
1620 static struct attribute_group per_node_hstate_attr_group = {
1621 .attrs = per_node_hstate_attrs,
1622 };
1623
1624 /*
1625 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1626 * Returns node id via non-NULL nidp.
1627 */
1628 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1629 {
1630 int nid;
1631
1632 for (nid = 0; nid < nr_node_ids; nid++) {
1633 struct node_hstate *nhs = &node_hstates[nid];
1634 int i;
1635 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1636 if (nhs->hstate_kobjs[i] == kobj) {
1637 if (nidp)
1638 *nidp = nid;
1639 return &hstates[i];
1640 }
1641 }
1642
1643 BUG();
1644 return NULL;
1645 }
1646
1647 /*
1648 * Unregister hstate attributes from a single node device.
1649 * No-op if no hstate attributes attached.
1650 */
1651 void hugetlb_unregister_node(struct node *node)
1652 {
1653 struct hstate *h;
1654 struct node_hstate *nhs = &node_hstates[node->dev.id];
1655
1656 if (!nhs->hugepages_kobj)
1657 return; /* no hstate attributes */
1658
1659 for_each_hstate(h)
1660 if (nhs->hstate_kobjs[h - hstates]) {
1661 kobject_put(nhs->hstate_kobjs[h - hstates]);
1662 nhs->hstate_kobjs[h - hstates] = NULL;
1663 }
1664
1665 kobject_put(nhs->hugepages_kobj);
1666 nhs->hugepages_kobj = NULL;
1667 }
1668
1669 /*
1670 * hugetlb module exit: unregister hstate attributes from node devices
1671 * that have them.
1672 */
1673 static void hugetlb_unregister_all_nodes(void)
1674 {
1675 int nid;
1676
1677 /*
1678 * disable node device registrations.
1679 */
1680 register_hugetlbfs_with_node(NULL, NULL);
1681
1682 /*
1683 * remove hstate attributes from any nodes that have them.
1684 */
1685 for (nid = 0; nid < nr_node_ids; nid++)
1686 hugetlb_unregister_node(&node_devices[nid]);
1687 }
1688
1689 /*
1690 * Register hstate attributes for a single node device.
1691 * No-op if attributes already registered.
1692 */
1693 void hugetlb_register_node(struct node *node)
1694 {
1695 struct hstate *h;
1696 struct node_hstate *nhs = &node_hstates[node->dev.id];
1697 int err;
1698
1699 if (nhs->hugepages_kobj)
1700 return; /* already allocated */
1701
1702 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1703 &node->dev.kobj);
1704 if (!nhs->hugepages_kobj)
1705 return;
1706
1707 for_each_hstate(h) {
1708 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1709 nhs->hstate_kobjs,
1710 &per_node_hstate_attr_group);
1711 if (err) {
1712 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1713 " for node %d\n",
1714 h->name, node->dev.id);
1715 hugetlb_unregister_node(node);
1716 break;
1717 }
1718 }
1719 }
1720
1721 /*
1722 * hugetlb init time: register hstate attributes for all registered node
1723 * devices of nodes that have memory. All on-line nodes should have
1724 * registered their associated device by this time.
1725 */
1726 static void hugetlb_register_all_nodes(void)
1727 {
1728 int nid;
1729
1730 for_each_node_state(nid, N_HIGH_MEMORY) {
1731 struct node *node = &node_devices[nid];
1732 if (node->dev.id == nid)
1733 hugetlb_register_node(node);
1734 }
1735
1736 /*
1737 * Let the node device driver know we're here so it can
1738 * [un]register hstate attributes on node hotplug.
1739 */
1740 register_hugetlbfs_with_node(hugetlb_register_node,
1741 hugetlb_unregister_node);
1742 }
1743 #else /* !CONFIG_NUMA */
1744
1745 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1746 {
1747 BUG();
1748 if (nidp)
1749 *nidp = -1;
1750 return NULL;
1751 }
1752
1753 static void hugetlb_unregister_all_nodes(void) { }
1754
1755 static void hugetlb_register_all_nodes(void) { }
1756
1757 #endif
1758
1759 static void __exit hugetlb_exit(void)
1760 {
1761 struct hstate *h;
1762
1763 hugetlb_unregister_all_nodes();
1764
1765 for_each_hstate(h) {
1766 kobject_put(hstate_kobjs[h - hstates]);
1767 }
1768
1769 kobject_put(hugepages_kobj);
1770 }
1771 module_exit(hugetlb_exit);
1772
1773 static int __init hugetlb_init(void)
1774 {
1775 /* Some platform decide whether they support huge pages at boot
1776 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1777 * there is no such support
1778 */
1779 if (HPAGE_SHIFT == 0)
1780 return 0;
1781
1782 if (!size_to_hstate(default_hstate_size)) {
1783 default_hstate_size = HPAGE_SIZE;
1784 if (!size_to_hstate(default_hstate_size))
1785 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1786 }
1787 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1788 if (default_hstate_max_huge_pages)
1789 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1790
1791 hugetlb_init_hstates();
1792
1793 gather_bootmem_prealloc();
1794
1795 report_hugepages();
1796
1797 hugetlb_sysfs_init();
1798
1799 hugetlb_register_all_nodes();
1800
1801 return 0;
1802 }
1803 module_init(hugetlb_init);
1804
1805 /* Should be called on processing a hugepagesz=... option */
1806 void __init hugetlb_add_hstate(unsigned order)
1807 {
1808 struct hstate *h;
1809 unsigned long i;
1810
1811 if (size_to_hstate(PAGE_SIZE << order)) {
1812 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1813 return;
1814 }
1815 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1816 BUG_ON(order == 0);
1817 h = &hstates[max_hstate++];
1818 h->order = order;
1819 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1820 h->nr_huge_pages = 0;
1821 h->free_huge_pages = 0;
1822 for (i = 0; i < MAX_NUMNODES; ++i)
1823 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1824 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1825 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1826 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1827 huge_page_size(h)/1024);
1828
1829 parsed_hstate = h;
1830 }
1831
1832 static int __init hugetlb_nrpages_setup(char *s)
1833 {
1834 unsigned long *mhp;
1835 static unsigned long *last_mhp;
1836
1837 /*
1838 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1839 * so this hugepages= parameter goes to the "default hstate".
1840 */
1841 if (!max_hstate)
1842 mhp = &default_hstate_max_huge_pages;
1843 else
1844 mhp = &parsed_hstate->max_huge_pages;
1845
1846 if (mhp == last_mhp) {
1847 printk(KERN_WARNING "hugepages= specified twice without "
1848 "interleaving hugepagesz=, ignoring\n");
1849 return 1;
1850 }
1851
1852 if (sscanf(s, "%lu", mhp) <= 0)
1853 *mhp = 0;
1854
1855 /*
1856 * Global state is always initialized later in hugetlb_init.
1857 * But we need to allocate >= MAX_ORDER hstates here early to still
1858 * use the bootmem allocator.
1859 */
1860 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1861 hugetlb_hstate_alloc_pages(parsed_hstate);
1862
1863 last_mhp = mhp;
1864
1865 return 1;
1866 }
1867 __setup("hugepages=", hugetlb_nrpages_setup);
1868
1869 static int __init hugetlb_default_setup(char *s)
1870 {
1871 default_hstate_size = memparse(s, &s);
1872 return 1;
1873 }
1874 __setup("default_hugepagesz=", hugetlb_default_setup);
1875
1876 static unsigned int cpuset_mems_nr(unsigned int *array)
1877 {
1878 int node;
1879 unsigned int nr = 0;
1880
1881 for_each_node_mask(node, cpuset_current_mems_allowed)
1882 nr += array[node];
1883
1884 return nr;
1885 }
1886
1887 #ifdef CONFIG_SYSCTL
1888 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1889 struct ctl_table *table, int write,
1890 void __user *buffer, size_t *length, loff_t *ppos)
1891 {
1892 struct hstate *h = &default_hstate;
1893 unsigned long tmp;
1894 int ret;
1895
1896 tmp = h->max_huge_pages;
1897
1898 if (write && h->order >= MAX_ORDER)
1899 return -EINVAL;
1900
1901 table->data = &tmp;
1902 table->maxlen = sizeof(unsigned long);
1903 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1904 if (ret)
1905 goto out;
1906
1907 if (write) {
1908 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1909 GFP_KERNEL | __GFP_NORETRY);
1910 if (!(obey_mempolicy &&
1911 init_nodemask_of_mempolicy(nodes_allowed))) {
1912 NODEMASK_FREE(nodes_allowed);
1913 nodes_allowed = &node_states[N_HIGH_MEMORY];
1914 }
1915 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1916
1917 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1918 NODEMASK_FREE(nodes_allowed);
1919 }
1920 out:
1921 return ret;
1922 }
1923
1924 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1925 void __user *buffer, size_t *length, loff_t *ppos)
1926 {
1927
1928 return hugetlb_sysctl_handler_common(false, table, write,
1929 buffer, length, ppos);
1930 }
1931
1932 #ifdef CONFIG_NUMA
1933 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1934 void __user *buffer, size_t *length, loff_t *ppos)
1935 {
1936 return hugetlb_sysctl_handler_common(true, table, write,
1937 buffer, length, ppos);
1938 }
1939 #endif /* CONFIG_NUMA */
1940
1941 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1942 void __user *buffer,
1943 size_t *length, loff_t *ppos)
1944 {
1945 proc_dointvec(table, write, buffer, length, ppos);
1946 if (hugepages_treat_as_movable)
1947 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1948 else
1949 htlb_alloc_mask = GFP_HIGHUSER;
1950 return 0;
1951 }
1952
1953 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1954 void __user *buffer,
1955 size_t *length, loff_t *ppos)
1956 {
1957 struct hstate *h = &default_hstate;
1958 unsigned long tmp;
1959 int ret;
1960
1961 tmp = h->nr_overcommit_huge_pages;
1962
1963 if (write && h->order >= MAX_ORDER)
1964 return -EINVAL;
1965
1966 table->data = &tmp;
1967 table->maxlen = sizeof(unsigned long);
1968 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1969 if (ret)
1970 goto out;
1971
1972 if (write) {
1973 spin_lock(&hugetlb_lock);
1974 h->nr_overcommit_huge_pages = tmp;
1975 spin_unlock(&hugetlb_lock);
1976 }
1977 out:
1978 return ret;
1979 }
1980
1981 #endif /* CONFIG_SYSCTL */
1982
1983 void hugetlb_report_meminfo(struct seq_file *m)
1984 {
1985 struct hstate *h = &default_hstate;
1986 seq_printf(m,
1987 "HugePages_Total: %5lu\n"
1988 "HugePages_Free: %5lu\n"
1989 "HugePages_Rsvd: %5lu\n"
1990 "HugePages_Surp: %5lu\n"
1991 "Hugepagesize: %8lu kB\n",
1992 h->nr_huge_pages,
1993 h->free_huge_pages,
1994 h->resv_huge_pages,
1995 h->surplus_huge_pages,
1996 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1997 }
1998
1999 int hugetlb_report_node_meminfo(int nid, char *buf)
2000 {
2001 struct hstate *h = &default_hstate;
2002 return sprintf(buf,
2003 "Node %d HugePages_Total: %5u\n"
2004 "Node %d HugePages_Free: %5u\n"
2005 "Node %d HugePages_Surp: %5u\n",
2006 nid, h->nr_huge_pages_node[nid],
2007 nid, h->free_huge_pages_node[nid],
2008 nid, h->surplus_huge_pages_node[nid]);
2009 }
2010
2011 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2012 unsigned long hugetlb_total_pages(void)
2013 {
2014 struct hstate *h = &default_hstate;
2015 return h->nr_huge_pages * pages_per_huge_page(h);
2016 }
2017
2018 static int hugetlb_acct_memory(struct hstate *h, long delta)
2019 {
2020 int ret = -ENOMEM;
2021
2022 spin_lock(&hugetlb_lock);
2023 /*
2024 * When cpuset is configured, it breaks the strict hugetlb page
2025 * reservation as the accounting is done on a global variable. Such
2026 * reservation is completely rubbish in the presence of cpuset because
2027 * the reservation is not checked against page availability for the
2028 * current cpuset. Application can still potentially OOM'ed by kernel
2029 * with lack of free htlb page in cpuset that the task is in.
2030 * Attempt to enforce strict accounting with cpuset is almost
2031 * impossible (or too ugly) because cpuset is too fluid that
2032 * task or memory node can be dynamically moved between cpusets.
2033 *
2034 * The change of semantics for shared hugetlb mapping with cpuset is
2035 * undesirable. However, in order to preserve some of the semantics,
2036 * we fall back to check against current free page availability as
2037 * a best attempt and hopefully to minimize the impact of changing
2038 * semantics that cpuset has.
2039 */
2040 if (delta > 0) {
2041 if (gather_surplus_pages(h, delta) < 0)
2042 goto out;
2043
2044 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2045 return_unused_surplus_pages(h, delta);
2046 goto out;
2047 }
2048 }
2049
2050 ret = 0;
2051 if (delta < 0)
2052 return_unused_surplus_pages(h, (unsigned long) -delta);
2053
2054 out:
2055 spin_unlock(&hugetlb_lock);
2056 return ret;
2057 }
2058
2059 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2060 {
2061 struct resv_map *reservations = vma_resv_map(vma);
2062
2063 /*
2064 * This new VMA should share its siblings reservation map if present.
2065 * The VMA will only ever have a valid reservation map pointer where
2066 * it is being copied for another still existing VMA. As that VMA
2067 * has a reference to the reservation map it cannot disappear until
2068 * after this open call completes. It is therefore safe to take a
2069 * new reference here without additional locking.
2070 */
2071 if (reservations)
2072 kref_get(&reservations->refs);
2073 }
2074
2075 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2076 {
2077 struct hstate *h = hstate_vma(vma);
2078 struct resv_map *reservations = vma_resv_map(vma);
2079 unsigned long reserve;
2080 unsigned long start;
2081 unsigned long end;
2082
2083 if (reservations) {
2084 start = vma_hugecache_offset(h, vma, vma->vm_start);
2085 end = vma_hugecache_offset(h, vma, vma->vm_end);
2086
2087 reserve = (end - start) -
2088 region_count(&reservations->regions, start, end);
2089
2090 kref_put(&reservations->refs, resv_map_release);
2091
2092 if (reserve) {
2093 hugetlb_acct_memory(h, -reserve);
2094 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2095 }
2096 }
2097 }
2098
2099 /*
2100 * We cannot handle pagefaults against hugetlb pages at all. They cause
2101 * handle_mm_fault() to try to instantiate regular-sized pages in the
2102 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2103 * this far.
2104 */
2105 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2106 {
2107 BUG();
2108 return 0;
2109 }
2110
2111 const struct vm_operations_struct hugetlb_vm_ops = {
2112 .fault = hugetlb_vm_op_fault,
2113 .open = hugetlb_vm_op_open,
2114 .close = hugetlb_vm_op_close,
2115 };
2116
2117 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2118 int writable)
2119 {
2120 pte_t entry;
2121
2122 if (writable) {
2123 entry =
2124 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2125 } else {
2126 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2127 }
2128 entry = pte_mkyoung(entry);
2129 entry = pte_mkhuge(entry);
2130
2131 return entry;
2132 }
2133
2134 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2135 unsigned long address, pte_t *ptep)
2136 {
2137 pte_t entry;
2138
2139 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2140 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2141 update_mmu_cache(vma, address, ptep);
2142 }
2143
2144
2145 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2146 struct vm_area_struct *vma)
2147 {
2148 pte_t *src_pte, *dst_pte, entry;
2149 struct page *ptepage;
2150 unsigned long addr;
2151 int cow;
2152 struct hstate *h = hstate_vma(vma);
2153 unsigned long sz = huge_page_size(h);
2154
2155 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2156
2157 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2158 src_pte = huge_pte_offset(src, addr);
2159 if (!src_pte)
2160 continue;
2161 dst_pte = huge_pte_alloc(dst, addr, sz);
2162 if (!dst_pte)
2163 goto nomem;
2164
2165 /* If the pagetables are shared don't copy or take references */
2166 if (dst_pte == src_pte)
2167 continue;
2168
2169 spin_lock(&dst->page_table_lock);
2170 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2171 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2172 if (cow)
2173 huge_ptep_set_wrprotect(src, addr, src_pte);
2174 entry = huge_ptep_get(src_pte);
2175 ptepage = pte_page(entry);
2176 get_page(ptepage);
2177 page_dup_rmap(ptepage);
2178 set_huge_pte_at(dst, addr, dst_pte, entry);
2179 }
2180 spin_unlock(&src->page_table_lock);
2181 spin_unlock(&dst->page_table_lock);
2182 }
2183 return 0;
2184
2185 nomem:
2186 return -ENOMEM;
2187 }
2188
2189 static int is_hugetlb_entry_migration(pte_t pte)
2190 {
2191 swp_entry_t swp;
2192
2193 if (huge_pte_none(pte) || pte_present(pte))
2194 return 0;
2195 swp = pte_to_swp_entry(pte);
2196 if (non_swap_entry(swp) && is_migration_entry(swp))
2197 return 1;
2198 else
2199 return 0;
2200 }
2201
2202 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2203 {
2204 swp_entry_t swp;
2205
2206 if (huge_pte_none(pte) || pte_present(pte))
2207 return 0;
2208 swp = pte_to_swp_entry(pte);
2209 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2210 return 1;
2211 else
2212 return 0;
2213 }
2214
2215 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2216 unsigned long end, struct page *ref_page)
2217 {
2218 struct mm_struct *mm = vma->vm_mm;
2219 unsigned long address;
2220 pte_t *ptep;
2221 pte_t pte;
2222 struct page *page;
2223 struct page *tmp;
2224 struct hstate *h = hstate_vma(vma);
2225 unsigned long sz = huge_page_size(h);
2226
2227 /*
2228 * A page gathering list, protected by per file i_mmap_mutex. The
2229 * lock is used to avoid list corruption from multiple unmapping
2230 * of the same page since we are using page->lru.
2231 */
2232 LIST_HEAD(page_list);
2233
2234 WARN_ON(!is_vm_hugetlb_page(vma));
2235 BUG_ON(start & ~huge_page_mask(h));
2236 BUG_ON(end & ~huge_page_mask(h));
2237
2238 mmu_notifier_invalidate_range_start(mm, start, end);
2239 spin_lock(&mm->page_table_lock);
2240 for (address = start; address < end; address += sz) {
2241 ptep = huge_pte_offset(mm, address);
2242 if (!ptep)
2243 continue;
2244
2245 if (huge_pmd_unshare(mm, &address, ptep))
2246 continue;
2247
2248 /*
2249 * If a reference page is supplied, it is because a specific
2250 * page is being unmapped, not a range. Ensure the page we
2251 * are about to unmap is the actual page of interest.
2252 */
2253 if (ref_page) {
2254 pte = huge_ptep_get(ptep);
2255 if (huge_pte_none(pte))
2256 continue;
2257 page = pte_page(pte);
2258 if (page != ref_page)
2259 continue;
2260
2261 /*
2262 * Mark the VMA as having unmapped its page so that
2263 * future faults in this VMA will fail rather than
2264 * looking like data was lost
2265 */
2266 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2267 }
2268
2269 pte = huge_ptep_get_and_clear(mm, address, ptep);
2270 if (huge_pte_none(pte))
2271 continue;
2272
2273 /*
2274 * HWPoisoned hugepage is already unmapped and dropped reference
2275 */
2276 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2277 continue;
2278
2279 page = pte_page(pte);
2280 if (pte_dirty(pte))
2281 set_page_dirty(page);
2282 list_add(&page->lru, &page_list);
2283
2284 /* Bail out after unmapping reference page if supplied */
2285 if (ref_page)
2286 break;
2287 }
2288 flush_tlb_range(vma, start, end);
2289 spin_unlock(&mm->page_table_lock);
2290 mmu_notifier_invalidate_range_end(mm, start, end);
2291 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2292 page_remove_rmap(page);
2293 list_del(&page->lru);
2294 put_page(page);
2295 }
2296 }
2297
2298 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2299 unsigned long end, struct page *ref_page)
2300 {
2301 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2302 __unmap_hugepage_range(vma, start, end, ref_page);
2303 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2304 }
2305
2306 /*
2307 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2308 * mappping it owns the reserve page for. The intention is to unmap the page
2309 * from other VMAs and let the children be SIGKILLed if they are faulting the
2310 * same region.
2311 */
2312 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2313 struct page *page, unsigned long address)
2314 {
2315 struct hstate *h = hstate_vma(vma);
2316 struct vm_area_struct *iter_vma;
2317 struct address_space *mapping;
2318 struct prio_tree_iter iter;
2319 pgoff_t pgoff;
2320
2321 /*
2322 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2323 * from page cache lookup which is in HPAGE_SIZE units.
2324 */
2325 address = address & huge_page_mask(h);
2326 pgoff = vma_hugecache_offset(h, vma, address);
2327 mapping = (struct address_space *)page_private(page);
2328
2329 /*
2330 * Take the mapping lock for the duration of the table walk. As
2331 * this mapping should be shared between all the VMAs,
2332 * __unmap_hugepage_range() is called as the lock is already held
2333 */
2334 mutex_lock(&mapping->i_mmap_mutex);
2335 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2336 /* Do not unmap the current VMA */
2337 if (iter_vma == vma)
2338 continue;
2339
2340 /*
2341 * Unmap the page from other VMAs without their own reserves.
2342 * They get marked to be SIGKILLed if they fault in these
2343 * areas. This is because a future no-page fault on this VMA
2344 * could insert a zeroed page instead of the data existing
2345 * from the time of fork. This would look like data corruption
2346 */
2347 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2348 __unmap_hugepage_range(iter_vma,
2349 address, address + huge_page_size(h),
2350 page);
2351 }
2352 mutex_unlock(&mapping->i_mmap_mutex);
2353
2354 return 1;
2355 }
2356
2357 /*
2358 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2359 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2360 * cannot race with other handlers or page migration.
2361 * Keep the pte_same checks anyway to make transition from the mutex easier.
2362 */
2363 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2364 unsigned long address, pte_t *ptep, pte_t pte,
2365 struct page *pagecache_page)
2366 {
2367 struct hstate *h = hstate_vma(vma);
2368 struct page *old_page, *new_page;
2369 int avoidcopy;
2370 int outside_reserve = 0;
2371
2372 old_page = pte_page(pte);
2373
2374 retry_avoidcopy:
2375 /* If no-one else is actually using this page, avoid the copy
2376 * and just make the page writable */
2377 avoidcopy = (page_mapcount(old_page) == 1);
2378 if (avoidcopy) {
2379 if (PageAnon(old_page))
2380 page_move_anon_rmap(old_page, vma, address);
2381 set_huge_ptep_writable(vma, address, ptep);
2382 return 0;
2383 }
2384
2385 /*
2386 * If the process that created a MAP_PRIVATE mapping is about to
2387 * perform a COW due to a shared page count, attempt to satisfy
2388 * the allocation without using the existing reserves. The pagecache
2389 * page is used to determine if the reserve at this address was
2390 * consumed or not. If reserves were used, a partial faulted mapping
2391 * at the time of fork() could consume its reserves on COW instead
2392 * of the full address range.
2393 */
2394 if (!(vma->vm_flags & VM_MAYSHARE) &&
2395 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2396 old_page != pagecache_page)
2397 outside_reserve = 1;
2398
2399 page_cache_get(old_page);
2400
2401 /* Drop page_table_lock as buddy allocator may be called */
2402 spin_unlock(&mm->page_table_lock);
2403 new_page = alloc_huge_page(vma, address, outside_reserve);
2404
2405 if (IS_ERR(new_page)) {
2406 page_cache_release(old_page);
2407
2408 /*
2409 * If a process owning a MAP_PRIVATE mapping fails to COW,
2410 * it is due to references held by a child and an insufficient
2411 * huge page pool. To guarantee the original mappers
2412 * reliability, unmap the page from child processes. The child
2413 * may get SIGKILLed if it later faults.
2414 */
2415 if (outside_reserve) {
2416 BUG_ON(huge_pte_none(pte));
2417 if (unmap_ref_private(mm, vma, old_page, address)) {
2418 BUG_ON(page_count(old_page) != 1);
2419 BUG_ON(huge_pte_none(pte));
2420 spin_lock(&mm->page_table_lock);
2421 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2422 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2423 goto retry_avoidcopy;
2424 /*
2425 * race occurs while re-acquiring page_table_lock, and
2426 * our job is done.
2427 */
2428 return 0;
2429 }
2430 WARN_ON_ONCE(1);
2431 }
2432
2433 /* Caller expects lock to be held */
2434 spin_lock(&mm->page_table_lock);
2435 return -PTR_ERR(new_page);
2436 }
2437
2438 /*
2439 * When the original hugepage is shared one, it does not have
2440 * anon_vma prepared.
2441 */
2442 if (unlikely(anon_vma_prepare(vma))) {
2443 page_cache_release(new_page);
2444 page_cache_release(old_page);
2445 /* Caller expects lock to be held */
2446 spin_lock(&mm->page_table_lock);
2447 return VM_FAULT_OOM;
2448 }
2449
2450 copy_user_huge_page(new_page, old_page, address, vma,
2451 pages_per_huge_page(h));
2452 __SetPageUptodate(new_page);
2453
2454 /*
2455 * Retake the page_table_lock to check for racing updates
2456 * before the page tables are altered
2457 */
2458 spin_lock(&mm->page_table_lock);
2459 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2460 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2461 /* Break COW */
2462 mmu_notifier_invalidate_range_start(mm,
2463 address & huge_page_mask(h),
2464 (address & huge_page_mask(h)) + huge_page_size(h));
2465 huge_ptep_clear_flush(vma, address, ptep);
2466 set_huge_pte_at(mm, address, ptep,
2467 make_huge_pte(vma, new_page, 1));
2468 page_remove_rmap(old_page);
2469 hugepage_add_new_anon_rmap(new_page, vma, address);
2470 /* Make the old page be freed below */
2471 new_page = old_page;
2472 mmu_notifier_invalidate_range_end(mm,
2473 address & huge_page_mask(h),
2474 (address & huge_page_mask(h)) + huge_page_size(h));
2475 }
2476 page_cache_release(new_page);
2477 page_cache_release(old_page);
2478 return 0;
2479 }
2480
2481 /* Return the pagecache page at a given address within a VMA */
2482 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2483 struct vm_area_struct *vma, unsigned long address)
2484 {
2485 struct address_space *mapping;
2486 pgoff_t idx;
2487
2488 mapping = vma->vm_file->f_mapping;
2489 idx = vma_hugecache_offset(h, vma, address);
2490
2491 return find_lock_page(mapping, idx);
2492 }
2493
2494 /*
2495 * Return whether there is a pagecache page to back given address within VMA.
2496 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2497 */
2498 static bool hugetlbfs_pagecache_present(struct hstate *h,
2499 struct vm_area_struct *vma, unsigned long address)
2500 {
2501 struct address_space *mapping;
2502 pgoff_t idx;
2503 struct page *page;
2504
2505 mapping = vma->vm_file->f_mapping;
2506 idx = vma_hugecache_offset(h, vma, address);
2507
2508 page = find_get_page(mapping, idx);
2509 if (page)
2510 put_page(page);
2511 return page != NULL;
2512 }
2513
2514 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2515 unsigned long address, pte_t *ptep, unsigned int flags)
2516 {
2517 struct hstate *h = hstate_vma(vma);
2518 int ret = VM_FAULT_SIGBUS;
2519 int anon_rmap = 0;
2520 pgoff_t idx;
2521 unsigned long size;
2522 struct page *page;
2523 struct address_space *mapping;
2524 pte_t new_pte;
2525
2526 /*
2527 * Currently, we are forced to kill the process in the event the
2528 * original mapper has unmapped pages from the child due to a failed
2529 * COW. Warn that such a situation has occurred as it may not be obvious
2530 */
2531 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2532 printk(KERN_WARNING
2533 "PID %d killed due to inadequate hugepage pool\n",
2534 current->pid);
2535 return ret;
2536 }
2537
2538 mapping = vma->vm_file->f_mapping;
2539 idx = vma_hugecache_offset(h, vma, address);
2540
2541 /*
2542 * Use page lock to guard against racing truncation
2543 * before we get page_table_lock.
2544 */
2545 retry:
2546 page = find_lock_page(mapping, idx);
2547 if (!page) {
2548 size = i_size_read(mapping->host) >> huge_page_shift(h);
2549 if (idx >= size)
2550 goto out;
2551 page = alloc_huge_page(vma, address, 0);
2552 if (IS_ERR(page)) {
2553 ret = -PTR_ERR(page);
2554 goto out;
2555 }
2556 clear_huge_page(page, address, pages_per_huge_page(h));
2557 __SetPageUptodate(page);
2558
2559 if (vma->vm_flags & VM_MAYSHARE) {
2560 int err;
2561 struct inode *inode = mapping->host;
2562
2563 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2564 if (err) {
2565 put_page(page);
2566 if (err == -EEXIST)
2567 goto retry;
2568 goto out;
2569 }
2570
2571 spin_lock(&inode->i_lock);
2572 inode->i_blocks += blocks_per_huge_page(h);
2573 spin_unlock(&inode->i_lock);
2574 } else {
2575 lock_page(page);
2576 if (unlikely(anon_vma_prepare(vma))) {
2577 ret = VM_FAULT_OOM;
2578 goto backout_unlocked;
2579 }
2580 anon_rmap = 1;
2581 }
2582 } else {
2583 /*
2584 * If memory error occurs between mmap() and fault, some process
2585 * don't have hwpoisoned swap entry for errored virtual address.
2586 * So we need to block hugepage fault by PG_hwpoison bit check.
2587 */
2588 if (unlikely(PageHWPoison(page))) {
2589 ret = VM_FAULT_HWPOISON |
2590 VM_FAULT_SET_HINDEX(h - hstates);
2591 goto backout_unlocked;
2592 }
2593 }
2594
2595 /*
2596 * If we are going to COW a private mapping later, we examine the
2597 * pending reservations for this page now. This will ensure that
2598 * any allocations necessary to record that reservation occur outside
2599 * the spinlock.
2600 */
2601 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2602 if (vma_needs_reservation(h, vma, address) < 0) {
2603 ret = VM_FAULT_OOM;
2604 goto backout_unlocked;
2605 }
2606
2607 spin_lock(&mm->page_table_lock);
2608 size = i_size_read(mapping->host) >> huge_page_shift(h);
2609 if (idx >= size)
2610 goto backout;
2611
2612 ret = 0;
2613 if (!huge_pte_none(huge_ptep_get(ptep)))
2614 goto backout;
2615
2616 if (anon_rmap)
2617 hugepage_add_new_anon_rmap(page, vma, address);
2618 else
2619 page_dup_rmap(page);
2620 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2621 && (vma->vm_flags & VM_SHARED)));
2622 set_huge_pte_at(mm, address, ptep, new_pte);
2623
2624 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2625 /* Optimization, do the COW without a second fault */
2626 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2627 }
2628
2629 spin_unlock(&mm->page_table_lock);
2630 unlock_page(page);
2631 out:
2632 return ret;
2633
2634 backout:
2635 spin_unlock(&mm->page_table_lock);
2636 backout_unlocked:
2637 unlock_page(page);
2638 put_page(page);
2639 goto out;
2640 }
2641
2642 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2643 unsigned long address, unsigned int flags)
2644 {
2645 pte_t *ptep;
2646 pte_t entry;
2647 int ret;
2648 struct page *page = NULL;
2649 struct page *pagecache_page = NULL;
2650 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2651 struct hstate *h = hstate_vma(vma);
2652
2653 address &= huge_page_mask(h);
2654
2655 ptep = huge_pte_offset(mm, address);
2656 if (ptep) {
2657 entry = huge_ptep_get(ptep);
2658 if (unlikely(is_hugetlb_entry_migration(entry))) {
2659 migration_entry_wait(mm, (pmd_t *)ptep, address);
2660 return 0;
2661 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2662 return VM_FAULT_HWPOISON_LARGE |
2663 VM_FAULT_SET_HINDEX(h - hstates);
2664 }
2665
2666 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2667 if (!ptep)
2668 return VM_FAULT_OOM;
2669
2670 /*
2671 * Serialize hugepage allocation and instantiation, so that we don't
2672 * get spurious allocation failures if two CPUs race to instantiate
2673 * the same page in the page cache.
2674 */
2675 mutex_lock(&hugetlb_instantiation_mutex);
2676 entry = huge_ptep_get(ptep);
2677 if (huge_pte_none(entry)) {
2678 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2679 goto out_mutex;
2680 }
2681
2682 ret = 0;
2683
2684 /*
2685 * If we are going to COW the mapping later, we examine the pending
2686 * reservations for this page now. This will ensure that any
2687 * allocations necessary to record that reservation occur outside the
2688 * spinlock. For private mappings, we also lookup the pagecache
2689 * page now as it is used to determine if a reservation has been
2690 * consumed.
2691 */
2692 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2693 if (vma_needs_reservation(h, vma, address) < 0) {
2694 ret = VM_FAULT_OOM;
2695 goto out_mutex;
2696 }
2697
2698 if (!(vma->vm_flags & VM_MAYSHARE))
2699 pagecache_page = hugetlbfs_pagecache_page(h,
2700 vma, address);
2701 }
2702
2703 /*
2704 * hugetlb_cow() requires page locks of pte_page(entry) and
2705 * pagecache_page, so here we need take the former one
2706 * when page != pagecache_page or !pagecache_page.
2707 * Note that locking order is always pagecache_page -> page,
2708 * so no worry about deadlock.
2709 */
2710 page = pte_page(entry);
2711 if (page != pagecache_page)
2712 lock_page(page);
2713
2714 spin_lock(&mm->page_table_lock);
2715 /* Check for a racing update before calling hugetlb_cow */
2716 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2717 goto out_page_table_lock;
2718
2719
2720 if (flags & FAULT_FLAG_WRITE) {
2721 if (!pte_write(entry)) {
2722 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2723 pagecache_page);
2724 goto out_page_table_lock;
2725 }
2726 entry = pte_mkdirty(entry);
2727 }
2728 entry = pte_mkyoung(entry);
2729 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2730 flags & FAULT_FLAG_WRITE))
2731 update_mmu_cache(vma, address, ptep);
2732
2733 out_page_table_lock:
2734 spin_unlock(&mm->page_table_lock);
2735
2736 if (pagecache_page) {
2737 unlock_page(pagecache_page);
2738 put_page(pagecache_page);
2739 }
2740 if (page != pagecache_page)
2741 unlock_page(page);
2742
2743 out_mutex:
2744 mutex_unlock(&hugetlb_instantiation_mutex);
2745
2746 return ret;
2747 }
2748
2749 /* Can be overriden by architectures */
2750 __attribute__((weak)) struct page *
2751 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2752 pud_t *pud, int write)
2753 {
2754 BUG();
2755 return NULL;
2756 }
2757
2758 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2759 struct page **pages, struct vm_area_struct **vmas,
2760 unsigned long *position, int *length, int i,
2761 unsigned int flags)
2762 {
2763 unsigned long pfn_offset;
2764 unsigned long vaddr = *position;
2765 int remainder = *length;
2766 struct hstate *h = hstate_vma(vma);
2767
2768 spin_lock(&mm->page_table_lock);
2769 while (vaddr < vma->vm_end && remainder) {
2770 pte_t *pte;
2771 int absent;
2772 struct page *page;
2773
2774 /*
2775 * Some archs (sparc64, sh*) have multiple pte_ts to
2776 * each hugepage. We have to make sure we get the
2777 * first, for the page indexing below to work.
2778 */
2779 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2780 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2781
2782 /*
2783 * When coredumping, it suits get_dump_page if we just return
2784 * an error where there's an empty slot with no huge pagecache
2785 * to back it. This way, we avoid allocating a hugepage, and
2786 * the sparse dumpfile avoids allocating disk blocks, but its
2787 * huge holes still show up with zeroes where they need to be.
2788 */
2789 if (absent && (flags & FOLL_DUMP) &&
2790 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2791 remainder = 0;
2792 break;
2793 }
2794
2795 if (absent ||
2796 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2797 int ret;
2798
2799 spin_unlock(&mm->page_table_lock);
2800 ret = hugetlb_fault(mm, vma, vaddr,
2801 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2802 spin_lock(&mm->page_table_lock);
2803 if (!(ret & VM_FAULT_ERROR))
2804 continue;
2805
2806 remainder = 0;
2807 break;
2808 }
2809
2810 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2811 page = pte_page(huge_ptep_get(pte));
2812 same_page:
2813 if (pages) {
2814 pages[i] = mem_map_offset(page, pfn_offset);
2815 get_page(pages[i]);
2816 }
2817
2818 if (vmas)
2819 vmas[i] = vma;
2820
2821 vaddr += PAGE_SIZE;
2822 ++pfn_offset;
2823 --remainder;
2824 ++i;
2825 if (vaddr < vma->vm_end && remainder &&
2826 pfn_offset < pages_per_huge_page(h)) {
2827 /*
2828 * We use pfn_offset to avoid touching the pageframes
2829 * of this compound page.
2830 */
2831 goto same_page;
2832 }
2833 }
2834 spin_unlock(&mm->page_table_lock);
2835 *length = remainder;
2836 *position = vaddr;
2837
2838 return i ? i : -EFAULT;
2839 }
2840
2841 void hugetlb_change_protection(struct vm_area_struct *vma,
2842 unsigned long address, unsigned long end, pgprot_t newprot)
2843 {
2844 struct mm_struct *mm = vma->vm_mm;
2845 unsigned long start = address;
2846 pte_t *ptep;
2847 pte_t pte;
2848 struct hstate *h = hstate_vma(vma);
2849
2850 BUG_ON(address >= end);
2851 flush_cache_range(vma, address, end);
2852
2853 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2854 spin_lock(&mm->page_table_lock);
2855 for (; address < end; address += huge_page_size(h)) {
2856 ptep = huge_pte_offset(mm, address);
2857 if (!ptep)
2858 continue;
2859 if (huge_pmd_unshare(mm, &address, ptep))
2860 continue;
2861 if (!huge_pte_none(huge_ptep_get(ptep))) {
2862 pte = huge_ptep_get_and_clear(mm, address, ptep);
2863 pte = pte_mkhuge(pte_modify(pte, newprot));
2864 set_huge_pte_at(mm, address, ptep, pte);
2865 }
2866 }
2867 spin_unlock(&mm->page_table_lock);
2868 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2869
2870 flush_tlb_range(vma, start, end);
2871 }
2872
2873 int hugetlb_reserve_pages(struct inode *inode,
2874 long from, long to,
2875 struct vm_area_struct *vma,
2876 vm_flags_t vm_flags)
2877 {
2878 long ret, chg;
2879 struct hstate *h = hstate_inode(inode);
2880
2881 /*
2882 * Only apply hugepage reservation if asked. At fault time, an
2883 * attempt will be made for VM_NORESERVE to allocate a page
2884 * and filesystem quota without using reserves
2885 */
2886 if (vm_flags & VM_NORESERVE)
2887 return 0;
2888
2889 /*
2890 * Shared mappings base their reservation on the number of pages that
2891 * are already allocated on behalf of the file. Private mappings need
2892 * to reserve the full area even if read-only as mprotect() may be
2893 * called to make the mapping read-write. Assume !vma is a shm mapping
2894 */
2895 if (!vma || vma->vm_flags & VM_MAYSHARE)
2896 chg = region_chg(&inode->i_mapping->private_list, from, to);
2897 else {
2898 struct resv_map *resv_map = resv_map_alloc();
2899 if (!resv_map)
2900 return -ENOMEM;
2901
2902 chg = to - from;
2903
2904 set_vma_resv_map(vma, resv_map);
2905 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2906 }
2907
2908 if (chg < 0)
2909 return chg;
2910
2911 /* There must be enough filesystem quota for the mapping */
2912 if (hugetlb_get_quota(inode->i_mapping, chg))
2913 return -ENOSPC;
2914
2915 /*
2916 * Check enough hugepages are available for the reservation.
2917 * Hand back the quota if there are not
2918 */
2919 ret = hugetlb_acct_memory(h, chg);
2920 if (ret < 0) {
2921 hugetlb_put_quota(inode->i_mapping, chg);
2922 return ret;
2923 }
2924
2925 /*
2926 * Account for the reservations made. Shared mappings record regions
2927 * that have reservations as they are shared by multiple VMAs.
2928 * When the last VMA disappears, the region map says how much
2929 * the reservation was and the page cache tells how much of
2930 * the reservation was consumed. Private mappings are per-VMA and
2931 * only the consumed reservations are tracked. When the VMA
2932 * disappears, the original reservation is the VMA size and the
2933 * consumed reservations are stored in the map. Hence, nothing
2934 * else has to be done for private mappings here
2935 */
2936 if (!vma || vma->vm_flags & VM_MAYSHARE)
2937 region_add(&inode->i_mapping->private_list, from, to);
2938 return 0;
2939 }
2940
2941 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2942 {
2943 struct hstate *h = hstate_inode(inode);
2944 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2945
2946 spin_lock(&inode->i_lock);
2947 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2948 spin_unlock(&inode->i_lock);
2949
2950 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2951 hugetlb_acct_memory(h, -(chg - freed));
2952 }
2953
2954 #ifdef CONFIG_MEMORY_FAILURE
2955
2956 /* Should be called in hugetlb_lock */
2957 static int is_hugepage_on_freelist(struct page *hpage)
2958 {
2959 struct page *page;
2960 struct page *tmp;
2961 struct hstate *h = page_hstate(hpage);
2962 int nid = page_to_nid(hpage);
2963
2964 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2965 if (page == hpage)
2966 return 1;
2967 return 0;
2968 }
2969
2970 /*
2971 * This function is called from memory failure code.
2972 * Assume the caller holds page lock of the head page.
2973 */
2974 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2975 {
2976 struct hstate *h = page_hstate(hpage);
2977 int nid = page_to_nid(hpage);
2978 int ret = -EBUSY;
2979
2980 spin_lock(&hugetlb_lock);
2981 if (is_hugepage_on_freelist(hpage)) {
2982 list_del(&hpage->lru);
2983 set_page_refcounted(hpage);
2984 h->free_huge_pages--;
2985 h->free_huge_pages_node[nid]--;
2986 ret = 0;
2987 }
2988 spin_unlock(&hugetlb_lock);
2989 return ret;
2990 }
2991 #endif