]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/hugetlb.c
hugepage: move is_hugepage_on_freelist inside ifdef to avoid warning
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 /*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
69 */
70 struct file_region {
71 struct list_head link;
72 long from;
73 long to;
74 };
75
76 static long region_add(struct list_head *head, long f, long t)
77 {
78 struct file_region *rg, *nrg, *trg;
79
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
84
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
88
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
96
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
105 }
106 }
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
110 }
111
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114 struct file_region *rg, *nrg;
115 long chg = 0;
116
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
121
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
133
134 return t - f;
135 }
136
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
141
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
148
149 /* We overlap with this area, if it extends futher than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
155 }
156 chg -= rg->to - rg->from;
157 }
158 return chg;
159 }
160
161 static long region_truncate(struct list_head *head, long end)
162 {
163 struct file_region *rg, *trg;
164 long chg = 0;
165
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
172
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
178 }
179
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 return chg;
189 }
190
191 static long region_count(struct list_head *head, long f, long t)
192 {
193 struct file_region *rg;
194 long chg = 0;
195
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
200
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
205
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
208
209 chg += seg_to - seg_from;
210 }
211
212 return chg;
213 }
214
215 /*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
221 {
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
224 }
225
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
228 {
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231
232 /*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238 struct hstate *hstate;
239
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
242
243 hstate = hstate_vma(vma);
244
245 return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249 /*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258 return vma_kernel_pagesize(vma);
259 }
260 #endif
261
262 /*
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271 /*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
289 */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292 return (unsigned long)vma->vm_private_data;
293 }
294
295 static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
297 {
298 vma->vm_private_data = (void *)value;
299 }
300
301 struct resv_map {
302 struct kref refs;
303 struct list_head regions;
304 };
305
306 static struct resv_map *resv_map_alloc(void)
307 {
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
311
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
314
315 return resv_map;
316 }
317
318 static void resv_map_release(struct kref *ref)
319 {
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
325 }
326
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 if (!(vma->vm_flags & VM_MAYSHARE))
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
333 return NULL;
334 }
335
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357 return (get_vma_private_data(vma) & flag) != 0;
358 }
359
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
363 {
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
366
367 if (vma->vm_flags & VM_MAYSHARE) {
368 /* Shared mappings always use reserves */
369 h->resv_huge_pages--;
370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 /*
372 * Only the process that called mmap() has reserves for
373 * private mappings.
374 */
375 h->resv_huge_pages--;
376 }
377 }
378
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
383 if (!(vma->vm_flags & VM_MAYSHARE))
384 vma->vm_private_data = (void *)0;
385 }
386
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390 if (vma->vm_flags & VM_MAYSHARE)
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
395 }
396
397 static void clear_gigantic_page(struct page *page,
398 unsigned long addr, unsigned long sz)
399 {
400 int i;
401 struct page *p = page;
402
403 might_sleep();
404 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
405 cond_resched();
406 clear_user_highpage(p, addr + i * PAGE_SIZE);
407 }
408 }
409 static void clear_huge_page(struct page *page,
410 unsigned long addr, unsigned long sz)
411 {
412 int i;
413
414 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
415 clear_gigantic_page(page, addr, sz);
416 return;
417 }
418
419 might_sleep();
420 for (i = 0; i < sz/PAGE_SIZE; i++) {
421 cond_resched();
422 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
423 }
424 }
425
426 static void copy_user_gigantic_page(struct page *dst, struct page *src,
427 unsigned long addr, struct vm_area_struct *vma)
428 {
429 int i;
430 struct hstate *h = hstate_vma(vma);
431 struct page *dst_base = dst;
432 struct page *src_base = src;
433
434 for (i = 0; i < pages_per_huge_page(h); ) {
435 cond_resched();
436 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
437
438 i++;
439 dst = mem_map_next(dst, dst_base, i);
440 src = mem_map_next(src, src_base, i);
441 }
442 }
443
444 static void copy_user_huge_page(struct page *dst, struct page *src,
445 unsigned long addr, struct vm_area_struct *vma)
446 {
447 int i;
448 struct hstate *h = hstate_vma(vma);
449
450 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
451 copy_user_gigantic_page(dst, src, addr, vma);
452 return;
453 }
454
455 might_sleep();
456 for (i = 0; i < pages_per_huge_page(h); i++) {
457 cond_resched();
458 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
459 }
460 }
461
462 static void copy_gigantic_page(struct page *dst, struct page *src)
463 {
464 int i;
465 struct hstate *h = page_hstate(src);
466 struct page *dst_base = dst;
467 struct page *src_base = src;
468
469 for (i = 0; i < pages_per_huge_page(h); ) {
470 cond_resched();
471 copy_highpage(dst, src);
472
473 i++;
474 dst = mem_map_next(dst, dst_base, i);
475 src = mem_map_next(src, src_base, i);
476 }
477 }
478
479 void copy_huge_page(struct page *dst, struct page *src)
480 {
481 int i;
482 struct hstate *h = page_hstate(src);
483
484 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
485 copy_gigantic_page(dst, src);
486 return;
487 }
488
489 might_sleep();
490 for (i = 0; i < pages_per_huge_page(h); i++) {
491 cond_resched();
492 copy_highpage(dst + i, src + i);
493 }
494 }
495
496 static void enqueue_huge_page(struct hstate *h, struct page *page)
497 {
498 int nid = page_to_nid(page);
499 list_add(&page->lru, &h->hugepage_freelists[nid]);
500 h->free_huge_pages++;
501 h->free_huge_pages_node[nid]++;
502 }
503
504 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
505 {
506 struct page *page;
507
508 if (list_empty(&h->hugepage_freelists[nid]))
509 return NULL;
510 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
511 list_del(&page->lru);
512 set_page_refcounted(page);
513 h->free_huge_pages--;
514 h->free_huge_pages_node[nid]--;
515 return page;
516 }
517
518 static struct page *dequeue_huge_page_vma(struct hstate *h,
519 struct vm_area_struct *vma,
520 unsigned long address, int avoid_reserve)
521 {
522 struct page *page = NULL;
523 struct mempolicy *mpol;
524 nodemask_t *nodemask;
525 struct zonelist *zonelist;
526 struct zone *zone;
527 struct zoneref *z;
528
529 get_mems_allowed();
530 zonelist = huge_zonelist(vma, address,
531 htlb_alloc_mask, &mpol, &nodemask);
532 /*
533 * A child process with MAP_PRIVATE mappings created by their parent
534 * have no page reserves. This check ensures that reservations are
535 * not "stolen". The child may still get SIGKILLed
536 */
537 if (!vma_has_reserves(vma) &&
538 h->free_huge_pages - h->resv_huge_pages == 0)
539 goto err;
540
541 /* If reserves cannot be used, ensure enough pages are in the pool */
542 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
543 goto err;;
544
545 for_each_zone_zonelist_nodemask(zone, z, zonelist,
546 MAX_NR_ZONES - 1, nodemask) {
547 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
548 page = dequeue_huge_page_node(h, zone_to_nid(zone));
549 if (page) {
550 if (!avoid_reserve)
551 decrement_hugepage_resv_vma(h, vma);
552 break;
553 }
554 }
555 }
556 err:
557 mpol_cond_put(mpol);
558 put_mems_allowed();
559 return page;
560 }
561
562 static void update_and_free_page(struct hstate *h, struct page *page)
563 {
564 int i;
565
566 VM_BUG_ON(h->order >= MAX_ORDER);
567
568 h->nr_huge_pages--;
569 h->nr_huge_pages_node[page_to_nid(page)]--;
570 for (i = 0; i < pages_per_huge_page(h); i++) {
571 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
572 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
573 1 << PG_private | 1<< PG_writeback);
574 }
575 set_compound_page_dtor(page, NULL);
576 set_page_refcounted(page);
577 arch_release_hugepage(page);
578 __free_pages(page, huge_page_order(h));
579 }
580
581 struct hstate *size_to_hstate(unsigned long size)
582 {
583 struct hstate *h;
584
585 for_each_hstate(h) {
586 if (huge_page_size(h) == size)
587 return h;
588 }
589 return NULL;
590 }
591
592 static void free_huge_page(struct page *page)
593 {
594 /*
595 * Can't pass hstate in here because it is called from the
596 * compound page destructor.
597 */
598 struct hstate *h = page_hstate(page);
599 int nid = page_to_nid(page);
600 struct address_space *mapping;
601
602 mapping = (struct address_space *) page_private(page);
603 set_page_private(page, 0);
604 page->mapping = NULL;
605 BUG_ON(page_count(page));
606 BUG_ON(page_mapcount(page));
607 INIT_LIST_HEAD(&page->lru);
608
609 spin_lock(&hugetlb_lock);
610 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
611 update_and_free_page(h, page);
612 h->surplus_huge_pages--;
613 h->surplus_huge_pages_node[nid]--;
614 } else {
615 enqueue_huge_page(h, page);
616 }
617 spin_unlock(&hugetlb_lock);
618 if (mapping)
619 hugetlb_put_quota(mapping, 1);
620 }
621
622 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
623 {
624 set_compound_page_dtor(page, free_huge_page);
625 spin_lock(&hugetlb_lock);
626 h->nr_huge_pages++;
627 h->nr_huge_pages_node[nid]++;
628 spin_unlock(&hugetlb_lock);
629 put_page(page); /* free it into the hugepage allocator */
630 }
631
632 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
633 {
634 int i;
635 int nr_pages = 1 << order;
636 struct page *p = page + 1;
637
638 /* we rely on prep_new_huge_page to set the destructor */
639 set_compound_order(page, order);
640 __SetPageHead(page);
641 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
642 __SetPageTail(p);
643 p->first_page = page;
644 }
645 }
646
647 int PageHuge(struct page *page)
648 {
649 compound_page_dtor *dtor;
650
651 if (!PageCompound(page))
652 return 0;
653
654 page = compound_head(page);
655 dtor = get_compound_page_dtor(page);
656
657 return dtor == free_huge_page;
658 }
659
660 EXPORT_SYMBOL_GPL(PageHuge);
661
662 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
663 {
664 struct page *page;
665
666 if (h->order >= MAX_ORDER)
667 return NULL;
668
669 page = alloc_pages_exact_node(nid,
670 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
671 __GFP_REPEAT|__GFP_NOWARN,
672 huge_page_order(h));
673 if (page) {
674 if (arch_prepare_hugepage(page)) {
675 __free_pages(page, huge_page_order(h));
676 return NULL;
677 }
678 prep_new_huge_page(h, page, nid);
679 }
680
681 return page;
682 }
683
684 /*
685 * common helper functions for hstate_next_node_to_{alloc|free}.
686 * We may have allocated or freed a huge page based on a different
687 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
688 * be outside of *nodes_allowed. Ensure that we use an allowed
689 * node for alloc or free.
690 */
691 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
692 {
693 nid = next_node(nid, *nodes_allowed);
694 if (nid == MAX_NUMNODES)
695 nid = first_node(*nodes_allowed);
696 VM_BUG_ON(nid >= MAX_NUMNODES);
697
698 return nid;
699 }
700
701 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
702 {
703 if (!node_isset(nid, *nodes_allowed))
704 nid = next_node_allowed(nid, nodes_allowed);
705 return nid;
706 }
707
708 /*
709 * returns the previously saved node ["this node"] from which to
710 * allocate a persistent huge page for the pool and advance the
711 * next node from which to allocate, handling wrap at end of node
712 * mask.
713 */
714 static int hstate_next_node_to_alloc(struct hstate *h,
715 nodemask_t *nodes_allowed)
716 {
717 int nid;
718
719 VM_BUG_ON(!nodes_allowed);
720
721 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
722 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
723
724 return nid;
725 }
726
727 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
728 {
729 struct page *page;
730 int start_nid;
731 int next_nid;
732 int ret = 0;
733
734 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
735 next_nid = start_nid;
736
737 do {
738 page = alloc_fresh_huge_page_node(h, next_nid);
739 if (page) {
740 ret = 1;
741 break;
742 }
743 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
744 } while (next_nid != start_nid);
745
746 if (ret)
747 count_vm_event(HTLB_BUDDY_PGALLOC);
748 else
749 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
750
751 return ret;
752 }
753
754 /*
755 * helper for free_pool_huge_page() - return the previously saved
756 * node ["this node"] from which to free a huge page. Advance the
757 * next node id whether or not we find a free huge page to free so
758 * that the next attempt to free addresses the next node.
759 */
760 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
761 {
762 int nid;
763
764 VM_BUG_ON(!nodes_allowed);
765
766 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
767 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
768
769 return nid;
770 }
771
772 /*
773 * Free huge page from pool from next node to free.
774 * Attempt to keep persistent huge pages more or less
775 * balanced over allowed nodes.
776 * Called with hugetlb_lock locked.
777 */
778 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
779 bool acct_surplus)
780 {
781 int start_nid;
782 int next_nid;
783 int ret = 0;
784
785 start_nid = hstate_next_node_to_free(h, nodes_allowed);
786 next_nid = start_nid;
787
788 do {
789 /*
790 * If we're returning unused surplus pages, only examine
791 * nodes with surplus pages.
792 */
793 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
794 !list_empty(&h->hugepage_freelists[next_nid])) {
795 struct page *page =
796 list_entry(h->hugepage_freelists[next_nid].next,
797 struct page, lru);
798 list_del(&page->lru);
799 h->free_huge_pages--;
800 h->free_huge_pages_node[next_nid]--;
801 if (acct_surplus) {
802 h->surplus_huge_pages--;
803 h->surplus_huge_pages_node[next_nid]--;
804 }
805 update_and_free_page(h, page);
806 ret = 1;
807 break;
808 }
809 next_nid = hstate_next_node_to_free(h, nodes_allowed);
810 } while (next_nid != start_nid);
811
812 return ret;
813 }
814
815 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
816 {
817 struct page *page;
818 unsigned int r_nid;
819
820 if (h->order >= MAX_ORDER)
821 return NULL;
822
823 /*
824 * Assume we will successfully allocate the surplus page to
825 * prevent racing processes from causing the surplus to exceed
826 * overcommit
827 *
828 * This however introduces a different race, where a process B
829 * tries to grow the static hugepage pool while alloc_pages() is
830 * called by process A. B will only examine the per-node
831 * counters in determining if surplus huge pages can be
832 * converted to normal huge pages in adjust_pool_surplus(). A
833 * won't be able to increment the per-node counter, until the
834 * lock is dropped by B, but B doesn't drop hugetlb_lock until
835 * no more huge pages can be converted from surplus to normal
836 * state (and doesn't try to convert again). Thus, we have a
837 * case where a surplus huge page exists, the pool is grown, and
838 * the surplus huge page still exists after, even though it
839 * should just have been converted to a normal huge page. This
840 * does not leak memory, though, as the hugepage will be freed
841 * once it is out of use. It also does not allow the counters to
842 * go out of whack in adjust_pool_surplus() as we don't modify
843 * the node values until we've gotten the hugepage and only the
844 * per-node value is checked there.
845 */
846 spin_lock(&hugetlb_lock);
847 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
848 spin_unlock(&hugetlb_lock);
849 return NULL;
850 } else {
851 h->nr_huge_pages++;
852 h->surplus_huge_pages++;
853 }
854 spin_unlock(&hugetlb_lock);
855
856 if (nid == NUMA_NO_NODE)
857 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
858 __GFP_REPEAT|__GFP_NOWARN,
859 huge_page_order(h));
860 else
861 page = alloc_pages_exact_node(nid,
862 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
863 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
864
865 if (page && arch_prepare_hugepage(page)) {
866 __free_pages(page, huge_page_order(h));
867 return NULL;
868 }
869
870 spin_lock(&hugetlb_lock);
871 if (page) {
872 r_nid = page_to_nid(page);
873 set_compound_page_dtor(page, free_huge_page);
874 /*
875 * We incremented the global counters already
876 */
877 h->nr_huge_pages_node[r_nid]++;
878 h->surplus_huge_pages_node[r_nid]++;
879 __count_vm_event(HTLB_BUDDY_PGALLOC);
880 } else {
881 h->nr_huge_pages--;
882 h->surplus_huge_pages--;
883 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
884 }
885 spin_unlock(&hugetlb_lock);
886
887 return page;
888 }
889
890 /*
891 * This allocation function is useful in the context where vma is irrelevant.
892 * E.g. soft-offlining uses this function because it only cares physical
893 * address of error page.
894 */
895 struct page *alloc_huge_page_node(struct hstate *h, int nid)
896 {
897 struct page *page;
898
899 spin_lock(&hugetlb_lock);
900 page = dequeue_huge_page_node(h, nid);
901 spin_unlock(&hugetlb_lock);
902
903 if (!page)
904 page = alloc_buddy_huge_page(h, nid);
905
906 return page;
907 }
908
909 /*
910 * Increase the hugetlb pool such that it can accomodate a reservation
911 * of size 'delta'.
912 */
913 static int gather_surplus_pages(struct hstate *h, int delta)
914 {
915 struct list_head surplus_list;
916 struct page *page, *tmp;
917 int ret, i;
918 int needed, allocated;
919
920 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
921 if (needed <= 0) {
922 h->resv_huge_pages += delta;
923 return 0;
924 }
925
926 allocated = 0;
927 INIT_LIST_HEAD(&surplus_list);
928
929 ret = -ENOMEM;
930 retry:
931 spin_unlock(&hugetlb_lock);
932 for (i = 0; i < needed; i++) {
933 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
934 if (!page)
935 /*
936 * We were not able to allocate enough pages to
937 * satisfy the entire reservation so we free what
938 * we've allocated so far.
939 */
940 goto free;
941
942 list_add(&page->lru, &surplus_list);
943 }
944 allocated += needed;
945
946 /*
947 * After retaking hugetlb_lock, we need to recalculate 'needed'
948 * because either resv_huge_pages or free_huge_pages may have changed.
949 */
950 spin_lock(&hugetlb_lock);
951 needed = (h->resv_huge_pages + delta) -
952 (h->free_huge_pages + allocated);
953 if (needed > 0)
954 goto retry;
955
956 /*
957 * The surplus_list now contains _at_least_ the number of extra pages
958 * needed to accomodate the reservation. Add the appropriate number
959 * of pages to the hugetlb pool and free the extras back to the buddy
960 * allocator. Commit the entire reservation here to prevent another
961 * process from stealing the pages as they are added to the pool but
962 * before they are reserved.
963 */
964 needed += allocated;
965 h->resv_huge_pages += delta;
966 ret = 0;
967
968 spin_unlock(&hugetlb_lock);
969 /* Free the needed pages to the hugetlb pool */
970 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
971 if ((--needed) < 0)
972 break;
973 list_del(&page->lru);
974 /*
975 * This page is now managed by the hugetlb allocator and has
976 * no users -- drop the buddy allocator's reference.
977 */
978 put_page_testzero(page);
979 VM_BUG_ON(page_count(page));
980 enqueue_huge_page(h, page);
981 }
982
983 /* Free unnecessary surplus pages to the buddy allocator */
984 free:
985 if (!list_empty(&surplus_list)) {
986 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
987 list_del(&page->lru);
988 put_page(page);
989 }
990 }
991 spin_lock(&hugetlb_lock);
992
993 return ret;
994 }
995
996 /*
997 * When releasing a hugetlb pool reservation, any surplus pages that were
998 * allocated to satisfy the reservation must be explicitly freed if they were
999 * never used.
1000 * Called with hugetlb_lock held.
1001 */
1002 static void return_unused_surplus_pages(struct hstate *h,
1003 unsigned long unused_resv_pages)
1004 {
1005 unsigned long nr_pages;
1006
1007 /* Uncommit the reservation */
1008 h->resv_huge_pages -= unused_resv_pages;
1009
1010 /* Cannot return gigantic pages currently */
1011 if (h->order >= MAX_ORDER)
1012 return;
1013
1014 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1015
1016 /*
1017 * We want to release as many surplus pages as possible, spread
1018 * evenly across all nodes with memory. Iterate across these nodes
1019 * until we can no longer free unreserved surplus pages. This occurs
1020 * when the nodes with surplus pages have no free pages.
1021 * free_pool_huge_page() will balance the the freed pages across the
1022 * on-line nodes with memory and will handle the hstate accounting.
1023 */
1024 while (nr_pages--) {
1025 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1026 break;
1027 }
1028 }
1029
1030 /*
1031 * Determine if the huge page at addr within the vma has an associated
1032 * reservation. Where it does not we will need to logically increase
1033 * reservation and actually increase quota before an allocation can occur.
1034 * Where any new reservation would be required the reservation change is
1035 * prepared, but not committed. Once the page has been quota'd allocated
1036 * an instantiated the change should be committed via vma_commit_reservation.
1037 * No action is required on failure.
1038 */
1039 static long vma_needs_reservation(struct hstate *h,
1040 struct vm_area_struct *vma, unsigned long addr)
1041 {
1042 struct address_space *mapping = vma->vm_file->f_mapping;
1043 struct inode *inode = mapping->host;
1044
1045 if (vma->vm_flags & VM_MAYSHARE) {
1046 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1047 return region_chg(&inode->i_mapping->private_list,
1048 idx, idx + 1);
1049
1050 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1051 return 1;
1052
1053 } else {
1054 long err;
1055 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1056 struct resv_map *reservations = vma_resv_map(vma);
1057
1058 err = region_chg(&reservations->regions, idx, idx + 1);
1059 if (err < 0)
1060 return err;
1061 return 0;
1062 }
1063 }
1064 static void vma_commit_reservation(struct hstate *h,
1065 struct vm_area_struct *vma, unsigned long addr)
1066 {
1067 struct address_space *mapping = vma->vm_file->f_mapping;
1068 struct inode *inode = mapping->host;
1069
1070 if (vma->vm_flags & VM_MAYSHARE) {
1071 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1072 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1073
1074 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1075 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1076 struct resv_map *reservations = vma_resv_map(vma);
1077
1078 /* Mark this page used in the map. */
1079 region_add(&reservations->regions, idx, idx + 1);
1080 }
1081 }
1082
1083 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1084 unsigned long addr, int avoid_reserve)
1085 {
1086 struct hstate *h = hstate_vma(vma);
1087 struct page *page;
1088 struct address_space *mapping = vma->vm_file->f_mapping;
1089 struct inode *inode = mapping->host;
1090 long chg;
1091
1092 /*
1093 * Processes that did not create the mapping will have no reserves and
1094 * will not have accounted against quota. Check that the quota can be
1095 * made before satisfying the allocation
1096 * MAP_NORESERVE mappings may also need pages and quota allocated
1097 * if no reserve mapping overlaps.
1098 */
1099 chg = vma_needs_reservation(h, vma, addr);
1100 if (chg < 0)
1101 return ERR_PTR(chg);
1102 if (chg)
1103 if (hugetlb_get_quota(inode->i_mapping, chg))
1104 return ERR_PTR(-ENOSPC);
1105
1106 spin_lock(&hugetlb_lock);
1107 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1108 spin_unlock(&hugetlb_lock);
1109
1110 if (!page) {
1111 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1112 if (!page) {
1113 hugetlb_put_quota(inode->i_mapping, chg);
1114 return ERR_PTR(-VM_FAULT_SIGBUS);
1115 }
1116 }
1117
1118 set_page_private(page, (unsigned long) mapping);
1119
1120 vma_commit_reservation(h, vma, addr);
1121
1122 return page;
1123 }
1124
1125 int __weak alloc_bootmem_huge_page(struct hstate *h)
1126 {
1127 struct huge_bootmem_page *m;
1128 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1129
1130 while (nr_nodes) {
1131 void *addr;
1132
1133 addr = __alloc_bootmem_node_nopanic(
1134 NODE_DATA(hstate_next_node_to_alloc(h,
1135 &node_states[N_HIGH_MEMORY])),
1136 huge_page_size(h), huge_page_size(h), 0);
1137
1138 if (addr) {
1139 /*
1140 * Use the beginning of the huge page to store the
1141 * huge_bootmem_page struct (until gather_bootmem
1142 * puts them into the mem_map).
1143 */
1144 m = addr;
1145 goto found;
1146 }
1147 nr_nodes--;
1148 }
1149 return 0;
1150
1151 found:
1152 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1153 /* Put them into a private list first because mem_map is not up yet */
1154 list_add(&m->list, &huge_boot_pages);
1155 m->hstate = h;
1156 return 1;
1157 }
1158
1159 static void prep_compound_huge_page(struct page *page, int order)
1160 {
1161 if (unlikely(order > (MAX_ORDER - 1)))
1162 prep_compound_gigantic_page(page, order);
1163 else
1164 prep_compound_page(page, order);
1165 }
1166
1167 /* Put bootmem huge pages into the standard lists after mem_map is up */
1168 static void __init gather_bootmem_prealloc(void)
1169 {
1170 struct huge_bootmem_page *m;
1171
1172 list_for_each_entry(m, &huge_boot_pages, list) {
1173 struct page *page = virt_to_page(m);
1174 struct hstate *h = m->hstate;
1175 __ClearPageReserved(page);
1176 WARN_ON(page_count(page) != 1);
1177 prep_compound_huge_page(page, h->order);
1178 prep_new_huge_page(h, page, page_to_nid(page));
1179 }
1180 }
1181
1182 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1183 {
1184 unsigned long i;
1185
1186 for (i = 0; i < h->max_huge_pages; ++i) {
1187 if (h->order >= MAX_ORDER) {
1188 if (!alloc_bootmem_huge_page(h))
1189 break;
1190 } else if (!alloc_fresh_huge_page(h,
1191 &node_states[N_HIGH_MEMORY]))
1192 break;
1193 }
1194 h->max_huge_pages = i;
1195 }
1196
1197 static void __init hugetlb_init_hstates(void)
1198 {
1199 struct hstate *h;
1200
1201 for_each_hstate(h) {
1202 /* oversize hugepages were init'ed in early boot */
1203 if (h->order < MAX_ORDER)
1204 hugetlb_hstate_alloc_pages(h);
1205 }
1206 }
1207
1208 static char * __init memfmt(char *buf, unsigned long n)
1209 {
1210 if (n >= (1UL << 30))
1211 sprintf(buf, "%lu GB", n >> 30);
1212 else if (n >= (1UL << 20))
1213 sprintf(buf, "%lu MB", n >> 20);
1214 else
1215 sprintf(buf, "%lu KB", n >> 10);
1216 return buf;
1217 }
1218
1219 static void __init report_hugepages(void)
1220 {
1221 struct hstate *h;
1222
1223 for_each_hstate(h) {
1224 char buf[32];
1225 printk(KERN_INFO "HugeTLB registered %s page size, "
1226 "pre-allocated %ld pages\n",
1227 memfmt(buf, huge_page_size(h)),
1228 h->free_huge_pages);
1229 }
1230 }
1231
1232 #ifdef CONFIG_HIGHMEM
1233 static void try_to_free_low(struct hstate *h, unsigned long count,
1234 nodemask_t *nodes_allowed)
1235 {
1236 int i;
1237
1238 if (h->order >= MAX_ORDER)
1239 return;
1240
1241 for_each_node_mask(i, *nodes_allowed) {
1242 struct page *page, *next;
1243 struct list_head *freel = &h->hugepage_freelists[i];
1244 list_for_each_entry_safe(page, next, freel, lru) {
1245 if (count >= h->nr_huge_pages)
1246 return;
1247 if (PageHighMem(page))
1248 continue;
1249 list_del(&page->lru);
1250 update_and_free_page(h, page);
1251 h->free_huge_pages--;
1252 h->free_huge_pages_node[page_to_nid(page)]--;
1253 }
1254 }
1255 }
1256 #else
1257 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1258 nodemask_t *nodes_allowed)
1259 {
1260 }
1261 #endif
1262
1263 /*
1264 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1265 * balanced by operating on them in a round-robin fashion.
1266 * Returns 1 if an adjustment was made.
1267 */
1268 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1269 int delta)
1270 {
1271 int start_nid, next_nid;
1272 int ret = 0;
1273
1274 VM_BUG_ON(delta != -1 && delta != 1);
1275
1276 if (delta < 0)
1277 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1278 else
1279 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1280 next_nid = start_nid;
1281
1282 do {
1283 int nid = next_nid;
1284 if (delta < 0) {
1285 /*
1286 * To shrink on this node, there must be a surplus page
1287 */
1288 if (!h->surplus_huge_pages_node[nid]) {
1289 next_nid = hstate_next_node_to_alloc(h,
1290 nodes_allowed);
1291 continue;
1292 }
1293 }
1294 if (delta > 0) {
1295 /*
1296 * Surplus cannot exceed the total number of pages
1297 */
1298 if (h->surplus_huge_pages_node[nid] >=
1299 h->nr_huge_pages_node[nid]) {
1300 next_nid = hstate_next_node_to_free(h,
1301 nodes_allowed);
1302 continue;
1303 }
1304 }
1305
1306 h->surplus_huge_pages += delta;
1307 h->surplus_huge_pages_node[nid] += delta;
1308 ret = 1;
1309 break;
1310 } while (next_nid != start_nid);
1311
1312 return ret;
1313 }
1314
1315 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1316 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1317 nodemask_t *nodes_allowed)
1318 {
1319 unsigned long min_count, ret;
1320
1321 if (h->order >= MAX_ORDER)
1322 return h->max_huge_pages;
1323
1324 /*
1325 * Increase the pool size
1326 * First take pages out of surplus state. Then make up the
1327 * remaining difference by allocating fresh huge pages.
1328 *
1329 * We might race with alloc_buddy_huge_page() here and be unable
1330 * to convert a surplus huge page to a normal huge page. That is
1331 * not critical, though, it just means the overall size of the
1332 * pool might be one hugepage larger than it needs to be, but
1333 * within all the constraints specified by the sysctls.
1334 */
1335 spin_lock(&hugetlb_lock);
1336 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1337 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1338 break;
1339 }
1340
1341 while (count > persistent_huge_pages(h)) {
1342 /*
1343 * If this allocation races such that we no longer need the
1344 * page, free_huge_page will handle it by freeing the page
1345 * and reducing the surplus.
1346 */
1347 spin_unlock(&hugetlb_lock);
1348 ret = alloc_fresh_huge_page(h, nodes_allowed);
1349 spin_lock(&hugetlb_lock);
1350 if (!ret)
1351 goto out;
1352
1353 /* Bail for signals. Probably ctrl-c from user */
1354 if (signal_pending(current))
1355 goto out;
1356 }
1357
1358 /*
1359 * Decrease the pool size
1360 * First return free pages to the buddy allocator (being careful
1361 * to keep enough around to satisfy reservations). Then place
1362 * pages into surplus state as needed so the pool will shrink
1363 * to the desired size as pages become free.
1364 *
1365 * By placing pages into the surplus state independent of the
1366 * overcommit value, we are allowing the surplus pool size to
1367 * exceed overcommit. There are few sane options here. Since
1368 * alloc_buddy_huge_page() is checking the global counter,
1369 * though, we'll note that we're not allowed to exceed surplus
1370 * and won't grow the pool anywhere else. Not until one of the
1371 * sysctls are changed, or the surplus pages go out of use.
1372 */
1373 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1374 min_count = max(count, min_count);
1375 try_to_free_low(h, min_count, nodes_allowed);
1376 while (min_count < persistent_huge_pages(h)) {
1377 if (!free_pool_huge_page(h, nodes_allowed, 0))
1378 break;
1379 }
1380 while (count < persistent_huge_pages(h)) {
1381 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1382 break;
1383 }
1384 out:
1385 ret = persistent_huge_pages(h);
1386 spin_unlock(&hugetlb_lock);
1387 return ret;
1388 }
1389
1390 #define HSTATE_ATTR_RO(_name) \
1391 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1392
1393 #define HSTATE_ATTR(_name) \
1394 static struct kobj_attribute _name##_attr = \
1395 __ATTR(_name, 0644, _name##_show, _name##_store)
1396
1397 static struct kobject *hugepages_kobj;
1398 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1399
1400 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1401
1402 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1403 {
1404 int i;
1405
1406 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1407 if (hstate_kobjs[i] == kobj) {
1408 if (nidp)
1409 *nidp = NUMA_NO_NODE;
1410 return &hstates[i];
1411 }
1412
1413 return kobj_to_node_hstate(kobj, nidp);
1414 }
1415
1416 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1417 struct kobj_attribute *attr, char *buf)
1418 {
1419 struct hstate *h;
1420 unsigned long nr_huge_pages;
1421 int nid;
1422
1423 h = kobj_to_hstate(kobj, &nid);
1424 if (nid == NUMA_NO_NODE)
1425 nr_huge_pages = h->nr_huge_pages;
1426 else
1427 nr_huge_pages = h->nr_huge_pages_node[nid];
1428
1429 return sprintf(buf, "%lu\n", nr_huge_pages);
1430 }
1431 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1432 struct kobject *kobj, struct kobj_attribute *attr,
1433 const char *buf, size_t len)
1434 {
1435 int err;
1436 int nid;
1437 unsigned long count;
1438 struct hstate *h;
1439 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1440
1441 err = strict_strtoul(buf, 10, &count);
1442 if (err)
1443 return 0;
1444
1445 h = kobj_to_hstate(kobj, &nid);
1446 if (nid == NUMA_NO_NODE) {
1447 /*
1448 * global hstate attribute
1449 */
1450 if (!(obey_mempolicy &&
1451 init_nodemask_of_mempolicy(nodes_allowed))) {
1452 NODEMASK_FREE(nodes_allowed);
1453 nodes_allowed = &node_states[N_HIGH_MEMORY];
1454 }
1455 } else if (nodes_allowed) {
1456 /*
1457 * per node hstate attribute: adjust count to global,
1458 * but restrict alloc/free to the specified node.
1459 */
1460 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1461 init_nodemask_of_node(nodes_allowed, nid);
1462 } else
1463 nodes_allowed = &node_states[N_HIGH_MEMORY];
1464
1465 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1466
1467 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1468 NODEMASK_FREE(nodes_allowed);
1469
1470 return len;
1471 }
1472
1473 static ssize_t nr_hugepages_show(struct kobject *kobj,
1474 struct kobj_attribute *attr, char *buf)
1475 {
1476 return nr_hugepages_show_common(kobj, attr, buf);
1477 }
1478
1479 static ssize_t nr_hugepages_store(struct kobject *kobj,
1480 struct kobj_attribute *attr, const char *buf, size_t len)
1481 {
1482 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1483 }
1484 HSTATE_ATTR(nr_hugepages);
1485
1486 #ifdef CONFIG_NUMA
1487
1488 /*
1489 * hstate attribute for optionally mempolicy-based constraint on persistent
1490 * huge page alloc/free.
1491 */
1492 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1493 struct kobj_attribute *attr, char *buf)
1494 {
1495 return nr_hugepages_show_common(kobj, attr, buf);
1496 }
1497
1498 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1499 struct kobj_attribute *attr, const char *buf, size_t len)
1500 {
1501 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1502 }
1503 HSTATE_ATTR(nr_hugepages_mempolicy);
1504 #endif
1505
1506
1507 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1508 struct kobj_attribute *attr, char *buf)
1509 {
1510 struct hstate *h = kobj_to_hstate(kobj, NULL);
1511 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1512 }
1513 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1514 struct kobj_attribute *attr, const char *buf, size_t count)
1515 {
1516 int err;
1517 unsigned long input;
1518 struct hstate *h = kobj_to_hstate(kobj, NULL);
1519
1520 err = strict_strtoul(buf, 10, &input);
1521 if (err)
1522 return 0;
1523
1524 spin_lock(&hugetlb_lock);
1525 h->nr_overcommit_huge_pages = input;
1526 spin_unlock(&hugetlb_lock);
1527
1528 return count;
1529 }
1530 HSTATE_ATTR(nr_overcommit_hugepages);
1531
1532 static ssize_t free_hugepages_show(struct kobject *kobj,
1533 struct kobj_attribute *attr, char *buf)
1534 {
1535 struct hstate *h;
1536 unsigned long free_huge_pages;
1537 int nid;
1538
1539 h = kobj_to_hstate(kobj, &nid);
1540 if (nid == NUMA_NO_NODE)
1541 free_huge_pages = h->free_huge_pages;
1542 else
1543 free_huge_pages = h->free_huge_pages_node[nid];
1544
1545 return sprintf(buf, "%lu\n", free_huge_pages);
1546 }
1547 HSTATE_ATTR_RO(free_hugepages);
1548
1549 static ssize_t resv_hugepages_show(struct kobject *kobj,
1550 struct kobj_attribute *attr, char *buf)
1551 {
1552 struct hstate *h = kobj_to_hstate(kobj, NULL);
1553 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1554 }
1555 HSTATE_ATTR_RO(resv_hugepages);
1556
1557 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1558 struct kobj_attribute *attr, char *buf)
1559 {
1560 struct hstate *h;
1561 unsigned long surplus_huge_pages;
1562 int nid;
1563
1564 h = kobj_to_hstate(kobj, &nid);
1565 if (nid == NUMA_NO_NODE)
1566 surplus_huge_pages = h->surplus_huge_pages;
1567 else
1568 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1569
1570 return sprintf(buf, "%lu\n", surplus_huge_pages);
1571 }
1572 HSTATE_ATTR_RO(surplus_hugepages);
1573
1574 static struct attribute *hstate_attrs[] = {
1575 &nr_hugepages_attr.attr,
1576 &nr_overcommit_hugepages_attr.attr,
1577 &free_hugepages_attr.attr,
1578 &resv_hugepages_attr.attr,
1579 &surplus_hugepages_attr.attr,
1580 #ifdef CONFIG_NUMA
1581 &nr_hugepages_mempolicy_attr.attr,
1582 #endif
1583 NULL,
1584 };
1585
1586 static struct attribute_group hstate_attr_group = {
1587 .attrs = hstate_attrs,
1588 };
1589
1590 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1591 struct kobject **hstate_kobjs,
1592 struct attribute_group *hstate_attr_group)
1593 {
1594 int retval;
1595 int hi = h - hstates;
1596
1597 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1598 if (!hstate_kobjs[hi])
1599 return -ENOMEM;
1600
1601 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1602 if (retval)
1603 kobject_put(hstate_kobjs[hi]);
1604
1605 return retval;
1606 }
1607
1608 static void __init hugetlb_sysfs_init(void)
1609 {
1610 struct hstate *h;
1611 int err;
1612
1613 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1614 if (!hugepages_kobj)
1615 return;
1616
1617 for_each_hstate(h) {
1618 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1619 hstate_kobjs, &hstate_attr_group);
1620 if (err)
1621 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1622 h->name);
1623 }
1624 }
1625
1626 #ifdef CONFIG_NUMA
1627
1628 /*
1629 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1630 * with node sysdevs in node_devices[] using a parallel array. The array
1631 * index of a node sysdev or _hstate == node id.
1632 * This is here to avoid any static dependency of the node sysdev driver, in
1633 * the base kernel, on the hugetlb module.
1634 */
1635 struct node_hstate {
1636 struct kobject *hugepages_kobj;
1637 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1638 };
1639 struct node_hstate node_hstates[MAX_NUMNODES];
1640
1641 /*
1642 * A subset of global hstate attributes for node sysdevs
1643 */
1644 static struct attribute *per_node_hstate_attrs[] = {
1645 &nr_hugepages_attr.attr,
1646 &free_hugepages_attr.attr,
1647 &surplus_hugepages_attr.attr,
1648 NULL,
1649 };
1650
1651 static struct attribute_group per_node_hstate_attr_group = {
1652 .attrs = per_node_hstate_attrs,
1653 };
1654
1655 /*
1656 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1657 * Returns node id via non-NULL nidp.
1658 */
1659 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1660 {
1661 int nid;
1662
1663 for (nid = 0; nid < nr_node_ids; nid++) {
1664 struct node_hstate *nhs = &node_hstates[nid];
1665 int i;
1666 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1667 if (nhs->hstate_kobjs[i] == kobj) {
1668 if (nidp)
1669 *nidp = nid;
1670 return &hstates[i];
1671 }
1672 }
1673
1674 BUG();
1675 return NULL;
1676 }
1677
1678 /*
1679 * Unregister hstate attributes from a single node sysdev.
1680 * No-op if no hstate attributes attached.
1681 */
1682 void hugetlb_unregister_node(struct node *node)
1683 {
1684 struct hstate *h;
1685 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1686
1687 if (!nhs->hugepages_kobj)
1688 return; /* no hstate attributes */
1689
1690 for_each_hstate(h)
1691 if (nhs->hstate_kobjs[h - hstates]) {
1692 kobject_put(nhs->hstate_kobjs[h - hstates]);
1693 nhs->hstate_kobjs[h - hstates] = NULL;
1694 }
1695
1696 kobject_put(nhs->hugepages_kobj);
1697 nhs->hugepages_kobj = NULL;
1698 }
1699
1700 /*
1701 * hugetlb module exit: unregister hstate attributes from node sysdevs
1702 * that have them.
1703 */
1704 static void hugetlb_unregister_all_nodes(void)
1705 {
1706 int nid;
1707
1708 /*
1709 * disable node sysdev registrations.
1710 */
1711 register_hugetlbfs_with_node(NULL, NULL);
1712
1713 /*
1714 * remove hstate attributes from any nodes that have them.
1715 */
1716 for (nid = 0; nid < nr_node_ids; nid++)
1717 hugetlb_unregister_node(&node_devices[nid]);
1718 }
1719
1720 /*
1721 * Register hstate attributes for a single node sysdev.
1722 * No-op if attributes already registered.
1723 */
1724 void hugetlb_register_node(struct node *node)
1725 {
1726 struct hstate *h;
1727 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1728 int err;
1729
1730 if (nhs->hugepages_kobj)
1731 return; /* already allocated */
1732
1733 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1734 &node->sysdev.kobj);
1735 if (!nhs->hugepages_kobj)
1736 return;
1737
1738 for_each_hstate(h) {
1739 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1740 nhs->hstate_kobjs,
1741 &per_node_hstate_attr_group);
1742 if (err) {
1743 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1744 " for node %d\n",
1745 h->name, node->sysdev.id);
1746 hugetlb_unregister_node(node);
1747 break;
1748 }
1749 }
1750 }
1751
1752 /*
1753 * hugetlb init time: register hstate attributes for all registered node
1754 * sysdevs of nodes that have memory. All on-line nodes should have
1755 * registered their associated sysdev by this time.
1756 */
1757 static void hugetlb_register_all_nodes(void)
1758 {
1759 int nid;
1760
1761 for_each_node_state(nid, N_HIGH_MEMORY) {
1762 struct node *node = &node_devices[nid];
1763 if (node->sysdev.id == nid)
1764 hugetlb_register_node(node);
1765 }
1766
1767 /*
1768 * Let the node sysdev driver know we're here so it can
1769 * [un]register hstate attributes on node hotplug.
1770 */
1771 register_hugetlbfs_with_node(hugetlb_register_node,
1772 hugetlb_unregister_node);
1773 }
1774 #else /* !CONFIG_NUMA */
1775
1776 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1777 {
1778 BUG();
1779 if (nidp)
1780 *nidp = -1;
1781 return NULL;
1782 }
1783
1784 static void hugetlb_unregister_all_nodes(void) { }
1785
1786 static void hugetlb_register_all_nodes(void) { }
1787
1788 #endif
1789
1790 static void __exit hugetlb_exit(void)
1791 {
1792 struct hstate *h;
1793
1794 hugetlb_unregister_all_nodes();
1795
1796 for_each_hstate(h) {
1797 kobject_put(hstate_kobjs[h - hstates]);
1798 }
1799
1800 kobject_put(hugepages_kobj);
1801 }
1802 module_exit(hugetlb_exit);
1803
1804 static int __init hugetlb_init(void)
1805 {
1806 /* Some platform decide whether they support huge pages at boot
1807 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1808 * there is no such support
1809 */
1810 if (HPAGE_SHIFT == 0)
1811 return 0;
1812
1813 if (!size_to_hstate(default_hstate_size)) {
1814 default_hstate_size = HPAGE_SIZE;
1815 if (!size_to_hstate(default_hstate_size))
1816 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1817 }
1818 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1819 if (default_hstate_max_huge_pages)
1820 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1821
1822 hugetlb_init_hstates();
1823
1824 gather_bootmem_prealloc();
1825
1826 report_hugepages();
1827
1828 hugetlb_sysfs_init();
1829
1830 hugetlb_register_all_nodes();
1831
1832 return 0;
1833 }
1834 module_init(hugetlb_init);
1835
1836 /* Should be called on processing a hugepagesz=... option */
1837 void __init hugetlb_add_hstate(unsigned order)
1838 {
1839 struct hstate *h;
1840 unsigned long i;
1841
1842 if (size_to_hstate(PAGE_SIZE << order)) {
1843 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1844 return;
1845 }
1846 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1847 BUG_ON(order == 0);
1848 h = &hstates[max_hstate++];
1849 h->order = order;
1850 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1851 h->nr_huge_pages = 0;
1852 h->free_huge_pages = 0;
1853 for (i = 0; i < MAX_NUMNODES; ++i)
1854 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1855 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1856 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1857 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1858 huge_page_size(h)/1024);
1859
1860 parsed_hstate = h;
1861 }
1862
1863 static int __init hugetlb_nrpages_setup(char *s)
1864 {
1865 unsigned long *mhp;
1866 static unsigned long *last_mhp;
1867
1868 /*
1869 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1870 * so this hugepages= parameter goes to the "default hstate".
1871 */
1872 if (!max_hstate)
1873 mhp = &default_hstate_max_huge_pages;
1874 else
1875 mhp = &parsed_hstate->max_huge_pages;
1876
1877 if (mhp == last_mhp) {
1878 printk(KERN_WARNING "hugepages= specified twice without "
1879 "interleaving hugepagesz=, ignoring\n");
1880 return 1;
1881 }
1882
1883 if (sscanf(s, "%lu", mhp) <= 0)
1884 *mhp = 0;
1885
1886 /*
1887 * Global state is always initialized later in hugetlb_init.
1888 * But we need to allocate >= MAX_ORDER hstates here early to still
1889 * use the bootmem allocator.
1890 */
1891 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1892 hugetlb_hstate_alloc_pages(parsed_hstate);
1893
1894 last_mhp = mhp;
1895
1896 return 1;
1897 }
1898 __setup("hugepages=", hugetlb_nrpages_setup);
1899
1900 static int __init hugetlb_default_setup(char *s)
1901 {
1902 default_hstate_size = memparse(s, &s);
1903 return 1;
1904 }
1905 __setup("default_hugepagesz=", hugetlb_default_setup);
1906
1907 static unsigned int cpuset_mems_nr(unsigned int *array)
1908 {
1909 int node;
1910 unsigned int nr = 0;
1911
1912 for_each_node_mask(node, cpuset_current_mems_allowed)
1913 nr += array[node];
1914
1915 return nr;
1916 }
1917
1918 #ifdef CONFIG_SYSCTL
1919 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1920 struct ctl_table *table, int write,
1921 void __user *buffer, size_t *length, loff_t *ppos)
1922 {
1923 struct hstate *h = &default_hstate;
1924 unsigned long tmp;
1925
1926 if (!write)
1927 tmp = h->max_huge_pages;
1928
1929 table->data = &tmp;
1930 table->maxlen = sizeof(unsigned long);
1931 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1932
1933 if (write) {
1934 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1935 GFP_KERNEL | __GFP_NORETRY);
1936 if (!(obey_mempolicy &&
1937 init_nodemask_of_mempolicy(nodes_allowed))) {
1938 NODEMASK_FREE(nodes_allowed);
1939 nodes_allowed = &node_states[N_HIGH_MEMORY];
1940 }
1941 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1942
1943 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1944 NODEMASK_FREE(nodes_allowed);
1945 }
1946
1947 return 0;
1948 }
1949
1950 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1951 void __user *buffer, size_t *length, loff_t *ppos)
1952 {
1953
1954 return hugetlb_sysctl_handler_common(false, table, write,
1955 buffer, length, ppos);
1956 }
1957
1958 #ifdef CONFIG_NUMA
1959 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1960 void __user *buffer, size_t *length, loff_t *ppos)
1961 {
1962 return hugetlb_sysctl_handler_common(true, table, write,
1963 buffer, length, ppos);
1964 }
1965 #endif /* CONFIG_NUMA */
1966
1967 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1968 void __user *buffer,
1969 size_t *length, loff_t *ppos)
1970 {
1971 proc_dointvec(table, write, buffer, length, ppos);
1972 if (hugepages_treat_as_movable)
1973 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1974 else
1975 htlb_alloc_mask = GFP_HIGHUSER;
1976 return 0;
1977 }
1978
1979 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1980 void __user *buffer,
1981 size_t *length, loff_t *ppos)
1982 {
1983 struct hstate *h = &default_hstate;
1984 unsigned long tmp;
1985
1986 if (!write)
1987 tmp = h->nr_overcommit_huge_pages;
1988
1989 table->data = &tmp;
1990 table->maxlen = sizeof(unsigned long);
1991 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1992
1993 if (write) {
1994 spin_lock(&hugetlb_lock);
1995 h->nr_overcommit_huge_pages = tmp;
1996 spin_unlock(&hugetlb_lock);
1997 }
1998
1999 return 0;
2000 }
2001
2002 #endif /* CONFIG_SYSCTL */
2003
2004 void hugetlb_report_meminfo(struct seq_file *m)
2005 {
2006 struct hstate *h = &default_hstate;
2007 seq_printf(m,
2008 "HugePages_Total: %5lu\n"
2009 "HugePages_Free: %5lu\n"
2010 "HugePages_Rsvd: %5lu\n"
2011 "HugePages_Surp: %5lu\n"
2012 "Hugepagesize: %8lu kB\n",
2013 h->nr_huge_pages,
2014 h->free_huge_pages,
2015 h->resv_huge_pages,
2016 h->surplus_huge_pages,
2017 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2018 }
2019
2020 int hugetlb_report_node_meminfo(int nid, char *buf)
2021 {
2022 struct hstate *h = &default_hstate;
2023 return sprintf(buf,
2024 "Node %d HugePages_Total: %5u\n"
2025 "Node %d HugePages_Free: %5u\n"
2026 "Node %d HugePages_Surp: %5u\n",
2027 nid, h->nr_huge_pages_node[nid],
2028 nid, h->free_huge_pages_node[nid],
2029 nid, h->surplus_huge_pages_node[nid]);
2030 }
2031
2032 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2033 unsigned long hugetlb_total_pages(void)
2034 {
2035 struct hstate *h = &default_hstate;
2036 return h->nr_huge_pages * pages_per_huge_page(h);
2037 }
2038
2039 static int hugetlb_acct_memory(struct hstate *h, long delta)
2040 {
2041 int ret = -ENOMEM;
2042
2043 spin_lock(&hugetlb_lock);
2044 /*
2045 * When cpuset is configured, it breaks the strict hugetlb page
2046 * reservation as the accounting is done on a global variable. Such
2047 * reservation is completely rubbish in the presence of cpuset because
2048 * the reservation is not checked against page availability for the
2049 * current cpuset. Application can still potentially OOM'ed by kernel
2050 * with lack of free htlb page in cpuset that the task is in.
2051 * Attempt to enforce strict accounting with cpuset is almost
2052 * impossible (or too ugly) because cpuset is too fluid that
2053 * task or memory node can be dynamically moved between cpusets.
2054 *
2055 * The change of semantics for shared hugetlb mapping with cpuset is
2056 * undesirable. However, in order to preserve some of the semantics,
2057 * we fall back to check against current free page availability as
2058 * a best attempt and hopefully to minimize the impact of changing
2059 * semantics that cpuset has.
2060 */
2061 if (delta > 0) {
2062 if (gather_surplus_pages(h, delta) < 0)
2063 goto out;
2064
2065 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2066 return_unused_surplus_pages(h, delta);
2067 goto out;
2068 }
2069 }
2070
2071 ret = 0;
2072 if (delta < 0)
2073 return_unused_surplus_pages(h, (unsigned long) -delta);
2074
2075 out:
2076 spin_unlock(&hugetlb_lock);
2077 return ret;
2078 }
2079
2080 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2081 {
2082 struct resv_map *reservations = vma_resv_map(vma);
2083
2084 /*
2085 * This new VMA should share its siblings reservation map if present.
2086 * The VMA will only ever have a valid reservation map pointer where
2087 * it is being copied for another still existing VMA. As that VMA
2088 * has a reference to the reservation map it cannot dissappear until
2089 * after this open call completes. It is therefore safe to take a
2090 * new reference here without additional locking.
2091 */
2092 if (reservations)
2093 kref_get(&reservations->refs);
2094 }
2095
2096 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2097 {
2098 struct hstate *h = hstate_vma(vma);
2099 struct resv_map *reservations = vma_resv_map(vma);
2100 unsigned long reserve;
2101 unsigned long start;
2102 unsigned long end;
2103
2104 if (reservations) {
2105 start = vma_hugecache_offset(h, vma, vma->vm_start);
2106 end = vma_hugecache_offset(h, vma, vma->vm_end);
2107
2108 reserve = (end - start) -
2109 region_count(&reservations->regions, start, end);
2110
2111 kref_put(&reservations->refs, resv_map_release);
2112
2113 if (reserve) {
2114 hugetlb_acct_memory(h, -reserve);
2115 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2116 }
2117 }
2118 }
2119
2120 /*
2121 * We cannot handle pagefaults against hugetlb pages at all. They cause
2122 * handle_mm_fault() to try to instantiate regular-sized pages in the
2123 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2124 * this far.
2125 */
2126 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2127 {
2128 BUG();
2129 return 0;
2130 }
2131
2132 const struct vm_operations_struct hugetlb_vm_ops = {
2133 .fault = hugetlb_vm_op_fault,
2134 .open = hugetlb_vm_op_open,
2135 .close = hugetlb_vm_op_close,
2136 };
2137
2138 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2139 int writable)
2140 {
2141 pte_t entry;
2142
2143 if (writable) {
2144 entry =
2145 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2146 } else {
2147 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2148 }
2149 entry = pte_mkyoung(entry);
2150 entry = pte_mkhuge(entry);
2151
2152 return entry;
2153 }
2154
2155 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2156 unsigned long address, pte_t *ptep)
2157 {
2158 pte_t entry;
2159
2160 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2161 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2162 update_mmu_cache(vma, address, ptep);
2163 }
2164 }
2165
2166
2167 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2168 struct vm_area_struct *vma)
2169 {
2170 pte_t *src_pte, *dst_pte, entry;
2171 struct page *ptepage;
2172 unsigned long addr;
2173 int cow;
2174 struct hstate *h = hstate_vma(vma);
2175 unsigned long sz = huge_page_size(h);
2176
2177 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2178
2179 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2180 src_pte = huge_pte_offset(src, addr);
2181 if (!src_pte)
2182 continue;
2183 dst_pte = huge_pte_alloc(dst, addr, sz);
2184 if (!dst_pte)
2185 goto nomem;
2186
2187 /* If the pagetables are shared don't copy or take references */
2188 if (dst_pte == src_pte)
2189 continue;
2190
2191 spin_lock(&dst->page_table_lock);
2192 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2193 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2194 if (cow)
2195 huge_ptep_set_wrprotect(src, addr, src_pte);
2196 entry = huge_ptep_get(src_pte);
2197 ptepage = pte_page(entry);
2198 get_page(ptepage);
2199 page_dup_rmap(ptepage);
2200 set_huge_pte_at(dst, addr, dst_pte, entry);
2201 }
2202 spin_unlock(&src->page_table_lock);
2203 spin_unlock(&dst->page_table_lock);
2204 }
2205 return 0;
2206
2207 nomem:
2208 return -ENOMEM;
2209 }
2210
2211 static int is_hugetlb_entry_migration(pte_t pte)
2212 {
2213 swp_entry_t swp;
2214
2215 if (huge_pte_none(pte) || pte_present(pte))
2216 return 0;
2217 swp = pte_to_swp_entry(pte);
2218 if (non_swap_entry(swp) && is_migration_entry(swp)) {
2219 return 1;
2220 } else
2221 return 0;
2222 }
2223
2224 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2225 {
2226 swp_entry_t swp;
2227
2228 if (huge_pte_none(pte) || pte_present(pte))
2229 return 0;
2230 swp = pte_to_swp_entry(pte);
2231 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2232 return 1;
2233 } else
2234 return 0;
2235 }
2236
2237 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2238 unsigned long end, struct page *ref_page)
2239 {
2240 struct mm_struct *mm = vma->vm_mm;
2241 unsigned long address;
2242 pte_t *ptep;
2243 pte_t pte;
2244 struct page *page;
2245 struct page *tmp;
2246 struct hstate *h = hstate_vma(vma);
2247 unsigned long sz = huge_page_size(h);
2248
2249 /*
2250 * A page gathering list, protected by per file i_mmap_lock. The
2251 * lock is used to avoid list corruption from multiple unmapping
2252 * of the same page since we are using page->lru.
2253 */
2254 LIST_HEAD(page_list);
2255
2256 WARN_ON(!is_vm_hugetlb_page(vma));
2257 BUG_ON(start & ~huge_page_mask(h));
2258 BUG_ON(end & ~huge_page_mask(h));
2259
2260 mmu_notifier_invalidate_range_start(mm, start, end);
2261 spin_lock(&mm->page_table_lock);
2262 for (address = start; address < end; address += sz) {
2263 ptep = huge_pte_offset(mm, address);
2264 if (!ptep)
2265 continue;
2266
2267 if (huge_pmd_unshare(mm, &address, ptep))
2268 continue;
2269
2270 /*
2271 * If a reference page is supplied, it is because a specific
2272 * page is being unmapped, not a range. Ensure the page we
2273 * are about to unmap is the actual page of interest.
2274 */
2275 if (ref_page) {
2276 pte = huge_ptep_get(ptep);
2277 if (huge_pte_none(pte))
2278 continue;
2279 page = pte_page(pte);
2280 if (page != ref_page)
2281 continue;
2282
2283 /*
2284 * Mark the VMA as having unmapped its page so that
2285 * future faults in this VMA will fail rather than
2286 * looking like data was lost
2287 */
2288 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2289 }
2290
2291 pte = huge_ptep_get_and_clear(mm, address, ptep);
2292 if (huge_pte_none(pte))
2293 continue;
2294
2295 /*
2296 * HWPoisoned hugepage is already unmapped and dropped reference
2297 */
2298 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2299 continue;
2300
2301 page = pte_page(pte);
2302 if (pte_dirty(pte))
2303 set_page_dirty(page);
2304 list_add(&page->lru, &page_list);
2305 }
2306 spin_unlock(&mm->page_table_lock);
2307 flush_tlb_range(vma, start, end);
2308 mmu_notifier_invalidate_range_end(mm, start, end);
2309 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2310 page_remove_rmap(page);
2311 list_del(&page->lru);
2312 put_page(page);
2313 }
2314 }
2315
2316 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2317 unsigned long end, struct page *ref_page)
2318 {
2319 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2320 __unmap_hugepage_range(vma, start, end, ref_page);
2321 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2322 }
2323
2324 /*
2325 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2326 * mappping it owns the reserve page for. The intention is to unmap the page
2327 * from other VMAs and let the children be SIGKILLed if they are faulting the
2328 * same region.
2329 */
2330 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2331 struct page *page, unsigned long address)
2332 {
2333 struct hstate *h = hstate_vma(vma);
2334 struct vm_area_struct *iter_vma;
2335 struct address_space *mapping;
2336 struct prio_tree_iter iter;
2337 pgoff_t pgoff;
2338
2339 /*
2340 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2341 * from page cache lookup which is in HPAGE_SIZE units.
2342 */
2343 address = address & huge_page_mask(h);
2344 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2345 + (vma->vm_pgoff >> PAGE_SHIFT);
2346 mapping = (struct address_space *)page_private(page);
2347
2348 /*
2349 * Take the mapping lock for the duration of the table walk. As
2350 * this mapping should be shared between all the VMAs,
2351 * __unmap_hugepage_range() is called as the lock is already held
2352 */
2353 spin_lock(&mapping->i_mmap_lock);
2354 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2355 /* Do not unmap the current VMA */
2356 if (iter_vma == vma)
2357 continue;
2358
2359 /*
2360 * Unmap the page from other VMAs without their own reserves.
2361 * They get marked to be SIGKILLed if they fault in these
2362 * areas. This is because a future no-page fault on this VMA
2363 * could insert a zeroed page instead of the data existing
2364 * from the time of fork. This would look like data corruption
2365 */
2366 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2367 __unmap_hugepage_range(iter_vma,
2368 address, address + huge_page_size(h),
2369 page);
2370 }
2371 spin_unlock(&mapping->i_mmap_lock);
2372
2373 return 1;
2374 }
2375
2376 /*
2377 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2378 */
2379 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2380 unsigned long address, pte_t *ptep, pte_t pte,
2381 struct page *pagecache_page)
2382 {
2383 struct hstate *h = hstate_vma(vma);
2384 struct page *old_page, *new_page;
2385 int avoidcopy;
2386 int outside_reserve = 0;
2387
2388 old_page = pte_page(pte);
2389
2390 retry_avoidcopy:
2391 /* If no-one else is actually using this page, avoid the copy
2392 * and just make the page writable */
2393 avoidcopy = (page_mapcount(old_page) == 1);
2394 if (avoidcopy) {
2395 if (PageAnon(old_page))
2396 page_move_anon_rmap(old_page, vma, address);
2397 set_huge_ptep_writable(vma, address, ptep);
2398 return 0;
2399 }
2400
2401 /*
2402 * If the process that created a MAP_PRIVATE mapping is about to
2403 * perform a COW due to a shared page count, attempt to satisfy
2404 * the allocation without using the existing reserves. The pagecache
2405 * page is used to determine if the reserve at this address was
2406 * consumed or not. If reserves were used, a partial faulted mapping
2407 * at the time of fork() could consume its reserves on COW instead
2408 * of the full address range.
2409 */
2410 if (!(vma->vm_flags & VM_MAYSHARE) &&
2411 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2412 old_page != pagecache_page)
2413 outside_reserve = 1;
2414
2415 page_cache_get(old_page);
2416
2417 /* Drop page_table_lock as buddy allocator may be called */
2418 spin_unlock(&mm->page_table_lock);
2419 new_page = alloc_huge_page(vma, address, outside_reserve);
2420
2421 if (IS_ERR(new_page)) {
2422 page_cache_release(old_page);
2423
2424 /*
2425 * If a process owning a MAP_PRIVATE mapping fails to COW,
2426 * it is due to references held by a child and an insufficient
2427 * huge page pool. To guarantee the original mappers
2428 * reliability, unmap the page from child processes. The child
2429 * may get SIGKILLed if it later faults.
2430 */
2431 if (outside_reserve) {
2432 BUG_ON(huge_pte_none(pte));
2433 if (unmap_ref_private(mm, vma, old_page, address)) {
2434 BUG_ON(page_count(old_page) != 1);
2435 BUG_ON(huge_pte_none(pte));
2436 spin_lock(&mm->page_table_lock);
2437 goto retry_avoidcopy;
2438 }
2439 WARN_ON_ONCE(1);
2440 }
2441
2442 /* Caller expects lock to be held */
2443 spin_lock(&mm->page_table_lock);
2444 return -PTR_ERR(new_page);
2445 }
2446
2447 /*
2448 * When the original hugepage is shared one, it does not have
2449 * anon_vma prepared.
2450 */
2451 if (unlikely(anon_vma_prepare(vma)))
2452 return VM_FAULT_OOM;
2453
2454 copy_user_huge_page(new_page, old_page, address, vma);
2455 __SetPageUptodate(new_page);
2456
2457 /*
2458 * Retake the page_table_lock to check for racing updates
2459 * before the page tables are altered
2460 */
2461 spin_lock(&mm->page_table_lock);
2462 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2463 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2464 /* Break COW */
2465 mmu_notifier_invalidate_range_start(mm,
2466 address & huge_page_mask(h),
2467 (address & huge_page_mask(h)) + huge_page_size(h));
2468 huge_ptep_clear_flush(vma, address, ptep);
2469 set_huge_pte_at(mm, address, ptep,
2470 make_huge_pte(vma, new_page, 1));
2471 page_remove_rmap(old_page);
2472 hugepage_add_new_anon_rmap(new_page, vma, address);
2473 /* Make the old page be freed below */
2474 new_page = old_page;
2475 mmu_notifier_invalidate_range_end(mm,
2476 address & huge_page_mask(h),
2477 (address & huge_page_mask(h)) + huge_page_size(h));
2478 }
2479 page_cache_release(new_page);
2480 page_cache_release(old_page);
2481 return 0;
2482 }
2483
2484 /* Return the pagecache page at a given address within a VMA */
2485 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2486 struct vm_area_struct *vma, unsigned long address)
2487 {
2488 struct address_space *mapping;
2489 pgoff_t idx;
2490
2491 mapping = vma->vm_file->f_mapping;
2492 idx = vma_hugecache_offset(h, vma, address);
2493
2494 return find_lock_page(mapping, idx);
2495 }
2496
2497 /*
2498 * Return whether there is a pagecache page to back given address within VMA.
2499 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2500 */
2501 static bool hugetlbfs_pagecache_present(struct hstate *h,
2502 struct vm_area_struct *vma, unsigned long address)
2503 {
2504 struct address_space *mapping;
2505 pgoff_t idx;
2506 struct page *page;
2507
2508 mapping = vma->vm_file->f_mapping;
2509 idx = vma_hugecache_offset(h, vma, address);
2510
2511 page = find_get_page(mapping, idx);
2512 if (page)
2513 put_page(page);
2514 return page != NULL;
2515 }
2516
2517 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2518 unsigned long address, pte_t *ptep, unsigned int flags)
2519 {
2520 struct hstate *h = hstate_vma(vma);
2521 int ret = VM_FAULT_SIGBUS;
2522 pgoff_t idx;
2523 unsigned long size;
2524 struct page *page;
2525 struct address_space *mapping;
2526 pte_t new_pte;
2527
2528 /*
2529 * Currently, we are forced to kill the process in the event the
2530 * original mapper has unmapped pages from the child due to a failed
2531 * COW. Warn that such a situation has occured as it may not be obvious
2532 */
2533 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2534 printk(KERN_WARNING
2535 "PID %d killed due to inadequate hugepage pool\n",
2536 current->pid);
2537 return ret;
2538 }
2539
2540 mapping = vma->vm_file->f_mapping;
2541 idx = vma_hugecache_offset(h, vma, address);
2542
2543 /*
2544 * Use page lock to guard against racing truncation
2545 * before we get page_table_lock.
2546 */
2547 retry:
2548 page = find_lock_page(mapping, idx);
2549 if (!page) {
2550 size = i_size_read(mapping->host) >> huge_page_shift(h);
2551 if (idx >= size)
2552 goto out;
2553 page = alloc_huge_page(vma, address, 0);
2554 if (IS_ERR(page)) {
2555 ret = -PTR_ERR(page);
2556 goto out;
2557 }
2558 clear_huge_page(page, address, huge_page_size(h));
2559 __SetPageUptodate(page);
2560
2561 if (vma->vm_flags & VM_MAYSHARE) {
2562 int err;
2563 struct inode *inode = mapping->host;
2564
2565 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2566 if (err) {
2567 put_page(page);
2568 if (err == -EEXIST)
2569 goto retry;
2570 goto out;
2571 }
2572
2573 spin_lock(&inode->i_lock);
2574 inode->i_blocks += blocks_per_huge_page(h);
2575 spin_unlock(&inode->i_lock);
2576 page_dup_rmap(page);
2577 } else {
2578 lock_page(page);
2579 if (unlikely(anon_vma_prepare(vma))) {
2580 ret = VM_FAULT_OOM;
2581 goto backout_unlocked;
2582 }
2583 hugepage_add_new_anon_rmap(page, vma, address);
2584 }
2585 } else {
2586 /*
2587 * If memory error occurs between mmap() and fault, some process
2588 * don't have hwpoisoned swap entry for errored virtual address.
2589 * So we need to block hugepage fault by PG_hwpoison bit check.
2590 */
2591 if (unlikely(PageHWPoison(page))) {
2592 ret = VM_FAULT_HWPOISON;
2593 goto backout_unlocked;
2594 }
2595 page_dup_rmap(page);
2596 }
2597
2598 /*
2599 * If we are going to COW a private mapping later, we examine the
2600 * pending reservations for this page now. This will ensure that
2601 * any allocations necessary to record that reservation occur outside
2602 * the spinlock.
2603 */
2604 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2605 if (vma_needs_reservation(h, vma, address) < 0) {
2606 ret = VM_FAULT_OOM;
2607 goto backout_unlocked;
2608 }
2609
2610 spin_lock(&mm->page_table_lock);
2611 size = i_size_read(mapping->host) >> huge_page_shift(h);
2612 if (idx >= size)
2613 goto backout;
2614
2615 ret = 0;
2616 if (!huge_pte_none(huge_ptep_get(ptep)))
2617 goto backout;
2618
2619 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2620 && (vma->vm_flags & VM_SHARED)));
2621 set_huge_pte_at(mm, address, ptep, new_pte);
2622
2623 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2624 /* Optimization, do the COW without a second fault */
2625 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2626 }
2627
2628 spin_unlock(&mm->page_table_lock);
2629 unlock_page(page);
2630 out:
2631 return ret;
2632
2633 backout:
2634 spin_unlock(&mm->page_table_lock);
2635 backout_unlocked:
2636 unlock_page(page);
2637 put_page(page);
2638 goto out;
2639 }
2640
2641 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2642 unsigned long address, unsigned int flags)
2643 {
2644 pte_t *ptep;
2645 pte_t entry;
2646 int ret;
2647 struct page *page = NULL;
2648 struct page *pagecache_page = NULL;
2649 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2650 struct hstate *h = hstate_vma(vma);
2651
2652 ptep = huge_pte_offset(mm, address);
2653 if (ptep) {
2654 entry = huge_ptep_get(ptep);
2655 if (unlikely(is_hugetlb_entry_migration(entry))) {
2656 migration_entry_wait(mm, (pmd_t *)ptep, address);
2657 return 0;
2658 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2659 return VM_FAULT_HWPOISON;
2660 }
2661
2662 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2663 if (!ptep)
2664 return VM_FAULT_OOM;
2665
2666 /*
2667 * Serialize hugepage allocation and instantiation, so that we don't
2668 * get spurious allocation failures if two CPUs race to instantiate
2669 * the same page in the page cache.
2670 */
2671 mutex_lock(&hugetlb_instantiation_mutex);
2672 entry = huge_ptep_get(ptep);
2673 if (huge_pte_none(entry)) {
2674 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2675 goto out_mutex;
2676 }
2677
2678 ret = 0;
2679
2680 /*
2681 * If we are going to COW the mapping later, we examine the pending
2682 * reservations for this page now. This will ensure that any
2683 * allocations necessary to record that reservation occur outside the
2684 * spinlock. For private mappings, we also lookup the pagecache
2685 * page now as it is used to determine if a reservation has been
2686 * consumed.
2687 */
2688 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2689 if (vma_needs_reservation(h, vma, address) < 0) {
2690 ret = VM_FAULT_OOM;
2691 goto out_mutex;
2692 }
2693
2694 if (!(vma->vm_flags & VM_MAYSHARE))
2695 pagecache_page = hugetlbfs_pagecache_page(h,
2696 vma, address);
2697 }
2698
2699 /*
2700 * hugetlb_cow() requires page locks of pte_page(entry) and
2701 * pagecache_page, so here we need take the former one
2702 * when page != pagecache_page or !pagecache_page.
2703 * Note that locking order is always pagecache_page -> page,
2704 * so no worry about deadlock.
2705 */
2706 page = pte_page(entry);
2707 if (page != pagecache_page)
2708 lock_page(page);
2709
2710 spin_lock(&mm->page_table_lock);
2711 /* Check for a racing update before calling hugetlb_cow */
2712 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2713 goto out_page_table_lock;
2714
2715
2716 if (flags & FAULT_FLAG_WRITE) {
2717 if (!pte_write(entry)) {
2718 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2719 pagecache_page);
2720 goto out_page_table_lock;
2721 }
2722 entry = pte_mkdirty(entry);
2723 }
2724 entry = pte_mkyoung(entry);
2725 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2726 flags & FAULT_FLAG_WRITE))
2727 update_mmu_cache(vma, address, ptep);
2728
2729 out_page_table_lock:
2730 spin_unlock(&mm->page_table_lock);
2731
2732 if (pagecache_page) {
2733 unlock_page(pagecache_page);
2734 put_page(pagecache_page);
2735 }
2736 unlock_page(page);
2737
2738 out_mutex:
2739 mutex_unlock(&hugetlb_instantiation_mutex);
2740
2741 return ret;
2742 }
2743
2744 /* Can be overriden by architectures */
2745 __attribute__((weak)) struct page *
2746 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2747 pud_t *pud, int write)
2748 {
2749 BUG();
2750 return NULL;
2751 }
2752
2753 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2754 struct page **pages, struct vm_area_struct **vmas,
2755 unsigned long *position, int *length, int i,
2756 unsigned int flags)
2757 {
2758 unsigned long pfn_offset;
2759 unsigned long vaddr = *position;
2760 int remainder = *length;
2761 struct hstate *h = hstate_vma(vma);
2762
2763 spin_lock(&mm->page_table_lock);
2764 while (vaddr < vma->vm_end && remainder) {
2765 pte_t *pte;
2766 int absent;
2767 struct page *page;
2768
2769 /*
2770 * Some archs (sparc64, sh*) have multiple pte_ts to
2771 * each hugepage. We have to make sure we get the
2772 * first, for the page indexing below to work.
2773 */
2774 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2775 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2776
2777 /*
2778 * When coredumping, it suits get_dump_page if we just return
2779 * an error where there's an empty slot with no huge pagecache
2780 * to back it. This way, we avoid allocating a hugepage, and
2781 * the sparse dumpfile avoids allocating disk blocks, but its
2782 * huge holes still show up with zeroes where they need to be.
2783 */
2784 if (absent && (flags & FOLL_DUMP) &&
2785 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2786 remainder = 0;
2787 break;
2788 }
2789
2790 if (absent ||
2791 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2792 int ret;
2793
2794 spin_unlock(&mm->page_table_lock);
2795 ret = hugetlb_fault(mm, vma, vaddr,
2796 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2797 spin_lock(&mm->page_table_lock);
2798 if (!(ret & VM_FAULT_ERROR))
2799 continue;
2800
2801 remainder = 0;
2802 break;
2803 }
2804
2805 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2806 page = pte_page(huge_ptep_get(pte));
2807 same_page:
2808 if (pages) {
2809 pages[i] = mem_map_offset(page, pfn_offset);
2810 get_page(pages[i]);
2811 }
2812
2813 if (vmas)
2814 vmas[i] = vma;
2815
2816 vaddr += PAGE_SIZE;
2817 ++pfn_offset;
2818 --remainder;
2819 ++i;
2820 if (vaddr < vma->vm_end && remainder &&
2821 pfn_offset < pages_per_huge_page(h)) {
2822 /*
2823 * We use pfn_offset to avoid touching the pageframes
2824 * of this compound page.
2825 */
2826 goto same_page;
2827 }
2828 }
2829 spin_unlock(&mm->page_table_lock);
2830 *length = remainder;
2831 *position = vaddr;
2832
2833 return i ? i : -EFAULT;
2834 }
2835
2836 void hugetlb_change_protection(struct vm_area_struct *vma,
2837 unsigned long address, unsigned long end, pgprot_t newprot)
2838 {
2839 struct mm_struct *mm = vma->vm_mm;
2840 unsigned long start = address;
2841 pte_t *ptep;
2842 pte_t pte;
2843 struct hstate *h = hstate_vma(vma);
2844
2845 BUG_ON(address >= end);
2846 flush_cache_range(vma, address, end);
2847
2848 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2849 spin_lock(&mm->page_table_lock);
2850 for (; address < end; address += huge_page_size(h)) {
2851 ptep = huge_pte_offset(mm, address);
2852 if (!ptep)
2853 continue;
2854 if (huge_pmd_unshare(mm, &address, ptep))
2855 continue;
2856 if (!huge_pte_none(huge_ptep_get(ptep))) {
2857 pte = huge_ptep_get_and_clear(mm, address, ptep);
2858 pte = pte_mkhuge(pte_modify(pte, newprot));
2859 set_huge_pte_at(mm, address, ptep, pte);
2860 }
2861 }
2862 spin_unlock(&mm->page_table_lock);
2863 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2864
2865 flush_tlb_range(vma, start, end);
2866 }
2867
2868 int hugetlb_reserve_pages(struct inode *inode,
2869 long from, long to,
2870 struct vm_area_struct *vma,
2871 int acctflag)
2872 {
2873 long ret, chg;
2874 struct hstate *h = hstate_inode(inode);
2875
2876 /*
2877 * Only apply hugepage reservation if asked. At fault time, an
2878 * attempt will be made for VM_NORESERVE to allocate a page
2879 * and filesystem quota without using reserves
2880 */
2881 if (acctflag & VM_NORESERVE)
2882 return 0;
2883
2884 /*
2885 * Shared mappings base their reservation on the number of pages that
2886 * are already allocated on behalf of the file. Private mappings need
2887 * to reserve the full area even if read-only as mprotect() may be
2888 * called to make the mapping read-write. Assume !vma is a shm mapping
2889 */
2890 if (!vma || vma->vm_flags & VM_MAYSHARE)
2891 chg = region_chg(&inode->i_mapping->private_list, from, to);
2892 else {
2893 struct resv_map *resv_map = resv_map_alloc();
2894 if (!resv_map)
2895 return -ENOMEM;
2896
2897 chg = to - from;
2898
2899 set_vma_resv_map(vma, resv_map);
2900 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2901 }
2902
2903 if (chg < 0)
2904 return chg;
2905
2906 /* There must be enough filesystem quota for the mapping */
2907 if (hugetlb_get_quota(inode->i_mapping, chg))
2908 return -ENOSPC;
2909
2910 /*
2911 * Check enough hugepages are available for the reservation.
2912 * Hand back the quota if there are not
2913 */
2914 ret = hugetlb_acct_memory(h, chg);
2915 if (ret < 0) {
2916 hugetlb_put_quota(inode->i_mapping, chg);
2917 return ret;
2918 }
2919
2920 /*
2921 * Account for the reservations made. Shared mappings record regions
2922 * that have reservations as they are shared by multiple VMAs.
2923 * When the last VMA disappears, the region map says how much
2924 * the reservation was and the page cache tells how much of
2925 * the reservation was consumed. Private mappings are per-VMA and
2926 * only the consumed reservations are tracked. When the VMA
2927 * disappears, the original reservation is the VMA size and the
2928 * consumed reservations are stored in the map. Hence, nothing
2929 * else has to be done for private mappings here
2930 */
2931 if (!vma || vma->vm_flags & VM_MAYSHARE)
2932 region_add(&inode->i_mapping->private_list, from, to);
2933 return 0;
2934 }
2935
2936 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2937 {
2938 struct hstate *h = hstate_inode(inode);
2939 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2940
2941 spin_lock(&inode->i_lock);
2942 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2943 spin_unlock(&inode->i_lock);
2944
2945 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2946 hugetlb_acct_memory(h, -(chg - freed));
2947 }
2948
2949 #ifdef CONFIG_MEMORY_FAILURE
2950
2951 /* Should be called in hugetlb_lock */
2952 static int is_hugepage_on_freelist(struct page *hpage)
2953 {
2954 struct page *page;
2955 struct page *tmp;
2956 struct hstate *h = page_hstate(hpage);
2957 int nid = page_to_nid(hpage);
2958
2959 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2960 if (page == hpage)
2961 return 1;
2962 return 0;
2963 }
2964
2965 /*
2966 * This function is called from memory failure code.
2967 * Assume the caller holds page lock of the head page.
2968 */
2969 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2970 {
2971 struct hstate *h = page_hstate(hpage);
2972 int nid = page_to_nid(hpage);
2973 int ret = -EBUSY;
2974
2975 spin_lock(&hugetlb_lock);
2976 if (is_hugepage_on_freelist(hpage)) {
2977 list_del(&hpage->lru);
2978 set_page_refcounted(hpage);
2979 h->free_huge_pages--;
2980 h->free_huge_pages_node[nid]--;
2981 ret = 0;
2982 }
2983 spin_unlock(&hugetlb_lock);
2984 return ret;
2985 }
2986 #endif