]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/hugetlb.c
UBUNTU: Ubuntu-snapdragon-4.4.0-1089.94
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
59 */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
86 }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
91 {
92 struct hugepage_subpool *spool;
93
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
109
110 return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119 }
120
121 /*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
131 {
132 long ret = delta;
133
134 if (!spool)
135 return ret;
136
137 spin_lock(&spool->lock);
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
146 }
147
148 if (spool->min_hpages != -1) { /* minimum size accounting */
149 if (delta > spool->rsv_hpages) {
150 /*
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
153 */
154 ret = delta - spool->rsv_hpages;
155 spool->rsv_hpages = 0;
156 } else {
157 ret = 0; /* reserves already accounted for */
158 spool->rsv_hpages -= delta;
159 }
160 }
161
162 unlock_ret:
163 spin_unlock(&spool->lock);
164 return ret;
165 }
166
167 /*
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
172 */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 long delta)
175 {
176 long ret = delta;
177
178 if (!spool)
179 return delta;
180
181 spin_lock(&spool->lock);
182
183 if (spool->max_hpages != -1) /* maximum size accounting */
184 spool->used_hpages -= delta;
185
186 if (spool->min_hpages != -1) { /* minimum size accounting */
187 if (spool->rsv_hpages + delta <= spool->min_hpages)
188 ret = 0;
189 else
190 ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192 spool->rsv_hpages += delta;
193 if (spool->rsv_hpages > spool->min_hpages)
194 spool->rsv_hpages = spool->min_hpages;
195 }
196
197 /*
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
200 */
201 unlock_or_release_subpool(spool);
202
203 return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208 return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213 return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
219 *
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
226 *
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231 *
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
234 */
235 struct file_region {
236 struct list_head link;
237 long from;
238 long to;
239 };
240
241 /*
242 * Add the huge page range represented by [f, t) to the reserve
243 * map. In the normal case, existing regions will be expanded
244 * to accommodate the specified range. Sufficient regions should
245 * exist for expansion due to the previous call to region_chg
246 * with the same range. However, it is possible that region_del
247 * could have been called after region_chg and modifed the map
248 * in such a way that no region exists to be expanded. In this
249 * case, pull a region descriptor from the cache associated with
250 * the map and use that for the new range.
251 *
252 * Return the number of new huge pages added to the map. This
253 * number is greater than or equal to zero.
254 */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257 struct list_head *head = &resv->regions;
258 struct file_region *rg, *nrg, *trg;
259 long add = 0;
260
261 spin_lock(&resv->lock);
262 /* Locate the region we are either in or before. */
263 list_for_each_entry(rg, head, link)
264 if (f <= rg->to)
265 break;
266
267 /*
268 * If no region exists which can be expanded to include the
269 * specified range, the list must have been modified by an
270 * interleving call to region_del(). Pull a region descriptor
271 * from the cache and use it for this range.
272 */
273 if (&rg->link == head || t < rg->from) {
274 VM_BUG_ON(resv->region_cache_count <= 0);
275
276 resv->region_cache_count--;
277 nrg = list_first_entry(&resv->region_cache, struct file_region,
278 link);
279 list_del(&nrg->link);
280
281 nrg->from = f;
282 nrg->to = t;
283 list_add(&nrg->link, rg->link.prev);
284
285 add += t - f;
286 goto out_locked;
287 }
288
289 /* Round our left edge to the current segment if it encloses us. */
290 if (f > rg->from)
291 f = rg->from;
292
293 /* Check for and consume any regions we now overlap with. */
294 nrg = rg;
295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296 if (&rg->link == head)
297 break;
298 if (rg->from > t)
299 break;
300
301 /* If this area reaches higher then extend our area to
302 * include it completely. If this is not the first area
303 * which we intend to reuse, free it. */
304 if (rg->to > t)
305 t = rg->to;
306 if (rg != nrg) {
307 /* Decrement return value by the deleted range.
308 * Another range will span this area so that by
309 * end of routine add will be >= zero
310 */
311 add -= (rg->to - rg->from);
312 list_del(&rg->link);
313 kfree(rg);
314 }
315 }
316
317 add += (nrg->from - f); /* Added to beginning of region */
318 nrg->from = f;
319 add += t - nrg->to; /* Added to end of region */
320 nrg->to = t;
321
322 out_locked:
323 resv->adds_in_progress--;
324 spin_unlock(&resv->lock);
325 VM_BUG_ON(add < 0);
326 return add;
327 }
328
329 /*
330 * Examine the existing reserve map and determine how many
331 * huge pages in the specified range [f, t) are NOT currently
332 * represented. This routine is called before a subsequent
333 * call to region_add that will actually modify the reserve
334 * map to add the specified range [f, t). region_chg does
335 * not change the number of huge pages represented by the
336 * map. However, if the existing regions in the map can not
337 * be expanded to represent the new range, a new file_region
338 * structure is added to the map as a placeholder. This is
339 * so that the subsequent region_add call will have all the
340 * regions it needs and will not fail.
341 *
342 * Upon entry, region_chg will also examine the cache of region descriptors
343 * associated with the map. If there are not enough descriptors cached, one
344 * will be allocated for the in progress add operation.
345 *
346 * Returns the number of huge pages that need to be added to the existing
347 * reservation map for the range [f, t). This number is greater or equal to
348 * zero. -ENOMEM is returned if a new file_region structure or cache entry
349 * is needed and can not be allocated.
350 */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353 struct list_head *head = &resv->regions;
354 struct file_region *rg, *nrg = NULL;
355 long chg = 0;
356
357 retry:
358 spin_lock(&resv->lock);
359 retry_locked:
360 resv->adds_in_progress++;
361
362 /*
363 * Check for sufficient descriptors in the cache to accommodate
364 * the number of in progress add operations.
365 */
366 if (resv->adds_in_progress > resv->region_cache_count) {
367 struct file_region *trg;
368
369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370 /* Must drop lock to allocate a new descriptor. */
371 resv->adds_in_progress--;
372 spin_unlock(&resv->lock);
373
374 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 if (!trg) {
376 kfree(nrg);
377 return -ENOMEM;
378 }
379
380 spin_lock(&resv->lock);
381 list_add(&trg->link, &resv->region_cache);
382 resv->region_cache_count++;
383 goto retry_locked;
384 }
385
386 /* Locate the region we are before or in. */
387 list_for_each_entry(rg, head, link)
388 if (f <= rg->to)
389 break;
390
391 /* If we are below the current region then a new region is required.
392 * Subtle, allocate a new region at the position but make it zero
393 * size such that we can guarantee to record the reservation. */
394 if (&rg->link == head || t < rg->from) {
395 if (!nrg) {
396 resv->adds_in_progress--;
397 spin_unlock(&resv->lock);
398 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
399 if (!nrg)
400 return -ENOMEM;
401
402 nrg->from = f;
403 nrg->to = f;
404 INIT_LIST_HEAD(&nrg->link);
405 goto retry;
406 }
407
408 list_add(&nrg->link, rg->link.prev);
409 chg = t - f;
410 goto out_nrg;
411 }
412
413 /* Round our left edge to the current segment if it encloses us. */
414 if (f > rg->from)
415 f = rg->from;
416 chg = t - f;
417
418 /* Check for and consume any regions we now overlap with. */
419 list_for_each_entry(rg, rg->link.prev, link) {
420 if (&rg->link == head)
421 break;
422 if (rg->from > t)
423 goto out;
424
425 /* We overlap with this area, if it extends further than
426 * us then we must extend ourselves. Account for its
427 * existing reservation. */
428 if (rg->to > t) {
429 chg += rg->to - t;
430 t = rg->to;
431 }
432 chg -= rg->to - rg->from;
433 }
434
435 out:
436 spin_unlock(&resv->lock);
437 /* We already know we raced and no longer need the new region */
438 kfree(nrg);
439 return chg;
440 out_nrg:
441 spin_unlock(&resv->lock);
442 return chg;
443 }
444
445 /*
446 * Abort the in progress add operation. The adds_in_progress field
447 * of the resv_map keeps track of the operations in progress between
448 * calls to region_chg and region_add. Operations are sometimes
449 * aborted after the call to region_chg. In such cases, region_abort
450 * is called to decrement the adds_in_progress counter.
451 *
452 * NOTE: The range arguments [f, t) are not needed or used in this
453 * routine. They are kept to make reading the calling code easier as
454 * arguments will match the associated region_chg call.
455 */
456 static void region_abort(struct resv_map *resv, long f, long t)
457 {
458 spin_lock(&resv->lock);
459 VM_BUG_ON(!resv->region_cache_count);
460 resv->adds_in_progress--;
461 spin_unlock(&resv->lock);
462 }
463
464 /*
465 * Delete the specified range [f, t) from the reserve map. If the
466 * t parameter is LONG_MAX, this indicates that ALL regions after f
467 * should be deleted. Locate the regions which intersect [f, t)
468 * and either trim, delete or split the existing regions.
469 *
470 * Returns the number of huge pages deleted from the reserve map.
471 * In the normal case, the return value is zero or more. In the
472 * case where a region must be split, a new region descriptor must
473 * be allocated. If the allocation fails, -ENOMEM will be returned.
474 * NOTE: If the parameter t == LONG_MAX, then we will never split
475 * a region and possibly return -ENOMEM. Callers specifying
476 * t == LONG_MAX do not need to check for -ENOMEM error.
477 */
478 static long region_del(struct resv_map *resv, long f, long t)
479 {
480 struct list_head *head = &resv->regions;
481 struct file_region *rg, *trg;
482 struct file_region *nrg = NULL;
483 long del = 0;
484
485 retry:
486 spin_lock(&resv->lock);
487 list_for_each_entry_safe(rg, trg, head, link) {
488 /*
489 * Skip regions before the range to be deleted. file_region
490 * ranges are normally of the form [from, to). However, there
491 * may be a "placeholder" entry in the map which is of the form
492 * (from, to) with from == to. Check for placeholder entries
493 * at the beginning of the range to be deleted.
494 */
495 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
496 continue;
497
498 if (rg->from >= t)
499 break;
500
501 if (f > rg->from && t < rg->to) { /* Must split region */
502 /*
503 * Check for an entry in the cache before dropping
504 * lock and attempting allocation.
505 */
506 if (!nrg &&
507 resv->region_cache_count > resv->adds_in_progress) {
508 nrg = list_first_entry(&resv->region_cache,
509 struct file_region,
510 link);
511 list_del(&nrg->link);
512 resv->region_cache_count--;
513 }
514
515 if (!nrg) {
516 spin_unlock(&resv->lock);
517 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
518 if (!nrg)
519 return -ENOMEM;
520 goto retry;
521 }
522
523 del += t - f;
524
525 /* New entry for end of split region */
526 nrg->from = t;
527 nrg->to = rg->to;
528 INIT_LIST_HEAD(&nrg->link);
529
530 /* Original entry is trimmed */
531 rg->to = f;
532
533 list_add(&nrg->link, &rg->link);
534 nrg = NULL;
535 break;
536 }
537
538 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
539 del += rg->to - rg->from;
540 list_del(&rg->link);
541 kfree(rg);
542 continue;
543 }
544
545 if (f <= rg->from) { /* Trim beginning of region */
546 del += t - rg->from;
547 rg->from = t;
548 } else { /* Trim end of region */
549 del += rg->to - f;
550 rg->to = f;
551 }
552 }
553
554 spin_unlock(&resv->lock);
555 kfree(nrg);
556 return del;
557 }
558
559 /*
560 * A rare out of memory error was encountered which prevented removal of
561 * the reserve map region for a page. The huge page itself was free'ed
562 * and removed from the page cache. This routine will adjust the subpool
563 * usage count, and the global reserve count if needed. By incrementing
564 * these counts, the reserve map entry which could not be deleted will
565 * appear as a "reserved" entry instead of simply dangling with incorrect
566 * counts.
567 */
568 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
569 {
570 struct hugepage_subpool *spool = subpool_inode(inode);
571 long rsv_adjust;
572
573 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
574 if (restore_reserve && rsv_adjust) {
575 struct hstate *h = hstate_inode(inode);
576
577 hugetlb_acct_memory(h, 1);
578 }
579 }
580
581 /*
582 * Count and return the number of huge pages in the reserve map
583 * that intersect with the range [f, t).
584 */
585 static long region_count(struct resv_map *resv, long f, long t)
586 {
587 struct list_head *head = &resv->regions;
588 struct file_region *rg;
589 long chg = 0;
590
591 spin_lock(&resv->lock);
592 /* Locate each segment we overlap with, and count that overlap. */
593 list_for_each_entry(rg, head, link) {
594 long seg_from;
595 long seg_to;
596
597 if (rg->to <= f)
598 continue;
599 if (rg->from >= t)
600 break;
601
602 seg_from = max(rg->from, f);
603 seg_to = min(rg->to, t);
604
605 chg += seg_to - seg_from;
606 }
607 spin_unlock(&resv->lock);
608
609 return chg;
610 }
611
612 /*
613 * Convert the address within this vma to the page offset within
614 * the mapping, in pagecache page units; huge pages here.
615 */
616 static pgoff_t vma_hugecache_offset(struct hstate *h,
617 struct vm_area_struct *vma, unsigned long address)
618 {
619 return ((address - vma->vm_start) >> huge_page_shift(h)) +
620 (vma->vm_pgoff >> huge_page_order(h));
621 }
622
623 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
624 unsigned long address)
625 {
626 return vma_hugecache_offset(hstate_vma(vma), vma, address);
627 }
628
629 /*
630 * Return the size of the pages allocated when backing a VMA. In the majority
631 * cases this will be same size as used by the page table entries.
632 */
633 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
634 {
635 struct hstate *hstate;
636
637 if (!is_vm_hugetlb_page(vma))
638 return PAGE_SIZE;
639
640 hstate = hstate_vma(vma);
641
642 return 1UL << huge_page_shift(hstate);
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645
646 /*
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific version of this
650 * function is required.
651 */
652 #ifndef vma_mmu_pagesize
653 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655 return vma_kernel_pagesize(vma);
656 }
657 #endif
658
659 /*
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
662 * alignment.
663 */
664 #define HPAGE_RESV_OWNER (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667
668 /*
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
672 *
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
677 *
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
686 */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689 return (unsigned long)vma->vm_private_data;
690 }
691
692 static void set_vma_private_data(struct vm_area_struct *vma,
693 unsigned long value)
694 {
695 vma->vm_private_data = (void *)value;
696 }
697
698 struct resv_map *resv_map_alloc(void)
699 {
700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703 if (!resv_map || !rg) {
704 kfree(resv_map);
705 kfree(rg);
706 return NULL;
707 }
708
709 kref_init(&resv_map->refs);
710 spin_lock_init(&resv_map->lock);
711 INIT_LIST_HEAD(&resv_map->regions);
712
713 resv_map->adds_in_progress = 0;
714
715 INIT_LIST_HEAD(&resv_map->region_cache);
716 list_add(&rg->link, &resv_map->region_cache);
717 resv_map->region_cache_count = 1;
718
719 return resv_map;
720 }
721
722 void resv_map_release(struct kref *ref)
723 {
724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 struct list_head *head = &resv_map->region_cache;
726 struct file_region *rg, *trg;
727
728 /* Clear out any active regions before we release the map. */
729 region_del(resv_map, 0, LONG_MAX);
730
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg, trg, head, link) {
733 list_del(&rg->link);
734 kfree(rg);
735 }
736
737 VM_BUG_ON(resv_map->adds_in_progress);
738
739 kfree(resv_map);
740 }
741
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744 return inode->i_mapping->private_data;
745 }
746
747 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
748 {
749 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
750 if (vma->vm_flags & VM_MAYSHARE) {
751 struct address_space *mapping = vma->vm_file->f_mapping;
752 struct inode *inode = mapping->host;
753
754 return inode_resv_map(inode);
755
756 } else {
757 return (struct resv_map *)(get_vma_private_data(vma) &
758 ~HPAGE_RESV_MASK);
759 }
760 }
761
762 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
763 {
764 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
765 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
766
767 set_vma_private_data(vma, (get_vma_private_data(vma) &
768 HPAGE_RESV_MASK) | (unsigned long)map);
769 }
770
771 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
772 {
773 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
774 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
775
776 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
777 }
778
779 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
780 {
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782
783 return (get_vma_private_data(vma) & flag) != 0;
784 }
785
786 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
787 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
788 {
789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790 if (!(vma->vm_flags & VM_MAYSHARE))
791 vma->vm_private_data = (void *)0;
792 }
793
794 /* Returns true if the VMA has associated reserve pages */
795 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
796 {
797 if (vma->vm_flags & VM_NORESERVE) {
798 /*
799 * This address is already reserved by other process(chg == 0),
800 * so, we should decrement reserved count. Without decrementing,
801 * reserve count remains after releasing inode, because this
802 * allocated page will go into page cache and is regarded as
803 * coming from reserved pool in releasing step. Currently, we
804 * don't have any other solution to deal with this situation
805 * properly, so add work-around here.
806 */
807 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
808 return true;
809 else
810 return false;
811 }
812
813 /* Shared mappings always use reserves */
814 if (vma->vm_flags & VM_MAYSHARE) {
815 /*
816 * We know VM_NORESERVE is not set. Therefore, there SHOULD
817 * be a region map for all pages. The only situation where
818 * there is no region map is if a hole was punched via
819 * fallocate. In this case, there really are no reverves to
820 * use. This situation is indicated if chg != 0.
821 */
822 if (chg)
823 return false;
824 else
825 return true;
826 }
827
828 /*
829 * Only the process that called mmap() has reserves for
830 * private mappings.
831 */
832 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
833 return true;
834
835 return false;
836 }
837
838 static void enqueue_huge_page(struct hstate *h, struct page *page)
839 {
840 int nid = page_to_nid(page);
841 list_move(&page->lru, &h->hugepage_freelists[nid]);
842 h->free_huge_pages++;
843 h->free_huge_pages_node[nid]++;
844 }
845
846 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
847 {
848 struct page *page;
849
850 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
851 if (!is_migrate_isolate_page(page))
852 break;
853 /*
854 * if 'non-isolated free hugepage' not found on the list,
855 * the allocation fails.
856 */
857 if (&h->hugepage_freelists[nid] == &page->lru)
858 return NULL;
859 list_move(&page->lru, &h->hugepage_activelist);
860 set_page_refcounted(page);
861 h->free_huge_pages--;
862 h->free_huge_pages_node[nid]--;
863 return page;
864 }
865
866 /* Movability of hugepages depends on migration support. */
867 static inline gfp_t htlb_alloc_mask(struct hstate *h)
868 {
869 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
870 return GFP_HIGHUSER_MOVABLE;
871 else
872 return GFP_HIGHUSER;
873 }
874
875 static struct page *dequeue_huge_page_vma(struct hstate *h,
876 struct vm_area_struct *vma,
877 unsigned long address, int avoid_reserve,
878 long chg)
879 {
880 struct page *page = NULL;
881 struct mempolicy *mpol;
882 nodemask_t *nodemask;
883 struct zonelist *zonelist;
884 struct zone *zone;
885 struct zoneref *z;
886 unsigned int cpuset_mems_cookie;
887
888 /*
889 * A child process with MAP_PRIVATE mappings created by their parent
890 * have no page reserves. This check ensures that reservations are
891 * not "stolen". The child may still get SIGKILLed
892 */
893 if (!vma_has_reserves(vma, chg) &&
894 h->free_huge_pages - h->resv_huge_pages == 0)
895 goto err;
896
897 /* If reserves cannot be used, ensure enough pages are in the pool */
898 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
899 goto err;
900
901 retry_cpuset:
902 cpuset_mems_cookie = read_mems_allowed_begin();
903 zonelist = huge_zonelist(vma, address,
904 htlb_alloc_mask(h), &mpol, &nodemask);
905
906 for_each_zone_zonelist_nodemask(zone, z, zonelist,
907 MAX_NR_ZONES - 1, nodemask) {
908 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
909 page = dequeue_huge_page_node(h, zone_to_nid(zone));
910 if (page) {
911 if (avoid_reserve)
912 break;
913 if (!vma_has_reserves(vma, chg))
914 break;
915
916 SetPagePrivate(page);
917 h->resv_huge_pages--;
918 break;
919 }
920 }
921 }
922
923 mpol_cond_put(mpol);
924 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
925 goto retry_cpuset;
926 return page;
927
928 err:
929 return NULL;
930 }
931
932 /*
933 * common helper functions for hstate_next_node_to_{alloc|free}.
934 * We may have allocated or freed a huge page based on a different
935 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936 * be outside of *nodes_allowed. Ensure that we use an allowed
937 * node for alloc or free.
938 */
939 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941 nid = next_node(nid, *nodes_allowed);
942 if (nid == MAX_NUMNODES)
943 nid = first_node(*nodes_allowed);
944 VM_BUG_ON(nid >= MAX_NUMNODES);
945
946 return nid;
947 }
948
949 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
950 {
951 if (!node_isset(nid, *nodes_allowed))
952 nid = next_node_allowed(nid, nodes_allowed);
953 return nid;
954 }
955
956 /*
957 * returns the previously saved node ["this node"] from which to
958 * allocate a persistent huge page for the pool and advance the
959 * next node from which to allocate, handling wrap at end of node
960 * mask.
961 */
962 static int hstate_next_node_to_alloc(struct hstate *h,
963 nodemask_t *nodes_allowed)
964 {
965 int nid;
966
967 VM_BUG_ON(!nodes_allowed);
968
969 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
970 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
971
972 return nid;
973 }
974
975 /*
976 * helper for free_pool_huge_page() - return the previously saved
977 * node ["this node"] from which to free a huge page. Advance the
978 * next node id whether or not we find a free huge page to free so
979 * that the next attempt to free addresses the next node.
980 */
981 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
982 {
983 int nid;
984
985 VM_BUG_ON(!nodes_allowed);
986
987 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
988 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
989
990 return nid;
991 }
992
993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
994 for (nr_nodes = nodes_weight(*mask); \
995 nr_nodes > 0 && \
996 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
997 nr_nodes--)
998
999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1000 for (nr_nodes = nodes_weight(*mask); \
1001 nr_nodes > 0 && \
1002 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1003 nr_nodes--)
1004
1005 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
1006 static void destroy_compound_gigantic_page(struct page *page,
1007 unsigned int order)
1008 {
1009 int i;
1010 int nr_pages = 1 << order;
1011 struct page *p = page + 1;
1012
1013 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014 clear_compound_head(p);
1015 set_page_refcounted(p);
1016 }
1017
1018 set_compound_order(page, 0);
1019 __ClearPageHead(page);
1020 }
1021
1022 static void free_gigantic_page(struct page *page, unsigned int order)
1023 {
1024 free_contig_range(page_to_pfn(page), 1 << order);
1025 }
1026
1027 static int __alloc_gigantic_page(unsigned long start_pfn,
1028 unsigned long nr_pages)
1029 {
1030 unsigned long end_pfn = start_pfn + nr_pages;
1031 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1032 }
1033
1034 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1035 unsigned long nr_pages)
1036 {
1037 unsigned long i, end_pfn = start_pfn + nr_pages;
1038 struct page *page;
1039
1040 for (i = start_pfn; i < end_pfn; i++) {
1041 if (!pfn_valid(i))
1042 return false;
1043
1044 page = pfn_to_page(i);
1045
1046 if (PageReserved(page))
1047 return false;
1048
1049 if (page_count(page) > 0)
1050 return false;
1051
1052 if (PageHuge(page))
1053 return false;
1054 }
1055
1056 return true;
1057 }
1058
1059 static bool zone_spans_last_pfn(const struct zone *zone,
1060 unsigned long start_pfn, unsigned long nr_pages)
1061 {
1062 unsigned long last_pfn = start_pfn + nr_pages - 1;
1063 return zone_spans_pfn(zone, last_pfn);
1064 }
1065
1066 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1067 {
1068 unsigned long nr_pages = 1 << order;
1069 unsigned long ret, pfn, flags;
1070 struct zone *z;
1071
1072 z = NODE_DATA(nid)->node_zones;
1073 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1074 spin_lock_irqsave(&z->lock, flags);
1075
1076 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1077 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1078 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1079 /*
1080 * We release the zone lock here because
1081 * alloc_contig_range() will also lock the zone
1082 * at some point. If there's an allocation
1083 * spinning on this lock, it may win the race
1084 * and cause alloc_contig_range() to fail...
1085 */
1086 spin_unlock_irqrestore(&z->lock, flags);
1087 ret = __alloc_gigantic_page(pfn, nr_pages);
1088 if (!ret)
1089 return pfn_to_page(pfn);
1090 spin_lock_irqsave(&z->lock, flags);
1091 }
1092 pfn += nr_pages;
1093 }
1094
1095 spin_unlock_irqrestore(&z->lock, flags);
1096 }
1097
1098 return NULL;
1099 }
1100
1101 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1102 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1103
1104 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1105 {
1106 struct page *page;
1107
1108 page = alloc_gigantic_page(nid, huge_page_order(h));
1109 if (page) {
1110 prep_compound_gigantic_page(page, huge_page_order(h));
1111 prep_new_huge_page(h, page, nid);
1112 }
1113
1114 return page;
1115 }
1116
1117 static int alloc_fresh_gigantic_page(struct hstate *h,
1118 nodemask_t *nodes_allowed)
1119 {
1120 struct page *page = NULL;
1121 int nr_nodes, node;
1122
1123 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1124 page = alloc_fresh_gigantic_page_node(h, node);
1125 if (page)
1126 return 1;
1127 }
1128
1129 return 0;
1130 }
1131
1132 static inline bool gigantic_page_supported(void) { return true; }
1133 #else
1134 static inline bool gigantic_page_supported(void) { return false; }
1135 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1136 static inline void destroy_compound_gigantic_page(struct page *page,
1137 unsigned int order) { }
1138 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1139 nodemask_t *nodes_allowed) { return 0; }
1140 #endif
1141
1142 static void update_and_free_page(struct hstate *h, struct page *page)
1143 {
1144 int i;
1145
1146 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1147 return;
1148
1149 h->nr_huge_pages--;
1150 h->nr_huge_pages_node[page_to_nid(page)]--;
1151 for (i = 0; i < pages_per_huge_page(h); i++) {
1152 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1153 1 << PG_referenced | 1 << PG_dirty |
1154 1 << PG_active | 1 << PG_private |
1155 1 << PG_writeback);
1156 }
1157 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1158 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1159 set_page_refcounted(page);
1160 if (hstate_is_gigantic(h)) {
1161 destroy_compound_gigantic_page(page, huge_page_order(h));
1162 free_gigantic_page(page, huge_page_order(h));
1163 } else {
1164 __free_pages(page, huge_page_order(h));
1165 }
1166 }
1167
1168 struct hstate *size_to_hstate(unsigned long size)
1169 {
1170 struct hstate *h;
1171
1172 for_each_hstate(h) {
1173 if (huge_page_size(h) == size)
1174 return h;
1175 }
1176 return NULL;
1177 }
1178
1179 /*
1180 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1181 * to hstate->hugepage_activelist.)
1182 *
1183 * This function can be called for tail pages, but never returns true for them.
1184 */
1185 bool page_huge_active(struct page *page)
1186 {
1187 VM_BUG_ON_PAGE(!PageHuge(page), page);
1188 return PageHead(page) && PagePrivate(&page[1]);
1189 }
1190
1191 /* never called for tail page */
1192 static void set_page_huge_active(struct page *page)
1193 {
1194 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1195 SetPagePrivate(&page[1]);
1196 }
1197
1198 static void clear_page_huge_active(struct page *page)
1199 {
1200 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1201 ClearPagePrivate(&page[1]);
1202 }
1203
1204 void free_huge_page(struct page *page)
1205 {
1206 /*
1207 * Can't pass hstate in here because it is called from the
1208 * compound page destructor.
1209 */
1210 struct hstate *h = page_hstate(page);
1211 int nid = page_to_nid(page);
1212 struct hugepage_subpool *spool =
1213 (struct hugepage_subpool *)page_private(page);
1214 bool restore_reserve;
1215
1216 set_page_private(page, 0);
1217 page->mapping = NULL;
1218 BUG_ON(page_count(page));
1219 BUG_ON(page_mapcount(page));
1220 restore_reserve = PagePrivate(page);
1221 ClearPagePrivate(page);
1222
1223 /*
1224 * A return code of zero implies that the subpool will be under its
1225 * minimum size if the reservation is not restored after page is free.
1226 * Therefore, force restore_reserve operation.
1227 */
1228 if (hugepage_subpool_put_pages(spool, 1) == 0)
1229 restore_reserve = true;
1230
1231 spin_lock(&hugetlb_lock);
1232 clear_page_huge_active(page);
1233 hugetlb_cgroup_uncharge_page(hstate_index(h),
1234 pages_per_huge_page(h), page);
1235 if (restore_reserve)
1236 h->resv_huge_pages++;
1237
1238 if (h->surplus_huge_pages_node[nid]) {
1239 /* remove the page from active list */
1240 list_del(&page->lru);
1241 update_and_free_page(h, page);
1242 h->surplus_huge_pages--;
1243 h->surplus_huge_pages_node[nid]--;
1244 } else {
1245 arch_clear_hugepage_flags(page);
1246 enqueue_huge_page(h, page);
1247 }
1248 spin_unlock(&hugetlb_lock);
1249 }
1250
1251 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1252 {
1253 INIT_LIST_HEAD(&page->lru);
1254 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1255 spin_lock(&hugetlb_lock);
1256 set_hugetlb_cgroup(page, NULL);
1257 h->nr_huge_pages++;
1258 h->nr_huge_pages_node[nid]++;
1259 spin_unlock(&hugetlb_lock);
1260 put_page(page); /* free it into the hugepage allocator */
1261 }
1262
1263 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1264 {
1265 int i;
1266 int nr_pages = 1 << order;
1267 struct page *p = page + 1;
1268
1269 /* we rely on prep_new_huge_page to set the destructor */
1270 set_compound_order(page, order);
1271 __SetPageHead(page);
1272 __ClearPageReserved(page);
1273 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1274 /*
1275 * For gigantic hugepages allocated through bootmem at
1276 * boot, it's safer to be consistent with the not-gigantic
1277 * hugepages and clear the PG_reserved bit from all tail pages
1278 * too. Otherwse drivers using get_user_pages() to access tail
1279 * pages may get the reference counting wrong if they see
1280 * PG_reserved set on a tail page (despite the head page not
1281 * having PG_reserved set). Enforcing this consistency between
1282 * head and tail pages allows drivers to optimize away a check
1283 * on the head page when they need know if put_page() is needed
1284 * after get_user_pages().
1285 */
1286 __ClearPageReserved(p);
1287 set_page_count(p, 0);
1288 set_compound_head(p, page);
1289 }
1290 }
1291
1292 /*
1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294 * transparent huge pages. See the PageTransHuge() documentation for more
1295 * details.
1296 */
1297 int PageHuge(struct page *page)
1298 {
1299 if (!PageCompound(page))
1300 return 0;
1301
1302 page = compound_head(page);
1303 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304 }
1305 EXPORT_SYMBOL_GPL(PageHuge);
1306
1307 /*
1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309 * normal or transparent huge pages.
1310 */
1311 int PageHeadHuge(struct page *page_head)
1312 {
1313 if (!PageHead(page_head))
1314 return 0;
1315
1316 return get_compound_page_dtor(page_head) == free_huge_page;
1317 }
1318
1319 pgoff_t __basepage_index(struct page *page)
1320 {
1321 struct page *page_head = compound_head(page);
1322 pgoff_t index = page_index(page_head);
1323 unsigned long compound_idx;
1324
1325 if (!PageHuge(page_head))
1326 return page_index(page);
1327
1328 if (compound_order(page_head) >= MAX_ORDER)
1329 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330 else
1331 compound_idx = page - page_head;
1332
1333 return (index << compound_order(page_head)) + compound_idx;
1334 }
1335
1336 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1337 {
1338 struct page *page;
1339
1340 page = __alloc_pages_node(nid,
1341 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342 __GFP_REPEAT|__GFP_NOWARN,
1343 huge_page_order(h));
1344 if (page) {
1345 prep_new_huge_page(h, page, nid);
1346 }
1347
1348 return page;
1349 }
1350
1351 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352 {
1353 struct page *page;
1354 int nr_nodes, node;
1355 int ret = 0;
1356
1357 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358 page = alloc_fresh_huge_page_node(h, node);
1359 if (page) {
1360 ret = 1;
1361 break;
1362 }
1363 }
1364
1365 if (ret)
1366 count_vm_event(HTLB_BUDDY_PGALLOC);
1367 else
1368 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370 return ret;
1371 }
1372
1373 /*
1374 * Free huge page from pool from next node to free.
1375 * Attempt to keep persistent huge pages more or less
1376 * balanced over allowed nodes.
1377 * Called with hugetlb_lock locked.
1378 */
1379 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380 bool acct_surplus)
1381 {
1382 int nr_nodes, node;
1383 int ret = 0;
1384
1385 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386 /*
1387 * If we're returning unused surplus pages, only examine
1388 * nodes with surplus pages.
1389 */
1390 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391 !list_empty(&h->hugepage_freelists[node])) {
1392 struct page *page =
1393 list_entry(h->hugepage_freelists[node].next,
1394 struct page, lru);
1395 list_del(&page->lru);
1396 h->free_huge_pages--;
1397 h->free_huge_pages_node[node]--;
1398 if (acct_surplus) {
1399 h->surplus_huge_pages--;
1400 h->surplus_huge_pages_node[node]--;
1401 }
1402 update_and_free_page(h, page);
1403 ret = 1;
1404 break;
1405 }
1406 }
1407
1408 return ret;
1409 }
1410
1411 /*
1412 * Dissolve a given free hugepage into free buddy pages. This function does
1413 * nothing for in-use (including surplus) hugepages.
1414 */
1415 static void dissolve_free_huge_page(struct page *page)
1416 {
1417 spin_lock(&hugetlb_lock);
1418 if (PageHuge(page) && !page_count(page)) {
1419 struct page *head = compound_head(page);
1420 struct hstate *h = page_hstate(head);
1421 int nid = page_to_nid(head);
1422 list_del(&head->lru);
1423 h->free_huge_pages--;
1424 h->free_huge_pages_node[nid]--;
1425 update_and_free_page(h, head);
1426 }
1427 spin_unlock(&hugetlb_lock);
1428 }
1429
1430 /*
1431 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1432 * make specified memory blocks removable from the system.
1433 * Note that this will dissolve a free gigantic hugepage completely, if any
1434 * part of it lies within the given range.
1435 */
1436 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1437 {
1438 unsigned long pfn;
1439
1440 if (!hugepages_supported())
1441 return;
1442
1443 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1444 dissolve_free_huge_page(pfn_to_page(pfn));
1445 }
1446
1447 /*
1448 * There are 3 ways this can get called:
1449 * 1. With vma+addr: we use the VMA's memory policy
1450 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1451 * page from any node, and let the buddy allocator itself figure
1452 * it out.
1453 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1454 * strictly from 'nid'
1455 */
1456 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1457 struct vm_area_struct *vma, unsigned long addr, int nid)
1458 {
1459 int order = huge_page_order(h);
1460 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1461 unsigned int cpuset_mems_cookie;
1462
1463 /*
1464 * We need a VMA to get a memory policy. If we do not
1465 * have one, we use the 'nid' argument.
1466 *
1467 * The mempolicy stuff below has some non-inlined bits
1468 * and calls ->vm_ops. That makes it hard to optimize at
1469 * compile-time, even when NUMA is off and it does
1470 * nothing. This helps the compiler optimize it out.
1471 */
1472 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1473 /*
1474 * If a specific node is requested, make sure to
1475 * get memory from there, but only when a node
1476 * is explicitly specified.
1477 */
1478 if (nid != NUMA_NO_NODE)
1479 gfp |= __GFP_THISNODE;
1480 /*
1481 * Make sure to call something that can handle
1482 * nid=NUMA_NO_NODE
1483 */
1484 return alloc_pages_node(nid, gfp, order);
1485 }
1486
1487 /*
1488 * OK, so we have a VMA. Fetch the mempolicy and try to
1489 * allocate a huge page with it. We will only reach this
1490 * when CONFIG_NUMA=y.
1491 */
1492 do {
1493 struct page *page;
1494 struct mempolicy *mpol;
1495 struct zonelist *zl;
1496 nodemask_t *nodemask;
1497
1498 cpuset_mems_cookie = read_mems_allowed_begin();
1499 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1500 mpol_cond_put(mpol);
1501 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1502 if (page)
1503 return page;
1504 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1505
1506 return NULL;
1507 }
1508
1509 /*
1510 * There are two ways to allocate a huge page:
1511 * 1. When you have a VMA and an address (like a fault)
1512 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1513 *
1514 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1515 * this case which signifies that the allocation should be done with
1516 * respect for the VMA's memory policy.
1517 *
1518 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1519 * implies that memory policies will not be taken in to account.
1520 */
1521 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1522 struct vm_area_struct *vma, unsigned long addr, int nid)
1523 {
1524 struct page *page;
1525 unsigned int r_nid;
1526
1527 if (hstate_is_gigantic(h))
1528 return NULL;
1529
1530 /*
1531 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1532 * This makes sure the caller is picking _one_ of the modes with which
1533 * we can call this function, not both.
1534 */
1535 if (vma || (addr != -1)) {
1536 VM_WARN_ON_ONCE(addr == -1);
1537 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1538 }
1539 /*
1540 * Assume we will successfully allocate the surplus page to
1541 * prevent racing processes from causing the surplus to exceed
1542 * overcommit
1543 *
1544 * This however introduces a different race, where a process B
1545 * tries to grow the static hugepage pool while alloc_pages() is
1546 * called by process A. B will only examine the per-node
1547 * counters in determining if surplus huge pages can be
1548 * converted to normal huge pages in adjust_pool_surplus(). A
1549 * won't be able to increment the per-node counter, until the
1550 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1551 * no more huge pages can be converted from surplus to normal
1552 * state (and doesn't try to convert again). Thus, we have a
1553 * case where a surplus huge page exists, the pool is grown, and
1554 * the surplus huge page still exists after, even though it
1555 * should just have been converted to a normal huge page. This
1556 * does not leak memory, though, as the hugepage will be freed
1557 * once it is out of use. It also does not allow the counters to
1558 * go out of whack in adjust_pool_surplus() as we don't modify
1559 * the node values until we've gotten the hugepage and only the
1560 * per-node value is checked there.
1561 */
1562 spin_lock(&hugetlb_lock);
1563 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1564 spin_unlock(&hugetlb_lock);
1565 return NULL;
1566 } else {
1567 h->nr_huge_pages++;
1568 h->surplus_huge_pages++;
1569 }
1570 spin_unlock(&hugetlb_lock);
1571
1572 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1573
1574 spin_lock(&hugetlb_lock);
1575 if (page) {
1576 INIT_LIST_HEAD(&page->lru);
1577 r_nid = page_to_nid(page);
1578 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1579 set_hugetlb_cgroup(page, NULL);
1580 /*
1581 * We incremented the global counters already
1582 */
1583 h->nr_huge_pages_node[r_nid]++;
1584 h->surplus_huge_pages_node[r_nid]++;
1585 __count_vm_event(HTLB_BUDDY_PGALLOC);
1586 } else {
1587 h->nr_huge_pages--;
1588 h->surplus_huge_pages--;
1589 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1590 }
1591 spin_unlock(&hugetlb_lock);
1592
1593 return page;
1594 }
1595
1596 /*
1597 * Allocate a huge page from 'nid'. Note, 'nid' may be
1598 * NUMA_NO_NODE, which means that it may be allocated
1599 * anywhere.
1600 */
1601 static
1602 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1603 {
1604 unsigned long addr = -1;
1605
1606 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1607 }
1608
1609 /*
1610 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1611 */
1612 static
1613 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1614 struct vm_area_struct *vma, unsigned long addr)
1615 {
1616 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1617 }
1618
1619 /*
1620 * This allocation function is useful in the context where vma is irrelevant.
1621 * E.g. soft-offlining uses this function because it only cares physical
1622 * address of error page.
1623 */
1624 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1625 {
1626 struct page *page = NULL;
1627
1628 spin_lock(&hugetlb_lock);
1629 if (h->free_huge_pages - h->resv_huge_pages > 0)
1630 page = dequeue_huge_page_node(h, nid);
1631 spin_unlock(&hugetlb_lock);
1632
1633 if (!page)
1634 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1635
1636 return page;
1637 }
1638
1639 /*
1640 * Increase the hugetlb pool such that it can accommodate a reservation
1641 * of size 'delta'.
1642 */
1643 static int gather_surplus_pages(struct hstate *h, int delta)
1644 {
1645 struct list_head surplus_list;
1646 struct page *page, *tmp;
1647 int ret, i;
1648 int needed, allocated;
1649 bool alloc_ok = true;
1650
1651 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1652 if (needed <= 0) {
1653 h->resv_huge_pages += delta;
1654 return 0;
1655 }
1656
1657 allocated = 0;
1658 INIT_LIST_HEAD(&surplus_list);
1659
1660 ret = -ENOMEM;
1661 retry:
1662 spin_unlock(&hugetlb_lock);
1663 for (i = 0; i < needed; i++) {
1664 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1665 if (!page) {
1666 alloc_ok = false;
1667 break;
1668 }
1669 list_add(&page->lru, &surplus_list);
1670 }
1671 allocated += i;
1672
1673 /*
1674 * After retaking hugetlb_lock, we need to recalculate 'needed'
1675 * because either resv_huge_pages or free_huge_pages may have changed.
1676 */
1677 spin_lock(&hugetlb_lock);
1678 needed = (h->resv_huge_pages + delta) -
1679 (h->free_huge_pages + allocated);
1680 if (needed > 0) {
1681 if (alloc_ok)
1682 goto retry;
1683 /*
1684 * We were not able to allocate enough pages to
1685 * satisfy the entire reservation so we free what
1686 * we've allocated so far.
1687 */
1688 goto free;
1689 }
1690 /*
1691 * The surplus_list now contains _at_least_ the number of extra pages
1692 * needed to accommodate the reservation. Add the appropriate number
1693 * of pages to the hugetlb pool and free the extras back to the buddy
1694 * allocator. Commit the entire reservation here to prevent another
1695 * process from stealing the pages as they are added to the pool but
1696 * before they are reserved.
1697 */
1698 needed += allocated;
1699 h->resv_huge_pages += delta;
1700 ret = 0;
1701
1702 /* Free the needed pages to the hugetlb pool */
1703 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1704 if ((--needed) < 0)
1705 break;
1706 /*
1707 * This page is now managed by the hugetlb allocator and has
1708 * no users -- drop the buddy allocator's reference.
1709 */
1710 put_page_testzero(page);
1711 VM_BUG_ON_PAGE(page_count(page), page);
1712 enqueue_huge_page(h, page);
1713 }
1714 free:
1715 spin_unlock(&hugetlb_lock);
1716
1717 /* Free unnecessary surplus pages to the buddy allocator */
1718 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1719 put_page(page);
1720 spin_lock(&hugetlb_lock);
1721
1722 return ret;
1723 }
1724
1725 /*
1726 * This routine has two main purposes:
1727 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1728 * in unused_resv_pages. This corresponds to the prior adjustments made
1729 * to the associated reservation map.
1730 * 2) Free any unused surplus pages that may have been allocated to satisfy
1731 * the reservation. As many as unused_resv_pages may be freed.
1732 *
1733 * Called with hugetlb_lock held. However, the lock could be dropped (and
1734 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1735 * we must make sure nobody else can claim pages we are in the process of
1736 * freeing. Do this by ensuring resv_huge_page always is greater than the
1737 * number of huge pages we plan to free when dropping the lock.
1738 */
1739 static void return_unused_surplus_pages(struct hstate *h,
1740 unsigned long unused_resv_pages)
1741 {
1742 unsigned long nr_pages;
1743
1744 /* Cannot return gigantic pages currently */
1745 if (hstate_is_gigantic(h))
1746 goto out;
1747
1748 /*
1749 * Part (or even all) of the reservation could have been backed
1750 * by pre-allocated pages. Only free surplus pages.
1751 */
1752 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1753
1754 /*
1755 * We want to release as many surplus pages as possible, spread
1756 * evenly across all nodes with memory. Iterate across these nodes
1757 * until we can no longer free unreserved surplus pages. This occurs
1758 * when the nodes with surplus pages have no free pages.
1759 * free_pool_huge_page() will balance the the freed pages across the
1760 * on-line nodes with memory and will handle the hstate accounting.
1761 *
1762 * Note that we decrement resv_huge_pages as we free the pages. If
1763 * we drop the lock, resv_huge_pages will still be sufficiently large
1764 * to cover subsequent pages we may free.
1765 */
1766 while (nr_pages--) {
1767 h->resv_huge_pages--;
1768 unused_resv_pages--;
1769 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1770 goto out;
1771 cond_resched_lock(&hugetlb_lock);
1772 }
1773
1774 out:
1775 /* Fully uncommit the reservation */
1776 h->resv_huge_pages -= unused_resv_pages;
1777 }
1778
1779
1780 /*
1781 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1782 * are used by the huge page allocation routines to manage reservations.
1783 *
1784 * vma_needs_reservation is called to determine if the huge page at addr
1785 * within the vma has an associated reservation. If a reservation is
1786 * needed, the value 1 is returned. The caller is then responsible for
1787 * managing the global reservation and subpool usage counts. After
1788 * the huge page has been allocated, vma_commit_reservation is called
1789 * to add the page to the reservation map. If the page allocation fails,
1790 * the reservation must be ended instead of committed. vma_end_reservation
1791 * is called in such cases.
1792 *
1793 * In the normal case, vma_commit_reservation returns the same value
1794 * as the preceding vma_needs_reservation call. The only time this
1795 * is not the case is if a reserve map was changed between calls. It
1796 * is the responsibility of the caller to notice the difference and
1797 * take appropriate action.
1798 */
1799 enum vma_resv_mode {
1800 VMA_NEEDS_RESV,
1801 VMA_COMMIT_RESV,
1802 VMA_END_RESV,
1803 };
1804 static long __vma_reservation_common(struct hstate *h,
1805 struct vm_area_struct *vma, unsigned long addr,
1806 enum vma_resv_mode mode)
1807 {
1808 struct resv_map *resv;
1809 pgoff_t idx;
1810 long ret;
1811
1812 resv = vma_resv_map(vma);
1813 if (!resv)
1814 return 1;
1815
1816 idx = vma_hugecache_offset(h, vma, addr);
1817 switch (mode) {
1818 case VMA_NEEDS_RESV:
1819 ret = region_chg(resv, idx, idx + 1);
1820 break;
1821 case VMA_COMMIT_RESV:
1822 ret = region_add(resv, idx, idx + 1);
1823 break;
1824 case VMA_END_RESV:
1825 region_abort(resv, idx, idx + 1);
1826 ret = 0;
1827 break;
1828 default:
1829 BUG();
1830 }
1831
1832 if (vma->vm_flags & VM_MAYSHARE)
1833 return ret;
1834 else
1835 return ret < 0 ? ret : 0;
1836 }
1837
1838 static long vma_needs_reservation(struct hstate *h,
1839 struct vm_area_struct *vma, unsigned long addr)
1840 {
1841 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1842 }
1843
1844 static long vma_commit_reservation(struct hstate *h,
1845 struct vm_area_struct *vma, unsigned long addr)
1846 {
1847 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1848 }
1849
1850 static void vma_end_reservation(struct hstate *h,
1851 struct vm_area_struct *vma, unsigned long addr)
1852 {
1853 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1854 }
1855
1856 struct page *alloc_huge_page(struct vm_area_struct *vma,
1857 unsigned long addr, int avoid_reserve)
1858 {
1859 struct hugepage_subpool *spool = subpool_vma(vma);
1860 struct hstate *h = hstate_vma(vma);
1861 struct page *page;
1862 long map_chg, map_commit;
1863 long gbl_chg;
1864 int ret, idx;
1865 struct hugetlb_cgroup *h_cg;
1866
1867 idx = hstate_index(h);
1868 /*
1869 * Examine the region/reserve map to determine if the process
1870 * has a reservation for the page to be allocated. A return
1871 * code of zero indicates a reservation exists (no change).
1872 */
1873 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1874 if (map_chg < 0)
1875 return ERR_PTR(-ENOMEM);
1876
1877 /*
1878 * Processes that did not create the mapping will have no
1879 * reserves as indicated by the region/reserve map. Check
1880 * that the allocation will not exceed the subpool limit.
1881 * Allocations for MAP_NORESERVE mappings also need to be
1882 * checked against any subpool limit.
1883 */
1884 if (map_chg || avoid_reserve) {
1885 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1886 if (gbl_chg < 0) {
1887 vma_end_reservation(h, vma, addr);
1888 return ERR_PTR(-ENOSPC);
1889 }
1890
1891 /*
1892 * Even though there was no reservation in the region/reserve
1893 * map, there could be reservations associated with the
1894 * subpool that can be used. This would be indicated if the
1895 * return value of hugepage_subpool_get_pages() is zero.
1896 * However, if avoid_reserve is specified we still avoid even
1897 * the subpool reservations.
1898 */
1899 if (avoid_reserve)
1900 gbl_chg = 1;
1901 }
1902
1903 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1904 if (ret)
1905 goto out_subpool_put;
1906
1907 spin_lock(&hugetlb_lock);
1908 /*
1909 * glb_chg is passed to indicate whether or not a page must be taken
1910 * from the global free pool (global change). gbl_chg == 0 indicates
1911 * a reservation exists for the allocation.
1912 */
1913 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1914 if (!page) {
1915 spin_unlock(&hugetlb_lock);
1916 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1917 if (!page)
1918 goto out_uncharge_cgroup;
1919 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1920 SetPagePrivate(page);
1921 h->resv_huge_pages--;
1922 }
1923 spin_lock(&hugetlb_lock);
1924 list_move(&page->lru, &h->hugepage_activelist);
1925 /* Fall through */
1926 }
1927 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1928 spin_unlock(&hugetlb_lock);
1929
1930 set_page_private(page, (unsigned long)spool);
1931
1932 map_commit = vma_commit_reservation(h, vma, addr);
1933 if (unlikely(map_chg > map_commit)) {
1934 /*
1935 * The page was added to the reservation map between
1936 * vma_needs_reservation and vma_commit_reservation.
1937 * This indicates a race with hugetlb_reserve_pages.
1938 * Adjust for the subpool count incremented above AND
1939 * in hugetlb_reserve_pages for the same page. Also,
1940 * the reservation count added in hugetlb_reserve_pages
1941 * no longer applies.
1942 */
1943 long rsv_adjust;
1944
1945 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1946 hugetlb_acct_memory(h, -rsv_adjust);
1947 }
1948 return page;
1949
1950 out_uncharge_cgroup:
1951 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1952 out_subpool_put:
1953 if (map_chg || avoid_reserve)
1954 hugepage_subpool_put_pages(spool, 1);
1955 vma_end_reservation(h, vma, addr);
1956 return ERR_PTR(-ENOSPC);
1957 }
1958
1959 /*
1960 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1961 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1962 * where no ERR_VALUE is expected to be returned.
1963 */
1964 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1965 unsigned long addr, int avoid_reserve)
1966 {
1967 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1968 if (IS_ERR(page))
1969 page = NULL;
1970 return page;
1971 }
1972
1973 int __weak alloc_bootmem_huge_page(struct hstate *h)
1974 {
1975 struct huge_bootmem_page *m;
1976 int nr_nodes, node;
1977
1978 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1979 void *addr;
1980
1981 addr = memblock_virt_alloc_try_nid_nopanic(
1982 huge_page_size(h), huge_page_size(h),
1983 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1984 if (addr) {
1985 /*
1986 * Use the beginning of the huge page to store the
1987 * huge_bootmem_page struct (until gather_bootmem
1988 * puts them into the mem_map).
1989 */
1990 m = addr;
1991 goto found;
1992 }
1993 }
1994 return 0;
1995
1996 found:
1997 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1998 /* Put them into a private list first because mem_map is not up yet */
1999 list_add(&m->list, &huge_boot_pages);
2000 m->hstate = h;
2001 return 1;
2002 }
2003
2004 static void __init prep_compound_huge_page(struct page *page,
2005 unsigned int order)
2006 {
2007 if (unlikely(order > (MAX_ORDER - 1)))
2008 prep_compound_gigantic_page(page, order);
2009 else
2010 prep_compound_page(page, order);
2011 }
2012
2013 /* Put bootmem huge pages into the standard lists after mem_map is up */
2014 static void __init gather_bootmem_prealloc(void)
2015 {
2016 struct huge_bootmem_page *m;
2017
2018 list_for_each_entry(m, &huge_boot_pages, list) {
2019 struct hstate *h = m->hstate;
2020 struct page *page;
2021
2022 #ifdef CONFIG_HIGHMEM
2023 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2024 memblock_free_late(__pa(m),
2025 sizeof(struct huge_bootmem_page));
2026 #else
2027 page = virt_to_page(m);
2028 #endif
2029 WARN_ON(page_count(page) != 1);
2030 prep_compound_huge_page(page, h->order);
2031 WARN_ON(PageReserved(page));
2032 prep_new_huge_page(h, page, page_to_nid(page));
2033 /*
2034 * If we had gigantic hugepages allocated at boot time, we need
2035 * to restore the 'stolen' pages to totalram_pages in order to
2036 * fix confusing memory reports from free(1) and another
2037 * side-effects, like CommitLimit going negative.
2038 */
2039 if (hstate_is_gigantic(h))
2040 adjust_managed_page_count(page, 1 << h->order);
2041 }
2042 }
2043
2044 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2045 {
2046 unsigned long i;
2047
2048 for (i = 0; i < h->max_huge_pages; ++i) {
2049 if (hstate_is_gigantic(h)) {
2050 if (!alloc_bootmem_huge_page(h))
2051 break;
2052 } else if (!alloc_fresh_huge_page(h,
2053 &node_states[N_MEMORY]))
2054 break;
2055 }
2056 h->max_huge_pages = i;
2057 }
2058
2059 static void __init hugetlb_init_hstates(void)
2060 {
2061 struct hstate *h;
2062
2063 for_each_hstate(h) {
2064 if (minimum_order > huge_page_order(h))
2065 minimum_order = huge_page_order(h);
2066
2067 /* oversize hugepages were init'ed in early boot */
2068 if (!hstate_is_gigantic(h))
2069 hugetlb_hstate_alloc_pages(h);
2070 }
2071 VM_BUG_ON(minimum_order == UINT_MAX);
2072 }
2073
2074 static char * __init memfmt(char *buf, unsigned long n)
2075 {
2076 if (n >= (1UL << 30))
2077 sprintf(buf, "%lu GB", n >> 30);
2078 else if (n >= (1UL << 20))
2079 sprintf(buf, "%lu MB", n >> 20);
2080 else
2081 sprintf(buf, "%lu KB", n >> 10);
2082 return buf;
2083 }
2084
2085 static void __init report_hugepages(void)
2086 {
2087 struct hstate *h;
2088
2089 for_each_hstate(h) {
2090 char buf[32];
2091 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2092 memfmt(buf, huge_page_size(h)),
2093 h->free_huge_pages);
2094 }
2095 }
2096
2097 #ifdef CONFIG_HIGHMEM
2098 static void try_to_free_low(struct hstate *h, unsigned long count,
2099 nodemask_t *nodes_allowed)
2100 {
2101 int i;
2102
2103 if (hstate_is_gigantic(h))
2104 return;
2105
2106 for_each_node_mask(i, *nodes_allowed) {
2107 struct page *page, *next;
2108 struct list_head *freel = &h->hugepage_freelists[i];
2109 list_for_each_entry_safe(page, next, freel, lru) {
2110 if (count >= h->nr_huge_pages)
2111 return;
2112 if (PageHighMem(page))
2113 continue;
2114 list_del(&page->lru);
2115 update_and_free_page(h, page);
2116 h->free_huge_pages--;
2117 h->free_huge_pages_node[page_to_nid(page)]--;
2118 }
2119 }
2120 }
2121 #else
2122 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2123 nodemask_t *nodes_allowed)
2124 {
2125 }
2126 #endif
2127
2128 /*
2129 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2130 * balanced by operating on them in a round-robin fashion.
2131 * Returns 1 if an adjustment was made.
2132 */
2133 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2134 int delta)
2135 {
2136 int nr_nodes, node;
2137
2138 VM_BUG_ON(delta != -1 && delta != 1);
2139
2140 if (delta < 0) {
2141 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2142 if (h->surplus_huge_pages_node[node])
2143 goto found;
2144 }
2145 } else {
2146 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2147 if (h->surplus_huge_pages_node[node] <
2148 h->nr_huge_pages_node[node])
2149 goto found;
2150 }
2151 }
2152 return 0;
2153
2154 found:
2155 h->surplus_huge_pages += delta;
2156 h->surplus_huge_pages_node[node] += delta;
2157 return 1;
2158 }
2159
2160 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2161 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2162 nodemask_t *nodes_allowed)
2163 {
2164 unsigned long min_count, ret;
2165
2166 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2167 return h->max_huge_pages;
2168
2169 /*
2170 * Increase the pool size
2171 * First take pages out of surplus state. Then make up the
2172 * remaining difference by allocating fresh huge pages.
2173 *
2174 * We might race with __alloc_buddy_huge_page() here and be unable
2175 * to convert a surplus huge page to a normal huge page. That is
2176 * not critical, though, it just means the overall size of the
2177 * pool might be one hugepage larger than it needs to be, but
2178 * within all the constraints specified by the sysctls.
2179 */
2180 spin_lock(&hugetlb_lock);
2181 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2182 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2183 break;
2184 }
2185
2186 while (count > persistent_huge_pages(h)) {
2187 /*
2188 * If this allocation races such that we no longer need the
2189 * page, free_huge_page will handle it by freeing the page
2190 * and reducing the surplus.
2191 */
2192 spin_unlock(&hugetlb_lock);
2193
2194 /* yield cpu to avoid soft lockup */
2195 cond_resched();
2196
2197 if (hstate_is_gigantic(h))
2198 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2199 else
2200 ret = alloc_fresh_huge_page(h, nodes_allowed);
2201 spin_lock(&hugetlb_lock);
2202 if (!ret)
2203 goto out;
2204
2205 /* Bail for signals. Probably ctrl-c from user */
2206 if (signal_pending(current))
2207 goto out;
2208 }
2209
2210 /*
2211 * Decrease the pool size
2212 * First return free pages to the buddy allocator (being careful
2213 * to keep enough around to satisfy reservations). Then place
2214 * pages into surplus state as needed so the pool will shrink
2215 * to the desired size as pages become free.
2216 *
2217 * By placing pages into the surplus state independent of the
2218 * overcommit value, we are allowing the surplus pool size to
2219 * exceed overcommit. There are few sane options here. Since
2220 * __alloc_buddy_huge_page() is checking the global counter,
2221 * though, we'll note that we're not allowed to exceed surplus
2222 * and won't grow the pool anywhere else. Not until one of the
2223 * sysctls are changed, or the surplus pages go out of use.
2224 */
2225 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2226 min_count = max(count, min_count);
2227 try_to_free_low(h, min_count, nodes_allowed);
2228 while (min_count < persistent_huge_pages(h)) {
2229 if (!free_pool_huge_page(h, nodes_allowed, 0))
2230 break;
2231 cond_resched_lock(&hugetlb_lock);
2232 }
2233 while (count < persistent_huge_pages(h)) {
2234 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2235 break;
2236 }
2237 out:
2238 ret = persistent_huge_pages(h);
2239 spin_unlock(&hugetlb_lock);
2240 return ret;
2241 }
2242
2243 #define HSTATE_ATTR_RO(_name) \
2244 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2245
2246 #define HSTATE_ATTR(_name) \
2247 static struct kobj_attribute _name##_attr = \
2248 __ATTR(_name, 0644, _name##_show, _name##_store)
2249
2250 static struct kobject *hugepages_kobj;
2251 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2252
2253 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2254
2255 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2256 {
2257 int i;
2258
2259 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2260 if (hstate_kobjs[i] == kobj) {
2261 if (nidp)
2262 *nidp = NUMA_NO_NODE;
2263 return &hstates[i];
2264 }
2265
2266 return kobj_to_node_hstate(kobj, nidp);
2267 }
2268
2269 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2270 struct kobj_attribute *attr, char *buf)
2271 {
2272 struct hstate *h;
2273 unsigned long nr_huge_pages;
2274 int nid;
2275
2276 h = kobj_to_hstate(kobj, &nid);
2277 if (nid == NUMA_NO_NODE)
2278 nr_huge_pages = h->nr_huge_pages;
2279 else
2280 nr_huge_pages = h->nr_huge_pages_node[nid];
2281
2282 return sprintf(buf, "%lu\n", nr_huge_pages);
2283 }
2284
2285 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2286 struct hstate *h, int nid,
2287 unsigned long count, size_t len)
2288 {
2289 int err;
2290 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2291
2292 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2293 err = -EINVAL;
2294 goto out;
2295 }
2296
2297 if (nid == NUMA_NO_NODE) {
2298 /*
2299 * global hstate attribute
2300 */
2301 if (!(obey_mempolicy &&
2302 init_nodemask_of_mempolicy(nodes_allowed))) {
2303 NODEMASK_FREE(nodes_allowed);
2304 nodes_allowed = &node_states[N_MEMORY];
2305 }
2306 } else if (nodes_allowed) {
2307 /*
2308 * per node hstate attribute: adjust count to global,
2309 * but restrict alloc/free to the specified node.
2310 */
2311 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2312 init_nodemask_of_node(nodes_allowed, nid);
2313 } else
2314 nodes_allowed = &node_states[N_MEMORY];
2315
2316 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2317
2318 if (nodes_allowed != &node_states[N_MEMORY])
2319 NODEMASK_FREE(nodes_allowed);
2320
2321 return len;
2322 out:
2323 NODEMASK_FREE(nodes_allowed);
2324 return err;
2325 }
2326
2327 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2328 struct kobject *kobj, const char *buf,
2329 size_t len)
2330 {
2331 struct hstate *h;
2332 unsigned long count;
2333 int nid;
2334 int err;
2335
2336 err = kstrtoul(buf, 10, &count);
2337 if (err)
2338 return err;
2339
2340 h = kobj_to_hstate(kobj, &nid);
2341 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2342 }
2343
2344 static ssize_t nr_hugepages_show(struct kobject *kobj,
2345 struct kobj_attribute *attr, char *buf)
2346 {
2347 return nr_hugepages_show_common(kobj, attr, buf);
2348 }
2349
2350 static ssize_t nr_hugepages_store(struct kobject *kobj,
2351 struct kobj_attribute *attr, const char *buf, size_t len)
2352 {
2353 return nr_hugepages_store_common(false, kobj, buf, len);
2354 }
2355 HSTATE_ATTR(nr_hugepages);
2356
2357 #ifdef CONFIG_NUMA
2358
2359 /*
2360 * hstate attribute for optionally mempolicy-based constraint on persistent
2361 * huge page alloc/free.
2362 */
2363 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2364 struct kobj_attribute *attr, char *buf)
2365 {
2366 return nr_hugepages_show_common(kobj, attr, buf);
2367 }
2368
2369 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2370 struct kobj_attribute *attr, const char *buf, size_t len)
2371 {
2372 return nr_hugepages_store_common(true, kobj, buf, len);
2373 }
2374 HSTATE_ATTR(nr_hugepages_mempolicy);
2375 #endif
2376
2377
2378 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2379 struct kobj_attribute *attr, char *buf)
2380 {
2381 struct hstate *h = kobj_to_hstate(kobj, NULL);
2382 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2383 }
2384
2385 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2386 struct kobj_attribute *attr, const char *buf, size_t count)
2387 {
2388 int err;
2389 unsigned long input;
2390 struct hstate *h = kobj_to_hstate(kobj, NULL);
2391
2392 if (hstate_is_gigantic(h))
2393 return -EINVAL;
2394
2395 err = kstrtoul(buf, 10, &input);
2396 if (err)
2397 return err;
2398
2399 spin_lock(&hugetlb_lock);
2400 h->nr_overcommit_huge_pages = input;
2401 spin_unlock(&hugetlb_lock);
2402
2403 return count;
2404 }
2405 HSTATE_ATTR(nr_overcommit_hugepages);
2406
2407 static ssize_t free_hugepages_show(struct kobject *kobj,
2408 struct kobj_attribute *attr, char *buf)
2409 {
2410 struct hstate *h;
2411 unsigned long free_huge_pages;
2412 int nid;
2413
2414 h = kobj_to_hstate(kobj, &nid);
2415 if (nid == NUMA_NO_NODE)
2416 free_huge_pages = h->free_huge_pages;
2417 else
2418 free_huge_pages = h->free_huge_pages_node[nid];
2419
2420 return sprintf(buf, "%lu\n", free_huge_pages);
2421 }
2422 HSTATE_ATTR_RO(free_hugepages);
2423
2424 static ssize_t resv_hugepages_show(struct kobject *kobj,
2425 struct kobj_attribute *attr, char *buf)
2426 {
2427 struct hstate *h = kobj_to_hstate(kobj, NULL);
2428 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2429 }
2430 HSTATE_ATTR_RO(resv_hugepages);
2431
2432 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2433 struct kobj_attribute *attr, char *buf)
2434 {
2435 struct hstate *h;
2436 unsigned long surplus_huge_pages;
2437 int nid;
2438
2439 h = kobj_to_hstate(kobj, &nid);
2440 if (nid == NUMA_NO_NODE)
2441 surplus_huge_pages = h->surplus_huge_pages;
2442 else
2443 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2444
2445 return sprintf(buf, "%lu\n", surplus_huge_pages);
2446 }
2447 HSTATE_ATTR_RO(surplus_hugepages);
2448
2449 static struct attribute *hstate_attrs[] = {
2450 &nr_hugepages_attr.attr,
2451 &nr_overcommit_hugepages_attr.attr,
2452 &free_hugepages_attr.attr,
2453 &resv_hugepages_attr.attr,
2454 &surplus_hugepages_attr.attr,
2455 #ifdef CONFIG_NUMA
2456 &nr_hugepages_mempolicy_attr.attr,
2457 #endif
2458 NULL,
2459 };
2460
2461 static struct attribute_group hstate_attr_group = {
2462 .attrs = hstate_attrs,
2463 };
2464
2465 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2466 struct kobject **hstate_kobjs,
2467 struct attribute_group *hstate_attr_group)
2468 {
2469 int retval;
2470 int hi = hstate_index(h);
2471
2472 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2473 if (!hstate_kobjs[hi])
2474 return -ENOMEM;
2475
2476 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2477 if (retval)
2478 kobject_put(hstate_kobjs[hi]);
2479
2480 return retval;
2481 }
2482
2483 static void __init hugetlb_sysfs_init(void)
2484 {
2485 struct hstate *h;
2486 int err;
2487
2488 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2489 if (!hugepages_kobj)
2490 return;
2491
2492 for_each_hstate(h) {
2493 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2494 hstate_kobjs, &hstate_attr_group);
2495 if (err)
2496 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2497 }
2498 }
2499
2500 #ifdef CONFIG_NUMA
2501
2502 /*
2503 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2504 * with node devices in node_devices[] using a parallel array. The array
2505 * index of a node device or _hstate == node id.
2506 * This is here to avoid any static dependency of the node device driver, in
2507 * the base kernel, on the hugetlb module.
2508 */
2509 struct node_hstate {
2510 struct kobject *hugepages_kobj;
2511 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2512 };
2513 static struct node_hstate node_hstates[MAX_NUMNODES];
2514
2515 /*
2516 * A subset of global hstate attributes for node devices
2517 */
2518 static struct attribute *per_node_hstate_attrs[] = {
2519 &nr_hugepages_attr.attr,
2520 &free_hugepages_attr.attr,
2521 &surplus_hugepages_attr.attr,
2522 NULL,
2523 };
2524
2525 static struct attribute_group per_node_hstate_attr_group = {
2526 .attrs = per_node_hstate_attrs,
2527 };
2528
2529 /*
2530 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2531 * Returns node id via non-NULL nidp.
2532 */
2533 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2534 {
2535 int nid;
2536
2537 for (nid = 0; nid < nr_node_ids; nid++) {
2538 struct node_hstate *nhs = &node_hstates[nid];
2539 int i;
2540 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2541 if (nhs->hstate_kobjs[i] == kobj) {
2542 if (nidp)
2543 *nidp = nid;
2544 return &hstates[i];
2545 }
2546 }
2547
2548 BUG();
2549 return NULL;
2550 }
2551
2552 /*
2553 * Unregister hstate attributes from a single node device.
2554 * No-op if no hstate attributes attached.
2555 */
2556 static void hugetlb_unregister_node(struct node *node)
2557 {
2558 struct hstate *h;
2559 struct node_hstate *nhs = &node_hstates[node->dev.id];
2560
2561 if (!nhs->hugepages_kobj)
2562 return; /* no hstate attributes */
2563
2564 for_each_hstate(h) {
2565 int idx = hstate_index(h);
2566 if (nhs->hstate_kobjs[idx]) {
2567 kobject_put(nhs->hstate_kobjs[idx]);
2568 nhs->hstate_kobjs[idx] = NULL;
2569 }
2570 }
2571
2572 kobject_put(nhs->hugepages_kobj);
2573 nhs->hugepages_kobj = NULL;
2574 }
2575
2576 /*
2577 * hugetlb module exit: unregister hstate attributes from node devices
2578 * that have them.
2579 */
2580 static void hugetlb_unregister_all_nodes(void)
2581 {
2582 int nid;
2583
2584 /*
2585 * disable node device registrations.
2586 */
2587 register_hugetlbfs_with_node(NULL, NULL);
2588
2589 /*
2590 * remove hstate attributes from any nodes that have them.
2591 */
2592 for (nid = 0; nid < nr_node_ids; nid++)
2593 hugetlb_unregister_node(node_devices[nid]);
2594 }
2595
2596 /*
2597 * Register hstate attributes for a single node device.
2598 * No-op if attributes already registered.
2599 */
2600 static void hugetlb_register_node(struct node *node)
2601 {
2602 struct hstate *h;
2603 struct node_hstate *nhs = &node_hstates[node->dev.id];
2604 int err;
2605
2606 if (nhs->hugepages_kobj)
2607 return; /* already allocated */
2608
2609 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2610 &node->dev.kobj);
2611 if (!nhs->hugepages_kobj)
2612 return;
2613
2614 for_each_hstate(h) {
2615 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2616 nhs->hstate_kobjs,
2617 &per_node_hstate_attr_group);
2618 if (err) {
2619 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2620 h->name, node->dev.id);
2621 hugetlb_unregister_node(node);
2622 break;
2623 }
2624 }
2625 }
2626
2627 /*
2628 * hugetlb init time: register hstate attributes for all registered node
2629 * devices of nodes that have memory. All on-line nodes should have
2630 * registered their associated device by this time.
2631 */
2632 static void __init hugetlb_register_all_nodes(void)
2633 {
2634 int nid;
2635
2636 for_each_node_state(nid, N_MEMORY) {
2637 struct node *node = node_devices[nid];
2638 if (node->dev.id == nid)
2639 hugetlb_register_node(node);
2640 }
2641
2642 /*
2643 * Let the node device driver know we're here so it can
2644 * [un]register hstate attributes on node hotplug.
2645 */
2646 register_hugetlbfs_with_node(hugetlb_register_node,
2647 hugetlb_unregister_node);
2648 }
2649 #else /* !CONFIG_NUMA */
2650
2651 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2652 {
2653 BUG();
2654 if (nidp)
2655 *nidp = -1;
2656 return NULL;
2657 }
2658
2659 static void hugetlb_unregister_all_nodes(void) { }
2660
2661 static void hugetlb_register_all_nodes(void) { }
2662
2663 #endif
2664
2665 static void __exit hugetlb_exit(void)
2666 {
2667 struct hstate *h;
2668
2669 hugetlb_unregister_all_nodes();
2670
2671 for_each_hstate(h) {
2672 kobject_put(hstate_kobjs[hstate_index(h)]);
2673 }
2674
2675 kobject_put(hugepages_kobj);
2676 kfree(hugetlb_fault_mutex_table);
2677 }
2678 module_exit(hugetlb_exit);
2679
2680 static int __init hugetlb_init(void)
2681 {
2682 int i;
2683
2684 if (!hugepages_supported())
2685 return 0;
2686
2687 if (!size_to_hstate(default_hstate_size)) {
2688 default_hstate_size = HPAGE_SIZE;
2689 if (!size_to_hstate(default_hstate_size))
2690 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2691 }
2692 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2693 if (default_hstate_max_huge_pages)
2694 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2695
2696 hugetlb_init_hstates();
2697 gather_bootmem_prealloc();
2698 report_hugepages();
2699
2700 hugetlb_sysfs_init();
2701 hugetlb_register_all_nodes();
2702 hugetlb_cgroup_file_init();
2703
2704 #ifdef CONFIG_SMP
2705 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2706 #else
2707 num_fault_mutexes = 1;
2708 #endif
2709 hugetlb_fault_mutex_table =
2710 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2711 BUG_ON(!hugetlb_fault_mutex_table);
2712
2713 for (i = 0; i < num_fault_mutexes; i++)
2714 mutex_init(&hugetlb_fault_mutex_table[i]);
2715 return 0;
2716 }
2717 module_init(hugetlb_init);
2718
2719 /* Should be called on processing a hugepagesz=... option */
2720 void __init hugetlb_add_hstate(unsigned int order)
2721 {
2722 struct hstate *h;
2723 unsigned long i;
2724
2725 if (size_to_hstate(PAGE_SIZE << order)) {
2726 pr_warning("hugepagesz= specified twice, ignoring\n");
2727 return;
2728 }
2729 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2730 BUG_ON(order == 0);
2731 h = &hstates[hugetlb_max_hstate++];
2732 h->order = order;
2733 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2734 h->nr_huge_pages = 0;
2735 h->free_huge_pages = 0;
2736 for (i = 0; i < MAX_NUMNODES; ++i)
2737 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2738 INIT_LIST_HEAD(&h->hugepage_activelist);
2739 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2740 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2741 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2742 huge_page_size(h)/1024);
2743
2744 parsed_hstate = h;
2745 }
2746
2747 static int __init hugetlb_nrpages_setup(char *s)
2748 {
2749 unsigned long *mhp;
2750 static unsigned long *last_mhp;
2751
2752 /*
2753 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2754 * so this hugepages= parameter goes to the "default hstate".
2755 */
2756 if (!hugetlb_max_hstate)
2757 mhp = &default_hstate_max_huge_pages;
2758 else
2759 mhp = &parsed_hstate->max_huge_pages;
2760
2761 if (mhp == last_mhp) {
2762 pr_warning("hugepages= specified twice without "
2763 "interleaving hugepagesz=, ignoring\n");
2764 return 1;
2765 }
2766
2767 if (sscanf(s, "%lu", mhp) <= 0)
2768 *mhp = 0;
2769
2770 /*
2771 * Global state is always initialized later in hugetlb_init.
2772 * But we need to allocate >= MAX_ORDER hstates here early to still
2773 * use the bootmem allocator.
2774 */
2775 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2776 hugetlb_hstate_alloc_pages(parsed_hstate);
2777
2778 last_mhp = mhp;
2779
2780 return 1;
2781 }
2782 __setup("hugepages=", hugetlb_nrpages_setup);
2783
2784 static int __init hugetlb_default_setup(char *s)
2785 {
2786 default_hstate_size = memparse(s, &s);
2787 return 1;
2788 }
2789 __setup("default_hugepagesz=", hugetlb_default_setup);
2790
2791 static unsigned int cpuset_mems_nr(unsigned int *array)
2792 {
2793 int node;
2794 unsigned int nr = 0;
2795
2796 for_each_node_mask(node, cpuset_current_mems_allowed)
2797 nr += array[node];
2798
2799 return nr;
2800 }
2801
2802 #ifdef CONFIG_SYSCTL
2803 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2804 struct ctl_table *table, int write,
2805 void __user *buffer, size_t *length, loff_t *ppos)
2806 {
2807 struct hstate *h = &default_hstate;
2808 unsigned long tmp = h->max_huge_pages;
2809 int ret;
2810
2811 if (!hugepages_supported())
2812 return -ENOTSUPP;
2813
2814 table->data = &tmp;
2815 table->maxlen = sizeof(unsigned long);
2816 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2817 if (ret)
2818 goto out;
2819
2820 if (write)
2821 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2822 NUMA_NO_NODE, tmp, *length);
2823 out:
2824 return ret;
2825 }
2826
2827 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2828 void __user *buffer, size_t *length, loff_t *ppos)
2829 {
2830
2831 return hugetlb_sysctl_handler_common(false, table, write,
2832 buffer, length, ppos);
2833 }
2834
2835 #ifdef CONFIG_NUMA
2836 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2837 void __user *buffer, size_t *length, loff_t *ppos)
2838 {
2839 return hugetlb_sysctl_handler_common(true, table, write,
2840 buffer, length, ppos);
2841 }
2842 #endif /* CONFIG_NUMA */
2843
2844 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2845 void __user *buffer,
2846 size_t *length, loff_t *ppos)
2847 {
2848 struct hstate *h = &default_hstate;
2849 unsigned long tmp;
2850 int ret;
2851
2852 if (!hugepages_supported())
2853 return -ENOTSUPP;
2854
2855 tmp = h->nr_overcommit_huge_pages;
2856
2857 if (write && hstate_is_gigantic(h))
2858 return -EINVAL;
2859
2860 table->data = &tmp;
2861 table->maxlen = sizeof(unsigned long);
2862 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2863 if (ret)
2864 goto out;
2865
2866 if (write) {
2867 spin_lock(&hugetlb_lock);
2868 h->nr_overcommit_huge_pages = tmp;
2869 spin_unlock(&hugetlb_lock);
2870 }
2871 out:
2872 return ret;
2873 }
2874
2875 #endif /* CONFIG_SYSCTL */
2876
2877 void hugetlb_report_meminfo(struct seq_file *m)
2878 {
2879 struct hstate *h = &default_hstate;
2880 if (!hugepages_supported())
2881 return;
2882 seq_printf(m,
2883 "HugePages_Total: %5lu\n"
2884 "HugePages_Free: %5lu\n"
2885 "HugePages_Rsvd: %5lu\n"
2886 "HugePages_Surp: %5lu\n"
2887 "Hugepagesize: %8lu kB\n",
2888 h->nr_huge_pages,
2889 h->free_huge_pages,
2890 h->resv_huge_pages,
2891 h->surplus_huge_pages,
2892 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2893 }
2894
2895 int hugetlb_report_node_meminfo(int nid, char *buf)
2896 {
2897 struct hstate *h = &default_hstate;
2898 if (!hugepages_supported())
2899 return 0;
2900 return sprintf(buf,
2901 "Node %d HugePages_Total: %5u\n"
2902 "Node %d HugePages_Free: %5u\n"
2903 "Node %d HugePages_Surp: %5u\n",
2904 nid, h->nr_huge_pages_node[nid],
2905 nid, h->free_huge_pages_node[nid],
2906 nid, h->surplus_huge_pages_node[nid]);
2907 }
2908
2909 void hugetlb_show_meminfo(void)
2910 {
2911 struct hstate *h;
2912 int nid;
2913
2914 if (!hugepages_supported())
2915 return;
2916
2917 for_each_node_state(nid, N_MEMORY)
2918 for_each_hstate(h)
2919 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2920 nid,
2921 h->nr_huge_pages_node[nid],
2922 h->free_huge_pages_node[nid],
2923 h->surplus_huge_pages_node[nid],
2924 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2925 }
2926
2927 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2928 {
2929 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2930 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2931 }
2932
2933 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2934 unsigned long hugetlb_total_pages(void)
2935 {
2936 struct hstate *h;
2937 unsigned long nr_total_pages = 0;
2938
2939 for_each_hstate(h)
2940 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2941 return nr_total_pages;
2942 }
2943
2944 static int hugetlb_acct_memory(struct hstate *h, long delta)
2945 {
2946 int ret = -ENOMEM;
2947
2948 spin_lock(&hugetlb_lock);
2949 /*
2950 * When cpuset is configured, it breaks the strict hugetlb page
2951 * reservation as the accounting is done on a global variable. Such
2952 * reservation is completely rubbish in the presence of cpuset because
2953 * the reservation is not checked against page availability for the
2954 * current cpuset. Application can still potentially OOM'ed by kernel
2955 * with lack of free htlb page in cpuset that the task is in.
2956 * Attempt to enforce strict accounting with cpuset is almost
2957 * impossible (or too ugly) because cpuset is too fluid that
2958 * task or memory node can be dynamically moved between cpusets.
2959 *
2960 * The change of semantics for shared hugetlb mapping with cpuset is
2961 * undesirable. However, in order to preserve some of the semantics,
2962 * we fall back to check against current free page availability as
2963 * a best attempt and hopefully to minimize the impact of changing
2964 * semantics that cpuset has.
2965 */
2966 if (delta > 0) {
2967 if (gather_surplus_pages(h, delta) < 0)
2968 goto out;
2969
2970 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2971 return_unused_surplus_pages(h, delta);
2972 goto out;
2973 }
2974 }
2975
2976 ret = 0;
2977 if (delta < 0)
2978 return_unused_surplus_pages(h, (unsigned long) -delta);
2979
2980 out:
2981 spin_unlock(&hugetlb_lock);
2982 return ret;
2983 }
2984
2985 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2986 {
2987 struct resv_map *resv = vma_resv_map(vma);
2988
2989 /*
2990 * This new VMA should share its siblings reservation map if present.
2991 * The VMA will only ever have a valid reservation map pointer where
2992 * it is being copied for another still existing VMA. As that VMA
2993 * has a reference to the reservation map it cannot disappear until
2994 * after this open call completes. It is therefore safe to take a
2995 * new reference here without additional locking.
2996 */
2997 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2998 kref_get(&resv->refs);
2999 }
3000
3001 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3002 {
3003 struct hstate *h = hstate_vma(vma);
3004 struct resv_map *resv = vma_resv_map(vma);
3005 struct hugepage_subpool *spool = subpool_vma(vma);
3006 unsigned long reserve, start, end;
3007 long gbl_reserve;
3008
3009 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3010 return;
3011
3012 start = vma_hugecache_offset(h, vma, vma->vm_start);
3013 end = vma_hugecache_offset(h, vma, vma->vm_end);
3014
3015 reserve = (end - start) - region_count(resv, start, end);
3016
3017 kref_put(&resv->refs, resv_map_release);
3018
3019 if (reserve) {
3020 /*
3021 * Decrement reserve counts. The global reserve count may be
3022 * adjusted if the subpool has a minimum size.
3023 */
3024 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3025 hugetlb_acct_memory(h, -gbl_reserve);
3026 }
3027 }
3028
3029 /*
3030 * We cannot handle pagefaults against hugetlb pages at all. They cause
3031 * handle_mm_fault() to try to instantiate regular-sized pages in the
3032 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3033 * this far.
3034 */
3035 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3036 {
3037 BUG();
3038 return 0;
3039 }
3040
3041 const struct vm_operations_struct hugetlb_vm_ops = {
3042 .fault = hugetlb_vm_op_fault,
3043 .open = hugetlb_vm_op_open,
3044 .close = hugetlb_vm_op_close,
3045 };
3046
3047 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3048 int writable)
3049 {
3050 pte_t entry;
3051
3052 if (writable) {
3053 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3054 vma->vm_page_prot)));
3055 } else {
3056 entry = huge_pte_wrprotect(mk_huge_pte(page,
3057 vma->vm_page_prot));
3058 }
3059 entry = pte_mkyoung(entry);
3060 entry = pte_mkhuge(entry);
3061 entry = arch_make_huge_pte(entry, vma, page, writable);
3062
3063 return entry;
3064 }
3065
3066 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3067 unsigned long address, pte_t *ptep)
3068 {
3069 pte_t entry;
3070
3071 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3072 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3073 update_mmu_cache(vma, address, ptep);
3074 }
3075
3076 static int is_hugetlb_entry_migration(pte_t pte)
3077 {
3078 swp_entry_t swp;
3079
3080 if (huge_pte_none(pte) || pte_present(pte))
3081 return 0;
3082 swp = pte_to_swp_entry(pte);
3083 if (non_swap_entry(swp) && is_migration_entry(swp))
3084 return 1;
3085 else
3086 return 0;
3087 }
3088
3089 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3090 {
3091 swp_entry_t swp;
3092
3093 if (huge_pte_none(pte) || pte_present(pte))
3094 return 0;
3095 swp = pte_to_swp_entry(pte);
3096 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3097 return 1;
3098 else
3099 return 0;
3100 }
3101
3102 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3103 struct vm_area_struct *vma)
3104 {
3105 pte_t *src_pte, *dst_pte, entry;
3106 struct page *ptepage;
3107 unsigned long addr;
3108 int cow;
3109 struct hstate *h = hstate_vma(vma);
3110 unsigned long sz = huge_page_size(h);
3111 unsigned long mmun_start; /* For mmu_notifiers */
3112 unsigned long mmun_end; /* For mmu_notifiers */
3113 int ret = 0;
3114
3115 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3116
3117 mmun_start = vma->vm_start;
3118 mmun_end = vma->vm_end;
3119 if (cow)
3120 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3121
3122 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3123 spinlock_t *src_ptl, *dst_ptl;
3124 src_pte = huge_pte_offset(src, addr);
3125 if (!src_pte)
3126 continue;
3127 dst_pte = huge_pte_alloc(dst, addr, sz);
3128 if (!dst_pte) {
3129 ret = -ENOMEM;
3130 break;
3131 }
3132
3133 /* If the pagetables are shared don't copy or take references */
3134 if (dst_pte == src_pte)
3135 continue;
3136
3137 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3138 src_ptl = huge_pte_lockptr(h, src, src_pte);
3139 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3140 entry = huge_ptep_get(src_pte);
3141 if (huge_pte_none(entry)) { /* skip none entry */
3142 ;
3143 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3144 is_hugetlb_entry_hwpoisoned(entry))) {
3145 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3146
3147 if (is_write_migration_entry(swp_entry) && cow) {
3148 /*
3149 * COW mappings require pages in both
3150 * parent and child to be set to read.
3151 */
3152 make_migration_entry_read(&swp_entry);
3153 entry = swp_entry_to_pte(swp_entry);
3154 set_huge_pte_at(src, addr, src_pte, entry);
3155 }
3156 set_huge_pte_at(dst, addr, dst_pte, entry);
3157 } else {
3158 if (cow) {
3159 huge_ptep_set_wrprotect(src, addr, src_pte);
3160 mmu_notifier_invalidate_range(src, mmun_start,
3161 mmun_end);
3162 }
3163 entry = huge_ptep_get(src_pte);
3164 ptepage = pte_page(entry);
3165 get_page(ptepage);
3166 page_dup_rmap(ptepage);
3167 set_huge_pte_at(dst, addr, dst_pte, entry);
3168 hugetlb_count_add(pages_per_huge_page(h), dst);
3169 }
3170 spin_unlock(src_ptl);
3171 spin_unlock(dst_ptl);
3172 }
3173
3174 if (cow)
3175 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3176
3177 return ret;
3178 }
3179
3180 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3181 unsigned long start, unsigned long end,
3182 struct page *ref_page)
3183 {
3184 int force_flush = 0;
3185 struct mm_struct *mm = vma->vm_mm;
3186 unsigned long address;
3187 pte_t *ptep;
3188 pte_t pte;
3189 spinlock_t *ptl;
3190 struct page *page;
3191 struct hstate *h = hstate_vma(vma);
3192 unsigned long sz = huge_page_size(h);
3193 const unsigned long mmun_start = start; /* For mmu_notifiers */
3194 const unsigned long mmun_end = end; /* For mmu_notifiers */
3195
3196 WARN_ON(!is_vm_hugetlb_page(vma));
3197 BUG_ON(start & ~huge_page_mask(h));
3198 BUG_ON(end & ~huge_page_mask(h));
3199
3200 tlb_start_vma(tlb, vma);
3201 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3202 address = start;
3203 again:
3204 for (; address < end; address += sz) {
3205 ptep = huge_pte_offset(mm, address);
3206 if (!ptep)
3207 continue;
3208
3209 ptl = huge_pte_lock(h, mm, ptep);
3210 if (huge_pmd_unshare(mm, &address, ptep))
3211 goto unlock;
3212
3213 pte = huge_ptep_get(ptep);
3214 if (huge_pte_none(pte))
3215 goto unlock;
3216
3217 /*
3218 * Migrating hugepage or HWPoisoned hugepage is already
3219 * unmapped and its refcount is dropped, so just clear pte here.
3220 */
3221 if (unlikely(!pte_present(pte))) {
3222 huge_pte_clear(mm, address, ptep);
3223 goto unlock;
3224 }
3225
3226 page = pte_page(pte);
3227 /*
3228 * If a reference page is supplied, it is because a specific
3229 * page is being unmapped, not a range. Ensure the page we
3230 * are about to unmap is the actual page of interest.
3231 */
3232 if (ref_page) {
3233 if (page != ref_page)
3234 goto unlock;
3235
3236 /*
3237 * Mark the VMA as having unmapped its page so that
3238 * future faults in this VMA will fail rather than
3239 * looking like data was lost
3240 */
3241 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3242 }
3243
3244 pte = huge_ptep_get_and_clear(mm, address, ptep);
3245 tlb_remove_tlb_entry(tlb, ptep, address);
3246 if (huge_pte_dirty(pte))
3247 set_page_dirty(page);
3248
3249 hugetlb_count_sub(pages_per_huge_page(h), mm);
3250 page_remove_rmap(page);
3251 force_flush = !__tlb_remove_page(tlb, page);
3252 if (force_flush) {
3253 address += sz;
3254 spin_unlock(ptl);
3255 break;
3256 }
3257 /* Bail out after unmapping reference page if supplied */
3258 if (ref_page) {
3259 spin_unlock(ptl);
3260 break;
3261 }
3262 unlock:
3263 spin_unlock(ptl);
3264 }
3265 /*
3266 * mmu_gather ran out of room to batch pages, we break out of
3267 * the PTE lock to avoid doing the potential expensive TLB invalidate
3268 * and page-free while holding it.
3269 */
3270 if (force_flush) {
3271 force_flush = 0;
3272 tlb_flush_mmu(tlb);
3273 if (address < end && !ref_page)
3274 goto again;
3275 }
3276 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3277 tlb_end_vma(tlb, vma);
3278 }
3279
3280 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3281 struct vm_area_struct *vma, unsigned long start,
3282 unsigned long end, struct page *ref_page)
3283 {
3284 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3285
3286 /*
3287 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3288 * test will fail on a vma being torn down, and not grab a page table
3289 * on its way out. We're lucky that the flag has such an appropriate
3290 * name, and can in fact be safely cleared here. We could clear it
3291 * before the __unmap_hugepage_range above, but all that's necessary
3292 * is to clear it before releasing the i_mmap_rwsem. This works
3293 * because in the context this is called, the VMA is about to be
3294 * destroyed and the i_mmap_rwsem is held.
3295 */
3296 vma->vm_flags &= ~VM_MAYSHARE;
3297 }
3298
3299 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3300 unsigned long end, struct page *ref_page)
3301 {
3302 struct mm_struct *mm;
3303 struct mmu_gather tlb;
3304
3305 mm = vma->vm_mm;
3306
3307 tlb_gather_mmu(&tlb, mm, start, end);
3308 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3309 tlb_finish_mmu(&tlb, start, end);
3310 }
3311
3312 /*
3313 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3314 * mappping it owns the reserve page for. The intention is to unmap the page
3315 * from other VMAs and let the children be SIGKILLed if they are faulting the
3316 * same region.
3317 */
3318 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3319 struct page *page, unsigned long address)
3320 {
3321 struct hstate *h = hstate_vma(vma);
3322 struct vm_area_struct *iter_vma;
3323 struct address_space *mapping;
3324 pgoff_t pgoff;
3325
3326 /*
3327 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3328 * from page cache lookup which is in HPAGE_SIZE units.
3329 */
3330 address = address & huge_page_mask(h);
3331 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3332 vma->vm_pgoff;
3333 mapping = file_inode(vma->vm_file)->i_mapping;
3334
3335 /*
3336 * Take the mapping lock for the duration of the table walk. As
3337 * this mapping should be shared between all the VMAs,
3338 * __unmap_hugepage_range() is called as the lock is already held
3339 */
3340 i_mmap_lock_write(mapping);
3341 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3342 /* Do not unmap the current VMA */
3343 if (iter_vma == vma)
3344 continue;
3345
3346 /*
3347 * Shared VMAs have their own reserves and do not affect
3348 * MAP_PRIVATE accounting but it is possible that a shared
3349 * VMA is using the same page so check and skip such VMAs.
3350 */
3351 if (iter_vma->vm_flags & VM_MAYSHARE)
3352 continue;
3353
3354 /*
3355 * Unmap the page from other VMAs without their own reserves.
3356 * They get marked to be SIGKILLed if they fault in these
3357 * areas. This is because a future no-page fault on this VMA
3358 * could insert a zeroed page instead of the data existing
3359 * from the time of fork. This would look like data corruption
3360 */
3361 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3362 unmap_hugepage_range(iter_vma, address,
3363 address + huge_page_size(h), page);
3364 }
3365 i_mmap_unlock_write(mapping);
3366 }
3367
3368 /*
3369 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3370 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3371 * cannot race with other handlers or page migration.
3372 * Keep the pte_same checks anyway to make transition from the mutex easier.
3373 */
3374 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3375 unsigned long address, pte_t *ptep, pte_t pte,
3376 struct page *pagecache_page, spinlock_t *ptl)
3377 {
3378 struct hstate *h = hstate_vma(vma);
3379 struct page *old_page, *new_page;
3380 int ret = 0, outside_reserve = 0;
3381 unsigned long mmun_start; /* For mmu_notifiers */
3382 unsigned long mmun_end; /* For mmu_notifiers */
3383
3384 old_page = pte_page(pte);
3385
3386 retry_avoidcopy:
3387 /* If no-one else is actually using this page, avoid the copy
3388 * and just make the page writable */
3389 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3390 page_move_anon_rmap(old_page, vma, address);
3391 set_huge_ptep_writable(vma, address, ptep);
3392 return 0;
3393 }
3394
3395 /*
3396 * If the process that created a MAP_PRIVATE mapping is about to
3397 * perform a COW due to a shared page count, attempt to satisfy
3398 * the allocation without using the existing reserves. The pagecache
3399 * page is used to determine if the reserve at this address was
3400 * consumed or not. If reserves were used, a partial faulted mapping
3401 * at the time of fork() could consume its reserves on COW instead
3402 * of the full address range.
3403 */
3404 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3405 old_page != pagecache_page)
3406 outside_reserve = 1;
3407
3408 page_cache_get(old_page);
3409
3410 /*
3411 * Drop page table lock as buddy allocator may be called. It will
3412 * be acquired again before returning to the caller, as expected.
3413 */
3414 spin_unlock(ptl);
3415 new_page = alloc_huge_page(vma, address, outside_reserve);
3416
3417 if (IS_ERR(new_page)) {
3418 /*
3419 * If a process owning a MAP_PRIVATE mapping fails to COW,
3420 * it is due to references held by a child and an insufficient
3421 * huge page pool. To guarantee the original mappers
3422 * reliability, unmap the page from child processes. The child
3423 * may get SIGKILLed if it later faults.
3424 */
3425 if (outside_reserve) {
3426 page_cache_release(old_page);
3427 BUG_ON(huge_pte_none(pte));
3428 unmap_ref_private(mm, vma, old_page, address);
3429 BUG_ON(huge_pte_none(pte));
3430 spin_lock(ptl);
3431 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3432 if (likely(ptep &&
3433 pte_same(huge_ptep_get(ptep), pte)))
3434 goto retry_avoidcopy;
3435 /*
3436 * race occurs while re-acquiring page table
3437 * lock, and our job is done.
3438 */
3439 return 0;
3440 }
3441
3442 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3443 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3444 goto out_release_old;
3445 }
3446
3447 /*
3448 * When the original hugepage is shared one, it does not have
3449 * anon_vma prepared.
3450 */
3451 if (unlikely(anon_vma_prepare(vma))) {
3452 ret = VM_FAULT_OOM;
3453 goto out_release_all;
3454 }
3455
3456 copy_user_huge_page(new_page, old_page, address, vma,
3457 pages_per_huge_page(h));
3458 __SetPageUptodate(new_page);
3459 set_page_huge_active(new_page);
3460
3461 mmun_start = address & huge_page_mask(h);
3462 mmun_end = mmun_start + huge_page_size(h);
3463 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3464
3465 /*
3466 * Retake the page table lock to check for racing updates
3467 * before the page tables are altered
3468 */
3469 spin_lock(ptl);
3470 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3471 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3472 ClearPagePrivate(new_page);
3473
3474 /* Break COW */
3475 huge_ptep_clear_flush(vma, address, ptep);
3476 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3477 set_huge_pte_at(mm, address, ptep,
3478 make_huge_pte(vma, new_page, 1));
3479 page_remove_rmap(old_page);
3480 hugepage_add_new_anon_rmap(new_page, vma, address);
3481 /* Make the old page be freed below */
3482 new_page = old_page;
3483 }
3484 spin_unlock(ptl);
3485 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3486 out_release_all:
3487 page_cache_release(new_page);
3488 out_release_old:
3489 page_cache_release(old_page);
3490
3491 spin_lock(ptl); /* Caller expects lock to be held */
3492 return ret;
3493 }
3494
3495 /* Return the pagecache page at a given address within a VMA */
3496 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3497 struct vm_area_struct *vma, unsigned long address)
3498 {
3499 struct address_space *mapping;
3500 pgoff_t idx;
3501
3502 mapping = vma->vm_file->f_mapping;
3503 idx = vma_hugecache_offset(h, vma, address);
3504
3505 return find_lock_page(mapping, idx);
3506 }
3507
3508 /*
3509 * Return whether there is a pagecache page to back given address within VMA.
3510 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3511 */
3512 static bool hugetlbfs_pagecache_present(struct hstate *h,
3513 struct vm_area_struct *vma, unsigned long address)
3514 {
3515 struct address_space *mapping;
3516 pgoff_t idx;
3517 struct page *page;
3518
3519 mapping = vma->vm_file->f_mapping;
3520 idx = vma_hugecache_offset(h, vma, address);
3521
3522 page = find_get_page(mapping, idx);
3523 if (page)
3524 put_page(page);
3525 return page != NULL;
3526 }
3527
3528 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3529 pgoff_t idx)
3530 {
3531 struct inode *inode = mapping->host;
3532 struct hstate *h = hstate_inode(inode);
3533 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3534
3535 if (err)
3536 return err;
3537 ClearPagePrivate(page);
3538
3539 spin_lock(&inode->i_lock);
3540 inode->i_blocks += blocks_per_huge_page(h);
3541 spin_unlock(&inode->i_lock);
3542 return 0;
3543 }
3544
3545 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3546 struct address_space *mapping, pgoff_t idx,
3547 unsigned long address, pte_t *ptep, unsigned int flags)
3548 {
3549 struct hstate *h = hstate_vma(vma);
3550 int ret = VM_FAULT_SIGBUS;
3551 int anon_rmap = 0;
3552 unsigned long size;
3553 struct page *page;
3554 pte_t new_pte;
3555 spinlock_t *ptl;
3556
3557 /*
3558 * Currently, we are forced to kill the process in the event the
3559 * original mapper has unmapped pages from the child due to a failed
3560 * COW. Warn that such a situation has occurred as it may not be obvious
3561 */
3562 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3563 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3564 current->pid);
3565 return ret;
3566 }
3567
3568 /*
3569 * Use page lock to guard against racing truncation
3570 * before we get page_table_lock.
3571 */
3572 retry:
3573 page = find_lock_page(mapping, idx);
3574 if (!page) {
3575 size = i_size_read(mapping->host) >> huge_page_shift(h);
3576 if (idx >= size)
3577 goto out;
3578 page = alloc_huge_page(vma, address, 0);
3579 if (IS_ERR(page)) {
3580 ret = PTR_ERR(page);
3581 if (ret == -ENOMEM)
3582 ret = VM_FAULT_OOM;
3583 else
3584 ret = VM_FAULT_SIGBUS;
3585 goto out;
3586 }
3587 clear_huge_page(page, address, pages_per_huge_page(h));
3588 __SetPageUptodate(page);
3589 set_page_huge_active(page);
3590
3591 if (vma->vm_flags & VM_MAYSHARE) {
3592 int err = huge_add_to_page_cache(page, mapping, idx);
3593 if (err) {
3594 put_page(page);
3595 if (err == -EEXIST)
3596 goto retry;
3597 goto out;
3598 }
3599 } else {
3600 lock_page(page);
3601 if (unlikely(anon_vma_prepare(vma))) {
3602 ret = VM_FAULT_OOM;
3603 goto backout_unlocked;
3604 }
3605 anon_rmap = 1;
3606 }
3607 } else {
3608 /*
3609 * If memory error occurs between mmap() and fault, some process
3610 * don't have hwpoisoned swap entry for errored virtual address.
3611 * So we need to block hugepage fault by PG_hwpoison bit check.
3612 */
3613 if (unlikely(PageHWPoison(page))) {
3614 ret = VM_FAULT_HWPOISON |
3615 VM_FAULT_SET_HINDEX(hstate_index(h));
3616 goto backout_unlocked;
3617 }
3618 }
3619
3620 /*
3621 * If we are going to COW a private mapping later, we examine the
3622 * pending reservations for this page now. This will ensure that
3623 * any allocations necessary to record that reservation occur outside
3624 * the spinlock.
3625 */
3626 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3627 if (vma_needs_reservation(h, vma, address) < 0) {
3628 ret = VM_FAULT_OOM;
3629 goto backout_unlocked;
3630 }
3631 /* Just decrements count, does not deallocate */
3632 vma_end_reservation(h, vma, address);
3633 }
3634
3635 ptl = huge_pte_lockptr(h, mm, ptep);
3636 spin_lock(ptl);
3637 size = i_size_read(mapping->host) >> huge_page_shift(h);
3638 if (idx >= size)
3639 goto backout;
3640
3641 ret = 0;
3642 if (!huge_pte_none(huge_ptep_get(ptep)))
3643 goto backout;
3644
3645 if (anon_rmap) {
3646 ClearPagePrivate(page);
3647 hugepage_add_new_anon_rmap(page, vma, address);
3648 } else
3649 page_dup_rmap(page);
3650 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3651 && (vma->vm_flags & VM_SHARED)));
3652 set_huge_pte_at(mm, address, ptep, new_pte);
3653
3654 hugetlb_count_add(pages_per_huge_page(h), mm);
3655 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3656 /* Optimization, do the COW without a second fault */
3657 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3658 }
3659
3660 spin_unlock(ptl);
3661 unlock_page(page);
3662 out:
3663 return ret;
3664
3665 backout:
3666 spin_unlock(ptl);
3667 backout_unlocked:
3668 unlock_page(page);
3669 put_page(page);
3670 goto out;
3671 }
3672
3673 #ifdef CONFIG_SMP
3674 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3675 struct vm_area_struct *vma,
3676 struct address_space *mapping,
3677 pgoff_t idx, unsigned long address)
3678 {
3679 unsigned long key[2];
3680 u32 hash;
3681
3682 if (vma->vm_flags & VM_SHARED) {
3683 key[0] = (unsigned long) mapping;
3684 key[1] = idx;
3685 } else {
3686 key[0] = (unsigned long) mm;
3687 key[1] = address >> huge_page_shift(h);
3688 }
3689
3690 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3691
3692 return hash & (num_fault_mutexes - 1);
3693 }
3694 #else
3695 /*
3696 * For uniprocesor systems we always use a single mutex, so just
3697 * return 0 and avoid the hashing overhead.
3698 */
3699 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3700 struct vm_area_struct *vma,
3701 struct address_space *mapping,
3702 pgoff_t idx, unsigned long address)
3703 {
3704 return 0;
3705 }
3706 #endif
3707
3708 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3709 unsigned long address, unsigned int flags)
3710 {
3711 pte_t *ptep, entry;
3712 spinlock_t *ptl;
3713 int ret;
3714 u32 hash;
3715 pgoff_t idx;
3716 struct page *page = NULL;
3717 struct page *pagecache_page = NULL;
3718 struct hstate *h = hstate_vma(vma);
3719 struct address_space *mapping;
3720 int need_wait_lock = 0;
3721
3722 address &= huge_page_mask(h);
3723
3724 ptep = huge_pte_offset(mm, address);
3725 if (ptep) {
3726 entry = huge_ptep_get(ptep);
3727 if (unlikely(is_hugetlb_entry_migration(entry))) {
3728 migration_entry_wait_huge(vma, mm, ptep);
3729 return 0;
3730 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3731 return VM_FAULT_HWPOISON_LARGE |
3732 VM_FAULT_SET_HINDEX(hstate_index(h));
3733 } else {
3734 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3735 if (!ptep)
3736 return VM_FAULT_OOM;
3737 }
3738
3739 mapping = vma->vm_file->f_mapping;
3740 idx = vma_hugecache_offset(h, vma, address);
3741
3742 /*
3743 * Serialize hugepage allocation and instantiation, so that we don't
3744 * get spurious allocation failures if two CPUs race to instantiate
3745 * the same page in the page cache.
3746 */
3747 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3748 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3749
3750 entry = huge_ptep_get(ptep);
3751 if (huge_pte_none(entry)) {
3752 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3753 goto out_mutex;
3754 }
3755
3756 ret = 0;
3757
3758 /*
3759 * entry could be a migration/hwpoison entry at this point, so this
3760 * check prevents the kernel from going below assuming that we have
3761 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3762 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3763 * handle it.
3764 */
3765 if (!pte_present(entry))
3766 goto out_mutex;
3767
3768 /*
3769 * If we are going to COW the mapping later, we examine the pending
3770 * reservations for this page now. This will ensure that any
3771 * allocations necessary to record that reservation occur outside the
3772 * spinlock. For private mappings, we also lookup the pagecache
3773 * page now as it is used to determine if a reservation has been
3774 * consumed.
3775 */
3776 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3777 if (vma_needs_reservation(h, vma, address) < 0) {
3778 ret = VM_FAULT_OOM;
3779 goto out_mutex;
3780 }
3781 /* Just decrements count, does not deallocate */
3782 vma_end_reservation(h, vma, address);
3783
3784 if (!(vma->vm_flags & VM_MAYSHARE))
3785 pagecache_page = hugetlbfs_pagecache_page(h,
3786 vma, address);
3787 }
3788
3789 ptl = huge_pte_lock(h, mm, ptep);
3790
3791 /* Check for a racing update before calling hugetlb_cow */
3792 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3793 goto out_ptl;
3794
3795 /*
3796 * hugetlb_cow() requires page locks of pte_page(entry) and
3797 * pagecache_page, so here we need take the former one
3798 * when page != pagecache_page or !pagecache_page.
3799 */
3800 page = pte_page(entry);
3801 if (page != pagecache_page)
3802 if (!trylock_page(page)) {
3803 need_wait_lock = 1;
3804 goto out_ptl;
3805 }
3806
3807 get_page(page);
3808
3809 if (flags & FAULT_FLAG_WRITE) {
3810 if (!huge_pte_write(entry)) {
3811 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3812 pagecache_page, ptl);
3813 goto out_put_page;
3814 }
3815 entry = huge_pte_mkdirty(entry);
3816 }
3817 entry = pte_mkyoung(entry);
3818 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3819 flags & FAULT_FLAG_WRITE))
3820 update_mmu_cache(vma, address, ptep);
3821 out_put_page:
3822 if (page != pagecache_page)
3823 unlock_page(page);
3824 put_page(page);
3825 out_ptl:
3826 spin_unlock(ptl);
3827
3828 if (pagecache_page) {
3829 unlock_page(pagecache_page);
3830 put_page(pagecache_page);
3831 }
3832 out_mutex:
3833 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3834 /*
3835 * Generally it's safe to hold refcount during waiting page lock. But
3836 * here we just wait to defer the next page fault to avoid busy loop and
3837 * the page is not used after unlocked before returning from the current
3838 * page fault. So we are safe from accessing freed page, even if we wait
3839 * here without taking refcount.
3840 */
3841 if (need_wait_lock)
3842 wait_on_page_locked(page);
3843 return ret;
3844 }
3845
3846 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3847 struct page **pages, struct vm_area_struct **vmas,
3848 unsigned long *position, unsigned long *nr_pages,
3849 long i, unsigned int flags)
3850 {
3851 unsigned long pfn_offset;
3852 unsigned long vaddr = *position;
3853 unsigned long remainder = *nr_pages;
3854 struct hstate *h = hstate_vma(vma);
3855
3856 while (vaddr < vma->vm_end && remainder) {
3857 pte_t *pte;
3858 spinlock_t *ptl = NULL;
3859 int absent;
3860 struct page *page;
3861
3862 /*
3863 * If we have a pending SIGKILL, don't keep faulting pages and
3864 * potentially allocating memory.
3865 */
3866 if (unlikely(fatal_signal_pending(current))) {
3867 remainder = 0;
3868 break;
3869 }
3870
3871 /*
3872 * Some archs (sparc64, sh*) have multiple pte_ts to
3873 * each hugepage. We have to make sure we get the
3874 * first, for the page indexing below to work.
3875 *
3876 * Note that page table lock is not held when pte is null.
3877 */
3878 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3879 if (pte)
3880 ptl = huge_pte_lock(h, mm, pte);
3881 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3882
3883 /*
3884 * When coredumping, it suits get_dump_page if we just return
3885 * an error where there's an empty slot with no huge pagecache
3886 * to back it. This way, we avoid allocating a hugepage, and
3887 * the sparse dumpfile avoids allocating disk blocks, but its
3888 * huge holes still show up with zeroes where they need to be.
3889 */
3890 if (absent && (flags & FOLL_DUMP) &&
3891 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3892 if (pte)
3893 spin_unlock(ptl);
3894 remainder = 0;
3895 break;
3896 }
3897
3898 /*
3899 * We need call hugetlb_fault for both hugepages under migration
3900 * (in which case hugetlb_fault waits for the migration,) and
3901 * hwpoisoned hugepages (in which case we need to prevent the
3902 * caller from accessing to them.) In order to do this, we use
3903 * here is_swap_pte instead of is_hugetlb_entry_migration and
3904 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3905 * both cases, and because we can't follow correct pages
3906 * directly from any kind of swap entries.
3907 */
3908 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3909 ((flags & FOLL_WRITE) &&
3910 !huge_pte_write(huge_ptep_get(pte)))) {
3911 int ret;
3912
3913 if (pte)
3914 spin_unlock(ptl);
3915 ret = hugetlb_fault(mm, vma, vaddr,
3916 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3917 if (!(ret & VM_FAULT_ERROR))
3918 continue;
3919
3920 remainder = 0;
3921 break;
3922 }
3923
3924 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3925 page = pte_page(huge_ptep_get(pte));
3926 same_page:
3927 if (pages) {
3928 pages[i] = mem_map_offset(page, pfn_offset);
3929 get_page_foll(pages[i]);
3930 }
3931
3932 if (vmas)
3933 vmas[i] = vma;
3934
3935 vaddr += PAGE_SIZE;
3936 ++pfn_offset;
3937 --remainder;
3938 ++i;
3939 if (vaddr < vma->vm_end && remainder &&
3940 pfn_offset < pages_per_huge_page(h)) {
3941 /*
3942 * We use pfn_offset to avoid touching the pageframes
3943 * of this compound page.
3944 */
3945 goto same_page;
3946 }
3947 spin_unlock(ptl);
3948 }
3949 *nr_pages = remainder;
3950 *position = vaddr;
3951
3952 return i ? i : -EFAULT;
3953 }
3954
3955 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3956 unsigned long address, unsigned long end, pgprot_t newprot)
3957 {
3958 struct mm_struct *mm = vma->vm_mm;
3959 unsigned long start = address;
3960 pte_t *ptep;
3961 pte_t pte;
3962 struct hstate *h = hstate_vma(vma);
3963 unsigned long pages = 0;
3964
3965 BUG_ON(address >= end);
3966 flush_cache_range(vma, address, end);
3967
3968 mmu_notifier_invalidate_range_start(mm, start, end);
3969 i_mmap_lock_write(vma->vm_file->f_mapping);
3970 for (; address < end; address += huge_page_size(h)) {
3971 spinlock_t *ptl;
3972 ptep = huge_pte_offset(mm, address);
3973 if (!ptep)
3974 continue;
3975 ptl = huge_pte_lock(h, mm, ptep);
3976 if (huge_pmd_unshare(mm, &address, ptep)) {
3977 pages++;
3978 spin_unlock(ptl);
3979 continue;
3980 }
3981 pte = huge_ptep_get(ptep);
3982 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3983 spin_unlock(ptl);
3984 continue;
3985 }
3986 if (unlikely(is_hugetlb_entry_migration(pte))) {
3987 swp_entry_t entry = pte_to_swp_entry(pte);
3988
3989 if (is_write_migration_entry(entry)) {
3990 pte_t newpte;
3991
3992 make_migration_entry_read(&entry);
3993 newpte = swp_entry_to_pte(entry);
3994 set_huge_pte_at(mm, address, ptep, newpte);
3995 pages++;
3996 }
3997 spin_unlock(ptl);
3998 continue;
3999 }
4000 if (!huge_pte_none(pte)) {
4001 pte = huge_ptep_get_and_clear(mm, address, ptep);
4002 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4003 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4004 set_huge_pte_at(mm, address, ptep, pte);
4005 pages++;
4006 }
4007 spin_unlock(ptl);
4008 }
4009 /*
4010 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4011 * may have cleared our pud entry and done put_page on the page table:
4012 * once we release i_mmap_rwsem, another task can do the final put_page
4013 * and that page table be reused and filled with junk.
4014 */
4015 flush_tlb_range(vma, start, end);
4016 mmu_notifier_invalidate_range(mm, start, end);
4017 i_mmap_unlock_write(vma->vm_file->f_mapping);
4018 mmu_notifier_invalidate_range_end(mm, start, end);
4019
4020 return pages << h->order;
4021 }
4022
4023 int hugetlb_reserve_pages(struct inode *inode,
4024 long from, long to,
4025 struct vm_area_struct *vma,
4026 vm_flags_t vm_flags)
4027 {
4028 long ret, chg;
4029 struct hstate *h = hstate_inode(inode);
4030 struct hugepage_subpool *spool = subpool_inode(inode);
4031 struct resv_map *resv_map;
4032 long gbl_reserve;
4033
4034 /*
4035 * Only apply hugepage reservation if asked. At fault time, an
4036 * attempt will be made for VM_NORESERVE to allocate a page
4037 * without using reserves
4038 */
4039 if (vm_flags & VM_NORESERVE)
4040 return 0;
4041
4042 /*
4043 * Shared mappings base their reservation on the number of pages that
4044 * are already allocated on behalf of the file. Private mappings need
4045 * to reserve the full area even if read-only as mprotect() may be
4046 * called to make the mapping read-write. Assume !vma is a shm mapping
4047 */
4048 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4049 resv_map = inode_resv_map(inode);
4050
4051 chg = region_chg(resv_map, from, to);
4052
4053 } else {
4054 resv_map = resv_map_alloc();
4055 if (!resv_map)
4056 return -ENOMEM;
4057
4058 chg = to - from;
4059
4060 set_vma_resv_map(vma, resv_map);
4061 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4062 }
4063
4064 if (chg < 0) {
4065 ret = chg;
4066 goto out_err;
4067 }
4068
4069 /*
4070 * There must be enough pages in the subpool for the mapping. If
4071 * the subpool has a minimum size, there may be some global
4072 * reservations already in place (gbl_reserve).
4073 */
4074 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4075 if (gbl_reserve < 0) {
4076 ret = -ENOSPC;
4077 goto out_err;
4078 }
4079
4080 /*
4081 * Check enough hugepages are available for the reservation.
4082 * Hand the pages back to the subpool if there are not
4083 */
4084 ret = hugetlb_acct_memory(h, gbl_reserve);
4085 if (ret < 0) {
4086 /* put back original number of pages, chg */
4087 (void)hugepage_subpool_put_pages(spool, chg);
4088 goto out_err;
4089 }
4090
4091 /*
4092 * Account for the reservations made. Shared mappings record regions
4093 * that have reservations as they are shared by multiple VMAs.
4094 * When the last VMA disappears, the region map says how much
4095 * the reservation was and the page cache tells how much of
4096 * the reservation was consumed. Private mappings are per-VMA and
4097 * only the consumed reservations are tracked. When the VMA
4098 * disappears, the original reservation is the VMA size and the
4099 * consumed reservations are stored in the map. Hence, nothing
4100 * else has to be done for private mappings here
4101 */
4102 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4103 long add = region_add(resv_map, from, to);
4104
4105 if (unlikely(chg > add)) {
4106 /*
4107 * pages in this range were added to the reserve
4108 * map between region_chg and region_add. This
4109 * indicates a race with alloc_huge_page. Adjust
4110 * the subpool and reserve counts modified above
4111 * based on the difference.
4112 */
4113 long rsv_adjust;
4114
4115 rsv_adjust = hugepage_subpool_put_pages(spool,
4116 chg - add);
4117 hugetlb_acct_memory(h, -rsv_adjust);
4118 }
4119 }
4120 return 0;
4121 out_err:
4122 if (!vma || vma->vm_flags & VM_MAYSHARE)
4123 region_abort(resv_map, from, to);
4124 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4125 kref_put(&resv_map->refs, resv_map_release);
4126 return ret;
4127 }
4128
4129 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4130 long freed)
4131 {
4132 struct hstate *h = hstate_inode(inode);
4133 struct resv_map *resv_map = inode_resv_map(inode);
4134 long chg = 0;
4135 struct hugepage_subpool *spool = subpool_inode(inode);
4136 long gbl_reserve;
4137
4138 if (resv_map) {
4139 chg = region_del(resv_map, start, end);
4140 /*
4141 * region_del() can fail in the rare case where a region
4142 * must be split and another region descriptor can not be
4143 * allocated. If end == LONG_MAX, it will not fail.
4144 */
4145 if (chg < 0)
4146 return chg;
4147 }
4148
4149 spin_lock(&inode->i_lock);
4150 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4151 spin_unlock(&inode->i_lock);
4152
4153 /*
4154 * If the subpool has a minimum size, the number of global
4155 * reservations to be released may be adjusted.
4156 */
4157 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4158 hugetlb_acct_memory(h, -gbl_reserve);
4159
4160 return 0;
4161 }
4162
4163 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4164 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4165 struct vm_area_struct *vma,
4166 unsigned long addr, pgoff_t idx)
4167 {
4168 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4169 svma->vm_start;
4170 unsigned long sbase = saddr & PUD_MASK;
4171 unsigned long s_end = sbase + PUD_SIZE;
4172
4173 /* Allow segments to share if only one is marked locked */
4174 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4175 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4176
4177 /*
4178 * match the virtual addresses, permission and the alignment of the
4179 * page table page.
4180 */
4181 if (pmd_index(addr) != pmd_index(saddr) ||
4182 vm_flags != svm_flags ||
4183 sbase < svma->vm_start || svma->vm_end < s_end)
4184 return 0;
4185
4186 return saddr;
4187 }
4188
4189 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4190 {
4191 unsigned long base = addr & PUD_MASK;
4192 unsigned long end = base + PUD_SIZE;
4193
4194 /*
4195 * check on proper vm_flags and page table alignment
4196 */
4197 if (vma->vm_flags & VM_MAYSHARE &&
4198 vma->vm_start <= base && end <= vma->vm_end)
4199 return true;
4200 return false;
4201 }
4202
4203 /*
4204 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4205 * and returns the corresponding pte. While this is not necessary for the
4206 * !shared pmd case because we can allocate the pmd later as well, it makes the
4207 * code much cleaner. pmd allocation is essential for the shared case because
4208 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4209 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4210 * bad pmd for sharing.
4211 */
4212 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4213 {
4214 struct vm_area_struct *vma = find_vma(mm, addr);
4215 struct address_space *mapping = vma->vm_file->f_mapping;
4216 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4217 vma->vm_pgoff;
4218 struct vm_area_struct *svma;
4219 unsigned long saddr;
4220 pte_t *spte = NULL;
4221 pte_t *pte;
4222 spinlock_t *ptl;
4223
4224 if (!vma_shareable(vma, addr))
4225 return (pte_t *)pmd_alloc(mm, pud, addr);
4226
4227 i_mmap_lock_write(mapping);
4228 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4229 if (svma == vma)
4230 continue;
4231
4232 saddr = page_table_shareable(svma, vma, addr, idx);
4233 if (saddr) {
4234 spte = huge_pte_offset(svma->vm_mm, saddr);
4235 if (spte) {
4236 get_page(virt_to_page(spte));
4237 break;
4238 }
4239 }
4240 }
4241
4242 if (!spte)
4243 goto out;
4244
4245 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4246 spin_lock(ptl);
4247 if (pud_none(*pud)) {
4248 pud_populate(mm, pud,
4249 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4250 mm_inc_nr_pmds(mm);
4251 } else {
4252 put_page(virt_to_page(spte));
4253 }
4254 spin_unlock(ptl);
4255 out:
4256 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4257 i_mmap_unlock_write(mapping);
4258 return pte;
4259 }
4260
4261 /*
4262 * unmap huge page backed by shared pte.
4263 *
4264 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4265 * indicated by page_count > 1, unmap is achieved by clearing pud and
4266 * decrementing the ref count. If count == 1, the pte page is not shared.
4267 *
4268 * called with page table lock held.
4269 *
4270 * returns: 1 successfully unmapped a shared pte page
4271 * 0 the underlying pte page is not shared, or it is the last user
4272 */
4273 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4274 {
4275 pgd_t *pgd = pgd_offset(mm, *addr);
4276 pud_t *pud = pud_offset(pgd, *addr);
4277
4278 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4279 if (page_count(virt_to_page(ptep)) == 1)
4280 return 0;
4281
4282 pud_clear(pud);
4283 put_page(virt_to_page(ptep));
4284 mm_dec_nr_pmds(mm);
4285 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4286 return 1;
4287 }
4288 #define want_pmd_share() (1)
4289 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4290 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4291 {
4292 return NULL;
4293 }
4294
4295 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4296 {
4297 return 0;
4298 }
4299 #define want_pmd_share() (0)
4300 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4301
4302 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4303 pte_t *huge_pte_alloc(struct mm_struct *mm,
4304 unsigned long addr, unsigned long sz)
4305 {
4306 pgd_t *pgd;
4307 pud_t *pud;
4308 pte_t *pte = NULL;
4309
4310 pgd = pgd_offset(mm, addr);
4311 pud = pud_alloc(mm, pgd, addr);
4312 if (pud) {
4313 if (sz == PUD_SIZE) {
4314 pte = (pte_t *)pud;
4315 } else {
4316 BUG_ON(sz != PMD_SIZE);
4317 if (want_pmd_share() && pud_none(*pud))
4318 pte = huge_pmd_share(mm, addr, pud);
4319 else
4320 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4321 }
4322 }
4323 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4324
4325 return pte;
4326 }
4327
4328 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4329 {
4330 pgd_t *pgd;
4331 pud_t *pud;
4332 pmd_t *pmd = NULL;
4333
4334 pgd = pgd_offset(mm, addr);
4335 if (pgd_present(*pgd)) {
4336 pud = pud_offset(pgd, addr);
4337 if (pud_present(*pud)) {
4338 if (pud_huge(*pud))
4339 return (pte_t *)pud;
4340 pmd = pmd_offset(pud, addr);
4341 }
4342 }
4343 return (pte_t *) pmd;
4344 }
4345
4346 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4347
4348 /*
4349 * These functions are overwritable if your architecture needs its own
4350 * behavior.
4351 */
4352 struct page * __weak
4353 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4354 int write)
4355 {
4356 return ERR_PTR(-EINVAL);
4357 }
4358
4359 struct page * __weak
4360 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4361 pmd_t *pmd, int flags)
4362 {
4363 struct page *page = NULL;
4364 spinlock_t *ptl;
4365 pte_t pte;
4366 retry:
4367 ptl = pmd_lockptr(mm, pmd);
4368 spin_lock(ptl);
4369 /*
4370 * make sure that the address range covered by this pmd is not
4371 * unmapped from other threads.
4372 */
4373 if (!pmd_huge(*pmd))
4374 goto out;
4375 pte = huge_ptep_get((pte_t *)pmd);
4376 if (pte_present(pte)) {
4377 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4378 if (flags & FOLL_GET)
4379 get_page(page);
4380 } else {
4381 if (is_hugetlb_entry_migration(pte)) {
4382 spin_unlock(ptl);
4383 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4384 goto retry;
4385 }
4386 /*
4387 * hwpoisoned entry is treated as no_page_table in
4388 * follow_page_mask().
4389 */
4390 }
4391 out:
4392 spin_unlock(ptl);
4393 return page;
4394 }
4395
4396 struct page * __weak
4397 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4398 pud_t *pud, int flags)
4399 {
4400 if (flags & FOLL_GET)
4401 return NULL;
4402
4403 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4404 }
4405
4406 #ifdef CONFIG_MEMORY_FAILURE
4407
4408 /*
4409 * This function is called from memory failure code.
4410 * Assume the caller holds page lock of the head page.
4411 */
4412 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4413 {
4414 struct hstate *h = page_hstate(hpage);
4415 int nid = page_to_nid(hpage);
4416 int ret = -EBUSY;
4417
4418 spin_lock(&hugetlb_lock);
4419 /*
4420 * Just checking !page_huge_active is not enough, because that could be
4421 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4422 */
4423 if (!page_huge_active(hpage) && !page_count(hpage)) {
4424 /*
4425 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4426 * but dangling hpage->lru can trigger list-debug warnings
4427 * (this happens when we call unpoison_memory() on it),
4428 * so let it point to itself with list_del_init().
4429 */
4430 list_del_init(&hpage->lru);
4431 set_page_refcounted(hpage);
4432 h->free_huge_pages--;
4433 h->free_huge_pages_node[nid]--;
4434 ret = 0;
4435 }
4436 spin_unlock(&hugetlb_lock);
4437 return ret;
4438 }
4439 #endif
4440
4441 bool isolate_huge_page(struct page *page, struct list_head *list)
4442 {
4443 bool ret = true;
4444
4445 VM_BUG_ON_PAGE(!PageHead(page), page);
4446 spin_lock(&hugetlb_lock);
4447 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4448 ret = false;
4449 goto unlock;
4450 }
4451 clear_page_huge_active(page);
4452 list_move_tail(&page->lru, list);
4453 unlock:
4454 spin_unlock(&hugetlb_lock);
4455 return ret;
4456 }
4457
4458 void putback_active_hugepage(struct page *page)
4459 {
4460 VM_BUG_ON_PAGE(!PageHead(page), page);
4461 spin_lock(&hugetlb_lock);
4462 set_page_huge_active(page);
4463 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4464 spin_unlock(&hugetlb_lock);
4465 put_page(page);
4466 }