]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/hugetlb.c
mm/hugetlb.c: warn the user when issues arise on boot due to hugepages
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include <linux/userfaultfd_k.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56
57 /*
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
60 */
61 DEFINE_SPINLOCK(hugetlb_lock);
62
63 /*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72
73 static char * __init memfmt(char *buf, unsigned long n)
74 {
75 if (n >= (1UL << 30))
76 sprintf(buf, "%lu GB", n >> 30);
77 else if (n >= (1UL << 20))
78 sprintf(buf, "%lu MB", n >> 20);
79 else
80 sprintf(buf, "%lu KB", n >> 10);
81 return buf;
82 }
83
84 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
85 {
86 bool free = (spool->count == 0) && (spool->used_hpages == 0);
87
88 spin_unlock(&spool->lock);
89
90 /* If no pages are used, and no other handles to the subpool
91 * remain, give up any reservations mased on minimum size and
92 * free the subpool */
93 if (free) {
94 if (spool->min_hpages != -1)
95 hugetlb_acct_memory(spool->hstate,
96 -spool->min_hpages);
97 kfree(spool);
98 }
99 }
100
101 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
102 long min_hpages)
103 {
104 struct hugepage_subpool *spool;
105
106 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
107 if (!spool)
108 return NULL;
109
110 spin_lock_init(&spool->lock);
111 spool->count = 1;
112 spool->max_hpages = max_hpages;
113 spool->hstate = h;
114 spool->min_hpages = min_hpages;
115
116 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
117 kfree(spool);
118 return NULL;
119 }
120 spool->rsv_hpages = min_hpages;
121
122 return spool;
123 }
124
125 void hugepage_put_subpool(struct hugepage_subpool *spool)
126 {
127 spin_lock(&spool->lock);
128 BUG_ON(!spool->count);
129 spool->count--;
130 unlock_or_release_subpool(spool);
131 }
132
133 /*
134 * Subpool accounting for allocating and reserving pages.
135 * Return -ENOMEM if there are not enough resources to satisfy the
136 * the request. Otherwise, return the number of pages by which the
137 * global pools must be adjusted (upward). The returned value may
138 * only be different than the passed value (delta) in the case where
139 * a subpool minimum size must be manitained.
140 */
141 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
142 long delta)
143 {
144 long ret = delta;
145
146 if (!spool)
147 return ret;
148
149 spin_lock(&spool->lock);
150
151 if (spool->max_hpages != -1) { /* maximum size accounting */
152 if ((spool->used_hpages + delta) <= spool->max_hpages)
153 spool->used_hpages += delta;
154 else {
155 ret = -ENOMEM;
156 goto unlock_ret;
157 }
158 }
159
160 /* minimum size accounting */
161 if (spool->min_hpages != -1 && spool->rsv_hpages) {
162 if (delta > spool->rsv_hpages) {
163 /*
164 * Asking for more reserves than those already taken on
165 * behalf of subpool. Return difference.
166 */
167 ret = delta - spool->rsv_hpages;
168 spool->rsv_hpages = 0;
169 } else {
170 ret = 0; /* reserves already accounted for */
171 spool->rsv_hpages -= delta;
172 }
173 }
174
175 unlock_ret:
176 spin_unlock(&spool->lock);
177 return ret;
178 }
179
180 /*
181 * Subpool accounting for freeing and unreserving pages.
182 * Return the number of global page reservations that must be dropped.
183 * The return value may only be different than the passed value (delta)
184 * in the case where a subpool minimum size must be maintained.
185 */
186 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
187 long delta)
188 {
189 long ret = delta;
190
191 if (!spool)
192 return delta;
193
194 spin_lock(&spool->lock);
195
196 if (spool->max_hpages != -1) /* maximum size accounting */
197 spool->used_hpages -= delta;
198
199 /* minimum size accounting */
200 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
201 if (spool->rsv_hpages + delta <= spool->min_hpages)
202 ret = 0;
203 else
204 ret = spool->rsv_hpages + delta - spool->min_hpages;
205
206 spool->rsv_hpages += delta;
207 if (spool->rsv_hpages > spool->min_hpages)
208 spool->rsv_hpages = spool->min_hpages;
209 }
210
211 /*
212 * If hugetlbfs_put_super couldn't free spool due to an outstanding
213 * quota reference, free it now.
214 */
215 unlock_or_release_subpool(spool);
216
217 return ret;
218 }
219
220 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
221 {
222 return HUGETLBFS_SB(inode->i_sb)->spool;
223 }
224
225 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
226 {
227 return subpool_inode(file_inode(vma->vm_file));
228 }
229
230 /*
231 * Region tracking -- allows tracking of reservations and instantiated pages
232 * across the pages in a mapping.
233 *
234 * The region data structures are embedded into a resv_map and protected
235 * by a resv_map's lock. The set of regions within the resv_map represent
236 * reservations for huge pages, or huge pages that have already been
237 * instantiated within the map. The from and to elements are huge page
238 * indicies into the associated mapping. from indicates the starting index
239 * of the region. to represents the first index past the end of the region.
240 *
241 * For example, a file region structure with from == 0 and to == 4 represents
242 * four huge pages in a mapping. It is important to note that the to element
243 * represents the first element past the end of the region. This is used in
244 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
245 *
246 * Interval notation of the form [from, to) will be used to indicate that
247 * the endpoint from is inclusive and to is exclusive.
248 */
249 struct file_region {
250 struct list_head link;
251 long from;
252 long to;
253 };
254
255 /*
256 * Add the huge page range represented by [f, t) to the reserve
257 * map. In the normal case, existing regions will be expanded
258 * to accommodate the specified range. Sufficient regions should
259 * exist for expansion due to the previous call to region_chg
260 * with the same range. However, it is possible that region_del
261 * could have been called after region_chg and modifed the map
262 * in such a way that no region exists to be expanded. In this
263 * case, pull a region descriptor from the cache associated with
264 * the map and use that for the new range.
265 *
266 * Return the number of new huge pages added to the map. This
267 * number is greater than or equal to zero.
268 */
269 static long region_add(struct resv_map *resv, long f, long t)
270 {
271 struct list_head *head = &resv->regions;
272 struct file_region *rg, *nrg, *trg;
273 long add = 0;
274
275 spin_lock(&resv->lock);
276 /* Locate the region we are either in or before. */
277 list_for_each_entry(rg, head, link)
278 if (f <= rg->to)
279 break;
280
281 /*
282 * If no region exists which can be expanded to include the
283 * specified range, the list must have been modified by an
284 * interleving call to region_del(). Pull a region descriptor
285 * from the cache and use it for this range.
286 */
287 if (&rg->link == head || t < rg->from) {
288 VM_BUG_ON(resv->region_cache_count <= 0);
289
290 resv->region_cache_count--;
291 nrg = list_first_entry(&resv->region_cache, struct file_region,
292 link);
293 list_del(&nrg->link);
294
295 nrg->from = f;
296 nrg->to = t;
297 list_add(&nrg->link, rg->link.prev);
298
299 add += t - f;
300 goto out_locked;
301 }
302
303 /* Round our left edge to the current segment if it encloses us. */
304 if (f > rg->from)
305 f = rg->from;
306
307 /* Check for and consume any regions we now overlap with. */
308 nrg = rg;
309 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
310 if (&rg->link == head)
311 break;
312 if (rg->from > t)
313 break;
314
315 /* If this area reaches higher then extend our area to
316 * include it completely. If this is not the first area
317 * which we intend to reuse, free it. */
318 if (rg->to > t)
319 t = rg->to;
320 if (rg != nrg) {
321 /* Decrement return value by the deleted range.
322 * Another range will span this area so that by
323 * end of routine add will be >= zero
324 */
325 add -= (rg->to - rg->from);
326 list_del(&rg->link);
327 kfree(rg);
328 }
329 }
330
331 add += (nrg->from - f); /* Added to beginning of region */
332 nrg->from = f;
333 add += t - nrg->to; /* Added to end of region */
334 nrg->to = t;
335
336 out_locked:
337 resv->adds_in_progress--;
338 spin_unlock(&resv->lock);
339 VM_BUG_ON(add < 0);
340 return add;
341 }
342
343 /*
344 * Examine the existing reserve map and determine how many
345 * huge pages in the specified range [f, t) are NOT currently
346 * represented. This routine is called before a subsequent
347 * call to region_add that will actually modify the reserve
348 * map to add the specified range [f, t). region_chg does
349 * not change the number of huge pages represented by the
350 * map. However, if the existing regions in the map can not
351 * be expanded to represent the new range, a new file_region
352 * structure is added to the map as a placeholder. This is
353 * so that the subsequent region_add call will have all the
354 * regions it needs and will not fail.
355 *
356 * Upon entry, region_chg will also examine the cache of region descriptors
357 * associated with the map. If there are not enough descriptors cached, one
358 * will be allocated for the in progress add operation.
359 *
360 * Returns the number of huge pages that need to be added to the existing
361 * reservation map for the range [f, t). This number is greater or equal to
362 * zero. -ENOMEM is returned if a new file_region structure or cache entry
363 * is needed and can not be allocated.
364 */
365 static long region_chg(struct resv_map *resv, long f, long t)
366 {
367 struct list_head *head = &resv->regions;
368 struct file_region *rg, *nrg = NULL;
369 long chg = 0;
370
371 retry:
372 spin_lock(&resv->lock);
373 retry_locked:
374 resv->adds_in_progress++;
375
376 /*
377 * Check for sufficient descriptors in the cache to accommodate
378 * the number of in progress add operations.
379 */
380 if (resv->adds_in_progress > resv->region_cache_count) {
381 struct file_region *trg;
382
383 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
384 /* Must drop lock to allocate a new descriptor. */
385 resv->adds_in_progress--;
386 spin_unlock(&resv->lock);
387
388 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
389 if (!trg) {
390 kfree(nrg);
391 return -ENOMEM;
392 }
393
394 spin_lock(&resv->lock);
395 list_add(&trg->link, &resv->region_cache);
396 resv->region_cache_count++;
397 goto retry_locked;
398 }
399
400 /* Locate the region we are before or in. */
401 list_for_each_entry(rg, head, link)
402 if (f <= rg->to)
403 break;
404
405 /* If we are below the current region then a new region is required.
406 * Subtle, allocate a new region at the position but make it zero
407 * size such that we can guarantee to record the reservation. */
408 if (&rg->link == head || t < rg->from) {
409 if (!nrg) {
410 resv->adds_in_progress--;
411 spin_unlock(&resv->lock);
412 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
413 if (!nrg)
414 return -ENOMEM;
415
416 nrg->from = f;
417 nrg->to = f;
418 INIT_LIST_HEAD(&nrg->link);
419 goto retry;
420 }
421
422 list_add(&nrg->link, rg->link.prev);
423 chg = t - f;
424 goto out_nrg;
425 }
426
427 /* Round our left edge to the current segment if it encloses us. */
428 if (f > rg->from)
429 f = rg->from;
430 chg = t - f;
431
432 /* Check for and consume any regions we now overlap with. */
433 list_for_each_entry(rg, rg->link.prev, link) {
434 if (&rg->link == head)
435 break;
436 if (rg->from > t)
437 goto out;
438
439 /* We overlap with this area, if it extends further than
440 * us then we must extend ourselves. Account for its
441 * existing reservation. */
442 if (rg->to > t) {
443 chg += rg->to - t;
444 t = rg->to;
445 }
446 chg -= rg->to - rg->from;
447 }
448
449 out:
450 spin_unlock(&resv->lock);
451 /* We already know we raced and no longer need the new region */
452 kfree(nrg);
453 return chg;
454 out_nrg:
455 spin_unlock(&resv->lock);
456 return chg;
457 }
458
459 /*
460 * Abort the in progress add operation. The adds_in_progress field
461 * of the resv_map keeps track of the operations in progress between
462 * calls to region_chg and region_add. Operations are sometimes
463 * aborted after the call to region_chg. In such cases, region_abort
464 * is called to decrement the adds_in_progress counter.
465 *
466 * NOTE: The range arguments [f, t) are not needed or used in this
467 * routine. They are kept to make reading the calling code easier as
468 * arguments will match the associated region_chg call.
469 */
470 static void region_abort(struct resv_map *resv, long f, long t)
471 {
472 spin_lock(&resv->lock);
473 VM_BUG_ON(!resv->region_cache_count);
474 resv->adds_in_progress--;
475 spin_unlock(&resv->lock);
476 }
477
478 /*
479 * Delete the specified range [f, t) from the reserve map. If the
480 * t parameter is LONG_MAX, this indicates that ALL regions after f
481 * should be deleted. Locate the regions which intersect [f, t)
482 * and either trim, delete or split the existing regions.
483 *
484 * Returns the number of huge pages deleted from the reserve map.
485 * In the normal case, the return value is zero or more. In the
486 * case where a region must be split, a new region descriptor must
487 * be allocated. If the allocation fails, -ENOMEM will be returned.
488 * NOTE: If the parameter t == LONG_MAX, then we will never split
489 * a region and possibly return -ENOMEM. Callers specifying
490 * t == LONG_MAX do not need to check for -ENOMEM error.
491 */
492 static long region_del(struct resv_map *resv, long f, long t)
493 {
494 struct list_head *head = &resv->regions;
495 struct file_region *rg, *trg;
496 struct file_region *nrg = NULL;
497 long del = 0;
498
499 retry:
500 spin_lock(&resv->lock);
501 list_for_each_entry_safe(rg, trg, head, link) {
502 /*
503 * Skip regions before the range to be deleted. file_region
504 * ranges are normally of the form [from, to). However, there
505 * may be a "placeholder" entry in the map which is of the form
506 * (from, to) with from == to. Check for placeholder entries
507 * at the beginning of the range to be deleted.
508 */
509 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
510 continue;
511
512 if (rg->from >= t)
513 break;
514
515 if (f > rg->from && t < rg->to) { /* Must split region */
516 /*
517 * Check for an entry in the cache before dropping
518 * lock and attempting allocation.
519 */
520 if (!nrg &&
521 resv->region_cache_count > resv->adds_in_progress) {
522 nrg = list_first_entry(&resv->region_cache,
523 struct file_region,
524 link);
525 list_del(&nrg->link);
526 resv->region_cache_count--;
527 }
528
529 if (!nrg) {
530 spin_unlock(&resv->lock);
531 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
532 if (!nrg)
533 return -ENOMEM;
534 goto retry;
535 }
536
537 del += t - f;
538
539 /* New entry for end of split region */
540 nrg->from = t;
541 nrg->to = rg->to;
542 INIT_LIST_HEAD(&nrg->link);
543
544 /* Original entry is trimmed */
545 rg->to = f;
546
547 list_add(&nrg->link, &rg->link);
548 nrg = NULL;
549 break;
550 }
551
552 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
553 del += rg->to - rg->from;
554 list_del(&rg->link);
555 kfree(rg);
556 continue;
557 }
558
559 if (f <= rg->from) { /* Trim beginning of region */
560 del += t - rg->from;
561 rg->from = t;
562 } else { /* Trim end of region */
563 del += rg->to - f;
564 rg->to = f;
565 }
566 }
567
568 spin_unlock(&resv->lock);
569 kfree(nrg);
570 return del;
571 }
572
573 /*
574 * A rare out of memory error was encountered which prevented removal of
575 * the reserve map region for a page. The huge page itself was free'ed
576 * and removed from the page cache. This routine will adjust the subpool
577 * usage count, and the global reserve count if needed. By incrementing
578 * these counts, the reserve map entry which could not be deleted will
579 * appear as a "reserved" entry instead of simply dangling with incorrect
580 * counts.
581 */
582 void hugetlb_fix_reserve_counts(struct inode *inode)
583 {
584 struct hugepage_subpool *spool = subpool_inode(inode);
585 long rsv_adjust;
586
587 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
588 if (rsv_adjust) {
589 struct hstate *h = hstate_inode(inode);
590
591 hugetlb_acct_memory(h, 1);
592 }
593 }
594
595 /*
596 * Count and return the number of huge pages in the reserve map
597 * that intersect with the range [f, t).
598 */
599 static long region_count(struct resv_map *resv, long f, long t)
600 {
601 struct list_head *head = &resv->regions;
602 struct file_region *rg;
603 long chg = 0;
604
605 spin_lock(&resv->lock);
606 /* Locate each segment we overlap with, and count that overlap. */
607 list_for_each_entry(rg, head, link) {
608 long seg_from;
609 long seg_to;
610
611 if (rg->to <= f)
612 continue;
613 if (rg->from >= t)
614 break;
615
616 seg_from = max(rg->from, f);
617 seg_to = min(rg->to, t);
618
619 chg += seg_to - seg_from;
620 }
621 spin_unlock(&resv->lock);
622
623 return chg;
624 }
625
626 /*
627 * Convert the address within this vma to the page offset within
628 * the mapping, in pagecache page units; huge pages here.
629 */
630 static pgoff_t vma_hugecache_offset(struct hstate *h,
631 struct vm_area_struct *vma, unsigned long address)
632 {
633 return ((address - vma->vm_start) >> huge_page_shift(h)) +
634 (vma->vm_pgoff >> huge_page_order(h));
635 }
636
637 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
638 unsigned long address)
639 {
640 return vma_hugecache_offset(hstate_vma(vma), vma, address);
641 }
642 EXPORT_SYMBOL_GPL(linear_hugepage_index);
643
644 /*
645 * Return the size of the pages allocated when backing a VMA. In the majority
646 * cases this will be same size as used by the page table entries.
647 */
648 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
649 {
650 struct hstate *hstate;
651
652 if (!is_vm_hugetlb_page(vma))
653 return PAGE_SIZE;
654
655 hstate = hstate_vma(vma);
656
657 return 1UL << huge_page_shift(hstate);
658 }
659 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
660
661 /*
662 * Return the page size being used by the MMU to back a VMA. In the majority
663 * of cases, the page size used by the kernel matches the MMU size. On
664 * architectures where it differs, an architecture-specific version of this
665 * function is required.
666 */
667 #ifndef vma_mmu_pagesize
668 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
669 {
670 return vma_kernel_pagesize(vma);
671 }
672 #endif
673
674 /*
675 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
676 * bits of the reservation map pointer, which are always clear due to
677 * alignment.
678 */
679 #define HPAGE_RESV_OWNER (1UL << 0)
680 #define HPAGE_RESV_UNMAPPED (1UL << 1)
681 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
682
683 /*
684 * These helpers are used to track how many pages are reserved for
685 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
686 * is guaranteed to have their future faults succeed.
687 *
688 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
689 * the reserve counters are updated with the hugetlb_lock held. It is safe
690 * to reset the VMA at fork() time as it is not in use yet and there is no
691 * chance of the global counters getting corrupted as a result of the values.
692 *
693 * The private mapping reservation is represented in a subtly different
694 * manner to a shared mapping. A shared mapping has a region map associated
695 * with the underlying file, this region map represents the backing file
696 * pages which have ever had a reservation assigned which this persists even
697 * after the page is instantiated. A private mapping has a region map
698 * associated with the original mmap which is attached to all VMAs which
699 * reference it, this region map represents those offsets which have consumed
700 * reservation ie. where pages have been instantiated.
701 */
702 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
703 {
704 return (unsigned long)vma->vm_private_data;
705 }
706
707 static void set_vma_private_data(struct vm_area_struct *vma,
708 unsigned long value)
709 {
710 vma->vm_private_data = (void *)value;
711 }
712
713 struct resv_map *resv_map_alloc(void)
714 {
715 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
716 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
717
718 if (!resv_map || !rg) {
719 kfree(resv_map);
720 kfree(rg);
721 return NULL;
722 }
723
724 kref_init(&resv_map->refs);
725 spin_lock_init(&resv_map->lock);
726 INIT_LIST_HEAD(&resv_map->regions);
727
728 resv_map->adds_in_progress = 0;
729
730 INIT_LIST_HEAD(&resv_map->region_cache);
731 list_add(&rg->link, &resv_map->region_cache);
732 resv_map->region_cache_count = 1;
733
734 return resv_map;
735 }
736
737 void resv_map_release(struct kref *ref)
738 {
739 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
740 struct list_head *head = &resv_map->region_cache;
741 struct file_region *rg, *trg;
742
743 /* Clear out any active regions before we release the map. */
744 region_del(resv_map, 0, LONG_MAX);
745
746 /* ... and any entries left in the cache */
747 list_for_each_entry_safe(rg, trg, head, link) {
748 list_del(&rg->link);
749 kfree(rg);
750 }
751
752 VM_BUG_ON(resv_map->adds_in_progress);
753
754 kfree(resv_map);
755 }
756
757 static inline struct resv_map *inode_resv_map(struct inode *inode)
758 {
759 return inode->i_mapping->private_data;
760 }
761
762 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
763 {
764 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
765 if (vma->vm_flags & VM_MAYSHARE) {
766 struct address_space *mapping = vma->vm_file->f_mapping;
767 struct inode *inode = mapping->host;
768
769 return inode_resv_map(inode);
770
771 } else {
772 return (struct resv_map *)(get_vma_private_data(vma) &
773 ~HPAGE_RESV_MASK);
774 }
775 }
776
777 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
778 {
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
781
782 set_vma_private_data(vma, (get_vma_private_data(vma) &
783 HPAGE_RESV_MASK) | (unsigned long)map);
784 }
785
786 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
787 {
788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
790
791 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
792 }
793
794 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
795 {
796 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
797
798 return (get_vma_private_data(vma) & flag) != 0;
799 }
800
801 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
802 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
803 {
804 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
805 if (!(vma->vm_flags & VM_MAYSHARE))
806 vma->vm_private_data = (void *)0;
807 }
808
809 /* Returns true if the VMA has associated reserve pages */
810 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
811 {
812 if (vma->vm_flags & VM_NORESERVE) {
813 /*
814 * This address is already reserved by other process(chg == 0),
815 * so, we should decrement reserved count. Without decrementing,
816 * reserve count remains after releasing inode, because this
817 * allocated page will go into page cache and is regarded as
818 * coming from reserved pool in releasing step. Currently, we
819 * don't have any other solution to deal with this situation
820 * properly, so add work-around here.
821 */
822 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
823 return true;
824 else
825 return false;
826 }
827
828 /* Shared mappings always use reserves */
829 if (vma->vm_flags & VM_MAYSHARE) {
830 /*
831 * We know VM_NORESERVE is not set. Therefore, there SHOULD
832 * be a region map for all pages. The only situation where
833 * there is no region map is if a hole was punched via
834 * fallocate. In this case, there really are no reverves to
835 * use. This situation is indicated if chg != 0.
836 */
837 if (chg)
838 return false;
839 else
840 return true;
841 }
842
843 /*
844 * Only the process that called mmap() has reserves for
845 * private mappings.
846 */
847 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
848 /*
849 * Like the shared case above, a hole punch or truncate
850 * could have been performed on the private mapping.
851 * Examine the value of chg to determine if reserves
852 * actually exist or were previously consumed.
853 * Very Subtle - The value of chg comes from a previous
854 * call to vma_needs_reserves(). The reserve map for
855 * private mappings has different (opposite) semantics
856 * than that of shared mappings. vma_needs_reserves()
857 * has already taken this difference in semantics into
858 * account. Therefore, the meaning of chg is the same
859 * as in the shared case above. Code could easily be
860 * combined, but keeping it separate draws attention to
861 * subtle differences.
862 */
863 if (chg)
864 return false;
865 else
866 return true;
867 }
868
869 return false;
870 }
871
872 static void enqueue_huge_page(struct hstate *h, struct page *page)
873 {
874 int nid = page_to_nid(page);
875 list_move(&page->lru, &h->hugepage_freelists[nid]);
876 h->free_huge_pages++;
877 h->free_huge_pages_node[nid]++;
878 }
879
880 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
881 {
882 struct page *page;
883
884 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
885 if (!PageHWPoison(page))
886 break;
887 /*
888 * if 'non-isolated free hugepage' not found on the list,
889 * the allocation fails.
890 */
891 if (&h->hugepage_freelists[nid] == &page->lru)
892 return NULL;
893 list_move(&page->lru, &h->hugepage_activelist);
894 set_page_refcounted(page);
895 h->free_huge_pages--;
896 h->free_huge_pages_node[nid]--;
897 return page;
898 }
899
900 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
901 {
902 struct page *page;
903 int node;
904
905 if (nid != NUMA_NO_NODE)
906 return dequeue_huge_page_node_exact(h, nid);
907
908 for_each_online_node(node) {
909 page = dequeue_huge_page_node_exact(h, node);
910 if (page)
911 return page;
912 }
913 return NULL;
914 }
915
916 /* Movability of hugepages depends on migration support. */
917 static inline gfp_t htlb_alloc_mask(struct hstate *h)
918 {
919 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
920 return GFP_HIGHUSER_MOVABLE;
921 else
922 return GFP_HIGHUSER;
923 }
924
925 static struct page *dequeue_huge_page_vma(struct hstate *h,
926 struct vm_area_struct *vma,
927 unsigned long address, int avoid_reserve,
928 long chg)
929 {
930 struct page *page = NULL;
931 struct mempolicy *mpol;
932 nodemask_t *nodemask;
933 gfp_t gfp_mask;
934 int nid;
935 struct zonelist *zonelist;
936 struct zone *zone;
937 struct zoneref *z;
938 unsigned int cpuset_mems_cookie;
939
940 /*
941 * A child process with MAP_PRIVATE mappings created by their parent
942 * have no page reserves. This check ensures that reservations are
943 * not "stolen". The child may still get SIGKILLed
944 */
945 if (!vma_has_reserves(vma, chg) &&
946 h->free_huge_pages - h->resv_huge_pages == 0)
947 goto err;
948
949 /* If reserves cannot be used, ensure enough pages are in the pool */
950 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
951 goto err;
952
953 retry_cpuset:
954 cpuset_mems_cookie = read_mems_allowed_begin();
955 gfp_mask = htlb_alloc_mask(h);
956 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
957 zonelist = node_zonelist(nid, gfp_mask);
958
959 for_each_zone_zonelist_nodemask(zone, z, zonelist,
960 MAX_NR_ZONES - 1, nodemask) {
961 if (cpuset_zone_allowed(zone, gfp_mask)) {
962 page = dequeue_huge_page_node(h, zone_to_nid(zone));
963 if (page) {
964 if (avoid_reserve)
965 break;
966 if (!vma_has_reserves(vma, chg))
967 break;
968
969 SetPagePrivate(page);
970 h->resv_huge_pages--;
971 break;
972 }
973 }
974 }
975
976 mpol_cond_put(mpol);
977 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
978 goto retry_cpuset;
979 return page;
980
981 err:
982 return NULL;
983 }
984
985 /*
986 * common helper functions for hstate_next_node_to_{alloc|free}.
987 * We may have allocated or freed a huge page based on a different
988 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
989 * be outside of *nodes_allowed. Ensure that we use an allowed
990 * node for alloc or free.
991 */
992 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
993 {
994 nid = next_node_in(nid, *nodes_allowed);
995 VM_BUG_ON(nid >= MAX_NUMNODES);
996
997 return nid;
998 }
999
1000 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1001 {
1002 if (!node_isset(nid, *nodes_allowed))
1003 nid = next_node_allowed(nid, nodes_allowed);
1004 return nid;
1005 }
1006
1007 /*
1008 * returns the previously saved node ["this node"] from which to
1009 * allocate a persistent huge page for the pool and advance the
1010 * next node from which to allocate, handling wrap at end of node
1011 * mask.
1012 */
1013 static int hstate_next_node_to_alloc(struct hstate *h,
1014 nodemask_t *nodes_allowed)
1015 {
1016 int nid;
1017
1018 VM_BUG_ON(!nodes_allowed);
1019
1020 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1021 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1022
1023 return nid;
1024 }
1025
1026 /*
1027 * helper for free_pool_huge_page() - return the previously saved
1028 * node ["this node"] from which to free a huge page. Advance the
1029 * next node id whether or not we find a free huge page to free so
1030 * that the next attempt to free addresses the next node.
1031 */
1032 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1033 {
1034 int nid;
1035
1036 VM_BUG_ON(!nodes_allowed);
1037
1038 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1039 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1040
1041 return nid;
1042 }
1043
1044 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1045 for (nr_nodes = nodes_weight(*mask); \
1046 nr_nodes > 0 && \
1047 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1048 nr_nodes--)
1049
1050 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1051 for (nr_nodes = nodes_weight(*mask); \
1052 nr_nodes > 0 && \
1053 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1054 nr_nodes--)
1055
1056 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1057 static void destroy_compound_gigantic_page(struct page *page,
1058 unsigned int order)
1059 {
1060 int i;
1061 int nr_pages = 1 << order;
1062 struct page *p = page + 1;
1063
1064 atomic_set(compound_mapcount_ptr(page), 0);
1065 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1066 clear_compound_head(p);
1067 set_page_refcounted(p);
1068 }
1069
1070 set_compound_order(page, 0);
1071 __ClearPageHead(page);
1072 }
1073
1074 static void free_gigantic_page(struct page *page, unsigned int order)
1075 {
1076 free_contig_range(page_to_pfn(page), 1 << order);
1077 }
1078
1079 static int __alloc_gigantic_page(unsigned long start_pfn,
1080 unsigned long nr_pages)
1081 {
1082 unsigned long end_pfn = start_pfn + nr_pages;
1083 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1084 GFP_KERNEL);
1085 }
1086
1087 static bool pfn_range_valid_gigantic(struct zone *z,
1088 unsigned long start_pfn, unsigned long nr_pages)
1089 {
1090 unsigned long i, end_pfn = start_pfn + nr_pages;
1091 struct page *page;
1092
1093 for (i = start_pfn; i < end_pfn; i++) {
1094 if (!pfn_valid(i))
1095 return false;
1096
1097 page = pfn_to_page(i);
1098
1099 if (page_zone(page) != z)
1100 return false;
1101
1102 if (PageReserved(page))
1103 return false;
1104
1105 if (page_count(page) > 0)
1106 return false;
1107
1108 if (PageHuge(page))
1109 return false;
1110 }
1111
1112 return true;
1113 }
1114
1115 static bool zone_spans_last_pfn(const struct zone *zone,
1116 unsigned long start_pfn, unsigned long nr_pages)
1117 {
1118 unsigned long last_pfn = start_pfn + nr_pages - 1;
1119 return zone_spans_pfn(zone, last_pfn);
1120 }
1121
1122 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1123 {
1124 unsigned long nr_pages = 1 << order;
1125 unsigned long ret, pfn, flags;
1126 struct zone *z;
1127
1128 z = NODE_DATA(nid)->node_zones;
1129 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1130 spin_lock_irqsave(&z->lock, flags);
1131
1132 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1133 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1134 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1135 /*
1136 * We release the zone lock here because
1137 * alloc_contig_range() will also lock the zone
1138 * at some point. If there's an allocation
1139 * spinning on this lock, it may win the race
1140 * and cause alloc_contig_range() to fail...
1141 */
1142 spin_unlock_irqrestore(&z->lock, flags);
1143 ret = __alloc_gigantic_page(pfn, nr_pages);
1144 if (!ret)
1145 return pfn_to_page(pfn);
1146 spin_lock_irqsave(&z->lock, flags);
1147 }
1148 pfn += nr_pages;
1149 }
1150
1151 spin_unlock_irqrestore(&z->lock, flags);
1152 }
1153
1154 return NULL;
1155 }
1156
1157 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1158 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1159
1160 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1161 {
1162 struct page *page;
1163
1164 page = alloc_gigantic_page(nid, huge_page_order(h));
1165 if (page) {
1166 prep_compound_gigantic_page(page, huge_page_order(h));
1167 prep_new_huge_page(h, page, nid);
1168 }
1169
1170 return page;
1171 }
1172
1173 static int alloc_fresh_gigantic_page(struct hstate *h,
1174 nodemask_t *nodes_allowed)
1175 {
1176 struct page *page = NULL;
1177 int nr_nodes, node;
1178
1179 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1180 page = alloc_fresh_gigantic_page_node(h, node);
1181 if (page)
1182 return 1;
1183 }
1184
1185 return 0;
1186 }
1187
1188 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1189 static inline bool gigantic_page_supported(void) { return false; }
1190 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1191 static inline void destroy_compound_gigantic_page(struct page *page,
1192 unsigned int order) { }
1193 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1194 nodemask_t *nodes_allowed) { return 0; }
1195 #endif
1196
1197 static void update_and_free_page(struct hstate *h, struct page *page)
1198 {
1199 int i;
1200
1201 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1202 return;
1203
1204 h->nr_huge_pages--;
1205 h->nr_huge_pages_node[page_to_nid(page)]--;
1206 for (i = 0; i < pages_per_huge_page(h); i++) {
1207 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1208 1 << PG_referenced | 1 << PG_dirty |
1209 1 << PG_active | 1 << PG_private |
1210 1 << PG_writeback);
1211 }
1212 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1213 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1214 set_page_refcounted(page);
1215 if (hstate_is_gigantic(h)) {
1216 destroy_compound_gigantic_page(page, huge_page_order(h));
1217 free_gigantic_page(page, huge_page_order(h));
1218 } else {
1219 __free_pages(page, huge_page_order(h));
1220 }
1221 }
1222
1223 struct hstate *size_to_hstate(unsigned long size)
1224 {
1225 struct hstate *h;
1226
1227 for_each_hstate(h) {
1228 if (huge_page_size(h) == size)
1229 return h;
1230 }
1231 return NULL;
1232 }
1233
1234 /*
1235 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1236 * to hstate->hugepage_activelist.)
1237 *
1238 * This function can be called for tail pages, but never returns true for them.
1239 */
1240 bool page_huge_active(struct page *page)
1241 {
1242 VM_BUG_ON_PAGE(!PageHuge(page), page);
1243 return PageHead(page) && PagePrivate(&page[1]);
1244 }
1245
1246 /* never called for tail page */
1247 static void set_page_huge_active(struct page *page)
1248 {
1249 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1250 SetPagePrivate(&page[1]);
1251 }
1252
1253 static void clear_page_huge_active(struct page *page)
1254 {
1255 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1256 ClearPagePrivate(&page[1]);
1257 }
1258
1259 void free_huge_page(struct page *page)
1260 {
1261 /*
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1264 */
1265 struct hstate *h = page_hstate(page);
1266 int nid = page_to_nid(page);
1267 struct hugepage_subpool *spool =
1268 (struct hugepage_subpool *)page_private(page);
1269 bool restore_reserve;
1270
1271 set_page_private(page, 0);
1272 page->mapping = NULL;
1273 VM_BUG_ON_PAGE(page_count(page), page);
1274 VM_BUG_ON_PAGE(page_mapcount(page), page);
1275 restore_reserve = PagePrivate(page);
1276 ClearPagePrivate(page);
1277
1278 /*
1279 * A return code of zero implies that the subpool will be under its
1280 * minimum size if the reservation is not restored after page is free.
1281 * Therefore, force restore_reserve operation.
1282 */
1283 if (hugepage_subpool_put_pages(spool, 1) == 0)
1284 restore_reserve = true;
1285
1286 spin_lock(&hugetlb_lock);
1287 clear_page_huge_active(page);
1288 hugetlb_cgroup_uncharge_page(hstate_index(h),
1289 pages_per_huge_page(h), page);
1290 if (restore_reserve)
1291 h->resv_huge_pages++;
1292
1293 if (h->surplus_huge_pages_node[nid]) {
1294 /* remove the page from active list */
1295 list_del(&page->lru);
1296 update_and_free_page(h, page);
1297 h->surplus_huge_pages--;
1298 h->surplus_huge_pages_node[nid]--;
1299 } else {
1300 arch_clear_hugepage_flags(page);
1301 enqueue_huge_page(h, page);
1302 }
1303 spin_unlock(&hugetlb_lock);
1304 }
1305
1306 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1307 {
1308 INIT_LIST_HEAD(&page->lru);
1309 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1310 spin_lock(&hugetlb_lock);
1311 set_hugetlb_cgroup(page, NULL);
1312 h->nr_huge_pages++;
1313 h->nr_huge_pages_node[nid]++;
1314 spin_unlock(&hugetlb_lock);
1315 put_page(page); /* free it into the hugepage allocator */
1316 }
1317
1318 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1319 {
1320 int i;
1321 int nr_pages = 1 << order;
1322 struct page *p = page + 1;
1323
1324 /* we rely on prep_new_huge_page to set the destructor */
1325 set_compound_order(page, order);
1326 __ClearPageReserved(page);
1327 __SetPageHead(page);
1328 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1329 /*
1330 * For gigantic hugepages allocated through bootmem at
1331 * boot, it's safer to be consistent with the not-gigantic
1332 * hugepages and clear the PG_reserved bit from all tail pages
1333 * too. Otherwse drivers using get_user_pages() to access tail
1334 * pages may get the reference counting wrong if they see
1335 * PG_reserved set on a tail page (despite the head page not
1336 * having PG_reserved set). Enforcing this consistency between
1337 * head and tail pages allows drivers to optimize away a check
1338 * on the head page when they need know if put_page() is needed
1339 * after get_user_pages().
1340 */
1341 __ClearPageReserved(p);
1342 set_page_count(p, 0);
1343 set_compound_head(p, page);
1344 }
1345 atomic_set(compound_mapcount_ptr(page), -1);
1346 }
1347
1348 /*
1349 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1350 * transparent huge pages. See the PageTransHuge() documentation for more
1351 * details.
1352 */
1353 int PageHuge(struct page *page)
1354 {
1355 if (!PageCompound(page))
1356 return 0;
1357
1358 page = compound_head(page);
1359 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1360 }
1361 EXPORT_SYMBOL_GPL(PageHuge);
1362
1363 /*
1364 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1365 * normal or transparent huge pages.
1366 */
1367 int PageHeadHuge(struct page *page_head)
1368 {
1369 if (!PageHead(page_head))
1370 return 0;
1371
1372 return get_compound_page_dtor(page_head) == free_huge_page;
1373 }
1374
1375 pgoff_t __basepage_index(struct page *page)
1376 {
1377 struct page *page_head = compound_head(page);
1378 pgoff_t index = page_index(page_head);
1379 unsigned long compound_idx;
1380
1381 if (!PageHuge(page_head))
1382 return page_index(page);
1383
1384 if (compound_order(page_head) >= MAX_ORDER)
1385 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1386 else
1387 compound_idx = page - page_head;
1388
1389 return (index << compound_order(page_head)) + compound_idx;
1390 }
1391
1392 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1393 {
1394 struct page *page;
1395
1396 page = __alloc_pages_node(nid,
1397 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1398 __GFP_REPEAT|__GFP_NOWARN,
1399 huge_page_order(h));
1400 if (page) {
1401 prep_new_huge_page(h, page, nid);
1402 }
1403
1404 return page;
1405 }
1406
1407 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1408 {
1409 struct page *page;
1410 int nr_nodes, node;
1411 int ret = 0;
1412
1413 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1414 page = alloc_fresh_huge_page_node(h, node);
1415 if (page) {
1416 ret = 1;
1417 break;
1418 }
1419 }
1420
1421 if (ret)
1422 count_vm_event(HTLB_BUDDY_PGALLOC);
1423 else
1424 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1425
1426 return ret;
1427 }
1428
1429 /*
1430 * Free huge page from pool from next node to free.
1431 * Attempt to keep persistent huge pages more or less
1432 * balanced over allowed nodes.
1433 * Called with hugetlb_lock locked.
1434 */
1435 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1436 bool acct_surplus)
1437 {
1438 int nr_nodes, node;
1439 int ret = 0;
1440
1441 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1442 /*
1443 * If we're returning unused surplus pages, only examine
1444 * nodes with surplus pages.
1445 */
1446 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1447 !list_empty(&h->hugepage_freelists[node])) {
1448 struct page *page =
1449 list_entry(h->hugepage_freelists[node].next,
1450 struct page, lru);
1451 list_del(&page->lru);
1452 h->free_huge_pages--;
1453 h->free_huge_pages_node[node]--;
1454 if (acct_surplus) {
1455 h->surplus_huge_pages--;
1456 h->surplus_huge_pages_node[node]--;
1457 }
1458 update_and_free_page(h, page);
1459 ret = 1;
1460 break;
1461 }
1462 }
1463
1464 return ret;
1465 }
1466
1467 /*
1468 * Dissolve a given free hugepage into free buddy pages. This function does
1469 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1470 * number of free hugepages would be reduced below the number of reserved
1471 * hugepages.
1472 */
1473 int dissolve_free_huge_page(struct page *page)
1474 {
1475 int rc = 0;
1476
1477 spin_lock(&hugetlb_lock);
1478 if (PageHuge(page) && !page_count(page)) {
1479 struct page *head = compound_head(page);
1480 struct hstate *h = page_hstate(head);
1481 int nid = page_to_nid(head);
1482 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1483 rc = -EBUSY;
1484 goto out;
1485 }
1486 /*
1487 * Move PageHWPoison flag from head page to the raw error page,
1488 * which makes any subpages rather than the error page reusable.
1489 */
1490 if (PageHWPoison(head) && page != head) {
1491 SetPageHWPoison(page);
1492 ClearPageHWPoison(head);
1493 }
1494 list_del(&head->lru);
1495 h->free_huge_pages--;
1496 h->free_huge_pages_node[nid]--;
1497 h->max_huge_pages--;
1498 update_and_free_page(h, head);
1499 }
1500 out:
1501 spin_unlock(&hugetlb_lock);
1502 return rc;
1503 }
1504
1505 /*
1506 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1507 * make specified memory blocks removable from the system.
1508 * Note that this will dissolve a free gigantic hugepage completely, if any
1509 * part of it lies within the given range.
1510 * Also note that if dissolve_free_huge_page() returns with an error, all
1511 * free hugepages that were dissolved before that error are lost.
1512 */
1513 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1514 {
1515 unsigned long pfn;
1516 struct page *page;
1517 int rc = 0;
1518
1519 if (!hugepages_supported())
1520 return rc;
1521
1522 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1523 page = pfn_to_page(pfn);
1524 if (PageHuge(page) && !page_count(page)) {
1525 rc = dissolve_free_huge_page(page);
1526 if (rc)
1527 break;
1528 }
1529 }
1530
1531 return rc;
1532 }
1533
1534 /*
1535 * There are 3 ways this can get called:
1536 * 1. With vma+addr: we use the VMA's memory policy
1537 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1538 * page from any node, and let the buddy allocator itself figure
1539 * it out.
1540 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1541 * strictly from 'nid'
1542 */
1543 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1544 struct vm_area_struct *vma, unsigned long addr, int nid)
1545 {
1546 int order = huge_page_order(h);
1547 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1548 unsigned int cpuset_mems_cookie;
1549
1550 /*
1551 * We need a VMA to get a memory policy. If we do not
1552 * have one, we use the 'nid' argument.
1553 *
1554 * The mempolicy stuff below has some non-inlined bits
1555 * and calls ->vm_ops. That makes it hard to optimize at
1556 * compile-time, even when NUMA is off and it does
1557 * nothing. This helps the compiler optimize it out.
1558 */
1559 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1560 /*
1561 * If a specific node is requested, make sure to
1562 * get memory from there, but only when a node
1563 * is explicitly specified.
1564 */
1565 if (nid != NUMA_NO_NODE)
1566 gfp |= __GFP_THISNODE;
1567 /*
1568 * Make sure to call something that can handle
1569 * nid=NUMA_NO_NODE
1570 */
1571 return alloc_pages_node(nid, gfp, order);
1572 }
1573
1574 /*
1575 * OK, so we have a VMA. Fetch the mempolicy and try to
1576 * allocate a huge page with it. We will only reach this
1577 * when CONFIG_NUMA=y.
1578 */
1579 do {
1580 struct page *page;
1581 struct mempolicy *mpol;
1582 int nid;
1583 nodemask_t *nodemask;
1584
1585 cpuset_mems_cookie = read_mems_allowed_begin();
1586 nid = huge_node(vma, addr, gfp, &mpol, &nodemask);
1587 mpol_cond_put(mpol);
1588 page = __alloc_pages_nodemask(gfp, order, nid, nodemask);
1589 if (page)
1590 return page;
1591 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1592
1593 return NULL;
1594 }
1595
1596 /*
1597 * There are two ways to allocate a huge page:
1598 * 1. When you have a VMA and an address (like a fault)
1599 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1600 *
1601 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1602 * this case which signifies that the allocation should be done with
1603 * respect for the VMA's memory policy.
1604 *
1605 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1606 * implies that memory policies will not be taken in to account.
1607 */
1608 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1609 struct vm_area_struct *vma, unsigned long addr, int nid)
1610 {
1611 struct page *page;
1612 unsigned int r_nid;
1613
1614 if (hstate_is_gigantic(h))
1615 return NULL;
1616
1617 /*
1618 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1619 * This makes sure the caller is picking _one_ of the modes with which
1620 * we can call this function, not both.
1621 */
1622 if (vma || (addr != -1)) {
1623 VM_WARN_ON_ONCE(addr == -1);
1624 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1625 }
1626 /*
1627 * Assume we will successfully allocate the surplus page to
1628 * prevent racing processes from causing the surplus to exceed
1629 * overcommit
1630 *
1631 * This however introduces a different race, where a process B
1632 * tries to grow the static hugepage pool while alloc_pages() is
1633 * called by process A. B will only examine the per-node
1634 * counters in determining if surplus huge pages can be
1635 * converted to normal huge pages in adjust_pool_surplus(). A
1636 * won't be able to increment the per-node counter, until the
1637 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1638 * no more huge pages can be converted from surplus to normal
1639 * state (and doesn't try to convert again). Thus, we have a
1640 * case where a surplus huge page exists, the pool is grown, and
1641 * the surplus huge page still exists after, even though it
1642 * should just have been converted to a normal huge page. This
1643 * does not leak memory, though, as the hugepage will be freed
1644 * once it is out of use. It also does not allow the counters to
1645 * go out of whack in adjust_pool_surplus() as we don't modify
1646 * the node values until we've gotten the hugepage and only the
1647 * per-node value is checked there.
1648 */
1649 spin_lock(&hugetlb_lock);
1650 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1651 spin_unlock(&hugetlb_lock);
1652 return NULL;
1653 } else {
1654 h->nr_huge_pages++;
1655 h->surplus_huge_pages++;
1656 }
1657 spin_unlock(&hugetlb_lock);
1658
1659 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1660
1661 spin_lock(&hugetlb_lock);
1662 if (page) {
1663 INIT_LIST_HEAD(&page->lru);
1664 r_nid = page_to_nid(page);
1665 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1666 set_hugetlb_cgroup(page, NULL);
1667 /*
1668 * We incremented the global counters already
1669 */
1670 h->nr_huge_pages_node[r_nid]++;
1671 h->surplus_huge_pages_node[r_nid]++;
1672 __count_vm_event(HTLB_BUDDY_PGALLOC);
1673 } else {
1674 h->nr_huge_pages--;
1675 h->surplus_huge_pages--;
1676 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1677 }
1678 spin_unlock(&hugetlb_lock);
1679
1680 return page;
1681 }
1682
1683 /*
1684 * Allocate a huge page from 'nid'. Note, 'nid' may be
1685 * NUMA_NO_NODE, which means that it may be allocated
1686 * anywhere.
1687 */
1688 static
1689 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1690 {
1691 unsigned long addr = -1;
1692
1693 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1694 }
1695
1696 /*
1697 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1698 */
1699 static
1700 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1701 struct vm_area_struct *vma, unsigned long addr)
1702 {
1703 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1704 }
1705
1706 /*
1707 * This allocation function is useful in the context where vma is irrelevant.
1708 * E.g. soft-offlining uses this function because it only cares physical
1709 * address of error page.
1710 */
1711 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1712 {
1713 struct page *page = NULL;
1714
1715 spin_lock(&hugetlb_lock);
1716 if (h->free_huge_pages - h->resv_huge_pages > 0)
1717 page = dequeue_huge_page_node(h, nid);
1718 spin_unlock(&hugetlb_lock);
1719
1720 if (!page)
1721 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1722
1723 return page;
1724 }
1725
1726 /*
1727 * Increase the hugetlb pool such that it can accommodate a reservation
1728 * of size 'delta'.
1729 */
1730 static int gather_surplus_pages(struct hstate *h, int delta)
1731 {
1732 struct list_head surplus_list;
1733 struct page *page, *tmp;
1734 int ret, i;
1735 int needed, allocated;
1736 bool alloc_ok = true;
1737
1738 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1739 if (needed <= 0) {
1740 h->resv_huge_pages += delta;
1741 return 0;
1742 }
1743
1744 allocated = 0;
1745 INIT_LIST_HEAD(&surplus_list);
1746
1747 ret = -ENOMEM;
1748 retry:
1749 spin_unlock(&hugetlb_lock);
1750 for (i = 0; i < needed; i++) {
1751 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1752 if (!page) {
1753 alloc_ok = false;
1754 break;
1755 }
1756 list_add(&page->lru, &surplus_list);
1757 }
1758 allocated += i;
1759
1760 /*
1761 * After retaking hugetlb_lock, we need to recalculate 'needed'
1762 * because either resv_huge_pages or free_huge_pages may have changed.
1763 */
1764 spin_lock(&hugetlb_lock);
1765 needed = (h->resv_huge_pages + delta) -
1766 (h->free_huge_pages + allocated);
1767 if (needed > 0) {
1768 if (alloc_ok)
1769 goto retry;
1770 /*
1771 * We were not able to allocate enough pages to
1772 * satisfy the entire reservation so we free what
1773 * we've allocated so far.
1774 */
1775 goto free;
1776 }
1777 /*
1778 * The surplus_list now contains _at_least_ the number of extra pages
1779 * needed to accommodate the reservation. Add the appropriate number
1780 * of pages to the hugetlb pool and free the extras back to the buddy
1781 * allocator. Commit the entire reservation here to prevent another
1782 * process from stealing the pages as they are added to the pool but
1783 * before they are reserved.
1784 */
1785 needed += allocated;
1786 h->resv_huge_pages += delta;
1787 ret = 0;
1788
1789 /* Free the needed pages to the hugetlb pool */
1790 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1791 if ((--needed) < 0)
1792 break;
1793 /*
1794 * This page is now managed by the hugetlb allocator and has
1795 * no users -- drop the buddy allocator's reference.
1796 */
1797 put_page_testzero(page);
1798 VM_BUG_ON_PAGE(page_count(page), page);
1799 enqueue_huge_page(h, page);
1800 }
1801 free:
1802 spin_unlock(&hugetlb_lock);
1803
1804 /* Free unnecessary surplus pages to the buddy allocator */
1805 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1806 put_page(page);
1807 spin_lock(&hugetlb_lock);
1808
1809 return ret;
1810 }
1811
1812 /*
1813 * This routine has two main purposes:
1814 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1815 * in unused_resv_pages. This corresponds to the prior adjustments made
1816 * to the associated reservation map.
1817 * 2) Free any unused surplus pages that may have been allocated to satisfy
1818 * the reservation. As many as unused_resv_pages may be freed.
1819 *
1820 * Called with hugetlb_lock held. However, the lock could be dropped (and
1821 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1822 * we must make sure nobody else can claim pages we are in the process of
1823 * freeing. Do this by ensuring resv_huge_page always is greater than the
1824 * number of huge pages we plan to free when dropping the lock.
1825 */
1826 static void return_unused_surplus_pages(struct hstate *h,
1827 unsigned long unused_resv_pages)
1828 {
1829 unsigned long nr_pages;
1830
1831 /* Cannot return gigantic pages currently */
1832 if (hstate_is_gigantic(h))
1833 goto out;
1834
1835 /*
1836 * Part (or even all) of the reservation could have been backed
1837 * by pre-allocated pages. Only free surplus pages.
1838 */
1839 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1840
1841 /*
1842 * We want to release as many surplus pages as possible, spread
1843 * evenly across all nodes with memory. Iterate across these nodes
1844 * until we can no longer free unreserved surplus pages. This occurs
1845 * when the nodes with surplus pages have no free pages.
1846 * free_pool_huge_page() will balance the the freed pages across the
1847 * on-line nodes with memory and will handle the hstate accounting.
1848 *
1849 * Note that we decrement resv_huge_pages as we free the pages. If
1850 * we drop the lock, resv_huge_pages will still be sufficiently large
1851 * to cover subsequent pages we may free.
1852 */
1853 while (nr_pages--) {
1854 h->resv_huge_pages--;
1855 unused_resv_pages--;
1856 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1857 goto out;
1858 cond_resched_lock(&hugetlb_lock);
1859 }
1860
1861 out:
1862 /* Fully uncommit the reservation */
1863 h->resv_huge_pages -= unused_resv_pages;
1864 }
1865
1866
1867 /*
1868 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1869 * are used by the huge page allocation routines to manage reservations.
1870 *
1871 * vma_needs_reservation is called to determine if the huge page at addr
1872 * within the vma has an associated reservation. If a reservation is
1873 * needed, the value 1 is returned. The caller is then responsible for
1874 * managing the global reservation and subpool usage counts. After
1875 * the huge page has been allocated, vma_commit_reservation is called
1876 * to add the page to the reservation map. If the page allocation fails,
1877 * the reservation must be ended instead of committed. vma_end_reservation
1878 * is called in such cases.
1879 *
1880 * In the normal case, vma_commit_reservation returns the same value
1881 * as the preceding vma_needs_reservation call. The only time this
1882 * is not the case is if a reserve map was changed between calls. It
1883 * is the responsibility of the caller to notice the difference and
1884 * take appropriate action.
1885 *
1886 * vma_add_reservation is used in error paths where a reservation must
1887 * be restored when a newly allocated huge page must be freed. It is
1888 * to be called after calling vma_needs_reservation to determine if a
1889 * reservation exists.
1890 */
1891 enum vma_resv_mode {
1892 VMA_NEEDS_RESV,
1893 VMA_COMMIT_RESV,
1894 VMA_END_RESV,
1895 VMA_ADD_RESV,
1896 };
1897 static long __vma_reservation_common(struct hstate *h,
1898 struct vm_area_struct *vma, unsigned long addr,
1899 enum vma_resv_mode mode)
1900 {
1901 struct resv_map *resv;
1902 pgoff_t idx;
1903 long ret;
1904
1905 resv = vma_resv_map(vma);
1906 if (!resv)
1907 return 1;
1908
1909 idx = vma_hugecache_offset(h, vma, addr);
1910 switch (mode) {
1911 case VMA_NEEDS_RESV:
1912 ret = region_chg(resv, idx, idx + 1);
1913 break;
1914 case VMA_COMMIT_RESV:
1915 ret = region_add(resv, idx, idx + 1);
1916 break;
1917 case VMA_END_RESV:
1918 region_abort(resv, idx, idx + 1);
1919 ret = 0;
1920 break;
1921 case VMA_ADD_RESV:
1922 if (vma->vm_flags & VM_MAYSHARE)
1923 ret = region_add(resv, idx, idx + 1);
1924 else {
1925 region_abort(resv, idx, idx + 1);
1926 ret = region_del(resv, idx, idx + 1);
1927 }
1928 break;
1929 default:
1930 BUG();
1931 }
1932
1933 if (vma->vm_flags & VM_MAYSHARE)
1934 return ret;
1935 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1936 /*
1937 * In most cases, reserves always exist for private mappings.
1938 * However, a file associated with mapping could have been
1939 * hole punched or truncated after reserves were consumed.
1940 * As subsequent fault on such a range will not use reserves.
1941 * Subtle - The reserve map for private mappings has the
1942 * opposite meaning than that of shared mappings. If NO
1943 * entry is in the reserve map, it means a reservation exists.
1944 * If an entry exists in the reserve map, it means the
1945 * reservation has already been consumed. As a result, the
1946 * return value of this routine is the opposite of the
1947 * value returned from reserve map manipulation routines above.
1948 */
1949 if (ret)
1950 return 0;
1951 else
1952 return 1;
1953 }
1954 else
1955 return ret < 0 ? ret : 0;
1956 }
1957
1958 static long vma_needs_reservation(struct hstate *h,
1959 struct vm_area_struct *vma, unsigned long addr)
1960 {
1961 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1962 }
1963
1964 static long vma_commit_reservation(struct hstate *h,
1965 struct vm_area_struct *vma, unsigned long addr)
1966 {
1967 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1968 }
1969
1970 static void vma_end_reservation(struct hstate *h,
1971 struct vm_area_struct *vma, unsigned long addr)
1972 {
1973 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1974 }
1975
1976 static long vma_add_reservation(struct hstate *h,
1977 struct vm_area_struct *vma, unsigned long addr)
1978 {
1979 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1980 }
1981
1982 /*
1983 * This routine is called to restore a reservation on error paths. In the
1984 * specific error paths, a huge page was allocated (via alloc_huge_page)
1985 * and is about to be freed. If a reservation for the page existed,
1986 * alloc_huge_page would have consumed the reservation and set PagePrivate
1987 * in the newly allocated page. When the page is freed via free_huge_page,
1988 * the global reservation count will be incremented if PagePrivate is set.
1989 * However, free_huge_page can not adjust the reserve map. Adjust the
1990 * reserve map here to be consistent with global reserve count adjustments
1991 * to be made by free_huge_page.
1992 */
1993 static void restore_reserve_on_error(struct hstate *h,
1994 struct vm_area_struct *vma, unsigned long address,
1995 struct page *page)
1996 {
1997 if (unlikely(PagePrivate(page))) {
1998 long rc = vma_needs_reservation(h, vma, address);
1999
2000 if (unlikely(rc < 0)) {
2001 /*
2002 * Rare out of memory condition in reserve map
2003 * manipulation. Clear PagePrivate so that
2004 * global reserve count will not be incremented
2005 * by free_huge_page. This will make it appear
2006 * as though the reservation for this page was
2007 * consumed. This may prevent the task from
2008 * faulting in the page at a later time. This
2009 * is better than inconsistent global huge page
2010 * accounting of reserve counts.
2011 */
2012 ClearPagePrivate(page);
2013 } else if (rc) {
2014 rc = vma_add_reservation(h, vma, address);
2015 if (unlikely(rc < 0))
2016 /*
2017 * See above comment about rare out of
2018 * memory condition.
2019 */
2020 ClearPagePrivate(page);
2021 } else
2022 vma_end_reservation(h, vma, address);
2023 }
2024 }
2025
2026 struct page *alloc_huge_page(struct vm_area_struct *vma,
2027 unsigned long addr, int avoid_reserve)
2028 {
2029 struct hugepage_subpool *spool = subpool_vma(vma);
2030 struct hstate *h = hstate_vma(vma);
2031 struct page *page;
2032 long map_chg, map_commit;
2033 long gbl_chg;
2034 int ret, idx;
2035 struct hugetlb_cgroup *h_cg;
2036
2037 idx = hstate_index(h);
2038 /*
2039 * Examine the region/reserve map to determine if the process
2040 * has a reservation for the page to be allocated. A return
2041 * code of zero indicates a reservation exists (no change).
2042 */
2043 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2044 if (map_chg < 0)
2045 return ERR_PTR(-ENOMEM);
2046
2047 /*
2048 * Processes that did not create the mapping will have no
2049 * reserves as indicated by the region/reserve map. Check
2050 * that the allocation will not exceed the subpool limit.
2051 * Allocations for MAP_NORESERVE mappings also need to be
2052 * checked against any subpool limit.
2053 */
2054 if (map_chg || avoid_reserve) {
2055 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2056 if (gbl_chg < 0) {
2057 vma_end_reservation(h, vma, addr);
2058 return ERR_PTR(-ENOSPC);
2059 }
2060
2061 /*
2062 * Even though there was no reservation in the region/reserve
2063 * map, there could be reservations associated with the
2064 * subpool that can be used. This would be indicated if the
2065 * return value of hugepage_subpool_get_pages() is zero.
2066 * However, if avoid_reserve is specified we still avoid even
2067 * the subpool reservations.
2068 */
2069 if (avoid_reserve)
2070 gbl_chg = 1;
2071 }
2072
2073 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2074 if (ret)
2075 goto out_subpool_put;
2076
2077 spin_lock(&hugetlb_lock);
2078 /*
2079 * glb_chg is passed to indicate whether or not a page must be taken
2080 * from the global free pool (global change). gbl_chg == 0 indicates
2081 * a reservation exists for the allocation.
2082 */
2083 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2084 if (!page) {
2085 spin_unlock(&hugetlb_lock);
2086 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2087 if (!page)
2088 goto out_uncharge_cgroup;
2089 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2090 SetPagePrivate(page);
2091 h->resv_huge_pages--;
2092 }
2093 spin_lock(&hugetlb_lock);
2094 list_move(&page->lru, &h->hugepage_activelist);
2095 /* Fall through */
2096 }
2097 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2098 spin_unlock(&hugetlb_lock);
2099
2100 set_page_private(page, (unsigned long)spool);
2101
2102 map_commit = vma_commit_reservation(h, vma, addr);
2103 if (unlikely(map_chg > map_commit)) {
2104 /*
2105 * The page was added to the reservation map between
2106 * vma_needs_reservation and vma_commit_reservation.
2107 * This indicates a race with hugetlb_reserve_pages.
2108 * Adjust for the subpool count incremented above AND
2109 * in hugetlb_reserve_pages for the same page. Also,
2110 * the reservation count added in hugetlb_reserve_pages
2111 * no longer applies.
2112 */
2113 long rsv_adjust;
2114
2115 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2116 hugetlb_acct_memory(h, -rsv_adjust);
2117 }
2118 return page;
2119
2120 out_uncharge_cgroup:
2121 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2122 out_subpool_put:
2123 if (map_chg || avoid_reserve)
2124 hugepage_subpool_put_pages(spool, 1);
2125 vma_end_reservation(h, vma, addr);
2126 return ERR_PTR(-ENOSPC);
2127 }
2128
2129 /*
2130 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2131 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2132 * where no ERR_VALUE is expected to be returned.
2133 */
2134 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2135 unsigned long addr, int avoid_reserve)
2136 {
2137 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2138 if (IS_ERR(page))
2139 page = NULL;
2140 return page;
2141 }
2142
2143 int __weak alloc_bootmem_huge_page(struct hstate *h)
2144 {
2145 struct huge_bootmem_page *m;
2146 int nr_nodes, node;
2147
2148 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2149 void *addr;
2150
2151 addr = memblock_virt_alloc_try_nid_nopanic(
2152 huge_page_size(h), huge_page_size(h),
2153 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2154 if (addr) {
2155 /*
2156 * Use the beginning of the huge page to store the
2157 * huge_bootmem_page struct (until gather_bootmem
2158 * puts them into the mem_map).
2159 */
2160 m = addr;
2161 goto found;
2162 }
2163 }
2164 return 0;
2165
2166 found:
2167 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2168 /* Put them into a private list first because mem_map is not up yet */
2169 list_add(&m->list, &huge_boot_pages);
2170 m->hstate = h;
2171 return 1;
2172 }
2173
2174 static void __init prep_compound_huge_page(struct page *page,
2175 unsigned int order)
2176 {
2177 if (unlikely(order > (MAX_ORDER - 1)))
2178 prep_compound_gigantic_page(page, order);
2179 else
2180 prep_compound_page(page, order);
2181 }
2182
2183 /* Put bootmem huge pages into the standard lists after mem_map is up */
2184 static void __init gather_bootmem_prealloc(void)
2185 {
2186 struct huge_bootmem_page *m;
2187
2188 list_for_each_entry(m, &huge_boot_pages, list) {
2189 struct hstate *h = m->hstate;
2190 struct page *page;
2191
2192 #ifdef CONFIG_HIGHMEM
2193 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2194 memblock_free_late(__pa(m),
2195 sizeof(struct huge_bootmem_page));
2196 #else
2197 page = virt_to_page(m);
2198 #endif
2199 WARN_ON(page_count(page) != 1);
2200 prep_compound_huge_page(page, h->order);
2201 WARN_ON(PageReserved(page));
2202 prep_new_huge_page(h, page, page_to_nid(page));
2203 /*
2204 * If we had gigantic hugepages allocated at boot time, we need
2205 * to restore the 'stolen' pages to totalram_pages in order to
2206 * fix confusing memory reports from free(1) and another
2207 * side-effects, like CommitLimit going negative.
2208 */
2209 if (hstate_is_gigantic(h))
2210 adjust_managed_page_count(page, 1 << h->order);
2211 }
2212 }
2213
2214 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2215 {
2216 unsigned long i;
2217
2218 for (i = 0; i < h->max_huge_pages; ++i) {
2219 if (hstate_is_gigantic(h)) {
2220 if (!alloc_bootmem_huge_page(h))
2221 break;
2222 } else if (!alloc_fresh_huge_page(h,
2223 &node_states[N_MEMORY]))
2224 break;
2225 }
2226 if (i < h->max_huge_pages) {
2227 char buf[32];
2228
2229 memfmt(buf, huge_page_size(h)),
2230 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2231 h->max_huge_pages, buf, i);
2232 h->max_huge_pages = i;
2233 }
2234 }
2235
2236 static void __init hugetlb_init_hstates(void)
2237 {
2238 struct hstate *h;
2239
2240 for_each_hstate(h) {
2241 if (minimum_order > huge_page_order(h))
2242 minimum_order = huge_page_order(h);
2243
2244 /* oversize hugepages were init'ed in early boot */
2245 if (!hstate_is_gigantic(h))
2246 hugetlb_hstate_alloc_pages(h);
2247 }
2248 VM_BUG_ON(minimum_order == UINT_MAX);
2249 }
2250
2251 static void __init report_hugepages(void)
2252 {
2253 struct hstate *h;
2254
2255 for_each_hstate(h) {
2256 char buf[32];
2257 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2258 memfmt(buf, huge_page_size(h)),
2259 h->free_huge_pages);
2260 }
2261 }
2262
2263 #ifdef CONFIG_HIGHMEM
2264 static void try_to_free_low(struct hstate *h, unsigned long count,
2265 nodemask_t *nodes_allowed)
2266 {
2267 int i;
2268
2269 if (hstate_is_gigantic(h))
2270 return;
2271
2272 for_each_node_mask(i, *nodes_allowed) {
2273 struct page *page, *next;
2274 struct list_head *freel = &h->hugepage_freelists[i];
2275 list_for_each_entry_safe(page, next, freel, lru) {
2276 if (count >= h->nr_huge_pages)
2277 return;
2278 if (PageHighMem(page))
2279 continue;
2280 list_del(&page->lru);
2281 update_and_free_page(h, page);
2282 h->free_huge_pages--;
2283 h->free_huge_pages_node[page_to_nid(page)]--;
2284 }
2285 }
2286 }
2287 #else
2288 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2289 nodemask_t *nodes_allowed)
2290 {
2291 }
2292 #endif
2293
2294 /*
2295 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2296 * balanced by operating on them in a round-robin fashion.
2297 * Returns 1 if an adjustment was made.
2298 */
2299 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2300 int delta)
2301 {
2302 int nr_nodes, node;
2303
2304 VM_BUG_ON(delta != -1 && delta != 1);
2305
2306 if (delta < 0) {
2307 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2308 if (h->surplus_huge_pages_node[node])
2309 goto found;
2310 }
2311 } else {
2312 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2313 if (h->surplus_huge_pages_node[node] <
2314 h->nr_huge_pages_node[node])
2315 goto found;
2316 }
2317 }
2318 return 0;
2319
2320 found:
2321 h->surplus_huge_pages += delta;
2322 h->surplus_huge_pages_node[node] += delta;
2323 return 1;
2324 }
2325
2326 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2327 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2328 nodemask_t *nodes_allowed)
2329 {
2330 unsigned long min_count, ret;
2331
2332 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2333 return h->max_huge_pages;
2334
2335 /*
2336 * Increase the pool size
2337 * First take pages out of surplus state. Then make up the
2338 * remaining difference by allocating fresh huge pages.
2339 *
2340 * We might race with __alloc_buddy_huge_page() here and be unable
2341 * to convert a surplus huge page to a normal huge page. That is
2342 * not critical, though, it just means the overall size of the
2343 * pool might be one hugepage larger than it needs to be, but
2344 * within all the constraints specified by the sysctls.
2345 */
2346 spin_lock(&hugetlb_lock);
2347 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2348 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2349 break;
2350 }
2351
2352 while (count > persistent_huge_pages(h)) {
2353 /*
2354 * If this allocation races such that we no longer need the
2355 * page, free_huge_page will handle it by freeing the page
2356 * and reducing the surplus.
2357 */
2358 spin_unlock(&hugetlb_lock);
2359
2360 /* yield cpu to avoid soft lockup */
2361 cond_resched();
2362
2363 if (hstate_is_gigantic(h))
2364 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2365 else
2366 ret = alloc_fresh_huge_page(h, nodes_allowed);
2367 spin_lock(&hugetlb_lock);
2368 if (!ret)
2369 goto out;
2370
2371 /* Bail for signals. Probably ctrl-c from user */
2372 if (signal_pending(current))
2373 goto out;
2374 }
2375
2376 /*
2377 * Decrease the pool size
2378 * First return free pages to the buddy allocator (being careful
2379 * to keep enough around to satisfy reservations). Then place
2380 * pages into surplus state as needed so the pool will shrink
2381 * to the desired size as pages become free.
2382 *
2383 * By placing pages into the surplus state independent of the
2384 * overcommit value, we are allowing the surplus pool size to
2385 * exceed overcommit. There are few sane options here. Since
2386 * __alloc_buddy_huge_page() is checking the global counter,
2387 * though, we'll note that we're not allowed to exceed surplus
2388 * and won't grow the pool anywhere else. Not until one of the
2389 * sysctls are changed, or the surplus pages go out of use.
2390 */
2391 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2392 min_count = max(count, min_count);
2393 try_to_free_low(h, min_count, nodes_allowed);
2394 while (min_count < persistent_huge_pages(h)) {
2395 if (!free_pool_huge_page(h, nodes_allowed, 0))
2396 break;
2397 cond_resched_lock(&hugetlb_lock);
2398 }
2399 while (count < persistent_huge_pages(h)) {
2400 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2401 break;
2402 }
2403 out:
2404 ret = persistent_huge_pages(h);
2405 spin_unlock(&hugetlb_lock);
2406 return ret;
2407 }
2408
2409 #define HSTATE_ATTR_RO(_name) \
2410 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2411
2412 #define HSTATE_ATTR(_name) \
2413 static struct kobj_attribute _name##_attr = \
2414 __ATTR(_name, 0644, _name##_show, _name##_store)
2415
2416 static struct kobject *hugepages_kobj;
2417 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2418
2419 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2420
2421 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2422 {
2423 int i;
2424
2425 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2426 if (hstate_kobjs[i] == kobj) {
2427 if (nidp)
2428 *nidp = NUMA_NO_NODE;
2429 return &hstates[i];
2430 }
2431
2432 return kobj_to_node_hstate(kobj, nidp);
2433 }
2434
2435 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2436 struct kobj_attribute *attr, char *buf)
2437 {
2438 struct hstate *h;
2439 unsigned long nr_huge_pages;
2440 int nid;
2441
2442 h = kobj_to_hstate(kobj, &nid);
2443 if (nid == NUMA_NO_NODE)
2444 nr_huge_pages = h->nr_huge_pages;
2445 else
2446 nr_huge_pages = h->nr_huge_pages_node[nid];
2447
2448 return sprintf(buf, "%lu\n", nr_huge_pages);
2449 }
2450
2451 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2452 struct hstate *h, int nid,
2453 unsigned long count, size_t len)
2454 {
2455 int err;
2456 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2457
2458 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2459 err = -EINVAL;
2460 goto out;
2461 }
2462
2463 if (nid == NUMA_NO_NODE) {
2464 /*
2465 * global hstate attribute
2466 */
2467 if (!(obey_mempolicy &&
2468 init_nodemask_of_mempolicy(nodes_allowed))) {
2469 NODEMASK_FREE(nodes_allowed);
2470 nodes_allowed = &node_states[N_MEMORY];
2471 }
2472 } else if (nodes_allowed) {
2473 /*
2474 * per node hstate attribute: adjust count to global,
2475 * but restrict alloc/free to the specified node.
2476 */
2477 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2478 init_nodemask_of_node(nodes_allowed, nid);
2479 } else
2480 nodes_allowed = &node_states[N_MEMORY];
2481
2482 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2483
2484 if (nodes_allowed != &node_states[N_MEMORY])
2485 NODEMASK_FREE(nodes_allowed);
2486
2487 return len;
2488 out:
2489 NODEMASK_FREE(nodes_allowed);
2490 return err;
2491 }
2492
2493 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2494 struct kobject *kobj, const char *buf,
2495 size_t len)
2496 {
2497 struct hstate *h;
2498 unsigned long count;
2499 int nid;
2500 int err;
2501
2502 err = kstrtoul(buf, 10, &count);
2503 if (err)
2504 return err;
2505
2506 h = kobj_to_hstate(kobj, &nid);
2507 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2508 }
2509
2510 static ssize_t nr_hugepages_show(struct kobject *kobj,
2511 struct kobj_attribute *attr, char *buf)
2512 {
2513 return nr_hugepages_show_common(kobj, attr, buf);
2514 }
2515
2516 static ssize_t nr_hugepages_store(struct kobject *kobj,
2517 struct kobj_attribute *attr, const char *buf, size_t len)
2518 {
2519 return nr_hugepages_store_common(false, kobj, buf, len);
2520 }
2521 HSTATE_ATTR(nr_hugepages);
2522
2523 #ifdef CONFIG_NUMA
2524
2525 /*
2526 * hstate attribute for optionally mempolicy-based constraint on persistent
2527 * huge page alloc/free.
2528 */
2529 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2530 struct kobj_attribute *attr, char *buf)
2531 {
2532 return nr_hugepages_show_common(kobj, attr, buf);
2533 }
2534
2535 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2536 struct kobj_attribute *attr, const char *buf, size_t len)
2537 {
2538 return nr_hugepages_store_common(true, kobj, buf, len);
2539 }
2540 HSTATE_ATTR(nr_hugepages_mempolicy);
2541 #endif
2542
2543
2544 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2545 struct kobj_attribute *attr, char *buf)
2546 {
2547 struct hstate *h = kobj_to_hstate(kobj, NULL);
2548 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2549 }
2550
2551 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2552 struct kobj_attribute *attr, const char *buf, size_t count)
2553 {
2554 int err;
2555 unsigned long input;
2556 struct hstate *h = kobj_to_hstate(kobj, NULL);
2557
2558 if (hstate_is_gigantic(h))
2559 return -EINVAL;
2560
2561 err = kstrtoul(buf, 10, &input);
2562 if (err)
2563 return err;
2564
2565 spin_lock(&hugetlb_lock);
2566 h->nr_overcommit_huge_pages = input;
2567 spin_unlock(&hugetlb_lock);
2568
2569 return count;
2570 }
2571 HSTATE_ATTR(nr_overcommit_hugepages);
2572
2573 static ssize_t free_hugepages_show(struct kobject *kobj,
2574 struct kobj_attribute *attr, char *buf)
2575 {
2576 struct hstate *h;
2577 unsigned long free_huge_pages;
2578 int nid;
2579
2580 h = kobj_to_hstate(kobj, &nid);
2581 if (nid == NUMA_NO_NODE)
2582 free_huge_pages = h->free_huge_pages;
2583 else
2584 free_huge_pages = h->free_huge_pages_node[nid];
2585
2586 return sprintf(buf, "%lu\n", free_huge_pages);
2587 }
2588 HSTATE_ATTR_RO(free_hugepages);
2589
2590 static ssize_t resv_hugepages_show(struct kobject *kobj,
2591 struct kobj_attribute *attr, char *buf)
2592 {
2593 struct hstate *h = kobj_to_hstate(kobj, NULL);
2594 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2595 }
2596 HSTATE_ATTR_RO(resv_hugepages);
2597
2598 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2599 struct kobj_attribute *attr, char *buf)
2600 {
2601 struct hstate *h;
2602 unsigned long surplus_huge_pages;
2603 int nid;
2604
2605 h = kobj_to_hstate(kobj, &nid);
2606 if (nid == NUMA_NO_NODE)
2607 surplus_huge_pages = h->surplus_huge_pages;
2608 else
2609 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2610
2611 return sprintf(buf, "%lu\n", surplus_huge_pages);
2612 }
2613 HSTATE_ATTR_RO(surplus_hugepages);
2614
2615 static struct attribute *hstate_attrs[] = {
2616 &nr_hugepages_attr.attr,
2617 &nr_overcommit_hugepages_attr.attr,
2618 &free_hugepages_attr.attr,
2619 &resv_hugepages_attr.attr,
2620 &surplus_hugepages_attr.attr,
2621 #ifdef CONFIG_NUMA
2622 &nr_hugepages_mempolicy_attr.attr,
2623 #endif
2624 NULL,
2625 };
2626
2627 static struct attribute_group hstate_attr_group = {
2628 .attrs = hstate_attrs,
2629 };
2630
2631 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2632 struct kobject **hstate_kobjs,
2633 struct attribute_group *hstate_attr_group)
2634 {
2635 int retval;
2636 int hi = hstate_index(h);
2637
2638 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2639 if (!hstate_kobjs[hi])
2640 return -ENOMEM;
2641
2642 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2643 if (retval)
2644 kobject_put(hstate_kobjs[hi]);
2645
2646 return retval;
2647 }
2648
2649 static void __init hugetlb_sysfs_init(void)
2650 {
2651 struct hstate *h;
2652 int err;
2653
2654 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2655 if (!hugepages_kobj)
2656 return;
2657
2658 for_each_hstate(h) {
2659 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2660 hstate_kobjs, &hstate_attr_group);
2661 if (err)
2662 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2663 }
2664 }
2665
2666 #ifdef CONFIG_NUMA
2667
2668 /*
2669 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2670 * with node devices in node_devices[] using a parallel array. The array
2671 * index of a node device or _hstate == node id.
2672 * This is here to avoid any static dependency of the node device driver, in
2673 * the base kernel, on the hugetlb module.
2674 */
2675 struct node_hstate {
2676 struct kobject *hugepages_kobj;
2677 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2678 };
2679 static struct node_hstate node_hstates[MAX_NUMNODES];
2680
2681 /*
2682 * A subset of global hstate attributes for node devices
2683 */
2684 static struct attribute *per_node_hstate_attrs[] = {
2685 &nr_hugepages_attr.attr,
2686 &free_hugepages_attr.attr,
2687 &surplus_hugepages_attr.attr,
2688 NULL,
2689 };
2690
2691 static struct attribute_group per_node_hstate_attr_group = {
2692 .attrs = per_node_hstate_attrs,
2693 };
2694
2695 /*
2696 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2697 * Returns node id via non-NULL nidp.
2698 */
2699 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2700 {
2701 int nid;
2702
2703 for (nid = 0; nid < nr_node_ids; nid++) {
2704 struct node_hstate *nhs = &node_hstates[nid];
2705 int i;
2706 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2707 if (nhs->hstate_kobjs[i] == kobj) {
2708 if (nidp)
2709 *nidp = nid;
2710 return &hstates[i];
2711 }
2712 }
2713
2714 BUG();
2715 return NULL;
2716 }
2717
2718 /*
2719 * Unregister hstate attributes from a single node device.
2720 * No-op if no hstate attributes attached.
2721 */
2722 static void hugetlb_unregister_node(struct node *node)
2723 {
2724 struct hstate *h;
2725 struct node_hstate *nhs = &node_hstates[node->dev.id];
2726
2727 if (!nhs->hugepages_kobj)
2728 return; /* no hstate attributes */
2729
2730 for_each_hstate(h) {
2731 int idx = hstate_index(h);
2732 if (nhs->hstate_kobjs[idx]) {
2733 kobject_put(nhs->hstate_kobjs[idx]);
2734 nhs->hstate_kobjs[idx] = NULL;
2735 }
2736 }
2737
2738 kobject_put(nhs->hugepages_kobj);
2739 nhs->hugepages_kobj = NULL;
2740 }
2741
2742
2743 /*
2744 * Register hstate attributes for a single node device.
2745 * No-op if attributes already registered.
2746 */
2747 static void hugetlb_register_node(struct node *node)
2748 {
2749 struct hstate *h;
2750 struct node_hstate *nhs = &node_hstates[node->dev.id];
2751 int err;
2752
2753 if (nhs->hugepages_kobj)
2754 return; /* already allocated */
2755
2756 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2757 &node->dev.kobj);
2758 if (!nhs->hugepages_kobj)
2759 return;
2760
2761 for_each_hstate(h) {
2762 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2763 nhs->hstate_kobjs,
2764 &per_node_hstate_attr_group);
2765 if (err) {
2766 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2767 h->name, node->dev.id);
2768 hugetlb_unregister_node(node);
2769 break;
2770 }
2771 }
2772 }
2773
2774 /*
2775 * hugetlb init time: register hstate attributes for all registered node
2776 * devices of nodes that have memory. All on-line nodes should have
2777 * registered their associated device by this time.
2778 */
2779 static void __init hugetlb_register_all_nodes(void)
2780 {
2781 int nid;
2782
2783 for_each_node_state(nid, N_MEMORY) {
2784 struct node *node = node_devices[nid];
2785 if (node->dev.id == nid)
2786 hugetlb_register_node(node);
2787 }
2788
2789 /*
2790 * Let the node device driver know we're here so it can
2791 * [un]register hstate attributes on node hotplug.
2792 */
2793 register_hugetlbfs_with_node(hugetlb_register_node,
2794 hugetlb_unregister_node);
2795 }
2796 #else /* !CONFIG_NUMA */
2797
2798 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2799 {
2800 BUG();
2801 if (nidp)
2802 *nidp = -1;
2803 return NULL;
2804 }
2805
2806 static void hugetlb_register_all_nodes(void) { }
2807
2808 #endif
2809
2810 static int __init hugetlb_init(void)
2811 {
2812 int i;
2813
2814 if (!hugepages_supported())
2815 return 0;
2816
2817 if (!size_to_hstate(default_hstate_size)) {
2818 if (default_hstate_size != 0) {
2819 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2820 default_hstate_size, HPAGE_SIZE);
2821 }
2822
2823 default_hstate_size = HPAGE_SIZE;
2824 if (!size_to_hstate(default_hstate_size))
2825 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2826 }
2827 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2828 if (default_hstate_max_huge_pages) {
2829 if (!default_hstate.max_huge_pages)
2830 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2831 }
2832
2833 hugetlb_init_hstates();
2834 gather_bootmem_prealloc();
2835 report_hugepages();
2836
2837 hugetlb_sysfs_init();
2838 hugetlb_register_all_nodes();
2839 hugetlb_cgroup_file_init();
2840
2841 #ifdef CONFIG_SMP
2842 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2843 #else
2844 num_fault_mutexes = 1;
2845 #endif
2846 hugetlb_fault_mutex_table =
2847 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2848 BUG_ON(!hugetlb_fault_mutex_table);
2849
2850 for (i = 0; i < num_fault_mutexes; i++)
2851 mutex_init(&hugetlb_fault_mutex_table[i]);
2852 return 0;
2853 }
2854 subsys_initcall(hugetlb_init);
2855
2856 /* Should be called on processing a hugepagesz=... option */
2857 void __init hugetlb_bad_size(void)
2858 {
2859 parsed_valid_hugepagesz = false;
2860 }
2861
2862 void __init hugetlb_add_hstate(unsigned int order)
2863 {
2864 struct hstate *h;
2865 unsigned long i;
2866
2867 if (size_to_hstate(PAGE_SIZE << order)) {
2868 pr_warn("hugepagesz= specified twice, ignoring\n");
2869 return;
2870 }
2871 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2872 BUG_ON(order == 0);
2873 h = &hstates[hugetlb_max_hstate++];
2874 h->order = order;
2875 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2876 h->nr_huge_pages = 0;
2877 h->free_huge_pages = 0;
2878 for (i = 0; i < MAX_NUMNODES; ++i)
2879 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2880 INIT_LIST_HEAD(&h->hugepage_activelist);
2881 h->next_nid_to_alloc = first_memory_node;
2882 h->next_nid_to_free = first_memory_node;
2883 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2884 huge_page_size(h)/1024);
2885
2886 parsed_hstate = h;
2887 }
2888
2889 static int __init hugetlb_nrpages_setup(char *s)
2890 {
2891 unsigned long *mhp;
2892 static unsigned long *last_mhp;
2893
2894 if (!parsed_valid_hugepagesz) {
2895 pr_warn("hugepages = %s preceded by "
2896 "an unsupported hugepagesz, ignoring\n", s);
2897 parsed_valid_hugepagesz = true;
2898 return 1;
2899 }
2900 /*
2901 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2902 * so this hugepages= parameter goes to the "default hstate".
2903 */
2904 else if (!hugetlb_max_hstate)
2905 mhp = &default_hstate_max_huge_pages;
2906 else
2907 mhp = &parsed_hstate->max_huge_pages;
2908
2909 if (mhp == last_mhp) {
2910 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2911 return 1;
2912 }
2913
2914 if (sscanf(s, "%lu", mhp) <= 0)
2915 *mhp = 0;
2916
2917 /*
2918 * Global state is always initialized later in hugetlb_init.
2919 * But we need to allocate >= MAX_ORDER hstates here early to still
2920 * use the bootmem allocator.
2921 */
2922 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2923 hugetlb_hstate_alloc_pages(parsed_hstate);
2924
2925 last_mhp = mhp;
2926
2927 return 1;
2928 }
2929 __setup("hugepages=", hugetlb_nrpages_setup);
2930
2931 static int __init hugetlb_default_setup(char *s)
2932 {
2933 default_hstate_size = memparse(s, &s);
2934 return 1;
2935 }
2936 __setup("default_hugepagesz=", hugetlb_default_setup);
2937
2938 static unsigned int cpuset_mems_nr(unsigned int *array)
2939 {
2940 int node;
2941 unsigned int nr = 0;
2942
2943 for_each_node_mask(node, cpuset_current_mems_allowed)
2944 nr += array[node];
2945
2946 return nr;
2947 }
2948
2949 #ifdef CONFIG_SYSCTL
2950 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2951 struct ctl_table *table, int write,
2952 void __user *buffer, size_t *length, loff_t *ppos)
2953 {
2954 struct hstate *h = &default_hstate;
2955 unsigned long tmp = h->max_huge_pages;
2956 int ret;
2957
2958 if (!hugepages_supported())
2959 return -EOPNOTSUPP;
2960
2961 table->data = &tmp;
2962 table->maxlen = sizeof(unsigned long);
2963 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2964 if (ret)
2965 goto out;
2966
2967 if (write)
2968 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2969 NUMA_NO_NODE, tmp, *length);
2970 out:
2971 return ret;
2972 }
2973
2974 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2975 void __user *buffer, size_t *length, loff_t *ppos)
2976 {
2977
2978 return hugetlb_sysctl_handler_common(false, table, write,
2979 buffer, length, ppos);
2980 }
2981
2982 #ifdef CONFIG_NUMA
2983 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2984 void __user *buffer, size_t *length, loff_t *ppos)
2985 {
2986 return hugetlb_sysctl_handler_common(true, table, write,
2987 buffer, length, ppos);
2988 }
2989 #endif /* CONFIG_NUMA */
2990
2991 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2992 void __user *buffer,
2993 size_t *length, loff_t *ppos)
2994 {
2995 struct hstate *h = &default_hstate;
2996 unsigned long tmp;
2997 int ret;
2998
2999 if (!hugepages_supported())
3000 return -EOPNOTSUPP;
3001
3002 tmp = h->nr_overcommit_huge_pages;
3003
3004 if (write && hstate_is_gigantic(h))
3005 return -EINVAL;
3006
3007 table->data = &tmp;
3008 table->maxlen = sizeof(unsigned long);
3009 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3010 if (ret)
3011 goto out;
3012
3013 if (write) {
3014 spin_lock(&hugetlb_lock);
3015 h->nr_overcommit_huge_pages = tmp;
3016 spin_unlock(&hugetlb_lock);
3017 }
3018 out:
3019 return ret;
3020 }
3021
3022 #endif /* CONFIG_SYSCTL */
3023
3024 void hugetlb_report_meminfo(struct seq_file *m)
3025 {
3026 struct hstate *h = &default_hstate;
3027 if (!hugepages_supported())
3028 return;
3029 seq_printf(m,
3030 "HugePages_Total: %5lu\n"
3031 "HugePages_Free: %5lu\n"
3032 "HugePages_Rsvd: %5lu\n"
3033 "HugePages_Surp: %5lu\n"
3034 "Hugepagesize: %8lu kB\n",
3035 h->nr_huge_pages,
3036 h->free_huge_pages,
3037 h->resv_huge_pages,
3038 h->surplus_huge_pages,
3039 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3040 }
3041
3042 int hugetlb_report_node_meminfo(int nid, char *buf)
3043 {
3044 struct hstate *h = &default_hstate;
3045 if (!hugepages_supported())
3046 return 0;
3047 return sprintf(buf,
3048 "Node %d HugePages_Total: %5u\n"
3049 "Node %d HugePages_Free: %5u\n"
3050 "Node %d HugePages_Surp: %5u\n",
3051 nid, h->nr_huge_pages_node[nid],
3052 nid, h->free_huge_pages_node[nid],
3053 nid, h->surplus_huge_pages_node[nid]);
3054 }
3055
3056 void hugetlb_show_meminfo(void)
3057 {
3058 struct hstate *h;
3059 int nid;
3060
3061 if (!hugepages_supported())
3062 return;
3063
3064 for_each_node_state(nid, N_MEMORY)
3065 for_each_hstate(h)
3066 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3067 nid,
3068 h->nr_huge_pages_node[nid],
3069 h->free_huge_pages_node[nid],
3070 h->surplus_huge_pages_node[nid],
3071 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3072 }
3073
3074 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3075 {
3076 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3077 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3078 }
3079
3080 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3081 unsigned long hugetlb_total_pages(void)
3082 {
3083 struct hstate *h;
3084 unsigned long nr_total_pages = 0;
3085
3086 for_each_hstate(h)
3087 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3088 return nr_total_pages;
3089 }
3090
3091 static int hugetlb_acct_memory(struct hstate *h, long delta)
3092 {
3093 int ret = -ENOMEM;
3094
3095 spin_lock(&hugetlb_lock);
3096 /*
3097 * When cpuset is configured, it breaks the strict hugetlb page
3098 * reservation as the accounting is done on a global variable. Such
3099 * reservation is completely rubbish in the presence of cpuset because
3100 * the reservation is not checked against page availability for the
3101 * current cpuset. Application can still potentially OOM'ed by kernel
3102 * with lack of free htlb page in cpuset that the task is in.
3103 * Attempt to enforce strict accounting with cpuset is almost
3104 * impossible (or too ugly) because cpuset is too fluid that
3105 * task or memory node can be dynamically moved between cpusets.
3106 *
3107 * The change of semantics for shared hugetlb mapping with cpuset is
3108 * undesirable. However, in order to preserve some of the semantics,
3109 * we fall back to check against current free page availability as
3110 * a best attempt and hopefully to minimize the impact of changing
3111 * semantics that cpuset has.
3112 */
3113 if (delta > 0) {
3114 if (gather_surplus_pages(h, delta) < 0)
3115 goto out;
3116
3117 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3118 return_unused_surplus_pages(h, delta);
3119 goto out;
3120 }
3121 }
3122
3123 ret = 0;
3124 if (delta < 0)
3125 return_unused_surplus_pages(h, (unsigned long) -delta);
3126
3127 out:
3128 spin_unlock(&hugetlb_lock);
3129 return ret;
3130 }
3131
3132 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3133 {
3134 struct resv_map *resv = vma_resv_map(vma);
3135
3136 /*
3137 * This new VMA should share its siblings reservation map if present.
3138 * The VMA will only ever have a valid reservation map pointer where
3139 * it is being copied for another still existing VMA. As that VMA
3140 * has a reference to the reservation map it cannot disappear until
3141 * after this open call completes. It is therefore safe to take a
3142 * new reference here without additional locking.
3143 */
3144 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3145 kref_get(&resv->refs);
3146 }
3147
3148 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3149 {
3150 struct hstate *h = hstate_vma(vma);
3151 struct resv_map *resv = vma_resv_map(vma);
3152 struct hugepage_subpool *spool = subpool_vma(vma);
3153 unsigned long reserve, start, end;
3154 long gbl_reserve;
3155
3156 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3157 return;
3158
3159 start = vma_hugecache_offset(h, vma, vma->vm_start);
3160 end = vma_hugecache_offset(h, vma, vma->vm_end);
3161
3162 reserve = (end - start) - region_count(resv, start, end);
3163
3164 kref_put(&resv->refs, resv_map_release);
3165
3166 if (reserve) {
3167 /*
3168 * Decrement reserve counts. The global reserve count may be
3169 * adjusted if the subpool has a minimum size.
3170 */
3171 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3172 hugetlb_acct_memory(h, -gbl_reserve);
3173 }
3174 }
3175
3176 /*
3177 * We cannot handle pagefaults against hugetlb pages at all. They cause
3178 * handle_mm_fault() to try to instantiate regular-sized pages in the
3179 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3180 * this far.
3181 */
3182 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3183 {
3184 BUG();
3185 return 0;
3186 }
3187
3188 const struct vm_operations_struct hugetlb_vm_ops = {
3189 .fault = hugetlb_vm_op_fault,
3190 .open = hugetlb_vm_op_open,
3191 .close = hugetlb_vm_op_close,
3192 };
3193
3194 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3195 int writable)
3196 {
3197 pte_t entry;
3198
3199 if (writable) {
3200 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3201 vma->vm_page_prot)));
3202 } else {
3203 entry = huge_pte_wrprotect(mk_huge_pte(page,
3204 vma->vm_page_prot));
3205 }
3206 entry = pte_mkyoung(entry);
3207 entry = pte_mkhuge(entry);
3208 entry = arch_make_huge_pte(entry, vma, page, writable);
3209
3210 return entry;
3211 }
3212
3213 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3214 unsigned long address, pte_t *ptep)
3215 {
3216 pte_t entry;
3217
3218 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3219 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3220 update_mmu_cache(vma, address, ptep);
3221 }
3222
3223 bool is_hugetlb_entry_migration(pte_t pte)
3224 {
3225 swp_entry_t swp;
3226
3227 if (huge_pte_none(pte) || pte_present(pte))
3228 return false;
3229 swp = pte_to_swp_entry(pte);
3230 if (non_swap_entry(swp) && is_migration_entry(swp))
3231 return true;
3232 else
3233 return false;
3234 }
3235
3236 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3237 {
3238 swp_entry_t swp;
3239
3240 if (huge_pte_none(pte) || pte_present(pte))
3241 return 0;
3242 swp = pte_to_swp_entry(pte);
3243 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3244 return 1;
3245 else
3246 return 0;
3247 }
3248
3249 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3250 struct vm_area_struct *vma)
3251 {
3252 pte_t *src_pte, *dst_pte, entry;
3253 struct page *ptepage;
3254 unsigned long addr;
3255 int cow;
3256 struct hstate *h = hstate_vma(vma);
3257 unsigned long sz = huge_page_size(h);
3258 unsigned long mmun_start; /* For mmu_notifiers */
3259 unsigned long mmun_end; /* For mmu_notifiers */
3260 int ret = 0;
3261
3262 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3263
3264 mmun_start = vma->vm_start;
3265 mmun_end = vma->vm_end;
3266 if (cow)
3267 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3268
3269 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3270 spinlock_t *src_ptl, *dst_ptl;
3271 src_pte = huge_pte_offset(src, addr, sz);
3272 if (!src_pte)
3273 continue;
3274 dst_pte = huge_pte_alloc(dst, addr, sz);
3275 if (!dst_pte) {
3276 ret = -ENOMEM;
3277 break;
3278 }
3279
3280 /* If the pagetables are shared don't copy or take references */
3281 if (dst_pte == src_pte)
3282 continue;
3283
3284 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3285 src_ptl = huge_pte_lockptr(h, src, src_pte);
3286 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3287 entry = huge_ptep_get(src_pte);
3288 if (huge_pte_none(entry)) { /* skip none entry */
3289 ;
3290 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3291 is_hugetlb_entry_hwpoisoned(entry))) {
3292 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3293
3294 if (is_write_migration_entry(swp_entry) && cow) {
3295 /*
3296 * COW mappings require pages in both
3297 * parent and child to be set to read.
3298 */
3299 make_migration_entry_read(&swp_entry);
3300 entry = swp_entry_to_pte(swp_entry);
3301 set_huge_swap_pte_at(src, addr, src_pte,
3302 entry, sz);
3303 }
3304 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3305 } else {
3306 if (cow) {
3307 huge_ptep_set_wrprotect(src, addr, src_pte);
3308 mmu_notifier_invalidate_range(src, mmun_start,
3309 mmun_end);
3310 }
3311 entry = huge_ptep_get(src_pte);
3312 ptepage = pte_page(entry);
3313 get_page(ptepage);
3314 page_dup_rmap(ptepage, true);
3315 set_huge_pte_at(dst, addr, dst_pte, entry);
3316 hugetlb_count_add(pages_per_huge_page(h), dst);
3317 }
3318 spin_unlock(src_ptl);
3319 spin_unlock(dst_ptl);
3320 }
3321
3322 if (cow)
3323 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3324
3325 return ret;
3326 }
3327
3328 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3329 unsigned long start, unsigned long end,
3330 struct page *ref_page)
3331 {
3332 struct mm_struct *mm = vma->vm_mm;
3333 unsigned long address;
3334 pte_t *ptep;
3335 pte_t pte;
3336 spinlock_t *ptl;
3337 struct page *page;
3338 struct hstate *h = hstate_vma(vma);
3339 unsigned long sz = huge_page_size(h);
3340 const unsigned long mmun_start = start; /* For mmu_notifiers */
3341 const unsigned long mmun_end = end; /* For mmu_notifiers */
3342
3343 WARN_ON(!is_vm_hugetlb_page(vma));
3344 BUG_ON(start & ~huge_page_mask(h));
3345 BUG_ON(end & ~huge_page_mask(h));
3346
3347 /*
3348 * This is a hugetlb vma, all the pte entries should point
3349 * to huge page.
3350 */
3351 tlb_remove_check_page_size_change(tlb, sz);
3352 tlb_start_vma(tlb, vma);
3353 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3354 address = start;
3355 for (; address < end; address += sz) {
3356 ptep = huge_pte_offset(mm, address, sz);
3357 if (!ptep)
3358 continue;
3359
3360 ptl = huge_pte_lock(h, mm, ptep);
3361 if (huge_pmd_unshare(mm, &address, ptep)) {
3362 spin_unlock(ptl);
3363 continue;
3364 }
3365
3366 pte = huge_ptep_get(ptep);
3367 if (huge_pte_none(pte)) {
3368 spin_unlock(ptl);
3369 continue;
3370 }
3371
3372 /*
3373 * Migrating hugepage or HWPoisoned hugepage is already
3374 * unmapped and its refcount is dropped, so just clear pte here.
3375 */
3376 if (unlikely(!pte_present(pte))) {
3377 huge_pte_clear(mm, address, ptep, sz);
3378 spin_unlock(ptl);
3379 continue;
3380 }
3381
3382 page = pte_page(pte);
3383 /*
3384 * If a reference page is supplied, it is because a specific
3385 * page is being unmapped, not a range. Ensure the page we
3386 * are about to unmap is the actual page of interest.
3387 */
3388 if (ref_page) {
3389 if (page != ref_page) {
3390 spin_unlock(ptl);
3391 continue;
3392 }
3393 /*
3394 * Mark the VMA as having unmapped its page so that
3395 * future faults in this VMA will fail rather than
3396 * looking like data was lost
3397 */
3398 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3399 }
3400
3401 pte = huge_ptep_get_and_clear(mm, address, ptep);
3402 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3403 if (huge_pte_dirty(pte))
3404 set_page_dirty(page);
3405
3406 hugetlb_count_sub(pages_per_huge_page(h), mm);
3407 page_remove_rmap(page, true);
3408
3409 spin_unlock(ptl);
3410 tlb_remove_page_size(tlb, page, huge_page_size(h));
3411 /*
3412 * Bail out after unmapping reference page if supplied
3413 */
3414 if (ref_page)
3415 break;
3416 }
3417 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3418 tlb_end_vma(tlb, vma);
3419 }
3420
3421 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3422 struct vm_area_struct *vma, unsigned long start,
3423 unsigned long end, struct page *ref_page)
3424 {
3425 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3426
3427 /*
3428 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3429 * test will fail on a vma being torn down, and not grab a page table
3430 * on its way out. We're lucky that the flag has such an appropriate
3431 * name, and can in fact be safely cleared here. We could clear it
3432 * before the __unmap_hugepage_range above, but all that's necessary
3433 * is to clear it before releasing the i_mmap_rwsem. This works
3434 * because in the context this is called, the VMA is about to be
3435 * destroyed and the i_mmap_rwsem is held.
3436 */
3437 vma->vm_flags &= ~VM_MAYSHARE;
3438 }
3439
3440 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3441 unsigned long end, struct page *ref_page)
3442 {
3443 struct mm_struct *mm;
3444 struct mmu_gather tlb;
3445
3446 mm = vma->vm_mm;
3447
3448 tlb_gather_mmu(&tlb, mm, start, end);
3449 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3450 tlb_finish_mmu(&tlb, start, end);
3451 }
3452
3453 /*
3454 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3455 * mappping it owns the reserve page for. The intention is to unmap the page
3456 * from other VMAs and let the children be SIGKILLed if they are faulting the
3457 * same region.
3458 */
3459 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3460 struct page *page, unsigned long address)
3461 {
3462 struct hstate *h = hstate_vma(vma);
3463 struct vm_area_struct *iter_vma;
3464 struct address_space *mapping;
3465 pgoff_t pgoff;
3466
3467 /*
3468 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3469 * from page cache lookup which is in HPAGE_SIZE units.
3470 */
3471 address = address & huge_page_mask(h);
3472 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3473 vma->vm_pgoff;
3474 mapping = vma->vm_file->f_mapping;
3475
3476 /*
3477 * Take the mapping lock for the duration of the table walk. As
3478 * this mapping should be shared between all the VMAs,
3479 * __unmap_hugepage_range() is called as the lock is already held
3480 */
3481 i_mmap_lock_write(mapping);
3482 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3483 /* Do not unmap the current VMA */
3484 if (iter_vma == vma)
3485 continue;
3486
3487 /*
3488 * Shared VMAs have their own reserves and do not affect
3489 * MAP_PRIVATE accounting but it is possible that a shared
3490 * VMA is using the same page so check and skip such VMAs.
3491 */
3492 if (iter_vma->vm_flags & VM_MAYSHARE)
3493 continue;
3494
3495 /*
3496 * Unmap the page from other VMAs without their own reserves.
3497 * They get marked to be SIGKILLed if they fault in these
3498 * areas. This is because a future no-page fault on this VMA
3499 * could insert a zeroed page instead of the data existing
3500 * from the time of fork. This would look like data corruption
3501 */
3502 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3503 unmap_hugepage_range(iter_vma, address,
3504 address + huge_page_size(h), page);
3505 }
3506 i_mmap_unlock_write(mapping);
3507 }
3508
3509 /*
3510 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3511 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3512 * cannot race with other handlers or page migration.
3513 * Keep the pte_same checks anyway to make transition from the mutex easier.
3514 */
3515 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3516 unsigned long address, pte_t *ptep,
3517 struct page *pagecache_page, spinlock_t *ptl)
3518 {
3519 pte_t pte;
3520 struct hstate *h = hstate_vma(vma);
3521 struct page *old_page, *new_page;
3522 int ret = 0, outside_reserve = 0;
3523 unsigned long mmun_start; /* For mmu_notifiers */
3524 unsigned long mmun_end; /* For mmu_notifiers */
3525
3526 pte = huge_ptep_get(ptep);
3527 old_page = pte_page(pte);
3528
3529 retry_avoidcopy:
3530 /* If no-one else is actually using this page, avoid the copy
3531 * and just make the page writable */
3532 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3533 page_move_anon_rmap(old_page, vma);
3534 set_huge_ptep_writable(vma, address, ptep);
3535 return 0;
3536 }
3537
3538 /*
3539 * If the process that created a MAP_PRIVATE mapping is about to
3540 * perform a COW due to a shared page count, attempt to satisfy
3541 * the allocation without using the existing reserves. The pagecache
3542 * page is used to determine if the reserve at this address was
3543 * consumed or not. If reserves were used, a partial faulted mapping
3544 * at the time of fork() could consume its reserves on COW instead
3545 * of the full address range.
3546 */
3547 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3548 old_page != pagecache_page)
3549 outside_reserve = 1;
3550
3551 get_page(old_page);
3552
3553 /*
3554 * Drop page table lock as buddy allocator may be called. It will
3555 * be acquired again before returning to the caller, as expected.
3556 */
3557 spin_unlock(ptl);
3558 new_page = alloc_huge_page(vma, address, outside_reserve);
3559
3560 if (IS_ERR(new_page)) {
3561 /*
3562 * If a process owning a MAP_PRIVATE mapping fails to COW,
3563 * it is due to references held by a child and an insufficient
3564 * huge page pool. To guarantee the original mappers
3565 * reliability, unmap the page from child processes. The child
3566 * may get SIGKILLed if it later faults.
3567 */
3568 if (outside_reserve) {
3569 put_page(old_page);
3570 BUG_ON(huge_pte_none(pte));
3571 unmap_ref_private(mm, vma, old_page, address);
3572 BUG_ON(huge_pte_none(pte));
3573 spin_lock(ptl);
3574 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3575 huge_page_size(h));
3576 if (likely(ptep &&
3577 pte_same(huge_ptep_get(ptep), pte)))
3578 goto retry_avoidcopy;
3579 /*
3580 * race occurs while re-acquiring page table
3581 * lock, and our job is done.
3582 */
3583 return 0;
3584 }
3585
3586 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3587 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3588 goto out_release_old;
3589 }
3590
3591 /*
3592 * When the original hugepage is shared one, it does not have
3593 * anon_vma prepared.
3594 */
3595 if (unlikely(anon_vma_prepare(vma))) {
3596 ret = VM_FAULT_OOM;
3597 goto out_release_all;
3598 }
3599
3600 copy_user_huge_page(new_page, old_page, address, vma,
3601 pages_per_huge_page(h));
3602 __SetPageUptodate(new_page);
3603 set_page_huge_active(new_page);
3604
3605 mmun_start = address & huge_page_mask(h);
3606 mmun_end = mmun_start + huge_page_size(h);
3607 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3608
3609 /*
3610 * Retake the page table lock to check for racing updates
3611 * before the page tables are altered
3612 */
3613 spin_lock(ptl);
3614 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3615 huge_page_size(h));
3616 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3617 ClearPagePrivate(new_page);
3618
3619 /* Break COW */
3620 huge_ptep_clear_flush(vma, address, ptep);
3621 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3622 set_huge_pte_at(mm, address, ptep,
3623 make_huge_pte(vma, new_page, 1));
3624 page_remove_rmap(old_page, true);
3625 hugepage_add_new_anon_rmap(new_page, vma, address);
3626 /* Make the old page be freed below */
3627 new_page = old_page;
3628 }
3629 spin_unlock(ptl);
3630 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3631 out_release_all:
3632 restore_reserve_on_error(h, vma, address, new_page);
3633 put_page(new_page);
3634 out_release_old:
3635 put_page(old_page);
3636
3637 spin_lock(ptl); /* Caller expects lock to be held */
3638 return ret;
3639 }
3640
3641 /* Return the pagecache page at a given address within a VMA */
3642 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3643 struct vm_area_struct *vma, unsigned long address)
3644 {
3645 struct address_space *mapping;
3646 pgoff_t idx;
3647
3648 mapping = vma->vm_file->f_mapping;
3649 idx = vma_hugecache_offset(h, vma, address);
3650
3651 return find_lock_page(mapping, idx);
3652 }
3653
3654 /*
3655 * Return whether there is a pagecache page to back given address within VMA.
3656 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3657 */
3658 static bool hugetlbfs_pagecache_present(struct hstate *h,
3659 struct vm_area_struct *vma, unsigned long address)
3660 {
3661 struct address_space *mapping;
3662 pgoff_t idx;
3663 struct page *page;
3664
3665 mapping = vma->vm_file->f_mapping;
3666 idx = vma_hugecache_offset(h, vma, address);
3667
3668 page = find_get_page(mapping, idx);
3669 if (page)
3670 put_page(page);
3671 return page != NULL;
3672 }
3673
3674 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3675 pgoff_t idx)
3676 {
3677 struct inode *inode = mapping->host;
3678 struct hstate *h = hstate_inode(inode);
3679 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3680
3681 if (err)
3682 return err;
3683 ClearPagePrivate(page);
3684
3685 spin_lock(&inode->i_lock);
3686 inode->i_blocks += blocks_per_huge_page(h);
3687 spin_unlock(&inode->i_lock);
3688 return 0;
3689 }
3690
3691 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3692 struct address_space *mapping, pgoff_t idx,
3693 unsigned long address, pte_t *ptep, unsigned int flags)
3694 {
3695 struct hstate *h = hstate_vma(vma);
3696 int ret = VM_FAULT_SIGBUS;
3697 int anon_rmap = 0;
3698 unsigned long size;
3699 struct page *page;
3700 pte_t new_pte;
3701 spinlock_t *ptl;
3702
3703 /*
3704 * Currently, we are forced to kill the process in the event the
3705 * original mapper has unmapped pages from the child due to a failed
3706 * COW. Warn that such a situation has occurred as it may not be obvious
3707 */
3708 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3709 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3710 current->pid);
3711 return ret;
3712 }
3713
3714 /*
3715 * Use page lock to guard against racing truncation
3716 * before we get page_table_lock.
3717 */
3718 retry:
3719 page = find_lock_page(mapping, idx);
3720 if (!page) {
3721 size = i_size_read(mapping->host) >> huge_page_shift(h);
3722 if (idx >= size)
3723 goto out;
3724
3725 /*
3726 * Check for page in userfault range
3727 */
3728 if (userfaultfd_missing(vma)) {
3729 u32 hash;
3730 struct vm_fault vmf = {
3731 .vma = vma,
3732 .address = address,
3733 .flags = flags,
3734 /*
3735 * Hard to debug if it ends up being
3736 * used by a callee that assumes
3737 * something about the other
3738 * uninitialized fields... same as in
3739 * memory.c
3740 */
3741 };
3742
3743 /*
3744 * hugetlb_fault_mutex must be dropped before
3745 * handling userfault. Reacquire after handling
3746 * fault to make calling code simpler.
3747 */
3748 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3749 idx, address);
3750 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3751 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3752 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3753 goto out;
3754 }
3755
3756 page = alloc_huge_page(vma, address, 0);
3757 if (IS_ERR(page)) {
3758 ret = PTR_ERR(page);
3759 if (ret == -ENOMEM)
3760 ret = VM_FAULT_OOM;
3761 else
3762 ret = VM_FAULT_SIGBUS;
3763 goto out;
3764 }
3765 clear_huge_page(page, address, pages_per_huge_page(h));
3766 __SetPageUptodate(page);
3767 set_page_huge_active(page);
3768
3769 if (vma->vm_flags & VM_MAYSHARE) {
3770 int err = huge_add_to_page_cache(page, mapping, idx);
3771 if (err) {
3772 put_page(page);
3773 if (err == -EEXIST)
3774 goto retry;
3775 goto out;
3776 }
3777 } else {
3778 lock_page(page);
3779 if (unlikely(anon_vma_prepare(vma))) {
3780 ret = VM_FAULT_OOM;
3781 goto backout_unlocked;
3782 }
3783 anon_rmap = 1;
3784 }
3785 } else {
3786 /*
3787 * If memory error occurs between mmap() and fault, some process
3788 * don't have hwpoisoned swap entry for errored virtual address.
3789 * So we need to block hugepage fault by PG_hwpoison bit check.
3790 */
3791 if (unlikely(PageHWPoison(page))) {
3792 ret = VM_FAULT_HWPOISON |
3793 VM_FAULT_SET_HINDEX(hstate_index(h));
3794 goto backout_unlocked;
3795 }
3796 }
3797
3798 /*
3799 * If we are going to COW a private mapping later, we examine the
3800 * pending reservations for this page now. This will ensure that
3801 * any allocations necessary to record that reservation occur outside
3802 * the spinlock.
3803 */
3804 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3805 if (vma_needs_reservation(h, vma, address) < 0) {
3806 ret = VM_FAULT_OOM;
3807 goto backout_unlocked;
3808 }
3809 /* Just decrements count, does not deallocate */
3810 vma_end_reservation(h, vma, address);
3811 }
3812
3813 ptl = huge_pte_lock(h, mm, ptep);
3814 size = i_size_read(mapping->host) >> huge_page_shift(h);
3815 if (idx >= size)
3816 goto backout;
3817
3818 ret = 0;
3819 if (!huge_pte_none(huge_ptep_get(ptep)))
3820 goto backout;
3821
3822 if (anon_rmap) {
3823 ClearPagePrivate(page);
3824 hugepage_add_new_anon_rmap(page, vma, address);
3825 } else
3826 page_dup_rmap(page, true);
3827 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3828 && (vma->vm_flags & VM_SHARED)));
3829 set_huge_pte_at(mm, address, ptep, new_pte);
3830
3831 hugetlb_count_add(pages_per_huge_page(h), mm);
3832 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3833 /* Optimization, do the COW without a second fault */
3834 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3835 }
3836
3837 spin_unlock(ptl);
3838 unlock_page(page);
3839 out:
3840 return ret;
3841
3842 backout:
3843 spin_unlock(ptl);
3844 backout_unlocked:
3845 unlock_page(page);
3846 restore_reserve_on_error(h, vma, address, page);
3847 put_page(page);
3848 goto out;
3849 }
3850
3851 #ifdef CONFIG_SMP
3852 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3853 struct vm_area_struct *vma,
3854 struct address_space *mapping,
3855 pgoff_t idx, unsigned long address)
3856 {
3857 unsigned long key[2];
3858 u32 hash;
3859
3860 if (vma->vm_flags & VM_SHARED) {
3861 key[0] = (unsigned long) mapping;
3862 key[1] = idx;
3863 } else {
3864 key[0] = (unsigned long) mm;
3865 key[1] = address >> huge_page_shift(h);
3866 }
3867
3868 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3869
3870 return hash & (num_fault_mutexes - 1);
3871 }
3872 #else
3873 /*
3874 * For uniprocesor systems we always use a single mutex, so just
3875 * return 0 and avoid the hashing overhead.
3876 */
3877 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3878 struct vm_area_struct *vma,
3879 struct address_space *mapping,
3880 pgoff_t idx, unsigned long address)
3881 {
3882 return 0;
3883 }
3884 #endif
3885
3886 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3887 unsigned long address, unsigned int flags)
3888 {
3889 pte_t *ptep, entry;
3890 spinlock_t *ptl;
3891 int ret;
3892 u32 hash;
3893 pgoff_t idx;
3894 struct page *page = NULL;
3895 struct page *pagecache_page = NULL;
3896 struct hstate *h = hstate_vma(vma);
3897 struct address_space *mapping;
3898 int need_wait_lock = 0;
3899
3900 address &= huge_page_mask(h);
3901
3902 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3903 if (ptep) {
3904 entry = huge_ptep_get(ptep);
3905 if (unlikely(is_hugetlb_entry_migration(entry))) {
3906 migration_entry_wait_huge(vma, mm, ptep);
3907 return 0;
3908 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3909 return VM_FAULT_HWPOISON_LARGE |
3910 VM_FAULT_SET_HINDEX(hstate_index(h));
3911 } else {
3912 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3913 if (!ptep)
3914 return VM_FAULT_OOM;
3915 }
3916
3917 mapping = vma->vm_file->f_mapping;
3918 idx = vma_hugecache_offset(h, vma, address);
3919
3920 /*
3921 * Serialize hugepage allocation and instantiation, so that we don't
3922 * get spurious allocation failures if two CPUs race to instantiate
3923 * the same page in the page cache.
3924 */
3925 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3926 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3927
3928 entry = huge_ptep_get(ptep);
3929 if (huge_pte_none(entry)) {
3930 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3931 goto out_mutex;
3932 }
3933
3934 ret = 0;
3935
3936 /*
3937 * entry could be a migration/hwpoison entry at this point, so this
3938 * check prevents the kernel from going below assuming that we have
3939 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3940 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3941 * handle it.
3942 */
3943 if (!pte_present(entry))
3944 goto out_mutex;
3945
3946 /*
3947 * If we are going to COW the mapping later, we examine the pending
3948 * reservations for this page now. This will ensure that any
3949 * allocations necessary to record that reservation occur outside the
3950 * spinlock. For private mappings, we also lookup the pagecache
3951 * page now as it is used to determine if a reservation has been
3952 * consumed.
3953 */
3954 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3955 if (vma_needs_reservation(h, vma, address) < 0) {
3956 ret = VM_FAULT_OOM;
3957 goto out_mutex;
3958 }
3959 /* Just decrements count, does not deallocate */
3960 vma_end_reservation(h, vma, address);
3961
3962 if (!(vma->vm_flags & VM_MAYSHARE))
3963 pagecache_page = hugetlbfs_pagecache_page(h,
3964 vma, address);
3965 }
3966
3967 ptl = huge_pte_lock(h, mm, ptep);
3968
3969 /* Check for a racing update before calling hugetlb_cow */
3970 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3971 goto out_ptl;
3972
3973 /*
3974 * hugetlb_cow() requires page locks of pte_page(entry) and
3975 * pagecache_page, so here we need take the former one
3976 * when page != pagecache_page or !pagecache_page.
3977 */
3978 page = pte_page(entry);
3979 if (page != pagecache_page)
3980 if (!trylock_page(page)) {
3981 need_wait_lock = 1;
3982 goto out_ptl;
3983 }
3984
3985 get_page(page);
3986
3987 if (flags & FAULT_FLAG_WRITE) {
3988 if (!huge_pte_write(entry)) {
3989 ret = hugetlb_cow(mm, vma, address, ptep,
3990 pagecache_page, ptl);
3991 goto out_put_page;
3992 }
3993 entry = huge_pte_mkdirty(entry);
3994 }
3995 entry = pte_mkyoung(entry);
3996 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3997 flags & FAULT_FLAG_WRITE))
3998 update_mmu_cache(vma, address, ptep);
3999 out_put_page:
4000 if (page != pagecache_page)
4001 unlock_page(page);
4002 put_page(page);
4003 out_ptl:
4004 spin_unlock(ptl);
4005
4006 if (pagecache_page) {
4007 unlock_page(pagecache_page);
4008 put_page(pagecache_page);
4009 }
4010 out_mutex:
4011 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4012 /*
4013 * Generally it's safe to hold refcount during waiting page lock. But
4014 * here we just wait to defer the next page fault to avoid busy loop and
4015 * the page is not used after unlocked before returning from the current
4016 * page fault. So we are safe from accessing freed page, even if we wait
4017 * here without taking refcount.
4018 */
4019 if (need_wait_lock)
4020 wait_on_page_locked(page);
4021 return ret;
4022 }
4023
4024 /*
4025 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4026 * modifications for huge pages.
4027 */
4028 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4029 pte_t *dst_pte,
4030 struct vm_area_struct *dst_vma,
4031 unsigned long dst_addr,
4032 unsigned long src_addr,
4033 struct page **pagep)
4034 {
4035 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4036 struct hstate *h = hstate_vma(dst_vma);
4037 pte_t _dst_pte;
4038 spinlock_t *ptl;
4039 int ret;
4040 struct page *page;
4041
4042 if (!*pagep) {
4043 ret = -ENOMEM;
4044 page = alloc_huge_page(dst_vma, dst_addr, 0);
4045 if (IS_ERR(page))
4046 goto out;
4047
4048 ret = copy_huge_page_from_user(page,
4049 (const void __user *) src_addr,
4050 pages_per_huge_page(h), false);
4051
4052 /* fallback to copy_from_user outside mmap_sem */
4053 if (unlikely(ret)) {
4054 ret = -EFAULT;
4055 *pagep = page;
4056 /* don't free the page */
4057 goto out;
4058 }
4059 } else {
4060 page = *pagep;
4061 *pagep = NULL;
4062 }
4063
4064 /*
4065 * The memory barrier inside __SetPageUptodate makes sure that
4066 * preceding stores to the page contents become visible before
4067 * the set_pte_at() write.
4068 */
4069 __SetPageUptodate(page);
4070 set_page_huge_active(page);
4071
4072 /*
4073 * If shared, add to page cache
4074 */
4075 if (vm_shared) {
4076 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4077 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4078
4079 ret = huge_add_to_page_cache(page, mapping, idx);
4080 if (ret)
4081 goto out_release_nounlock;
4082 }
4083
4084 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4085 spin_lock(ptl);
4086
4087 ret = -EEXIST;
4088 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4089 goto out_release_unlock;
4090
4091 if (vm_shared) {
4092 page_dup_rmap(page, true);
4093 } else {
4094 ClearPagePrivate(page);
4095 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4096 }
4097
4098 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4099 if (dst_vma->vm_flags & VM_WRITE)
4100 _dst_pte = huge_pte_mkdirty(_dst_pte);
4101 _dst_pte = pte_mkyoung(_dst_pte);
4102
4103 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4104
4105 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4106 dst_vma->vm_flags & VM_WRITE);
4107 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4108
4109 /* No need to invalidate - it was non-present before */
4110 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4111
4112 spin_unlock(ptl);
4113 if (vm_shared)
4114 unlock_page(page);
4115 ret = 0;
4116 out:
4117 return ret;
4118 out_release_unlock:
4119 spin_unlock(ptl);
4120 out_release_nounlock:
4121 if (vm_shared)
4122 unlock_page(page);
4123 put_page(page);
4124 goto out;
4125 }
4126
4127 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4128 struct page **pages, struct vm_area_struct **vmas,
4129 unsigned long *position, unsigned long *nr_pages,
4130 long i, unsigned int flags, int *nonblocking)
4131 {
4132 unsigned long pfn_offset;
4133 unsigned long vaddr = *position;
4134 unsigned long remainder = *nr_pages;
4135 struct hstate *h = hstate_vma(vma);
4136
4137 while (vaddr < vma->vm_end && remainder) {
4138 pte_t *pte;
4139 spinlock_t *ptl = NULL;
4140 int absent;
4141 struct page *page;
4142
4143 /*
4144 * If we have a pending SIGKILL, don't keep faulting pages and
4145 * potentially allocating memory.
4146 */
4147 if (unlikely(fatal_signal_pending(current))) {
4148 remainder = 0;
4149 break;
4150 }
4151
4152 /*
4153 * Some archs (sparc64, sh*) have multiple pte_ts to
4154 * each hugepage. We have to make sure we get the
4155 * first, for the page indexing below to work.
4156 *
4157 * Note that page table lock is not held when pte is null.
4158 */
4159 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4160 huge_page_size(h));
4161 if (pte)
4162 ptl = huge_pte_lock(h, mm, pte);
4163 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4164
4165 /*
4166 * When coredumping, it suits get_dump_page if we just return
4167 * an error where there's an empty slot with no huge pagecache
4168 * to back it. This way, we avoid allocating a hugepage, and
4169 * the sparse dumpfile avoids allocating disk blocks, but its
4170 * huge holes still show up with zeroes where they need to be.
4171 */
4172 if (absent && (flags & FOLL_DUMP) &&
4173 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4174 if (pte)
4175 spin_unlock(ptl);
4176 remainder = 0;
4177 break;
4178 }
4179
4180 /*
4181 * We need call hugetlb_fault for both hugepages under migration
4182 * (in which case hugetlb_fault waits for the migration,) and
4183 * hwpoisoned hugepages (in which case we need to prevent the
4184 * caller from accessing to them.) In order to do this, we use
4185 * here is_swap_pte instead of is_hugetlb_entry_migration and
4186 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4187 * both cases, and because we can't follow correct pages
4188 * directly from any kind of swap entries.
4189 */
4190 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4191 ((flags & FOLL_WRITE) &&
4192 !huge_pte_write(huge_ptep_get(pte)))) {
4193 int ret;
4194 unsigned int fault_flags = 0;
4195
4196 if (pte)
4197 spin_unlock(ptl);
4198 if (flags & FOLL_WRITE)
4199 fault_flags |= FAULT_FLAG_WRITE;
4200 if (nonblocking)
4201 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4202 if (flags & FOLL_NOWAIT)
4203 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4204 FAULT_FLAG_RETRY_NOWAIT;
4205 if (flags & FOLL_TRIED) {
4206 VM_WARN_ON_ONCE(fault_flags &
4207 FAULT_FLAG_ALLOW_RETRY);
4208 fault_flags |= FAULT_FLAG_TRIED;
4209 }
4210 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4211 if (ret & VM_FAULT_ERROR) {
4212 int err = vm_fault_to_errno(ret, flags);
4213
4214 if (err)
4215 return err;
4216
4217 remainder = 0;
4218 break;
4219 }
4220 if (ret & VM_FAULT_RETRY) {
4221 if (nonblocking)
4222 *nonblocking = 0;
4223 *nr_pages = 0;
4224 /*
4225 * VM_FAULT_RETRY must not return an
4226 * error, it will return zero
4227 * instead.
4228 *
4229 * No need to update "position" as the
4230 * caller will not check it after
4231 * *nr_pages is set to 0.
4232 */
4233 return i;
4234 }
4235 continue;
4236 }
4237
4238 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4239 page = pte_page(huge_ptep_get(pte));
4240 same_page:
4241 if (pages) {
4242 pages[i] = mem_map_offset(page, pfn_offset);
4243 get_page(pages[i]);
4244 }
4245
4246 if (vmas)
4247 vmas[i] = vma;
4248
4249 vaddr += PAGE_SIZE;
4250 ++pfn_offset;
4251 --remainder;
4252 ++i;
4253 if (vaddr < vma->vm_end && remainder &&
4254 pfn_offset < pages_per_huge_page(h)) {
4255 /*
4256 * We use pfn_offset to avoid touching the pageframes
4257 * of this compound page.
4258 */
4259 goto same_page;
4260 }
4261 spin_unlock(ptl);
4262 }
4263 *nr_pages = remainder;
4264 /*
4265 * setting position is actually required only if remainder is
4266 * not zero but it's faster not to add a "if (remainder)"
4267 * branch.
4268 */
4269 *position = vaddr;
4270
4271 return i ? i : -EFAULT;
4272 }
4273
4274 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4275 /*
4276 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4277 * implement this.
4278 */
4279 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4280 #endif
4281
4282 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4283 unsigned long address, unsigned long end, pgprot_t newprot)
4284 {
4285 struct mm_struct *mm = vma->vm_mm;
4286 unsigned long start = address;
4287 pte_t *ptep;
4288 pte_t pte;
4289 struct hstate *h = hstate_vma(vma);
4290 unsigned long pages = 0;
4291
4292 BUG_ON(address >= end);
4293 flush_cache_range(vma, address, end);
4294
4295 mmu_notifier_invalidate_range_start(mm, start, end);
4296 i_mmap_lock_write(vma->vm_file->f_mapping);
4297 for (; address < end; address += huge_page_size(h)) {
4298 spinlock_t *ptl;
4299 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4300 if (!ptep)
4301 continue;
4302 ptl = huge_pte_lock(h, mm, ptep);
4303 if (huge_pmd_unshare(mm, &address, ptep)) {
4304 pages++;
4305 spin_unlock(ptl);
4306 continue;
4307 }
4308 pte = huge_ptep_get(ptep);
4309 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4310 spin_unlock(ptl);
4311 continue;
4312 }
4313 if (unlikely(is_hugetlb_entry_migration(pte))) {
4314 swp_entry_t entry = pte_to_swp_entry(pte);
4315
4316 if (is_write_migration_entry(entry)) {
4317 pte_t newpte;
4318
4319 make_migration_entry_read(&entry);
4320 newpte = swp_entry_to_pte(entry);
4321 set_huge_swap_pte_at(mm, address, ptep,
4322 newpte, huge_page_size(h));
4323 pages++;
4324 }
4325 spin_unlock(ptl);
4326 continue;
4327 }
4328 if (!huge_pte_none(pte)) {
4329 pte = huge_ptep_get_and_clear(mm, address, ptep);
4330 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4331 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4332 set_huge_pte_at(mm, address, ptep, pte);
4333 pages++;
4334 }
4335 spin_unlock(ptl);
4336 }
4337 /*
4338 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4339 * may have cleared our pud entry and done put_page on the page table:
4340 * once we release i_mmap_rwsem, another task can do the final put_page
4341 * and that page table be reused and filled with junk.
4342 */
4343 flush_hugetlb_tlb_range(vma, start, end);
4344 mmu_notifier_invalidate_range(mm, start, end);
4345 i_mmap_unlock_write(vma->vm_file->f_mapping);
4346 mmu_notifier_invalidate_range_end(mm, start, end);
4347
4348 return pages << h->order;
4349 }
4350
4351 int hugetlb_reserve_pages(struct inode *inode,
4352 long from, long to,
4353 struct vm_area_struct *vma,
4354 vm_flags_t vm_flags)
4355 {
4356 long ret, chg;
4357 struct hstate *h = hstate_inode(inode);
4358 struct hugepage_subpool *spool = subpool_inode(inode);
4359 struct resv_map *resv_map;
4360 long gbl_reserve;
4361
4362 /*
4363 * Only apply hugepage reservation if asked. At fault time, an
4364 * attempt will be made for VM_NORESERVE to allocate a page
4365 * without using reserves
4366 */
4367 if (vm_flags & VM_NORESERVE)
4368 return 0;
4369
4370 /*
4371 * Shared mappings base their reservation on the number of pages that
4372 * are already allocated on behalf of the file. Private mappings need
4373 * to reserve the full area even if read-only as mprotect() may be
4374 * called to make the mapping read-write. Assume !vma is a shm mapping
4375 */
4376 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4377 resv_map = inode_resv_map(inode);
4378
4379 chg = region_chg(resv_map, from, to);
4380
4381 } else {
4382 resv_map = resv_map_alloc();
4383 if (!resv_map)
4384 return -ENOMEM;
4385
4386 chg = to - from;
4387
4388 set_vma_resv_map(vma, resv_map);
4389 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4390 }
4391
4392 if (chg < 0) {
4393 ret = chg;
4394 goto out_err;
4395 }
4396
4397 /*
4398 * There must be enough pages in the subpool for the mapping. If
4399 * the subpool has a minimum size, there may be some global
4400 * reservations already in place (gbl_reserve).
4401 */
4402 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4403 if (gbl_reserve < 0) {
4404 ret = -ENOSPC;
4405 goto out_err;
4406 }
4407
4408 /*
4409 * Check enough hugepages are available for the reservation.
4410 * Hand the pages back to the subpool if there are not
4411 */
4412 ret = hugetlb_acct_memory(h, gbl_reserve);
4413 if (ret < 0) {
4414 /* put back original number of pages, chg */
4415 (void)hugepage_subpool_put_pages(spool, chg);
4416 goto out_err;
4417 }
4418
4419 /*
4420 * Account for the reservations made. Shared mappings record regions
4421 * that have reservations as they are shared by multiple VMAs.
4422 * When the last VMA disappears, the region map says how much
4423 * the reservation was and the page cache tells how much of
4424 * the reservation was consumed. Private mappings are per-VMA and
4425 * only the consumed reservations are tracked. When the VMA
4426 * disappears, the original reservation is the VMA size and the
4427 * consumed reservations are stored in the map. Hence, nothing
4428 * else has to be done for private mappings here
4429 */
4430 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4431 long add = region_add(resv_map, from, to);
4432
4433 if (unlikely(chg > add)) {
4434 /*
4435 * pages in this range were added to the reserve
4436 * map between region_chg and region_add. This
4437 * indicates a race with alloc_huge_page. Adjust
4438 * the subpool and reserve counts modified above
4439 * based on the difference.
4440 */
4441 long rsv_adjust;
4442
4443 rsv_adjust = hugepage_subpool_put_pages(spool,
4444 chg - add);
4445 hugetlb_acct_memory(h, -rsv_adjust);
4446 }
4447 }
4448 return 0;
4449 out_err:
4450 if (!vma || vma->vm_flags & VM_MAYSHARE)
4451 /* Don't call region_abort if region_chg failed */
4452 if (chg >= 0)
4453 region_abort(resv_map, from, to);
4454 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4455 kref_put(&resv_map->refs, resv_map_release);
4456 return ret;
4457 }
4458
4459 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4460 long freed)
4461 {
4462 struct hstate *h = hstate_inode(inode);
4463 struct resv_map *resv_map = inode_resv_map(inode);
4464 long chg = 0;
4465 struct hugepage_subpool *spool = subpool_inode(inode);
4466 long gbl_reserve;
4467
4468 if (resv_map) {
4469 chg = region_del(resv_map, start, end);
4470 /*
4471 * region_del() can fail in the rare case where a region
4472 * must be split and another region descriptor can not be
4473 * allocated. If end == LONG_MAX, it will not fail.
4474 */
4475 if (chg < 0)
4476 return chg;
4477 }
4478
4479 spin_lock(&inode->i_lock);
4480 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4481 spin_unlock(&inode->i_lock);
4482
4483 /*
4484 * If the subpool has a minimum size, the number of global
4485 * reservations to be released may be adjusted.
4486 */
4487 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4488 hugetlb_acct_memory(h, -gbl_reserve);
4489
4490 return 0;
4491 }
4492
4493 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4494 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4495 struct vm_area_struct *vma,
4496 unsigned long addr, pgoff_t idx)
4497 {
4498 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4499 svma->vm_start;
4500 unsigned long sbase = saddr & PUD_MASK;
4501 unsigned long s_end = sbase + PUD_SIZE;
4502
4503 /* Allow segments to share if only one is marked locked */
4504 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4505 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4506
4507 /*
4508 * match the virtual addresses, permission and the alignment of the
4509 * page table page.
4510 */
4511 if (pmd_index(addr) != pmd_index(saddr) ||
4512 vm_flags != svm_flags ||
4513 sbase < svma->vm_start || svma->vm_end < s_end)
4514 return 0;
4515
4516 return saddr;
4517 }
4518
4519 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4520 {
4521 unsigned long base = addr & PUD_MASK;
4522 unsigned long end = base + PUD_SIZE;
4523
4524 /*
4525 * check on proper vm_flags and page table alignment
4526 */
4527 if (vma->vm_flags & VM_MAYSHARE &&
4528 vma->vm_start <= base && end <= vma->vm_end)
4529 return true;
4530 return false;
4531 }
4532
4533 /*
4534 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4535 * and returns the corresponding pte. While this is not necessary for the
4536 * !shared pmd case because we can allocate the pmd later as well, it makes the
4537 * code much cleaner. pmd allocation is essential for the shared case because
4538 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4539 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4540 * bad pmd for sharing.
4541 */
4542 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4543 {
4544 struct vm_area_struct *vma = find_vma(mm, addr);
4545 struct address_space *mapping = vma->vm_file->f_mapping;
4546 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4547 vma->vm_pgoff;
4548 struct vm_area_struct *svma;
4549 unsigned long saddr;
4550 pte_t *spte = NULL;
4551 pte_t *pte;
4552 spinlock_t *ptl;
4553
4554 if (!vma_shareable(vma, addr))
4555 return (pte_t *)pmd_alloc(mm, pud, addr);
4556
4557 i_mmap_lock_write(mapping);
4558 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4559 if (svma == vma)
4560 continue;
4561
4562 saddr = page_table_shareable(svma, vma, addr, idx);
4563 if (saddr) {
4564 spte = huge_pte_offset(svma->vm_mm, saddr,
4565 vma_mmu_pagesize(svma));
4566 if (spte) {
4567 get_page(virt_to_page(spte));
4568 break;
4569 }
4570 }
4571 }
4572
4573 if (!spte)
4574 goto out;
4575
4576 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4577 if (pud_none(*pud)) {
4578 pud_populate(mm, pud,
4579 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4580 mm_inc_nr_pmds(mm);
4581 } else {
4582 put_page(virt_to_page(spte));
4583 }
4584 spin_unlock(ptl);
4585 out:
4586 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4587 i_mmap_unlock_write(mapping);
4588 return pte;
4589 }
4590
4591 /*
4592 * unmap huge page backed by shared pte.
4593 *
4594 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4595 * indicated by page_count > 1, unmap is achieved by clearing pud and
4596 * decrementing the ref count. If count == 1, the pte page is not shared.
4597 *
4598 * called with page table lock held.
4599 *
4600 * returns: 1 successfully unmapped a shared pte page
4601 * 0 the underlying pte page is not shared, or it is the last user
4602 */
4603 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4604 {
4605 pgd_t *pgd = pgd_offset(mm, *addr);
4606 p4d_t *p4d = p4d_offset(pgd, *addr);
4607 pud_t *pud = pud_offset(p4d, *addr);
4608
4609 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4610 if (page_count(virt_to_page(ptep)) == 1)
4611 return 0;
4612
4613 pud_clear(pud);
4614 put_page(virt_to_page(ptep));
4615 mm_dec_nr_pmds(mm);
4616 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4617 return 1;
4618 }
4619 #define want_pmd_share() (1)
4620 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4621 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4622 {
4623 return NULL;
4624 }
4625
4626 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4627 {
4628 return 0;
4629 }
4630 #define want_pmd_share() (0)
4631 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4632
4633 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4634 pte_t *huge_pte_alloc(struct mm_struct *mm,
4635 unsigned long addr, unsigned long sz)
4636 {
4637 pgd_t *pgd;
4638 p4d_t *p4d;
4639 pud_t *pud;
4640 pte_t *pte = NULL;
4641
4642 pgd = pgd_offset(mm, addr);
4643 p4d = p4d_offset(pgd, addr);
4644 pud = pud_alloc(mm, p4d, addr);
4645 if (pud) {
4646 if (sz == PUD_SIZE) {
4647 pte = (pte_t *)pud;
4648 } else {
4649 BUG_ON(sz != PMD_SIZE);
4650 if (want_pmd_share() && pud_none(*pud))
4651 pte = huge_pmd_share(mm, addr, pud);
4652 else
4653 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4654 }
4655 }
4656 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4657
4658 return pte;
4659 }
4660
4661 pte_t *huge_pte_offset(struct mm_struct *mm,
4662 unsigned long addr, unsigned long sz)
4663 {
4664 pgd_t *pgd;
4665 p4d_t *p4d;
4666 pud_t *pud;
4667 pmd_t *pmd;
4668
4669 pgd = pgd_offset(mm, addr);
4670 if (!pgd_present(*pgd))
4671 return NULL;
4672 p4d = p4d_offset(pgd, addr);
4673 if (!p4d_present(*p4d))
4674 return NULL;
4675 pud = pud_offset(p4d, addr);
4676 if (!pud_present(*pud))
4677 return NULL;
4678 if (pud_huge(*pud))
4679 return (pte_t *)pud;
4680 pmd = pmd_offset(pud, addr);
4681 return (pte_t *) pmd;
4682 }
4683
4684 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4685
4686 /*
4687 * These functions are overwritable if your architecture needs its own
4688 * behavior.
4689 */
4690 struct page * __weak
4691 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4692 int write)
4693 {
4694 return ERR_PTR(-EINVAL);
4695 }
4696
4697 struct page * __weak
4698 follow_huge_pd(struct vm_area_struct *vma,
4699 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4700 {
4701 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4702 return NULL;
4703 }
4704
4705 struct page * __weak
4706 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4707 pmd_t *pmd, int flags)
4708 {
4709 struct page *page = NULL;
4710 spinlock_t *ptl;
4711 pte_t pte;
4712 retry:
4713 ptl = pmd_lockptr(mm, pmd);
4714 spin_lock(ptl);
4715 /*
4716 * make sure that the address range covered by this pmd is not
4717 * unmapped from other threads.
4718 */
4719 if (!pmd_huge(*pmd))
4720 goto out;
4721 pte = huge_ptep_get((pte_t *)pmd);
4722 if (pte_present(pte)) {
4723 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4724 if (flags & FOLL_GET)
4725 get_page(page);
4726 } else {
4727 if (is_hugetlb_entry_migration(pte)) {
4728 spin_unlock(ptl);
4729 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4730 goto retry;
4731 }
4732 /*
4733 * hwpoisoned entry is treated as no_page_table in
4734 * follow_page_mask().
4735 */
4736 }
4737 out:
4738 spin_unlock(ptl);
4739 return page;
4740 }
4741
4742 struct page * __weak
4743 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4744 pud_t *pud, int flags)
4745 {
4746 if (flags & FOLL_GET)
4747 return NULL;
4748
4749 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4750 }
4751
4752 struct page * __weak
4753 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4754 {
4755 if (flags & FOLL_GET)
4756 return NULL;
4757
4758 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4759 }
4760
4761 bool isolate_huge_page(struct page *page, struct list_head *list)
4762 {
4763 bool ret = true;
4764
4765 VM_BUG_ON_PAGE(!PageHead(page), page);
4766 spin_lock(&hugetlb_lock);
4767 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4768 ret = false;
4769 goto unlock;
4770 }
4771 clear_page_huge_active(page);
4772 list_move_tail(&page->lru, list);
4773 unlock:
4774 spin_unlock(&hugetlb_lock);
4775 return ret;
4776 }
4777
4778 void putback_active_hugepage(struct page *page)
4779 {
4780 VM_BUG_ON_PAGE(!PageHead(page), page);
4781 spin_lock(&hugetlb_lock);
4782 set_page_huge_active(page);
4783 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4784 spin_unlock(&hugetlb_lock);
4785 put_page(page);
4786 }