]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/hugetlb.c
mm, hugetlb: use memory policy when available
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
59 */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
86 }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
91 {
92 struct hugepage_subpool *spool;
93
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
109
110 return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119 }
120
121 /*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
131 {
132 long ret = delta;
133
134 if (!spool)
135 return ret;
136
137 spin_lock(&spool->lock);
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
146 }
147
148 if (spool->min_hpages != -1) { /* minimum size accounting */
149 if (delta > spool->rsv_hpages) {
150 /*
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
153 */
154 ret = delta - spool->rsv_hpages;
155 spool->rsv_hpages = 0;
156 } else {
157 ret = 0; /* reserves already accounted for */
158 spool->rsv_hpages -= delta;
159 }
160 }
161
162 unlock_ret:
163 spin_unlock(&spool->lock);
164 return ret;
165 }
166
167 /*
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
172 */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 long delta)
175 {
176 long ret = delta;
177
178 if (!spool)
179 return delta;
180
181 spin_lock(&spool->lock);
182
183 if (spool->max_hpages != -1) /* maximum size accounting */
184 spool->used_hpages -= delta;
185
186 if (spool->min_hpages != -1) { /* minimum size accounting */
187 if (spool->rsv_hpages + delta <= spool->min_hpages)
188 ret = 0;
189 else
190 ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192 spool->rsv_hpages += delta;
193 if (spool->rsv_hpages > spool->min_hpages)
194 spool->rsv_hpages = spool->min_hpages;
195 }
196
197 /*
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
200 */
201 unlock_or_release_subpool(spool);
202
203 return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208 return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213 return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
219 *
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
226 *
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231 *
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
234 */
235 struct file_region {
236 struct list_head link;
237 long from;
238 long to;
239 };
240
241 /*
242 * Add the huge page range represented by [f, t) to the reserve
243 * map. In the normal case, existing regions will be expanded
244 * to accommodate the specified range. Sufficient regions should
245 * exist for expansion due to the previous call to region_chg
246 * with the same range. However, it is possible that region_del
247 * could have been called after region_chg and modifed the map
248 * in such a way that no region exists to be expanded. In this
249 * case, pull a region descriptor from the cache associated with
250 * the map and use that for the new range.
251 *
252 * Return the number of new huge pages added to the map. This
253 * number is greater than or equal to zero.
254 */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257 struct list_head *head = &resv->regions;
258 struct file_region *rg, *nrg, *trg;
259 long add = 0;
260
261 spin_lock(&resv->lock);
262 /* Locate the region we are either in or before. */
263 list_for_each_entry(rg, head, link)
264 if (f <= rg->to)
265 break;
266
267 /*
268 * If no region exists which can be expanded to include the
269 * specified range, the list must have been modified by an
270 * interleving call to region_del(). Pull a region descriptor
271 * from the cache and use it for this range.
272 */
273 if (&rg->link == head || t < rg->from) {
274 VM_BUG_ON(resv->region_cache_count <= 0);
275
276 resv->region_cache_count--;
277 nrg = list_first_entry(&resv->region_cache, struct file_region,
278 link);
279 list_del(&nrg->link);
280
281 nrg->from = f;
282 nrg->to = t;
283 list_add(&nrg->link, rg->link.prev);
284
285 add += t - f;
286 goto out_locked;
287 }
288
289 /* Round our left edge to the current segment if it encloses us. */
290 if (f > rg->from)
291 f = rg->from;
292
293 /* Check for and consume any regions we now overlap with. */
294 nrg = rg;
295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296 if (&rg->link == head)
297 break;
298 if (rg->from > t)
299 break;
300
301 /* If this area reaches higher then extend our area to
302 * include it completely. If this is not the first area
303 * which we intend to reuse, free it. */
304 if (rg->to > t)
305 t = rg->to;
306 if (rg != nrg) {
307 /* Decrement return value by the deleted range.
308 * Another range will span this area so that by
309 * end of routine add will be >= zero
310 */
311 add -= (rg->to - rg->from);
312 list_del(&rg->link);
313 kfree(rg);
314 }
315 }
316
317 add += (nrg->from - f); /* Added to beginning of region */
318 nrg->from = f;
319 add += t - nrg->to; /* Added to end of region */
320 nrg->to = t;
321
322 out_locked:
323 resv->adds_in_progress--;
324 spin_unlock(&resv->lock);
325 VM_BUG_ON(add < 0);
326 return add;
327 }
328
329 /*
330 * Examine the existing reserve map and determine how many
331 * huge pages in the specified range [f, t) are NOT currently
332 * represented. This routine is called before a subsequent
333 * call to region_add that will actually modify the reserve
334 * map to add the specified range [f, t). region_chg does
335 * not change the number of huge pages represented by the
336 * map. However, if the existing regions in the map can not
337 * be expanded to represent the new range, a new file_region
338 * structure is added to the map as a placeholder. This is
339 * so that the subsequent region_add call will have all the
340 * regions it needs and will not fail.
341 *
342 * Upon entry, region_chg will also examine the cache of region descriptors
343 * associated with the map. If there are not enough descriptors cached, one
344 * will be allocated for the in progress add operation.
345 *
346 * Returns the number of huge pages that need to be added to the existing
347 * reservation map for the range [f, t). This number is greater or equal to
348 * zero. -ENOMEM is returned if a new file_region structure or cache entry
349 * is needed and can not be allocated.
350 */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353 struct list_head *head = &resv->regions;
354 struct file_region *rg, *nrg = NULL;
355 long chg = 0;
356
357 retry:
358 spin_lock(&resv->lock);
359 retry_locked:
360 resv->adds_in_progress++;
361
362 /*
363 * Check for sufficient descriptors in the cache to accommodate
364 * the number of in progress add operations.
365 */
366 if (resv->adds_in_progress > resv->region_cache_count) {
367 struct file_region *trg;
368
369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370 /* Must drop lock to allocate a new descriptor. */
371 resv->adds_in_progress--;
372 spin_unlock(&resv->lock);
373
374 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 if (!trg)
376 return -ENOMEM;
377
378 spin_lock(&resv->lock);
379 list_add(&trg->link, &resv->region_cache);
380 resv->region_cache_count++;
381 goto retry_locked;
382 }
383
384 /* Locate the region we are before or in. */
385 list_for_each_entry(rg, head, link)
386 if (f <= rg->to)
387 break;
388
389 /* If we are below the current region then a new region is required.
390 * Subtle, allocate a new region at the position but make it zero
391 * size such that we can guarantee to record the reservation. */
392 if (&rg->link == head || t < rg->from) {
393 if (!nrg) {
394 resv->adds_in_progress--;
395 spin_unlock(&resv->lock);
396 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397 if (!nrg)
398 return -ENOMEM;
399
400 nrg->from = f;
401 nrg->to = f;
402 INIT_LIST_HEAD(&nrg->link);
403 goto retry;
404 }
405
406 list_add(&nrg->link, rg->link.prev);
407 chg = t - f;
408 goto out_nrg;
409 }
410
411 /* Round our left edge to the current segment if it encloses us. */
412 if (f > rg->from)
413 f = rg->from;
414 chg = t - f;
415
416 /* Check for and consume any regions we now overlap with. */
417 list_for_each_entry(rg, rg->link.prev, link) {
418 if (&rg->link == head)
419 break;
420 if (rg->from > t)
421 goto out;
422
423 /* We overlap with this area, if it extends further than
424 * us then we must extend ourselves. Account for its
425 * existing reservation. */
426 if (rg->to > t) {
427 chg += rg->to - t;
428 t = rg->to;
429 }
430 chg -= rg->to - rg->from;
431 }
432
433 out:
434 spin_unlock(&resv->lock);
435 /* We already know we raced and no longer need the new region */
436 kfree(nrg);
437 return chg;
438 out_nrg:
439 spin_unlock(&resv->lock);
440 return chg;
441 }
442
443 /*
444 * Abort the in progress add operation. The adds_in_progress field
445 * of the resv_map keeps track of the operations in progress between
446 * calls to region_chg and region_add. Operations are sometimes
447 * aborted after the call to region_chg. In such cases, region_abort
448 * is called to decrement the adds_in_progress counter.
449 *
450 * NOTE: The range arguments [f, t) are not needed or used in this
451 * routine. They are kept to make reading the calling code easier as
452 * arguments will match the associated region_chg call.
453 */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456 spin_lock(&resv->lock);
457 VM_BUG_ON(!resv->region_cache_count);
458 resv->adds_in_progress--;
459 spin_unlock(&resv->lock);
460 }
461
462 /*
463 * Delete the specified range [f, t) from the reserve map. If the
464 * t parameter is LONG_MAX, this indicates that ALL regions after f
465 * should be deleted. Locate the regions which intersect [f, t)
466 * and either trim, delete or split the existing regions.
467 *
468 * Returns the number of huge pages deleted from the reserve map.
469 * In the normal case, the return value is zero or more. In the
470 * case where a region must be split, a new region descriptor must
471 * be allocated. If the allocation fails, -ENOMEM will be returned.
472 * NOTE: If the parameter t == LONG_MAX, then we will never split
473 * a region and possibly return -ENOMEM. Callers specifying
474 * t == LONG_MAX do not need to check for -ENOMEM error.
475 */
476 static long region_del(struct resv_map *resv, long f, long t)
477 {
478 struct list_head *head = &resv->regions;
479 struct file_region *rg, *trg;
480 struct file_region *nrg = NULL;
481 long del = 0;
482
483 retry:
484 spin_lock(&resv->lock);
485 list_for_each_entry_safe(rg, trg, head, link) {
486 if (rg->to <= f)
487 continue;
488 if (rg->from >= t)
489 break;
490
491 if (f > rg->from && t < rg->to) { /* Must split region */
492 /*
493 * Check for an entry in the cache before dropping
494 * lock and attempting allocation.
495 */
496 if (!nrg &&
497 resv->region_cache_count > resv->adds_in_progress) {
498 nrg = list_first_entry(&resv->region_cache,
499 struct file_region,
500 link);
501 list_del(&nrg->link);
502 resv->region_cache_count--;
503 }
504
505 if (!nrg) {
506 spin_unlock(&resv->lock);
507 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508 if (!nrg)
509 return -ENOMEM;
510 goto retry;
511 }
512
513 del += t - f;
514
515 /* New entry for end of split region */
516 nrg->from = t;
517 nrg->to = rg->to;
518 INIT_LIST_HEAD(&nrg->link);
519
520 /* Original entry is trimmed */
521 rg->to = f;
522
523 list_add(&nrg->link, &rg->link);
524 nrg = NULL;
525 break;
526 }
527
528 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529 del += rg->to - rg->from;
530 list_del(&rg->link);
531 kfree(rg);
532 continue;
533 }
534
535 if (f <= rg->from) { /* Trim beginning of region */
536 del += t - rg->from;
537 rg->from = t;
538 } else { /* Trim end of region */
539 del += rg->to - f;
540 rg->to = f;
541 }
542 }
543
544 spin_unlock(&resv->lock);
545 kfree(nrg);
546 return del;
547 }
548
549 /*
550 * A rare out of memory error was encountered which prevented removal of
551 * the reserve map region for a page. The huge page itself was free'ed
552 * and removed from the page cache. This routine will adjust the subpool
553 * usage count, and the global reserve count if needed. By incrementing
554 * these counts, the reserve map entry which could not be deleted will
555 * appear as a "reserved" entry instead of simply dangling with incorrect
556 * counts.
557 */
558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559 {
560 struct hugepage_subpool *spool = subpool_inode(inode);
561 long rsv_adjust;
562
563 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564 if (restore_reserve && rsv_adjust) {
565 struct hstate *h = hstate_inode(inode);
566
567 hugetlb_acct_memory(h, 1);
568 }
569 }
570
571 /*
572 * Count and return the number of huge pages in the reserve map
573 * that intersect with the range [f, t).
574 */
575 static long region_count(struct resv_map *resv, long f, long t)
576 {
577 struct list_head *head = &resv->regions;
578 struct file_region *rg;
579 long chg = 0;
580
581 spin_lock(&resv->lock);
582 /* Locate each segment we overlap with, and count that overlap. */
583 list_for_each_entry(rg, head, link) {
584 long seg_from;
585 long seg_to;
586
587 if (rg->to <= f)
588 continue;
589 if (rg->from >= t)
590 break;
591
592 seg_from = max(rg->from, f);
593 seg_to = min(rg->to, t);
594
595 chg += seg_to - seg_from;
596 }
597 spin_unlock(&resv->lock);
598
599 return chg;
600 }
601
602 /*
603 * Convert the address within this vma to the page offset within
604 * the mapping, in pagecache page units; huge pages here.
605 */
606 static pgoff_t vma_hugecache_offset(struct hstate *h,
607 struct vm_area_struct *vma, unsigned long address)
608 {
609 return ((address - vma->vm_start) >> huge_page_shift(h)) +
610 (vma->vm_pgoff >> huge_page_order(h));
611 }
612
613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614 unsigned long address)
615 {
616 return vma_hugecache_offset(hstate_vma(vma), vma, address);
617 }
618
619 /*
620 * Return the size of the pages allocated when backing a VMA. In the majority
621 * cases this will be same size as used by the page table entries.
622 */
623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624 {
625 struct hstate *hstate;
626
627 if (!is_vm_hugetlb_page(vma))
628 return PAGE_SIZE;
629
630 hstate = hstate_vma(vma);
631
632 return 1UL << huge_page_shift(hstate);
633 }
634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635
636 /*
637 * Return the page size being used by the MMU to back a VMA. In the majority
638 * of cases, the page size used by the kernel matches the MMU size. On
639 * architectures where it differs, an architecture-specific version of this
640 * function is required.
641 */
642 #ifndef vma_mmu_pagesize
643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644 {
645 return vma_kernel_pagesize(vma);
646 }
647 #endif
648
649 /*
650 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
651 * bits of the reservation map pointer, which are always clear due to
652 * alignment.
653 */
654 #define HPAGE_RESV_OWNER (1UL << 0)
655 #define HPAGE_RESV_UNMAPPED (1UL << 1)
656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657
658 /*
659 * These helpers are used to track how many pages are reserved for
660 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661 * is guaranteed to have their future faults succeed.
662 *
663 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664 * the reserve counters are updated with the hugetlb_lock held. It is safe
665 * to reset the VMA at fork() time as it is not in use yet and there is no
666 * chance of the global counters getting corrupted as a result of the values.
667 *
668 * The private mapping reservation is represented in a subtly different
669 * manner to a shared mapping. A shared mapping has a region map associated
670 * with the underlying file, this region map represents the backing file
671 * pages which have ever had a reservation assigned which this persists even
672 * after the page is instantiated. A private mapping has a region map
673 * associated with the original mmap which is attached to all VMAs which
674 * reference it, this region map represents those offsets which have consumed
675 * reservation ie. where pages have been instantiated.
676 */
677 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678 {
679 return (unsigned long)vma->vm_private_data;
680 }
681
682 static void set_vma_private_data(struct vm_area_struct *vma,
683 unsigned long value)
684 {
685 vma->vm_private_data = (void *)value;
686 }
687
688 struct resv_map *resv_map_alloc(void)
689 {
690 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692
693 if (!resv_map || !rg) {
694 kfree(resv_map);
695 kfree(rg);
696 return NULL;
697 }
698
699 kref_init(&resv_map->refs);
700 spin_lock_init(&resv_map->lock);
701 INIT_LIST_HEAD(&resv_map->regions);
702
703 resv_map->adds_in_progress = 0;
704
705 INIT_LIST_HEAD(&resv_map->region_cache);
706 list_add(&rg->link, &resv_map->region_cache);
707 resv_map->region_cache_count = 1;
708
709 return resv_map;
710 }
711
712 void resv_map_release(struct kref *ref)
713 {
714 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715 struct list_head *head = &resv_map->region_cache;
716 struct file_region *rg, *trg;
717
718 /* Clear out any active regions before we release the map. */
719 region_del(resv_map, 0, LONG_MAX);
720
721 /* ... and any entries left in the cache */
722 list_for_each_entry_safe(rg, trg, head, link) {
723 list_del(&rg->link);
724 kfree(rg);
725 }
726
727 VM_BUG_ON(resv_map->adds_in_progress);
728
729 kfree(resv_map);
730 }
731
732 static inline struct resv_map *inode_resv_map(struct inode *inode)
733 {
734 return inode->i_mapping->private_data;
735 }
736
737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738 {
739 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740 if (vma->vm_flags & VM_MAYSHARE) {
741 struct address_space *mapping = vma->vm_file->f_mapping;
742 struct inode *inode = mapping->host;
743
744 return inode_resv_map(inode);
745
746 } else {
747 return (struct resv_map *)(get_vma_private_data(vma) &
748 ~HPAGE_RESV_MASK);
749 }
750 }
751
752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753 {
754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756
757 set_vma_private_data(vma, (get_vma_private_data(vma) &
758 HPAGE_RESV_MASK) | (unsigned long)map);
759 }
760
761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762 {
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 }
768
769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770 {
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772
773 return (get_vma_private_data(vma) & flag) != 0;
774 }
775
776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778 {
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 if (!(vma->vm_flags & VM_MAYSHARE))
781 vma->vm_private_data = (void *)0;
782 }
783
784 /* Returns true if the VMA has associated reserve pages */
785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786 {
787 if (vma->vm_flags & VM_NORESERVE) {
788 /*
789 * This address is already reserved by other process(chg == 0),
790 * so, we should decrement reserved count. Without decrementing,
791 * reserve count remains after releasing inode, because this
792 * allocated page will go into page cache and is regarded as
793 * coming from reserved pool in releasing step. Currently, we
794 * don't have any other solution to deal with this situation
795 * properly, so add work-around here.
796 */
797 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798 return true;
799 else
800 return false;
801 }
802
803 /* Shared mappings always use reserves */
804 if (vma->vm_flags & VM_MAYSHARE) {
805 /*
806 * We know VM_NORESERVE is not set. Therefore, there SHOULD
807 * be a region map for all pages. The only situation where
808 * there is no region map is if a hole was punched via
809 * fallocate. In this case, there really are no reverves to
810 * use. This situation is indicated if chg != 0.
811 */
812 if (chg)
813 return false;
814 else
815 return true;
816 }
817
818 /*
819 * Only the process that called mmap() has reserves for
820 * private mappings.
821 */
822 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823 return true;
824
825 return false;
826 }
827
828 static void enqueue_huge_page(struct hstate *h, struct page *page)
829 {
830 int nid = page_to_nid(page);
831 list_move(&page->lru, &h->hugepage_freelists[nid]);
832 h->free_huge_pages++;
833 h->free_huge_pages_node[nid]++;
834 }
835
836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837 {
838 struct page *page;
839
840 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841 if (!is_migrate_isolate_page(page))
842 break;
843 /*
844 * if 'non-isolated free hugepage' not found on the list,
845 * the allocation fails.
846 */
847 if (&h->hugepage_freelists[nid] == &page->lru)
848 return NULL;
849 list_move(&page->lru, &h->hugepage_activelist);
850 set_page_refcounted(page);
851 h->free_huge_pages--;
852 h->free_huge_pages_node[nid]--;
853 return page;
854 }
855
856 /* Movability of hugepages depends on migration support. */
857 static inline gfp_t htlb_alloc_mask(struct hstate *h)
858 {
859 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860 return GFP_HIGHUSER_MOVABLE;
861 else
862 return GFP_HIGHUSER;
863 }
864
865 static struct page *dequeue_huge_page_vma(struct hstate *h,
866 struct vm_area_struct *vma,
867 unsigned long address, int avoid_reserve,
868 long chg)
869 {
870 struct page *page = NULL;
871 struct mempolicy *mpol;
872 nodemask_t *nodemask;
873 struct zonelist *zonelist;
874 struct zone *zone;
875 struct zoneref *z;
876 unsigned int cpuset_mems_cookie;
877
878 /*
879 * A child process with MAP_PRIVATE mappings created by their parent
880 * have no page reserves. This check ensures that reservations are
881 * not "stolen". The child may still get SIGKILLed
882 */
883 if (!vma_has_reserves(vma, chg) &&
884 h->free_huge_pages - h->resv_huge_pages == 0)
885 goto err;
886
887 /* If reserves cannot be used, ensure enough pages are in the pool */
888 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889 goto err;
890
891 retry_cpuset:
892 cpuset_mems_cookie = read_mems_allowed_begin();
893 zonelist = huge_zonelist(vma, address,
894 htlb_alloc_mask(h), &mpol, &nodemask);
895
896 for_each_zone_zonelist_nodemask(zone, z, zonelist,
897 MAX_NR_ZONES - 1, nodemask) {
898 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899 page = dequeue_huge_page_node(h, zone_to_nid(zone));
900 if (page) {
901 if (avoid_reserve)
902 break;
903 if (!vma_has_reserves(vma, chg))
904 break;
905
906 SetPagePrivate(page);
907 h->resv_huge_pages--;
908 break;
909 }
910 }
911 }
912
913 mpol_cond_put(mpol);
914 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915 goto retry_cpuset;
916 return page;
917
918 err:
919 return NULL;
920 }
921
922 /*
923 * common helper functions for hstate_next_node_to_{alloc|free}.
924 * We may have allocated or freed a huge page based on a different
925 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926 * be outside of *nodes_allowed. Ensure that we use an allowed
927 * node for alloc or free.
928 */
929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930 {
931 nid = next_node(nid, *nodes_allowed);
932 if (nid == MAX_NUMNODES)
933 nid = first_node(*nodes_allowed);
934 VM_BUG_ON(nid >= MAX_NUMNODES);
935
936 return nid;
937 }
938
939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941 if (!node_isset(nid, *nodes_allowed))
942 nid = next_node_allowed(nid, nodes_allowed);
943 return nid;
944 }
945
946 /*
947 * returns the previously saved node ["this node"] from which to
948 * allocate a persistent huge page for the pool and advance the
949 * next node from which to allocate, handling wrap at end of node
950 * mask.
951 */
952 static int hstate_next_node_to_alloc(struct hstate *h,
953 nodemask_t *nodes_allowed)
954 {
955 int nid;
956
957 VM_BUG_ON(!nodes_allowed);
958
959 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961
962 return nid;
963 }
964
965 /*
966 * helper for free_pool_huge_page() - return the previously saved
967 * node ["this node"] from which to free a huge page. Advance the
968 * next node id whether or not we find a free huge page to free so
969 * that the next attempt to free addresses the next node.
970 */
971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972 {
973 int nid;
974
975 VM_BUG_ON(!nodes_allowed);
976
977 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979
980 return nid;
981 }
982
983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
984 for (nr_nodes = nodes_weight(*mask); \
985 nr_nodes > 0 && \
986 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
987 nr_nodes--)
988
989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
990 for (nr_nodes = nodes_weight(*mask); \
991 nr_nodes > 0 && \
992 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
993 nr_nodes--)
994
995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996 static void destroy_compound_gigantic_page(struct page *page,
997 unsigned long order)
998 {
999 int i;
1000 int nr_pages = 1 << order;
1001 struct page *p = page + 1;
1002
1003 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004 __ClearPageTail(p);
1005 set_page_refcounted(p);
1006 p->first_page = NULL;
1007 }
1008
1009 set_compound_order(page, 0);
1010 __ClearPageHead(page);
1011 }
1012
1013 static void free_gigantic_page(struct page *page, unsigned order)
1014 {
1015 free_contig_range(page_to_pfn(page), 1 << order);
1016 }
1017
1018 static int __alloc_gigantic_page(unsigned long start_pfn,
1019 unsigned long nr_pages)
1020 {
1021 unsigned long end_pfn = start_pfn + nr_pages;
1022 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1023 }
1024
1025 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1026 unsigned long nr_pages)
1027 {
1028 unsigned long i, end_pfn = start_pfn + nr_pages;
1029 struct page *page;
1030
1031 for (i = start_pfn; i < end_pfn; i++) {
1032 if (!pfn_valid(i))
1033 return false;
1034
1035 page = pfn_to_page(i);
1036
1037 if (PageReserved(page))
1038 return false;
1039
1040 if (page_count(page) > 0)
1041 return false;
1042
1043 if (PageHuge(page))
1044 return false;
1045 }
1046
1047 return true;
1048 }
1049
1050 static bool zone_spans_last_pfn(const struct zone *zone,
1051 unsigned long start_pfn, unsigned long nr_pages)
1052 {
1053 unsigned long last_pfn = start_pfn + nr_pages - 1;
1054 return zone_spans_pfn(zone, last_pfn);
1055 }
1056
1057 static struct page *alloc_gigantic_page(int nid, unsigned order)
1058 {
1059 unsigned long nr_pages = 1 << order;
1060 unsigned long ret, pfn, flags;
1061 struct zone *z;
1062
1063 z = NODE_DATA(nid)->node_zones;
1064 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1065 spin_lock_irqsave(&z->lock, flags);
1066
1067 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1068 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1069 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1070 /*
1071 * We release the zone lock here because
1072 * alloc_contig_range() will also lock the zone
1073 * at some point. If there's an allocation
1074 * spinning on this lock, it may win the race
1075 * and cause alloc_contig_range() to fail...
1076 */
1077 spin_unlock_irqrestore(&z->lock, flags);
1078 ret = __alloc_gigantic_page(pfn, nr_pages);
1079 if (!ret)
1080 return pfn_to_page(pfn);
1081 spin_lock_irqsave(&z->lock, flags);
1082 }
1083 pfn += nr_pages;
1084 }
1085
1086 spin_unlock_irqrestore(&z->lock, flags);
1087 }
1088
1089 return NULL;
1090 }
1091
1092 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1093 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1094
1095 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1096 {
1097 struct page *page;
1098
1099 page = alloc_gigantic_page(nid, huge_page_order(h));
1100 if (page) {
1101 prep_compound_gigantic_page(page, huge_page_order(h));
1102 prep_new_huge_page(h, page, nid);
1103 }
1104
1105 return page;
1106 }
1107
1108 static int alloc_fresh_gigantic_page(struct hstate *h,
1109 nodemask_t *nodes_allowed)
1110 {
1111 struct page *page = NULL;
1112 int nr_nodes, node;
1113
1114 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1115 page = alloc_fresh_gigantic_page_node(h, node);
1116 if (page)
1117 return 1;
1118 }
1119
1120 return 0;
1121 }
1122
1123 static inline bool gigantic_page_supported(void) { return true; }
1124 #else
1125 static inline bool gigantic_page_supported(void) { return false; }
1126 static inline void free_gigantic_page(struct page *page, unsigned order) { }
1127 static inline void destroy_compound_gigantic_page(struct page *page,
1128 unsigned long order) { }
1129 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1130 nodemask_t *nodes_allowed) { return 0; }
1131 #endif
1132
1133 static void update_and_free_page(struct hstate *h, struct page *page)
1134 {
1135 int i;
1136
1137 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1138 return;
1139
1140 h->nr_huge_pages--;
1141 h->nr_huge_pages_node[page_to_nid(page)]--;
1142 for (i = 0; i < pages_per_huge_page(h); i++) {
1143 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1144 1 << PG_referenced | 1 << PG_dirty |
1145 1 << PG_active | 1 << PG_private |
1146 1 << PG_writeback);
1147 }
1148 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1149 set_compound_page_dtor(page, NULL);
1150 set_page_refcounted(page);
1151 if (hstate_is_gigantic(h)) {
1152 destroy_compound_gigantic_page(page, huge_page_order(h));
1153 free_gigantic_page(page, huge_page_order(h));
1154 } else {
1155 __free_pages(page, huge_page_order(h));
1156 }
1157 }
1158
1159 struct hstate *size_to_hstate(unsigned long size)
1160 {
1161 struct hstate *h;
1162
1163 for_each_hstate(h) {
1164 if (huge_page_size(h) == size)
1165 return h;
1166 }
1167 return NULL;
1168 }
1169
1170 /*
1171 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1172 * to hstate->hugepage_activelist.)
1173 *
1174 * This function can be called for tail pages, but never returns true for them.
1175 */
1176 bool page_huge_active(struct page *page)
1177 {
1178 VM_BUG_ON_PAGE(!PageHuge(page), page);
1179 return PageHead(page) && PagePrivate(&page[1]);
1180 }
1181
1182 /* never called for tail page */
1183 static void set_page_huge_active(struct page *page)
1184 {
1185 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1186 SetPagePrivate(&page[1]);
1187 }
1188
1189 static void clear_page_huge_active(struct page *page)
1190 {
1191 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1192 ClearPagePrivate(&page[1]);
1193 }
1194
1195 void free_huge_page(struct page *page)
1196 {
1197 /*
1198 * Can't pass hstate in here because it is called from the
1199 * compound page destructor.
1200 */
1201 struct hstate *h = page_hstate(page);
1202 int nid = page_to_nid(page);
1203 struct hugepage_subpool *spool =
1204 (struct hugepage_subpool *)page_private(page);
1205 bool restore_reserve;
1206
1207 set_page_private(page, 0);
1208 page->mapping = NULL;
1209 BUG_ON(page_count(page));
1210 BUG_ON(page_mapcount(page));
1211 restore_reserve = PagePrivate(page);
1212 ClearPagePrivate(page);
1213
1214 /*
1215 * A return code of zero implies that the subpool will be under its
1216 * minimum size if the reservation is not restored after page is free.
1217 * Therefore, force restore_reserve operation.
1218 */
1219 if (hugepage_subpool_put_pages(spool, 1) == 0)
1220 restore_reserve = true;
1221
1222 spin_lock(&hugetlb_lock);
1223 clear_page_huge_active(page);
1224 hugetlb_cgroup_uncharge_page(hstate_index(h),
1225 pages_per_huge_page(h), page);
1226 if (restore_reserve)
1227 h->resv_huge_pages++;
1228
1229 if (h->surplus_huge_pages_node[nid]) {
1230 /* remove the page from active list */
1231 list_del(&page->lru);
1232 update_and_free_page(h, page);
1233 h->surplus_huge_pages--;
1234 h->surplus_huge_pages_node[nid]--;
1235 } else {
1236 arch_clear_hugepage_flags(page);
1237 enqueue_huge_page(h, page);
1238 }
1239 spin_unlock(&hugetlb_lock);
1240 }
1241
1242 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1243 {
1244 INIT_LIST_HEAD(&page->lru);
1245 set_compound_page_dtor(page, free_huge_page);
1246 spin_lock(&hugetlb_lock);
1247 set_hugetlb_cgroup(page, NULL);
1248 h->nr_huge_pages++;
1249 h->nr_huge_pages_node[nid]++;
1250 spin_unlock(&hugetlb_lock);
1251 put_page(page); /* free it into the hugepage allocator */
1252 }
1253
1254 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1255 {
1256 int i;
1257 int nr_pages = 1 << order;
1258 struct page *p = page + 1;
1259
1260 /* we rely on prep_new_huge_page to set the destructor */
1261 set_compound_order(page, order);
1262 __SetPageHead(page);
1263 __ClearPageReserved(page);
1264 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1265 /*
1266 * For gigantic hugepages allocated through bootmem at
1267 * boot, it's safer to be consistent with the not-gigantic
1268 * hugepages and clear the PG_reserved bit from all tail pages
1269 * too. Otherwse drivers using get_user_pages() to access tail
1270 * pages may get the reference counting wrong if they see
1271 * PG_reserved set on a tail page (despite the head page not
1272 * having PG_reserved set). Enforcing this consistency between
1273 * head and tail pages allows drivers to optimize away a check
1274 * on the head page when they need know if put_page() is needed
1275 * after get_user_pages().
1276 */
1277 __ClearPageReserved(p);
1278 set_page_count(p, 0);
1279 p->first_page = page;
1280 /* Make sure p->first_page is always valid for PageTail() */
1281 smp_wmb();
1282 __SetPageTail(p);
1283 }
1284 }
1285
1286 /*
1287 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1288 * transparent huge pages. See the PageTransHuge() documentation for more
1289 * details.
1290 */
1291 int PageHuge(struct page *page)
1292 {
1293 if (!PageCompound(page))
1294 return 0;
1295
1296 page = compound_head(page);
1297 return get_compound_page_dtor(page) == free_huge_page;
1298 }
1299 EXPORT_SYMBOL_GPL(PageHuge);
1300
1301 /*
1302 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1303 * normal or transparent huge pages.
1304 */
1305 int PageHeadHuge(struct page *page_head)
1306 {
1307 if (!PageHead(page_head))
1308 return 0;
1309
1310 return get_compound_page_dtor(page_head) == free_huge_page;
1311 }
1312
1313 pgoff_t __basepage_index(struct page *page)
1314 {
1315 struct page *page_head = compound_head(page);
1316 pgoff_t index = page_index(page_head);
1317 unsigned long compound_idx;
1318
1319 if (!PageHuge(page_head))
1320 return page_index(page);
1321
1322 if (compound_order(page_head) >= MAX_ORDER)
1323 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1324 else
1325 compound_idx = page - page_head;
1326
1327 return (index << compound_order(page_head)) + compound_idx;
1328 }
1329
1330 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1331 {
1332 struct page *page;
1333
1334 page = __alloc_pages_node(nid,
1335 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1336 __GFP_REPEAT|__GFP_NOWARN,
1337 huge_page_order(h));
1338 if (page) {
1339 prep_new_huge_page(h, page, nid);
1340 }
1341
1342 return page;
1343 }
1344
1345 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1346 {
1347 struct page *page;
1348 int nr_nodes, node;
1349 int ret = 0;
1350
1351 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1352 page = alloc_fresh_huge_page_node(h, node);
1353 if (page) {
1354 ret = 1;
1355 break;
1356 }
1357 }
1358
1359 if (ret)
1360 count_vm_event(HTLB_BUDDY_PGALLOC);
1361 else
1362 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1363
1364 return ret;
1365 }
1366
1367 /*
1368 * Free huge page from pool from next node to free.
1369 * Attempt to keep persistent huge pages more or less
1370 * balanced over allowed nodes.
1371 * Called with hugetlb_lock locked.
1372 */
1373 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1374 bool acct_surplus)
1375 {
1376 int nr_nodes, node;
1377 int ret = 0;
1378
1379 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1380 /*
1381 * If we're returning unused surplus pages, only examine
1382 * nodes with surplus pages.
1383 */
1384 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1385 !list_empty(&h->hugepage_freelists[node])) {
1386 struct page *page =
1387 list_entry(h->hugepage_freelists[node].next,
1388 struct page, lru);
1389 list_del(&page->lru);
1390 h->free_huge_pages--;
1391 h->free_huge_pages_node[node]--;
1392 if (acct_surplus) {
1393 h->surplus_huge_pages--;
1394 h->surplus_huge_pages_node[node]--;
1395 }
1396 update_and_free_page(h, page);
1397 ret = 1;
1398 break;
1399 }
1400 }
1401
1402 return ret;
1403 }
1404
1405 /*
1406 * Dissolve a given free hugepage into free buddy pages. This function does
1407 * nothing for in-use (including surplus) hugepages.
1408 */
1409 static void dissolve_free_huge_page(struct page *page)
1410 {
1411 spin_lock(&hugetlb_lock);
1412 if (PageHuge(page) && !page_count(page)) {
1413 struct hstate *h = page_hstate(page);
1414 int nid = page_to_nid(page);
1415 list_del(&page->lru);
1416 h->free_huge_pages--;
1417 h->free_huge_pages_node[nid]--;
1418 update_and_free_page(h, page);
1419 }
1420 spin_unlock(&hugetlb_lock);
1421 }
1422
1423 /*
1424 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1425 * make specified memory blocks removable from the system.
1426 * Note that start_pfn should aligned with (minimum) hugepage size.
1427 */
1428 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1429 {
1430 unsigned long pfn;
1431
1432 if (!hugepages_supported())
1433 return;
1434
1435 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1436 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1437 dissolve_free_huge_page(pfn_to_page(pfn));
1438 }
1439
1440 /*
1441 * There are 3 ways this can get called:
1442 * 1. With vma+addr: we use the VMA's memory policy
1443 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1444 * page from any node, and let the buddy allocator itself figure
1445 * it out.
1446 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1447 * strictly from 'nid'
1448 */
1449 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1450 struct vm_area_struct *vma, unsigned long addr, int nid)
1451 {
1452 int order = huge_page_order(h);
1453 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1454 unsigned int cpuset_mems_cookie;
1455
1456 /*
1457 * We need a VMA to get a memory policy. If we do not
1458 * have one, we use the 'nid' argument
1459 */
1460 if (!vma) {
1461 /*
1462 * If a specific node is requested, make sure to
1463 * get memory from there, but only when a node
1464 * is explicitly specified.
1465 */
1466 if (nid != NUMA_NO_NODE)
1467 gfp |= __GFP_THISNODE;
1468 /*
1469 * Make sure to call something that can handle
1470 * nid=NUMA_NO_NODE
1471 */
1472 return alloc_pages_node(nid, gfp, order);
1473 }
1474
1475 /*
1476 * OK, so we have a VMA. Fetch the mempolicy and try to
1477 * allocate a huge page with it.
1478 */
1479 do {
1480 struct page *page;
1481 struct mempolicy *mpol;
1482 struct zonelist *zl;
1483 nodemask_t *nodemask;
1484
1485 cpuset_mems_cookie = read_mems_allowed_begin();
1486 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1487 mpol_cond_put(mpol);
1488 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1489 if (page)
1490 return page;
1491 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1492
1493 return NULL;
1494 }
1495
1496 /*
1497 * There are two ways to allocate a huge page:
1498 * 1. When you have a VMA and an address (like a fault)
1499 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1500 *
1501 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1502 * this case which signifies that the allocation should be done with
1503 * respect for the VMA's memory policy.
1504 *
1505 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1506 * implies that memory policies will not be taken in to account.
1507 */
1508 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1509 struct vm_area_struct *vma, unsigned long addr, int nid)
1510 {
1511 struct page *page;
1512 unsigned int r_nid;
1513
1514 if (hstate_is_gigantic(h))
1515 return NULL;
1516
1517 /*
1518 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1519 * This makes sure the caller is picking _one_ of the modes with which
1520 * we can call this function, not both.
1521 */
1522 if (vma || (addr != -1)) {
1523 WARN_ON_ONCE(addr == -1);
1524 WARN_ON_ONCE(nid != NUMA_NO_NODE);
1525 }
1526 /*
1527 * Assume we will successfully allocate the surplus page to
1528 * prevent racing processes from causing the surplus to exceed
1529 * overcommit
1530 *
1531 * This however introduces a different race, where a process B
1532 * tries to grow the static hugepage pool while alloc_pages() is
1533 * called by process A. B will only examine the per-node
1534 * counters in determining if surplus huge pages can be
1535 * converted to normal huge pages in adjust_pool_surplus(). A
1536 * won't be able to increment the per-node counter, until the
1537 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1538 * no more huge pages can be converted from surplus to normal
1539 * state (and doesn't try to convert again). Thus, we have a
1540 * case where a surplus huge page exists, the pool is grown, and
1541 * the surplus huge page still exists after, even though it
1542 * should just have been converted to a normal huge page. This
1543 * does not leak memory, though, as the hugepage will be freed
1544 * once it is out of use. It also does not allow the counters to
1545 * go out of whack in adjust_pool_surplus() as we don't modify
1546 * the node values until we've gotten the hugepage and only the
1547 * per-node value is checked there.
1548 */
1549 spin_lock(&hugetlb_lock);
1550 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1551 spin_unlock(&hugetlb_lock);
1552 return NULL;
1553 } else {
1554 h->nr_huge_pages++;
1555 h->surplus_huge_pages++;
1556 }
1557 spin_unlock(&hugetlb_lock);
1558
1559 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1560
1561 spin_lock(&hugetlb_lock);
1562 if (page) {
1563 INIT_LIST_HEAD(&page->lru);
1564 r_nid = page_to_nid(page);
1565 set_compound_page_dtor(page, free_huge_page);
1566 set_hugetlb_cgroup(page, NULL);
1567 /*
1568 * We incremented the global counters already
1569 */
1570 h->nr_huge_pages_node[r_nid]++;
1571 h->surplus_huge_pages_node[r_nid]++;
1572 __count_vm_event(HTLB_BUDDY_PGALLOC);
1573 } else {
1574 h->nr_huge_pages--;
1575 h->surplus_huge_pages--;
1576 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1577 }
1578 spin_unlock(&hugetlb_lock);
1579
1580 return page;
1581 }
1582
1583 /*
1584 * Allocate a huge page from 'nid'. Note, 'nid' may be
1585 * NUMA_NO_NODE, which means that it may be allocated
1586 * anywhere.
1587 */
1588 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1589 {
1590 unsigned long addr = -1;
1591
1592 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1593 }
1594
1595 /*
1596 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1597 */
1598 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1599 struct vm_area_struct *vma, unsigned long addr)
1600 {
1601 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1602 }
1603
1604 /*
1605 * This allocation function is useful in the context where vma is irrelevant.
1606 * E.g. soft-offlining uses this function because it only cares physical
1607 * address of error page.
1608 */
1609 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1610 {
1611 struct page *page = NULL;
1612
1613 spin_lock(&hugetlb_lock);
1614 if (h->free_huge_pages - h->resv_huge_pages > 0)
1615 page = dequeue_huge_page_node(h, nid);
1616 spin_unlock(&hugetlb_lock);
1617
1618 if (!page)
1619 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1620
1621 return page;
1622 }
1623
1624 /*
1625 * Increase the hugetlb pool such that it can accommodate a reservation
1626 * of size 'delta'.
1627 */
1628 static int gather_surplus_pages(struct hstate *h, int delta)
1629 {
1630 struct list_head surplus_list;
1631 struct page *page, *tmp;
1632 int ret, i;
1633 int needed, allocated;
1634 bool alloc_ok = true;
1635
1636 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1637 if (needed <= 0) {
1638 h->resv_huge_pages += delta;
1639 return 0;
1640 }
1641
1642 allocated = 0;
1643 INIT_LIST_HEAD(&surplus_list);
1644
1645 ret = -ENOMEM;
1646 retry:
1647 spin_unlock(&hugetlb_lock);
1648 for (i = 0; i < needed; i++) {
1649 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1650 if (!page) {
1651 alloc_ok = false;
1652 break;
1653 }
1654 list_add(&page->lru, &surplus_list);
1655 }
1656 allocated += i;
1657
1658 /*
1659 * After retaking hugetlb_lock, we need to recalculate 'needed'
1660 * because either resv_huge_pages or free_huge_pages may have changed.
1661 */
1662 spin_lock(&hugetlb_lock);
1663 needed = (h->resv_huge_pages + delta) -
1664 (h->free_huge_pages + allocated);
1665 if (needed > 0) {
1666 if (alloc_ok)
1667 goto retry;
1668 /*
1669 * We were not able to allocate enough pages to
1670 * satisfy the entire reservation so we free what
1671 * we've allocated so far.
1672 */
1673 goto free;
1674 }
1675 /*
1676 * The surplus_list now contains _at_least_ the number of extra pages
1677 * needed to accommodate the reservation. Add the appropriate number
1678 * of pages to the hugetlb pool and free the extras back to the buddy
1679 * allocator. Commit the entire reservation here to prevent another
1680 * process from stealing the pages as they are added to the pool but
1681 * before they are reserved.
1682 */
1683 needed += allocated;
1684 h->resv_huge_pages += delta;
1685 ret = 0;
1686
1687 /* Free the needed pages to the hugetlb pool */
1688 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1689 if ((--needed) < 0)
1690 break;
1691 /*
1692 * This page is now managed by the hugetlb allocator and has
1693 * no users -- drop the buddy allocator's reference.
1694 */
1695 put_page_testzero(page);
1696 VM_BUG_ON_PAGE(page_count(page), page);
1697 enqueue_huge_page(h, page);
1698 }
1699 free:
1700 spin_unlock(&hugetlb_lock);
1701
1702 /* Free unnecessary surplus pages to the buddy allocator */
1703 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1704 put_page(page);
1705 spin_lock(&hugetlb_lock);
1706
1707 return ret;
1708 }
1709
1710 /*
1711 * When releasing a hugetlb pool reservation, any surplus pages that were
1712 * allocated to satisfy the reservation must be explicitly freed if they were
1713 * never used.
1714 * Called with hugetlb_lock held.
1715 */
1716 static void return_unused_surplus_pages(struct hstate *h,
1717 unsigned long unused_resv_pages)
1718 {
1719 unsigned long nr_pages;
1720
1721 /* Uncommit the reservation */
1722 h->resv_huge_pages -= unused_resv_pages;
1723
1724 /* Cannot return gigantic pages currently */
1725 if (hstate_is_gigantic(h))
1726 return;
1727
1728 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1729
1730 /*
1731 * We want to release as many surplus pages as possible, spread
1732 * evenly across all nodes with memory. Iterate across these nodes
1733 * until we can no longer free unreserved surplus pages. This occurs
1734 * when the nodes with surplus pages have no free pages.
1735 * free_pool_huge_page() will balance the the freed pages across the
1736 * on-line nodes with memory and will handle the hstate accounting.
1737 */
1738 while (nr_pages--) {
1739 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1740 break;
1741 cond_resched_lock(&hugetlb_lock);
1742 }
1743 }
1744
1745
1746 /*
1747 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1748 * are used by the huge page allocation routines to manage reservations.
1749 *
1750 * vma_needs_reservation is called to determine if the huge page at addr
1751 * within the vma has an associated reservation. If a reservation is
1752 * needed, the value 1 is returned. The caller is then responsible for
1753 * managing the global reservation and subpool usage counts. After
1754 * the huge page has been allocated, vma_commit_reservation is called
1755 * to add the page to the reservation map. If the page allocation fails,
1756 * the reservation must be ended instead of committed. vma_end_reservation
1757 * is called in such cases.
1758 *
1759 * In the normal case, vma_commit_reservation returns the same value
1760 * as the preceding vma_needs_reservation call. The only time this
1761 * is not the case is if a reserve map was changed between calls. It
1762 * is the responsibility of the caller to notice the difference and
1763 * take appropriate action.
1764 */
1765 enum vma_resv_mode {
1766 VMA_NEEDS_RESV,
1767 VMA_COMMIT_RESV,
1768 VMA_END_RESV,
1769 };
1770 static long __vma_reservation_common(struct hstate *h,
1771 struct vm_area_struct *vma, unsigned long addr,
1772 enum vma_resv_mode mode)
1773 {
1774 struct resv_map *resv;
1775 pgoff_t idx;
1776 long ret;
1777
1778 resv = vma_resv_map(vma);
1779 if (!resv)
1780 return 1;
1781
1782 idx = vma_hugecache_offset(h, vma, addr);
1783 switch (mode) {
1784 case VMA_NEEDS_RESV:
1785 ret = region_chg(resv, idx, idx + 1);
1786 break;
1787 case VMA_COMMIT_RESV:
1788 ret = region_add(resv, idx, idx + 1);
1789 break;
1790 case VMA_END_RESV:
1791 region_abort(resv, idx, idx + 1);
1792 ret = 0;
1793 break;
1794 default:
1795 BUG();
1796 }
1797
1798 if (vma->vm_flags & VM_MAYSHARE)
1799 return ret;
1800 else
1801 return ret < 0 ? ret : 0;
1802 }
1803
1804 static long vma_needs_reservation(struct hstate *h,
1805 struct vm_area_struct *vma, unsigned long addr)
1806 {
1807 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1808 }
1809
1810 static long vma_commit_reservation(struct hstate *h,
1811 struct vm_area_struct *vma, unsigned long addr)
1812 {
1813 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1814 }
1815
1816 static void vma_end_reservation(struct hstate *h,
1817 struct vm_area_struct *vma, unsigned long addr)
1818 {
1819 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1820 }
1821
1822 struct page *alloc_huge_page(struct vm_area_struct *vma,
1823 unsigned long addr, int avoid_reserve)
1824 {
1825 struct hugepage_subpool *spool = subpool_vma(vma);
1826 struct hstate *h = hstate_vma(vma);
1827 struct page *page;
1828 long map_chg, map_commit;
1829 long gbl_chg;
1830 int ret, idx;
1831 struct hugetlb_cgroup *h_cg;
1832
1833 idx = hstate_index(h);
1834 /*
1835 * Examine the region/reserve map to determine if the process
1836 * has a reservation for the page to be allocated. A return
1837 * code of zero indicates a reservation exists (no change).
1838 */
1839 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1840 if (map_chg < 0)
1841 return ERR_PTR(-ENOMEM);
1842
1843 /*
1844 * Processes that did not create the mapping will have no
1845 * reserves as indicated by the region/reserve map. Check
1846 * that the allocation will not exceed the subpool limit.
1847 * Allocations for MAP_NORESERVE mappings also need to be
1848 * checked against any subpool limit.
1849 */
1850 if (map_chg || avoid_reserve) {
1851 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1852 if (gbl_chg < 0) {
1853 vma_end_reservation(h, vma, addr);
1854 return ERR_PTR(-ENOSPC);
1855 }
1856
1857 /*
1858 * Even though there was no reservation in the region/reserve
1859 * map, there could be reservations associated with the
1860 * subpool that can be used. This would be indicated if the
1861 * return value of hugepage_subpool_get_pages() is zero.
1862 * However, if avoid_reserve is specified we still avoid even
1863 * the subpool reservations.
1864 */
1865 if (avoid_reserve)
1866 gbl_chg = 1;
1867 }
1868
1869 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1870 if (ret)
1871 goto out_subpool_put;
1872
1873 spin_lock(&hugetlb_lock);
1874 /*
1875 * glb_chg is passed to indicate whether or not a page must be taken
1876 * from the global free pool (global change). gbl_chg == 0 indicates
1877 * a reservation exists for the allocation.
1878 */
1879 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1880 if (!page) {
1881 spin_unlock(&hugetlb_lock);
1882 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1883 if (!page)
1884 goto out_uncharge_cgroup;
1885
1886 spin_lock(&hugetlb_lock);
1887 list_move(&page->lru, &h->hugepage_activelist);
1888 /* Fall through */
1889 }
1890 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1891 spin_unlock(&hugetlb_lock);
1892
1893 set_page_private(page, (unsigned long)spool);
1894
1895 map_commit = vma_commit_reservation(h, vma, addr);
1896 if (unlikely(map_chg > map_commit)) {
1897 /*
1898 * The page was added to the reservation map between
1899 * vma_needs_reservation and vma_commit_reservation.
1900 * This indicates a race with hugetlb_reserve_pages.
1901 * Adjust for the subpool count incremented above AND
1902 * in hugetlb_reserve_pages for the same page. Also,
1903 * the reservation count added in hugetlb_reserve_pages
1904 * no longer applies.
1905 */
1906 long rsv_adjust;
1907
1908 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1909 hugetlb_acct_memory(h, -rsv_adjust);
1910 }
1911 return page;
1912
1913 out_uncharge_cgroup:
1914 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1915 out_subpool_put:
1916 if (map_chg || avoid_reserve)
1917 hugepage_subpool_put_pages(spool, 1);
1918 vma_end_reservation(h, vma, addr);
1919 return ERR_PTR(-ENOSPC);
1920 }
1921
1922 /*
1923 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1924 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1925 * where no ERR_VALUE is expected to be returned.
1926 */
1927 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1928 unsigned long addr, int avoid_reserve)
1929 {
1930 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1931 if (IS_ERR(page))
1932 page = NULL;
1933 return page;
1934 }
1935
1936 int __weak alloc_bootmem_huge_page(struct hstate *h)
1937 {
1938 struct huge_bootmem_page *m;
1939 int nr_nodes, node;
1940
1941 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1942 void *addr;
1943
1944 addr = memblock_virt_alloc_try_nid_nopanic(
1945 huge_page_size(h), huge_page_size(h),
1946 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1947 if (addr) {
1948 /*
1949 * Use the beginning of the huge page to store the
1950 * huge_bootmem_page struct (until gather_bootmem
1951 * puts them into the mem_map).
1952 */
1953 m = addr;
1954 goto found;
1955 }
1956 }
1957 return 0;
1958
1959 found:
1960 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1961 /* Put them into a private list first because mem_map is not up yet */
1962 list_add(&m->list, &huge_boot_pages);
1963 m->hstate = h;
1964 return 1;
1965 }
1966
1967 static void __init prep_compound_huge_page(struct page *page, int order)
1968 {
1969 if (unlikely(order > (MAX_ORDER - 1)))
1970 prep_compound_gigantic_page(page, order);
1971 else
1972 prep_compound_page(page, order);
1973 }
1974
1975 /* Put bootmem huge pages into the standard lists after mem_map is up */
1976 static void __init gather_bootmem_prealloc(void)
1977 {
1978 struct huge_bootmem_page *m;
1979
1980 list_for_each_entry(m, &huge_boot_pages, list) {
1981 struct hstate *h = m->hstate;
1982 struct page *page;
1983
1984 #ifdef CONFIG_HIGHMEM
1985 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1986 memblock_free_late(__pa(m),
1987 sizeof(struct huge_bootmem_page));
1988 #else
1989 page = virt_to_page(m);
1990 #endif
1991 WARN_ON(page_count(page) != 1);
1992 prep_compound_huge_page(page, h->order);
1993 WARN_ON(PageReserved(page));
1994 prep_new_huge_page(h, page, page_to_nid(page));
1995 /*
1996 * If we had gigantic hugepages allocated at boot time, we need
1997 * to restore the 'stolen' pages to totalram_pages in order to
1998 * fix confusing memory reports from free(1) and another
1999 * side-effects, like CommitLimit going negative.
2000 */
2001 if (hstate_is_gigantic(h))
2002 adjust_managed_page_count(page, 1 << h->order);
2003 }
2004 }
2005
2006 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2007 {
2008 unsigned long i;
2009
2010 for (i = 0; i < h->max_huge_pages; ++i) {
2011 if (hstate_is_gigantic(h)) {
2012 if (!alloc_bootmem_huge_page(h))
2013 break;
2014 } else if (!alloc_fresh_huge_page(h,
2015 &node_states[N_MEMORY]))
2016 break;
2017 }
2018 h->max_huge_pages = i;
2019 }
2020
2021 static void __init hugetlb_init_hstates(void)
2022 {
2023 struct hstate *h;
2024
2025 for_each_hstate(h) {
2026 if (minimum_order > huge_page_order(h))
2027 minimum_order = huge_page_order(h);
2028
2029 /* oversize hugepages were init'ed in early boot */
2030 if (!hstate_is_gigantic(h))
2031 hugetlb_hstate_alloc_pages(h);
2032 }
2033 VM_BUG_ON(minimum_order == UINT_MAX);
2034 }
2035
2036 static char * __init memfmt(char *buf, unsigned long n)
2037 {
2038 if (n >= (1UL << 30))
2039 sprintf(buf, "%lu GB", n >> 30);
2040 else if (n >= (1UL << 20))
2041 sprintf(buf, "%lu MB", n >> 20);
2042 else
2043 sprintf(buf, "%lu KB", n >> 10);
2044 return buf;
2045 }
2046
2047 static void __init report_hugepages(void)
2048 {
2049 struct hstate *h;
2050
2051 for_each_hstate(h) {
2052 char buf[32];
2053 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2054 memfmt(buf, huge_page_size(h)),
2055 h->free_huge_pages);
2056 }
2057 }
2058
2059 #ifdef CONFIG_HIGHMEM
2060 static void try_to_free_low(struct hstate *h, unsigned long count,
2061 nodemask_t *nodes_allowed)
2062 {
2063 int i;
2064
2065 if (hstate_is_gigantic(h))
2066 return;
2067
2068 for_each_node_mask(i, *nodes_allowed) {
2069 struct page *page, *next;
2070 struct list_head *freel = &h->hugepage_freelists[i];
2071 list_for_each_entry_safe(page, next, freel, lru) {
2072 if (count >= h->nr_huge_pages)
2073 return;
2074 if (PageHighMem(page))
2075 continue;
2076 list_del(&page->lru);
2077 update_and_free_page(h, page);
2078 h->free_huge_pages--;
2079 h->free_huge_pages_node[page_to_nid(page)]--;
2080 }
2081 }
2082 }
2083 #else
2084 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2085 nodemask_t *nodes_allowed)
2086 {
2087 }
2088 #endif
2089
2090 /*
2091 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2092 * balanced by operating on them in a round-robin fashion.
2093 * Returns 1 if an adjustment was made.
2094 */
2095 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2096 int delta)
2097 {
2098 int nr_nodes, node;
2099
2100 VM_BUG_ON(delta != -1 && delta != 1);
2101
2102 if (delta < 0) {
2103 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2104 if (h->surplus_huge_pages_node[node])
2105 goto found;
2106 }
2107 } else {
2108 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2109 if (h->surplus_huge_pages_node[node] <
2110 h->nr_huge_pages_node[node])
2111 goto found;
2112 }
2113 }
2114 return 0;
2115
2116 found:
2117 h->surplus_huge_pages += delta;
2118 h->surplus_huge_pages_node[node] += delta;
2119 return 1;
2120 }
2121
2122 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2123 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2124 nodemask_t *nodes_allowed)
2125 {
2126 unsigned long min_count, ret;
2127
2128 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2129 return h->max_huge_pages;
2130
2131 /*
2132 * Increase the pool size
2133 * First take pages out of surplus state. Then make up the
2134 * remaining difference by allocating fresh huge pages.
2135 *
2136 * We might race with alloc_buddy_huge_page() here and be unable
2137 * to convert a surplus huge page to a normal huge page. That is
2138 * not critical, though, it just means the overall size of the
2139 * pool might be one hugepage larger than it needs to be, but
2140 * within all the constraints specified by the sysctls.
2141 */
2142 spin_lock(&hugetlb_lock);
2143 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2144 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2145 break;
2146 }
2147
2148 while (count > persistent_huge_pages(h)) {
2149 /*
2150 * If this allocation races such that we no longer need the
2151 * page, free_huge_page will handle it by freeing the page
2152 * and reducing the surplus.
2153 */
2154 spin_unlock(&hugetlb_lock);
2155 if (hstate_is_gigantic(h))
2156 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2157 else
2158 ret = alloc_fresh_huge_page(h, nodes_allowed);
2159 spin_lock(&hugetlb_lock);
2160 if (!ret)
2161 goto out;
2162
2163 /* Bail for signals. Probably ctrl-c from user */
2164 if (signal_pending(current))
2165 goto out;
2166 }
2167
2168 /*
2169 * Decrease the pool size
2170 * First return free pages to the buddy allocator (being careful
2171 * to keep enough around to satisfy reservations). Then place
2172 * pages into surplus state as needed so the pool will shrink
2173 * to the desired size as pages become free.
2174 *
2175 * By placing pages into the surplus state independent of the
2176 * overcommit value, we are allowing the surplus pool size to
2177 * exceed overcommit. There are few sane options here. Since
2178 * alloc_buddy_huge_page() is checking the global counter,
2179 * though, we'll note that we're not allowed to exceed surplus
2180 * and won't grow the pool anywhere else. Not until one of the
2181 * sysctls are changed, or the surplus pages go out of use.
2182 */
2183 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2184 min_count = max(count, min_count);
2185 try_to_free_low(h, min_count, nodes_allowed);
2186 while (min_count < persistent_huge_pages(h)) {
2187 if (!free_pool_huge_page(h, nodes_allowed, 0))
2188 break;
2189 cond_resched_lock(&hugetlb_lock);
2190 }
2191 while (count < persistent_huge_pages(h)) {
2192 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2193 break;
2194 }
2195 out:
2196 ret = persistent_huge_pages(h);
2197 spin_unlock(&hugetlb_lock);
2198 return ret;
2199 }
2200
2201 #define HSTATE_ATTR_RO(_name) \
2202 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2203
2204 #define HSTATE_ATTR(_name) \
2205 static struct kobj_attribute _name##_attr = \
2206 __ATTR(_name, 0644, _name##_show, _name##_store)
2207
2208 static struct kobject *hugepages_kobj;
2209 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2210
2211 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2212
2213 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2214 {
2215 int i;
2216
2217 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2218 if (hstate_kobjs[i] == kobj) {
2219 if (nidp)
2220 *nidp = NUMA_NO_NODE;
2221 return &hstates[i];
2222 }
2223
2224 return kobj_to_node_hstate(kobj, nidp);
2225 }
2226
2227 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2228 struct kobj_attribute *attr, char *buf)
2229 {
2230 struct hstate *h;
2231 unsigned long nr_huge_pages;
2232 int nid;
2233
2234 h = kobj_to_hstate(kobj, &nid);
2235 if (nid == NUMA_NO_NODE)
2236 nr_huge_pages = h->nr_huge_pages;
2237 else
2238 nr_huge_pages = h->nr_huge_pages_node[nid];
2239
2240 return sprintf(buf, "%lu\n", nr_huge_pages);
2241 }
2242
2243 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2244 struct hstate *h, int nid,
2245 unsigned long count, size_t len)
2246 {
2247 int err;
2248 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2249
2250 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2251 err = -EINVAL;
2252 goto out;
2253 }
2254
2255 if (nid == NUMA_NO_NODE) {
2256 /*
2257 * global hstate attribute
2258 */
2259 if (!(obey_mempolicy &&
2260 init_nodemask_of_mempolicy(nodes_allowed))) {
2261 NODEMASK_FREE(nodes_allowed);
2262 nodes_allowed = &node_states[N_MEMORY];
2263 }
2264 } else if (nodes_allowed) {
2265 /*
2266 * per node hstate attribute: adjust count to global,
2267 * but restrict alloc/free to the specified node.
2268 */
2269 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2270 init_nodemask_of_node(nodes_allowed, nid);
2271 } else
2272 nodes_allowed = &node_states[N_MEMORY];
2273
2274 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2275
2276 if (nodes_allowed != &node_states[N_MEMORY])
2277 NODEMASK_FREE(nodes_allowed);
2278
2279 return len;
2280 out:
2281 NODEMASK_FREE(nodes_allowed);
2282 return err;
2283 }
2284
2285 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2286 struct kobject *kobj, const char *buf,
2287 size_t len)
2288 {
2289 struct hstate *h;
2290 unsigned long count;
2291 int nid;
2292 int err;
2293
2294 err = kstrtoul(buf, 10, &count);
2295 if (err)
2296 return err;
2297
2298 h = kobj_to_hstate(kobj, &nid);
2299 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2300 }
2301
2302 static ssize_t nr_hugepages_show(struct kobject *kobj,
2303 struct kobj_attribute *attr, char *buf)
2304 {
2305 return nr_hugepages_show_common(kobj, attr, buf);
2306 }
2307
2308 static ssize_t nr_hugepages_store(struct kobject *kobj,
2309 struct kobj_attribute *attr, const char *buf, size_t len)
2310 {
2311 return nr_hugepages_store_common(false, kobj, buf, len);
2312 }
2313 HSTATE_ATTR(nr_hugepages);
2314
2315 #ifdef CONFIG_NUMA
2316
2317 /*
2318 * hstate attribute for optionally mempolicy-based constraint on persistent
2319 * huge page alloc/free.
2320 */
2321 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2322 struct kobj_attribute *attr, char *buf)
2323 {
2324 return nr_hugepages_show_common(kobj, attr, buf);
2325 }
2326
2327 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2328 struct kobj_attribute *attr, const char *buf, size_t len)
2329 {
2330 return nr_hugepages_store_common(true, kobj, buf, len);
2331 }
2332 HSTATE_ATTR(nr_hugepages_mempolicy);
2333 #endif
2334
2335
2336 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2337 struct kobj_attribute *attr, char *buf)
2338 {
2339 struct hstate *h = kobj_to_hstate(kobj, NULL);
2340 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2341 }
2342
2343 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2344 struct kobj_attribute *attr, const char *buf, size_t count)
2345 {
2346 int err;
2347 unsigned long input;
2348 struct hstate *h = kobj_to_hstate(kobj, NULL);
2349
2350 if (hstate_is_gigantic(h))
2351 return -EINVAL;
2352
2353 err = kstrtoul(buf, 10, &input);
2354 if (err)
2355 return err;
2356
2357 spin_lock(&hugetlb_lock);
2358 h->nr_overcommit_huge_pages = input;
2359 spin_unlock(&hugetlb_lock);
2360
2361 return count;
2362 }
2363 HSTATE_ATTR(nr_overcommit_hugepages);
2364
2365 static ssize_t free_hugepages_show(struct kobject *kobj,
2366 struct kobj_attribute *attr, char *buf)
2367 {
2368 struct hstate *h;
2369 unsigned long free_huge_pages;
2370 int nid;
2371
2372 h = kobj_to_hstate(kobj, &nid);
2373 if (nid == NUMA_NO_NODE)
2374 free_huge_pages = h->free_huge_pages;
2375 else
2376 free_huge_pages = h->free_huge_pages_node[nid];
2377
2378 return sprintf(buf, "%lu\n", free_huge_pages);
2379 }
2380 HSTATE_ATTR_RO(free_hugepages);
2381
2382 static ssize_t resv_hugepages_show(struct kobject *kobj,
2383 struct kobj_attribute *attr, char *buf)
2384 {
2385 struct hstate *h = kobj_to_hstate(kobj, NULL);
2386 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2387 }
2388 HSTATE_ATTR_RO(resv_hugepages);
2389
2390 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2391 struct kobj_attribute *attr, char *buf)
2392 {
2393 struct hstate *h;
2394 unsigned long surplus_huge_pages;
2395 int nid;
2396
2397 h = kobj_to_hstate(kobj, &nid);
2398 if (nid == NUMA_NO_NODE)
2399 surplus_huge_pages = h->surplus_huge_pages;
2400 else
2401 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2402
2403 return sprintf(buf, "%lu\n", surplus_huge_pages);
2404 }
2405 HSTATE_ATTR_RO(surplus_hugepages);
2406
2407 static struct attribute *hstate_attrs[] = {
2408 &nr_hugepages_attr.attr,
2409 &nr_overcommit_hugepages_attr.attr,
2410 &free_hugepages_attr.attr,
2411 &resv_hugepages_attr.attr,
2412 &surplus_hugepages_attr.attr,
2413 #ifdef CONFIG_NUMA
2414 &nr_hugepages_mempolicy_attr.attr,
2415 #endif
2416 NULL,
2417 };
2418
2419 static struct attribute_group hstate_attr_group = {
2420 .attrs = hstate_attrs,
2421 };
2422
2423 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2424 struct kobject **hstate_kobjs,
2425 struct attribute_group *hstate_attr_group)
2426 {
2427 int retval;
2428 int hi = hstate_index(h);
2429
2430 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2431 if (!hstate_kobjs[hi])
2432 return -ENOMEM;
2433
2434 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2435 if (retval)
2436 kobject_put(hstate_kobjs[hi]);
2437
2438 return retval;
2439 }
2440
2441 static void __init hugetlb_sysfs_init(void)
2442 {
2443 struct hstate *h;
2444 int err;
2445
2446 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2447 if (!hugepages_kobj)
2448 return;
2449
2450 for_each_hstate(h) {
2451 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2452 hstate_kobjs, &hstate_attr_group);
2453 if (err)
2454 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2455 }
2456 }
2457
2458 #ifdef CONFIG_NUMA
2459
2460 /*
2461 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2462 * with node devices in node_devices[] using a parallel array. The array
2463 * index of a node device or _hstate == node id.
2464 * This is here to avoid any static dependency of the node device driver, in
2465 * the base kernel, on the hugetlb module.
2466 */
2467 struct node_hstate {
2468 struct kobject *hugepages_kobj;
2469 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2470 };
2471 static struct node_hstate node_hstates[MAX_NUMNODES];
2472
2473 /*
2474 * A subset of global hstate attributes for node devices
2475 */
2476 static struct attribute *per_node_hstate_attrs[] = {
2477 &nr_hugepages_attr.attr,
2478 &free_hugepages_attr.attr,
2479 &surplus_hugepages_attr.attr,
2480 NULL,
2481 };
2482
2483 static struct attribute_group per_node_hstate_attr_group = {
2484 .attrs = per_node_hstate_attrs,
2485 };
2486
2487 /*
2488 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2489 * Returns node id via non-NULL nidp.
2490 */
2491 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2492 {
2493 int nid;
2494
2495 for (nid = 0; nid < nr_node_ids; nid++) {
2496 struct node_hstate *nhs = &node_hstates[nid];
2497 int i;
2498 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2499 if (nhs->hstate_kobjs[i] == kobj) {
2500 if (nidp)
2501 *nidp = nid;
2502 return &hstates[i];
2503 }
2504 }
2505
2506 BUG();
2507 return NULL;
2508 }
2509
2510 /*
2511 * Unregister hstate attributes from a single node device.
2512 * No-op if no hstate attributes attached.
2513 */
2514 static void hugetlb_unregister_node(struct node *node)
2515 {
2516 struct hstate *h;
2517 struct node_hstate *nhs = &node_hstates[node->dev.id];
2518
2519 if (!nhs->hugepages_kobj)
2520 return; /* no hstate attributes */
2521
2522 for_each_hstate(h) {
2523 int idx = hstate_index(h);
2524 if (nhs->hstate_kobjs[idx]) {
2525 kobject_put(nhs->hstate_kobjs[idx]);
2526 nhs->hstate_kobjs[idx] = NULL;
2527 }
2528 }
2529
2530 kobject_put(nhs->hugepages_kobj);
2531 nhs->hugepages_kobj = NULL;
2532 }
2533
2534 /*
2535 * hugetlb module exit: unregister hstate attributes from node devices
2536 * that have them.
2537 */
2538 static void hugetlb_unregister_all_nodes(void)
2539 {
2540 int nid;
2541
2542 /*
2543 * disable node device registrations.
2544 */
2545 register_hugetlbfs_with_node(NULL, NULL);
2546
2547 /*
2548 * remove hstate attributes from any nodes that have them.
2549 */
2550 for (nid = 0; nid < nr_node_ids; nid++)
2551 hugetlb_unregister_node(node_devices[nid]);
2552 }
2553
2554 /*
2555 * Register hstate attributes for a single node device.
2556 * No-op if attributes already registered.
2557 */
2558 static void hugetlb_register_node(struct node *node)
2559 {
2560 struct hstate *h;
2561 struct node_hstate *nhs = &node_hstates[node->dev.id];
2562 int err;
2563
2564 if (nhs->hugepages_kobj)
2565 return; /* already allocated */
2566
2567 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2568 &node->dev.kobj);
2569 if (!nhs->hugepages_kobj)
2570 return;
2571
2572 for_each_hstate(h) {
2573 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2574 nhs->hstate_kobjs,
2575 &per_node_hstate_attr_group);
2576 if (err) {
2577 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2578 h->name, node->dev.id);
2579 hugetlb_unregister_node(node);
2580 break;
2581 }
2582 }
2583 }
2584
2585 /*
2586 * hugetlb init time: register hstate attributes for all registered node
2587 * devices of nodes that have memory. All on-line nodes should have
2588 * registered their associated device by this time.
2589 */
2590 static void __init hugetlb_register_all_nodes(void)
2591 {
2592 int nid;
2593
2594 for_each_node_state(nid, N_MEMORY) {
2595 struct node *node = node_devices[nid];
2596 if (node->dev.id == nid)
2597 hugetlb_register_node(node);
2598 }
2599
2600 /*
2601 * Let the node device driver know we're here so it can
2602 * [un]register hstate attributes on node hotplug.
2603 */
2604 register_hugetlbfs_with_node(hugetlb_register_node,
2605 hugetlb_unregister_node);
2606 }
2607 #else /* !CONFIG_NUMA */
2608
2609 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2610 {
2611 BUG();
2612 if (nidp)
2613 *nidp = -1;
2614 return NULL;
2615 }
2616
2617 static void hugetlb_unregister_all_nodes(void) { }
2618
2619 static void hugetlb_register_all_nodes(void) { }
2620
2621 #endif
2622
2623 static void __exit hugetlb_exit(void)
2624 {
2625 struct hstate *h;
2626
2627 hugetlb_unregister_all_nodes();
2628
2629 for_each_hstate(h) {
2630 kobject_put(hstate_kobjs[hstate_index(h)]);
2631 }
2632
2633 kobject_put(hugepages_kobj);
2634 kfree(hugetlb_fault_mutex_table);
2635 }
2636 module_exit(hugetlb_exit);
2637
2638 static int __init hugetlb_init(void)
2639 {
2640 int i;
2641
2642 if (!hugepages_supported())
2643 return 0;
2644
2645 if (!size_to_hstate(default_hstate_size)) {
2646 default_hstate_size = HPAGE_SIZE;
2647 if (!size_to_hstate(default_hstate_size))
2648 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2649 }
2650 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2651 if (default_hstate_max_huge_pages)
2652 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2653
2654 hugetlb_init_hstates();
2655 gather_bootmem_prealloc();
2656 report_hugepages();
2657
2658 hugetlb_sysfs_init();
2659 hugetlb_register_all_nodes();
2660 hugetlb_cgroup_file_init();
2661
2662 #ifdef CONFIG_SMP
2663 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2664 #else
2665 num_fault_mutexes = 1;
2666 #endif
2667 hugetlb_fault_mutex_table =
2668 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2669 BUG_ON(!hugetlb_fault_mutex_table);
2670
2671 for (i = 0; i < num_fault_mutexes; i++)
2672 mutex_init(&hugetlb_fault_mutex_table[i]);
2673 return 0;
2674 }
2675 module_init(hugetlb_init);
2676
2677 /* Should be called on processing a hugepagesz=... option */
2678 void __init hugetlb_add_hstate(unsigned order)
2679 {
2680 struct hstate *h;
2681 unsigned long i;
2682
2683 if (size_to_hstate(PAGE_SIZE << order)) {
2684 pr_warning("hugepagesz= specified twice, ignoring\n");
2685 return;
2686 }
2687 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2688 BUG_ON(order == 0);
2689 h = &hstates[hugetlb_max_hstate++];
2690 h->order = order;
2691 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2692 h->nr_huge_pages = 0;
2693 h->free_huge_pages = 0;
2694 for (i = 0; i < MAX_NUMNODES; ++i)
2695 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2696 INIT_LIST_HEAD(&h->hugepage_activelist);
2697 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2698 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2699 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2700 huge_page_size(h)/1024);
2701
2702 parsed_hstate = h;
2703 }
2704
2705 static int __init hugetlb_nrpages_setup(char *s)
2706 {
2707 unsigned long *mhp;
2708 static unsigned long *last_mhp;
2709
2710 /*
2711 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2712 * so this hugepages= parameter goes to the "default hstate".
2713 */
2714 if (!hugetlb_max_hstate)
2715 mhp = &default_hstate_max_huge_pages;
2716 else
2717 mhp = &parsed_hstate->max_huge_pages;
2718
2719 if (mhp == last_mhp) {
2720 pr_warning("hugepages= specified twice without "
2721 "interleaving hugepagesz=, ignoring\n");
2722 return 1;
2723 }
2724
2725 if (sscanf(s, "%lu", mhp) <= 0)
2726 *mhp = 0;
2727
2728 /*
2729 * Global state is always initialized later in hugetlb_init.
2730 * But we need to allocate >= MAX_ORDER hstates here early to still
2731 * use the bootmem allocator.
2732 */
2733 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2734 hugetlb_hstate_alloc_pages(parsed_hstate);
2735
2736 last_mhp = mhp;
2737
2738 return 1;
2739 }
2740 __setup("hugepages=", hugetlb_nrpages_setup);
2741
2742 static int __init hugetlb_default_setup(char *s)
2743 {
2744 default_hstate_size = memparse(s, &s);
2745 return 1;
2746 }
2747 __setup("default_hugepagesz=", hugetlb_default_setup);
2748
2749 static unsigned int cpuset_mems_nr(unsigned int *array)
2750 {
2751 int node;
2752 unsigned int nr = 0;
2753
2754 for_each_node_mask(node, cpuset_current_mems_allowed)
2755 nr += array[node];
2756
2757 return nr;
2758 }
2759
2760 #ifdef CONFIG_SYSCTL
2761 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2762 struct ctl_table *table, int write,
2763 void __user *buffer, size_t *length, loff_t *ppos)
2764 {
2765 struct hstate *h = &default_hstate;
2766 unsigned long tmp = h->max_huge_pages;
2767 int ret;
2768
2769 if (!hugepages_supported())
2770 return -ENOTSUPP;
2771
2772 table->data = &tmp;
2773 table->maxlen = sizeof(unsigned long);
2774 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2775 if (ret)
2776 goto out;
2777
2778 if (write)
2779 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2780 NUMA_NO_NODE, tmp, *length);
2781 out:
2782 return ret;
2783 }
2784
2785 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2786 void __user *buffer, size_t *length, loff_t *ppos)
2787 {
2788
2789 return hugetlb_sysctl_handler_common(false, table, write,
2790 buffer, length, ppos);
2791 }
2792
2793 #ifdef CONFIG_NUMA
2794 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2795 void __user *buffer, size_t *length, loff_t *ppos)
2796 {
2797 return hugetlb_sysctl_handler_common(true, table, write,
2798 buffer, length, ppos);
2799 }
2800 #endif /* CONFIG_NUMA */
2801
2802 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2803 void __user *buffer,
2804 size_t *length, loff_t *ppos)
2805 {
2806 struct hstate *h = &default_hstate;
2807 unsigned long tmp;
2808 int ret;
2809
2810 if (!hugepages_supported())
2811 return -ENOTSUPP;
2812
2813 tmp = h->nr_overcommit_huge_pages;
2814
2815 if (write && hstate_is_gigantic(h))
2816 return -EINVAL;
2817
2818 table->data = &tmp;
2819 table->maxlen = sizeof(unsigned long);
2820 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2821 if (ret)
2822 goto out;
2823
2824 if (write) {
2825 spin_lock(&hugetlb_lock);
2826 h->nr_overcommit_huge_pages = tmp;
2827 spin_unlock(&hugetlb_lock);
2828 }
2829 out:
2830 return ret;
2831 }
2832
2833 #endif /* CONFIG_SYSCTL */
2834
2835 void hugetlb_report_meminfo(struct seq_file *m)
2836 {
2837 struct hstate *h = &default_hstate;
2838 if (!hugepages_supported())
2839 return;
2840 seq_printf(m,
2841 "HugePages_Total: %5lu\n"
2842 "HugePages_Free: %5lu\n"
2843 "HugePages_Rsvd: %5lu\n"
2844 "HugePages_Surp: %5lu\n"
2845 "Hugepagesize: %8lu kB\n",
2846 h->nr_huge_pages,
2847 h->free_huge_pages,
2848 h->resv_huge_pages,
2849 h->surplus_huge_pages,
2850 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2851 }
2852
2853 int hugetlb_report_node_meminfo(int nid, char *buf)
2854 {
2855 struct hstate *h = &default_hstate;
2856 if (!hugepages_supported())
2857 return 0;
2858 return sprintf(buf,
2859 "Node %d HugePages_Total: %5u\n"
2860 "Node %d HugePages_Free: %5u\n"
2861 "Node %d HugePages_Surp: %5u\n",
2862 nid, h->nr_huge_pages_node[nid],
2863 nid, h->free_huge_pages_node[nid],
2864 nid, h->surplus_huge_pages_node[nid]);
2865 }
2866
2867 void hugetlb_show_meminfo(void)
2868 {
2869 struct hstate *h;
2870 int nid;
2871
2872 if (!hugepages_supported())
2873 return;
2874
2875 for_each_node_state(nid, N_MEMORY)
2876 for_each_hstate(h)
2877 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2878 nid,
2879 h->nr_huge_pages_node[nid],
2880 h->free_huge_pages_node[nid],
2881 h->surplus_huge_pages_node[nid],
2882 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2883 }
2884
2885 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2886 {
2887 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2888 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2889 }
2890
2891 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2892 unsigned long hugetlb_total_pages(void)
2893 {
2894 struct hstate *h;
2895 unsigned long nr_total_pages = 0;
2896
2897 for_each_hstate(h)
2898 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2899 return nr_total_pages;
2900 }
2901
2902 static int hugetlb_acct_memory(struct hstate *h, long delta)
2903 {
2904 int ret = -ENOMEM;
2905
2906 spin_lock(&hugetlb_lock);
2907 /*
2908 * When cpuset is configured, it breaks the strict hugetlb page
2909 * reservation as the accounting is done on a global variable. Such
2910 * reservation is completely rubbish in the presence of cpuset because
2911 * the reservation is not checked against page availability for the
2912 * current cpuset. Application can still potentially OOM'ed by kernel
2913 * with lack of free htlb page in cpuset that the task is in.
2914 * Attempt to enforce strict accounting with cpuset is almost
2915 * impossible (or too ugly) because cpuset is too fluid that
2916 * task or memory node can be dynamically moved between cpusets.
2917 *
2918 * The change of semantics for shared hugetlb mapping with cpuset is
2919 * undesirable. However, in order to preserve some of the semantics,
2920 * we fall back to check against current free page availability as
2921 * a best attempt and hopefully to minimize the impact of changing
2922 * semantics that cpuset has.
2923 */
2924 if (delta > 0) {
2925 if (gather_surplus_pages(h, delta) < 0)
2926 goto out;
2927
2928 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2929 return_unused_surplus_pages(h, delta);
2930 goto out;
2931 }
2932 }
2933
2934 ret = 0;
2935 if (delta < 0)
2936 return_unused_surplus_pages(h, (unsigned long) -delta);
2937
2938 out:
2939 spin_unlock(&hugetlb_lock);
2940 return ret;
2941 }
2942
2943 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2944 {
2945 struct resv_map *resv = vma_resv_map(vma);
2946
2947 /*
2948 * This new VMA should share its siblings reservation map if present.
2949 * The VMA will only ever have a valid reservation map pointer where
2950 * it is being copied for another still existing VMA. As that VMA
2951 * has a reference to the reservation map it cannot disappear until
2952 * after this open call completes. It is therefore safe to take a
2953 * new reference here without additional locking.
2954 */
2955 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2956 kref_get(&resv->refs);
2957 }
2958
2959 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2960 {
2961 struct hstate *h = hstate_vma(vma);
2962 struct resv_map *resv = vma_resv_map(vma);
2963 struct hugepage_subpool *spool = subpool_vma(vma);
2964 unsigned long reserve, start, end;
2965 long gbl_reserve;
2966
2967 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2968 return;
2969
2970 start = vma_hugecache_offset(h, vma, vma->vm_start);
2971 end = vma_hugecache_offset(h, vma, vma->vm_end);
2972
2973 reserve = (end - start) - region_count(resv, start, end);
2974
2975 kref_put(&resv->refs, resv_map_release);
2976
2977 if (reserve) {
2978 /*
2979 * Decrement reserve counts. The global reserve count may be
2980 * adjusted if the subpool has a minimum size.
2981 */
2982 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2983 hugetlb_acct_memory(h, -gbl_reserve);
2984 }
2985 }
2986
2987 /*
2988 * We cannot handle pagefaults against hugetlb pages at all. They cause
2989 * handle_mm_fault() to try to instantiate regular-sized pages in the
2990 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2991 * this far.
2992 */
2993 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2994 {
2995 BUG();
2996 return 0;
2997 }
2998
2999 const struct vm_operations_struct hugetlb_vm_ops = {
3000 .fault = hugetlb_vm_op_fault,
3001 .open = hugetlb_vm_op_open,
3002 .close = hugetlb_vm_op_close,
3003 };
3004
3005 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3006 int writable)
3007 {
3008 pte_t entry;
3009
3010 if (writable) {
3011 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3012 vma->vm_page_prot)));
3013 } else {
3014 entry = huge_pte_wrprotect(mk_huge_pte(page,
3015 vma->vm_page_prot));
3016 }
3017 entry = pte_mkyoung(entry);
3018 entry = pte_mkhuge(entry);
3019 entry = arch_make_huge_pte(entry, vma, page, writable);
3020
3021 return entry;
3022 }
3023
3024 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3025 unsigned long address, pte_t *ptep)
3026 {
3027 pte_t entry;
3028
3029 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3030 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3031 update_mmu_cache(vma, address, ptep);
3032 }
3033
3034 static int is_hugetlb_entry_migration(pte_t pte)
3035 {
3036 swp_entry_t swp;
3037
3038 if (huge_pte_none(pte) || pte_present(pte))
3039 return 0;
3040 swp = pte_to_swp_entry(pte);
3041 if (non_swap_entry(swp) && is_migration_entry(swp))
3042 return 1;
3043 else
3044 return 0;
3045 }
3046
3047 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3048 {
3049 swp_entry_t swp;
3050
3051 if (huge_pte_none(pte) || pte_present(pte))
3052 return 0;
3053 swp = pte_to_swp_entry(pte);
3054 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3055 return 1;
3056 else
3057 return 0;
3058 }
3059
3060 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3061 struct vm_area_struct *vma)
3062 {
3063 pte_t *src_pte, *dst_pte, entry;
3064 struct page *ptepage;
3065 unsigned long addr;
3066 int cow;
3067 struct hstate *h = hstate_vma(vma);
3068 unsigned long sz = huge_page_size(h);
3069 unsigned long mmun_start; /* For mmu_notifiers */
3070 unsigned long mmun_end; /* For mmu_notifiers */
3071 int ret = 0;
3072
3073 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3074
3075 mmun_start = vma->vm_start;
3076 mmun_end = vma->vm_end;
3077 if (cow)
3078 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3079
3080 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3081 spinlock_t *src_ptl, *dst_ptl;
3082 src_pte = huge_pte_offset(src, addr);
3083 if (!src_pte)
3084 continue;
3085 dst_pte = huge_pte_alloc(dst, addr, sz);
3086 if (!dst_pte) {
3087 ret = -ENOMEM;
3088 break;
3089 }
3090
3091 /* If the pagetables are shared don't copy or take references */
3092 if (dst_pte == src_pte)
3093 continue;
3094
3095 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3096 src_ptl = huge_pte_lockptr(h, src, src_pte);
3097 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3098 entry = huge_ptep_get(src_pte);
3099 if (huge_pte_none(entry)) { /* skip none entry */
3100 ;
3101 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3102 is_hugetlb_entry_hwpoisoned(entry))) {
3103 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3104
3105 if (is_write_migration_entry(swp_entry) && cow) {
3106 /*
3107 * COW mappings require pages in both
3108 * parent and child to be set to read.
3109 */
3110 make_migration_entry_read(&swp_entry);
3111 entry = swp_entry_to_pte(swp_entry);
3112 set_huge_pte_at(src, addr, src_pte, entry);
3113 }
3114 set_huge_pte_at(dst, addr, dst_pte, entry);
3115 } else {
3116 if (cow) {
3117 huge_ptep_set_wrprotect(src, addr, src_pte);
3118 mmu_notifier_invalidate_range(src, mmun_start,
3119 mmun_end);
3120 }
3121 entry = huge_ptep_get(src_pte);
3122 ptepage = pte_page(entry);
3123 get_page(ptepage);
3124 page_dup_rmap(ptepage);
3125 set_huge_pte_at(dst, addr, dst_pte, entry);
3126 hugetlb_count_add(pages_per_huge_page(h), dst);
3127 }
3128 spin_unlock(src_ptl);
3129 spin_unlock(dst_ptl);
3130 }
3131
3132 if (cow)
3133 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3134
3135 return ret;
3136 }
3137
3138 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3139 unsigned long start, unsigned long end,
3140 struct page *ref_page)
3141 {
3142 int force_flush = 0;
3143 struct mm_struct *mm = vma->vm_mm;
3144 unsigned long address;
3145 pte_t *ptep;
3146 pte_t pte;
3147 spinlock_t *ptl;
3148 struct page *page;
3149 struct hstate *h = hstate_vma(vma);
3150 unsigned long sz = huge_page_size(h);
3151 const unsigned long mmun_start = start; /* For mmu_notifiers */
3152 const unsigned long mmun_end = end; /* For mmu_notifiers */
3153
3154 WARN_ON(!is_vm_hugetlb_page(vma));
3155 BUG_ON(start & ~huge_page_mask(h));
3156 BUG_ON(end & ~huge_page_mask(h));
3157
3158 tlb_start_vma(tlb, vma);
3159 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3160 address = start;
3161 again:
3162 for (; address < end; address += sz) {
3163 ptep = huge_pte_offset(mm, address);
3164 if (!ptep)
3165 continue;
3166
3167 ptl = huge_pte_lock(h, mm, ptep);
3168 if (huge_pmd_unshare(mm, &address, ptep))
3169 goto unlock;
3170
3171 pte = huge_ptep_get(ptep);
3172 if (huge_pte_none(pte))
3173 goto unlock;
3174
3175 /*
3176 * Migrating hugepage or HWPoisoned hugepage is already
3177 * unmapped and its refcount is dropped, so just clear pte here.
3178 */
3179 if (unlikely(!pte_present(pte))) {
3180 huge_pte_clear(mm, address, ptep);
3181 goto unlock;
3182 }
3183
3184 page = pte_page(pte);
3185 /*
3186 * If a reference page is supplied, it is because a specific
3187 * page is being unmapped, not a range. Ensure the page we
3188 * are about to unmap is the actual page of interest.
3189 */
3190 if (ref_page) {
3191 if (page != ref_page)
3192 goto unlock;
3193
3194 /*
3195 * Mark the VMA as having unmapped its page so that
3196 * future faults in this VMA will fail rather than
3197 * looking like data was lost
3198 */
3199 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3200 }
3201
3202 pte = huge_ptep_get_and_clear(mm, address, ptep);
3203 tlb_remove_tlb_entry(tlb, ptep, address);
3204 if (huge_pte_dirty(pte))
3205 set_page_dirty(page);
3206
3207 hugetlb_count_sub(pages_per_huge_page(h), mm);
3208 page_remove_rmap(page);
3209 force_flush = !__tlb_remove_page(tlb, page);
3210 if (force_flush) {
3211 address += sz;
3212 spin_unlock(ptl);
3213 break;
3214 }
3215 /* Bail out after unmapping reference page if supplied */
3216 if (ref_page) {
3217 spin_unlock(ptl);
3218 break;
3219 }
3220 unlock:
3221 spin_unlock(ptl);
3222 }
3223 /*
3224 * mmu_gather ran out of room to batch pages, we break out of
3225 * the PTE lock to avoid doing the potential expensive TLB invalidate
3226 * and page-free while holding it.
3227 */
3228 if (force_flush) {
3229 force_flush = 0;
3230 tlb_flush_mmu(tlb);
3231 if (address < end && !ref_page)
3232 goto again;
3233 }
3234 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3235 tlb_end_vma(tlb, vma);
3236 }
3237
3238 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3239 struct vm_area_struct *vma, unsigned long start,
3240 unsigned long end, struct page *ref_page)
3241 {
3242 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3243
3244 /*
3245 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3246 * test will fail on a vma being torn down, and not grab a page table
3247 * on its way out. We're lucky that the flag has such an appropriate
3248 * name, and can in fact be safely cleared here. We could clear it
3249 * before the __unmap_hugepage_range above, but all that's necessary
3250 * is to clear it before releasing the i_mmap_rwsem. This works
3251 * because in the context this is called, the VMA is about to be
3252 * destroyed and the i_mmap_rwsem is held.
3253 */
3254 vma->vm_flags &= ~VM_MAYSHARE;
3255 }
3256
3257 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3258 unsigned long end, struct page *ref_page)
3259 {
3260 struct mm_struct *mm;
3261 struct mmu_gather tlb;
3262
3263 mm = vma->vm_mm;
3264
3265 tlb_gather_mmu(&tlb, mm, start, end);
3266 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3267 tlb_finish_mmu(&tlb, start, end);
3268 }
3269
3270 /*
3271 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3272 * mappping it owns the reserve page for. The intention is to unmap the page
3273 * from other VMAs and let the children be SIGKILLed if they are faulting the
3274 * same region.
3275 */
3276 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3277 struct page *page, unsigned long address)
3278 {
3279 struct hstate *h = hstate_vma(vma);
3280 struct vm_area_struct *iter_vma;
3281 struct address_space *mapping;
3282 pgoff_t pgoff;
3283
3284 /*
3285 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3286 * from page cache lookup which is in HPAGE_SIZE units.
3287 */
3288 address = address & huge_page_mask(h);
3289 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3290 vma->vm_pgoff;
3291 mapping = file_inode(vma->vm_file)->i_mapping;
3292
3293 /*
3294 * Take the mapping lock for the duration of the table walk. As
3295 * this mapping should be shared between all the VMAs,
3296 * __unmap_hugepage_range() is called as the lock is already held
3297 */
3298 i_mmap_lock_write(mapping);
3299 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3300 /* Do not unmap the current VMA */
3301 if (iter_vma == vma)
3302 continue;
3303
3304 /*
3305 * Shared VMAs have their own reserves and do not affect
3306 * MAP_PRIVATE accounting but it is possible that a shared
3307 * VMA is using the same page so check and skip such VMAs.
3308 */
3309 if (iter_vma->vm_flags & VM_MAYSHARE)
3310 continue;
3311
3312 /*
3313 * Unmap the page from other VMAs without their own reserves.
3314 * They get marked to be SIGKILLed if they fault in these
3315 * areas. This is because a future no-page fault on this VMA
3316 * could insert a zeroed page instead of the data existing
3317 * from the time of fork. This would look like data corruption
3318 */
3319 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3320 unmap_hugepage_range(iter_vma, address,
3321 address + huge_page_size(h), page);
3322 }
3323 i_mmap_unlock_write(mapping);
3324 }
3325
3326 /*
3327 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3328 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3329 * cannot race with other handlers or page migration.
3330 * Keep the pte_same checks anyway to make transition from the mutex easier.
3331 */
3332 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3333 unsigned long address, pte_t *ptep, pte_t pte,
3334 struct page *pagecache_page, spinlock_t *ptl)
3335 {
3336 struct hstate *h = hstate_vma(vma);
3337 struct page *old_page, *new_page;
3338 int ret = 0, outside_reserve = 0;
3339 unsigned long mmun_start; /* For mmu_notifiers */
3340 unsigned long mmun_end; /* For mmu_notifiers */
3341
3342 old_page = pte_page(pte);
3343
3344 retry_avoidcopy:
3345 /* If no-one else is actually using this page, avoid the copy
3346 * and just make the page writable */
3347 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3348 page_move_anon_rmap(old_page, vma, address);
3349 set_huge_ptep_writable(vma, address, ptep);
3350 return 0;
3351 }
3352
3353 /*
3354 * If the process that created a MAP_PRIVATE mapping is about to
3355 * perform a COW due to a shared page count, attempt to satisfy
3356 * the allocation without using the existing reserves. The pagecache
3357 * page is used to determine if the reserve at this address was
3358 * consumed or not. If reserves were used, a partial faulted mapping
3359 * at the time of fork() could consume its reserves on COW instead
3360 * of the full address range.
3361 */
3362 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3363 old_page != pagecache_page)
3364 outside_reserve = 1;
3365
3366 page_cache_get(old_page);
3367
3368 /*
3369 * Drop page table lock as buddy allocator may be called. It will
3370 * be acquired again before returning to the caller, as expected.
3371 */
3372 spin_unlock(ptl);
3373 new_page = alloc_huge_page(vma, address, outside_reserve);
3374
3375 if (IS_ERR(new_page)) {
3376 /*
3377 * If a process owning a MAP_PRIVATE mapping fails to COW,
3378 * it is due to references held by a child and an insufficient
3379 * huge page pool. To guarantee the original mappers
3380 * reliability, unmap the page from child processes. The child
3381 * may get SIGKILLed if it later faults.
3382 */
3383 if (outside_reserve) {
3384 page_cache_release(old_page);
3385 BUG_ON(huge_pte_none(pte));
3386 unmap_ref_private(mm, vma, old_page, address);
3387 BUG_ON(huge_pte_none(pte));
3388 spin_lock(ptl);
3389 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3390 if (likely(ptep &&
3391 pte_same(huge_ptep_get(ptep), pte)))
3392 goto retry_avoidcopy;
3393 /*
3394 * race occurs while re-acquiring page table
3395 * lock, and our job is done.
3396 */
3397 return 0;
3398 }
3399
3400 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3401 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3402 goto out_release_old;
3403 }
3404
3405 /*
3406 * When the original hugepage is shared one, it does not have
3407 * anon_vma prepared.
3408 */
3409 if (unlikely(anon_vma_prepare(vma))) {
3410 ret = VM_FAULT_OOM;
3411 goto out_release_all;
3412 }
3413
3414 copy_user_huge_page(new_page, old_page, address, vma,
3415 pages_per_huge_page(h));
3416 __SetPageUptodate(new_page);
3417 set_page_huge_active(new_page);
3418
3419 mmun_start = address & huge_page_mask(h);
3420 mmun_end = mmun_start + huge_page_size(h);
3421 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3422
3423 /*
3424 * Retake the page table lock to check for racing updates
3425 * before the page tables are altered
3426 */
3427 spin_lock(ptl);
3428 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3429 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3430 ClearPagePrivate(new_page);
3431
3432 /* Break COW */
3433 huge_ptep_clear_flush(vma, address, ptep);
3434 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3435 set_huge_pte_at(mm, address, ptep,
3436 make_huge_pte(vma, new_page, 1));
3437 page_remove_rmap(old_page);
3438 hugepage_add_new_anon_rmap(new_page, vma, address);
3439 /* Make the old page be freed below */
3440 new_page = old_page;
3441 }
3442 spin_unlock(ptl);
3443 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3444 out_release_all:
3445 page_cache_release(new_page);
3446 out_release_old:
3447 page_cache_release(old_page);
3448
3449 spin_lock(ptl); /* Caller expects lock to be held */
3450 return ret;
3451 }
3452
3453 /* Return the pagecache page at a given address within a VMA */
3454 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3455 struct vm_area_struct *vma, unsigned long address)
3456 {
3457 struct address_space *mapping;
3458 pgoff_t idx;
3459
3460 mapping = vma->vm_file->f_mapping;
3461 idx = vma_hugecache_offset(h, vma, address);
3462
3463 return find_lock_page(mapping, idx);
3464 }
3465
3466 /*
3467 * Return whether there is a pagecache page to back given address within VMA.
3468 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3469 */
3470 static bool hugetlbfs_pagecache_present(struct hstate *h,
3471 struct vm_area_struct *vma, unsigned long address)
3472 {
3473 struct address_space *mapping;
3474 pgoff_t idx;
3475 struct page *page;
3476
3477 mapping = vma->vm_file->f_mapping;
3478 idx = vma_hugecache_offset(h, vma, address);
3479
3480 page = find_get_page(mapping, idx);
3481 if (page)
3482 put_page(page);
3483 return page != NULL;
3484 }
3485
3486 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3487 pgoff_t idx)
3488 {
3489 struct inode *inode = mapping->host;
3490 struct hstate *h = hstate_inode(inode);
3491 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3492
3493 if (err)
3494 return err;
3495 ClearPagePrivate(page);
3496
3497 spin_lock(&inode->i_lock);
3498 inode->i_blocks += blocks_per_huge_page(h);
3499 spin_unlock(&inode->i_lock);
3500 return 0;
3501 }
3502
3503 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3504 struct address_space *mapping, pgoff_t idx,
3505 unsigned long address, pte_t *ptep, unsigned int flags)
3506 {
3507 struct hstate *h = hstate_vma(vma);
3508 int ret = VM_FAULT_SIGBUS;
3509 int anon_rmap = 0;
3510 unsigned long size;
3511 struct page *page;
3512 pte_t new_pte;
3513 spinlock_t *ptl;
3514
3515 /*
3516 * Currently, we are forced to kill the process in the event the
3517 * original mapper has unmapped pages from the child due to a failed
3518 * COW. Warn that such a situation has occurred as it may not be obvious
3519 */
3520 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3521 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3522 current->pid);
3523 return ret;
3524 }
3525
3526 /*
3527 * Use page lock to guard against racing truncation
3528 * before we get page_table_lock.
3529 */
3530 retry:
3531 page = find_lock_page(mapping, idx);
3532 if (!page) {
3533 size = i_size_read(mapping->host) >> huge_page_shift(h);
3534 if (idx >= size)
3535 goto out;
3536 page = alloc_huge_page(vma, address, 0);
3537 if (IS_ERR(page)) {
3538 ret = PTR_ERR(page);
3539 if (ret == -ENOMEM)
3540 ret = VM_FAULT_OOM;
3541 else
3542 ret = VM_FAULT_SIGBUS;
3543 goto out;
3544 }
3545 clear_huge_page(page, address, pages_per_huge_page(h));
3546 __SetPageUptodate(page);
3547 set_page_huge_active(page);
3548
3549 if (vma->vm_flags & VM_MAYSHARE) {
3550 int err = huge_add_to_page_cache(page, mapping, idx);
3551 if (err) {
3552 put_page(page);
3553 if (err == -EEXIST)
3554 goto retry;
3555 goto out;
3556 }
3557 } else {
3558 lock_page(page);
3559 if (unlikely(anon_vma_prepare(vma))) {
3560 ret = VM_FAULT_OOM;
3561 goto backout_unlocked;
3562 }
3563 anon_rmap = 1;
3564 }
3565 } else {
3566 /*
3567 * If memory error occurs between mmap() and fault, some process
3568 * don't have hwpoisoned swap entry for errored virtual address.
3569 * So we need to block hugepage fault by PG_hwpoison bit check.
3570 */
3571 if (unlikely(PageHWPoison(page))) {
3572 ret = VM_FAULT_HWPOISON |
3573 VM_FAULT_SET_HINDEX(hstate_index(h));
3574 goto backout_unlocked;
3575 }
3576 }
3577
3578 /*
3579 * If we are going to COW a private mapping later, we examine the
3580 * pending reservations for this page now. This will ensure that
3581 * any allocations necessary to record that reservation occur outside
3582 * the spinlock.
3583 */
3584 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3585 if (vma_needs_reservation(h, vma, address) < 0) {
3586 ret = VM_FAULT_OOM;
3587 goto backout_unlocked;
3588 }
3589 /* Just decrements count, does not deallocate */
3590 vma_end_reservation(h, vma, address);
3591 }
3592
3593 ptl = huge_pte_lockptr(h, mm, ptep);
3594 spin_lock(ptl);
3595 size = i_size_read(mapping->host) >> huge_page_shift(h);
3596 if (idx >= size)
3597 goto backout;
3598
3599 ret = 0;
3600 if (!huge_pte_none(huge_ptep_get(ptep)))
3601 goto backout;
3602
3603 if (anon_rmap) {
3604 ClearPagePrivate(page);
3605 hugepage_add_new_anon_rmap(page, vma, address);
3606 } else
3607 page_dup_rmap(page);
3608 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3609 && (vma->vm_flags & VM_SHARED)));
3610 set_huge_pte_at(mm, address, ptep, new_pte);
3611
3612 hugetlb_count_add(pages_per_huge_page(h), mm);
3613 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3614 /* Optimization, do the COW without a second fault */
3615 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3616 }
3617
3618 spin_unlock(ptl);
3619 unlock_page(page);
3620 out:
3621 return ret;
3622
3623 backout:
3624 spin_unlock(ptl);
3625 backout_unlocked:
3626 unlock_page(page);
3627 put_page(page);
3628 goto out;
3629 }
3630
3631 #ifdef CONFIG_SMP
3632 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3633 struct vm_area_struct *vma,
3634 struct address_space *mapping,
3635 pgoff_t idx, unsigned long address)
3636 {
3637 unsigned long key[2];
3638 u32 hash;
3639
3640 if (vma->vm_flags & VM_SHARED) {
3641 key[0] = (unsigned long) mapping;
3642 key[1] = idx;
3643 } else {
3644 key[0] = (unsigned long) mm;
3645 key[1] = address >> huge_page_shift(h);
3646 }
3647
3648 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3649
3650 return hash & (num_fault_mutexes - 1);
3651 }
3652 #else
3653 /*
3654 * For uniprocesor systems we always use a single mutex, so just
3655 * return 0 and avoid the hashing overhead.
3656 */
3657 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3658 struct vm_area_struct *vma,
3659 struct address_space *mapping,
3660 pgoff_t idx, unsigned long address)
3661 {
3662 return 0;
3663 }
3664 #endif
3665
3666 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3667 unsigned long address, unsigned int flags)
3668 {
3669 pte_t *ptep, entry;
3670 spinlock_t *ptl;
3671 int ret;
3672 u32 hash;
3673 pgoff_t idx;
3674 struct page *page = NULL;
3675 struct page *pagecache_page = NULL;
3676 struct hstate *h = hstate_vma(vma);
3677 struct address_space *mapping;
3678 int need_wait_lock = 0;
3679
3680 address &= huge_page_mask(h);
3681
3682 ptep = huge_pte_offset(mm, address);
3683 if (ptep) {
3684 entry = huge_ptep_get(ptep);
3685 if (unlikely(is_hugetlb_entry_migration(entry))) {
3686 migration_entry_wait_huge(vma, mm, ptep);
3687 return 0;
3688 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3689 return VM_FAULT_HWPOISON_LARGE |
3690 VM_FAULT_SET_HINDEX(hstate_index(h));
3691 }
3692
3693 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3694 if (!ptep)
3695 return VM_FAULT_OOM;
3696
3697 mapping = vma->vm_file->f_mapping;
3698 idx = vma_hugecache_offset(h, vma, address);
3699
3700 /*
3701 * Serialize hugepage allocation and instantiation, so that we don't
3702 * get spurious allocation failures if two CPUs race to instantiate
3703 * the same page in the page cache.
3704 */
3705 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3706 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3707
3708 entry = huge_ptep_get(ptep);
3709 if (huge_pte_none(entry)) {
3710 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3711 goto out_mutex;
3712 }
3713
3714 ret = 0;
3715
3716 /*
3717 * entry could be a migration/hwpoison entry at this point, so this
3718 * check prevents the kernel from going below assuming that we have
3719 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3720 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3721 * handle it.
3722 */
3723 if (!pte_present(entry))
3724 goto out_mutex;
3725
3726 /*
3727 * If we are going to COW the mapping later, we examine the pending
3728 * reservations for this page now. This will ensure that any
3729 * allocations necessary to record that reservation occur outside the
3730 * spinlock. For private mappings, we also lookup the pagecache
3731 * page now as it is used to determine if a reservation has been
3732 * consumed.
3733 */
3734 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3735 if (vma_needs_reservation(h, vma, address) < 0) {
3736 ret = VM_FAULT_OOM;
3737 goto out_mutex;
3738 }
3739 /* Just decrements count, does not deallocate */
3740 vma_end_reservation(h, vma, address);
3741
3742 if (!(vma->vm_flags & VM_MAYSHARE))
3743 pagecache_page = hugetlbfs_pagecache_page(h,
3744 vma, address);
3745 }
3746
3747 ptl = huge_pte_lock(h, mm, ptep);
3748
3749 /* Check for a racing update before calling hugetlb_cow */
3750 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3751 goto out_ptl;
3752
3753 /*
3754 * hugetlb_cow() requires page locks of pte_page(entry) and
3755 * pagecache_page, so here we need take the former one
3756 * when page != pagecache_page or !pagecache_page.
3757 */
3758 page = pte_page(entry);
3759 if (page != pagecache_page)
3760 if (!trylock_page(page)) {
3761 need_wait_lock = 1;
3762 goto out_ptl;
3763 }
3764
3765 get_page(page);
3766
3767 if (flags & FAULT_FLAG_WRITE) {
3768 if (!huge_pte_write(entry)) {
3769 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3770 pagecache_page, ptl);
3771 goto out_put_page;
3772 }
3773 entry = huge_pte_mkdirty(entry);
3774 }
3775 entry = pte_mkyoung(entry);
3776 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3777 flags & FAULT_FLAG_WRITE))
3778 update_mmu_cache(vma, address, ptep);
3779 out_put_page:
3780 if (page != pagecache_page)
3781 unlock_page(page);
3782 put_page(page);
3783 out_ptl:
3784 spin_unlock(ptl);
3785
3786 if (pagecache_page) {
3787 unlock_page(pagecache_page);
3788 put_page(pagecache_page);
3789 }
3790 out_mutex:
3791 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3792 /*
3793 * Generally it's safe to hold refcount during waiting page lock. But
3794 * here we just wait to defer the next page fault to avoid busy loop and
3795 * the page is not used after unlocked before returning from the current
3796 * page fault. So we are safe from accessing freed page, even if we wait
3797 * here without taking refcount.
3798 */
3799 if (need_wait_lock)
3800 wait_on_page_locked(page);
3801 return ret;
3802 }
3803
3804 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3805 struct page **pages, struct vm_area_struct **vmas,
3806 unsigned long *position, unsigned long *nr_pages,
3807 long i, unsigned int flags)
3808 {
3809 unsigned long pfn_offset;
3810 unsigned long vaddr = *position;
3811 unsigned long remainder = *nr_pages;
3812 struct hstate *h = hstate_vma(vma);
3813
3814 while (vaddr < vma->vm_end && remainder) {
3815 pte_t *pte;
3816 spinlock_t *ptl = NULL;
3817 int absent;
3818 struct page *page;
3819
3820 /*
3821 * If we have a pending SIGKILL, don't keep faulting pages and
3822 * potentially allocating memory.
3823 */
3824 if (unlikely(fatal_signal_pending(current))) {
3825 remainder = 0;
3826 break;
3827 }
3828
3829 /*
3830 * Some archs (sparc64, sh*) have multiple pte_ts to
3831 * each hugepage. We have to make sure we get the
3832 * first, for the page indexing below to work.
3833 *
3834 * Note that page table lock is not held when pte is null.
3835 */
3836 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3837 if (pte)
3838 ptl = huge_pte_lock(h, mm, pte);
3839 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3840
3841 /*
3842 * When coredumping, it suits get_dump_page if we just return
3843 * an error where there's an empty slot with no huge pagecache
3844 * to back it. This way, we avoid allocating a hugepage, and
3845 * the sparse dumpfile avoids allocating disk blocks, but its
3846 * huge holes still show up with zeroes where they need to be.
3847 */
3848 if (absent && (flags & FOLL_DUMP) &&
3849 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3850 if (pte)
3851 spin_unlock(ptl);
3852 remainder = 0;
3853 break;
3854 }
3855
3856 /*
3857 * We need call hugetlb_fault for both hugepages under migration
3858 * (in which case hugetlb_fault waits for the migration,) and
3859 * hwpoisoned hugepages (in which case we need to prevent the
3860 * caller from accessing to them.) In order to do this, we use
3861 * here is_swap_pte instead of is_hugetlb_entry_migration and
3862 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3863 * both cases, and because we can't follow correct pages
3864 * directly from any kind of swap entries.
3865 */
3866 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3867 ((flags & FOLL_WRITE) &&
3868 !huge_pte_write(huge_ptep_get(pte)))) {
3869 int ret;
3870
3871 if (pte)
3872 spin_unlock(ptl);
3873 ret = hugetlb_fault(mm, vma, vaddr,
3874 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3875 if (!(ret & VM_FAULT_ERROR))
3876 continue;
3877
3878 remainder = 0;
3879 break;
3880 }
3881
3882 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3883 page = pte_page(huge_ptep_get(pte));
3884 same_page:
3885 if (pages) {
3886 pages[i] = mem_map_offset(page, pfn_offset);
3887 get_page_foll(pages[i]);
3888 }
3889
3890 if (vmas)
3891 vmas[i] = vma;
3892
3893 vaddr += PAGE_SIZE;
3894 ++pfn_offset;
3895 --remainder;
3896 ++i;
3897 if (vaddr < vma->vm_end && remainder &&
3898 pfn_offset < pages_per_huge_page(h)) {
3899 /*
3900 * We use pfn_offset to avoid touching the pageframes
3901 * of this compound page.
3902 */
3903 goto same_page;
3904 }
3905 spin_unlock(ptl);
3906 }
3907 *nr_pages = remainder;
3908 *position = vaddr;
3909
3910 return i ? i : -EFAULT;
3911 }
3912
3913 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3914 unsigned long address, unsigned long end, pgprot_t newprot)
3915 {
3916 struct mm_struct *mm = vma->vm_mm;
3917 unsigned long start = address;
3918 pte_t *ptep;
3919 pte_t pte;
3920 struct hstate *h = hstate_vma(vma);
3921 unsigned long pages = 0;
3922
3923 BUG_ON(address >= end);
3924 flush_cache_range(vma, address, end);
3925
3926 mmu_notifier_invalidate_range_start(mm, start, end);
3927 i_mmap_lock_write(vma->vm_file->f_mapping);
3928 for (; address < end; address += huge_page_size(h)) {
3929 spinlock_t *ptl;
3930 ptep = huge_pte_offset(mm, address);
3931 if (!ptep)
3932 continue;
3933 ptl = huge_pte_lock(h, mm, ptep);
3934 if (huge_pmd_unshare(mm, &address, ptep)) {
3935 pages++;
3936 spin_unlock(ptl);
3937 continue;
3938 }
3939 pte = huge_ptep_get(ptep);
3940 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3941 spin_unlock(ptl);
3942 continue;
3943 }
3944 if (unlikely(is_hugetlb_entry_migration(pte))) {
3945 swp_entry_t entry = pte_to_swp_entry(pte);
3946
3947 if (is_write_migration_entry(entry)) {
3948 pte_t newpte;
3949
3950 make_migration_entry_read(&entry);
3951 newpte = swp_entry_to_pte(entry);
3952 set_huge_pte_at(mm, address, ptep, newpte);
3953 pages++;
3954 }
3955 spin_unlock(ptl);
3956 continue;
3957 }
3958 if (!huge_pte_none(pte)) {
3959 pte = huge_ptep_get_and_clear(mm, address, ptep);
3960 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3961 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3962 set_huge_pte_at(mm, address, ptep, pte);
3963 pages++;
3964 }
3965 spin_unlock(ptl);
3966 }
3967 /*
3968 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3969 * may have cleared our pud entry and done put_page on the page table:
3970 * once we release i_mmap_rwsem, another task can do the final put_page
3971 * and that page table be reused and filled with junk.
3972 */
3973 flush_tlb_range(vma, start, end);
3974 mmu_notifier_invalidate_range(mm, start, end);
3975 i_mmap_unlock_write(vma->vm_file->f_mapping);
3976 mmu_notifier_invalidate_range_end(mm, start, end);
3977
3978 return pages << h->order;
3979 }
3980
3981 int hugetlb_reserve_pages(struct inode *inode,
3982 long from, long to,
3983 struct vm_area_struct *vma,
3984 vm_flags_t vm_flags)
3985 {
3986 long ret, chg;
3987 struct hstate *h = hstate_inode(inode);
3988 struct hugepage_subpool *spool = subpool_inode(inode);
3989 struct resv_map *resv_map;
3990 long gbl_reserve;
3991
3992 /*
3993 * Only apply hugepage reservation if asked. At fault time, an
3994 * attempt will be made for VM_NORESERVE to allocate a page
3995 * without using reserves
3996 */
3997 if (vm_flags & VM_NORESERVE)
3998 return 0;
3999
4000 /*
4001 * Shared mappings base their reservation on the number of pages that
4002 * are already allocated on behalf of the file. Private mappings need
4003 * to reserve the full area even if read-only as mprotect() may be
4004 * called to make the mapping read-write. Assume !vma is a shm mapping
4005 */
4006 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4007 resv_map = inode_resv_map(inode);
4008
4009 chg = region_chg(resv_map, from, to);
4010
4011 } else {
4012 resv_map = resv_map_alloc();
4013 if (!resv_map)
4014 return -ENOMEM;
4015
4016 chg = to - from;
4017
4018 set_vma_resv_map(vma, resv_map);
4019 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4020 }
4021
4022 if (chg < 0) {
4023 ret = chg;
4024 goto out_err;
4025 }
4026
4027 /*
4028 * There must be enough pages in the subpool for the mapping. If
4029 * the subpool has a minimum size, there may be some global
4030 * reservations already in place (gbl_reserve).
4031 */
4032 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4033 if (gbl_reserve < 0) {
4034 ret = -ENOSPC;
4035 goto out_err;
4036 }
4037
4038 /*
4039 * Check enough hugepages are available for the reservation.
4040 * Hand the pages back to the subpool if there are not
4041 */
4042 ret = hugetlb_acct_memory(h, gbl_reserve);
4043 if (ret < 0) {
4044 /* put back original number of pages, chg */
4045 (void)hugepage_subpool_put_pages(spool, chg);
4046 goto out_err;
4047 }
4048
4049 /*
4050 * Account for the reservations made. Shared mappings record regions
4051 * that have reservations as they are shared by multiple VMAs.
4052 * When the last VMA disappears, the region map says how much
4053 * the reservation was and the page cache tells how much of
4054 * the reservation was consumed. Private mappings are per-VMA and
4055 * only the consumed reservations are tracked. When the VMA
4056 * disappears, the original reservation is the VMA size and the
4057 * consumed reservations are stored in the map. Hence, nothing
4058 * else has to be done for private mappings here
4059 */
4060 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4061 long add = region_add(resv_map, from, to);
4062
4063 if (unlikely(chg > add)) {
4064 /*
4065 * pages in this range were added to the reserve
4066 * map between region_chg and region_add. This
4067 * indicates a race with alloc_huge_page. Adjust
4068 * the subpool and reserve counts modified above
4069 * based on the difference.
4070 */
4071 long rsv_adjust;
4072
4073 rsv_adjust = hugepage_subpool_put_pages(spool,
4074 chg - add);
4075 hugetlb_acct_memory(h, -rsv_adjust);
4076 }
4077 }
4078 return 0;
4079 out_err:
4080 if (!vma || vma->vm_flags & VM_MAYSHARE)
4081 region_abort(resv_map, from, to);
4082 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4083 kref_put(&resv_map->refs, resv_map_release);
4084 return ret;
4085 }
4086
4087 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4088 long freed)
4089 {
4090 struct hstate *h = hstate_inode(inode);
4091 struct resv_map *resv_map = inode_resv_map(inode);
4092 long chg = 0;
4093 struct hugepage_subpool *spool = subpool_inode(inode);
4094 long gbl_reserve;
4095
4096 if (resv_map) {
4097 chg = region_del(resv_map, start, end);
4098 /*
4099 * region_del() can fail in the rare case where a region
4100 * must be split and another region descriptor can not be
4101 * allocated. If end == LONG_MAX, it will not fail.
4102 */
4103 if (chg < 0)
4104 return chg;
4105 }
4106
4107 spin_lock(&inode->i_lock);
4108 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4109 spin_unlock(&inode->i_lock);
4110
4111 /*
4112 * If the subpool has a minimum size, the number of global
4113 * reservations to be released may be adjusted.
4114 */
4115 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4116 hugetlb_acct_memory(h, -gbl_reserve);
4117
4118 return 0;
4119 }
4120
4121 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4122 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4123 struct vm_area_struct *vma,
4124 unsigned long addr, pgoff_t idx)
4125 {
4126 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4127 svma->vm_start;
4128 unsigned long sbase = saddr & PUD_MASK;
4129 unsigned long s_end = sbase + PUD_SIZE;
4130
4131 /* Allow segments to share if only one is marked locked */
4132 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
4133 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
4134
4135 /*
4136 * match the virtual addresses, permission and the alignment of the
4137 * page table page.
4138 */
4139 if (pmd_index(addr) != pmd_index(saddr) ||
4140 vm_flags != svm_flags ||
4141 sbase < svma->vm_start || svma->vm_end < s_end)
4142 return 0;
4143
4144 return saddr;
4145 }
4146
4147 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4148 {
4149 unsigned long base = addr & PUD_MASK;
4150 unsigned long end = base + PUD_SIZE;
4151
4152 /*
4153 * check on proper vm_flags and page table alignment
4154 */
4155 if (vma->vm_flags & VM_MAYSHARE &&
4156 vma->vm_start <= base && end <= vma->vm_end)
4157 return true;
4158 return false;
4159 }
4160
4161 /*
4162 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4163 * and returns the corresponding pte. While this is not necessary for the
4164 * !shared pmd case because we can allocate the pmd later as well, it makes the
4165 * code much cleaner. pmd allocation is essential for the shared case because
4166 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4167 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4168 * bad pmd for sharing.
4169 */
4170 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4171 {
4172 struct vm_area_struct *vma = find_vma(mm, addr);
4173 struct address_space *mapping = vma->vm_file->f_mapping;
4174 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4175 vma->vm_pgoff;
4176 struct vm_area_struct *svma;
4177 unsigned long saddr;
4178 pte_t *spte = NULL;
4179 pte_t *pte;
4180 spinlock_t *ptl;
4181
4182 if (!vma_shareable(vma, addr))
4183 return (pte_t *)pmd_alloc(mm, pud, addr);
4184
4185 i_mmap_lock_write(mapping);
4186 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4187 if (svma == vma)
4188 continue;
4189
4190 saddr = page_table_shareable(svma, vma, addr, idx);
4191 if (saddr) {
4192 spte = huge_pte_offset(svma->vm_mm, saddr);
4193 if (spte) {
4194 mm_inc_nr_pmds(mm);
4195 get_page(virt_to_page(spte));
4196 break;
4197 }
4198 }
4199 }
4200
4201 if (!spte)
4202 goto out;
4203
4204 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4205 spin_lock(ptl);
4206 if (pud_none(*pud)) {
4207 pud_populate(mm, pud,
4208 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4209 } else {
4210 put_page(virt_to_page(spte));
4211 mm_inc_nr_pmds(mm);
4212 }
4213 spin_unlock(ptl);
4214 out:
4215 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4216 i_mmap_unlock_write(mapping);
4217 return pte;
4218 }
4219
4220 /*
4221 * unmap huge page backed by shared pte.
4222 *
4223 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4224 * indicated by page_count > 1, unmap is achieved by clearing pud and
4225 * decrementing the ref count. If count == 1, the pte page is not shared.
4226 *
4227 * called with page table lock held.
4228 *
4229 * returns: 1 successfully unmapped a shared pte page
4230 * 0 the underlying pte page is not shared, or it is the last user
4231 */
4232 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4233 {
4234 pgd_t *pgd = pgd_offset(mm, *addr);
4235 pud_t *pud = pud_offset(pgd, *addr);
4236
4237 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4238 if (page_count(virt_to_page(ptep)) == 1)
4239 return 0;
4240
4241 pud_clear(pud);
4242 put_page(virt_to_page(ptep));
4243 mm_dec_nr_pmds(mm);
4244 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4245 return 1;
4246 }
4247 #define want_pmd_share() (1)
4248 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4249 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4250 {
4251 return NULL;
4252 }
4253
4254 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4255 {
4256 return 0;
4257 }
4258 #define want_pmd_share() (0)
4259 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4260
4261 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4262 pte_t *huge_pte_alloc(struct mm_struct *mm,
4263 unsigned long addr, unsigned long sz)
4264 {
4265 pgd_t *pgd;
4266 pud_t *pud;
4267 pte_t *pte = NULL;
4268
4269 pgd = pgd_offset(mm, addr);
4270 pud = pud_alloc(mm, pgd, addr);
4271 if (pud) {
4272 if (sz == PUD_SIZE) {
4273 pte = (pte_t *)pud;
4274 } else {
4275 BUG_ON(sz != PMD_SIZE);
4276 if (want_pmd_share() && pud_none(*pud))
4277 pte = huge_pmd_share(mm, addr, pud);
4278 else
4279 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4280 }
4281 }
4282 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4283
4284 return pte;
4285 }
4286
4287 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4288 {
4289 pgd_t *pgd;
4290 pud_t *pud;
4291 pmd_t *pmd = NULL;
4292
4293 pgd = pgd_offset(mm, addr);
4294 if (pgd_present(*pgd)) {
4295 pud = pud_offset(pgd, addr);
4296 if (pud_present(*pud)) {
4297 if (pud_huge(*pud))
4298 return (pte_t *)pud;
4299 pmd = pmd_offset(pud, addr);
4300 }
4301 }
4302 return (pte_t *) pmd;
4303 }
4304
4305 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4306
4307 /*
4308 * These functions are overwritable if your architecture needs its own
4309 * behavior.
4310 */
4311 struct page * __weak
4312 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4313 int write)
4314 {
4315 return ERR_PTR(-EINVAL);
4316 }
4317
4318 struct page * __weak
4319 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4320 pmd_t *pmd, int flags)
4321 {
4322 struct page *page = NULL;
4323 spinlock_t *ptl;
4324 retry:
4325 ptl = pmd_lockptr(mm, pmd);
4326 spin_lock(ptl);
4327 /*
4328 * make sure that the address range covered by this pmd is not
4329 * unmapped from other threads.
4330 */
4331 if (!pmd_huge(*pmd))
4332 goto out;
4333 if (pmd_present(*pmd)) {
4334 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4335 if (flags & FOLL_GET)
4336 get_page(page);
4337 } else {
4338 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4339 spin_unlock(ptl);
4340 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4341 goto retry;
4342 }
4343 /*
4344 * hwpoisoned entry is treated as no_page_table in
4345 * follow_page_mask().
4346 */
4347 }
4348 out:
4349 spin_unlock(ptl);
4350 return page;
4351 }
4352
4353 struct page * __weak
4354 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4355 pud_t *pud, int flags)
4356 {
4357 if (flags & FOLL_GET)
4358 return NULL;
4359
4360 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4361 }
4362
4363 #ifdef CONFIG_MEMORY_FAILURE
4364
4365 /*
4366 * This function is called from memory failure code.
4367 * Assume the caller holds page lock of the head page.
4368 */
4369 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4370 {
4371 struct hstate *h = page_hstate(hpage);
4372 int nid = page_to_nid(hpage);
4373 int ret = -EBUSY;
4374
4375 spin_lock(&hugetlb_lock);
4376 /*
4377 * Just checking !page_huge_active is not enough, because that could be
4378 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4379 */
4380 if (!page_huge_active(hpage) && !page_count(hpage)) {
4381 /*
4382 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4383 * but dangling hpage->lru can trigger list-debug warnings
4384 * (this happens when we call unpoison_memory() on it),
4385 * so let it point to itself with list_del_init().
4386 */
4387 list_del_init(&hpage->lru);
4388 set_page_refcounted(hpage);
4389 h->free_huge_pages--;
4390 h->free_huge_pages_node[nid]--;
4391 ret = 0;
4392 }
4393 spin_unlock(&hugetlb_lock);
4394 return ret;
4395 }
4396 #endif
4397
4398 bool isolate_huge_page(struct page *page, struct list_head *list)
4399 {
4400 bool ret = true;
4401
4402 VM_BUG_ON_PAGE(!PageHead(page), page);
4403 spin_lock(&hugetlb_lock);
4404 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4405 ret = false;
4406 goto unlock;
4407 }
4408 clear_page_huge_active(page);
4409 list_move_tail(&page->lru, list);
4410 unlock:
4411 spin_unlock(&hugetlb_lock);
4412 return ret;
4413 }
4414
4415 void putback_active_hugepage(struct page *page)
4416 {
4417 VM_BUG_ON_PAGE(!PageHead(page), page);
4418 spin_lock(&hugetlb_lock);
4419 set_page_huge_active(page);
4420 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4421 spin_unlock(&hugetlb_lock);
4422 put_page(page);
4423 }