]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/hugetlb.c
UBUNTU: link-to-tracker: update tracking bug
[mirror_ubuntu-hirsute-kernel.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
72 */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 static inline bool PageHugeFreed(struct page *head)
83 {
84 return page_private(head + 4) == -1UL;
85 }
86
87 static inline void SetPageHugeFreed(struct page *head)
88 {
89 set_page_private(head + 4, -1UL);
90 }
91
92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94 set_page_private(head + 4, 0);
95 }
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101 {
102 bool free = (spool->count == 0) && (spool->used_hpages == 0);
103
104 spin_unlock(&spool->lock);
105
106 /* If no pages are used, and no other handles to the subpool
107 * remain, give up any reservations based on minimum size and
108 * free the subpool */
109 if (free) {
110 if (spool->min_hpages != -1)
111 hugetlb_acct_memory(spool->hstate,
112 -spool->min_hpages);
113 kfree(spool);
114 }
115 }
116
117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118 long min_hpages)
119 {
120 struct hugepage_subpool *spool;
121
122 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123 if (!spool)
124 return NULL;
125
126 spin_lock_init(&spool->lock);
127 spool->count = 1;
128 spool->max_hpages = max_hpages;
129 spool->hstate = h;
130 spool->min_hpages = min_hpages;
131
132 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133 kfree(spool);
134 return NULL;
135 }
136 spool->rsv_hpages = min_hpages;
137
138 return spool;
139 }
140
141 void hugepage_put_subpool(struct hugepage_subpool *spool)
142 {
143 spin_lock(&spool->lock);
144 BUG_ON(!spool->count);
145 spool->count--;
146 unlock_or_release_subpool(spool);
147 }
148
149 /*
150 * Subpool accounting for allocating and reserving pages.
151 * Return -ENOMEM if there are not enough resources to satisfy the
152 * request. Otherwise, return the number of pages by which the
153 * global pools must be adjusted (upward). The returned value may
154 * only be different than the passed value (delta) in the case where
155 * a subpool minimum size must be maintained.
156 */
157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158 long delta)
159 {
160 long ret = delta;
161
162 if (!spool)
163 return ret;
164
165 spin_lock(&spool->lock);
166
167 if (spool->max_hpages != -1) { /* maximum size accounting */
168 if ((spool->used_hpages + delta) <= spool->max_hpages)
169 spool->used_hpages += delta;
170 else {
171 ret = -ENOMEM;
172 goto unlock_ret;
173 }
174 }
175
176 /* minimum size accounting */
177 if (spool->min_hpages != -1 && spool->rsv_hpages) {
178 if (delta > spool->rsv_hpages) {
179 /*
180 * Asking for more reserves than those already taken on
181 * behalf of subpool. Return difference.
182 */
183 ret = delta - spool->rsv_hpages;
184 spool->rsv_hpages = 0;
185 } else {
186 ret = 0; /* reserves already accounted for */
187 spool->rsv_hpages -= delta;
188 }
189 }
190
191 unlock_ret:
192 spin_unlock(&spool->lock);
193 return ret;
194 }
195
196 /*
197 * Subpool accounting for freeing and unreserving pages.
198 * Return the number of global page reservations that must be dropped.
199 * The return value may only be different than the passed value (delta)
200 * in the case where a subpool minimum size must be maintained.
201 */
202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203 long delta)
204 {
205 long ret = delta;
206
207 if (!spool)
208 return delta;
209
210 spin_lock(&spool->lock);
211
212 if (spool->max_hpages != -1) /* maximum size accounting */
213 spool->used_hpages -= delta;
214
215 /* minimum size accounting */
216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217 if (spool->rsv_hpages + delta <= spool->min_hpages)
218 ret = 0;
219 else
220 ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222 spool->rsv_hpages += delta;
223 if (spool->rsv_hpages > spool->min_hpages)
224 spool->rsv_hpages = spool->min_hpages;
225 }
226
227 /*
228 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 * quota reference, free it now.
230 */
231 unlock_or_release_subpool(spool);
232
233 return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238 return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243 return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247 * it for use.
248 */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252 struct file_region *nrg = NULL;
253
254 VM_BUG_ON(resv->region_cache_count <= 0);
255
256 resv->region_cache_count--;
257 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258 list_del(&nrg->link);
259
260 nrg->from = from;
261 nrg->to = to;
262
263 return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270 nrg->reservation_counter = rg->reservation_counter;
271 nrg->css = rg->css;
272 if (rg->css)
273 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279 struct hstate *h,
280 struct resv_map *resv,
281 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284 if (h_cg) {
285 nrg->reservation_counter =
286 &h_cg->rsvd_hugepage[hstate_index(h)];
287 nrg->css = &h_cg->css;
288 /*
289 * The caller will hold exactly one h_cg->css reference for the
290 * whole contiguous reservation region. But this area might be
291 * scattered when there are already some file_regions reside in
292 * it. As a result, many file_regions may share only one css
293 * reference. In order to ensure that one file_region must hold
294 * exactly one h_cg->css reference, we should do css_get for
295 * each file_region and leave the reference held by caller
296 * untouched.
297 */
298 css_get(&h_cg->css);
299 if (!resv->pages_per_hpage)
300 resv->pages_per_hpage = pages_per_huge_page(h);
301 /* pages_per_hpage should be the same for all entries in
302 * a resv_map.
303 */
304 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305 } else {
306 nrg->reservation_counter = NULL;
307 nrg->css = NULL;
308 }
309 #endif
310 }
311
312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315 if (rg->css)
316 css_put(rg->css);
317 #endif
318 }
319
320 static bool has_same_uncharge_info(struct file_region *rg,
321 struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324 return rg && org &&
325 rg->reservation_counter == org->reservation_counter &&
326 rg->css == org->css;
327
328 #else
329 return true;
330 #endif
331 }
332
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335 struct file_region *nrg = NULL, *prg = NULL;
336
337 prg = list_prev_entry(rg, link);
338 if (&prg->link != &resv->regions && prg->to == rg->from &&
339 has_same_uncharge_info(prg, rg)) {
340 prg->to = rg->to;
341
342 list_del(&rg->link);
343 put_uncharge_info(rg);
344 kfree(rg);
345
346 rg = prg;
347 }
348
349 nrg = list_next_entry(rg, link);
350 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351 has_same_uncharge_info(nrg, rg)) {
352 nrg->from = rg->from;
353
354 list_del(&rg->link);
355 put_uncharge_info(rg);
356 kfree(rg);
357 }
358 }
359
360 /*
361 * Must be called with resv->lock held.
362 *
363 * Calling this with regions_needed != NULL will count the number of pages
364 * to be added but will not modify the linked list. And regions_needed will
365 * indicate the number of file_regions needed in the cache to carry out to add
366 * the regions for this range.
367 */
368 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
369 struct hugetlb_cgroup *h_cg,
370 struct hstate *h, long *regions_needed)
371 {
372 long add = 0;
373 struct list_head *head = &resv->regions;
374 long last_accounted_offset = f;
375 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
376
377 if (regions_needed)
378 *regions_needed = 0;
379
380 /* In this loop, we essentially handle an entry for the range
381 * [last_accounted_offset, rg->from), at every iteration, with some
382 * bounds checking.
383 */
384 list_for_each_entry_safe(rg, trg, head, link) {
385 /* Skip irrelevant regions that start before our range. */
386 if (rg->from < f) {
387 /* If this region ends after the last accounted offset,
388 * then we need to update last_accounted_offset.
389 */
390 if (rg->to > last_accounted_offset)
391 last_accounted_offset = rg->to;
392 continue;
393 }
394
395 /* When we find a region that starts beyond our range, we've
396 * finished.
397 */
398 if (rg->from > t)
399 break;
400
401 /* Add an entry for last_accounted_offset -> rg->from, and
402 * update last_accounted_offset.
403 */
404 if (rg->from > last_accounted_offset) {
405 add += rg->from - last_accounted_offset;
406 if (!regions_needed) {
407 nrg = get_file_region_entry_from_cache(
408 resv, last_accounted_offset, rg->from);
409 record_hugetlb_cgroup_uncharge_info(h_cg, h,
410 resv, nrg);
411 list_add(&nrg->link, rg->link.prev);
412 coalesce_file_region(resv, nrg);
413 } else
414 *regions_needed += 1;
415 }
416
417 last_accounted_offset = rg->to;
418 }
419
420 /* Handle the case where our range extends beyond
421 * last_accounted_offset.
422 */
423 if (last_accounted_offset < t) {
424 add += t - last_accounted_offset;
425 if (!regions_needed) {
426 nrg = get_file_region_entry_from_cache(
427 resv, last_accounted_offset, t);
428 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
429 list_add(&nrg->link, rg->link.prev);
430 coalesce_file_region(resv, nrg);
431 } else
432 *regions_needed += 1;
433 }
434
435 VM_BUG_ON(add < 0);
436 return add;
437 }
438
439 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
440 */
441 static int allocate_file_region_entries(struct resv_map *resv,
442 int regions_needed)
443 __must_hold(&resv->lock)
444 {
445 struct list_head allocated_regions;
446 int to_allocate = 0, i = 0;
447 struct file_region *trg = NULL, *rg = NULL;
448
449 VM_BUG_ON(regions_needed < 0);
450
451 INIT_LIST_HEAD(&allocated_regions);
452
453 /*
454 * Check for sufficient descriptors in the cache to accommodate
455 * the number of in progress add operations plus regions_needed.
456 *
457 * This is a while loop because when we drop the lock, some other call
458 * to region_add or region_del may have consumed some region_entries,
459 * so we keep looping here until we finally have enough entries for
460 * (adds_in_progress + regions_needed).
461 */
462 while (resv->region_cache_count <
463 (resv->adds_in_progress + regions_needed)) {
464 to_allocate = resv->adds_in_progress + regions_needed -
465 resv->region_cache_count;
466
467 /* At this point, we should have enough entries in the cache
468 * for all the existings adds_in_progress. We should only be
469 * needing to allocate for regions_needed.
470 */
471 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
472
473 spin_unlock(&resv->lock);
474 for (i = 0; i < to_allocate; i++) {
475 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
476 if (!trg)
477 goto out_of_memory;
478 list_add(&trg->link, &allocated_regions);
479 }
480
481 spin_lock(&resv->lock);
482
483 list_splice(&allocated_regions, &resv->region_cache);
484 resv->region_cache_count += to_allocate;
485 }
486
487 return 0;
488
489 out_of_memory:
490 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
491 list_del(&rg->link);
492 kfree(rg);
493 }
494 return -ENOMEM;
495 }
496
497 /*
498 * Add the huge page range represented by [f, t) to the reserve
499 * map. Regions will be taken from the cache to fill in this range.
500 * Sufficient regions should exist in the cache due to the previous
501 * call to region_chg with the same range, but in some cases the cache will not
502 * have sufficient entries due to races with other code doing region_add or
503 * region_del. The extra needed entries will be allocated.
504 *
505 * regions_needed is the out value provided by a previous call to region_chg.
506 *
507 * Return the number of new huge pages added to the map. This number is greater
508 * than or equal to zero. If file_region entries needed to be allocated for
509 * this operation and we were not able to allocate, it returns -ENOMEM.
510 * region_add of regions of length 1 never allocate file_regions and cannot
511 * fail; region_chg will always allocate at least 1 entry and a region_add for
512 * 1 page will only require at most 1 entry.
513 */
514 static long region_add(struct resv_map *resv, long f, long t,
515 long in_regions_needed, struct hstate *h,
516 struct hugetlb_cgroup *h_cg)
517 {
518 long add = 0, actual_regions_needed = 0;
519
520 spin_lock(&resv->lock);
521 retry:
522
523 /* Count how many regions are actually needed to execute this add. */
524 add_reservation_in_range(resv, f, t, NULL, NULL,
525 &actual_regions_needed);
526
527 /*
528 * Check for sufficient descriptors in the cache to accommodate
529 * this add operation. Note that actual_regions_needed may be greater
530 * than in_regions_needed, as the resv_map may have been modified since
531 * the region_chg call. In this case, we need to make sure that we
532 * allocate extra entries, such that we have enough for all the
533 * existing adds_in_progress, plus the excess needed for this
534 * operation.
535 */
536 if (actual_regions_needed > in_regions_needed &&
537 resv->region_cache_count <
538 resv->adds_in_progress +
539 (actual_regions_needed - in_regions_needed)) {
540 /* region_add operation of range 1 should never need to
541 * allocate file_region entries.
542 */
543 VM_BUG_ON(t - f <= 1);
544
545 if (allocate_file_region_entries(
546 resv, actual_regions_needed - in_regions_needed)) {
547 return -ENOMEM;
548 }
549
550 goto retry;
551 }
552
553 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
554
555 resv->adds_in_progress -= in_regions_needed;
556
557 spin_unlock(&resv->lock);
558 VM_BUG_ON(add < 0);
559 return add;
560 }
561
562 /*
563 * Examine the existing reserve map and determine how many
564 * huge pages in the specified range [f, t) are NOT currently
565 * represented. This routine is called before a subsequent
566 * call to region_add that will actually modify the reserve
567 * map to add the specified range [f, t). region_chg does
568 * not change the number of huge pages represented by the
569 * map. A number of new file_region structures is added to the cache as a
570 * placeholder, for the subsequent region_add call to use. At least 1
571 * file_region structure is added.
572 *
573 * out_regions_needed is the number of regions added to the
574 * resv->adds_in_progress. This value needs to be provided to a follow up call
575 * to region_add or region_abort for proper accounting.
576 *
577 * Returns the number of huge pages that need to be added to the existing
578 * reservation map for the range [f, t). This number is greater or equal to
579 * zero. -ENOMEM is returned if a new file_region structure or cache entry
580 * is needed and can not be allocated.
581 */
582 static long region_chg(struct resv_map *resv, long f, long t,
583 long *out_regions_needed)
584 {
585 long chg = 0;
586
587 spin_lock(&resv->lock);
588
589 /* Count how many hugepages in this range are NOT represented. */
590 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
591 out_regions_needed);
592
593 if (*out_regions_needed == 0)
594 *out_regions_needed = 1;
595
596 if (allocate_file_region_entries(resv, *out_regions_needed))
597 return -ENOMEM;
598
599 resv->adds_in_progress += *out_regions_needed;
600
601 spin_unlock(&resv->lock);
602 return chg;
603 }
604
605 /*
606 * Abort the in progress add operation. The adds_in_progress field
607 * of the resv_map keeps track of the operations in progress between
608 * calls to region_chg and region_add. Operations are sometimes
609 * aborted after the call to region_chg. In such cases, region_abort
610 * is called to decrement the adds_in_progress counter. regions_needed
611 * is the value returned by the region_chg call, it is used to decrement
612 * the adds_in_progress counter.
613 *
614 * NOTE: The range arguments [f, t) are not needed or used in this
615 * routine. They are kept to make reading the calling code easier as
616 * arguments will match the associated region_chg call.
617 */
618 static void region_abort(struct resv_map *resv, long f, long t,
619 long regions_needed)
620 {
621 spin_lock(&resv->lock);
622 VM_BUG_ON(!resv->region_cache_count);
623 resv->adds_in_progress -= regions_needed;
624 spin_unlock(&resv->lock);
625 }
626
627 /*
628 * Delete the specified range [f, t) from the reserve map. If the
629 * t parameter is LONG_MAX, this indicates that ALL regions after f
630 * should be deleted. Locate the regions which intersect [f, t)
631 * and either trim, delete or split the existing regions.
632 *
633 * Returns the number of huge pages deleted from the reserve map.
634 * In the normal case, the return value is zero or more. In the
635 * case where a region must be split, a new region descriptor must
636 * be allocated. If the allocation fails, -ENOMEM will be returned.
637 * NOTE: If the parameter t == LONG_MAX, then we will never split
638 * a region and possibly return -ENOMEM. Callers specifying
639 * t == LONG_MAX do not need to check for -ENOMEM error.
640 */
641 static long region_del(struct resv_map *resv, long f, long t)
642 {
643 struct list_head *head = &resv->regions;
644 struct file_region *rg, *trg;
645 struct file_region *nrg = NULL;
646 long del = 0;
647
648 retry:
649 spin_lock(&resv->lock);
650 list_for_each_entry_safe(rg, trg, head, link) {
651 /*
652 * Skip regions before the range to be deleted. file_region
653 * ranges are normally of the form [from, to). However, there
654 * may be a "placeholder" entry in the map which is of the form
655 * (from, to) with from == to. Check for placeholder entries
656 * at the beginning of the range to be deleted.
657 */
658 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
659 continue;
660
661 if (rg->from >= t)
662 break;
663
664 if (f > rg->from && t < rg->to) { /* Must split region */
665 /*
666 * Check for an entry in the cache before dropping
667 * lock and attempting allocation.
668 */
669 if (!nrg &&
670 resv->region_cache_count > resv->adds_in_progress) {
671 nrg = list_first_entry(&resv->region_cache,
672 struct file_region,
673 link);
674 list_del(&nrg->link);
675 resv->region_cache_count--;
676 }
677
678 if (!nrg) {
679 spin_unlock(&resv->lock);
680 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681 if (!nrg)
682 return -ENOMEM;
683 goto retry;
684 }
685
686 del += t - f;
687 hugetlb_cgroup_uncharge_file_region(
688 resv, rg, t - f, false);
689
690 /* New entry for end of split region */
691 nrg->from = t;
692 nrg->to = rg->to;
693
694 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695
696 INIT_LIST_HEAD(&nrg->link);
697
698 /* Original entry is trimmed */
699 rg->to = f;
700
701 list_add(&nrg->link, &rg->link);
702 nrg = NULL;
703 break;
704 }
705
706 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707 del += rg->to - rg->from;
708 hugetlb_cgroup_uncharge_file_region(resv, rg,
709 rg->to - rg->from, true);
710 list_del(&rg->link);
711 kfree(rg);
712 continue;
713 }
714
715 if (f <= rg->from) { /* Trim beginning of region */
716 hugetlb_cgroup_uncharge_file_region(resv, rg,
717 t - rg->from, false);
718
719 del += t - rg->from;
720 rg->from = t;
721 } else { /* Trim end of region */
722 hugetlb_cgroup_uncharge_file_region(resv, rg,
723 rg->to - f, false);
724
725 del += rg->to - f;
726 rg->to = f;
727 }
728 }
729
730 spin_unlock(&resv->lock);
731 kfree(nrg);
732 return del;
733 }
734
735 /*
736 * A rare out of memory error was encountered which prevented removal of
737 * the reserve map region for a page. The huge page itself was free'ed
738 * and removed from the page cache. This routine will adjust the subpool
739 * usage count, and the global reserve count if needed. By incrementing
740 * these counts, the reserve map entry which could not be deleted will
741 * appear as a "reserved" entry instead of simply dangling with incorrect
742 * counts.
743 */
744 void hugetlb_fix_reserve_counts(struct inode *inode)
745 {
746 struct hugepage_subpool *spool = subpool_inode(inode);
747 long rsv_adjust;
748
749 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
750 if (rsv_adjust) {
751 struct hstate *h = hstate_inode(inode);
752
753 hugetlb_acct_memory(h, 1);
754 }
755 }
756
757 /*
758 * Count and return the number of huge pages in the reserve map
759 * that intersect with the range [f, t).
760 */
761 static long region_count(struct resv_map *resv, long f, long t)
762 {
763 struct list_head *head = &resv->regions;
764 struct file_region *rg;
765 long chg = 0;
766
767 spin_lock(&resv->lock);
768 /* Locate each segment we overlap with, and count that overlap. */
769 list_for_each_entry(rg, head, link) {
770 long seg_from;
771 long seg_to;
772
773 if (rg->to <= f)
774 continue;
775 if (rg->from >= t)
776 break;
777
778 seg_from = max(rg->from, f);
779 seg_to = min(rg->to, t);
780
781 chg += seg_to - seg_from;
782 }
783 spin_unlock(&resv->lock);
784
785 return chg;
786 }
787
788 /*
789 * Convert the address within this vma to the page offset within
790 * the mapping, in pagecache page units; huge pages here.
791 */
792 static pgoff_t vma_hugecache_offset(struct hstate *h,
793 struct vm_area_struct *vma, unsigned long address)
794 {
795 return ((address - vma->vm_start) >> huge_page_shift(h)) +
796 (vma->vm_pgoff >> huge_page_order(h));
797 }
798
799 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
800 unsigned long address)
801 {
802 return vma_hugecache_offset(hstate_vma(vma), vma, address);
803 }
804 EXPORT_SYMBOL_GPL(linear_hugepage_index);
805
806 /*
807 * Return the size of the pages allocated when backing a VMA. In the majority
808 * cases this will be same size as used by the page table entries.
809 */
810 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
811 {
812 if (vma->vm_ops && vma->vm_ops->pagesize)
813 return vma->vm_ops->pagesize(vma);
814 return PAGE_SIZE;
815 }
816 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
817
818 /*
819 * Return the page size being used by the MMU to back a VMA. In the majority
820 * of cases, the page size used by the kernel matches the MMU size. On
821 * architectures where it differs, an architecture-specific 'strong'
822 * version of this symbol is required.
823 */
824 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
825 {
826 return vma_kernel_pagesize(vma);
827 }
828
829 /*
830 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
831 * bits of the reservation map pointer, which are always clear due to
832 * alignment.
833 */
834 #define HPAGE_RESV_OWNER (1UL << 0)
835 #define HPAGE_RESV_UNMAPPED (1UL << 1)
836 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
837
838 /*
839 * These helpers are used to track how many pages are reserved for
840 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
841 * is guaranteed to have their future faults succeed.
842 *
843 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
844 * the reserve counters are updated with the hugetlb_lock held. It is safe
845 * to reset the VMA at fork() time as it is not in use yet and there is no
846 * chance of the global counters getting corrupted as a result of the values.
847 *
848 * The private mapping reservation is represented in a subtly different
849 * manner to a shared mapping. A shared mapping has a region map associated
850 * with the underlying file, this region map represents the backing file
851 * pages which have ever had a reservation assigned which this persists even
852 * after the page is instantiated. A private mapping has a region map
853 * associated with the original mmap which is attached to all VMAs which
854 * reference it, this region map represents those offsets which have consumed
855 * reservation ie. where pages have been instantiated.
856 */
857 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
858 {
859 return (unsigned long)vma->vm_private_data;
860 }
861
862 static void set_vma_private_data(struct vm_area_struct *vma,
863 unsigned long value)
864 {
865 vma->vm_private_data = (void *)value;
866 }
867
868 static void
869 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
870 struct hugetlb_cgroup *h_cg,
871 struct hstate *h)
872 {
873 #ifdef CONFIG_CGROUP_HUGETLB
874 if (!h_cg || !h) {
875 resv_map->reservation_counter = NULL;
876 resv_map->pages_per_hpage = 0;
877 resv_map->css = NULL;
878 } else {
879 resv_map->reservation_counter =
880 &h_cg->rsvd_hugepage[hstate_index(h)];
881 resv_map->pages_per_hpage = pages_per_huge_page(h);
882 resv_map->css = &h_cg->css;
883 }
884 #endif
885 }
886
887 struct resv_map *resv_map_alloc(void)
888 {
889 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
890 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
891
892 if (!resv_map || !rg) {
893 kfree(resv_map);
894 kfree(rg);
895 return NULL;
896 }
897
898 kref_init(&resv_map->refs);
899 spin_lock_init(&resv_map->lock);
900 INIT_LIST_HEAD(&resv_map->regions);
901
902 resv_map->adds_in_progress = 0;
903 /*
904 * Initialize these to 0. On shared mappings, 0's here indicate these
905 * fields don't do cgroup accounting. On private mappings, these will be
906 * re-initialized to the proper values, to indicate that hugetlb cgroup
907 * reservations are to be un-charged from here.
908 */
909 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
910
911 INIT_LIST_HEAD(&resv_map->region_cache);
912 list_add(&rg->link, &resv_map->region_cache);
913 resv_map->region_cache_count = 1;
914
915 return resv_map;
916 }
917
918 void resv_map_release(struct kref *ref)
919 {
920 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
921 struct list_head *head = &resv_map->region_cache;
922 struct file_region *rg, *trg;
923
924 /* Clear out any active regions before we release the map. */
925 region_del(resv_map, 0, LONG_MAX);
926
927 /* ... and any entries left in the cache */
928 list_for_each_entry_safe(rg, trg, head, link) {
929 list_del(&rg->link);
930 kfree(rg);
931 }
932
933 VM_BUG_ON(resv_map->adds_in_progress);
934
935 kfree(resv_map);
936 }
937
938 static inline struct resv_map *inode_resv_map(struct inode *inode)
939 {
940 /*
941 * At inode evict time, i_mapping may not point to the original
942 * address space within the inode. This original address space
943 * contains the pointer to the resv_map. So, always use the
944 * address space embedded within the inode.
945 * The VERY common case is inode->mapping == &inode->i_data but,
946 * this may not be true for device special inodes.
947 */
948 return (struct resv_map *)(&inode->i_data)->private_data;
949 }
950
951 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
952 {
953 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
954 if (vma->vm_flags & VM_MAYSHARE) {
955 struct address_space *mapping = vma->vm_file->f_mapping;
956 struct inode *inode = mapping->host;
957
958 return inode_resv_map(inode);
959
960 } else {
961 return (struct resv_map *)(get_vma_private_data(vma) &
962 ~HPAGE_RESV_MASK);
963 }
964 }
965
966 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
967 {
968 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
969 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
970
971 set_vma_private_data(vma, (get_vma_private_data(vma) &
972 HPAGE_RESV_MASK) | (unsigned long)map);
973 }
974
975 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
976 {
977 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
979
980 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
981 }
982
983 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
984 {
985 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986
987 return (get_vma_private_data(vma) & flag) != 0;
988 }
989
990 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
991 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
992 {
993 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994 if (!(vma->vm_flags & VM_MAYSHARE))
995 vma->vm_private_data = (void *)0;
996 }
997
998 /* Returns true if the VMA has associated reserve pages */
999 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1000 {
1001 if (vma->vm_flags & VM_NORESERVE) {
1002 /*
1003 * This address is already reserved by other process(chg == 0),
1004 * so, we should decrement reserved count. Without decrementing,
1005 * reserve count remains after releasing inode, because this
1006 * allocated page will go into page cache and is regarded as
1007 * coming from reserved pool in releasing step. Currently, we
1008 * don't have any other solution to deal with this situation
1009 * properly, so add work-around here.
1010 */
1011 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1012 return true;
1013 else
1014 return false;
1015 }
1016
1017 /* Shared mappings always use reserves */
1018 if (vma->vm_flags & VM_MAYSHARE) {
1019 /*
1020 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1021 * be a region map for all pages. The only situation where
1022 * there is no region map is if a hole was punched via
1023 * fallocate. In this case, there really are no reserves to
1024 * use. This situation is indicated if chg != 0.
1025 */
1026 if (chg)
1027 return false;
1028 else
1029 return true;
1030 }
1031
1032 /*
1033 * Only the process that called mmap() has reserves for
1034 * private mappings.
1035 */
1036 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1037 /*
1038 * Like the shared case above, a hole punch or truncate
1039 * could have been performed on the private mapping.
1040 * Examine the value of chg to determine if reserves
1041 * actually exist or were previously consumed.
1042 * Very Subtle - The value of chg comes from a previous
1043 * call to vma_needs_reserves(). The reserve map for
1044 * private mappings has different (opposite) semantics
1045 * than that of shared mappings. vma_needs_reserves()
1046 * has already taken this difference in semantics into
1047 * account. Therefore, the meaning of chg is the same
1048 * as in the shared case above. Code could easily be
1049 * combined, but keeping it separate draws attention to
1050 * subtle differences.
1051 */
1052 if (chg)
1053 return false;
1054 else
1055 return true;
1056 }
1057
1058 return false;
1059 }
1060
1061 static void enqueue_huge_page(struct hstate *h, struct page *page)
1062 {
1063 int nid = page_to_nid(page);
1064 list_move(&page->lru, &h->hugepage_freelists[nid]);
1065 h->free_huge_pages++;
1066 h->free_huge_pages_node[nid]++;
1067 SetPageHugeFreed(page);
1068 }
1069
1070 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1071 {
1072 struct page *page;
1073 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1074
1075 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1076 if (nocma && is_migrate_cma_page(page))
1077 continue;
1078
1079 if (PageHWPoison(page))
1080 continue;
1081
1082 list_move(&page->lru, &h->hugepage_activelist);
1083 set_page_refcounted(page);
1084 ClearPageHugeFreed(page);
1085 h->free_huge_pages--;
1086 h->free_huge_pages_node[nid]--;
1087 return page;
1088 }
1089
1090 return NULL;
1091 }
1092
1093 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1094 nodemask_t *nmask)
1095 {
1096 unsigned int cpuset_mems_cookie;
1097 struct zonelist *zonelist;
1098 struct zone *zone;
1099 struct zoneref *z;
1100 int node = NUMA_NO_NODE;
1101
1102 zonelist = node_zonelist(nid, gfp_mask);
1103
1104 retry_cpuset:
1105 cpuset_mems_cookie = read_mems_allowed_begin();
1106 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1107 struct page *page;
1108
1109 if (!cpuset_zone_allowed(zone, gfp_mask))
1110 continue;
1111 /*
1112 * no need to ask again on the same node. Pool is node rather than
1113 * zone aware
1114 */
1115 if (zone_to_nid(zone) == node)
1116 continue;
1117 node = zone_to_nid(zone);
1118
1119 page = dequeue_huge_page_node_exact(h, node);
1120 if (page)
1121 return page;
1122 }
1123 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1124 goto retry_cpuset;
1125
1126 return NULL;
1127 }
1128
1129 static struct page *dequeue_huge_page_vma(struct hstate *h,
1130 struct vm_area_struct *vma,
1131 unsigned long address, int avoid_reserve,
1132 long chg)
1133 {
1134 struct page *page;
1135 struct mempolicy *mpol;
1136 gfp_t gfp_mask;
1137 nodemask_t *nodemask;
1138 int nid;
1139
1140 /*
1141 * A child process with MAP_PRIVATE mappings created by their parent
1142 * have no page reserves. This check ensures that reservations are
1143 * not "stolen". The child may still get SIGKILLed
1144 */
1145 if (!vma_has_reserves(vma, chg) &&
1146 h->free_huge_pages - h->resv_huge_pages == 0)
1147 goto err;
1148
1149 /* If reserves cannot be used, ensure enough pages are in the pool */
1150 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1151 goto err;
1152
1153 gfp_mask = htlb_alloc_mask(h);
1154 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1155 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1156 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1157 SetPagePrivate(page);
1158 h->resv_huge_pages--;
1159 }
1160
1161 mpol_cond_put(mpol);
1162 return page;
1163
1164 err:
1165 return NULL;
1166 }
1167
1168 /*
1169 * common helper functions for hstate_next_node_to_{alloc|free}.
1170 * We may have allocated or freed a huge page based on a different
1171 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1172 * be outside of *nodes_allowed. Ensure that we use an allowed
1173 * node for alloc or free.
1174 */
1175 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1176 {
1177 nid = next_node_in(nid, *nodes_allowed);
1178 VM_BUG_ON(nid >= MAX_NUMNODES);
1179
1180 return nid;
1181 }
1182
1183 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1184 {
1185 if (!node_isset(nid, *nodes_allowed))
1186 nid = next_node_allowed(nid, nodes_allowed);
1187 return nid;
1188 }
1189
1190 /*
1191 * returns the previously saved node ["this node"] from which to
1192 * allocate a persistent huge page for the pool and advance the
1193 * next node from which to allocate, handling wrap at end of node
1194 * mask.
1195 */
1196 static int hstate_next_node_to_alloc(struct hstate *h,
1197 nodemask_t *nodes_allowed)
1198 {
1199 int nid;
1200
1201 VM_BUG_ON(!nodes_allowed);
1202
1203 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1204 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1205
1206 return nid;
1207 }
1208
1209 /*
1210 * helper for free_pool_huge_page() - return the previously saved
1211 * node ["this node"] from which to free a huge page. Advance the
1212 * next node id whether or not we find a free huge page to free so
1213 * that the next attempt to free addresses the next node.
1214 */
1215 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1216 {
1217 int nid;
1218
1219 VM_BUG_ON(!nodes_allowed);
1220
1221 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1222 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1223
1224 return nid;
1225 }
1226
1227 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1228 for (nr_nodes = nodes_weight(*mask); \
1229 nr_nodes > 0 && \
1230 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1231 nr_nodes--)
1232
1233 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1234 for (nr_nodes = nodes_weight(*mask); \
1235 nr_nodes > 0 && \
1236 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1237 nr_nodes--)
1238
1239 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1240 static void destroy_compound_gigantic_page(struct page *page,
1241 unsigned int order)
1242 {
1243 int i;
1244 int nr_pages = 1 << order;
1245 struct page *p = page + 1;
1246
1247 atomic_set(compound_mapcount_ptr(page), 0);
1248 if (hpage_pincount_available(page))
1249 atomic_set(compound_pincount_ptr(page), 0);
1250
1251 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1252 clear_compound_head(p);
1253 set_page_refcounted(p);
1254 }
1255
1256 set_compound_order(page, 0);
1257 page[1].compound_nr = 0;
1258 __ClearPageHead(page);
1259 }
1260
1261 static void free_gigantic_page(struct page *page, unsigned int order)
1262 {
1263 /*
1264 * If the page isn't allocated using the cma allocator,
1265 * cma_release() returns false.
1266 */
1267 #ifdef CONFIG_CMA
1268 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1269 return;
1270 #endif
1271
1272 free_contig_range(page_to_pfn(page), 1 << order);
1273 }
1274
1275 #ifdef CONFIG_CONTIG_ALLOC
1276 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1277 int nid, nodemask_t *nodemask)
1278 {
1279 unsigned long nr_pages = 1UL << huge_page_order(h);
1280 if (nid == NUMA_NO_NODE)
1281 nid = numa_mem_id();
1282
1283 #ifdef CONFIG_CMA
1284 {
1285 struct page *page;
1286 int node;
1287
1288 if (hugetlb_cma[nid]) {
1289 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1290 huge_page_order(h), true);
1291 if (page)
1292 return page;
1293 }
1294
1295 if (!(gfp_mask & __GFP_THISNODE)) {
1296 for_each_node_mask(node, *nodemask) {
1297 if (node == nid || !hugetlb_cma[node])
1298 continue;
1299
1300 page = cma_alloc(hugetlb_cma[node], nr_pages,
1301 huge_page_order(h), true);
1302 if (page)
1303 return page;
1304 }
1305 }
1306 }
1307 #endif
1308
1309 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1310 }
1311
1312 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1313 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1314 #else /* !CONFIG_CONTIG_ALLOC */
1315 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1316 int nid, nodemask_t *nodemask)
1317 {
1318 return NULL;
1319 }
1320 #endif /* CONFIG_CONTIG_ALLOC */
1321
1322 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1323 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1324 int nid, nodemask_t *nodemask)
1325 {
1326 return NULL;
1327 }
1328 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1329 static inline void destroy_compound_gigantic_page(struct page *page,
1330 unsigned int order) { }
1331 #endif
1332
1333 static void update_and_free_page(struct hstate *h, struct page *page)
1334 {
1335 int i;
1336 struct page *subpage = page;
1337
1338 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1339 return;
1340
1341 h->nr_huge_pages--;
1342 h->nr_huge_pages_node[page_to_nid(page)]--;
1343 for (i = 0; i < pages_per_huge_page(h);
1344 i++, subpage = mem_map_next(subpage, page, i)) {
1345 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1346 1 << PG_referenced | 1 << PG_dirty |
1347 1 << PG_active | 1 << PG_private |
1348 1 << PG_writeback);
1349 }
1350 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1351 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1352 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1353 set_page_refcounted(page);
1354 if (hstate_is_gigantic(h)) {
1355 /*
1356 * Temporarily drop the hugetlb_lock, because
1357 * we might block in free_gigantic_page().
1358 */
1359 spin_unlock(&hugetlb_lock);
1360 destroy_compound_gigantic_page(page, huge_page_order(h));
1361 free_gigantic_page(page, huge_page_order(h));
1362 spin_lock(&hugetlb_lock);
1363 } else {
1364 __free_pages(page, huge_page_order(h));
1365 }
1366 }
1367
1368 struct hstate *size_to_hstate(unsigned long size)
1369 {
1370 struct hstate *h;
1371
1372 for_each_hstate(h) {
1373 if (huge_page_size(h) == size)
1374 return h;
1375 }
1376 return NULL;
1377 }
1378
1379 /*
1380 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1381 * to hstate->hugepage_activelist.)
1382 *
1383 * This function can be called for tail pages, but never returns true for them.
1384 */
1385 bool page_huge_active(struct page *page)
1386 {
1387 return PageHeadHuge(page) && PagePrivate(&page[1]);
1388 }
1389
1390 /* never called for tail page */
1391 void set_page_huge_active(struct page *page)
1392 {
1393 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1394 SetPagePrivate(&page[1]);
1395 }
1396
1397 static void clear_page_huge_active(struct page *page)
1398 {
1399 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1400 ClearPagePrivate(&page[1]);
1401 }
1402
1403 /*
1404 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1405 * code
1406 */
1407 static inline bool PageHugeTemporary(struct page *page)
1408 {
1409 if (!PageHuge(page))
1410 return false;
1411
1412 return (unsigned long)page[2].mapping == -1U;
1413 }
1414
1415 static inline void SetPageHugeTemporary(struct page *page)
1416 {
1417 page[2].mapping = (void *)-1U;
1418 }
1419
1420 static inline void ClearPageHugeTemporary(struct page *page)
1421 {
1422 page[2].mapping = NULL;
1423 }
1424
1425 static void __free_huge_page(struct page *page)
1426 {
1427 /*
1428 * Can't pass hstate in here because it is called from the
1429 * compound page destructor.
1430 */
1431 struct hstate *h = page_hstate(page);
1432 int nid = page_to_nid(page);
1433 struct hugepage_subpool *spool =
1434 (struct hugepage_subpool *)page_private(page);
1435 bool restore_reserve;
1436
1437 VM_BUG_ON_PAGE(page_count(page), page);
1438 VM_BUG_ON_PAGE(page_mapcount(page), page);
1439
1440 set_page_private(page, 0);
1441 page->mapping = NULL;
1442 restore_reserve = PagePrivate(page);
1443 ClearPagePrivate(page);
1444
1445 /*
1446 * If PagePrivate() was set on page, page allocation consumed a
1447 * reservation. If the page was associated with a subpool, there
1448 * would have been a page reserved in the subpool before allocation
1449 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1450 * reservtion, do not call hugepage_subpool_put_pages() as this will
1451 * remove the reserved page from the subpool.
1452 */
1453 if (!restore_reserve) {
1454 /*
1455 * A return code of zero implies that the subpool will be
1456 * under its minimum size if the reservation is not restored
1457 * after page is free. Therefore, force restore_reserve
1458 * operation.
1459 */
1460 if (hugepage_subpool_put_pages(spool, 1) == 0)
1461 restore_reserve = true;
1462 }
1463
1464 spin_lock(&hugetlb_lock);
1465 clear_page_huge_active(page);
1466 hugetlb_cgroup_uncharge_page(hstate_index(h),
1467 pages_per_huge_page(h), page);
1468 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1469 pages_per_huge_page(h), page);
1470 if (restore_reserve)
1471 h->resv_huge_pages++;
1472
1473 if (PageHugeTemporary(page)) {
1474 list_del(&page->lru);
1475 ClearPageHugeTemporary(page);
1476 update_and_free_page(h, page);
1477 } else if (h->surplus_huge_pages_node[nid]) {
1478 /* remove the page from active list */
1479 list_del(&page->lru);
1480 update_and_free_page(h, page);
1481 h->surplus_huge_pages--;
1482 h->surplus_huge_pages_node[nid]--;
1483 } else {
1484 arch_clear_hugepage_flags(page);
1485 enqueue_huge_page(h, page);
1486 }
1487 spin_unlock(&hugetlb_lock);
1488 }
1489
1490 /*
1491 * As free_huge_page() can be called from a non-task context, we have
1492 * to defer the actual freeing in a workqueue to prevent potential
1493 * hugetlb_lock deadlock.
1494 *
1495 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1496 * be freed and frees them one-by-one. As the page->mapping pointer is
1497 * going to be cleared in __free_huge_page() anyway, it is reused as the
1498 * llist_node structure of a lockless linked list of huge pages to be freed.
1499 */
1500 static LLIST_HEAD(hpage_freelist);
1501
1502 static void free_hpage_workfn(struct work_struct *work)
1503 {
1504 struct llist_node *node;
1505 struct page *page;
1506
1507 node = llist_del_all(&hpage_freelist);
1508
1509 while (node) {
1510 page = container_of((struct address_space **)node,
1511 struct page, mapping);
1512 node = node->next;
1513 __free_huge_page(page);
1514 }
1515 }
1516 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1517
1518 void free_huge_page(struct page *page)
1519 {
1520 /*
1521 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1522 */
1523 if (!in_task()) {
1524 /*
1525 * Only call schedule_work() if hpage_freelist is previously
1526 * empty. Otherwise, schedule_work() had been called but the
1527 * workfn hasn't retrieved the list yet.
1528 */
1529 if (llist_add((struct llist_node *)&page->mapping,
1530 &hpage_freelist))
1531 schedule_work(&free_hpage_work);
1532 return;
1533 }
1534
1535 __free_huge_page(page);
1536 }
1537
1538 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1539 {
1540 INIT_LIST_HEAD(&page->lru);
1541 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1542 set_hugetlb_cgroup(page, NULL);
1543 set_hugetlb_cgroup_rsvd(page, NULL);
1544 spin_lock(&hugetlb_lock);
1545 h->nr_huge_pages++;
1546 h->nr_huge_pages_node[nid]++;
1547 ClearPageHugeFreed(page);
1548 spin_unlock(&hugetlb_lock);
1549 }
1550
1551 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1552 {
1553 int i;
1554 int nr_pages = 1 << order;
1555 struct page *p = page + 1;
1556
1557 /* we rely on prep_new_huge_page to set the destructor */
1558 set_compound_order(page, order);
1559 __ClearPageReserved(page);
1560 __SetPageHead(page);
1561 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1562 /*
1563 * For gigantic hugepages allocated through bootmem at
1564 * boot, it's safer to be consistent with the not-gigantic
1565 * hugepages and clear the PG_reserved bit from all tail pages
1566 * too. Otherwise drivers using get_user_pages() to access tail
1567 * pages may get the reference counting wrong if they see
1568 * PG_reserved set on a tail page (despite the head page not
1569 * having PG_reserved set). Enforcing this consistency between
1570 * head and tail pages allows drivers to optimize away a check
1571 * on the head page when they need know if put_page() is needed
1572 * after get_user_pages().
1573 */
1574 __ClearPageReserved(p);
1575 set_page_count(p, 0);
1576 set_compound_head(p, page);
1577 }
1578 atomic_set(compound_mapcount_ptr(page), -1);
1579
1580 if (hpage_pincount_available(page))
1581 atomic_set(compound_pincount_ptr(page), 0);
1582 }
1583
1584 /*
1585 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1586 * transparent huge pages. See the PageTransHuge() documentation for more
1587 * details.
1588 */
1589 int PageHuge(struct page *page)
1590 {
1591 if (!PageCompound(page))
1592 return 0;
1593
1594 page = compound_head(page);
1595 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1596 }
1597 EXPORT_SYMBOL_GPL(PageHuge);
1598
1599 /*
1600 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1601 * normal or transparent huge pages.
1602 */
1603 int PageHeadHuge(struct page *page_head)
1604 {
1605 if (!PageHead(page_head))
1606 return 0;
1607
1608 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1609 }
1610
1611 /*
1612 * Find and lock address space (mapping) in write mode.
1613 *
1614 * Upon entry, the page is locked which means that page_mapping() is
1615 * stable. Due to locking order, we can only trylock_write. If we can
1616 * not get the lock, simply return NULL to caller.
1617 */
1618 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1619 {
1620 struct address_space *mapping = page_mapping(hpage);
1621
1622 if (!mapping)
1623 return mapping;
1624
1625 if (i_mmap_trylock_write(mapping))
1626 return mapping;
1627
1628 return NULL;
1629 }
1630
1631 pgoff_t __basepage_index(struct page *page)
1632 {
1633 struct page *page_head = compound_head(page);
1634 pgoff_t index = page_index(page_head);
1635 unsigned long compound_idx;
1636
1637 if (!PageHuge(page_head))
1638 return page_index(page);
1639
1640 if (compound_order(page_head) >= MAX_ORDER)
1641 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1642 else
1643 compound_idx = page - page_head;
1644
1645 return (index << compound_order(page_head)) + compound_idx;
1646 }
1647
1648 static struct page *alloc_buddy_huge_page(struct hstate *h,
1649 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1650 nodemask_t *node_alloc_noretry)
1651 {
1652 int order = huge_page_order(h);
1653 struct page *page;
1654 bool alloc_try_hard = true;
1655
1656 /*
1657 * By default we always try hard to allocate the page with
1658 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1659 * a loop (to adjust global huge page counts) and previous allocation
1660 * failed, do not continue to try hard on the same node. Use the
1661 * node_alloc_noretry bitmap to manage this state information.
1662 */
1663 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1664 alloc_try_hard = false;
1665 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1666 if (alloc_try_hard)
1667 gfp_mask |= __GFP_RETRY_MAYFAIL;
1668 if (nid == NUMA_NO_NODE)
1669 nid = numa_mem_id();
1670 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1671 if (page)
1672 __count_vm_event(HTLB_BUDDY_PGALLOC);
1673 else
1674 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1675
1676 /*
1677 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1678 * indicates an overall state change. Clear bit so that we resume
1679 * normal 'try hard' allocations.
1680 */
1681 if (node_alloc_noretry && page && !alloc_try_hard)
1682 node_clear(nid, *node_alloc_noretry);
1683
1684 /*
1685 * If we tried hard to get a page but failed, set bit so that
1686 * subsequent attempts will not try as hard until there is an
1687 * overall state change.
1688 */
1689 if (node_alloc_noretry && !page && alloc_try_hard)
1690 node_set(nid, *node_alloc_noretry);
1691
1692 return page;
1693 }
1694
1695 /*
1696 * Common helper to allocate a fresh hugetlb page. All specific allocators
1697 * should use this function to get new hugetlb pages
1698 */
1699 static struct page *alloc_fresh_huge_page(struct hstate *h,
1700 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701 nodemask_t *node_alloc_noretry)
1702 {
1703 struct page *page;
1704
1705 if (hstate_is_gigantic(h))
1706 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1707 else
1708 page = alloc_buddy_huge_page(h, gfp_mask,
1709 nid, nmask, node_alloc_noretry);
1710 if (!page)
1711 return NULL;
1712
1713 if (hstate_is_gigantic(h))
1714 prep_compound_gigantic_page(page, huge_page_order(h));
1715 prep_new_huge_page(h, page, page_to_nid(page));
1716
1717 return page;
1718 }
1719
1720 /*
1721 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1722 * manner.
1723 */
1724 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1725 nodemask_t *node_alloc_noretry)
1726 {
1727 struct page *page;
1728 int nr_nodes, node;
1729 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1730
1731 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1732 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1733 node_alloc_noretry);
1734 if (page)
1735 break;
1736 }
1737
1738 if (!page)
1739 return 0;
1740
1741 put_page(page); /* free it into the hugepage allocator */
1742
1743 return 1;
1744 }
1745
1746 /*
1747 * Free huge page from pool from next node to free.
1748 * Attempt to keep persistent huge pages more or less
1749 * balanced over allowed nodes.
1750 * Called with hugetlb_lock locked.
1751 */
1752 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1753 bool acct_surplus)
1754 {
1755 int nr_nodes, node;
1756 int ret = 0;
1757
1758 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1759 /*
1760 * If we're returning unused surplus pages, only examine
1761 * nodes with surplus pages.
1762 */
1763 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1764 !list_empty(&h->hugepage_freelists[node])) {
1765 struct page *page =
1766 list_entry(h->hugepage_freelists[node].next,
1767 struct page, lru);
1768 list_del(&page->lru);
1769 h->free_huge_pages--;
1770 h->free_huge_pages_node[node]--;
1771 if (acct_surplus) {
1772 h->surplus_huge_pages--;
1773 h->surplus_huge_pages_node[node]--;
1774 }
1775 update_and_free_page(h, page);
1776 ret = 1;
1777 break;
1778 }
1779 }
1780
1781 return ret;
1782 }
1783
1784 /*
1785 * Dissolve a given free hugepage into free buddy pages. This function does
1786 * nothing for in-use hugepages and non-hugepages.
1787 * This function returns values like below:
1788 *
1789 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1790 * (allocated or reserved.)
1791 * 0: successfully dissolved free hugepages or the page is not a
1792 * hugepage (considered as already dissolved)
1793 */
1794 int dissolve_free_huge_page(struct page *page)
1795 {
1796 int rc = -EBUSY;
1797
1798 retry:
1799 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1800 if (!PageHuge(page))
1801 return 0;
1802
1803 spin_lock(&hugetlb_lock);
1804 if (!PageHuge(page)) {
1805 rc = 0;
1806 goto out;
1807 }
1808
1809 if (!page_count(page)) {
1810 struct page *head = compound_head(page);
1811 struct hstate *h = page_hstate(head);
1812 int nid = page_to_nid(head);
1813 if (h->free_huge_pages - h->resv_huge_pages == 0)
1814 goto out;
1815
1816 /*
1817 * We should make sure that the page is already on the free list
1818 * when it is dissolved.
1819 */
1820 if (unlikely(!PageHugeFreed(head))) {
1821 spin_unlock(&hugetlb_lock);
1822 cond_resched();
1823
1824 /*
1825 * Theoretically, we should return -EBUSY when we
1826 * encounter this race. In fact, we have a chance
1827 * to successfully dissolve the page if we do a
1828 * retry. Because the race window is quite small.
1829 * If we seize this opportunity, it is an optimization
1830 * for increasing the success rate of dissolving page.
1831 */
1832 goto retry;
1833 }
1834
1835 /*
1836 * Move PageHWPoison flag from head page to the raw error page,
1837 * which makes any subpages rather than the error page reusable.
1838 */
1839 if (PageHWPoison(head) && page != head) {
1840 SetPageHWPoison(page);
1841 ClearPageHWPoison(head);
1842 }
1843 list_del(&head->lru);
1844 h->free_huge_pages--;
1845 h->free_huge_pages_node[nid]--;
1846 h->max_huge_pages--;
1847 update_and_free_page(h, head);
1848 rc = 0;
1849 }
1850 out:
1851 spin_unlock(&hugetlb_lock);
1852 return rc;
1853 }
1854
1855 /*
1856 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1857 * make specified memory blocks removable from the system.
1858 * Note that this will dissolve a free gigantic hugepage completely, if any
1859 * part of it lies within the given range.
1860 * Also note that if dissolve_free_huge_page() returns with an error, all
1861 * free hugepages that were dissolved before that error are lost.
1862 */
1863 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1864 {
1865 unsigned long pfn;
1866 struct page *page;
1867 int rc = 0;
1868
1869 if (!hugepages_supported())
1870 return rc;
1871
1872 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1873 page = pfn_to_page(pfn);
1874 rc = dissolve_free_huge_page(page);
1875 if (rc)
1876 break;
1877 }
1878
1879 return rc;
1880 }
1881
1882 /*
1883 * Allocates a fresh surplus page from the page allocator.
1884 */
1885 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1886 int nid, nodemask_t *nmask)
1887 {
1888 struct page *page = NULL;
1889
1890 if (hstate_is_gigantic(h))
1891 return NULL;
1892
1893 spin_lock(&hugetlb_lock);
1894 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1895 goto out_unlock;
1896 spin_unlock(&hugetlb_lock);
1897
1898 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1899 if (!page)
1900 return NULL;
1901
1902 spin_lock(&hugetlb_lock);
1903 /*
1904 * We could have raced with the pool size change.
1905 * Double check that and simply deallocate the new page
1906 * if we would end up overcommiting the surpluses. Abuse
1907 * temporary page to workaround the nasty free_huge_page
1908 * codeflow
1909 */
1910 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1911 SetPageHugeTemporary(page);
1912 spin_unlock(&hugetlb_lock);
1913 put_page(page);
1914 return NULL;
1915 } else {
1916 h->surplus_huge_pages++;
1917 h->surplus_huge_pages_node[page_to_nid(page)]++;
1918 }
1919
1920 out_unlock:
1921 spin_unlock(&hugetlb_lock);
1922
1923 return page;
1924 }
1925
1926 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1927 int nid, nodemask_t *nmask)
1928 {
1929 struct page *page;
1930
1931 if (hstate_is_gigantic(h))
1932 return NULL;
1933
1934 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1935 if (!page)
1936 return NULL;
1937
1938 /*
1939 * We do not account these pages as surplus because they are only
1940 * temporary and will be released properly on the last reference
1941 */
1942 SetPageHugeTemporary(page);
1943
1944 return page;
1945 }
1946
1947 /*
1948 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1949 */
1950 static
1951 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1952 struct vm_area_struct *vma, unsigned long addr)
1953 {
1954 struct page *page;
1955 struct mempolicy *mpol;
1956 gfp_t gfp_mask = htlb_alloc_mask(h);
1957 int nid;
1958 nodemask_t *nodemask;
1959
1960 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1961 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1962 mpol_cond_put(mpol);
1963
1964 return page;
1965 }
1966
1967 /* page migration callback function */
1968 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1969 nodemask_t *nmask, gfp_t gfp_mask)
1970 {
1971 spin_lock(&hugetlb_lock);
1972 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1973 struct page *page;
1974
1975 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1976 if (page) {
1977 spin_unlock(&hugetlb_lock);
1978 return page;
1979 }
1980 }
1981 spin_unlock(&hugetlb_lock);
1982
1983 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1984 }
1985
1986 /* mempolicy aware migration callback */
1987 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1988 unsigned long address)
1989 {
1990 struct mempolicy *mpol;
1991 nodemask_t *nodemask;
1992 struct page *page;
1993 gfp_t gfp_mask;
1994 int node;
1995
1996 gfp_mask = htlb_alloc_mask(h);
1997 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1998 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1999 mpol_cond_put(mpol);
2000
2001 return page;
2002 }
2003
2004 /*
2005 * Increase the hugetlb pool such that it can accommodate a reservation
2006 * of size 'delta'.
2007 */
2008 static int gather_surplus_pages(struct hstate *h, long delta)
2009 __must_hold(&hugetlb_lock)
2010 {
2011 struct list_head surplus_list;
2012 struct page *page, *tmp;
2013 int ret;
2014 long i;
2015 long needed, allocated;
2016 bool alloc_ok = true;
2017
2018 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2019 if (needed <= 0) {
2020 h->resv_huge_pages += delta;
2021 return 0;
2022 }
2023
2024 allocated = 0;
2025 INIT_LIST_HEAD(&surplus_list);
2026
2027 ret = -ENOMEM;
2028 retry:
2029 spin_unlock(&hugetlb_lock);
2030 for (i = 0; i < needed; i++) {
2031 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2032 NUMA_NO_NODE, NULL);
2033 if (!page) {
2034 alloc_ok = false;
2035 break;
2036 }
2037 list_add(&page->lru, &surplus_list);
2038 cond_resched();
2039 }
2040 allocated += i;
2041
2042 /*
2043 * After retaking hugetlb_lock, we need to recalculate 'needed'
2044 * because either resv_huge_pages or free_huge_pages may have changed.
2045 */
2046 spin_lock(&hugetlb_lock);
2047 needed = (h->resv_huge_pages + delta) -
2048 (h->free_huge_pages + allocated);
2049 if (needed > 0) {
2050 if (alloc_ok)
2051 goto retry;
2052 /*
2053 * We were not able to allocate enough pages to
2054 * satisfy the entire reservation so we free what
2055 * we've allocated so far.
2056 */
2057 goto free;
2058 }
2059 /*
2060 * The surplus_list now contains _at_least_ the number of extra pages
2061 * needed to accommodate the reservation. Add the appropriate number
2062 * of pages to the hugetlb pool and free the extras back to the buddy
2063 * allocator. Commit the entire reservation here to prevent another
2064 * process from stealing the pages as they are added to the pool but
2065 * before they are reserved.
2066 */
2067 needed += allocated;
2068 h->resv_huge_pages += delta;
2069 ret = 0;
2070
2071 /* Free the needed pages to the hugetlb pool */
2072 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2073 int zeroed;
2074
2075 if ((--needed) < 0)
2076 break;
2077 /*
2078 * This page is now managed by the hugetlb allocator and has
2079 * no users -- drop the buddy allocator's reference.
2080 */
2081 zeroed = put_page_testzero(page);
2082 VM_BUG_ON_PAGE(!zeroed, page);
2083 enqueue_huge_page(h, page);
2084 }
2085 free:
2086 spin_unlock(&hugetlb_lock);
2087
2088 /* Free unnecessary surplus pages to the buddy allocator */
2089 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2090 put_page(page);
2091 spin_lock(&hugetlb_lock);
2092
2093 return ret;
2094 }
2095
2096 /*
2097 * This routine has two main purposes:
2098 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2099 * in unused_resv_pages. This corresponds to the prior adjustments made
2100 * to the associated reservation map.
2101 * 2) Free any unused surplus pages that may have been allocated to satisfy
2102 * the reservation. As many as unused_resv_pages may be freed.
2103 *
2104 * Called with hugetlb_lock held. However, the lock could be dropped (and
2105 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2106 * we must make sure nobody else can claim pages we are in the process of
2107 * freeing. Do this by ensuring resv_huge_page always is greater than the
2108 * number of huge pages we plan to free when dropping the lock.
2109 */
2110 static void return_unused_surplus_pages(struct hstate *h,
2111 unsigned long unused_resv_pages)
2112 {
2113 unsigned long nr_pages;
2114
2115 /* Cannot return gigantic pages currently */
2116 if (hstate_is_gigantic(h))
2117 goto out;
2118
2119 /*
2120 * Part (or even all) of the reservation could have been backed
2121 * by pre-allocated pages. Only free surplus pages.
2122 */
2123 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2124
2125 /*
2126 * We want to release as many surplus pages as possible, spread
2127 * evenly across all nodes with memory. Iterate across these nodes
2128 * until we can no longer free unreserved surplus pages. This occurs
2129 * when the nodes with surplus pages have no free pages.
2130 * free_pool_huge_page() will balance the freed pages across the
2131 * on-line nodes with memory and will handle the hstate accounting.
2132 *
2133 * Note that we decrement resv_huge_pages as we free the pages. If
2134 * we drop the lock, resv_huge_pages will still be sufficiently large
2135 * to cover subsequent pages we may free.
2136 */
2137 while (nr_pages--) {
2138 h->resv_huge_pages--;
2139 unused_resv_pages--;
2140 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2141 goto out;
2142 cond_resched_lock(&hugetlb_lock);
2143 }
2144
2145 out:
2146 /* Fully uncommit the reservation */
2147 h->resv_huge_pages -= unused_resv_pages;
2148 }
2149
2150
2151 /*
2152 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2153 * are used by the huge page allocation routines to manage reservations.
2154 *
2155 * vma_needs_reservation is called to determine if the huge page at addr
2156 * within the vma has an associated reservation. If a reservation is
2157 * needed, the value 1 is returned. The caller is then responsible for
2158 * managing the global reservation and subpool usage counts. After
2159 * the huge page has been allocated, vma_commit_reservation is called
2160 * to add the page to the reservation map. If the page allocation fails,
2161 * the reservation must be ended instead of committed. vma_end_reservation
2162 * is called in such cases.
2163 *
2164 * In the normal case, vma_commit_reservation returns the same value
2165 * as the preceding vma_needs_reservation call. The only time this
2166 * is not the case is if a reserve map was changed between calls. It
2167 * is the responsibility of the caller to notice the difference and
2168 * take appropriate action.
2169 *
2170 * vma_add_reservation is used in error paths where a reservation must
2171 * be restored when a newly allocated huge page must be freed. It is
2172 * to be called after calling vma_needs_reservation to determine if a
2173 * reservation exists.
2174 */
2175 enum vma_resv_mode {
2176 VMA_NEEDS_RESV,
2177 VMA_COMMIT_RESV,
2178 VMA_END_RESV,
2179 VMA_ADD_RESV,
2180 };
2181 static long __vma_reservation_common(struct hstate *h,
2182 struct vm_area_struct *vma, unsigned long addr,
2183 enum vma_resv_mode mode)
2184 {
2185 struct resv_map *resv;
2186 pgoff_t idx;
2187 long ret;
2188 long dummy_out_regions_needed;
2189
2190 resv = vma_resv_map(vma);
2191 if (!resv)
2192 return 1;
2193
2194 idx = vma_hugecache_offset(h, vma, addr);
2195 switch (mode) {
2196 case VMA_NEEDS_RESV:
2197 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2198 /* We assume that vma_reservation_* routines always operate on
2199 * 1 page, and that adding to resv map a 1 page entry can only
2200 * ever require 1 region.
2201 */
2202 VM_BUG_ON(dummy_out_regions_needed != 1);
2203 break;
2204 case VMA_COMMIT_RESV:
2205 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2206 /* region_add calls of range 1 should never fail. */
2207 VM_BUG_ON(ret < 0);
2208 break;
2209 case VMA_END_RESV:
2210 region_abort(resv, idx, idx + 1, 1);
2211 ret = 0;
2212 break;
2213 case VMA_ADD_RESV:
2214 if (vma->vm_flags & VM_MAYSHARE) {
2215 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2216 /* region_add calls of range 1 should never fail. */
2217 VM_BUG_ON(ret < 0);
2218 } else {
2219 region_abort(resv, idx, idx + 1, 1);
2220 ret = region_del(resv, idx, idx + 1);
2221 }
2222 break;
2223 default:
2224 BUG();
2225 }
2226
2227 if (vma->vm_flags & VM_MAYSHARE)
2228 return ret;
2229 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2230 /*
2231 * In most cases, reserves always exist for private mappings.
2232 * However, a file associated with mapping could have been
2233 * hole punched or truncated after reserves were consumed.
2234 * As subsequent fault on such a range will not use reserves.
2235 * Subtle - The reserve map for private mappings has the
2236 * opposite meaning than that of shared mappings. If NO
2237 * entry is in the reserve map, it means a reservation exists.
2238 * If an entry exists in the reserve map, it means the
2239 * reservation has already been consumed. As a result, the
2240 * return value of this routine is the opposite of the
2241 * value returned from reserve map manipulation routines above.
2242 */
2243 if (ret)
2244 return 0;
2245 else
2246 return 1;
2247 }
2248 else
2249 return ret < 0 ? ret : 0;
2250 }
2251
2252 static long vma_needs_reservation(struct hstate *h,
2253 struct vm_area_struct *vma, unsigned long addr)
2254 {
2255 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2256 }
2257
2258 static long vma_commit_reservation(struct hstate *h,
2259 struct vm_area_struct *vma, unsigned long addr)
2260 {
2261 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2262 }
2263
2264 static void vma_end_reservation(struct hstate *h,
2265 struct vm_area_struct *vma, unsigned long addr)
2266 {
2267 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2268 }
2269
2270 static long vma_add_reservation(struct hstate *h,
2271 struct vm_area_struct *vma, unsigned long addr)
2272 {
2273 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2274 }
2275
2276 /*
2277 * This routine is called to restore a reservation on error paths. In the
2278 * specific error paths, a huge page was allocated (via alloc_huge_page)
2279 * and is about to be freed. If a reservation for the page existed,
2280 * alloc_huge_page would have consumed the reservation and set PagePrivate
2281 * in the newly allocated page. When the page is freed via free_huge_page,
2282 * the global reservation count will be incremented if PagePrivate is set.
2283 * However, free_huge_page can not adjust the reserve map. Adjust the
2284 * reserve map here to be consistent with global reserve count adjustments
2285 * to be made by free_huge_page.
2286 */
2287 static void restore_reserve_on_error(struct hstate *h,
2288 struct vm_area_struct *vma, unsigned long address,
2289 struct page *page)
2290 {
2291 if (unlikely(PagePrivate(page))) {
2292 long rc = vma_needs_reservation(h, vma, address);
2293
2294 if (unlikely(rc < 0)) {
2295 /*
2296 * Rare out of memory condition in reserve map
2297 * manipulation. Clear PagePrivate so that
2298 * global reserve count will not be incremented
2299 * by free_huge_page. This will make it appear
2300 * as though the reservation for this page was
2301 * consumed. This may prevent the task from
2302 * faulting in the page at a later time. This
2303 * is better than inconsistent global huge page
2304 * accounting of reserve counts.
2305 */
2306 ClearPagePrivate(page);
2307 } else if (rc) {
2308 rc = vma_add_reservation(h, vma, address);
2309 if (unlikely(rc < 0))
2310 /*
2311 * See above comment about rare out of
2312 * memory condition.
2313 */
2314 ClearPagePrivate(page);
2315 } else
2316 vma_end_reservation(h, vma, address);
2317 }
2318 }
2319
2320 struct page *alloc_huge_page(struct vm_area_struct *vma,
2321 unsigned long addr, int avoid_reserve)
2322 {
2323 struct hugepage_subpool *spool = subpool_vma(vma);
2324 struct hstate *h = hstate_vma(vma);
2325 struct page *page;
2326 long map_chg, map_commit;
2327 long gbl_chg;
2328 int ret, idx;
2329 struct hugetlb_cgroup *h_cg;
2330 bool deferred_reserve;
2331
2332 idx = hstate_index(h);
2333 /*
2334 * Examine the region/reserve map to determine if the process
2335 * has a reservation for the page to be allocated. A return
2336 * code of zero indicates a reservation exists (no change).
2337 */
2338 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2339 if (map_chg < 0)
2340 return ERR_PTR(-ENOMEM);
2341
2342 /*
2343 * Processes that did not create the mapping will have no
2344 * reserves as indicated by the region/reserve map. Check
2345 * that the allocation will not exceed the subpool limit.
2346 * Allocations for MAP_NORESERVE mappings also need to be
2347 * checked against any subpool limit.
2348 */
2349 if (map_chg || avoid_reserve) {
2350 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2351 if (gbl_chg < 0) {
2352 vma_end_reservation(h, vma, addr);
2353 return ERR_PTR(-ENOSPC);
2354 }
2355
2356 /*
2357 * Even though there was no reservation in the region/reserve
2358 * map, there could be reservations associated with the
2359 * subpool that can be used. This would be indicated if the
2360 * return value of hugepage_subpool_get_pages() is zero.
2361 * However, if avoid_reserve is specified we still avoid even
2362 * the subpool reservations.
2363 */
2364 if (avoid_reserve)
2365 gbl_chg = 1;
2366 }
2367
2368 /* If this allocation is not consuming a reservation, charge it now.
2369 */
2370 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2371 if (deferred_reserve) {
2372 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2373 idx, pages_per_huge_page(h), &h_cg);
2374 if (ret)
2375 goto out_subpool_put;
2376 }
2377
2378 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2379 if (ret)
2380 goto out_uncharge_cgroup_reservation;
2381
2382 spin_lock(&hugetlb_lock);
2383 /*
2384 * glb_chg is passed to indicate whether or not a page must be taken
2385 * from the global free pool (global change). gbl_chg == 0 indicates
2386 * a reservation exists for the allocation.
2387 */
2388 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2389 if (!page) {
2390 spin_unlock(&hugetlb_lock);
2391 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2392 if (!page)
2393 goto out_uncharge_cgroup;
2394 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2395 SetPagePrivate(page);
2396 h->resv_huge_pages--;
2397 }
2398 spin_lock(&hugetlb_lock);
2399 list_add(&page->lru, &h->hugepage_activelist);
2400 /* Fall through */
2401 }
2402 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2403 /* If allocation is not consuming a reservation, also store the
2404 * hugetlb_cgroup pointer on the page.
2405 */
2406 if (deferred_reserve) {
2407 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2408 h_cg, page);
2409 }
2410
2411 spin_unlock(&hugetlb_lock);
2412
2413 set_page_private(page, (unsigned long)spool);
2414
2415 map_commit = vma_commit_reservation(h, vma, addr);
2416 if (unlikely(map_chg > map_commit)) {
2417 /*
2418 * The page was added to the reservation map between
2419 * vma_needs_reservation and vma_commit_reservation.
2420 * This indicates a race with hugetlb_reserve_pages.
2421 * Adjust for the subpool count incremented above AND
2422 * in hugetlb_reserve_pages for the same page. Also,
2423 * the reservation count added in hugetlb_reserve_pages
2424 * no longer applies.
2425 */
2426 long rsv_adjust;
2427
2428 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2429 hugetlb_acct_memory(h, -rsv_adjust);
2430 if (deferred_reserve)
2431 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2432 pages_per_huge_page(h), page);
2433 }
2434 return page;
2435
2436 out_uncharge_cgroup:
2437 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2438 out_uncharge_cgroup_reservation:
2439 if (deferred_reserve)
2440 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2441 h_cg);
2442 out_subpool_put:
2443 if (map_chg || avoid_reserve)
2444 hugepage_subpool_put_pages(spool, 1);
2445 vma_end_reservation(h, vma, addr);
2446 return ERR_PTR(-ENOSPC);
2447 }
2448
2449 int alloc_bootmem_huge_page(struct hstate *h)
2450 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2451 int __alloc_bootmem_huge_page(struct hstate *h)
2452 {
2453 struct huge_bootmem_page *m;
2454 int nr_nodes, node;
2455
2456 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2457 void *addr;
2458
2459 addr = memblock_alloc_try_nid_raw(
2460 huge_page_size(h), huge_page_size(h),
2461 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2462 if (addr) {
2463 /*
2464 * Use the beginning of the huge page to store the
2465 * huge_bootmem_page struct (until gather_bootmem
2466 * puts them into the mem_map).
2467 */
2468 m = addr;
2469 goto found;
2470 }
2471 }
2472 return 0;
2473
2474 found:
2475 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2476 /* Put them into a private list first because mem_map is not up yet */
2477 INIT_LIST_HEAD(&m->list);
2478 list_add(&m->list, &huge_boot_pages);
2479 m->hstate = h;
2480 return 1;
2481 }
2482
2483 static void __init prep_compound_huge_page(struct page *page,
2484 unsigned int order)
2485 {
2486 if (unlikely(order > (MAX_ORDER - 1)))
2487 prep_compound_gigantic_page(page, order);
2488 else
2489 prep_compound_page(page, order);
2490 }
2491
2492 /* Put bootmem huge pages into the standard lists after mem_map is up */
2493 static void __init gather_bootmem_prealloc(void)
2494 {
2495 struct huge_bootmem_page *m;
2496
2497 list_for_each_entry(m, &huge_boot_pages, list) {
2498 struct page *page = virt_to_page(m);
2499 struct hstate *h = m->hstate;
2500
2501 WARN_ON(page_count(page) != 1);
2502 prep_compound_huge_page(page, h->order);
2503 WARN_ON(PageReserved(page));
2504 prep_new_huge_page(h, page, page_to_nid(page));
2505 put_page(page); /* free it into the hugepage allocator */
2506
2507 /*
2508 * If we had gigantic hugepages allocated at boot time, we need
2509 * to restore the 'stolen' pages to totalram_pages in order to
2510 * fix confusing memory reports from free(1) and another
2511 * side-effects, like CommitLimit going negative.
2512 */
2513 if (hstate_is_gigantic(h))
2514 adjust_managed_page_count(page, 1 << h->order);
2515 cond_resched();
2516 }
2517 }
2518
2519 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2520 {
2521 unsigned long i;
2522 nodemask_t *node_alloc_noretry;
2523
2524 if (!hstate_is_gigantic(h)) {
2525 /*
2526 * Bit mask controlling how hard we retry per-node allocations.
2527 * Ignore errors as lower level routines can deal with
2528 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2529 * time, we are likely in bigger trouble.
2530 */
2531 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2532 GFP_KERNEL);
2533 } else {
2534 /* allocations done at boot time */
2535 node_alloc_noretry = NULL;
2536 }
2537
2538 /* bit mask controlling how hard we retry per-node allocations */
2539 if (node_alloc_noretry)
2540 nodes_clear(*node_alloc_noretry);
2541
2542 for (i = 0; i < h->max_huge_pages; ++i) {
2543 if (hstate_is_gigantic(h)) {
2544 if (hugetlb_cma_size) {
2545 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2546 goto free;
2547 }
2548 if (!alloc_bootmem_huge_page(h))
2549 break;
2550 } else if (!alloc_pool_huge_page(h,
2551 &node_states[N_MEMORY],
2552 node_alloc_noretry))
2553 break;
2554 cond_resched();
2555 }
2556 if (i < h->max_huge_pages) {
2557 char buf[32];
2558
2559 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2560 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2561 h->max_huge_pages, buf, i);
2562 h->max_huge_pages = i;
2563 }
2564 free:
2565 kfree(node_alloc_noretry);
2566 }
2567
2568 static void __init hugetlb_init_hstates(void)
2569 {
2570 struct hstate *h;
2571
2572 for_each_hstate(h) {
2573 if (minimum_order > huge_page_order(h))
2574 minimum_order = huge_page_order(h);
2575
2576 /* oversize hugepages were init'ed in early boot */
2577 if (!hstate_is_gigantic(h))
2578 hugetlb_hstate_alloc_pages(h);
2579 }
2580 VM_BUG_ON(minimum_order == UINT_MAX);
2581 }
2582
2583 static void __init report_hugepages(void)
2584 {
2585 struct hstate *h;
2586
2587 for_each_hstate(h) {
2588 char buf[32];
2589
2590 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2591 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2592 buf, h->free_huge_pages);
2593 }
2594 }
2595
2596 #ifdef CONFIG_HIGHMEM
2597 static void try_to_free_low(struct hstate *h, unsigned long count,
2598 nodemask_t *nodes_allowed)
2599 {
2600 int i;
2601
2602 if (hstate_is_gigantic(h))
2603 return;
2604
2605 for_each_node_mask(i, *nodes_allowed) {
2606 struct page *page, *next;
2607 struct list_head *freel = &h->hugepage_freelists[i];
2608 list_for_each_entry_safe(page, next, freel, lru) {
2609 if (count >= h->nr_huge_pages)
2610 return;
2611 if (PageHighMem(page))
2612 continue;
2613 list_del(&page->lru);
2614 update_and_free_page(h, page);
2615 h->free_huge_pages--;
2616 h->free_huge_pages_node[page_to_nid(page)]--;
2617 }
2618 }
2619 }
2620 #else
2621 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2622 nodemask_t *nodes_allowed)
2623 {
2624 }
2625 #endif
2626
2627 /*
2628 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2629 * balanced by operating on them in a round-robin fashion.
2630 * Returns 1 if an adjustment was made.
2631 */
2632 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2633 int delta)
2634 {
2635 int nr_nodes, node;
2636
2637 VM_BUG_ON(delta != -1 && delta != 1);
2638
2639 if (delta < 0) {
2640 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2641 if (h->surplus_huge_pages_node[node])
2642 goto found;
2643 }
2644 } else {
2645 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2646 if (h->surplus_huge_pages_node[node] <
2647 h->nr_huge_pages_node[node])
2648 goto found;
2649 }
2650 }
2651 return 0;
2652
2653 found:
2654 h->surplus_huge_pages += delta;
2655 h->surplus_huge_pages_node[node] += delta;
2656 return 1;
2657 }
2658
2659 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2660 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2661 nodemask_t *nodes_allowed)
2662 {
2663 unsigned long min_count, ret;
2664 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2665
2666 /*
2667 * Bit mask controlling how hard we retry per-node allocations.
2668 * If we can not allocate the bit mask, do not attempt to allocate
2669 * the requested huge pages.
2670 */
2671 if (node_alloc_noretry)
2672 nodes_clear(*node_alloc_noretry);
2673 else
2674 return -ENOMEM;
2675
2676 spin_lock(&hugetlb_lock);
2677
2678 /*
2679 * Check for a node specific request.
2680 * Changing node specific huge page count may require a corresponding
2681 * change to the global count. In any case, the passed node mask
2682 * (nodes_allowed) will restrict alloc/free to the specified node.
2683 */
2684 if (nid != NUMA_NO_NODE) {
2685 unsigned long old_count = count;
2686
2687 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2688 /*
2689 * User may have specified a large count value which caused the
2690 * above calculation to overflow. In this case, they wanted
2691 * to allocate as many huge pages as possible. Set count to
2692 * largest possible value to align with their intention.
2693 */
2694 if (count < old_count)
2695 count = ULONG_MAX;
2696 }
2697
2698 /*
2699 * Gigantic pages runtime allocation depend on the capability for large
2700 * page range allocation.
2701 * If the system does not provide this feature, return an error when
2702 * the user tries to allocate gigantic pages but let the user free the
2703 * boottime allocated gigantic pages.
2704 */
2705 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2706 if (count > persistent_huge_pages(h)) {
2707 spin_unlock(&hugetlb_lock);
2708 NODEMASK_FREE(node_alloc_noretry);
2709 return -EINVAL;
2710 }
2711 /* Fall through to decrease pool */
2712 }
2713
2714 /*
2715 * Increase the pool size
2716 * First take pages out of surplus state. Then make up the
2717 * remaining difference by allocating fresh huge pages.
2718 *
2719 * We might race with alloc_surplus_huge_page() here and be unable
2720 * to convert a surplus huge page to a normal huge page. That is
2721 * not critical, though, it just means the overall size of the
2722 * pool might be one hugepage larger than it needs to be, but
2723 * within all the constraints specified by the sysctls.
2724 */
2725 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2726 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2727 break;
2728 }
2729
2730 while (count > persistent_huge_pages(h)) {
2731 /*
2732 * If this allocation races such that we no longer need the
2733 * page, free_huge_page will handle it by freeing the page
2734 * and reducing the surplus.
2735 */
2736 spin_unlock(&hugetlb_lock);
2737
2738 /* yield cpu to avoid soft lockup */
2739 cond_resched();
2740
2741 ret = alloc_pool_huge_page(h, nodes_allowed,
2742 node_alloc_noretry);
2743 spin_lock(&hugetlb_lock);
2744 if (!ret)
2745 goto out;
2746
2747 /* Bail for signals. Probably ctrl-c from user */
2748 if (signal_pending(current))
2749 goto out;
2750 }
2751
2752 /*
2753 * Decrease the pool size
2754 * First return free pages to the buddy allocator (being careful
2755 * to keep enough around to satisfy reservations). Then place
2756 * pages into surplus state as needed so the pool will shrink
2757 * to the desired size as pages become free.
2758 *
2759 * By placing pages into the surplus state independent of the
2760 * overcommit value, we are allowing the surplus pool size to
2761 * exceed overcommit. There are few sane options here. Since
2762 * alloc_surplus_huge_page() is checking the global counter,
2763 * though, we'll note that we're not allowed to exceed surplus
2764 * and won't grow the pool anywhere else. Not until one of the
2765 * sysctls are changed, or the surplus pages go out of use.
2766 */
2767 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2768 min_count = max(count, min_count);
2769 try_to_free_low(h, min_count, nodes_allowed);
2770 while (min_count < persistent_huge_pages(h)) {
2771 if (!free_pool_huge_page(h, nodes_allowed, 0))
2772 break;
2773 cond_resched_lock(&hugetlb_lock);
2774 }
2775 while (count < persistent_huge_pages(h)) {
2776 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2777 break;
2778 }
2779 out:
2780 h->max_huge_pages = persistent_huge_pages(h);
2781 spin_unlock(&hugetlb_lock);
2782
2783 NODEMASK_FREE(node_alloc_noretry);
2784
2785 return 0;
2786 }
2787
2788 #define HSTATE_ATTR_RO(_name) \
2789 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2790
2791 #define HSTATE_ATTR(_name) \
2792 static struct kobj_attribute _name##_attr = \
2793 __ATTR(_name, 0644, _name##_show, _name##_store)
2794
2795 static struct kobject *hugepages_kobj;
2796 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2797
2798 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2799
2800 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2801 {
2802 int i;
2803
2804 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2805 if (hstate_kobjs[i] == kobj) {
2806 if (nidp)
2807 *nidp = NUMA_NO_NODE;
2808 return &hstates[i];
2809 }
2810
2811 return kobj_to_node_hstate(kobj, nidp);
2812 }
2813
2814 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2815 struct kobj_attribute *attr, char *buf)
2816 {
2817 struct hstate *h;
2818 unsigned long nr_huge_pages;
2819 int nid;
2820
2821 h = kobj_to_hstate(kobj, &nid);
2822 if (nid == NUMA_NO_NODE)
2823 nr_huge_pages = h->nr_huge_pages;
2824 else
2825 nr_huge_pages = h->nr_huge_pages_node[nid];
2826
2827 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2828 }
2829
2830 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2831 struct hstate *h, int nid,
2832 unsigned long count, size_t len)
2833 {
2834 int err;
2835 nodemask_t nodes_allowed, *n_mask;
2836
2837 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2838 return -EINVAL;
2839
2840 if (nid == NUMA_NO_NODE) {
2841 /*
2842 * global hstate attribute
2843 */
2844 if (!(obey_mempolicy &&
2845 init_nodemask_of_mempolicy(&nodes_allowed)))
2846 n_mask = &node_states[N_MEMORY];
2847 else
2848 n_mask = &nodes_allowed;
2849 } else {
2850 /*
2851 * Node specific request. count adjustment happens in
2852 * set_max_huge_pages() after acquiring hugetlb_lock.
2853 */
2854 init_nodemask_of_node(&nodes_allowed, nid);
2855 n_mask = &nodes_allowed;
2856 }
2857
2858 err = set_max_huge_pages(h, count, nid, n_mask);
2859
2860 return err ? err : len;
2861 }
2862
2863 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2864 struct kobject *kobj, const char *buf,
2865 size_t len)
2866 {
2867 struct hstate *h;
2868 unsigned long count;
2869 int nid;
2870 int err;
2871
2872 err = kstrtoul(buf, 10, &count);
2873 if (err)
2874 return err;
2875
2876 h = kobj_to_hstate(kobj, &nid);
2877 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2878 }
2879
2880 static ssize_t nr_hugepages_show(struct kobject *kobj,
2881 struct kobj_attribute *attr, char *buf)
2882 {
2883 return nr_hugepages_show_common(kobj, attr, buf);
2884 }
2885
2886 static ssize_t nr_hugepages_store(struct kobject *kobj,
2887 struct kobj_attribute *attr, const char *buf, size_t len)
2888 {
2889 return nr_hugepages_store_common(false, kobj, buf, len);
2890 }
2891 HSTATE_ATTR(nr_hugepages);
2892
2893 #ifdef CONFIG_NUMA
2894
2895 /*
2896 * hstate attribute for optionally mempolicy-based constraint on persistent
2897 * huge page alloc/free.
2898 */
2899 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2900 struct kobj_attribute *attr,
2901 char *buf)
2902 {
2903 return nr_hugepages_show_common(kobj, attr, buf);
2904 }
2905
2906 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2907 struct kobj_attribute *attr, const char *buf, size_t len)
2908 {
2909 return nr_hugepages_store_common(true, kobj, buf, len);
2910 }
2911 HSTATE_ATTR(nr_hugepages_mempolicy);
2912 #endif
2913
2914
2915 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2916 struct kobj_attribute *attr, char *buf)
2917 {
2918 struct hstate *h = kobj_to_hstate(kobj, NULL);
2919 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2920 }
2921
2922 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2923 struct kobj_attribute *attr, const char *buf, size_t count)
2924 {
2925 int err;
2926 unsigned long input;
2927 struct hstate *h = kobj_to_hstate(kobj, NULL);
2928
2929 if (hstate_is_gigantic(h))
2930 return -EINVAL;
2931
2932 err = kstrtoul(buf, 10, &input);
2933 if (err)
2934 return err;
2935
2936 spin_lock(&hugetlb_lock);
2937 h->nr_overcommit_huge_pages = input;
2938 spin_unlock(&hugetlb_lock);
2939
2940 return count;
2941 }
2942 HSTATE_ATTR(nr_overcommit_hugepages);
2943
2944 static ssize_t free_hugepages_show(struct kobject *kobj,
2945 struct kobj_attribute *attr, char *buf)
2946 {
2947 struct hstate *h;
2948 unsigned long free_huge_pages;
2949 int nid;
2950
2951 h = kobj_to_hstate(kobj, &nid);
2952 if (nid == NUMA_NO_NODE)
2953 free_huge_pages = h->free_huge_pages;
2954 else
2955 free_huge_pages = h->free_huge_pages_node[nid];
2956
2957 return sysfs_emit(buf, "%lu\n", free_huge_pages);
2958 }
2959 HSTATE_ATTR_RO(free_hugepages);
2960
2961 static ssize_t resv_hugepages_show(struct kobject *kobj,
2962 struct kobj_attribute *attr, char *buf)
2963 {
2964 struct hstate *h = kobj_to_hstate(kobj, NULL);
2965 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2966 }
2967 HSTATE_ATTR_RO(resv_hugepages);
2968
2969 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2970 struct kobj_attribute *attr, char *buf)
2971 {
2972 struct hstate *h;
2973 unsigned long surplus_huge_pages;
2974 int nid;
2975
2976 h = kobj_to_hstate(kobj, &nid);
2977 if (nid == NUMA_NO_NODE)
2978 surplus_huge_pages = h->surplus_huge_pages;
2979 else
2980 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2981
2982 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2983 }
2984 HSTATE_ATTR_RO(surplus_hugepages);
2985
2986 static struct attribute *hstate_attrs[] = {
2987 &nr_hugepages_attr.attr,
2988 &nr_overcommit_hugepages_attr.attr,
2989 &free_hugepages_attr.attr,
2990 &resv_hugepages_attr.attr,
2991 &surplus_hugepages_attr.attr,
2992 #ifdef CONFIG_NUMA
2993 &nr_hugepages_mempolicy_attr.attr,
2994 #endif
2995 NULL,
2996 };
2997
2998 static const struct attribute_group hstate_attr_group = {
2999 .attrs = hstate_attrs,
3000 };
3001
3002 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3003 struct kobject **hstate_kobjs,
3004 const struct attribute_group *hstate_attr_group)
3005 {
3006 int retval;
3007 int hi = hstate_index(h);
3008
3009 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3010 if (!hstate_kobjs[hi])
3011 return -ENOMEM;
3012
3013 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3014 if (retval) {
3015 kobject_put(hstate_kobjs[hi]);
3016 hstate_kobjs[hi] = NULL;
3017 }
3018
3019 return retval;
3020 }
3021
3022 static void __init hugetlb_sysfs_init(void)
3023 {
3024 struct hstate *h;
3025 int err;
3026
3027 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3028 if (!hugepages_kobj)
3029 return;
3030
3031 for_each_hstate(h) {
3032 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3033 hstate_kobjs, &hstate_attr_group);
3034 if (err)
3035 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3036 }
3037 }
3038
3039 #ifdef CONFIG_NUMA
3040
3041 /*
3042 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3043 * with node devices in node_devices[] using a parallel array. The array
3044 * index of a node device or _hstate == node id.
3045 * This is here to avoid any static dependency of the node device driver, in
3046 * the base kernel, on the hugetlb module.
3047 */
3048 struct node_hstate {
3049 struct kobject *hugepages_kobj;
3050 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3051 };
3052 static struct node_hstate node_hstates[MAX_NUMNODES];
3053
3054 /*
3055 * A subset of global hstate attributes for node devices
3056 */
3057 static struct attribute *per_node_hstate_attrs[] = {
3058 &nr_hugepages_attr.attr,
3059 &free_hugepages_attr.attr,
3060 &surplus_hugepages_attr.attr,
3061 NULL,
3062 };
3063
3064 static const struct attribute_group per_node_hstate_attr_group = {
3065 .attrs = per_node_hstate_attrs,
3066 };
3067
3068 /*
3069 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3070 * Returns node id via non-NULL nidp.
3071 */
3072 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3073 {
3074 int nid;
3075
3076 for (nid = 0; nid < nr_node_ids; nid++) {
3077 struct node_hstate *nhs = &node_hstates[nid];
3078 int i;
3079 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3080 if (nhs->hstate_kobjs[i] == kobj) {
3081 if (nidp)
3082 *nidp = nid;
3083 return &hstates[i];
3084 }
3085 }
3086
3087 BUG();
3088 return NULL;
3089 }
3090
3091 /*
3092 * Unregister hstate attributes from a single node device.
3093 * No-op if no hstate attributes attached.
3094 */
3095 static void hugetlb_unregister_node(struct node *node)
3096 {
3097 struct hstate *h;
3098 struct node_hstate *nhs = &node_hstates[node->dev.id];
3099
3100 if (!nhs->hugepages_kobj)
3101 return; /* no hstate attributes */
3102
3103 for_each_hstate(h) {
3104 int idx = hstate_index(h);
3105 if (nhs->hstate_kobjs[idx]) {
3106 kobject_put(nhs->hstate_kobjs[idx]);
3107 nhs->hstate_kobjs[idx] = NULL;
3108 }
3109 }
3110
3111 kobject_put(nhs->hugepages_kobj);
3112 nhs->hugepages_kobj = NULL;
3113 }
3114
3115
3116 /*
3117 * Register hstate attributes for a single node device.
3118 * No-op if attributes already registered.
3119 */
3120 static void hugetlb_register_node(struct node *node)
3121 {
3122 struct hstate *h;
3123 struct node_hstate *nhs = &node_hstates[node->dev.id];
3124 int err;
3125
3126 if (nhs->hugepages_kobj)
3127 return; /* already allocated */
3128
3129 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3130 &node->dev.kobj);
3131 if (!nhs->hugepages_kobj)
3132 return;
3133
3134 for_each_hstate(h) {
3135 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3136 nhs->hstate_kobjs,
3137 &per_node_hstate_attr_group);
3138 if (err) {
3139 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3140 h->name, node->dev.id);
3141 hugetlb_unregister_node(node);
3142 break;
3143 }
3144 }
3145 }
3146
3147 /*
3148 * hugetlb init time: register hstate attributes for all registered node
3149 * devices of nodes that have memory. All on-line nodes should have
3150 * registered their associated device by this time.
3151 */
3152 static void __init hugetlb_register_all_nodes(void)
3153 {
3154 int nid;
3155
3156 for_each_node_state(nid, N_MEMORY) {
3157 struct node *node = node_devices[nid];
3158 if (node->dev.id == nid)
3159 hugetlb_register_node(node);
3160 }
3161
3162 /*
3163 * Let the node device driver know we're here so it can
3164 * [un]register hstate attributes on node hotplug.
3165 */
3166 register_hugetlbfs_with_node(hugetlb_register_node,
3167 hugetlb_unregister_node);
3168 }
3169 #else /* !CONFIG_NUMA */
3170
3171 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3172 {
3173 BUG();
3174 if (nidp)
3175 *nidp = -1;
3176 return NULL;
3177 }
3178
3179 static void hugetlb_register_all_nodes(void) { }
3180
3181 #endif
3182
3183 static int __init hugetlb_init(void)
3184 {
3185 int i;
3186
3187 if (!hugepages_supported()) {
3188 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3189 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3190 return 0;
3191 }
3192
3193 /*
3194 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3195 * architectures depend on setup being done here.
3196 */
3197 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3198 if (!parsed_default_hugepagesz) {
3199 /*
3200 * If we did not parse a default huge page size, set
3201 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3202 * number of huge pages for this default size was implicitly
3203 * specified, set that here as well.
3204 * Note that the implicit setting will overwrite an explicit
3205 * setting. A warning will be printed in this case.
3206 */
3207 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3208 if (default_hstate_max_huge_pages) {
3209 if (default_hstate.max_huge_pages) {
3210 char buf[32];
3211
3212 string_get_size(huge_page_size(&default_hstate),
3213 1, STRING_UNITS_2, buf, 32);
3214 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3215 default_hstate.max_huge_pages, buf);
3216 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3217 default_hstate_max_huge_pages);
3218 }
3219 default_hstate.max_huge_pages =
3220 default_hstate_max_huge_pages;
3221 }
3222 }
3223
3224 hugetlb_cma_check();
3225 hugetlb_init_hstates();
3226 gather_bootmem_prealloc();
3227 report_hugepages();
3228
3229 hugetlb_sysfs_init();
3230 hugetlb_register_all_nodes();
3231 hugetlb_cgroup_file_init();
3232
3233 #ifdef CONFIG_SMP
3234 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3235 #else
3236 num_fault_mutexes = 1;
3237 #endif
3238 hugetlb_fault_mutex_table =
3239 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3240 GFP_KERNEL);
3241 BUG_ON(!hugetlb_fault_mutex_table);
3242
3243 for (i = 0; i < num_fault_mutexes; i++)
3244 mutex_init(&hugetlb_fault_mutex_table[i]);
3245 return 0;
3246 }
3247 subsys_initcall(hugetlb_init);
3248
3249 /* Overwritten by architectures with more huge page sizes */
3250 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3251 {
3252 return size == HPAGE_SIZE;
3253 }
3254
3255 void __init hugetlb_add_hstate(unsigned int order)
3256 {
3257 struct hstate *h;
3258 unsigned long i;
3259
3260 if (size_to_hstate(PAGE_SIZE << order)) {
3261 return;
3262 }
3263 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3264 BUG_ON(order == 0);
3265 h = &hstates[hugetlb_max_hstate++];
3266 h->order = order;
3267 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3268 for (i = 0; i < MAX_NUMNODES; ++i)
3269 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3270 INIT_LIST_HEAD(&h->hugepage_activelist);
3271 h->next_nid_to_alloc = first_memory_node;
3272 h->next_nid_to_free = first_memory_node;
3273 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3274 huge_page_size(h)/1024);
3275
3276 parsed_hstate = h;
3277 }
3278
3279 /*
3280 * hugepages command line processing
3281 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3282 * specification. If not, ignore the hugepages value. hugepages can also
3283 * be the first huge page command line option in which case it implicitly
3284 * specifies the number of huge pages for the default size.
3285 */
3286 static int __init hugepages_setup(char *s)
3287 {
3288 unsigned long *mhp;
3289 static unsigned long *last_mhp;
3290
3291 if (!parsed_valid_hugepagesz) {
3292 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3293 parsed_valid_hugepagesz = true;
3294 return 0;
3295 }
3296
3297 /*
3298 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3299 * yet, so this hugepages= parameter goes to the "default hstate".
3300 * Otherwise, it goes with the previously parsed hugepagesz or
3301 * default_hugepagesz.
3302 */
3303 else if (!hugetlb_max_hstate)
3304 mhp = &default_hstate_max_huge_pages;
3305 else
3306 mhp = &parsed_hstate->max_huge_pages;
3307
3308 if (mhp == last_mhp) {
3309 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3310 return 0;
3311 }
3312
3313 if (sscanf(s, "%lu", mhp) <= 0)
3314 *mhp = 0;
3315
3316 /*
3317 * Global state is always initialized later in hugetlb_init.
3318 * But we need to allocate >= MAX_ORDER hstates here early to still
3319 * use the bootmem allocator.
3320 */
3321 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3322 hugetlb_hstate_alloc_pages(parsed_hstate);
3323
3324 last_mhp = mhp;
3325
3326 return 1;
3327 }
3328 __setup("hugepages=", hugepages_setup);
3329
3330 /*
3331 * hugepagesz command line processing
3332 * A specific huge page size can only be specified once with hugepagesz.
3333 * hugepagesz is followed by hugepages on the command line. The global
3334 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3335 * hugepagesz argument was valid.
3336 */
3337 static int __init hugepagesz_setup(char *s)
3338 {
3339 unsigned long size;
3340 struct hstate *h;
3341
3342 parsed_valid_hugepagesz = false;
3343 size = (unsigned long)memparse(s, NULL);
3344
3345 if (!arch_hugetlb_valid_size(size)) {
3346 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3347 return 0;
3348 }
3349
3350 h = size_to_hstate(size);
3351 if (h) {
3352 /*
3353 * hstate for this size already exists. This is normally
3354 * an error, but is allowed if the existing hstate is the
3355 * default hstate. More specifically, it is only allowed if
3356 * the number of huge pages for the default hstate was not
3357 * previously specified.
3358 */
3359 if (!parsed_default_hugepagesz || h != &default_hstate ||
3360 default_hstate.max_huge_pages) {
3361 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3362 return 0;
3363 }
3364
3365 /*
3366 * No need to call hugetlb_add_hstate() as hstate already
3367 * exists. But, do set parsed_hstate so that a following
3368 * hugepages= parameter will be applied to this hstate.
3369 */
3370 parsed_hstate = h;
3371 parsed_valid_hugepagesz = true;
3372 return 1;
3373 }
3374
3375 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3376 parsed_valid_hugepagesz = true;
3377 return 1;
3378 }
3379 __setup("hugepagesz=", hugepagesz_setup);
3380
3381 /*
3382 * default_hugepagesz command line input
3383 * Only one instance of default_hugepagesz allowed on command line.
3384 */
3385 static int __init default_hugepagesz_setup(char *s)
3386 {
3387 unsigned long size;
3388
3389 parsed_valid_hugepagesz = false;
3390 if (parsed_default_hugepagesz) {
3391 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3392 return 0;
3393 }
3394
3395 size = (unsigned long)memparse(s, NULL);
3396
3397 if (!arch_hugetlb_valid_size(size)) {
3398 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3399 return 0;
3400 }
3401
3402 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3403 parsed_valid_hugepagesz = true;
3404 parsed_default_hugepagesz = true;
3405 default_hstate_idx = hstate_index(size_to_hstate(size));
3406
3407 /*
3408 * The number of default huge pages (for this size) could have been
3409 * specified as the first hugetlb parameter: hugepages=X. If so,
3410 * then default_hstate_max_huge_pages is set. If the default huge
3411 * page size is gigantic (>= MAX_ORDER), then the pages must be
3412 * allocated here from bootmem allocator.
3413 */
3414 if (default_hstate_max_huge_pages) {
3415 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3416 if (hstate_is_gigantic(&default_hstate))
3417 hugetlb_hstate_alloc_pages(&default_hstate);
3418 default_hstate_max_huge_pages = 0;
3419 }
3420
3421 return 1;
3422 }
3423 __setup("default_hugepagesz=", default_hugepagesz_setup);
3424
3425 static unsigned int allowed_mems_nr(struct hstate *h)
3426 {
3427 int node;
3428 unsigned int nr = 0;
3429 nodemask_t *mpol_allowed;
3430 unsigned int *array = h->free_huge_pages_node;
3431 gfp_t gfp_mask = htlb_alloc_mask(h);
3432
3433 mpol_allowed = policy_nodemask_current(gfp_mask);
3434
3435 for_each_node_mask(node, cpuset_current_mems_allowed) {
3436 if (!mpol_allowed ||
3437 (mpol_allowed && node_isset(node, *mpol_allowed)))
3438 nr += array[node];
3439 }
3440
3441 return nr;
3442 }
3443
3444 #ifdef CONFIG_SYSCTL
3445 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3446 void *buffer, size_t *length,
3447 loff_t *ppos, unsigned long *out)
3448 {
3449 struct ctl_table dup_table;
3450
3451 /*
3452 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3453 * can duplicate the @table and alter the duplicate of it.
3454 */
3455 dup_table = *table;
3456 dup_table.data = out;
3457
3458 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3459 }
3460
3461 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3462 struct ctl_table *table, int write,
3463 void *buffer, size_t *length, loff_t *ppos)
3464 {
3465 struct hstate *h = &default_hstate;
3466 unsigned long tmp = h->max_huge_pages;
3467 int ret;
3468
3469 if (!hugepages_supported())
3470 return -EOPNOTSUPP;
3471
3472 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3473 &tmp);
3474 if (ret)
3475 goto out;
3476
3477 if (write)
3478 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3479 NUMA_NO_NODE, tmp, *length);
3480 out:
3481 return ret;
3482 }
3483
3484 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3485 void *buffer, size_t *length, loff_t *ppos)
3486 {
3487
3488 return hugetlb_sysctl_handler_common(false, table, write,
3489 buffer, length, ppos);
3490 }
3491
3492 #ifdef CONFIG_NUMA
3493 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3494 void *buffer, size_t *length, loff_t *ppos)
3495 {
3496 return hugetlb_sysctl_handler_common(true, table, write,
3497 buffer, length, ppos);
3498 }
3499 #endif /* CONFIG_NUMA */
3500
3501 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3502 void *buffer, size_t *length, loff_t *ppos)
3503 {
3504 struct hstate *h = &default_hstate;
3505 unsigned long tmp;
3506 int ret;
3507
3508 if (!hugepages_supported())
3509 return -EOPNOTSUPP;
3510
3511 tmp = h->nr_overcommit_huge_pages;
3512
3513 if (write && hstate_is_gigantic(h))
3514 return -EINVAL;
3515
3516 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3517 &tmp);
3518 if (ret)
3519 goto out;
3520
3521 if (write) {
3522 spin_lock(&hugetlb_lock);
3523 h->nr_overcommit_huge_pages = tmp;
3524 spin_unlock(&hugetlb_lock);
3525 }
3526 out:
3527 return ret;
3528 }
3529
3530 #endif /* CONFIG_SYSCTL */
3531
3532 void hugetlb_report_meminfo(struct seq_file *m)
3533 {
3534 struct hstate *h;
3535 unsigned long total = 0;
3536
3537 if (!hugepages_supported())
3538 return;
3539
3540 for_each_hstate(h) {
3541 unsigned long count = h->nr_huge_pages;
3542
3543 total += (PAGE_SIZE << huge_page_order(h)) * count;
3544
3545 if (h == &default_hstate)
3546 seq_printf(m,
3547 "HugePages_Total: %5lu\n"
3548 "HugePages_Free: %5lu\n"
3549 "HugePages_Rsvd: %5lu\n"
3550 "HugePages_Surp: %5lu\n"
3551 "Hugepagesize: %8lu kB\n",
3552 count,
3553 h->free_huge_pages,
3554 h->resv_huge_pages,
3555 h->surplus_huge_pages,
3556 (PAGE_SIZE << huge_page_order(h)) / 1024);
3557 }
3558
3559 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3560 }
3561
3562 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3563 {
3564 struct hstate *h = &default_hstate;
3565
3566 if (!hugepages_supported())
3567 return 0;
3568
3569 return sysfs_emit_at(buf, len,
3570 "Node %d HugePages_Total: %5u\n"
3571 "Node %d HugePages_Free: %5u\n"
3572 "Node %d HugePages_Surp: %5u\n",
3573 nid, h->nr_huge_pages_node[nid],
3574 nid, h->free_huge_pages_node[nid],
3575 nid, h->surplus_huge_pages_node[nid]);
3576 }
3577
3578 void hugetlb_show_meminfo(void)
3579 {
3580 struct hstate *h;
3581 int nid;
3582
3583 if (!hugepages_supported())
3584 return;
3585
3586 for_each_node_state(nid, N_MEMORY)
3587 for_each_hstate(h)
3588 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3589 nid,
3590 h->nr_huge_pages_node[nid],
3591 h->free_huge_pages_node[nid],
3592 h->surplus_huge_pages_node[nid],
3593 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3594 }
3595
3596 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3597 {
3598 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3599 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3600 }
3601
3602 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3603 unsigned long hugetlb_total_pages(void)
3604 {
3605 struct hstate *h;
3606 unsigned long nr_total_pages = 0;
3607
3608 for_each_hstate(h)
3609 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3610 return nr_total_pages;
3611 }
3612
3613 static int hugetlb_acct_memory(struct hstate *h, long delta)
3614 {
3615 int ret = -ENOMEM;
3616
3617 spin_lock(&hugetlb_lock);
3618 /*
3619 * When cpuset is configured, it breaks the strict hugetlb page
3620 * reservation as the accounting is done on a global variable. Such
3621 * reservation is completely rubbish in the presence of cpuset because
3622 * the reservation is not checked against page availability for the
3623 * current cpuset. Application can still potentially OOM'ed by kernel
3624 * with lack of free htlb page in cpuset that the task is in.
3625 * Attempt to enforce strict accounting with cpuset is almost
3626 * impossible (or too ugly) because cpuset is too fluid that
3627 * task or memory node can be dynamically moved between cpusets.
3628 *
3629 * The change of semantics for shared hugetlb mapping with cpuset is
3630 * undesirable. However, in order to preserve some of the semantics,
3631 * we fall back to check against current free page availability as
3632 * a best attempt and hopefully to minimize the impact of changing
3633 * semantics that cpuset has.
3634 *
3635 * Apart from cpuset, we also have memory policy mechanism that
3636 * also determines from which node the kernel will allocate memory
3637 * in a NUMA system. So similar to cpuset, we also should consider
3638 * the memory policy of the current task. Similar to the description
3639 * above.
3640 */
3641 if (delta > 0) {
3642 if (gather_surplus_pages(h, delta) < 0)
3643 goto out;
3644
3645 if (delta > allowed_mems_nr(h)) {
3646 return_unused_surplus_pages(h, delta);
3647 goto out;
3648 }
3649 }
3650
3651 ret = 0;
3652 if (delta < 0)
3653 return_unused_surplus_pages(h, (unsigned long) -delta);
3654
3655 out:
3656 spin_unlock(&hugetlb_lock);
3657 return ret;
3658 }
3659
3660 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3661 {
3662 struct resv_map *resv = vma_resv_map(vma);
3663
3664 /*
3665 * This new VMA should share its siblings reservation map if present.
3666 * The VMA will only ever have a valid reservation map pointer where
3667 * it is being copied for another still existing VMA. As that VMA
3668 * has a reference to the reservation map it cannot disappear until
3669 * after this open call completes. It is therefore safe to take a
3670 * new reference here without additional locking.
3671 */
3672 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3673 kref_get(&resv->refs);
3674 }
3675
3676 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3677 {
3678 struct hstate *h = hstate_vma(vma);
3679 struct resv_map *resv = vma_resv_map(vma);
3680 struct hugepage_subpool *spool = subpool_vma(vma);
3681 unsigned long reserve, start, end;
3682 long gbl_reserve;
3683
3684 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3685 return;
3686
3687 start = vma_hugecache_offset(h, vma, vma->vm_start);
3688 end = vma_hugecache_offset(h, vma, vma->vm_end);
3689
3690 reserve = (end - start) - region_count(resv, start, end);
3691 hugetlb_cgroup_uncharge_counter(resv, start, end);
3692 if (reserve) {
3693 /*
3694 * Decrement reserve counts. The global reserve count may be
3695 * adjusted if the subpool has a minimum size.
3696 */
3697 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3698 hugetlb_acct_memory(h, -gbl_reserve);
3699 }
3700
3701 kref_put(&resv->refs, resv_map_release);
3702 }
3703
3704 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3705 {
3706 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3707 return -EINVAL;
3708 return 0;
3709 }
3710
3711 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3712 {
3713 struct hstate *hstate = hstate_vma(vma);
3714
3715 return 1UL << huge_page_shift(hstate);
3716 }
3717
3718 /*
3719 * We cannot handle pagefaults against hugetlb pages at all. They cause
3720 * handle_mm_fault() to try to instantiate regular-sized pages in the
3721 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3722 * this far.
3723 */
3724 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3725 {
3726 BUG();
3727 return 0;
3728 }
3729
3730 /*
3731 * When a new function is introduced to vm_operations_struct and added
3732 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3733 * This is because under System V memory model, mappings created via
3734 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3735 * their original vm_ops are overwritten with shm_vm_ops.
3736 */
3737 const struct vm_operations_struct hugetlb_vm_ops = {
3738 .fault = hugetlb_vm_op_fault,
3739 .open = hugetlb_vm_op_open,
3740 .close = hugetlb_vm_op_close,
3741 .may_split = hugetlb_vm_op_split,
3742 .pagesize = hugetlb_vm_op_pagesize,
3743 };
3744
3745 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3746 int writable)
3747 {
3748 pte_t entry;
3749
3750 if (writable) {
3751 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3752 vma->vm_page_prot)));
3753 } else {
3754 entry = huge_pte_wrprotect(mk_huge_pte(page,
3755 vma->vm_page_prot));
3756 }
3757 entry = pte_mkyoung(entry);
3758 entry = pte_mkhuge(entry);
3759 entry = arch_make_huge_pte(entry, vma, page, writable);
3760
3761 return entry;
3762 }
3763
3764 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3765 unsigned long address, pte_t *ptep)
3766 {
3767 pte_t entry;
3768
3769 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3770 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3771 update_mmu_cache(vma, address, ptep);
3772 }
3773
3774 bool is_hugetlb_entry_migration(pte_t pte)
3775 {
3776 swp_entry_t swp;
3777
3778 if (huge_pte_none(pte) || pte_present(pte))
3779 return false;
3780 swp = pte_to_swp_entry(pte);
3781 if (is_migration_entry(swp))
3782 return true;
3783 else
3784 return false;
3785 }
3786
3787 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3788 {
3789 swp_entry_t swp;
3790
3791 if (huge_pte_none(pte) || pte_present(pte))
3792 return false;
3793 swp = pte_to_swp_entry(pte);
3794 if (is_hwpoison_entry(swp))
3795 return true;
3796 else
3797 return false;
3798 }
3799
3800 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3801 struct vm_area_struct *vma)
3802 {
3803 pte_t *src_pte, *dst_pte, entry, dst_entry;
3804 struct page *ptepage;
3805 unsigned long addr;
3806 int cow;
3807 struct hstate *h = hstate_vma(vma);
3808 unsigned long sz = huge_page_size(h);
3809 struct address_space *mapping = vma->vm_file->f_mapping;
3810 struct mmu_notifier_range range;
3811 int ret = 0;
3812
3813 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3814
3815 if (cow) {
3816 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3817 vma->vm_start,
3818 vma->vm_end);
3819 mmu_notifier_invalidate_range_start(&range);
3820 } else {
3821 /*
3822 * For shared mappings i_mmap_rwsem must be held to call
3823 * huge_pte_alloc, otherwise the returned ptep could go
3824 * away if part of a shared pmd and another thread calls
3825 * huge_pmd_unshare.
3826 */
3827 i_mmap_lock_read(mapping);
3828 }
3829
3830 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3831 spinlock_t *src_ptl, *dst_ptl;
3832 src_pte = huge_pte_offset(src, addr, sz);
3833 if (!src_pte)
3834 continue;
3835 dst_pte = huge_pte_alloc(dst, addr, sz);
3836 if (!dst_pte) {
3837 ret = -ENOMEM;
3838 break;
3839 }
3840
3841 /*
3842 * If the pagetables are shared don't copy or take references.
3843 * dst_pte == src_pte is the common case of src/dest sharing.
3844 *
3845 * However, src could have 'unshared' and dst shares with
3846 * another vma. If dst_pte !none, this implies sharing.
3847 * Check here before taking page table lock, and once again
3848 * after taking the lock below.
3849 */
3850 dst_entry = huge_ptep_get(dst_pte);
3851 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3852 continue;
3853
3854 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3855 src_ptl = huge_pte_lockptr(h, src, src_pte);
3856 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3857 entry = huge_ptep_get(src_pte);
3858 dst_entry = huge_ptep_get(dst_pte);
3859 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3860 /*
3861 * Skip if src entry none. Also, skip in the
3862 * unlikely case dst entry !none as this implies
3863 * sharing with another vma.
3864 */
3865 ;
3866 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3867 is_hugetlb_entry_hwpoisoned(entry))) {
3868 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3869
3870 if (is_write_migration_entry(swp_entry) && cow) {
3871 /*
3872 * COW mappings require pages in both
3873 * parent and child to be set to read.
3874 */
3875 make_migration_entry_read(&swp_entry);
3876 entry = swp_entry_to_pte(swp_entry);
3877 set_huge_swap_pte_at(src, addr, src_pte,
3878 entry, sz);
3879 }
3880 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3881 } else {
3882 if (cow) {
3883 /*
3884 * No need to notify as we are downgrading page
3885 * table protection not changing it to point
3886 * to a new page.
3887 *
3888 * See Documentation/vm/mmu_notifier.rst
3889 */
3890 huge_ptep_set_wrprotect(src, addr, src_pte);
3891 }
3892 entry = huge_ptep_get(src_pte);
3893 ptepage = pte_page(entry);
3894 get_page(ptepage);
3895 page_dup_rmap(ptepage, true);
3896 set_huge_pte_at(dst, addr, dst_pte, entry);
3897 hugetlb_count_add(pages_per_huge_page(h), dst);
3898 }
3899 spin_unlock(src_ptl);
3900 spin_unlock(dst_ptl);
3901 }
3902
3903 if (cow)
3904 mmu_notifier_invalidate_range_end(&range);
3905 else
3906 i_mmap_unlock_read(mapping);
3907
3908 return ret;
3909 }
3910
3911 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3912 unsigned long start, unsigned long end,
3913 struct page *ref_page)
3914 {
3915 struct mm_struct *mm = vma->vm_mm;
3916 unsigned long address;
3917 pte_t *ptep;
3918 pte_t pte;
3919 spinlock_t *ptl;
3920 struct page *page;
3921 struct hstate *h = hstate_vma(vma);
3922 unsigned long sz = huge_page_size(h);
3923 struct mmu_notifier_range range;
3924
3925 WARN_ON(!is_vm_hugetlb_page(vma));
3926 BUG_ON(start & ~huge_page_mask(h));
3927 BUG_ON(end & ~huge_page_mask(h));
3928
3929 /*
3930 * This is a hugetlb vma, all the pte entries should point
3931 * to huge page.
3932 */
3933 tlb_change_page_size(tlb, sz);
3934 tlb_start_vma(tlb, vma);
3935
3936 /*
3937 * If sharing possible, alert mmu notifiers of worst case.
3938 */
3939 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3940 end);
3941 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3942 mmu_notifier_invalidate_range_start(&range);
3943 address = start;
3944 for (; address < end; address += sz) {
3945 ptep = huge_pte_offset(mm, address, sz);
3946 if (!ptep)
3947 continue;
3948
3949 ptl = huge_pte_lock(h, mm, ptep);
3950 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3951 spin_unlock(ptl);
3952 /*
3953 * We just unmapped a page of PMDs by clearing a PUD.
3954 * The caller's TLB flush range should cover this area.
3955 */
3956 continue;
3957 }
3958
3959 pte = huge_ptep_get(ptep);
3960 if (huge_pte_none(pte)) {
3961 spin_unlock(ptl);
3962 continue;
3963 }
3964
3965 /*
3966 * Migrating hugepage or HWPoisoned hugepage is already
3967 * unmapped and its refcount is dropped, so just clear pte here.
3968 */
3969 if (unlikely(!pte_present(pte))) {
3970 huge_pte_clear(mm, address, ptep, sz);
3971 spin_unlock(ptl);
3972 continue;
3973 }
3974
3975 page = pte_page(pte);
3976 /*
3977 * If a reference page is supplied, it is because a specific
3978 * page is being unmapped, not a range. Ensure the page we
3979 * are about to unmap is the actual page of interest.
3980 */
3981 if (ref_page) {
3982 if (page != ref_page) {
3983 spin_unlock(ptl);
3984 continue;
3985 }
3986 /*
3987 * Mark the VMA as having unmapped its page so that
3988 * future faults in this VMA will fail rather than
3989 * looking like data was lost
3990 */
3991 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3992 }
3993
3994 pte = huge_ptep_get_and_clear(mm, address, ptep);
3995 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3996 if (huge_pte_dirty(pte))
3997 set_page_dirty(page);
3998
3999 hugetlb_count_sub(pages_per_huge_page(h), mm);
4000 page_remove_rmap(page, true);
4001
4002 spin_unlock(ptl);
4003 tlb_remove_page_size(tlb, page, huge_page_size(h));
4004 /*
4005 * Bail out after unmapping reference page if supplied
4006 */
4007 if (ref_page)
4008 break;
4009 }
4010 mmu_notifier_invalidate_range_end(&range);
4011 tlb_end_vma(tlb, vma);
4012 }
4013
4014 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4015 struct vm_area_struct *vma, unsigned long start,
4016 unsigned long end, struct page *ref_page)
4017 {
4018 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4019
4020 /*
4021 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4022 * test will fail on a vma being torn down, and not grab a page table
4023 * on its way out. We're lucky that the flag has such an appropriate
4024 * name, and can in fact be safely cleared here. We could clear it
4025 * before the __unmap_hugepage_range above, but all that's necessary
4026 * is to clear it before releasing the i_mmap_rwsem. This works
4027 * because in the context this is called, the VMA is about to be
4028 * destroyed and the i_mmap_rwsem is held.
4029 */
4030 vma->vm_flags &= ~VM_MAYSHARE;
4031 }
4032
4033 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4034 unsigned long end, struct page *ref_page)
4035 {
4036 struct mm_struct *mm;
4037 struct mmu_gather tlb;
4038 unsigned long tlb_start = start;
4039 unsigned long tlb_end = end;
4040
4041 /*
4042 * If shared PMDs were possibly used within this vma range, adjust
4043 * start/end for worst case tlb flushing.
4044 * Note that we can not be sure if PMDs are shared until we try to
4045 * unmap pages. However, we want to make sure TLB flushing covers
4046 * the largest possible range.
4047 */
4048 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4049
4050 mm = vma->vm_mm;
4051
4052 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4053 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4054 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4055 }
4056
4057 /*
4058 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4059 * mappping it owns the reserve page for. The intention is to unmap the page
4060 * from other VMAs and let the children be SIGKILLed if they are faulting the
4061 * same region.
4062 */
4063 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4064 struct page *page, unsigned long address)
4065 {
4066 struct hstate *h = hstate_vma(vma);
4067 struct vm_area_struct *iter_vma;
4068 struct address_space *mapping;
4069 pgoff_t pgoff;
4070
4071 /*
4072 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4073 * from page cache lookup which is in HPAGE_SIZE units.
4074 */
4075 address = address & huge_page_mask(h);
4076 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4077 vma->vm_pgoff;
4078 mapping = vma->vm_file->f_mapping;
4079
4080 /*
4081 * Take the mapping lock for the duration of the table walk. As
4082 * this mapping should be shared between all the VMAs,
4083 * __unmap_hugepage_range() is called as the lock is already held
4084 */
4085 i_mmap_lock_write(mapping);
4086 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4087 /* Do not unmap the current VMA */
4088 if (iter_vma == vma)
4089 continue;
4090
4091 /*
4092 * Shared VMAs have their own reserves and do not affect
4093 * MAP_PRIVATE accounting but it is possible that a shared
4094 * VMA is using the same page so check and skip such VMAs.
4095 */
4096 if (iter_vma->vm_flags & VM_MAYSHARE)
4097 continue;
4098
4099 /*
4100 * Unmap the page from other VMAs without their own reserves.
4101 * They get marked to be SIGKILLed if they fault in these
4102 * areas. This is because a future no-page fault on this VMA
4103 * could insert a zeroed page instead of the data existing
4104 * from the time of fork. This would look like data corruption
4105 */
4106 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4107 unmap_hugepage_range(iter_vma, address,
4108 address + huge_page_size(h), page);
4109 }
4110 i_mmap_unlock_write(mapping);
4111 }
4112
4113 /*
4114 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4115 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4116 * cannot race with other handlers or page migration.
4117 * Keep the pte_same checks anyway to make transition from the mutex easier.
4118 */
4119 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4120 unsigned long address, pte_t *ptep,
4121 struct page *pagecache_page, spinlock_t *ptl)
4122 {
4123 pte_t pte;
4124 struct hstate *h = hstate_vma(vma);
4125 struct page *old_page, *new_page;
4126 int outside_reserve = 0;
4127 vm_fault_t ret = 0;
4128 unsigned long haddr = address & huge_page_mask(h);
4129 struct mmu_notifier_range range;
4130
4131 pte = huge_ptep_get(ptep);
4132 old_page = pte_page(pte);
4133
4134 retry_avoidcopy:
4135 /* If no-one else is actually using this page, avoid the copy
4136 * and just make the page writable */
4137 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4138 page_move_anon_rmap(old_page, vma);
4139 set_huge_ptep_writable(vma, haddr, ptep);
4140 return 0;
4141 }
4142
4143 /*
4144 * If the process that created a MAP_PRIVATE mapping is about to
4145 * perform a COW due to a shared page count, attempt to satisfy
4146 * the allocation without using the existing reserves. The pagecache
4147 * page is used to determine if the reserve at this address was
4148 * consumed or not. If reserves were used, a partial faulted mapping
4149 * at the time of fork() could consume its reserves on COW instead
4150 * of the full address range.
4151 */
4152 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4153 old_page != pagecache_page)
4154 outside_reserve = 1;
4155
4156 get_page(old_page);
4157
4158 /*
4159 * Drop page table lock as buddy allocator may be called. It will
4160 * be acquired again before returning to the caller, as expected.
4161 */
4162 spin_unlock(ptl);
4163 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4164
4165 if (IS_ERR(new_page)) {
4166 /*
4167 * If a process owning a MAP_PRIVATE mapping fails to COW,
4168 * it is due to references held by a child and an insufficient
4169 * huge page pool. To guarantee the original mappers
4170 * reliability, unmap the page from child processes. The child
4171 * may get SIGKILLed if it later faults.
4172 */
4173 if (outside_reserve) {
4174 struct address_space *mapping = vma->vm_file->f_mapping;
4175 pgoff_t idx;
4176 u32 hash;
4177
4178 put_page(old_page);
4179 BUG_ON(huge_pte_none(pte));
4180 /*
4181 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4182 * unmapping. unmapping needs to hold i_mmap_rwsem
4183 * in write mode. Dropping i_mmap_rwsem in read mode
4184 * here is OK as COW mappings do not interact with
4185 * PMD sharing.
4186 *
4187 * Reacquire both after unmap operation.
4188 */
4189 idx = vma_hugecache_offset(h, vma, haddr);
4190 hash = hugetlb_fault_mutex_hash(mapping, idx);
4191 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4192 i_mmap_unlock_read(mapping);
4193
4194 unmap_ref_private(mm, vma, old_page, haddr);
4195
4196 i_mmap_lock_read(mapping);
4197 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4198 spin_lock(ptl);
4199 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4200 if (likely(ptep &&
4201 pte_same(huge_ptep_get(ptep), pte)))
4202 goto retry_avoidcopy;
4203 /*
4204 * race occurs while re-acquiring page table
4205 * lock, and our job is done.
4206 */
4207 return 0;
4208 }
4209
4210 ret = vmf_error(PTR_ERR(new_page));
4211 goto out_release_old;
4212 }
4213
4214 /*
4215 * When the original hugepage is shared one, it does not have
4216 * anon_vma prepared.
4217 */
4218 if (unlikely(anon_vma_prepare(vma))) {
4219 ret = VM_FAULT_OOM;
4220 goto out_release_all;
4221 }
4222
4223 copy_user_huge_page(new_page, old_page, address, vma,
4224 pages_per_huge_page(h));
4225 __SetPageUptodate(new_page);
4226
4227 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4228 haddr + huge_page_size(h));
4229 mmu_notifier_invalidate_range_start(&range);
4230
4231 /*
4232 * Retake the page table lock to check for racing updates
4233 * before the page tables are altered
4234 */
4235 spin_lock(ptl);
4236 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4237 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4238 ClearPagePrivate(new_page);
4239
4240 /* Break COW */
4241 huge_ptep_clear_flush(vma, haddr, ptep);
4242 mmu_notifier_invalidate_range(mm, range.start, range.end);
4243 set_huge_pte_at(mm, haddr, ptep,
4244 make_huge_pte(vma, new_page, 1));
4245 page_remove_rmap(old_page, true);
4246 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4247 set_page_huge_active(new_page);
4248 /* Make the old page be freed below */
4249 new_page = old_page;
4250 }
4251 spin_unlock(ptl);
4252 mmu_notifier_invalidate_range_end(&range);
4253 out_release_all:
4254 restore_reserve_on_error(h, vma, haddr, new_page);
4255 put_page(new_page);
4256 out_release_old:
4257 put_page(old_page);
4258
4259 spin_lock(ptl); /* Caller expects lock to be held */
4260 return ret;
4261 }
4262
4263 /* Return the pagecache page at a given address within a VMA */
4264 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4265 struct vm_area_struct *vma, unsigned long address)
4266 {
4267 struct address_space *mapping;
4268 pgoff_t idx;
4269
4270 mapping = vma->vm_file->f_mapping;
4271 idx = vma_hugecache_offset(h, vma, address);
4272
4273 return find_lock_page(mapping, idx);
4274 }
4275
4276 /*
4277 * Return whether there is a pagecache page to back given address within VMA.
4278 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4279 */
4280 static bool hugetlbfs_pagecache_present(struct hstate *h,
4281 struct vm_area_struct *vma, unsigned long address)
4282 {
4283 struct address_space *mapping;
4284 pgoff_t idx;
4285 struct page *page;
4286
4287 mapping = vma->vm_file->f_mapping;
4288 idx = vma_hugecache_offset(h, vma, address);
4289
4290 page = find_get_page(mapping, idx);
4291 if (page)
4292 put_page(page);
4293 return page != NULL;
4294 }
4295
4296 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4297 pgoff_t idx)
4298 {
4299 struct inode *inode = mapping->host;
4300 struct hstate *h = hstate_inode(inode);
4301 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4302
4303 if (err)
4304 return err;
4305 ClearPagePrivate(page);
4306
4307 /*
4308 * set page dirty so that it will not be removed from cache/file
4309 * by non-hugetlbfs specific code paths.
4310 */
4311 set_page_dirty(page);
4312
4313 spin_lock(&inode->i_lock);
4314 inode->i_blocks += blocks_per_huge_page(h);
4315 spin_unlock(&inode->i_lock);
4316 return 0;
4317 }
4318
4319 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4320 struct vm_area_struct *vma,
4321 struct address_space *mapping, pgoff_t idx,
4322 unsigned long address, pte_t *ptep, unsigned int flags)
4323 {
4324 struct hstate *h = hstate_vma(vma);
4325 vm_fault_t ret = VM_FAULT_SIGBUS;
4326 int anon_rmap = 0;
4327 unsigned long size;
4328 struct page *page;
4329 pte_t new_pte;
4330 spinlock_t *ptl;
4331 unsigned long haddr = address & huge_page_mask(h);
4332 bool new_page = false;
4333
4334 /*
4335 * Currently, we are forced to kill the process in the event the
4336 * original mapper has unmapped pages from the child due to a failed
4337 * COW. Warn that such a situation has occurred as it may not be obvious
4338 */
4339 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4340 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4341 current->pid);
4342 return ret;
4343 }
4344
4345 /*
4346 * We can not race with truncation due to holding i_mmap_rwsem.
4347 * i_size is modified when holding i_mmap_rwsem, so check here
4348 * once for faults beyond end of file.
4349 */
4350 size = i_size_read(mapping->host) >> huge_page_shift(h);
4351 if (idx >= size)
4352 goto out;
4353
4354 retry:
4355 page = find_lock_page(mapping, idx);
4356 if (!page) {
4357 /*
4358 * Check for page in userfault range
4359 */
4360 if (userfaultfd_missing(vma)) {
4361 u32 hash;
4362 struct vm_fault vmf = {
4363 .vma = vma,
4364 .address = haddr,
4365 .flags = flags,
4366 /*
4367 * Hard to debug if it ends up being
4368 * used by a callee that assumes
4369 * something about the other
4370 * uninitialized fields... same as in
4371 * memory.c
4372 */
4373 };
4374
4375 /*
4376 * hugetlb_fault_mutex and i_mmap_rwsem must be
4377 * dropped before handling userfault. Reacquire
4378 * after handling fault to make calling code simpler.
4379 */
4380 hash = hugetlb_fault_mutex_hash(mapping, idx);
4381 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4382 i_mmap_unlock_read(mapping);
4383 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4384 i_mmap_lock_read(mapping);
4385 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4386 goto out;
4387 }
4388
4389 page = alloc_huge_page(vma, haddr, 0);
4390 if (IS_ERR(page)) {
4391 /*
4392 * Returning error will result in faulting task being
4393 * sent SIGBUS. The hugetlb fault mutex prevents two
4394 * tasks from racing to fault in the same page which
4395 * could result in false unable to allocate errors.
4396 * Page migration does not take the fault mutex, but
4397 * does a clear then write of pte's under page table
4398 * lock. Page fault code could race with migration,
4399 * notice the clear pte and try to allocate a page
4400 * here. Before returning error, get ptl and make
4401 * sure there really is no pte entry.
4402 */
4403 ptl = huge_pte_lock(h, mm, ptep);
4404 if (!huge_pte_none(huge_ptep_get(ptep))) {
4405 ret = 0;
4406 spin_unlock(ptl);
4407 goto out;
4408 }
4409 spin_unlock(ptl);
4410 ret = vmf_error(PTR_ERR(page));
4411 goto out;
4412 }
4413 clear_huge_page(page, address, pages_per_huge_page(h));
4414 __SetPageUptodate(page);
4415 new_page = true;
4416
4417 if (vma->vm_flags & VM_MAYSHARE) {
4418 int err = huge_add_to_page_cache(page, mapping, idx);
4419 if (err) {
4420 put_page(page);
4421 if (err == -EEXIST)
4422 goto retry;
4423 goto out;
4424 }
4425 } else {
4426 lock_page(page);
4427 if (unlikely(anon_vma_prepare(vma))) {
4428 ret = VM_FAULT_OOM;
4429 goto backout_unlocked;
4430 }
4431 anon_rmap = 1;
4432 }
4433 } else {
4434 /*
4435 * If memory error occurs between mmap() and fault, some process
4436 * don't have hwpoisoned swap entry for errored virtual address.
4437 * So we need to block hugepage fault by PG_hwpoison bit check.
4438 */
4439 if (unlikely(PageHWPoison(page))) {
4440 ret = VM_FAULT_HWPOISON_LARGE |
4441 VM_FAULT_SET_HINDEX(hstate_index(h));
4442 goto backout_unlocked;
4443 }
4444 }
4445
4446 /*
4447 * If we are going to COW a private mapping later, we examine the
4448 * pending reservations for this page now. This will ensure that
4449 * any allocations necessary to record that reservation occur outside
4450 * the spinlock.
4451 */
4452 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4453 if (vma_needs_reservation(h, vma, haddr) < 0) {
4454 ret = VM_FAULT_OOM;
4455 goto backout_unlocked;
4456 }
4457 /* Just decrements count, does not deallocate */
4458 vma_end_reservation(h, vma, haddr);
4459 }
4460
4461 ptl = huge_pte_lock(h, mm, ptep);
4462 ret = 0;
4463 if (!huge_pte_none(huge_ptep_get(ptep)))
4464 goto backout;
4465
4466 if (anon_rmap) {
4467 ClearPagePrivate(page);
4468 hugepage_add_new_anon_rmap(page, vma, haddr);
4469 } else
4470 page_dup_rmap(page, true);
4471 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4472 && (vma->vm_flags & VM_SHARED)));
4473 set_huge_pte_at(mm, haddr, ptep, new_pte);
4474
4475 hugetlb_count_add(pages_per_huge_page(h), mm);
4476 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4477 /* Optimization, do the COW without a second fault */
4478 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4479 }
4480
4481 spin_unlock(ptl);
4482
4483 /*
4484 * Only make newly allocated pages active. Existing pages found
4485 * in the pagecache could be !page_huge_active() if they have been
4486 * isolated for migration.
4487 */
4488 if (new_page)
4489 set_page_huge_active(page);
4490
4491 unlock_page(page);
4492 out:
4493 return ret;
4494
4495 backout:
4496 spin_unlock(ptl);
4497 backout_unlocked:
4498 unlock_page(page);
4499 restore_reserve_on_error(h, vma, haddr, page);
4500 put_page(page);
4501 goto out;
4502 }
4503
4504 #ifdef CONFIG_SMP
4505 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4506 {
4507 unsigned long key[2];
4508 u32 hash;
4509
4510 key[0] = (unsigned long) mapping;
4511 key[1] = idx;
4512
4513 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4514
4515 return hash & (num_fault_mutexes - 1);
4516 }
4517 #else
4518 /*
4519 * For uniprocesor systems we always use a single mutex, so just
4520 * return 0 and avoid the hashing overhead.
4521 */
4522 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4523 {
4524 return 0;
4525 }
4526 #endif
4527
4528 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4529 unsigned long address, unsigned int flags)
4530 {
4531 pte_t *ptep, entry;
4532 spinlock_t *ptl;
4533 vm_fault_t ret;
4534 u32 hash;
4535 pgoff_t idx;
4536 struct page *page = NULL;
4537 struct page *pagecache_page = NULL;
4538 struct hstate *h = hstate_vma(vma);
4539 struct address_space *mapping;
4540 int need_wait_lock = 0;
4541 unsigned long haddr = address & huge_page_mask(h);
4542
4543 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4544 if (ptep) {
4545 /*
4546 * Since we hold no locks, ptep could be stale. That is
4547 * OK as we are only making decisions based on content and
4548 * not actually modifying content here.
4549 */
4550 entry = huge_ptep_get(ptep);
4551 if (unlikely(is_hugetlb_entry_migration(entry))) {
4552 migration_entry_wait_huge(vma, mm, ptep);
4553 return 0;
4554 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4555 return VM_FAULT_HWPOISON_LARGE |
4556 VM_FAULT_SET_HINDEX(hstate_index(h));
4557 }
4558
4559 /*
4560 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4561 * until finished with ptep. This serves two purposes:
4562 * 1) It prevents huge_pmd_unshare from being called elsewhere
4563 * and making the ptep no longer valid.
4564 * 2) It synchronizes us with i_size modifications during truncation.
4565 *
4566 * ptep could have already be assigned via huge_pte_offset. That
4567 * is OK, as huge_pte_alloc will return the same value unless
4568 * something has changed.
4569 */
4570 mapping = vma->vm_file->f_mapping;
4571 i_mmap_lock_read(mapping);
4572 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4573 if (!ptep) {
4574 i_mmap_unlock_read(mapping);
4575 return VM_FAULT_OOM;
4576 }
4577
4578 /*
4579 * Serialize hugepage allocation and instantiation, so that we don't
4580 * get spurious allocation failures if two CPUs race to instantiate
4581 * the same page in the page cache.
4582 */
4583 idx = vma_hugecache_offset(h, vma, haddr);
4584 hash = hugetlb_fault_mutex_hash(mapping, idx);
4585 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4586
4587 entry = huge_ptep_get(ptep);
4588 if (huge_pte_none(entry)) {
4589 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4590 goto out_mutex;
4591 }
4592
4593 ret = 0;
4594
4595 /*
4596 * entry could be a migration/hwpoison entry at this point, so this
4597 * check prevents the kernel from going below assuming that we have
4598 * an active hugepage in pagecache. This goto expects the 2nd page
4599 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4600 * properly handle it.
4601 */
4602 if (!pte_present(entry))
4603 goto out_mutex;
4604
4605 /*
4606 * If we are going to COW the mapping later, we examine the pending
4607 * reservations for this page now. This will ensure that any
4608 * allocations necessary to record that reservation occur outside the
4609 * spinlock. For private mappings, we also lookup the pagecache
4610 * page now as it is used to determine if a reservation has been
4611 * consumed.
4612 */
4613 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4614 if (vma_needs_reservation(h, vma, haddr) < 0) {
4615 ret = VM_FAULT_OOM;
4616 goto out_mutex;
4617 }
4618 /* Just decrements count, does not deallocate */
4619 vma_end_reservation(h, vma, haddr);
4620
4621 if (!(vma->vm_flags & VM_MAYSHARE))
4622 pagecache_page = hugetlbfs_pagecache_page(h,
4623 vma, haddr);
4624 }
4625
4626 ptl = huge_pte_lock(h, mm, ptep);
4627
4628 /* Check for a racing update before calling hugetlb_cow */
4629 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4630 goto out_ptl;
4631
4632 /*
4633 * hugetlb_cow() requires page locks of pte_page(entry) and
4634 * pagecache_page, so here we need take the former one
4635 * when page != pagecache_page or !pagecache_page.
4636 */
4637 page = pte_page(entry);
4638 if (page != pagecache_page)
4639 if (!trylock_page(page)) {
4640 need_wait_lock = 1;
4641 goto out_ptl;
4642 }
4643
4644 get_page(page);
4645
4646 if (flags & FAULT_FLAG_WRITE) {
4647 if (!huge_pte_write(entry)) {
4648 ret = hugetlb_cow(mm, vma, address, ptep,
4649 pagecache_page, ptl);
4650 goto out_put_page;
4651 }
4652 entry = huge_pte_mkdirty(entry);
4653 }
4654 entry = pte_mkyoung(entry);
4655 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4656 flags & FAULT_FLAG_WRITE))
4657 update_mmu_cache(vma, haddr, ptep);
4658 out_put_page:
4659 if (page != pagecache_page)
4660 unlock_page(page);
4661 put_page(page);
4662 out_ptl:
4663 spin_unlock(ptl);
4664
4665 if (pagecache_page) {
4666 unlock_page(pagecache_page);
4667 put_page(pagecache_page);
4668 }
4669 out_mutex:
4670 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4671 i_mmap_unlock_read(mapping);
4672 /*
4673 * Generally it's safe to hold refcount during waiting page lock. But
4674 * here we just wait to defer the next page fault to avoid busy loop and
4675 * the page is not used after unlocked before returning from the current
4676 * page fault. So we are safe from accessing freed page, even if we wait
4677 * here without taking refcount.
4678 */
4679 if (need_wait_lock)
4680 wait_on_page_locked(page);
4681 return ret;
4682 }
4683
4684 /*
4685 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4686 * modifications for huge pages.
4687 */
4688 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4689 pte_t *dst_pte,
4690 struct vm_area_struct *dst_vma,
4691 unsigned long dst_addr,
4692 unsigned long src_addr,
4693 struct page **pagep)
4694 {
4695 struct address_space *mapping;
4696 pgoff_t idx;
4697 unsigned long size;
4698 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4699 struct hstate *h = hstate_vma(dst_vma);
4700 pte_t _dst_pte;
4701 spinlock_t *ptl;
4702 int ret;
4703 struct page *page;
4704
4705 if (!*pagep) {
4706 ret = -ENOMEM;
4707 page = alloc_huge_page(dst_vma, dst_addr, 0);
4708 if (IS_ERR(page))
4709 goto out;
4710
4711 ret = copy_huge_page_from_user(page,
4712 (const void __user *) src_addr,
4713 pages_per_huge_page(h), false);
4714
4715 /* fallback to copy_from_user outside mmap_lock */
4716 if (unlikely(ret)) {
4717 ret = -ENOENT;
4718 *pagep = page;
4719 /* don't free the page */
4720 goto out;
4721 }
4722 } else {
4723 page = *pagep;
4724 *pagep = NULL;
4725 }
4726
4727 /*
4728 * The memory barrier inside __SetPageUptodate makes sure that
4729 * preceding stores to the page contents become visible before
4730 * the set_pte_at() write.
4731 */
4732 __SetPageUptodate(page);
4733
4734 mapping = dst_vma->vm_file->f_mapping;
4735 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4736
4737 /*
4738 * If shared, add to page cache
4739 */
4740 if (vm_shared) {
4741 size = i_size_read(mapping->host) >> huge_page_shift(h);
4742 ret = -EFAULT;
4743 if (idx >= size)
4744 goto out_release_nounlock;
4745
4746 /*
4747 * Serialization between remove_inode_hugepages() and
4748 * huge_add_to_page_cache() below happens through the
4749 * hugetlb_fault_mutex_table that here must be hold by
4750 * the caller.
4751 */
4752 ret = huge_add_to_page_cache(page, mapping, idx);
4753 if (ret)
4754 goto out_release_nounlock;
4755 }
4756
4757 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4758 spin_lock(ptl);
4759
4760 /*
4761 * Recheck the i_size after holding PT lock to make sure not
4762 * to leave any page mapped (as page_mapped()) beyond the end
4763 * of the i_size (remove_inode_hugepages() is strict about
4764 * enforcing that). If we bail out here, we'll also leave a
4765 * page in the radix tree in the vm_shared case beyond the end
4766 * of the i_size, but remove_inode_hugepages() will take care
4767 * of it as soon as we drop the hugetlb_fault_mutex_table.
4768 */
4769 size = i_size_read(mapping->host) >> huge_page_shift(h);
4770 ret = -EFAULT;
4771 if (idx >= size)
4772 goto out_release_unlock;
4773
4774 ret = -EEXIST;
4775 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4776 goto out_release_unlock;
4777
4778 if (vm_shared) {
4779 page_dup_rmap(page, true);
4780 } else {
4781 ClearPagePrivate(page);
4782 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4783 }
4784
4785 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4786 if (dst_vma->vm_flags & VM_WRITE)
4787 _dst_pte = huge_pte_mkdirty(_dst_pte);
4788 _dst_pte = pte_mkyoung(_dst_pte);
4789
4790 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4791
4792 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4793 dst_vma->vm_flags & VM_WRITE);
4794 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4795
4796 /* No need to invalidate - it was non-present before */
4797 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4798
4799 spin_unlock(ptl);
4800 set_page_huge_active(page);
4801 if (vm_shared)
4802 unlock_page(page);
4803 ret = 0;
4804 out:
4805 return ret;
4806 out_release_unlock:
4807 spin_unlock(ptl);
4808 if (vm_shared)
4809 unlock_page(page);
4810 out_release_nounlock:
4811 put_page(page);
4812 goto out;
4813 }
4814
4815 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4816 struct page **pages, struct vm_area_struct **vmas,
4817 unsigned long *position, unsigned long *nr_pages,
4818 long i, unsigned int flags, int *locked)
4819 {
4820 unsigned long pfn_offset;
4821 unsigned long vaddr = *position;
4822 unsigned long remainder = *nr_pages;
4823 struct hstate *h = hstate_vma(vma);
4824 int err = -EFAULT;
4825
4826 while (vaddr < vma->vm_end && remainder) {
4827 pte_t *pte;
4828 spinlock_t *ptl = NULL;
4829 int absent;
4830 struct page *page;
4831
4832 /*
4833 * If we have a pending SIGKILL, don't keep faulting pages and
4834 * potentially allocating memory.
4835 */
4836 if (fatal_signal_pending(current)) {
4837 remainder = 0;
4838 break;
4839 }
4840
4841 /*
4842 * Some archs (sparc64, sh*) have multiple pte_ts to
4843 * each hugepage. We have to make sure we get the
4844 * first, for the page indexing below to work.
4845 *
4846 * Note that page table lock is not held when pte is null.
4847 */
4848 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4849 huge_page_size(h));
4850 if (pte)
4851 ptl = huge_pte_lock(h, mm, pte);
4852 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4853
4854 /*
4855 * When coredumping, it suits get_dump_page if we just return
4856 * an error where there's an empty slot with no huge pagecache
4857 * to back it. This way, we avoid allocating a hugepage, and
4858 * the sparse dumpfile avoids allocating disk blocks, but its
4859 * huge holes still show up with zeroes where they need to be.
4860 */
4861 if (absent && (flags & FOLL_DUMP) &&
4862 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4863 if (pte)
4864 spin_unlock(ptl);
4865 remainder = 0;
4866 break;
4867 }
4868
4869 /*
4870 * We need call hugetlb_fault for both hugepages under migration
4871 * (in which case hugetlb_fault waits for the migration,) and
4872 * hwpoisoned hugepages (in which case we need to prevent the
4873 * caller from accessing to them.) In order to do this, we use
4874 * here is_swap_pte instead of is_hugetlb_entry_migration and
4875 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4876 * both cases, and because we can't follow correct pages
4877 * directly from any kind of swap entries.
4878 */
4879 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4880 ((flags & FOLL_WRITE) &&
4881 !huge_pte_write(huge_ptep_get(pte)))) {
4882 vm_fault_t ret;
4883 unsigned int fault_flags = 0;
4884
4885 if (pte)
4886 spin_unlock(ptl);
4887 if (flags & FOLL_WRITE)
4888 fault_flags |= FAULT_FLAG_WRITE;
4889 if (locked)
4890 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4891 FAULT_FLAG_KILLABLE;
4892 if (flags & FOLL_NOWAIT)
4893 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4894 FAULT_FLAG_RETRY_NOWAIT;
4895 if (flags & FOLL_TRIED) {
4896 /*
4897 * Note: FAULT_FLAG_ALLOW_RETRY and
4898 * FAULT_FLAG_TRIED can co-exist
4899 */
4900 fault_flags |= FAULT_FLAG_TRIED;
4901 }
4902 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4903 if (ret & VM_FAULT_ERROR) {
4904 err = vm_fault_to_errno(ret, flags);
4905 remainder = 0;
4906 break;
4907 }
4908 if (ret & VM_FAULT_RETRY) {
4909 if (locked &&
4910 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4911 *locked = 0;
4912 *nr_pages = 0;
4913 /*
4914 * VM_FAULT_RETRY must not return an
4915 * error, it will return zero
4916 * instead.
4917 *
4918 * No need to update "position" as the
4919 * caller will not check it after
4920 * *nr_pages is set to 0.
4921 */
4922 return i;
4923 }
4924 continue;
4925 }
4926
4927 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4928 page = pte_page(huge_ptep_get(pte));
4929
4930 /*
4931 * If subpage information not requested, update counters
4932 * and skip the same_page loop below.
4933 */
4934 if (!pages && !vmas && !pfn_offset &&
4935 (vaddr + huge_page_size(h) < vma->vm_end) &&
4936 (remainder >= pages_per_huge_page(h))) {
4937 vaddr += huge_page_size(h);
4938 remainder -= pages_per_huge_page(h);
4939 i += pages_per_huge_page(h);
4940 spin_unlock(ptl);
4941 continue;
4942 }
4943
4944 same_page:
4945 if (pages) {
4946 pages[i] = mem_map_offset(page, pfn_offset);
4947 /*
4948 * try_grab_page() should always succeed here, because:
4949 * a) we hold the ptl lock, and b) we've just checked
4950 * that the huge page is present in the page tables. If
4951 * the huge page is present, then the tail pages must
4952 * also be present. The ptl prevents the head page and
4953 * tail pages from being rearranged in any way. So this
4954 * page must be available at this point, unless the page
4955 * refcount overflowed:
4956 */
4957 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4958 spin_unlock(ptl);
4959 remainder = 0;
4960 err = -ENOMEM;
4961 break;
4962 }
4963 }
4964
4965 if (vmas)
4966 vmas[i] = vma;
4967
4968 vaddr += PAGE_SIZE;
4969 ++pfn_offset;
4970 --remainder;
4971 ++i;
4972 if (vaddr < vma->vm_end && remainder &&
4973 pfn_offset < pages_per_huge_page(h)) {
4974 /*
4975 * We use pfn_offset to avoid touching the pageframes
4976 * of this compound page.
4977 */
4978 goto same_page;
4979 }
4980 spin_unlock(ptl);
4981 }
4982 *nr_pages = remainder;
4983 /*
4984 * setting position is actually required only if remainder is
4985 * not zero but it's faster not to add a "if (remainder)"
4986 * branch.
4987 */
4988 *position = vaddr;
4989
4990 return i ? i : err;
4991 }
4992
4993 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4994 /*
4995 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4996 * implement this.
4997 */
4998 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4999 #endif
5000
5001 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5002 unsigned long address, unsigned long end, pgprot_t newprot)
5003 {
5004 struct mm_struct *mm = vma->vm_mm;
5005 unsigned long start = address;
5006 pte_t *ptep;
5007 pte_t pte;
5008 struct hstate *h = hstate_vma(vma);
5009 unsigned long pages = 0;
5010 bool shared_pmd = false;
5011 struct mmu_notifier_range range;
5012
5013 /*
5014 * In the case of shared PMDs, the area to flush could be beyond
5015 * start/end. Set range.start/range.end to cover the maximum possible
5016 * range if PMD sharing is possible.
5017 */
5018 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5019 0, vma, mm, start, end);
5020 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5021
5022 BUG_ON(address >= end);
5023 flush_cache_range(vma, range.start, range.end);
5024
5025 mmu_notifier_invalidate_range_start(&range);
5026 i_mmap_lock_write(vma->vm_file->f_mapping);
5027 for (; address < end; address += huge_page_size(h)) {
5028 spinlock_t *ptl;
5029 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5030 if (!ptep)
5031 continue;
5032 ptl = huge_pte_lock(h, mm, ptep);
5033 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5034 pages++;
5035 spin_unlock(ptl);
5036 shared_pmd = true;
5037 continue;
5038 }
5039 pte = huge_ptep_get(ptep);
5040 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5041 spin_unlock(ptl);
5042 continue;
5043 }
5044 if (unlikely(is_hugetlb_entry_migration(pte))) {
5045 swp_entry_t entry = pte_to_swp_entry(pte);
5046
5047 if (is_write_migration_entry(entry)) {
5048 pte_t newpte;
5049
5050 make_migration_entry_read(&entry);
5051 newpte = swp_entry_to_pte(entry);
5052 set_huge_swap_pte_at(mm, address, ptep,
5053 newpte, huge_page_size(h));
5054 pages++;
5055 }
5056 spin_unlock(ptl);
5057 continue;
5058 }
5059 if (!huge_pte_none(pte)) {
5060 pte_t old_pte;
5061
5062 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5063 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5064 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5065 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5066 pages++;
5067 }
5068 spin_unlock(ptl);
5069 }
5070 /*
5071 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5072 * may have cleared our pud entry and done put_page on the page table:
5073 * once we release i_mmap_rwsem, another task can do the final put_page
5074 * and that page table be reused and filled with junk. If we actually
5075 * did unshare a page of pmds, flush the range corresponding to the pud.
5076 */
5077 if (shared_pmd)
5078 flush_hugetlb_tlb_range(vma, range.start, range.end);
5079 else
5080 flush_hugetlb_tlb_range(vma, start, end);
5081 /*
5082 * No need to call mmu_notifier_invalidate_range() we are downgrading
5083 * page table protection not changing it to point to a new page.
5084 *
5085 * See Documentation/vm/mmu_notifier.rst
5086 */
5087 i_mmap_unlock_write(vma->vm_file->f_mapping);
5088 mmu_notifier_invalidate_range_end(&range);
5089
5090 return pages << h->order;
5091 }
5092
5093 int hugetlb_reserve_pages(struct inode *inode,
5094 long from, long to,
5095 struct vm_area_struct *vma,
5096 vm_flags_t vm_flags)
5097 {
5098 long ret, chg, add = -1;
5099 struct hstate *h = hstate_inode(inode);
5100 struct hugepage_subpool *spool = subpool_inode(inode);
5101 struct resv_map *resv_map;
5102 struct hugetlb_cgroup *h_cg = NULL;
5103 long gbl_reserve, regions_needed = 0;
5104
5105 /* This should never happen */
5106 if (from > to) {
5107 VM_WARN(1, "%s called with a negative range\n", __func__);
5108 return -EINVAL;
5109 }
5110
5111 /*
5112 * Only apply hugepage reservation if asked. At fault time, an
5113 * attempt will be made for VM_NORESERVE to allocate a page
5114 * without using reserves
5115 */
5116 if (vm_flags & VM_NORESERVE)
5117 return 0;
5118
5119 /*
5120 * Shared mappings base their reservation on the number of pages that
5121 * are already allocated on behalf of the file. Private mappings need
5122 * to reserve the full area even if read-only as mprotect() may be
5123 * called to make the mapping read-write. Assume !vma is a shm mapping
5124 */
5125 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5126 /*
5127 * resv_map can not be NULL as hugetlb_reserve_pages is only
5128 * called for inodes for which resv_maps were created (see
5129 * hugetlbfs_get_inode).
5130 */
5131 resv_map = inode_resv_map(inode);
5132
5133 chg = region_chg(resv_map, from, to, &regions_needed);
5134
5135 } else {
5136 /* Private mapping. */
5137 resv_map = resv_map_alloc();
5138 if (!resv_map)
5139 return -ENOMEM;
5140
5141 chg = to - from;
5142
5143 set_vma_resv_map(vma, resv_map);
5144 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5145 }
5146
5147 if (chg < 0) {
5148 ret = chg;
5149 goto out_err;
5150 }
5151
5152 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5153 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5154
5155 if (ret < 0) {
5156 ret = -ENOMEM;
5157 goto out_err;
5158 }
5159
5160 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5161 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5162 * of the resv_map.
5163 */
5164 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5165 }
5166
5167 /*
5168 * There must be enough pages in the subpool for the mapping. If
5169 * the subpool has a minimum size, there may be some global
5170 * reservations already in place (gbl_reserve).
5171 */
5172 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5173 if (gbl_reserve < 0) {
5174 ret = -ENOSPC;
5175 goto out_uncharge_cgroup;
5176 }
5177
5178 /*
5179 * Check enough hugepages are available for the reservation.
5180 * Hand the pages back to the subpool if there are not
5181 */
5182 ret = hugetlb_acct_memory(h, gbl_reserve);
5183 if (ret < 0) {
5184 goto out_put_pages;
5185 }
5186
5187 /*
5188 * Account for the reservations made. Shared mappings record regions
5189 * that have reservations as they are shared by multiple VMAs.
5190 * When the last VMA disappears, the region map says how much
5191 * the reservation was and the page cache tells how much of
5192 * the reservation was consumed. Private mappings are per-VMA and
5193 * only the consumed reservations are tracked. When the VMA
5194 * disappears, the original reservation is the VMA size and the
5195 * consumed reservations are stored in the map. Hence, nothing
5196 * else has to be done for private mappings here
5197 */
5198 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5199 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5200
5201 if (unlikely(add < 0)) {
5202 hugetlb_acct_memory(h, -gbl_reserve);
5203 ret = add;
5204 goto out_put_pages;
5205 } else if (unlikely(chg > add)) {
5206 /*
5207 * pages in this range were added to the reserve
5208 * map between region_chg and region_add. This
5209 * indicates a race with alloc_huge_page. Adjust
5210 * the subpool and reserve counts modified above
5211 * based on the difference.
5212 */
5213 long rsv_adjust;
5214
5215 /*
5216 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5217 * reference to h_cg->css. See comment below for detail.
5218 */
5219 hugetlb_cgroup_uncharge_cgroup_rsvd(
5220 hstate_index(h),
5221 (chg - add) * pages_per_huge_page(h), h_cg);
5222
5223 rsv_adjust = hugepage_subpool_put_pages(spool,
5224 chg - add);
5225 hugetlb_acct_memory(h, -rsv_adjust);
5226 } else if (h_cg) {
5227 /*
5228 * The file_regions will hold their own reference to
5229 * h_cg->css. So we should release the reference held
5230 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5231 * done.
5232 */
5233 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5234 }
5235 }
5236 return 0;
5237 out_put_pages:
5238 /* put back original number of pages, chg */
5239 (void)hugepage_subpool_put_pages(spool, chg);
5240 out_uncharge_cgroup:
5241 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5242 chg * pages_per_huge_page(h), h_cg);
5243 out_err:
5244 if (!vma || vma->vm_flags & VM_MAYSHARE)
5245 /* Only call region_abort if the region_chg succeeded but the
5246 * region_add failed or didn't run.
5247 */
5248 if (chg >= 0 && add < 0)
5249 region_abort(resv_map, from, to, regions_needed);
5250 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5251 kref_put(&resv_map->refs, resv_map_release);
5252 return ret;
5253 }
5254
5255 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5256 long freed)
5257 {
5258 struct hstate *h = hstate_inode(inode);
5259 struct resv_map *resv_map = inode_resv_map(inode);
5260 long chg = 0;
5261 struct hugepage_subpool *spool = subpool_inode(inode);
5262 long gbl_reserve;
5263
5264 /*
5265 * Since this routine can be called in the evict inode path for all
5266 * hugetlbfs inodes, resv_map could be NULL.
5267 */
5268 if (resv_map) {
5269 chg = region_del(resv_map, start, end);
5270 /*
5271 * region_del() can fail in the rare case where a region
5272 * must be split and another region descriptor can not be
5273 * allocated. If end == LONG_MAX, it will not fail.
5274 */
5275 if (chg < 0)
5276 return chg;
5277 }
5278
5279 spin_lock(&inode->i_lock);
5280 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5281 spin_unlock(&inode->i_lock);
5282
5283 /*
5284 * If the subpool has a minimum size, the number of global
5285 * reservations to be released may be adjusted.
5286 */
5287 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5288 hugetlb_acct_memory(h, -gbl_reserve);
5289
5290 return 0;
5291 }
5292
5293 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5294 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5295 struct vm_area_struct *vma,
5296 unsigned long addr, pgoff_t idx)
5297 {
5298 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5299 svma->vm_start;
5300 unsigned long sbase = saddr & PUD_MASK;
5301 unsigned long s_end = sbase + PUD_SIZE;
5302
5303 /* Allow segments to share if only one is marked locked */
5304 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5305 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5306
5307 /*
5308 * match the virtual addresses, permission and the alignment of the
5309 * page table page.
5310 */
5311 if (pmd_index(addr) != pmd_index(saddr) ||
5312 vm_flags != svm_flags ||
5313 sbase < svma->vm_start || svma->vm_end < s_end)
5314 return 0;
5315
5316 return saddr;
5317 }
5318
5319 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5320 {
5321 unsigned long base = addr & PUD_MASK;
5322 unsigned long end = base + PUD_SIZE;
5323
5324 /*
5325 * check on proper vm_flags and page table alignment
5326 */
5327 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5328 return true;
5329 return false;
5330 }
5331
5332 /*
5333 * Determine if start,end range within vma could be mapped by shared pmd.
5334 * If yes, adjust start and end to cover range associated with possible
5335 * shared pmd mappings.
5336 */
5337 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5338 unsigned long *start, unsigned long *end)
5339 {
5340 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5341 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5342
5343 /*
5344 * vma need span at least one aligned PUD size and the start,end range
5345 * must at least partialy within it.
5346 */
5347 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5348 (*end <= v_start) || (*start >= v_end))
5349 return;
5350
5351 /* Extend the range to be PUD aligned for a worst case scenario */
5352 if (*start > v_start)
5353 *start = ALIGN_DOWN(*start, PUD_SIZE);
5354
5355 if (*end < v_end)
5356 *end = ALIGN(*end, PUD_SIZE);
5357 }
5358
5359 /*
5360 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5361 * and returns the corresponding pte. While this is not necessary for the
5362 * !shared pmd case because we can allocate the pmd later as well, it makes the
5363 * code much cleaner.
5364 *
5365 * This routine must be called with i_mmap_rwsem held in at least read mode if
5366 * sharing is possible. For hugetlbfs, this prevents removal of any page
5367 * table entries associated with the address space. This is important as we
5368 * are setting up sharing based on existing page table entries (mappings).
5369 *
5370 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5371 * huge_pte_alloc know that sharing is not possible and do not take
5372 * i_mmap_rwsem as a performance optimization. This is handled by the
5373 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5374 * only required for subsequent processing.
5375 */
5376 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5377 {
5378 struct vm_area_struct *vma = find_vma(mm, addr);
5379 struct address_space *mapping = vma->vm_file->f_mapping;
5380 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5381 vma->vm_pgoff;
5382 struct vm_area_struct *svma;
5383 unsigned long saddr;
5384 pte_t *spte = NULL;
5385 pte_t *pte;
5386 spinlock_t *ptl;
5387
5388 if (!vma_shareable(vma, addr))
5389 return (pte_t *)pmd_alloc(mm, pud, addr);
5390
5391 i_mmap_assert_locked(mapping);
5392 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5393 if (svma == vma)
5394 continue;
5395
5396 saddr = page_table_shareable(svma, vma, addr, idx);
5397 if (saddr) {
5398 spte = huge_pte_offset(svma->vm_mm, saddr,
5399 vma_mmu_pagesize(svma));
5400 if (spte) {
5401 get_page(virt_to_page(spte));
5402 break;
5403 }
5404 }
5405 }
5406
5407 if (!spte)
5408 goto out;
5409
5410 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5411 if (pud_none(*pud)) {
5412 pud_populate(mm, pud,
5413 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5414 mm_inc_nr_pmds(mm);
5415 } else {
5416 put_page(virt_to_page(spte));
5417 }
5418 spin_unlock(ptl);
5419 out:
5420 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5421 return pte;
5422 }
5423
5424 /*
5425 * unmap huge page backed by shared pte.
5426 *
5427 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5428 * indicated by page_count > 1, unmap is achieved by clearing pud and
5429 * decrementing the ref count. If count == 1, the pte page is not shared.
5430 *
5431 * Called with page table lock held and i_mmap_rwsem held in write mode.
5432 *
5433 * returns: 1 successfully unmapped a shared pte page
5434 * 0 the underlying pte page is not shared, or it is the last user
5435 */
5436 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5437 unsigned long *addr, pte_t *ptep)
5438 {
5439 pgd_t *pgd = pgd_offset(mm, *addr);
5440 p4d_t *p4d = p4d_offset(pgd, *addr);
5441 pud_t *pud = pud_offset(p4d, *addr);
5442
5443 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5444 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5445 if (page_count(virt_to_page(ptep)) == 1)
5446 return 0;
5447
5448 pud_clear(pud);
5449 put_page(virt_to_page(ptep));
5450 mm_dec_nr_pmds(mm);
5451 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5452 return 1;
5453 }
5454 #define want_pmd_share() (1)
5455 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5456 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5457 {
5458 return NULL;
5459 }
5460
5461 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5462 unsigned long *addr, pte_t *ptep)
5463 {
5464 return 0;
5465 }
5466
5467 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5468 unsigned long *start, unsigned long *end)
5469 {
5470 }
5471 #define want_pmd_share() (0)
5472 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5473
5474 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5475 pte_t *huge_pte_alloc(struct mm_struct *mm,
5476 unsigned long addr, unsigned long sz)
5477 {
5478 pgd_t *pgd;
5479 p4d_t *p4d;
5480 pud_t *pud;
5481 pte_t *pte = NULL;
5482
5483 pgd = pgd_offset(mm, addr);
5484 p4d = p4d_alloc(mm, pgd, addr);
5485 if (!p4d)
5486 return NULL;
5487 pud = pud_alloc(mm, p4d, addr);
5488 if (pud) {
5489 if (sz == PUD_SIZE) {
5490 pte = (pte_t *)pud;
5491 } else {
5492 BUG_ON(sz != PMD_SIZE);
5493 if (want_pmd_share() && pud_none(*pud))
5494 pte = huge_pmd_share(mm, addr, pud);
5495 else
5496 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5497 }
5498 }
5499 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5500
5501 return pte;
5502 }
5503
5504 /*
5505 * huge_pte_offset() - Walk the page table to resolve the hugepage
5506 * entry at address @addr
5507 *
5508 * Return: Pointer to page table entry (PUD or PMD) for
5509 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5510 * size @sz doesn't match the hugepage size at this level of the page
5511 * table.
5512 */
5513 pte_t *huge_pte_offset(struct mm_struct *mm,
5514 unsigned long addr, unsigned long sz)
5515 {
5516 pgd_t *pgd;
5517 p4d_t *p4d;
5518 pud_t *pud;
5519 pmd_t *pmd;
5520
5521 pgd = pgd_offset(mm, addr);
5522 if (!pgd_present(*pgd))
5523 return NULL;
5524 p4d = p4d_offset(pgd, addr);
5525 if (!p4d_present(*p4d))
5526 return NULL;
5527
5528 pud = pud_offset(p4d, addr);
5529 if (sz == PUD_SIZE)
5530 /* must be pud huge, non-present or none */
5531 return (pte_t *)pud;
5532 if (!pud_present(*pud))
5533 return NULL;
5534 /* must have a valid entry and size to go further */
5535
5536 pmd = pmd_offset(pud, addr);
5537 /* must be pmd huge, non-present or none */
5538 return (pte_t *)pmd;
5539 }
5540
5541 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5542
5543 /*
5544 * These functions are overwritable if your architecture needs its own
5545 * behavior.
5546 */
5547 struct page * __weak
5548 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5549 int write)
5550 {
5551 return ERR_PTR(-EINVAL);
5552 }
5553
5554 struct page * __weak
5555 follow_huge_pd(struct vm_area_struct *vma,
5556 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5557 {
5558 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5559 return NULL;
5560 }
5561
5562 struct page * __weak
5563 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5564 pmd_t *pmd, int flags)
5565 {
5566 struct page *page = NULL;
5567 spinlock_t *ptl;
5568 pte_t pte;
5569
5570 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5571 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5572 (FOLL_PIN | FOLL_GET)))
5573 return NULL;
5574
5575 retry:
5576 ptl = pmd_lockptr(mm, pmd);
5577 spin_lock(ptl);
5578 /*
5579 * make sure that the address range covered by this pmd is not
5580 * unmapped from other threads.
5581 */
5582 if (!pmd_huge(*pmd))
5583 goto out;
5584 pte = huge_ptep_get((pte_t *)pmd);
5585 if (pte_present(pte)) {
5586 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5587 /*
5588 * try_grab_page() should always succeed here, because: a) we
5589 * hold the pmd (ptl) lock, and b) we've just checked that the
5590 * huge pmd (head) page is present in the page tables. The ptl
5591 * prevents the head page and tail pages from being rearranged
5592 * in any way. So this page must be available at this point,
5593 * unless the page refcount overflowed:
5594 */
5595 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5596 page = NULL;
5597 goto out;
5598 }
5599 } else {
5600 if (is_hugetlb_entry_migration(pte)) {
5601 spin_unlock(ptl);
5602 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5603 goto retry;
5604 }
5605 /*
5606 * hwpoisoned entry is treated as no_page_table in
5607 * follow_page_mask().
5608 */
5609 }
5610 out:
5611 spin_unlock(ptl);
5612 return page;
5613 }
5614
5615 struct page * __weak
5616 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5617 pud_t *pud, int flags)
5618 {
5619 if (flags & (FOLL_GET | FOLL_PIN))
5620 return NULL;
5621
5622 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5623 }
5624
5625 struct page * __weak
5626 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5627 {
5628 if (flags & (FOLL_GET | FOLL_PIN))
5629 return NULL;
5630
5631 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5632 }
5633
5634 bool isolate_huge_page(struct page *page, struct list_head *list)
5635 {
5636 bool ret = true;
5637
5638 spin_lock(&hugetlb_lock);
5639 if (!PageHeadHuge(page) || !page_huge_active(page) ||
5640 !get_page_unless_zero(page)) {
5641 ret = false;
5642 goto unlock;
5643 }
5644 clear_page_huge_active(page);
5645 list_move_tail(&page->lru, list);
5646 unlock:
5647 spin_unlock(&hugetlb_lock);
5648 return ret;
5649 }
5650
5651 void putback_active_hugepage(struct page *page)
5652 {
5653 VM_BUG_ON_PAGE(!PageHead(page), page);
5654 spin_lock(&hugetlb_lock);
5655 set_page_huge_active(page);
5656 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5657 spin_unlock(&hugetlb_lock);
5658 put_page(page);
5659 }
5660
5661 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5662 {
5663 struct hstate *h = page_hstate(oldpage);
5664
5665 hugetlb_cgroup_migrate(oldpage, newpage);
5666 set_page_owner_migrate_reason(newpage, reason);
5667
5668 /*
5669 * transfer temporary state of the new huge page. This is
5670 * reverse to other transitions because the newpage is going to
5671 * be final while the old one will be freed so it takes over
5672 * the temporary status.
5673 *
5674 * Also note that we have to transfer the per-node surplus state
5675 * here as well otherwise the global surplus count will not match
5676 * the per-node's.
5677 */
5678 if (PageHugeTemporary(newpage)) {
5679 int old_nid = page_to_nid(oldpage);
5680 int new_nid = page_to_nid(newpage);
5681
5682 SetPageHugeTemporary(oldpage);
5683 ClearPageHugeTemporary(newpage);
5684
5685 spin_lock(&hugetlb_lock);
5686 if (h->surplus_huge_pages_node[old_nid]) {
5687 h->surplus_huge_pages_node[old_nid]--;
5688 h->surplus_huge_pages_node[new_nid]++;
5689 }
5690 spin_unlock(&hugetlb_lock);
5691 }
5692 }
5693
5694 #ifdef CONFIG_CMA
5695 static bool cma_reserve_called __initdata;
5696
5697 static int __init cmdline_parse_hugetlb_cma(char *p)
5698 {
5699 hugetlb_cma_size = memparse(p, &p);
5700 return 0;
5701 }
5702
5703 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5704
5705 void __init hugetlb_cma_reserve(int order)
5706 {
5707 unsigned long size, reserved, per_node;
5708 int nid;
5709
5710 cma_reserve_called = true;
5711
5712 if (!hugetlb_cma_size)
5713 return;
5714
5715 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5716 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5717 (PAGE_SIZE << order) / SZ_1M);
5718 return;
5719 }
5720
5721 /*
5722 * If 3 GB area is requested on a machine with 4 numa nodes,
5723 * let's allocate 1 GB on first three nodes and ignore the last one.
5724 */
5725 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5726 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5727 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5728
5729 reserved = 0;
5730 for_each_node_state(nid, N_ONLINE) {
5731 int res;
5732 char name[CMA_MAX_NAME];
5733
5734 size = min(per_node, hugetlb_cma_size - reserved);
5735 size = round_up(size, PAGE_SIZE << order);
5736
5737 snprintf(name, sizeof(name), "hugetlb%d", nid);
5738 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5739 0, false, name,
5740 &hugetlb_cma[nid], nid);
5741 if (res) {
5742 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5743 res, nid);
5744 continue;
5745 }
5746
5747 reserved += size;
5748 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5749 size / SZ_1M, nid);
5750
5751 if (reserved >= hugetlb_cma_size)
5752 break;
5753 }
5754 }
5755
5756 void __init hugetlb_cma_check(void)
5757 {
5758 if (!hugetlb_cma_size || cma_reserve_called)
5759 return;
5760
5761 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5762 }
5763
5764 #endif /* CONFIG_CMA */