]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/hugetlb.c
mlxsw: spectrum_router: Consolidate nexthop helpers
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
72 */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87 if (spool->count)
88 return false;
89 if (spool->max_hpages != -1)
90 return spool->used_hpages == 0;
91 if (spool->min_hpages != -1)
92 return spool->rsv_hpages == spool->min_hpages;
93
94 return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98 {
99 spin_unlock(&spool->lock);
100
101 /* If no pages are used, and no other handles to the subpool
102 * remain, give up any reservations based on minimum size and
103 * free the subpool */
104 if (subpool_is_free(spool)) {
105 if (spool->min_hpages != -1)
106 hugetlb_acct_memory(spool->hstate,
107 -spool->min_hpages);
108 kfree(spool);
109 }
110 }
111
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 long min_hpages)
114 {
115 struct hugepage_subpool *spool;
116
117 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118 if (!spool)
119 return NULL;
120
121 spin_lock_init(&spool->lock);
122 spool->count = 1;
123 spool->max_hpages = max_hpages;
124 spool->hstate = h;
125 spool->min_hpages = min_hpages;
126
127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 kfree(spool);
129 return NULL;
130 }
131 spool->rsv_hpages = min_hpages;
132
133 return spool;
134 }
135
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138 spin_lock(&spool->lock);
139 BUG_ON(!spool->count);
140 spool->count--;
141 unlock_or_release_subpool(spool);
142 }
143
144 /*
145 * Subpool accounting for allocating and reserving pages.
146 * Return -ENOMEM if there are not enough resources to satisfy the
147 * request. Otherwise, return the number of pages by which the
148 * global pools must be adjusted (upward). The returned value may
149 * only be different than the passed value (delta) in the case where
150 * a subpool minimum size must be maintained.
151 */
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153 long delta)
154 {
155 long ret = delta;
156
157 if (!spool)
158 return ret;
159
160 spin_lock(&spool->lock);
161
162 if (spool->max_hpages != -1) { /* maximum size accounting */
163 if ((spool->used_hpages + delta) <= spool->max_hpages)
164 spool->used_hpages += delta;
165 else {
166 ret = -ENOMEM;
167 goto unlock_ret;
168 }
169 }
170
171 /* minimum size accounting */
172 if (spool->min_hpages != -1 && spool->rsv_hpages) {
173 if (delta > spool->rsv_hpages) {
174 /*
175 * Asking for more reserves than those already taken on
176 * behalf of subpool. Return difference.
177 */
178 ret = delta - spool->rsv_hpages;
179 spool->rsv_hpages = 0;
180 } else {
181 ret = 0; /* reserves already accounted for */
182 spool->rsv_hpages -= delta;
183 }
184 }
185
186 unlock_ret:
187 spin_unlock(&spool->lock);
188 return ret;
189 }
190
191 /*
192 * Subpool accounting for freeing and unreserving pages.
193 * Return the number of global page reservations that must be dropped.
194 * The return value may only be different than the passed value (delta)
195 * in the case where a subpool minimum size must be maintained.
196 */
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198 long delta)
199 {
200 long ret = delta;
201
202 if (!spool)
203 return delta;
204
205 spin_lock(&spool->lock);
206
207 if (spool->max_hpages != -1) /* maximum size accounting */
208 spool->used_hpages -= delta;
209
210 /* minimum size accounting */
211 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212 if (spool->rsv_hpages + delta <= spool->min_hpages)
213 ret = 0;
214 else
215 ret = spool->rsv_hpages + delta - spool->min_hpages;
216
217 spool->rsv_hpages += delta;
218 if (spool->rsv_hpages > spool->min_hpages)
219 spool->rsv_hpages = spool->min_hpages;
220 }
221
222 /*
223 * If hugetlbfs_put_super couldn't free spool due to an outstanding
224 * quota reference, free it now.
225 */
226 unlock_or_release_subpool(spool);
227
228 return ret;
229 }
230
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232 {
233 return HUGETLBFS_SB(inode->i_sb)->spool;
234 }
235
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237 {
238 return subpool_inode(file_inode(vma->vm_file));
239 }
240
241 /* Helper that removes a struct file_region from the resv_map cache and returns
242 * it for use.
243 */
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246 {
247 struct file_region *nrg = NULL;
248
249 VM_BUG_ON(resv->region_cache_count <= 0);
250
251 resv->region_cache_count--;
252 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253 list_del(&nrg->link);
254
255 nrg->from = from;
256 nrg->to = to;
257
258 return nrg;
259 }
260
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262 struct file_region *rg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265 nrg->reservation_counter = rg->reservation_counter;
266 nrg->css = rg->css;
267 if (rg->css)
268 css_get(rg->css);
269 #endif
270 }
271
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274 struct hstate *h,
275 struct resv_map *resv,
276 struct file_region *nrg)
277 {
278 #ifdef CONFIG_CGROUP_HUGETLB
279 if (h_cg) {
280 nrg->reservation_counter =
281 &h_cg->rsvd_hugepage[hstate_index(h)];
282 nrg->css = &h_cg->css;
283 if (!resv->pages_per_hpage)
284 resv->pages_per_hpage = pages_per_huge_page(h);
285 /* pages_per_hpage should be the same for all entries in
286 * a resv_map.
287 */
288 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
289 } else {
290 nrg->reservation_counter = NULL;
291 nrg->css = NULL;
292 }
293 #endif
294 }
295
296 static bool has_same_uncharge_info(struct file_region *rg,
297 struct file_region *org)
298 {
299 #ifdef CONFIG_CGROUP_HUGETLB
300 return rg && org &&
301 rg->reservation_counter == org->reservation_counter &&
302 rg->css == org->css;
303
304 #else
305 return true;
306 #endif
307 }
308
309 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
310 {
311 struct file_region *nrg = NULL, *prg = NULL;
312
313 prg = list_prev_entry(rg, link);
314 if (&prg->link != &resv->regions && prg->to == rg->from &&
315 has_same_uncharge_info(prg, rg)) {
316 prg->to = rg->to;
317
318 list_del(&rg->link);
319 kfree(rg);
320
321 rg = prg;
322 }
323
324 nrg = list_next_entry(rg, link);
325 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
326 has_same_uncharge_info(nrg, rg)) {
327 nrg->from = rg->from;
328
329 list_del(&rg->link);
330 kfree(rg);
331 }
332 }
333
334 /*
335 * Must be called with resv->lock held.
336 *
337 * Calling this with regions_needed != NULL will count the number of pages
338 * to be added but will not modify the linked list. And regions_needed will
339 * indicate the number of file_regions needed in the cache to carry out to add
340 * the regions for this range.
341 */
342 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
343 struct hugetlb_cgroup *h_cg,
344 struct hstate *h, long *regions_needed)
345 {
346 long add = 0;
347 struct list_head *head = &resv->regions;
348 long last_accounted_offset = f;
349 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
350
351 if (regions_needed)
352 *regions_needed = 0;
353
354 /* In this loop, we essentially handle an entry for the range
355 * [last_accounted_offset, rg->from), at every iteration, with some
356 * bounds checking.
357 */
358 list_for_each_entry_safe(rg, trg, head, link) {
359 /* Skip irrelevant regions that start before our range. */
360 if (rg->from < f) {
361 /* If this region ends after the last accounted offset,
362 * then we need to update last_accounted_offset.
363 */
364 if (rg->to > last_accounted_offset)
365 last_accounted_offset = rg->to;
366 continue;
367 }
368
369 /* When we find a region that starts beyond our range, we've
370 * finished.
371 */
372 if (rg->from > t)
373 break;
374
375 /* Add an entry for last_accounted_offset -> rg->from, and
376 * update last_accounted_offset.
377 */
378 if (rg->from > last_accounted_offset) {
379 add += rg->from - last_accounted_offset;
380 if (!regions_needed) {
381 nrg = get_file_region_entry_from_cache(
382 resv, last_accounted_offset, rg->from);
383 record_hugetlb_cgroup_uncharge_info(h_cg, h,
384 resv, nrg);
385 list_add(&nrg->link, rg->link.prev);
386 coalesce_file_region(resv, nrg);
387 } else
388 *regions_needed += 1;
389 }
390
391 last_accounted_offset = rg->to;
392 }
393
394 /* Handle the case where our range extends beyond
395 * last_accounted_offset.
396 */
397 if (last_accounted_offset < t) {
398 add += t - last_accounted_offset;
399 if (!regions_needed) {
400 nrg = get_file_region_entry_from_cache(
401 resv, last_accounted_offset, t);
402 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
403 list_add(&nrg->link, rg->link.prev);
404 coalesce_file_region(resv, nrg);
405 } else
406 *regions_needed += 1;
407 }
408
409 VM_BUG_ON(add < 0);
410 return add;
411 }
412
413 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
414 */
415 static int allocate_file_region_entries(struct resv_map *resv,
416 int regions_needed)
417 __must_hold(&resv->lock)
418 {
419 struct list_head allocated_regions;
420 int to_allocate = 0, i = 0;
421 struct file_region *trg = NULL, *rg = NULL;
422
423 VM_BUG_ON(regions_needed < 0);
424
425 INIT_LIST_HEAD(&allocated_regions);
426
427 /*
428 * Check for sufficient descriptors in the cache to accommodate
429 * the number of in progress add operations plus regions_needed.
430 *
431 * This is a while loop because when we drop the lock, some other call
432 * to region_add or region_del may have consumed some region_entries,
433 * so we keep looping here until we finally have enough entries for
434 * (adds_in_progress + regions_needed).
435 */
436 while (resv->region_cache_count <
437 (resv->adds_in_progress + regions_needed)) {
438 to_allocate = resv->adds_in_progress + regions_needed -
439 resv->region_cache_count;
440
441 /* At this point, we should have enough entries in the cache
442 * for all the existings adds_in_progress. We should only be
443 * needing to allocate for regions_needed.
444 */
445 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
446
447 spin_unlock(&resv->lock);
448 for (i = 0; i < to_allocate; i++) {
449 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
450 if (!trg)
451 goto out_of_memory;
452 list_add(&trg->link, &allocated_regions);
453 }
454
455 spin_lock(&resv->lock);
456
457 list_splice(&allocated_regions, &resv->region_cache);
458 resv->region_cache_count += to_allocate;
459 }
460
461 return 0;
462
463 out_of_memory:
464 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
465 list_del(&rg->link);
466 kfree(rg);
467 }
468 return -ENOMEM;
469 }
470
471 /*
472 * Add the huge page range represented by [f, t) to the reserve
473 * map. Regions will be taken from the cache to fill in this range.
474 * Sufficient regions should exist in the cache due to the previous
475 * call to region_chg with the same range, but in some cases the cache will not
476 * have sufficient entries due to races with other code doing region_add or
477 * region_del. The extra needed entries will be allocated.
478 *
479 * regions_needed is the out value provided by a previous call to region_chg.
480 *
481 * Return the number of new huge pages added to the map. This number is greater
482 * than or equal to zero. If file_region entries needed to be allocated for
483 * this operation and we were not able to allocate, it returns -ENOMEM.
484 * region_add of regions of length 1 never allocate file_regions and cannot
485 * fail; region_chg will always allocate at least 1 entry and a region_add for
486 * 1 page will only require at most 1 entry.
487 */
488 static long region_add(struct resv_map *resv, long f, long t,
489 long in_regions_needed, struct hstate *h,
490 struct hugetlb_cgroup *h_cg)
491 {
492 long add = 0, actual_regions_needed = 0;
493
494 spin_lock(&resv->lock);
495 retry:
496
497 /* Count how many regions are actually needed to execute this add. */
498 add_reservation_in_range(resv, f, t, NULL, NULL,
499 &actual_regions_needed);
500
501 /*
502 * Check for sufficient descriptors in the cache to accommodate
503 * this add operation. Note that actual_regions_needed may be greater
504 * than in_regions_needed, as the resv_map may have been modified since
505 * the region_chg call. In this case, we need to make sure that we
506 * allocate extra entries, such that we have enough for all the
507 * existing adds_in_progress, plus the excess needed for this
508 * operation.
509 */
510 if (actual_regions_needed > in_regions_needed &&
511 resv->region_cache_count <
512 resv->adds_in_progress +
513 (actual_regions_needed - in_regions_needed)) {
514 /* region_add operation of range 1 should never need to
515 * allocate file_region entries.
516 */
517 VM_BUG_ON(t - f <= 1);
518
519 if (allocate_file_region_entries(
520 resv, actual_regions_needed - in_regions_needed)) {
521 return -ENOMEM;
522 }
523
524 goto retry;
525 }
526
527 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
528
529 resv->adds_in_progress -= in_regions_needed;
530
531 spin_unlock(&resv->lock);
532 VM_BUG_ON(add < 0);
533 return add;
534 }
535
536 /*
537 * Examine the existing reserve map and determine how many
538 * huge pages in the specified range [f, t) are NOT currently
539 * represented. This routine is called before a subsequent
540 * call to region_add that will actually modify the reserve
541 * map to add the specified range [f, t). region_chg does
542 * not change the number of huge pages represented by the
543 * map. A number of new file_region structures is added to the cache as a
544 * placeholder, for the subsequent region_add call to use. At least 1
545 * file_region structure is added.
546 *
547 * out_regions_needed is the number of regions added to the
548 * resv->adds_in_progress. This value needs to be provided to a follow up call
549 * to region_add or region_abort for proper accounting.
550 *
551 * Returns the number of huge pages that need to be added to the existing
552 * reservation map for the range [f, t). This number is greater or equal to
553 * zero. -ENOMEM is returned if a new file_region structure or cache entry
554 * is needed and can not be allocated.
555 */
556 static long region_chg(struct resv_map *resv, long f, long t,
557 long *out_regions_needed)
558 {
559 long chg = 0;
560
561 spin_lock(&resv->lock);
562
563 /* Count how many hugepages in this range are NOT represented. */
564 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
565 out_regions_needed);
566
567 if (*out_regions_needed == 0)
568 *out_regions_needed = 1;
569
570 if (allocate_file_region_entries(resv, *out_regions_needed))
571 return -ENOMEM;
572
573 resv->adds_in_progress += *out_regions_needed;
574
575 spin_unlock(&resv->lock);
576 return chg;
577 }
578
579 /*
580 * Abort the in progress add operation. The adds_in_progress field
581 * of the resv_map keeps track of the operations in progress between
582 * calls to region_chg and region_add. Operations are sometimes
583 * aborted after the call to region_chg. In such cases, region_abort
584 * is called to decrement the adds_in_progress counter. regions_needed
585 * is the value returned by the region_chg call, it is used to decrement
586 * the adds_in_progress counter.
587 *
588 * NOTE: The range arguments [f, t) are not needed or used in this
589 * routine. They are kept to make reading the calling code easier as
590 * arguments will match the associated region_chg call.
591 */
592 static void region_abort(struct resv_map *resv, long f, long t,
593 long regions_needed)
594 {
595 spin_lock(&resv->lock);
596 VM_BUG_ON(!resv->region_cache_count);
597 resv->adds_in_progress -= regions_needed;
598 spin_unlock(&resv->lock);
599 }
600
601 /*
602 * Delete the specified range [f, t) from the reserve map. If the
603 * t parameter is LONG_MAX, this indicates that ALL regions after f
604 * should be deleted. Locate the regions which intersect [f, t)
605 * and either trim, delete or split the existing regions.
606 *
607 * Returns the number of huge pages deleted from the reserve map.
608 * In the normal case, the return value is zero or more. In the
609 * case where a region must be split, a new region descriptor must
610 * be allocated. If the allocation fails, -ENOMEM will be returned.
611 * NOTE: If the parameter t == LONG_MAX, then we will never split
612 * a region and possibly return -ENOMEM. Callers specifying
613 * t == LONG_MAX do not need to check for -ENOMEM error.
614 */
615 static long region_del(struct resv_map *resv, long f, long t)
616 {
617 struct list_head *head = &resv->regions;
618 struct file_region *rg, *trg;
619 struct file_region *nrg = NULL;
620 long del = 0;
621
622 retry:
623 spin_lock(&resv->lock);
624 list_for_each_entry_safe(rg, trg, head, link) {
625 /*
626 * Skip regions before the range to be deleted. file_region
627 * ranges are normally of the form [from, to). However, there
628 * may be a "placeholder" entry in the map which is of the form
629 * (from, to) with from == to. Check for placeholder entries
630 * at the beginning of the range to be deleted.
631 */
632 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
633 continue;
634
635 if (rg->from >= t)
636 break;
637
638 if (f > rg->from && t < rg->to) { /* Must split region */
639 /*
640 * Check for an entry in the cache before dropping
641 * lock and attempting allocation.
642 */
643 if (!nrg &&
644 resv->region_cache_count > resv->adds_in_progress) {
645 nrg = list_first_entry(&resv->region_cache,
646 struct file_region,
647 link);
648 list_del(&nrg->link);
649 resv->region_cache_count--;
650 }
651
652 if (!nrg) {
653 spin_unlock(&resv->lock);
654 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
655 if (!nrg)
656 return -ENOMEM;
657 goto retry;
658 }
659
660 del += t - f;
661 hugetlb_cgroup_uncharge_file_region(
662 resv, rg, t - f);
663
664 /* New entry for end of split region */
665 nrg->from = t;
666 nrg->to = rg->to;
667
668 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
669
670 INIT_LIST_HEAD(&nrg->link);
671
672 /* Original entry is trimmed */
673 rg->to = f;
674
675 list_add(&nrg->link, &rg->link);
676 nrg = NULL;
677 break;
678 }
679
680 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
681 del += rg->to - rg->from;
682 hugetlb_cgroup_uncharge_file_region(resv, rg,
683 rg->to - rg->from);
684 list_del(&rg->link);
685 kfree(rg);
686 continue;
687 }
688
689 if (f <= rg->from) { /* Trim beginning of region */
690 hugetlb_cgroup_uncharge_file_region(resv, rg,
691 t - rg->from);
692
693 del += t - rg->from;
694 rg->from = t;
695 } else { /* Trim end of region */
696 hugetlb_cgroup_uncharge_file_region(resv, rg,
697 rg->to - f);
698
699 del += rg->to - f;
700 rg->to = f;
701 }
702 }
703
704 spin_unlock(&resv->lock);
705 kfree(nrg);
706 return del;
707 }
708
709 /*
710 * A rare out of memory error was encountered which prevented removal of
711 * the reserve map region for a page. The huge page itself was free'ed
712 * and removed from the page cache. This routine will adjust the subpool
713 * usage count, and the global reserve count if needed. By incrementing
714 * these counts, the reserve map entry which could not be deleted will
715 * appear as a "reserved" entry instead of simply dangling with incorrect
716 * counts.
717 */
718 void hugetlb_fix_reserve_counts(struct inode *inode)
719 {
720 struct hugepage_subpool *spool = subpool_inode(inode);
721 long rsv_adjust;
722
723 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
724 if (rsv_adjust) {
725 struct hstate *h = hstate_inode(inode);
726
727 hugetlb_acct_memory(h, 1);
728 }
729 }
730
731 /*
732 * Count and return the number of huge pages in the reserve map
733 * that intersect with the range [f, t).
734 */
735 static long region_count(struct resv_map *resv, long f, long t)
736 {
737 struct list_head *head = &resv->regions;
738 struct file_region *rg;
739 long chg = 0;
740
741 spin_lock(&resv->lock);
742 /* Locate each segment we overlap with, and count that overlap. */
743 list_for_each_entry(rg, head, link) {
744 long seg_from;
745 long seg_to;
746
747 if (rg->to <= f)
748 continue;
749 if (rg->from >= t)
750 break;
751
752 seg_from = max(rg->from, f);
753 seg_to = min(rg->to, t);
754
755 chg += seg_to - seg_from;
756 }
757 spin_unlock(&resv->lock);
758
759 return chg;
760 }
761
762 /*
763 * Convert the address within this vma to the page offset within
764 * the mapping, in pagecache page units; huge pages here.
765 */
766 static pgoff_t vma_hugecache_offset(struct hstate *h,
767 struct vm_area_struct *vma, unsigned long address)
768 {
769 return ((address - vma->vm_start) >> huge_page_shift(h)) +
770 (vma->vm_pgoff >> huge_page_order(h));
771 }
772
773 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
774 unsigned long address)
775 {
776 return vma_hugecache_offset(hstate_vma(vma), vma, address);
777 }
778 EXPORT_SYMBOL_GPL(linear_hugepage_index);
779
780 /*
781 * Return the size of the pages allocated when backing a VMA. In the majority
782 * cases this will be same size as used by the page table entries.
783 */
784 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
785 {
786 if (vma->vm_ops && vma->vm_ops->pagesize)
787 return vma->vm_ops->pagesize(vma);
788 return PAGE_SIZE;
789 }
790 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
791
792 /*
793 * Return the page size being used by the MMU to back a VMA. In the majority
794 * of cases, the page size used by the kernel matches the MMU size. On
795 * architectures where it differs, an architecture-specific 'strong'
796 * version of this symbol is required.
797 */
798 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
799 {
800 return vma_kernel_pagesize(vma);
801 }
802
803 /*
804 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
805 * bits of the reservation map pointer, which are always clear due to
806 * alignment.
807 */
808 #define HPAGE_RESV_OWNER (1UL << 0)
809 #define HPAGE_RESV_UNMAPPED (1UL << 1)
810 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
811
812 /*
813 * These helpers are used to track how many pages are reserved for
814 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
815 * is guaranteed to have their future faults succeed.
816 *
817 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
818 * the reserve counters are updated with the hugetlb_lock held. It is safe
819 * to reset the VMA at fork() time as it is not in use yet and there is no
820 * chance of the global counters getting corrupted as a result of the values.
821 *
822 * The private mapping reservation is represented in a subtly different
823 * manner to a shared mapping. A shared mapping has a region map associated
824 * with the underlying file, this region map represents the backing file
825 * pages which have ever had a reservation assigned which this persists even
826 * after the page is instantiated. A private mapping has a region map
827 * associated with the original mmap which is attached to all VMAs which
828 * reference it, this region map represents those offsets which have consumed
829 * reservation ie. where pages have been instantiated.
830 */
831 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
832 {
833 return (unsigned long)vma->vm_private_data;
834 }
835
836 static void set_vma_private_data(struct vm_area_struct *vma,
837 unsigned long value)
838 {
839 vma->vm_private_data = (void *)value;
840 }
841
842 static void
843 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
844 struct hugetlb_cgroup *h_cg,
845 struct hstate *h)
846 {
847 #ifdef CONFIG_CGROUP_HUGETLB
848 if (!h_cg || !h) {
849 resv_map->reservation_counter = NULL;
850 resv_map->pages_per_hpage = 0;
851 resv_map->css = NULL;
852 } else {
853 resv_map->reservation_counter =
854 &h_cg->rsvd_hugepage[hstate_index(h)];
855 resv_map->pages_per_hpage = pages_per_huge_page(h);
856 resv_map->css = &h_cg->css;
857 }
858 #endif
859 }
860
861 struct resv_map *resv_map_alloc(void)
862 {
863 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
864 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
865
866 if (!resv_map || !rg) {
867 kfree(resv_map);
868 kfree(rg);
869 return NULL;
870 }
871
872 kref_init(&resv_map->refs);
873 spin_lock_init(&resv_map->lock);
874 INIT_LIST_HEAD(&resv_map->regions);
875
876 resv_map->adds_in_progress = 0;
877 /*
878 * Initialize these to 0. On shared mappings, 0's here indicate these
879 * fields don't do cgroup accounting. On private mappings, these will be
880 * re-initialized to the proper values, to indicate that hugetlb cgroup
881 * reservations are to be un-charged from here.
882 */
883 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
884
885 INIT_LIST_HEAD(&resv_map->region_cache);
886 list_add(&rg->link, &resv_map->region_cache);
887 resv_map->region_cache_count = 1;
888
889 return resv_map;
890 }
891
892 void resv_map_release(struct kref *ref)
893 {
894 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
895 struct list_head *head = &resv_map->region_cache;
896 struct file_region *rg, *trg;
897
898 /* Clear out any active regions before we release the map. */
899 region_del(resv_map, 0, LONG_MAX);
900
901 /* ... and any entries left in the cache */
902 list_for_each_entry_safe(rg, trg, head, link) {
903 list_del(&rg->link);
904 kfree(rg);
905 }
906
907 VM_BUG_ON(resv_map->adds_in_progress);
908
909 kfree(resv_map);
910 }
911
912 static inline struct resv_map *inode_resv_map(struct inode *inode)
913 {
914 /*
915 * At inode evict time, i_mapping may not point to the original
916 * address space within the inode. This original address space
917 * contains the pointer to the resv_map. So, always use the
918 * address space embedded within the inode.
919 * The VERY common case is inode->mapping == &inode->i_data but,
920 * this may not be true for device special inodes.
921 */
922 return (struct resv_map *)(&inode->i_data)->private_data;
923 }
924
925 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
926 {
927 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
928 if (vma->vm_flags & VM_MAYSHARE) {
929 struct address_space *mapping = vma->vm_file->f_mapping;
930 struct inode *inode = mapping->host;
931
932 return inode_resv_map(inode);
933
934 } else {
935 return (struct resv_map *)(get_vma_private_data(vma) &
936 ~HPAGE_RESV_MASK);
937 }
938 }
939
940 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
941 {
942 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
943 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
944
945 set_vma_private_data(vma, (get_vma_private_data(vma) &
946 HPAGE_RESV_MASK) | (unsigned long)map);
947 }
948
949 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
950 {
951 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
952 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
953
954 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
955 }
956
957 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
958 {
959 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
960
961 return (get_vma_private_data(vma) & flag) != 0;
962 }
963
964 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
965 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
966 {
967 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
968 if (!(vma->vm_flags & VM_MAYSHARE))
969 vma->vm_private_data = (void *)0;
970 }
971
972 /* Returns true if the VMA has associated reserve pages */
973 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
974 {
975 if (vma->vm_flags & VM_NORESERVE) {
976 /*
977 * This address is already reserved by other process(chg == 0),
978 * so, we should decrement reserved count. Without decrementing,
979 * reserve count remains after releasing inode, because this
980 * allocated page will go into page cache and is regarded as
981 * coming from reserved pool in releasing step. Currently, we
982 * don't have any other solution to deal with this situation
983 * properly, so add work-around here.
984 */
985 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
986 return true;
987 else
988 return false;
989 }
990
991 /* Shared mappings always use reserves */
992 if (vma->vm_flags & VM_MAYSHARE) {
993 /*
994 * We know VM_NORESERVE is not set. Therefore, there SHOULD
995 * be a region map for all pages. The only situation where
996 * there is no region map is if a hole was punched via
997 * fallocate. In this case, there really are no reserves to
998 * use. This situation is indicated if chg != 0.
999 */
1000 if (chg)
1001 return false;
1002 else
1003 return true;
1004 }
1005
1006 /*
1007 * Only the process that called mmap() has reserves for
1008 * private mappings.
1009 */
1010 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1011 /*
1012 * Like the shared case above, a hole punch or truncate
1013 * could have been performed on the private mapping.
1014 * Examine the value of chg to determine if reserves
1015 * actually exist or were previously consumed.
1016 * Very Subtle - The value of chg comes from a previous
1017 * call to vma_needs_reserves(). The reserve map for
1018 * private mappings has different (opposite) semantics
1019 * than that of shared mappings. vma_needs_reserves()
1020 * has already taken this difference in semantics into
1021 * account. Therefore, the meaning of chg is the same
1022 * as in the shared case above. Code could easily be
1023 * combined, but keeping it separate draws attention to
1024 * subtle differences.
1025 */
1026 if (chg)
1027 return false;
1028 else
1029 return true;
1030 }
1031
1032 return false;
1033 }
1034
1035 static void enqueue_huge_page(struct hstate *h, struct page *page)
1036 {
1037 int nid = page_to_nid(page);
1038 list_move(&page->lru, &h->hugepage_freelists[nid]);
1039 h->free_huge_pages++;
1040 h->free_huge_pages_node[nid]++;
1041 SetHPageFreed(page);
1042 }
1043
1044 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1045 {
1046 struct page *page;
1047 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1048
1049 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1050 if (nocma && is_migrate_cma_page(page))
1051 continue;
1052
1053 if (PageHWPoison(page))
1054 continue;
1055
1056 list_move(&page->lru, &h->hugepage_activelist);
1057 set_page_refcounted(page);
1058 ClearHPageFreed(page);
1059 h->free_huge_pages--;
1060 h->free_huge_pages_node[nid]--;
1061 return page;
1062 }
1063
1064 return NULL;
1065 }
1066
1067 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068 nodemask_t *nmask)
1069 {
1070 unsigned int cpuset_mems_cookie;
1071 struct zonelist *zonelist;
1072 struct zone *zone;
1073 struct zoneref *z;
1074 int node = NUMA_NO_NODE;
1075
1076 zonelist = node_zonelist(nid, gfp_mask);
1077
1078 retry_cpuset:
1079 cpuset_mems_cookie = read_mems_allowed_begin();
1080 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081 struct page *page;
1082
1083 if (!cpuset_zone_allowed(zone, gfp_mask))
1084 continue;
1085 /*
1086 * no need to ask again on the same node. Pool is node rather than
1087 * zone aware
1088 */
1089 if (zone_to_nid(zone) == node)
1090 continue;
1091 node = zone_to_nid(zone);
1092
1093 page = dequeue_huge_page_node_exact(h, node);
1094 if (page)
1095 return page;
1096 }
1097 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098 goto retry_cpuset;
1099
1100 return NULL;
1101 }
1102
1103 static struct page *dequeue_huge_page_vma(struct hstate *h,
1104 struct vm_area_struct *vma,
1105 unsigned long address, int avoid_reserve,
1106 long chg)
1107 {
1108 struct page *page;
1109 struct mempolicy *mpol;
1110 gfp_t gfp_mask;
1111 nodemask_t *nodemask;
1112 int nid;
1113
1114 /*
1115 * A child process with MAP_PRIVATE mappings created by their parent
1116 * have no page reserves. This check ensures that reservations are
1117 * not "stolen". The child may still get SIGKILLed
1118 */
1119 if (!vma_has_reserves(vma, chg) &&
1120 h->free_huge_pages - h->resv_huge_pages == 0)
1121 goto err;
1122
1123 /* If reserves cannot be used, ensure enough pages are in the pool */
1124 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125 goto err;
1126
1127 gfp_mask = htlb_alloc_mask(h);
1128 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131 SetHPageRestoreReserve(page);
1132 h->resv_huge_pages--;
1133 }
1134
1135 mpol_cond_put(mpol);
1136 return page;
1137
1138 err:
1139 return NULL;
1140 }
1141
1142 /*
1143 * common helper functions for hstate_next_node_to_{alloc|free}.
1144 * We may have allocated or freed a huge page based on a different
1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146 * be outside of *nodes_allowed. Ensure that we use an allowed
1147 * node for alloc or free.
1148 */
1149 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150 {
1151 nid = next_node_in(nid, *nodes_allowed);
1152 VM_BUG_ON(nid >= MAX_NUMNODES);
1153
1154 return nid;
1155 }
1156
1157 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158 {
1159 if (!node_isset(nid, *nodes_allowed))
1160 nid = next_node_allowed(nid, nodes_allowed);
1161 return nid;
1162 }
1163
1164 /*
1165 * returns the previously saved node ["this node"] from which to
1166 * allocate a persistent huge page for the pool and advance the
1167 * next node from which to allocate, handling wrap at end of node
1168 * mask.
1169 */
1170 static int hstate_next_node_to_alloc(struct hstate *h,
1171 nodemask_t *nodes_allowed)
1172 {
1173 int nid;
1174
1175 VM_BUG_ON(!nodes_allowed);
1176
1177 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179
1180 return nid;
1181 }
1182
1183 /*
1184 * helper for free_pool_huge_page() - return the previously saved
1185 * node ["this node"] from which to free a huge page. Advance the
1186 * next node id whether or not we find a free huge page to free so
1187 * that the next attempt to free addresses the next node.
1188 */
1189 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190 {
1191 int nid;
1192
1193 VM_BUG_ON(!nodes_allowed);
1194
1195 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197
1198 return nid;
1199 }
1200
1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1202 for (nr_nodes = nodes_weight(*mask); \
1203 nr_nodes > 0 && \
1204 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1205 nr_nodes--)
1206
1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1208 for (nr_nodes = nodes_weight(*mask); \
1209 nr_nodes > 0 && \
1210 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1211 nr_nodes--)
1212
1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214 static void destroy_compound_gigantic_page(struct page *page,
1215 unsigned int order)
1216 {
1217 int i;
1218 int nr_pages = 1 << order;
1219 struct page *p = page + 1;
1220
1221 atomic_set(compound_mapcount_ptr(page), 0);
1222 atomic_set(compound_pincount_ptr(page), 0);
1223
1224 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1225 clear_compound_head(p);
1226 set_page_refcounted(p);
1227 }
1228
1229 set_compound_order(page, 0);
1230 page[1].compound_nr = 0;
1231 __ClearPageHead(page);
1232 }
1233
1234 static void free_gigantic_page(struct page *page, unsigned int order)
1235 {
1236 /*
1237 * If the page isn't allocated using the cma allocator,
1238 * cma_release() returns false.
1239 */
1240 #ifdef CONFIG_CMA
1241 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242 return;
1243 #endif
1244
1245 free_contig_range(page_to_pfn(page), 1 << order);
1246 }
1247
1248 #ifdef CONFIG_CONTIG_ALLOC
1249 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250 int nid, nodemask_t *nodemask)
1251 {
1252 unsigned long nr_pages = 1UL << huge_page_order(h);
1253 if (nid == NUMA_NO_NODE)
1254 nid = numa_mem_id();
1255
1256 #ifdef CONFIG_CMA
1257 {
1258 struct page *page;
1259 int node;
1260
1261 if (hugetlb_cma[nid]) {
1262 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1263 huge_page_order(h), true);
1264 if (page)
1265 return page;
1266 }
1267
1268 if (!(gfp_mask & __GFP_THISNODE)) {
1269 for_each_node_mask(node, *nodemask) {
1270 if (node == nid || !hugetlb_cma[node])
1271 continue;
1272
1273 page = cma_alloc(hugetlb_cma[node], nr_pages,
1274 huge_page_order(h), true);
1275 if (page)
1276 return page;
1277 }
1278 }
1279 }
1280 #endif
1281
1282 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1283 }
1284
1285 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287 #else /* !CONFIG_CONTIG_ALLOC */
1288 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1289 int nid, nodemask_t *nodemask)
1290 {
1291 return NULL;
1292 }
1293 #endif /* CONFIG_CONTIG_ALLOC */
1294
1295 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297 int nid, nodemask_t *nodemask)
1298 {
1299 return NULL;
1300 }
1301 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302 static inline void destroy_compound_gigantic_page(struct page *page,
1303 unsigned int order) { }
1304 #endif
1305
1306 static void update_and_free_page(struct hstate *h, struct page *page)
1307 {
1308 int i;
1309 struct page *subpage = page;
1310
1311 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1312 return;
1313
1314 h->nr_huge_pages--;
1315 h->nr_huge_pages_node[page_to_nid(page)]--;
1316 for (i = 0; i < pages_per_huge_page(h);
1317 i++, subpage = mem_map_next(subpage, page, i)) {
1318 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1319 1 << PG_referenced | 1 << PG_dirty |
1320 1 << PG_active | 1 << PG_private |
1321 1 << PG_writeback);
1322 }
1323 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1324 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1325 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1326 set_page_refcounted(page);
1327 if (hstate_is_gigantic(h)) {
1328 /*
1329 * Temporarily drop the hugetlb_lock, because
1330 * we might block in free_gigantic_page().
1331 */
1332 spin_unlock(&hugetlb_lock);
1333 destroy_compound_gigantic_page(page, huge_page_order(h));
1334 free_gigantic_page(page, huge_page_order(h));
1335 spin_lock(&hugetlb_lock);
1336 } else {
1337 __free_pages(page, huge_page_order(h));
1338 }
1339 }
1340
1341 struct hstate *size_to_hstate(unsigned long size)
1342 {
1343 struct hstate *h;
1344
1345 for_each_hstate(h) {
1346 if (huge_page_size(h) == size)
1347 return h;
1348 }
1349 return NULL;
1350 }
1351
1352 static void __free_huge_page(struct page *page)
1353 {
1354 /*
1355 * Can't pass hstate in here because it is called from the
1356 * compound page destructor.
1357 */
1358 struct hstate *h = page_hstate(page);
1359 int nid = page_to_nid(page);
1360 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1361 bool restore_reserve;
1362
1363 VM_BUG_ON_PAGE(page_count(page), page);
1364 VM_BUG_ON_PAGE(page_mapcount(page), page);
1365
1366 hugetlb_set_page_subpool(page, NULL);
1367 page->mapping = NULL;
1368 restore_reserve = HPageRestoreReserve(page);
1369 ClearHPageRestoreReserve(page);
1370
1371 /*
1372 * If HPageRestoreReserve was set on page, page allocation consumed a
1373 * reservation. If the page was associated with a subpool, there
1374 * would have been a page reserved in the subpool before allocation
1375 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1376 * reservation, do not call hugepage_subpool_put_pages() as this will
1377 * remove the reserved page from the subpool.
1378 */
1379 if (!restore_reserve) {
1380 /*
1381 * A return code of zero implies that the subpool will be
1382 * under its minimum size if the reservation is not restored
1383 * after page is free. Therefore, force restore_reserve
1384 * operation.
1385 */
1386 if (hugepage_subpool_put_pages(spool, 1) == 0)
1387 restore_reserve = true;
1388 }
1389
1390 spin_lock(&hugetlb_lock);
1391 ClearHPageMigratable(page);
1392 hugetlb_cgroup_uncharge_page(hstate_index(h),
1393 pages_per_huge_page(h), page);
1394 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1395 pages_per_huge_page(h), page);
1396 if (restore_reserve)
1397 h->resv_huge_pages++;
1398
1399 if (HPageTemporary(page)) {
1400 list_del(&page->lru);
1401 ClearHPageTemporary(page);
1402 update_and_free_page(h, page);
1403 } else if (h->surplus_huge_pages_node[nid]) {
1404 /* remove the page from active list */
1405 list_del(&page->lru);
1406 update_and_free_page(h, page);
1407 h->surplus_huge_pages--;
1408 h->surplus_huge_pages_node[nid]--;
1409 } else {
1410 arch_clear_hugepage_flags(page);
1411 enqueue_huge_page(h, page);
1412 }
1413 spin_unlock(&hugetlb_lock);
1414 }
1415
1416 /*
1417 * As free_huge_page() can be called from a non-task context, we have
1418 * to defer the actual freeing in a workqueue to prevent potential
1419 * hugetlb_lock deadlock.
1420 *
1421 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1422 * be freed and frees them one-by-one. As the page->mapping pointer is
1423 * going to be cleared in __free_huge_page() anyway, it is reused as the
1424 * llist_node structure of a lockless linked list of huge pages to be freed.
1425 */
1426 static LLIST_HEAD(hpage_freelist);
1427
1428 static void free_hpage_workfn(struct work_struct *work)
1429 {
1430 struct llist_node *node;
1431 struct page *page;
1432
1433 node = llist_del_all(&hpage_freelist);
1434
1435 while (node) {
1436 page = container_of((struct address_space **)node,
1437 struct page, mapping);
1438 node = node->next;
1439 __free_huge_page(page);
1440 }
1441 }
1442 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1443
1444 void free_huge_page(struct page *page)
1445 {
1446 /*
1447 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1448 */
1449 if (!in_task()) {
1450 /*
1451 * Only call schedule_work() if hpage_freelist is previously
1452 * empty. Otherwise, schedule_work() had been called but the
1453 * workfn hasn't retrieved the list yet.
1454 */
1455 if (llist_add((struct llist_node *)&page->mapping,
1456 &hpage_freelist))
1457 schedule_work(&free_hpage_work);
1458 return;
1459 }
1460
1461 __free_huge_page(page);
1462 }
1463
1464 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1465 {
1466 INIT_LIST_HEAD(&page->lru);
1467 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1468 hugetlb_set_page_subpool(page, NULL);
1469 set_hugetlb_cgroup(page, NULL);
1470 set_hugetlb_cgroup_rsvd(page, NULL);
1471 spin_lock(&hugetlb_lock);
1472 h->nr_huge_pages++;
1473 h->nr_huge_pages_node[nid]++;
1474 ClearHPageFreed(page);
1475 spin_unlock(&hugetlb_lock);
1476 }
1477
1478 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1479 {
1480 int i;
1481 int nr_pages = 1 << order;
1482 struct page *p = page + 1;
1483
1484 /* we rely on prep_new_huge_page to set the destructor */
1485 set_compound_order(page, order);
1486 __ClearPageReserved(page);
1487 __SetPageHead(page);
1488 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1489 /*
1490 * For gigantic hugepages allocated through bootmem at
1491 * boot, it's safer to be consistent with the not-gigantic
1492 * hugepages and clear the PG_reserved bit from all tail pages
1493 * too. Otherwise drivers using get_user_pages() to access tail
1494 * pages may get the reference counting wrong if they see
1495 * PG_reserved set on a tail page (despite the head page not
1496 * having PG_reserved set). Enforcing this consistency between
1497 * head and tail pages allows drivers to optimize away a check
1498 * on the head page when they need know if put_page() is needed
1499 * after get_user_pages().
1500 */
1501 __ClearPageReserved(p);
1502 set_page_count(p, 0);
1503 set_compound_head(p, page);
1504 }
1505 atomic_set(compound_mapcount_ptr(page), -1);
1506 atomic_set(compound_pincount_ptr(page), 0);
1507 }
1508
1509 /*
1510 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1511 * transparent huge pages. See the PageTransHuge() documentation for more
1512 * details.
1513 */
1514 int PageHuge(struct page *page)
1515 {
1516 if (!PageCompound(page))
1517 return 0;
1518
1519 page = compound_head(page);
1520 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1521 }
1522 EXPORT_SYMBOL_GPL(PageHuge);
1523
1524 /*
1525 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1526 * normal or transparent huge pages.
1527 */
1528 int PageHeadHuge(struct page *page_head)
1529 {
1530 if (!PageHead(page_head))
1531 return 0;
1532
1533 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1534 }
1535
1536 /*
1537 * Find and lock address space (mapping) in write mode.
1538 *
1539 * Upon entry, the page is locked which means that page_mapping() is
1540 * stable. Due to locking order, we can only trylock_write. If we can
1541 * not get the lock, simply return NULL to caller.
1542 */
1543 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1544 {
1545 struct address_space *mapping = page_mapping(hpage);
1546
1547 if (!mapping)
1548 return mapping;
1549
1550 if (i_mmap_trylock_write(mapping))
1551 return mapping;
1552
1553 return NULL;
1554 }
1555
1556 pgoff_t __basepage_index(struct page *page)
1557 {
1558 struct page *page_head = compound_head(page);
1559 pgoff_t index = page_index(page_head);
1560 unsigned long compound_idx;
1561
1562 if (!PageHuge(page_head))
1563 return page_index(page);
1564
1565 if (compound_order(page_head) >= MAX_ORDER)
1566 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1567 else
1568 compound_idx = page - page_head;
1569
1570 return (index << compound_order(page_head)) + compound_idx;
1571 }
1572
1573 static struct page *alloc_buddy_huge_page(struct hstate *h,
1574 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1575 nodemask_t *node_alloc_noretry)
1576 {
1577 int order = huge_page_order(h);
1578 struct page *page;
1579 bool alloc_try_hard = true;
1580
1581 /*
1582 * By default we always try hard to allocate the page with
1583 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1584 * a loop (to adjust global huge page counts) and previous allocation
1585 * failed, do not continue to try hard on the same node. Use the
1586 * node_alloc_noretry bitmap to manage this state information.
1587 */
1588 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1589 alloc_try_hard = false;
1590 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1591 if (alloc_try_hard)
1592 gfp_mask |= __GFP_RETRY_MAYFAIL;
1593 if (nid == NUMA_NO_NODE)
1594 nid = numa_mem_id();
1595 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1596 if (page)
1597 __count_vm_event(HTLB_BUDDY_PGALLOC);
1598 else
1599 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1600
1601 /*
1602 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1603 * indicates an overall state change. Clear bit so that we resume
1604 * normal 'try hard' allocations.
1605 */
1606 if (node_alloc_noretry && page && !alloc_try_hard)
1607 node_clear(nid, *node_alloc_noretry);
1608
1609 /*
1610 * If we tried hard to get a page but failed, set bit so that
1611 * subsequent attempts will not try as hard until there is an
1612 * overall state change.
1613 */
1614 if (node_alloc_noretry && !page && alloc_try_hard)
1615 node_set(nid, *node_alloc_noretry);
1616
1617 return page;
1618 }
1619
1620 /*
1621 * Common helper to allocate a fresh hugetlb page. All specific allocators
1622 * should use this function to get new hugetlb pages
1623 */
1624 static struct page *alloc_fresh_huge_page(struct hstate *h,
1625 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1626 nodemask_t *node_alloc_noretry)
1627 {
1628 struct page *page;
1629
1630 if (hstate_is_gigantic(h))
1631 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1632 else
1633 page = alloc_buddy_huge_page(h, gfp_mask,
1634 nid, nmask, node_alloc_noretry);
1635 if (!page)
1636 return NULL;
1637
1638 if (hstate_is_gigantic(h))
1639 prep_compound_gigantic_page(page, huge_page_order(h));
1640 prep_new_huge_page(h, page, page_to_nid(page));
1641
1642 return page;
1643 }
1644
1645 /*
1646 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1647 * manner.
1648 */
1649 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1650 nodemask_t *node_alloc_noretry)
1651 {
1652 struct page *page;
1653 int nr_nodes, node;
1654 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1655
1656 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1657 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1658 node_alloc_noretry);
1659 if (page)
1660 break;
1661 }
1662
1663 if (!page)
1664 return 0;
1665
1666 put_page(page); /* free it into the hugepage allocator */
1667
1668 return 1;
1669 }
1670
1671 /*
1672 * Free huge page from pool from next node to free.
1673 * Attempt to keep persistent huge pages more or less
1674 * balanced over allowed nodes.
1675 * Called with hugetlb_lock locked.
1676 */
1677 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1678 bool acct_surplus)
1679 {
1680 int nr_nodes, node;
1681 int ret = 0;
1682
1683 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1684 /*
1685 * If we're returning unused surplus pages, only examine
1686 * nodes with surplus pages.
1687 */
1688 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1689 !list_empty(&h->hugepage_freelists[node])) {
1690 struct page *page =
1691 list_entry(h->hugepage_freelists[node].next,
1692 struct page, lru);
1693 list_del(&page->lru);
1694 h->free_huge_pages--;
1695 h->free_huge_pages_node[node]--;
1696 if (acct_surplus) {
1697 h->surplus_huge_pages--;
1698 h->surplus_huge_pages_node[node]--;
1699 }
1700 update_and_free_page(h, page);
1701 ret = 1;
1702 break;
1703 }
1704 }
1705
1706 return ret;
1707 }
1708
1709 /*
1710 * Dissolve a given free hugepage into free buddy pages. This function does
1711 * nothing for in-use hugepages and non-hugepages.
1712 * This function returns values like below:
1713 *
1714 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1715 * (allocated or reserved.)
1716 * 0: successfully dissolved free hugepages or the page is not a
1717 * hugepage (considered as already dissolved)
1718 */
1719 int dissolve_free_huge_page(struct page *page)
1720 {
1721 int rc = -EBUSY;
1722
1723 retry:
1724 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1725 if (!PageHuge(page))
1726 return 0;
1727
1728 spin_lock(&hugetlb_lock);
1729 if (!PageHuge(page)) {
1730 rc = 0;
1731 goto out;
1732 }
1733
1734 if (!page_count(page)) {
1735 struct page *head = compound_head(page);
1736 struct hstate *h = page_hstate(head);
1737 int nid = page_to_nid(head);
1738 if (h->free_huge_pages - h->resv_huge_pages == 0)
1739 goto out;
1740
1741 /*
1742 * We should make sure that the page is already on the free list
1743 * when it is dissolved.
1744 */
1745 if (unlikely(!HPageFreed(head))) {
1746 spin_unlock(&hugetlb_lock);
1747 cond_resched();
1748
1749 /*
1750 * Theoretically, we should return -EBUSY when we
1751 * encounter this race. In fact, we have a chance
1752 * to successfully dissolve the page if we do a
1753 * retry. Because the race window is quite small.
1754 * If we seize this opportunity, it is an optimization
1755 * for increasing the success rate of dissolving page.
1756 */
1757 goto retry;
1758 }
1759
1760 /*
1761 * Move PageHWPoison flag from head page to the raw error page,
1762 * which makes any subpages rather than the error page reusable.
1763 */
1764 if (PageHWPoison(head) && page != head) {
1765 SetPageHWPoison(page);
1766 ClearPageHWPoison(head);
1767 }
1768 list_del(&head->lru);
1769 h->free_huge_pages--;
1770 h->free_huge_pages_node[nid]--;
1771 h->max_huge_pages--;
1772 update_and_free_page(h, head);
1773 rc = 0;
1774 }
1775 out:
1776 spin_unlock(&hugetlb_lock);
1777 return rc;
1778 }
1779
1780 /*
1781 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1782 * make specified memory blocks removable from the system.
1783 * Note that this will dissolve a free gigantic hugepage completely, if any
1784 * part of it lies within the given range.
1785 * Also note that if dissolve_free_huge_page() returns with an error, all
1786 * free hugepages that were dissolved before that error are lost.
1787 */
1788 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1789 {
1790 unsigned long pfn;
1791 struct page *page;
1792 int rc = 0;
1793
1794 if (!hugepages_supported())
1795 return rc;
1796
1797 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1798 page = pfn_to_page(pfn);
1799 rc = dissolve_free_huge_page(page);
1800 if (rc)
1801 break;
1802 }
1803
1804 return rc;
1805 }
1806
1807 /*
1808 * Allocates a fresh surplus page from the page allocator.
1809 */
1810 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1811 int nid, nodemask_t *nmask)
1812 {
1813 struct page *page = NULL;
1814
1815 if (hstate_is_gigantic(h))
1816 return NULL;
1817
1818 spin_lock(&hugetlb_lock);
1819 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1820 goto out_unlock;
1821 spin_unlock(&hugetlb_lock);
1822
1823 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1824 if (!page)
1825 return NULL;
1826
1827 spin_lock(&hugetlb_lock);
1828 /*
1829 * We could have raced with the pool size change.
1830 * Double check that and simply deallocate the new page
1831 * if we would end up overcommiting the surpluses. Abuse
1832 * temporary page to workaround the nasty free_huge_page
1833 * codeflow
1834 */
1835 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1836 SetHPageTemporary(page);
1837 spin_unlock(&hugetlb_lock);
1838 put_page(page);
1839 return NULL;
1840 } else {
1841 h->surplus_huge_pages++;
1842 h->surplus_huge_pages_node[page_to_nid(page)]++;
1843 }
1844
1845 out_unlock:
1846 spin_unlock(&hugetlb_lock);
1847
1848 return page;
1849 }
1850
1851 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1852 int nid, nodemask_t *nmask)
1853 {
1854 struct page *page;
1855
1856 if (hstate_is_gigantic(h))
1857 return NULL;
1858
1859 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1860 if (!page)
1861 return NULL;
1862
1863 /*
1864 * We do not account these pages as surplus because they are only
1865 * temporary and will be released properly on the last reference
1866 */
1867 SetHPageTemporary(page);
1868
1869 return page;
1870 }
1871
1872 /*
1873 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1874 */
1875 static
1876 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1877 struct vm_area_struct *vma, unsigned long addr)
1878 {
1879 struct page *page;
1880 struct mempolicy *mpol;
1881 gfp_t gfp_mask = htlb_alloc_mask(h);
1882 int nid;
1883 nodemask_t *nodemask;
1884
1885 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1886 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1887 mpol_cond_put(mpol);
1888
1889 return page;
1890 }
1891
1892 /* page migration callback function */
1893 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1894 nodemask_t *nmask, gfp_t gfp_mask)
1895 {
1896 spin_lock(&hugetlb_lock);
1897 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1898 struct page *page;
1899
1900 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1901 if (page) {
1902 spin_unlock(&hugetlb_lock);
1903 return page;
1904 }
1905 }
1906 spin_unlock(&hugetlb_lock);
1907
1908 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1909 }
1910
1911 /* mempolicy aware migration callback */
1912 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1913 unsigned long address)
1914 {
1915 struct mempolicy *mpol;
1916 nodemask_t *nodemask;
1917 struct page *page;
1918 gfp_t gfp_mask;
1919 int node;
1920
1921 gfp_mask = htlb_alloc_mask(h);
1922 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1923 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1924 mpol_cond_put(mpol);
1925
1926 return page;
1927 }
1928
1929 /*
1930 * Increase the hugetlb pool such that it can accommodate a reservation
1931 * of size 'delta'.
1932 */
1933 static int gather_surplus_pages(struct hstate *h, long delta)
1934 __must_hold(&hugetlb_lock)
1935 {
1936 struct list_head surplus_list;
1937 struct page *page, *tmp;
1938 int ret;
1939 long i;
1940 long needed, allocated;
1941 bool alloc_ok = true;
1942
1943 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1944 if (needed <= 0) {
1945 h->resv_huge_pages += delta;
1946 return 0;
1947 }
1948
1949 allocated = 0;
1950 INIT_LIST_HEAD(&surplus_list);
1951
1952 ret = -ENOMEM;
1953 retry:
1954 spin_unlock(&hugetlb_lock);
1955 for (i = 0; i < needed; i++) {
1956 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1957 NUMA_NO_NODE, NULL);
1958 if (!page) {
1959 alloc_ok = false;
1960 break;
1961 }
1962 list_add(&page->lru, &surplus_list);
1963 cond_resched();
1964 }
1965 allocated += i;
1966
1967 /*
1968 * After retaking hugetlb_lock, we need to recalculate 'needed'
1969 * because either resv_huge_pages or free_huge_pages may have changed.
1970 */
1971 spin_lock(&hugetlb_lock);
1972 needed = (h->resv_huge_pages + delta) -
1973 (h->free_huge_pages + allocated);
1974 if (needed > 0) {
1975 if (alloc_ok)
1976 goto retry;
1977 /*
1978 * We were not able to allocate enough pages to
1979 * satisfy the entire reservation so we free what
1980 * we've allocated so far.
1981 */
1982 goto free;
1983 }
1984 /*
1985 * The surplus_list now contains _at_least_ the number of extra pages
1986 * needed to accommodate the reservation. Add the appropriate number
1987 * of pages to the hugetlb pool and free the extras back to the buddy
1988 * allocator. Commit the entire reservation here to prevent another
1989 * process from stealing the pages as they are added to the pool but
1990 * before they are reserved.
1991 */
1992 needed += allocated;
1993 h->resv_huge_pages += delta;
1994 ret = 0;
1995
1996 /* Free the needed pages to the hugetlb pool */
1997 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1998 int zeroed;
1999
2000 if ((--needed) < 0)
2001 break;
2002 /*
2003 * This page is now managed by the hugetlb allocator and has
2004 * no users -- drop the buddy allocator's reference.
2005 */
2006 zeroed = put_page_testzero(page);
2007 VM_BUG_ON_PAGE(!zeroed, page);
2008 enqueue_huge_page(h, page);
2009 }
2010 free:
2011 spin_unlock(&hugetlb_lock);
2012
2013 /* Free unnecessary surplus pages to the buddy allocator */
2014 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2015 put_page(page);
2016 spin_lock(&hugetlb_lock);
2017
2018 return ret;
2019 }
2020
2021 /*
2022 * This routine has two main purposes:
2023 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2024 * in unused_resv_pages. This corresponds to the prior adjustments made
2025 * to the associated reservation map.
2026 * 2) Free any unused surplus pages that may have been allocated to satisfy
2027 * the reservation. As many as unused_resv_pages may be freed.
2028 *
2029 * Called with hugetlb_lock held. However, the lock could be dropped (and
2030 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2031 * we must make sure nobody else can claim pages we are in the process of
2032 * freeing. Do this by ensuring resv_huge_page always is greater than the
2033 * number of huge pages we plan to free when dropping the lock.
2034 */
2035 static void return_unused_surplus_pages(struct hstate *h,
2036 unsigned long unused_resv_pages)
2037 {
2038 unsigned long nr_pages;
2039
2040 /* Cannot return gigantic pages currently */
2041 if (hstate_is_gigantic(h))
2042 goto out;
2043
2044 /*
2045 * Part (or even all) of the reservation could have been backed
2046 * by pre-allocated pages. Only free surplus pages.
2047 */
2048 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2049
2050 /*
2051 * We want to release as many surplus pages as possible, spread
2052 * evenly across all nodes with memory. Iterate across these nodes
2053 * until we can no longer free unreserved surplus pages. This occurs
2054 * when the nodes with surplus pages have no free pages.
2055 * free_pool_huge_page() will balance the freed pages across the
2056 * on-line nodes with memory and will handle the hstate accounting.
2057 *
2058 * Note that we decrement resv_huge_pages as we free the pages. If
2059 * we drop the lock, resv_huge_pages will still be sufficiently large
2060 * to cover subsequent pages we may free.
2061 */
2062 while (nr_pages--) {
2063 h->resv_huge_pages--;
2064 unused_resv_pages--;
2065 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2066 goto out;
2067 cond_resched_lock(&hugetlb_lock);
2068 }
2069
2070 out:
2071 /* Fully uncommit the reservation */
2072 h->resv_huge_pages -= unused_resv_pages;
2073 }
2074
2075
2076 /*
2077 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2078 * are used by the huge page allocation routines to manage reservations.
2079 *
2080 * vma_needs_reservation is called to determine if the huge page at addr
2081 * within the vma has an associated reservation. If a reservation is
2082 * needed, the value 1 is returned. The caller is then responsible for
2083 * managing the global reservation and subpool usage counts. After
2084 * the huge page has been allocated, vma_commit_reservation is called
2085 * to add the page to the reservation map. If the page allocation fails,
2086 * the reservation must be ended instead of committed. vma_end_reservation
2087 * is called in such cases.
2088 *
2089 * In the normal case, vma_commit_reservation returns the same value
2090 * as the preceding vma_needs_reservation call. The only time this
2091 * is not the case is if a reserve map was changed between calls. It
2092 * is the responsibility of the caller to notice the difference and
2093 * take appropriate action.
2094 *
2095 * vma_add_reservation is used in error paths where a reservation must
2096 * be restored when a newly allocated huge page must be freed. It is
2097 * to be called after calling vma_needs_reservation to determine if a
2098 * reservation exists.
2099 */
2100 enum vma_resv_mode {
2101 VMA_NEEDS_RESV,
2102 VMA_COMMIT_RESV,
2103 VMA_END_RESV,
2104 VMA_ADD_RESV,
2105 };
2106 static long __vma_reservation_common(struct hstate *h,
2107 struct vm_area_struct *vma, unsigned long addr,
2108 enum vma_resv_mode mode)
2109 {
2110 struct resv_map *resv;
2111 pgoff_t idx;
2112 long ret;
2113 long dummy_out_regions_needed;
2114
2115 resv = vma_resv_map(vma);
2116 if (!resv)
2117 return 1;
2118
2119 idx = vma_hugecache_offset(h, vma, addr);
2120 switch (mode) {
2121 case VMA_NEEDS_RESV:
2122 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2123 /* We assume that vma_reservation_* routines always operate on
2124 * 1 page, and that adding to resv map a 1 page entry can only
2125 * ever require 1 region.
2126 */
2127 VM_BUG_ON(dummy_out_regions_needed != 1);
2128 break;
2129 case VMA_COMMIT_RESV:
2130 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2131 /* region_add calls of range 1 should never fail. */
2132 VM_BUG_ON(ret < 0);
2133 break;
2134 case VMA_END_RESV:
2135 region_abort(resv, idx, idx + 1, 1);
2136 ret = 0;
2137 break;
2138 case VMA_ADD_RESV:
2139 if (vma->vm_flags & VM_MAYSHARE) {
2140 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2141 /* region_add calls of range 1 should never fail. */
2142 VM_BUG_ON(ret < 0);
2143 } else {
2144 region_abort(resv, idx, idx + 1, 1);
2145 ret = region_del(resv, idx, idx + 1);
2146 }
2147 break;
2148 default:
2149 BUG();
2150 }
2151
2152 if (vma->vm_flags & VM_MAYSHARE)
2153 return ret;
2154 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2155 /*
2156 * In most cases, reserves always exist for private mappings.
2157 * However, a file associated with mapping could have been
2158 * hole punched or truncated after reserves were consumed.
2159 * As subsequent fault on such a range will not use reserves.
2160 * Subtle - The reserve map for private mappings has the
2161 * opposite meaning than that of shared mappings. If NO
2162 * entry is in the reserve map, it means a reservation exists.
2163 * If an entry exists in the reserve map, it means the
2164 * reservation has already been consumed. As a result, the
2165 * return value of this routine is the opposite of the
2166 * value returned from reserve map manipulation routines above.
2167 */
2168 if (ret)
2169 return 0;
2170 else
2171 return 1;
2172 }
2173 else
2174 return ret < 0 ? ret : 0;
2175 }
2176
2177 static long vma_needs_reservation(struct hstate *h,
2178 struct vm_area_struct *vma, unsigned long addr)
2179 {
2180 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2181 }
2182
2183 static long vma_commit_reservation(struct hstate *h,
2184 struct vm_area_struct *vma, unsigned long addr)
2185 {
2186 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2187 }
2188
2189 static void vma_end_reservation(struct hstate *h,
2190 struct vm_area_struct *vma, unsigned long addr)
2191 {
2192 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2193 }
2194
2195 static long vma_add_reservation(struct hstate *h,
2196 struct vm_area_struct *vma, unsigned long addr)
2197 {
2198 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2199 }
2200
2201 /*
2202 * This routine is called to restore a reservation on error paths. In the
2203 * specific error paths, a huge page was allocated (via alloc_huge_page)
2204 * and is about to be freed. If a reservation for the page existed,
2205 * alloc_huge_page would have consumed the reservation and set
2206 * HPageRestoreReserve in the newly allocated page. When the page is freed
2207 * via free_huge_page, the global reservation count will be incremented if
2208 * HPageRestoreReserve is set. However, free_huge_page can not adjust the
2209 * reserve map. Adjust the reserve map here to be consistent with global
2210 * reserve count adjustments to be made by free_huge_page.
2211 */
2212 static void restore_reserve_on_error(struct hstate *h,
2213 struct vm_area_struct *vma, unsigned long address,
2214 struct page *page)
2215 {
2216 if (unlikely(HPageRestoreReserve(page))) {
2217 long rc = vma_needs_reservation(h, vma, address);
2218
2219 if (unlikely(rc < 0)) {
2220 /*
2221 * Rare out of memory condition in reserve map
2222 * manipulation. Clear HPageRestoreReserve so that
2223 * global reserve count will not be incremented
2224 * by free_huge_page. This will make it appear
2225 * as though the reservation for this page was
2226 * consumed. This may prevent the task from
2227 * faulting in the page at a later time. This
2228 * is better than inconsistent global huge page
2229 * accounting of reserve counts.
2230 */
2231 ClearHPageRestoreReserve(page);
2232 } else if (rc) {
2233 rc = vma_add_reservation(h, vma, address);
2234 if (unlikely(rc < 0))
2235 /*
2236 * See above comment about rare out of
2237 * memory condition.
2238 */
2239 ClearHPageRestoreReserve(page);
2240 } else
2241 vma_end_reservation(h, vma, address);
2242 }
2243 }
2244
2245 struct page *alloc_huge_page(struct vm_area_struct *vma,
2246 unsigned long addr, int avoid_reserve)
2247 {
2248 struct hugepage_subpool *spool = subpool_vma(vma);
2249 struct hstate *h = hstate_vma(vma);
2250 struct page *page;
2251 long map_chg, map_commit;
2252 long gbl_chg;
2253 int ret, idx;
2254 struct hugetlb_cgroup *h_cg;
2255 bool deferred_reserve;
2256
2257 idx = hstate_index(h);
2258 /*
2259 * Examine the region/reserve map to determine if the process
2260 * has a reservation for the page to be allocated. A return
2261 * code of zero indicates a reservation exists (no change).
2262 */
2263 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2264 if (map_chg < 0)
2265 return ERR_PTR(-ENOMEM);
2266
2267 /*
2268 * Processes that did not create the mapping will have no
2269 * reserves as indicated by the region/reserve map. Check
2270 * that the allocation will not exceed the subpool limit.
2271 * Allocations for MAP_NORESERVE mappings also need to be
2272 * checked against any subpool limit.
2273 */
2274 if (map_chg || avoid_reserve) {
2275 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2276 if (gbl_chg < 0) {
2277 vma_end_reservation(h, vma, addr);
2278 return ERR_PTR(-ENOSPC);
2279 }
2280
2281 /*
2282 * Even though there was no reservation in the region/reserve
2283 * map, there could be reservations associated with the
2284 * subpool that can be used. This would be indicated if the
2285 * return value of hugepage_subpool_get_pages() is zero.
2286 * However, if avoid_reserve is specified we still avoid even
2287 * the subpool reservations.
2288 */
2289 if (avoid_reserve)
2290 gbl_chg = 1;
2291 }
2292
2293 /* If this allocation is not consuming a reservation, charge it now.
2294 */
2295 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2296 if (deferred_reserve) {
2297 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2298 idx, pages_per_huge_page(h), &h_cg);
2299 if (ret)
2300 goto out_subpool_put;
2301 }
2302
2303 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2304 if (ret)
2305 goto out_uncharge_cgroup_reservation;
2306
2307 spin_lock(&hugetlb_lock);
2308 /*
2309 * glb_chg is passed to indicate whether or not a page must be taken
2310 * from the global free pool (global change). gbl_chg == 0 indicates
2311 * a reservation exists for the allocation.
2312 */
2313 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2314 if (!page) {
2315 spin_unlock(&hugetlb_lock);
2316 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2317 if (!page)
2318 goto out_uncharge_cgroup;
2319 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2320 SetHPageRestoreReserve(page);
2321 h->resv_huge_pages--;
2322 }
2323 spin_lock(&hugetlb_lock);
2324 list_add(&page->lru, &h->hugepage_activelist);
2325 /* Fall through */
2326 }
2327 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2328 /* If allocation is not consuming a reservation, also store the
2329 * hugetlb_cgroup pointer on the page.
2330 */
2331 if (deferred_reserve) {
2332 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2333 h_cg, page);
2334 }
2335
2336 spin_unlock(&hugetlb_lock);
2337
2338 hugetlb_set_page_subpool(page, spool);
2339
2340 map_commit = vma_commit_reservation(h, vma, addr);
2341 if (unlikely(map_chg > map_commit)) {
2342 /*
2343 * The page was added to the reservation map between
2344 * vma_needs_reservation and vma_commit_reservation.
2345 * This indicates a race with hugetlb_reserve_pages.
2346 * Adjust for the subpool count incremented above AND
2347 * in hugetlb_reserve_pages for the same page. Also,
2348 * the reservation count added in hugetlb_reserve_pages
2349 * no longer applies.
2350 */
2351 long rsv_adjust;
2352
2353 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2354 hugetlb_acct_memory(h, -rsv_adjust);
2355 if (deferred_reserve)
2356 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2357 pages_per_huge_page(h), page);
2358 }
2359 return page;
2360
2361 out_uncharge_cgroup:
2362 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2363 out_uncharge_cgroup_reservation:
2364 if (deferred_reserve)
2365 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2366 h_cg);
2367 out_subpool_put:
2368 if (map_chg || avoid_reserve)
2369 hugepage_subpool_put_pages(spool, 1);
2370 vma_end_reservation(h, vma, addr);
2371 return ERR_PTR(-ENOSPC);
2372 }
2373
2374 int alloc_bootmem_huge_page(struct hstate *h)
2375 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2376 int __alloc_bootmem_huge_page(struct hstate *h)
2377 {
2378 struct huge_bootmem_page *m;
2379 int nr_nodes, node;
2380
2381 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2382 void *addr;
2383
2384 addr = memblock_alloc_try_nid_raw(
2385 huge_page_size(h), huge_page_size(h),
2386 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2387 if (addr) {
2388 /*
2389 * Use the beginning of the huge page to store the
2390 * huge_bootmem_page struct (until gather_bootmem
2391 * puts them into the mem_map).
2392 */
2393 m = addr;
2394 goto found;
2395 }
2396 }
2397 return 0;
2398
2399 found:
2400 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2401 /* Put them into a private list first because mem_map is not up yet */
2402 INIT_LIST_HEAD(&m->list);
2403 list_add(&m->list, &huge_boot_pages);
2404 m->hstate = h;
2405 return 1;
2406 }
2407
2408 static void __init prep_compound_huge_page(struct page *page,
2409 unsigned int order)
2410 {
2411 if (unlikely(order > (MAX_ORDER - 1)))
2412 prep_compound_gigantic_page(page, order);
2413 else
2414 prep_compound_page(page, order);
2415 }
2416
2417 /* Put bootmem huge pages into the standard lists after mem_map is up */
2418 static void __init gather_bootmem_prealloc(void)
2419 {
2420 struct huge_bootmem_page *m;
2421
2422 list_for_each_entry(m, &huge_boot_pages, list) {
2423 struct page *page = virt_to_page(m);
2424 struct hstate *h = m->hstate;
2425
2426 WARN_ON(page_count(page) != 1);
2427 prep_compound_huge_page(page, huge_page_order(h));
2428 WARN_ON(PageReserved(page));
2429 prep_new_huge_page(h, page, page_to_nid(page));
2430 put_page(page); /* free it into the hugepage allocator */
2431
2432 /*
2433 * If we had gigantic hugepages allocated at boot time, we need
2434 * to restore the 'stolen' pages to totalram_pages in order to
2435 * fix confusing memory reports from free(1) and another
2436 * side-effects, like CommitLimit going negative.
2437 */
2438 if (hstate_is_gigantic(h))
2439 adjust_managed_page_count(page, pages_per_huge_page(h));
2440 cond_resched();
2441 }
2442 }
2443
2444 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2445 {
2446 unsigned long i;
2447 nodemask_t *node_alloc_noretry;
2448
2449 if (!hstate_is_gigantic(h)) {
2450 /*
2451 * Bit mask controlling how hard we retry per-node allocations.
2452 * Ignore errors as lower level routines can deal with
2453 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2454 * time, we are likely in bigger trouble.
2455 */
2456 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2457 GFP_KERNEL);
2458 } else {
2459 /* allocations done at boot time */
2460 node_alloc_noretry = NULL;
2461 }
2462
2463 /* bit mask controlling how hard we retry per-node allocations */
2464 if (node_alloc_noretry)
2465 nodes_clear(*node_alloc_noretry);
2466
2467 for (i = 0; i < h->max_huge_pages; ++i) {
2468 if (hstate_is_gigantic(h)) {
2469 if (hugetlb_cma_size) {
2470 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2471 goto free;
2472 }
2473 if (!alloc_bootmem_huge_page(h))
2474 break;
2475 } else if (!alloc_pool_huge_page(h,
2476 &node_states[N_MEMORY],
2477 node_alloc_noretry))
2478 break;
2479 cond_resched();
2480 }
2481 if (i < h->max_huge_pages) {
2482 char buf[32];
2483
2484 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2485 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2486 h->max_huge_pages, buf, i);
2487 h->max_huge_pages = i;
2488 }
2489 free:
2490 kfree(node_alloc_noretry);
2491 }
2492
2493 static void __init hugetlb_init_hstates(void)
2494 {
2495 struct hstate *h;
2496
2497 for_each_hstate(h) {
2498 if (minimum_order > huge_page_order(h))
2499 minimum_order = huge_page_order(h);
2500
2501 /* oversize hugepages were init'ed in early boot */
2502 if (!hstate_is_gigantic(h))
2503 hugetlb_hstate_alloc_pages(h);
2504 }
2505 VM_BUG_ON(minimum_order == UINT_MAX);
2506 }
2507
2508 static void __init report_hugepages(void)
2509 {
2510 struct hstate *h;
2511
2512 for_each_hstate(h) {
2513 char buf[32];
2514
2515 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2516 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2517 buf, h->free_huge_pages);
2518 }
2519 }
2520
2521 #ifdef CONFIG_HIGHMEM
2522 static void try_to_free_low(struct hstate *h, unsigned long count,
2523 nodemask_t *nodes_allowed)
2524 {
2525 int i;
2526
2527 if (hstate_is_gigantic(h))
2528 return;
2529
2530 for_each_node_mask(i, *nodes_allowed) {
2531 struct page *page, *next;
2532 struct list_head *freel = &h->hugepage_freelists[i];
2533 list_for_each_entry_safe(page, next, freel, lru) {
2534 if (count >= h->nr_huge_pages)
2535 return;
2536 if (PageHighMem(page))
2537 continue;
2538 list_del(&page->lru);
2539 update_and_free_page(h, page);
2540 h->free_huge_pages--;
2541 h->free_huge_pages_node[page_to_nid(page)]--;
2542 }
2543 }
2544 }
2545 #else
2546 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2547 nodemask_t *nodes_allowed)
2548 {
2549 }
2550 #endif
2551
2552 /*
2553 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2554 * balanced by operating on them in a round-robin fashion.
2555 * Returns 1 if an adjustment was made.
2556 */
2557 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2558 int delta)
2559 {
2560 int nr_nodes, node;
2561
2562 VM_BUG_ON(delta != -1 && delta != 1);
2563
2564 if (delta < 0) {
2565 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2566 if (h->surplus_huge_pages_node[node])
2567 goto found;
2568 }
2569 } else {
2570 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2571 if (h->surplus_huge_pages_node[node] <
2572 h->nr_huge_pages_node[node])
2573 goto found;
2574 }
2575 }
2576 return 0;
2577
2578 found:
2579 h->surplus_huge_pages += delta;
2580 h->surplus_huge_pages_node[node] += delta;
2581 return 1;
2582 }
2583
2584 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2585 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2586 nodemask_t *nodes_allowed)
2587 {
2588 unsigned long min_count, ret;
2589 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2590
2591 /*
2592 * Bit mask controlling how hard we retry per-node allocations.
2593 * If we can not allocate the bit mask, do not attempt to allocate
2594 * the requested huge pages.
2595 */
2596 if (node_alloc_noretry)
2597 nodes_clear(*node_alloc_noretry);
2598 else
2599 return -ENOMEM;
2600
2601 spin_lock(&hugetlb_lock);
2602
2603 /*
2604 * Check for a node specific request.
2605 * Changing node specific huge page count may require a corresponding
2606 * change to the global count. In any case, the passed node mask
2607 * (nodes_allowed) will restrict alloc/free to the specified node.
2608 */
2609 if (nid != NUMA_NO_NODE) {
2610 unsigned long old_count = count;
2611
2612 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2613 /*
2614 * User may have specified a large count value which caused the
2615 * above calculation to overflow. In this case, they wanted
2616 * to allocate as many huge pages as possible. Set count to
2617 * largest possible value to align with their intention.
2618 */
2619 if (count < old_count)
2620 count = ULONG_MAX;
2621 }
2622
2623 /*
2624 * Gigantic pages runtime allocation depend on the capability for large
2625 * page range allocation.
2626 * If the system does not provide this feature, return an error when
2627 * the user tries to allocate gigantic pages but let the user free the
2628 * boottime allocated gigantic pages.
2629 */
2630 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2631 if (count > persistent_huge_pages(h)) {
2632 spin_unlock(&hugetlb_lock);
2633 NODEMASK_FREE(node_alloc_noretry);
2634 return -EINVAL;
2635 }
2636 /* Fall through to decrease pool */
2637 }
2638
2639 /*
2640 * Increase the pool size
2641 * First take pages out of surplus state. Then make up the
2642 * remaining difference by allocating fresh huge pages.
2643 *
2644 * We might race with alloc_surplus_huge_page() here and be unable
2645 * to convert a surplus huge page to a normal huge page. That is
2646 * not critical, though, it just means the overall size of the
2647 * pool might be one hugepage larger than it needs to be, but
2648 * within all the constraints specified by the sysctls.
2649 */
2650 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2651 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2652 break;
2653 }
2654
2655 while (count > persistent_huge_pages(h)) {
2656 /*
2657 * If this allocation races such that we no longer need the
2658 * page, free_huge_page will handle it by freeing the page
2659 * and reducing the surplus.
2660 */
2661 spin_unlock(&hugetlb_lock);
2662
2663 /* yield cpu to avoid soft lockup */
2664 cond_resched();
2665
2666 ret = alloc_pool_huge_page(h, nodes_allowed,
2667 node_alloc_noretry);
2668 spin_lock(&hugetlb_lock);
2669 if (!ret)
2670 goto out;
2671
2672 /* Bail for signals. Probably ctrl-c from user */
2673 if (signal_pending(current))
2674 goto out;
2675 }
2676
2677 /*
2678 * Decrease the pool size
2679 * First return free pages to the buddy allocator (being careful
2680 * to keep enough around to satisfy reservations). Then place
2681 * pages into surplus state as needed so the pool will shrink
2682 * to the desired size as pages become free.
2683 *
2684 * By placing pages into the surplus state independent of the
2685 * overcommit value, we are allowing the surplus pool size to
2686 * exceed overcommit. There are few sane options here. Since
2687 * alloc_surplus_huge_page() is checking the global counter,
2688 * though, we'll note that we're not allowed to exceed surplus
2689 * and won't grow the pool anywhere else. Not until one of the
2690 * sysctls are changed, or the surplus pages go out of use.
2691 */
2692 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2693 min_count = max(count, min_count);
2694 try_to_free_low(h, min_count, nodes_allowed);
2695 while (min_count < persistent_huge_pages(h)) {
2696 if (!free_pool_huge_page(h, nodes_allowed, 0))
2697 break;
2698 cond_resched_lock(&hugetlb_lock);
2699 }
2700 while (count < persistent_huge_pages(h)) {
2701 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2702 break;
2703 }
2704 out:
2705 h->max_huge_pages = persistent_huge_pages(h);
2706 spin_unlock(&hugetlb_lock);
2707
2708 NODEMASK_FREE(node_alloc_noretry);
2709
2710 return 0;
2711 }
2712
2713 #define HSTATE_ATTR_RO(_name) \
2714 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2715
2716 #define HSTATE_ATTR(_name) \
2717 static struct kobj_attribute _name##_attr = \
2718 __ATTR(_name, 0644, _name##_show, _name##_store)
2719
2720 static struct kobject *hugepages_kobj;
2721 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2722
2723 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2724
2725 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2726 {
2727 int i;
2728
2729 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2730 if (hstate_kobjs[i] == kobj) {
2731 if (nidp)
2732 *nidp = NUMA_NO_NODE;
2733 return &hstates[i];
2734 }
2735
2736 return kobj_to_node_hstate(kobj, nidp);
2737 }
2738
2739 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2740 struct kobj_attribute *attr, char *buf)
2741 {
2742 struct hstate *h;
2743 unsigned long nr_huge_pages;
2744 int nid;
2745
2746 h = kobj_to_hstate(kobj, &nid);
2747 if (nid == NUMA_NO_NODE)
2748 nr_huge_pages = h->nr_huge_pages;
2749 else
2750 nr_huge_pages = h->nr_huge_pages_node[nid];
2751
2752 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2753 }
2754
2755 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2756 struct hstate *h, int nid,
2757 unsigned long count, size_t len)
2758 {
2759 int err;
2760 nodemask_t nodes_allowed, *n_mask;
2761
2762 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2763 return -EINVAL;
2764
2765 if (nid == NUMA_NO_NODE) {
2766 /*
2767 * global hstate attribute
2768 */
2769 if (!(obey_mempolicy &&
2770 init_nodemask_of_mempolicy(&nodes_allowed)))
2771 n_mask = &node_states[N_MEMORY];
2772 else
2773 n_mask = &nodes_allowed;
2774 } else {
2775 /*
2776 * Node specific request. count adjustment happens in
2777 * set_max_huge_pages() after acquiring hugetlb_lock.
2778 */
2779 init_nodemask_of_node(&nodes_allowed, nid);
2780 n_mask = &nodes_allowed;
2781 }
2782
2783 err = set_max_huge_pages(h, count, nid, n_mask);
2784
2785 return err ? err : len;
2786 }
2787
2788 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2789 struct kobject *kobj, const char *buf,
2790 size_t len)
2791 {
2792 struct hstate *h;
2793 unsigned long count;
2794 int nid;
2795 int err;
2796
2797 err = kstrtoul(buf, 10, &count);
2798 if (err)
2799 return err;
2800
2801 h = kobj_to_hstate(kobj, &nid);
2802 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2803 }
2804
2805 static ssize_t nr_hugepages_show(struct kobject *kobj,
2806 struct kobj_attribute *attr, char *buf)
2807 {
2808 return nr_hugepages_show_common(kobj, attr, buf);
2809 }
2810
2811 static ssize_t nr_hugepages_store(struct kobject *kobj,
2812 struct kobj_attribute *attr, const char *buf, size_t len)
2813 {
2814 return nr_hugepages_store_common(false, kobj, buf, len);
2815 }
2816 HSTATE_ATTR(nr_hugepages);
2817
2818 #ifdef CONFIG_NUMA
2819
2820 /*
2821 * hstate attribute for optionally mempolicy-based constraint on persistent
2822 * huge page alloc/free.
2823 */
2824 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2825 struct kobj_attribute *attr,
2826 char *buf)
2827 {
2828 return nr_hugepages_show_common(kobj, attr, buf);
2829 }
2830
2831 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2832 struct kobj_attribute *attr, const char *buf, size_t len)
2833 {
2834 return nr_hugepages_store_common(true, kobj, buf, len);
2835 }
2836 HSTATE_ATTR(nr_hugepages_mempolicy);
2837 #endif
2838
2839
2840 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2841 struct kobj_attribute *attr, char *buf)
2842 {
2843 struct hstate *h = kobj_to_hstate(kobj, NULL);
2844 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2845 }
2846
2847 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2848 struct kobj_attribute *attr, const char *buf, size_t count)
2849 {
2850 int err;
2851 unsigned long input;
2852 struct hstate *h = kobj_to_hstate(kobj, NULL);
2853
2854 if (hstate_is_gigantic(h))
2855 return -EINVAL;
2856
2857 err = kstrtoul(buf, 10, &input);
2858 if (err)
2859 return err;
2860
2861 spin_lock(&hugetlb_lock);
2862 h->nr_overcommit_huge_pages = input;
2863 spin_unlock(&hugetlb_lock);
2864
2865 return count;
2866 }
2867 HSTATE_ATTR(nr_overcommit_hugepages);
2868
2869 static ssize_t free_hugepages_show(struct kobject *kobj,
2870 struct kobj_attribute *attr, char *buf)
2871 {
2872 struct hstate *h;
2873 unsigned long free_huge_pages;
2874 int nid;
2875
2876 h = kobj_to_hstate(kobj, &nid);
2877 if (nid == NUMA_NO_NODE)
2878 free_huge_pages = h->free_huge_pages;
2879 else
2880 free_huge_pages = h->free_huge_pages_node[nid];
2881
2882 return sysfs_emit(buf, "%lu\n", free_huge_pages);
2883 }
2884 HSTATE_ATTR_RO(free_hugepages);
2885
2886 static ssize_t resv_hugepages_show(struct kobject *kobj,
2887 struct kobj_attribute *attr, char *buf)
2888 {
2889 struct hstate *h = kobj_to_hstate(kobj, NULL);
2890 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2891 }
2892 HSTATE_ATTR_RO(resv_hugepages);
2893
2894 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2895 struct kobj_attribute *attr, char *buf)
2896 {
2897 struct hstate *h;
2898 unsigned long surplus_huge_pages;
2899 int nid;
2900
2901 h = kobj_to_hstate(kobj, &nid);
2902 if (nid == NUMA_NO_NODE)
2903 surplus_huge_pages = h->surplus_huge_pages;
2904 else
2905 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2906
2907 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2908 }
2909 HSTATE_ATTR_RO(surplus_hugepages);
2910
2911 static struct attribute *hstate_attrs[] = {
2912 &nr_hugepages_attr.attr,
2913 &nr_overcommit_hugepages_attr.attr,
2914 &free_hugepages_attr.attr,
2915 &resv_hugepages_attr.attr,
2916 &surplus_hugepages_attr.attr,
2917 #ifdef CONFIG_NUMA
2918 &nr_hugepages_mempolicy_attr.attr,
2919 #endif
2920 NULL,
2921 };
2922
2923 static const struct attribute_group hstate_attr_group = {
2924 .attrs = hstate_attrs,
2925 };
2926
2927 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2928 struct kobject **hstate_kobjs,
2929 const struct attribute_group *hstate_attr_group)
2930 {
2931 int retval;
2932 int hi = hstate_index(h);
2933
2934 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2935 if (!hstate_kobjs[hi])
2936 return -ENOMEM;
2937
2938 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2939 if (retval) {
2940 kobject_put(hstate_kobjs[hi]);
2941 hstate_kobjs[hi] = NULL;
2942 }
2943
2944 return retval;
2945 }
2946
2947 static void __init hugetlb_sysfs_init(void)
2948 {
2949 struct hstate *h;
2950 int err;
2951
2952 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2953 if (!hugepages_kobj)
2954 return;
2955
2956 for_each_hstate(h) {
2957 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2958 hstate_kobjs, &hstate_attr_group);
2959 if (err)
2960 pr_err("HugeTLB: Unable to add hstate %s", h->name);
2961 }
2962 }
2963
2964 #ifdef CONFIG_NUMA
2965
2966 /*
2967 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2968 * with node devices in node_devices[] using a parallel array. The array
2969 * index of a node device or _hstate == node id.
2970 * This is here to avoid any static dependency of the node device driver, in
2971 * the base kernel, on the hugetlb module.
2972 */
2973 struct node_hstate {
2974 struct kobject *hugepages_kobj;
2975 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2976 };
2977 static struct node_hstate node_hstates[MAX_NUMNODES];
2978
2979 /*
2980 * A subset of global hstate attributes for node devices
2981 */
2982 static struct attribute *per_node_hstate_attrs[] = {
2983 &nr_hugepages_attr.attr,
2984 &free_hugepages_attr.attr,
2985 &surplus_hugepages_attr.attr,
2986 NULL,
2987 };
2988
2989 static const struct attribute_group per_node_hstate_attr_group = {
2990 .attrs = per_node_hstate_attrs,
2991 };
2992
2993 /*
2994 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2995 * Returns node id via non-NULL nidp.
2996 */
2997 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2998 {
2999 int nid;
3000
3001 for (nid = 0; nid < nr_node_ids; nid++) {
3002 struct node_hstate *nhs = &node_hstates[nid];
3003 int i;
3004 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3005 if (nhs->hstate_kobjs[i] == kobj) {
3006 if (nidp)
3007 *nidp = nid;
3008 return &hstates[i];
3009 }
3010 }
3011
3012 BUG();
3013 return NULL;
3014 }
3015
3016 /*
3017 * Unregister hstate attributes from a single node device.
3018 * No-op if no hstate attributes attached.
3019 */
3020 static void hugetlb_unregister_node(struct node *node)
3021 {
3022 struct hstate *h;
3023 struct node_hstate *nhs = &node_hstates[node->dev.id];
3024
3025 if (!nhs->hugepages_kobj)
3026 return; /* no hstate attributes */
3027
3028 for_each_hstate(h) {
3029 int idx = hstate_index(h);
3030 if (nhs->hstate_kobjs[idx]) {
3031 kobject_put(nhs->hstate_kobjs[idx]);
3032 nhs->hstate_kobjs[idx] = NULL;
3033 }
3034 }
3035
3036 kobject_put(nhs->hugepages_kobj);
3037 nhs->hugepages_kobj = NULL;
3038 }
3039
3040
3041 /*
3042 * Register hstate attributes for a single node device.
3043 * No-op if attributes already registered.
3044 */
3045 static void hugetlb_register_node(struct node *node)
3046 {
3047 struct hstate *h;
3048 struct node_hstate *nhs = &node_hstates[node->dev.id];
3049 int err;
3050
3051 if (nhs->hugepages_kobj)
3052 return; /* already allocated */
3053
3054 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3055 &node->dev.kobj);
3056 if (!nhs->hugepages_kobj)
3057 return;
3058
3059 for_each_hstate(h) {
3060 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3061 nhs->hstate_kobjs,
3062 &per_node_hstate_attr_group);
3063 if (err) {
3064 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3065 h->name, node->dev.id);
3066 hugetlb_unregister_node(node);
3067 break;
3068 }
3069 }
3070 }
3071
3072 /*
3073 * hugetlb init time: register hstate attributes for all registered node
3074 * devices of nodes that have memory. All on-line nodes should have
3075 * registered their associated device by this time.
3076 */
3077 static void __init hugetlb_register_all_nodes(void)
3078 {
3079 int nid;
3080
3081 for_each_node_state(nid, N_MEMORY) {
3082 struct node *node = node_devices[nid];
3083 if (node->dev.id == nid)
3084 hugetlb_register_node(node);
3085 }
3086
3087 /*
3088 * Let the node device driver know we're here so it can
3089 * [un]register hstate attributes on node hotplug.
3090 */
3091 register_hugetlbfs_with_node(hugetlb_register_node,
3092 hugetlb_unregister_node);
3093 }
3094 #else /* !CONFIG_NUMA */
3095
3096 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3097 {
3098 BUG();
3099 if (nidp)
3100 *nidp = -1;
3101 return NULL;
3102 }
3103
3104 static void hugetlb_register_all_nodes(void) { }
3105
3106 #endif
3107
3108 static int __init hugetlb_init(void)
3109 {
3110 int i;
3111
3112 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3113 __NR_HPAGEFLAGS);
3114
3115 if (!hugepages_supported()) {
3116 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3117 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3118 return 0;
3119 }
3120
3121 /*
3122 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3123 * architectures depend on setup being done here.
3124 */
3125 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3126 if (!parsed_default_hugepagesz) {
3127 /*
3128 * If we did not parse a default huge page size, set
3129 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3130 * number of huge pages for this default size was implicitly
3131 * specified, set that here as well.
3132 * Note that the implicit setting will overwrite an explicit
3133 * setting. A warning will be printed in this case.
3134 */
3135 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3136 if (default_hstate_max_huge_pages) {
3137 if (default_hstate.max_huge_pages) {
3138 char buf[32];
3139
3140 string_get_size(huge_page_size(&default_hstate),
3141 1, STRING_UNITS_2, buf, 32);
3142 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3143 default_hstate.max_huge_pages, buf);
3144 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3145 default_hstate_max_huge_pages);
3146 }
3147 default_hstate.max_huge_pages =
3148 default_hstate_max_huge_pages;
3149 }
3150 }
3151
3152 hugetlb_cma_check();
3153 hugetlb_init_hstates();
3154 gather_bootmem_prealloc();
3155 report_hugepages();
3156
3157 hugetlb_sysfs_init();
3158 hugetlb_register_all_nodes();
3159 hugetlb_cgroup_file_init();
3160
3161 #ifdef CONFIG_SMP
3162 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3163 #else
3164 num_fault_mutexes = 1;
3165 #endif
3166 hugetlb_fault_mutex_table =
3167 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3168 GFP_KERNEL);
3169 BUG_ON(!hugetlb_fault_mutex_table);
3170
3171 for (i = 0; i < num_fault_mutexes; i++)
3172 mutex_init(&hugetlb_fault_mutex_table[i]);
3173 return 0;
3174 }
3175 subsys_initcall(hugetlb_init);
3176
3177 /* Overwritten by architectures with more huge page sizes */
3178 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3179 {
3180 return size == HPAGE_SIZE;
3181 }
3182
3183 void __init hugetlb_add_hstate(unsigned int order)
3184 {
3185 struct hstate *h;
3186 unsigned long i;
3187
3188 if (size_to_hstate(PAGE_SIZE << order)) {
3189 return;
3190 }
3191 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3192 BUG_ON(order == 0);
3193 h = &hstates[hugetlb_max_hstate++];
3194 h->order = order;
3195 h->mask = ~(huge_page_size(h) - 1);
3196 for (i = 0; i < MAX_NUMNODES; ++i)
3197 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3198 INIT_LIST_HEAD(&h->hugepage_activelist);
3199 h->next_nid_to_alloc = first_memory_node;
3200 h->next_nid_to_free = first_memory_node;
3201 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3202 huge_page_size(h)/1024);
3203
3204 parsed_hstate = h;
3205 }
3206
3207 /*
3208 * hugepages command line processing
3209 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3210 * specification. If not, ignore the hugepages value. hugepages can also
3211 * be the first huge page command line option in which case it implicitly
3212 * specifies the number of huge pages for the default size.
3213 */
3214 static int __init hugepages_setup(char *s)
3215 {
3216 unsigned long *mhp;
3217 static unsigned long *last_mhp;
3218
3219 if (!parsed_valid_hugepagesz) {
3220 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3221 parsed_valid_hugepagesz = true;
3222 return 0;
3223 }
3224
3225 /*
3226 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3227 * yet, so this hugepages= parameter goes to the "default hstate".
3228 * Otherwise, it goes with the previously parsed hugepagesz or
3229 * default_hugepagesz.
3230 */
3231 else if (!hugetlb_max_hstate)
3232 mhp = &default_hstate_max_huge_pages;
3233 else
3234 mhp = &parsed_hstate->max_huge_pages;
3235
3236 if (mhp == last_mhp) {
3237 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3238 return 0;
3239 }
3240
3241 if (sscanf(s, "%lu", mhp) <= 0)
3242 *mhp = 0;
3243
3244 /*
3245 * Global state is always initialized later in hugetlb_init.
3246 * But we need to allocate >= MAX_ORDER hstates here early to still
3247 * use the bootmem allocator.
3248 */
3249 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3250 hugetlb_hstate_alloc_pages(parsed_hstate);
3251
3252 last_mhp = mhp;
3253
3254 return 1;
3255 }
3256 __setup("hugepages=", hugepages_setup);
3257
3258 /*
3259 * hugepagesz command line processing
3260 * A specific huge page size can only be specified once with hugepagesz.
3261 * hugepagesz is followed by hugepages on the command line. The global
3262 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3263 * hugepagesz argument was valid.
3264 */
3265 static int __init hugepagesz_setup(char *s)
3266 {
3267 unsigned long size;
3268 struct hstate *h;
3269
3270 parsed_valid_hugepagesz = false;
3271 size = (unsigned long)memparse(s, NULL);
3272
3273 if (!arch_hugetlb_valid_size(size)) {
3274 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3275 return 0;
3276 }
3277
3278 h = size_to_hstate(size);
3279 if (h) {
3280 /*
3281 * hstate for this size already exists. This is normally
3282 * an error, but is allowed if the existing hstate is the
3283 * default hstate. More specifically, it is only allowed if
3284 * the number of huge pages for the default hstate was not
3285 * previously specified.
3286 */
3287 if (!parsed_default_hugepagesz || h != &default_hstate ||
3288 default_hstate.max_huge_pages) {
3289 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3290 return 0;
3291 }
3292
3293 /*
3294 * No need to call hugetlb_add_hstate() as hstate already
3295 * exists. But, do set parsed_hstate so that a following
3296 * hugepages= parameter will be applied to this hstate.
3297 */
3298 parsed_hstate = h;
3299 parsed_valid_hugepagesz = true;
3300 return 1;
3301 }
3302
3303 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3304 parsed_valid_hugepagesz = true;
3305 return 1;
3306 }
3307 __setup("hugepagesz=", hugepagesz_setup);
3308
3309 /*
3310 * default_hugepagesz command line input
3311 * Only one instance of default_hugepagesz allowed on command line.
3312 */
3313 static int __init default_hugepagesz_setup(char *s)
3314 {
3315 unsigned long size;
3316
3317 parsed_valid_hugepagesz = false;
3318 if (parsed_default_hugepagesz) {
3319 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3320 return 0;
3321 }
3322
3323 size = (unsigned long)memparse(s, NULL);
3324
3325 if (!arch_hugetlb_valid_size(size)) {
3326 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3327 return 0;
3328 }
3329
3330 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3331 parsed_valid_hugepagesz = true;
3332 parsed_default_hugepagesz = true;
3333 default_hstate_idx = hstate_index(size_to_hstate(size));
3334
3335 /*
3336 * The number of default huge pages (for this size) could have been
3337 * specified as the first hugetlb parameter: hugepages=X. If so,
3338 * then default_hstate_max_huge_pages is set. If the default huge
3339 * page size is gigantic (>= MAX_ORDER), then the pages must be
3340 * allocated here from bootmem allocator.
3341 */
3342 if (default_hstate_max_huge_pages) {
3343 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3344 if (hstate_is_gigantic(&default_hstate))
3345 hugetlb_hstate_alloc_pages(&default_hstate);
3346 default_hstate_max_huge_pages = 0;
3347 }
3348
3349 return 1;
3350 }
3351 __setup("default_hugepagesz=", default_hugepagesz_setup);
3352
3353 static unsigned int allowed_mems_nr(struct hstate *h)
3354 {
3355 int node;
3356 unsigned int nr = 0;
3357 nodemask_t *mpol_allowed;
3358 unsigned int *array = h->free_huge_pages_node;
3359 gfp_t gfp_mask = htlb_alloc_mask(h);
3360
3361 mpol_allowed = policy_nodemask_current(gfp_mask);
3362
3363 for_each_node_mask(node, cpuset_current_mems_allowed) {
3364 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3365 nr += array[node];
3366 }
3367
3368 return nr;
3369 }
3370
3371 #ifdef CONFIG_SYSCTL
3372 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3373 void *buffer, size_t *length,
3374 loff_t *ppos, unsigned long *out)
3375 {
3376 struct ctl_table dup_table;
3377
3378 /*
3379 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3380 * can duplicate the @table and alter the duplicate of it.
3381 */
3382 dup_table = *table;
3383 dup_table.data = out;
3384
3385 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3386 }
3387
3388 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3389 struct ctl_table *table, int write,
3390 void *buffer, size_t *length, loff_t *ppos)
3391 {
3392 struct hstate *h = &default_hstate;
3393 unsigned long tmp = h->max_huge_pages;
3394 int ret;
3395
3396 if (!hugepages_supported())
3397 return -EOPNOTSUPP;
3398
3399 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3400 &tmp);
3401 if (ret)
3402 goto out;
3403
3404 if (write)
3405 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3406 NUMA_NO_NODE, tmp, *length);
3407 out:
3408 return ret;
3409 }
3410
3411 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3412 void *buffer, size_t *length, loff_t *ppos)
3413 {
3414
3415 return hugetlb_sysctl_handler_common(false, table, write,
3416 buffer, length, ppos);
3417 }
3418
3419 #ifdef CONFIG_NUMA
3420 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3421 void *buffer, size_t *length, loff_t *ppos)
3422 {
3423 return hugetlb_sysctl_handler_common(true, table, write,
3424 buffer, length, ppos);
3425 }
3426 #endif /* CONFIG_NUMA */
3427
3428 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3429 void *buffer, size_t *length, loff_t *ppos)
3430 {
3431 struct hstate *h = &default_hstate;
3432 unsigned long tmp;
3433 int ret;
3434
3435 if (!hugepages_supported())
3436 return -EOPNOTSUPP;
3437
3438 tmp = h->nr_overcommit_huge_pages;
3439
3440 if (write && hstate_is_gigantic(h))
3441 return -EINVAL;
3442
3443 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3444 &tmp);
3445 if (ret)
3446 goto out;
3447
3448 if (write) {
3449 spin_lock(&hugetlb_lock);
3450 h->nr_overcommit_huge_pages = tmp;
3451 spin_unlock(&hugetlb_lock);
3452 }
3453 out:
3454 return ret;
3455 }
3456
3457 #endif /* CONFIG_SYSCTL */
3458
3459 void hugetlb_report_meminfo(struct seq_file *m)
3460 {
3461 struct hstate *h;
3462 unsigned long total = 0;
3463
3464 if (!hugepages_supported())
3465 return;
3466
3467 for_each_hstate(h) {
3468 unsigned long count = h->nr_huge_pages;
3469
3470 total += huge_page_size(h) * count;
3471
3472 if (h == &default_hstate)
3473 seq_printf(m,
3474 "HugePages_Total: %5lu\n"
3475 "HugePages_Free: %5lu\n"
3476 "HugePages_Rsvd: %5lu\n"
3477 "HugePages_Surp: %5lu\n"
3478 "Hugepagesize: %8lu kB\n",
3479 count,
3480 h->free_huge_pages,
3481 h->resv_huge_pages,
3482 h->surplus_huge_pages,
3483 huge_page_size(h) / SZ_1K);
3484 }
3485
3486 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
3487 }
3488
3489 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3490 {
3491 struct hstate *h = &default_hstate;
3492
3493 if (!hugepages_supported())
3494 return 0;
3495
3496 return sysfs_emit_at(buf, len,
3497 "Node %d HugePages_Total: %5u\n"
3498 "Node %d HugePages_Free: %5u\n"
3499 "Node %d HugePages_Surp: %5u\n",
3500 nid, h->nr_huge_pages_node[nid],
3501 nid, h->free_huge_pages_node[nid],
3502 nid, h->surplus_huge_pages_node[nid]);
3503 }
3504
3505 void hugetlb_show_meminfo(void)
3506 {
3507 struct hstate *h;
3508 int nid;
3509
3510 if (!hugepages_supported())
3511 return;
3512
3513 for_each_node_state(nid, N_MEMORY)
3514 for_each_hstate(h)
3515 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3516 nid,
3517 h->nr_huge_pages_node[nid],
3518 h->free_huge_pages_node[nid],
3519 h->surplus_huge_pages_node[nid],
3520 huge_page_size(h) / SZ_1K);
3521 }
3522
3523 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3524 {
3525 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3526 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3527 }
3528
3529 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3530 unsigned long hugetlb_total_pages(void)
3531 {
3532 struct hstate *h;
3533 unsigned long nr_total_pages = 0;
3534
3535 for_each_hstate(h)
3536 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3537 return nr_total_pages;
3538 }
3539
3540 static int hugetlb_acct_memory(struct hstate *h, long delta)
3541 {
3542 int ret = -ENOMEM;
3543
3544 if (!delta)
3545 return 0;
3546
3547 spin_lock(&hugetlb_lock);
3548 /*
3549 * When cpuset is configured, it breaks the strict hugetlb page
3550 * reservation as the accounting is done on a global variable. Such
3551 * reservation is completely rubbish in the presence of cpuset because
3552 * the reservation is not checked against page availability for the
3553 * current cpuset. Application can still potentially OOM'ed by kernel
3554 * with lack of free htlb page in cpuset that the task is in.
3555 * Attempt to enforce strict accounting with cpuset is almost
3556 * impossible (or too ugly) because cpuset is too fluid that
3557 * task or memory node can be dynamically moved between cpusets.
3558 *
3559 * The change of semantics for shared hugetlb mapping with cpuset is
3560 * undesirable. However, in order to preserve some of the semantics,
3561 * we fall back to check against current free page availability as
3562 * a best attempt and hopefully to minimize the impact of changing
3563 * semantics that cpuset has.
3564 *
3565 * Apart from cpuset, we also have memory policy mechanism that
3566 * also determines from which node the kernel will allocate memory
3567 * in a NUMA system. So similar to cpuset, we also should consider
3568 * the memory policy of the current task. Similar to the description
3569 * above.
3570 */
3571 if (delta > 0) {
3572 if (gather_surplus_pages(h, delta) < 0)
3573 goto out;
3574
3575 if (delta > allowed_mems_nr(h)) {
3576 return_unused_surplus_pages(h, delta);
3577 goto out;
3578 }
3579 }
3580
3581 ret = 0;
3582 if (delta < 0)
3583 return_unused_surplus_pages(h, (unsigned long) -delta);
3584
3585 out:
3586 spin_unlock(&hugetlb_lock);
3587 return ret;
3588 }
3589
3590 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3591 {
3592 struct resv_map *resv = vma_resv_map(vma);
3593
3594 /*
3595 * This new VMA should share its siblings reservation map if present.
3596 * The VMA will only ever have a valid reservation map pointer where
3597 * it is being copied for another still existing VMA. As that VMA
3598 * has a reference to the reservation map it cannot disappear until
3599 * after this open call completes. It is therefore safe to take a
3600 * new reference here without additional locking.
3601 */
3602 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3603 kref_get(&resv->refs);
3604 }
3605
3606 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3607 {
3608 struct hstate *h = hstate_vma(vma);
3609 struct resv_map *resv = vma_resv_map(vma);
3610 struct hugepage_subpool *spool = subpool_vma(vma);
3611 unsigned long reserve, start, end;
3612 long gbl_reserve;
3613
3614 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3615 return;
3616
3617 start = vma_hugecache_offset(h, vma, vma->vm_start);
3618 end = vma_hugecache_offset(h, vma, vma->vm_end);
3619
3620 reserve = (end - start) - region_count(resv, start, end);
3621 hugetlb_cgroup_uncharge_counter(resv, start, end);
3622 if (reserve) {
3623 /*
3624 * Decrement reserve counts. The global reserve count may be
3625 * adjusted if the subpool has a minimum size.
3626 */
3627 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3628 hugetlb_acct_memory(h, -gbl_reserve);
3629 }
3630
3631 kref_put(&resv->refs, resv_map_release);
3632 }
3633
3634 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3635 {
3636 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3637 return -EINVAL;
3638 return 0;
3639 }
3640
3641 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3642 {
3643 return huge_page_size(hstate_vma(vma));
3644 }
3645
3646 /*
3647 * We cannot handle pagefaults against hugetlb pages at all. They cause
3648 * handle_mm_fault() to try to instantiate regular-sized pages in the
3649 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3650 * this far.
3651 */
3652 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3653 {
3654 BUG();
3655 return 0;
3656 }
3657
3658 /*
3659 * When a new function is introduced to vm_operations_struct and added
3660 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3661 * This is because under System V memory model, mappings created via
3662 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3663 * their original vm_ops are overwritten with shm_vm_ops.
3664 */
3665 const struct vm_operations_struct hugetlb_vm_ops = {
3666 .fault = hugetlb_vm_op_fault,
3667 .open = hugetlb_vm_op_open,
3668 .close = hugetlb_vm_op_close,
3669 .may_split = hugetlb_vm_op_split,
3670 .pagesize = hugetlb_vm_op_pagesize,
3671 };
3672
3673 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3674 int writable)
3675 {
3676 pte_t entry;
3677
3678 if (writable) {
3679 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3680 vma->vm_page_prot)));
3681 } else {
3682 entry = huge_pte_wrprotect(mk_huge_pte(page,
3683 vma->vm_page_prot));
3684 }
3685 entry = pte_mkyoung(entry);
3686 entry = pte_mkhuge(entry);
3687 entry = arch_make_huge_pte(entry, vma, page, writable);
3688
3689 return entry;
3690 }
3691
3692 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3693 unsigned long address, pte_t *ptep)
3694 {
3695 pte_t entry;
3696
3697 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3698 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3699 update_mmu_cache(vma, address, ptep);
3700 }
3701
3702 bool is_hugetlb_entry_migration(pte_t pte)
3703 {
3704 swp_entry_t swp;
3705
3706 if (huge_pte_none(pte) || pte_present(pte))
3707 return false;
3708 swp = pte_to_swp_entry(pte);
3709 if (is_migration_entry(swp))
3710 return true;
3711 else
3712 return false;
3713 }
3714
3715 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3716 {
3717 swp_entry_t swp;
3718
3719 if (huge_pte_none(pte) || pte_present(pte))
3720 return false;
3721 swp = pte_to_swp_entry(pte);
3722 if (is_hwpoison_entry(swp))
3723 return true;
3724 else
3725 return false;
3726 }
3727
3728 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3729 struct vm_area_struct *vma)
3730 {
3731 pte_t *src_pte, *dst_pte, entry, dst_entry;
3732 struct page *ptepage;
3733 unsigned long addr;
3734 int cow;
3735 struct hstate *h = hstate_vma(vma);
3736 unsigned long sz = huge_page_size(h);
3737 struct address_space *mapping = vma->vm_file->f_mapping;
3738 struct mmu_notifier_range range;
3739 int ret = 0;
3740
3741 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3742
3743 if (cow) {
3744 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3745 vma->vm_start,
3746 vma->vm_end);
3747 mmu_notifier_invalidate_range_start(&range);
3748 } else {
3749 /*
3750 * For shared mappings i_mmap_rwsem must be held to call
3751 * huge_pte_alloc, otherwise the returned ptep could go
3752 * away if part of a shared pmd and another thread calls
3753 * huge_pmd_unshare.
3754 */
3755 i_mmap_lock_read(mapping);
3756 }
3757
3758 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3759 spinlock_t *src_ptl, *dst_ptl;
3760 src_pte = huge_pte_offset(src, addr, sz);
3761 if (!src_pte)
3762 continue;
3763 dst_pte = huge_pte_alloc(dst, addr, sz);
3764 if (!dst_pte) {
3765 ret = -ENOMEM;
3766 break;
3767 }
3768
3769 /*
3770 * If the pagetables are shared don't copy or take references.
3771 * dst_pte == src_pte is the common case of src/dest sharing.
3772 *
3773 * However, src could have 'unshared' and dst shares with
3774 * another vma. If dst_pte !none, this implies sharing.
3775 * Check here before taking page table lock, and once again
3776 * after taking the lock below.
3777 */
3778 dst_entry = huge_ptep_get(dst_pte);
3779 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3780 continue;
3781
3782 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3783 src_ptl = huge_pte_lockptr(h, src, src_pte);
3784 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3785 entry = huge_ptep_get(src_pte);
3786 dst_entry = huge_ptep_get(dst_pte);
3787 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3788 /*
3789 * Skip if src entry none. Also, skip in the
3790 * unlikely case dst entry !none as this implies
3791 * sharing with another vma.
3792 */
3793 ;
3794 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3795 is_hugetlb_entry_hwpoisoned(entry))) {
3796 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3797
3798 if (is_write_migration_entry(swp_entry) && cow) {
3799 /*
3800 * COW mappings require pages in both
3801 * parent and child to be set to read.
3802 */
3803 make_migration_entry_read(&swp_entry);
3804 entry = swp_entry_to_pte(swp_entry);
3805 set_huge_swap_pte_at(src, addr, src_pte,
3806 entry, sz);
3807 }
3808 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3809 } else {
3810 if (cow) {
3811 /*
3812 * No need to notify as we are downgrading page
3813 * table protection not changing it to point
3814 * to a new page.
3815 *
3816 * See Documentation/vm/mmu_notifier.rst
3817 */
3818 huge_ptep_set_wrprotect(src, addr, src_pte);
3819 }
3820 entry = huge_ptep_get(src_pte);
3821 ptepage = pte_page(entry);
3822 get_page(ptepage);
3823 page_dup_rmap(ptepage, true);
3824 set_huge_pte_at(dst, addr, dst_pte, entry);
3825 hugetlb_count_add(pages_per_huge_page(h), dst);
3826 }
3827 spin_unlock(src_ptl);
3828 spin_unlock(dst_ptl);
3829 }
3830
3831 if (cow)
3832 mmu_notifier_invalidate_range_end(&range);
3833 else
3834 i_mmap_unlock_read(mapping);
3835
3836 return ret;
3837 }
3838
3839 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3840 unsigned long start, unsigned long end,
3841 struct page *ref_page)
3842 {
3843 struct mm_struct *mm = vma->vm_mm;
3844 unsigned long address;
3845 pte_t *ptep;
3846 pte_t pte;
3847 spinlock_t *ptl;
3848 struct page *page;
3849 struct hstate *h = hstate_vma(vma);
3850 unsigned long sz = huge_page_size(h);
3851 struct mmu_notifier_range range;
3852
3853 WARN_ON(!is_vm_hugetlb_page(vma));
3854 BUG_ON(start & ~huge_page_mask(h));
3855 BUG_ON(end & ~huge_page_mask(h));
3856
3857 /*
3858 * This is a hugetlb vma, all the pte entries should point
3859 * to huge page.
3860 */
3861 tlb_change_page_size(tlb, sz);
3862 tlb_start_vma(tlb, vma);
3863
3864 /*
3865 * If sharing possible, alert mmu notifiers of worst case.
3866 */
3867 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3868 end);
3869 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3870 mmu_notifier_invalidate_range_start(&range);
3871 address = start;
3872 for (; address < end; address += sz) {
3873 ptep = huge_pte_offset(mm, address, sz);
3874 if (!ptep)
3875 continue;
3876
3877 ptl = huge_pte_lock(h, mm, ptep);
3878 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3879 spin_unlock(ptl);
3880 /*
3881 * We just unmapped a page of PMDs by clearing a PUD.
3882 * The caller's TLB flush range should cover this area.
3883 */
3884 continue;
3885 }
3886
3887 pte = huge_ptep_get(ptep);
3888 if (huge_pte_none(pte)) {
3889 spin_unlock(ptl);
3890 continue;
3891 }
3892
3893 /*
3894 * Migrating hugepage or HWPoisoned hugepage is already
3895 * unmapped and its refcount is dropped, so just clear pte here.
3896 */
3897 if (unlikely(!pte_present(pte))) {
3898 huge_pte_clear(mm, address, ptep, sz);
3899 spin_unlock(ptl);
3900 continue;
3901 }
3902
3903 page = pte_page(pte);
3904 /*
3905 * If a reference page is supplied, it is because a specific
3906 * page is being unmapped, not a range. Ensure the page we
3907 * are about to unmap is the actual page of interest.
3908 */
3909 if (ref_page) {
3910 if (page != ref_page) {
3911 spin_unlock(ptl);
3912 continue;
3913 }
3914 /*
3915 * Mark the VMA as having unmapped its page so that
3916 * future faults in this VMA will fail rather than
3917 * looking like data was lost
3918 */
3919 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3920 }
3921
3922 pte = huge_ptep_get_and_clear(mm, address, ptep);
3923 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3924 if (huge_pte_dirty(pte))
3925 set_page_dirty(page);
3926
3927 hugetlb_count_sub(pages_per_huge_page(h), mm);
3928 page_remove_rmap(page, true);
3929
3930 spin_unlock(ptl);
3931 tlb_remove_page_size(tlb, page, huge_page_size(h));
3932 /*
3933 * Bail out after unmapping reference page if supplied
3934 */
3935 if (ref_page)
3936 break;
3937 }
3938 mmu_notifier_invalidate_range_end(&range);
3939 tlb_end_vma(tlb, vma);
3940 }
3941
3942 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3943 struct vm_area_struct *vma, unsigned long start,
3944 unsigned long end, struct page *ref_page)
3945 {
3946 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3947
3948 /*
3949 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3950 * test will fail on a vma being torn down, and not grab a page table
3951 * on its way out. We're lucky that the flag has such an appropriate
3952 * name, and can in fact be safely cleared here. We could clear it
3953 * before the __unmap_hugepage_range above, but all that's necessary
3954 * is to clear it before releasing the i_mmap_rwsem. This works
3955 * because in the context this is called, the VMA is about to be
3956 * destroyed and the i_mmap_rwsem is held.
3957 */
3958 vma->vm_flags &= ~VM_MAYSHARE;
3959 }
3960
3961 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3962 unsigned long end, struct page *ref_page)
3963 {
3964 struct mmu_gather tlb;
3965
3966 tlb_gather_mmu(&tlb, vma->vm_mm);
3967 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3968 tlb_finish_mmu(&tlb);
3969 }
3970
3971 /*
3972 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3973 * mapping it owns the reserve page for. The intention is to unmap the page
3974 * from other VMAs and let the children be SIGKILLed if they are faulting the
3975 * same region.
3976 */
3977 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3978 struct page *page, unsigned long address)
3979 {
3980 struct hstate *h = hstate_vma(vma);
3981 struct vm_area_struct *iter_vma;
3982 struct address_space *mapping;
3983 pgoff_t pgoff;
3984
3985 /*
3986 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3987 * from page cache lookup which is in HPAGE_SIZE units.
3988 */
3989 address = address & huge_page_mask(h);
3990 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3991 vma->vm_pgoff;
3992 mapping = vma->vm_file->f_mapping;
3993
3994 /*
3995 * Take the mapping lock for the duration of the table walk. As
3996 * this mapping should be shared between all the VMAs,
3997 * __unmap_hugepage_range() is called as the lock is already held
3998 */
3999 i_mmap_lock_write(mapping);
4000 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4001 /* Do not unmap the current VMA */
4002 if (iter_vma == vma)
4003 continue;
4004
4005 /*
4006 * Shared VMAs have their own reserves and do not affect
4007 * MAP_PRIVATE accounting but it is possible that a shared
4008 * VMA is using the same page so check and skip such VMAs.
4009 */
4010 if (iter_vma->vm_flags & VM_MAYSHARE)
4011 continue;
4012
4013 /*
4014 * Unmap the page from other VMAs without their own reserves.
4015 * They get marked to be SIGKILLed if they fault in these
4016 * areas. This is because a future no-page fault on this VMA
4017 * could insert a zeroed page instead of the data existing
4018 * from the time of fork. This would look like data corruption
4019 */
4020 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4021 unmap_hugepage_range(iter_vma, address,
4022 address + huge_page_size(h), page);
4023 }
4024 i_mmap_unlock_write(mapping);
4025 }
4026
4027 /*
4028 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4029 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4030 * cannot race with other handlers or page migration.
4031 * Keep the pte_same checks anyway to make transition from the mutex easier.
4032 */
4033 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4034 unsigned long address, pte_t *ptep,
4035 struct page *pagecache_page, spinlock_t *ptl)
4036 {
4037 pte_t pte;
4038 struct hstate *h = hstate_vma(vma);
4039 struct page *old_page, *new_page;
4040 int outside_reserve = 0;
4041 vm_fault_t ret = 0;
4042 unsigned long haddr = address & huge_page_mask(h);
4043 struct mmu_notifier_range range;
4044
4045 pte = huge_ptep_get(ptep);
4046 old_page = pte_page(pte);
4047
4048 retry_avoidcopy:
4049 /* If no-one else is actually using this page, avoid the copy
4050 * and just make the page writable */
4051 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4052 page_move_anon_rmap(old_page, vma);
4053 set_huge_ptep_writable(vma, haddr, ptep);
4054 return 0;
4055 }
4056
4057 /*
4058 * If the process that created a MAP_PRIVATE mapping is about to
4059 * perform a COW due to a shared page count, attempt to satisfy
4060 * the allocation without using the existing reserves. The pagecache
4061 * page is used to determine if the reserve at this address was
4062 * consumed or not. If reserves were used, a partial faulted mapping
4063 * at the time of fork() could consume its reserves on COW instead
4064 * of the full address range.
4065 */
4066 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4067 old_page != pagecache_page)
4068 outside_reserve = 1;
4069
4070 get_page(old_page);
4071
4072 /*
4073 * Drop page table lock as buddy allocator may be called. It will
4074 * be acquired again before returning to the caller, as expected.
4075 */
4076 spin_unlock(ptl);
4077 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4078
4079 if (IS_ERR(new_page)) {
4080 /*
4081 * If a process owning a MAP_PRIVATE mapping fails to COW,
4082 * it is due to references held by a child and an insufficient
4083 * huge page pool. To guarantee the original mappers
4084 * reliability, unmap the page from child processes. The child
4085 * may get SIGKILLed if it later faults.
4086 */
4087 if (outside_reserve) {
4088 struct address_space *mapping = vma->vm_file->f_mapping;
4089 pgoff_t idx;
4090 u32 hash;
4091
4092 put_page(old_page);
4093 BUG_ON(huge_pte_none(pte));
4094 /*
4095 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4096 * unmapping. unmapping needs to hold i_mmap_rwsem
4097 * in write mode. Dropping i_mmap_rwsem in read mode
4098 * here is OK as COW mappings do not interact with
4099 * PMD sharing.
4100 *
4101 * Reacquire both after unmap operation.
4102 */
4103 idx = vma_hugecache_offset(h, vma, haddr);
4104 hash = hugetlb_fault_mutex_hash(mapping, idx);
4105 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4106 i_mmap_unlock_read(mapping);
4107
4108 unmap_ref_private(mm, vma, old_page, haddr);
4109
4110 i_mmap_lock_read(mapping);
4111 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4112 spin_lock(ptl);
4113 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4114 if (likely(ptep &&
4115 pte_same(huge_ptep_get(ptep), pte)))
4116 goto retry_avoidcopy;
4117 /*
4118 * race occurs while re-acquiring page table
4119 * lock, and our job is done.
4120 */
4121 return 0;
4122 }
4123
4124 ret = vmf_error(PTR_ERR(new_page));
4125 goto out_release_old;
4126 }
4127
4128 /*
4129 * When the original hugepage is shared one, it does not have
4130 * anon_vma prepared.
4131 */
4132 if (unlikely(anon_vma_prepare(vma))) {
4133 ret = VM_FAULT_OOM;
4134 goto out_release_all;
4135 }
4136
4137 copy_user_huge_page(new_page, old_page, address, vma,
4138 pages_per_huge_page(h));
4139 __SetPageUptodate(new_page);
4140
4141 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4142 haddr + huge_page_size(h));
4143 mmu_notifier_invalidate_range_start(&range);
4144
4145 /*
4146 * Retake the page table lock to check for racing updates
4147 * before the page tables are altered
4148 */
4149 spin_lock(ptl);
4150 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4151 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4152 ClearHPageRestoreReserve(new_page);
4153
4154 /* Break COW */
4155 huge_ptep_clear_flush(vma, haddr, ptep);
4156 mmu_notifier_invalidate_range(mm, range.start, range.end);
4157 set_huge_pte_at(mm, haddr, ptep,
4158 make_huge_pte(vma, new_page, 1));
4159 page_remove_rmap(old_page, true);
4160 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4161 SetHPageMigratable(new_page);
4162 /* Make the old page be freed below */
4163 new_page = old_page;
4164 }
4165 spin_unlock(ptl);
4166 mmu_notifier_invalidate_range_end(&range);
4167 out_release_all:
4168 restore_reserve_on_error(h, vma, haddr, new_page);
4169 put_page(new_page);
4170 out_release_old:
4171 put_page(old_page);
4172
4173 spin_lock(ptl); /* Caller expects lock to be held */
4174 return ret;
4175 }
4176
4177 /* Return the pagecache page at a given address within a VMA */
4178 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4179 struct vm_area_struct *vma, unsigned long address)
4180 {
4181 struct address_space *mapping;
4182 pgoff_t idx;
4183
4184 mapping = vma->vm_file->f_mapping;
4185 idx = vma_hugecache_offset(h, vma, address);
4186
4187 return find_lock_page(mapping, idx);
4188 }
4189
4190 /*
4191 * Return whether there is a pagecache page to back given address within VMA.
4192 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4193 */
4194 static bool hugetlbfs_pagecache_present(struct hstate *h,
4195 struct vm_area_struct *vma, unsigned long address)
4196 {
4197 struct address_space *mapping;
4198 pgoff_t idx;
4199 struct page *page;
4200
4201 mapping = vma->vm_file->f_mapping;
4202 idx = vma_hugecache_offset(h, vma, address);
4203
4204 page = find_get_page(mapping, idx);
4205 if (page)
4206 put_page(page);
4207 return page != NULL;
4208 }
4209
4210 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4211 pgoff_t idx)
4212 {
4213 struct inode *inode = mapping->host;
4214 struct hstate *h = hstate_inode(inode);
4215 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4216
4217 if (err)
4218 return err;
4219 ClearHPageRestoreReserve(page);
4220
4221 /*
4222 * set page dirty so that it will not be removed from cache/file
4223 * by non-hugetlbfs specific code paths.
4224 */
4225 set_page_dirty(page);
4226
4227 spin_lock(&inode->i_lock);
4228 inode->i_blocks += blocks_per_huge_page(h);
4229 spin_unlock(&inode->i_lock);
4230 return 0;
4231 }
4232
4233 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4234 struct vm_area_struct *vma,
4235 struct address_space *mapping, pgoff_t idx,
4236 unsigned long address, pte_t *ptep, unsigned int flags)
4237 {
4238 struct hstate *h = hstate_vma(vma);
4239 vm_fault_t ret = VM_FAULT_SIGBUS;
4240 int anon_rmap = 0;
4241 unsigned long size;
4242 struct page *page;
4243 pte_t new_pte;
4244 spinlock_t *ptl;
4245 unsigned long haddr = address & huge_page_mask(h);
4246 bool new_page = false;
4247
4248 /*
4249 * Currently, we are forced to kill the process in the event the
4250 * original mapper has unmapped pages from the child due to a failed
4251 * COW. Warn that such a situation has occurred as it may not be obvious
4252 */
4253 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4254 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4255 current->pid);
4256 return ret;
4257 }
4258
4259 /*
4260 * We can not race with truncation due to holding i_mmap_rwsem.
4261 * i_size is modified when holding i_mmap_rwsem, so check here
4262 * once for faults beyond end of file.
4263 */
4264 size = i_size_read(mapping->host) >> huge_page_shift(h);
4265 if (idx >= size)
4266 goto out;
4267
4268 retry:
4269 page = find_lock_page(mapping, idx);
4270 if (!page) {
4271 /*
4272 * Check for page in userfault range
4273 */
4274 if (userfaultfd_missing(vma)) {
4275 u32 hash;
4276 struct vm_fault vmf = {
4277 .vma = vma,
4278 .address = haddr,
4279 .flags = flags,
4280 /*
4281 * Hard to debug if it ends up being
4282 * used by a callee that assumes
4283 * something about the other
4284 * uninitialized fields... same as in
4285 * memory.c
4286 */
4287 };
4288
4289 /*
4290 * hugetlb_fault_mutex and i_mmap_rwsem must be
4291 * dropped before handling userfault. Reacquire
4292 * after handling fault to make calling code simpler.
4293 */
4294 hash = hugetlb_fault_mutex_hash(mapping, idx);
4295 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4296 i_mmap_unlock_read(mapping);
4297 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4298 i_mmap_lock_read(mapping);
4299 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4300 goto out;
4301 }
4302
4303 page = alloc_huge_page(vma, haddr, 0);
4304 if (IS_ERR(page)) {
4305 /*
4306 * Returning error will result in faulting task being
4307 * sent SIGBUS. The hugetlb fault mutex prevents two
4308 * tasks from racing to fault in the same page which
4309 * could result in false unable to allocate errors.
4310 * Page migration does not take the fault mutex, but
4311 * does a clear then write of pte's under page table
4312 * lock. Page fault code could race with migration,
4313 * notice the clear pte and try to allocate a page
4314 * here. Before returning error, get ptl and make
4315 * sure there really is no pte entry.
4316 */
4317 ptl = huge_pte_lock(h, mm, ptep);
4318 if (!huge_pte_none(huge_ptep_get(ptep))) {
4319 ret = 0;
4320 spin_unlock(ptl);
4321 goto out;
4322 }
4323 spin_unlock(ptl);
4324 ret = vmf_error(PTR_ERR(page));
4325 goto out;
4326 }
4327 clear_huge_page(page, address, pages_per_huge_page(h));
4328 __SetPageUptodate(page);
4329 new_page = true;
4330
4331 if (vma->vm_flags & VM_MAYSHARE) {
4332 int err = huge_add_to_page_cache(page, mapping, idx);
4333 if (err) {
4334 put_page(page);
4335 if (err == -EEXIST)
4336 goto retry;
4337 goto out;
4338 }
4339 } else {
4340 lock_page(page);
4341 if (unlikely(anon_vma_prepare(vma))) {
4342 ret = VM_FAULT_OOM;
4343 goto backout_unlocked;
4344 }
4345 anon_rmap = 1;
4346 }
4347 } else {
4348 /*
4349 * If memory error occurs between mmap() and fault, some process
4350 * don't have hwpoisoned swap entry for errored virtual address.
4351 * So we need to block hugepage fault by PG_hwpoison bit check.
4352 */
4353 if (unlikely(PageHWPoison(page))) {
4354 ret = VM_FAULT_HWPOISON_LARGE |
4355 VM_FAULT_SET_HINDEX(hstate_index(h));
4356 goto backout_unlocked;
4357 }
4358 }
4359
4360 /*
4361 * If we are going to COW a private mapping later, we examine the
4362 * pending reservations for this page now. This will ensure that
4363 * any allocations necessary to record that reservation occur outside
4364 * the spinlock.
4365 */
4366 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4367 if (vma_needs_reservation(h, vma, haddr) < 0) {
4368 ret = VM_FAULT_OOM;
4369 goto backout_unlocked;
4370 }
4371 /* Just decrements count, does not deallocate */
4372 vma_end_reservation(h, vma, haddr);
4373 }
4374
4375 ptl = huge_pte_lock(h, mm, ptep);
4376 ret = 0;
4377 if (!huge_pte_none(huge_ptep_get(ptep)))
4378 goto backout;
4379
4380 if (anon_rmap) {
4381 ClearHPageRestoreReserve(page);
4382 hugepage_add_new_anon_rmap(page, vma, haddr);
4383 } else
4384 page_dup_rmap(page, true);
4385 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4386 && (vma->vm_flags & VM_SHARED)));
4387 set_huge_pte_at(mm, haddr, ptep, new_pte);
4388
4389 hugetlb_count_add(pages_per_huge_page(h), mm);
4390 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4391 /* Optimization, do the COW without a second fault */
4392 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4393 }
4394
4395 spin_unlock(ptl);
4396
4397 /*
4398 * Only set HPageMigratable in newly allocated pages. Existing pages
4399 * found in the pagecache may not have HPageMigratableset if they have
4400 * been isolated for migration.
4401 */
4402 if (new_page)
4403 SetHPageMigratable(page);
4404
4405 unlock_page(page);
4406 out:
4407 return ret;
4408
4409 backout:
4410 spin_unlock(ptl);
4411 backout_unlocked:
4412 unlock_page(page);
4413 restore_reserve_on_error(h, vma, haddr, page);
4414 put_page(page);
4415 goto out;
4416 }
4417
4418 #ifdef CONFIG_SMP
4419 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4420 {
4421 unsigned long key[2];
4422 u32 hash;
4423
4424 key[0] = (unsigned long) mapping;
4425 key[1] = idx;
4426
4427 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4428
4429 return hash & (num_fault_mutexes - 1);
4430 }
4431 #else
4432 /*
4433 * For uniprocessor systems we always use a single mutex, so just
4434 * return 0 and avoid the hashing overhead.
4435 */
4436 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4437 {
4438 return 0;
4439 }
4440 #endif
4441
4442 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4443 unsigned long address, unsigned int flags)
4444 {
4445 pte_t *ptep, entry;
4446 spinlock_t *ptl;
4447 vm_fault_t ret;
4448 u32 hash;
4449 pgoff_t idx;
4450 struct page *page = NULL;
4451 struct page *pagecache_page = NULL;
4452 struct hstate *h = hstate_vma(vma);
4453 struct address_space *mapping;
4454 int need_wait_lock = 0;
4455 unsigned long haddr = address & huge_page_mask(h);
4456
4457 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4458 if (ptep) {
4459 /*
4460 * Since we hold no locks, ptep could be stale. That is
4461 * OK as we are only making decisions based on content and
4462 * not actually modifying content here.
4463 */
4464 entry = huge_ptep_get(ptep);
4465 if (unlikely(is_hugetlb_entry_migration(entry))) {
4466 migration_entry_wait_huge(vma, mm, ptep);
4467 return 0;
4468 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4469 return VM_FAULT_HWPOISON_LARGE |
4470 VM_FAULT_SET_HINDEX(hstate_index(h));
4471 }
4472
4473 /*
4474 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4475 * until finished with ptep. This serves two purposes:
4476 * 1) It prevents huge_pmd_unshare from being called elsewhere
4477 * and making the ptep no longer valid.
4478 * 2) It synchronizes us with i_size modifications during truncation.
4479 *
4480 * ptep could have already be assigned via huge_pte_offset. That
4481 * is OK, as huge_pte_alloc will return the same value unless
4482 * something has changed.
4483 */
4484 mapping = vma->vm_file->f_mapping;
4485 i_mmap_lock_read(mapping);
4486 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4487 if (!ptep) {
4488 i_mmap_unlock_read(mapping);
4489 return VM_FAULT_OOM;
4490 }
4491
4492 /*
4493 * Serialize hugepage allocation and instantiation, so that we don't
4494 * get spurious allocation failures if two CPUs race to instantiate
4495 * the same page in the page cache.
4496 */
4497 idx = vma_hugecache_offset(h, vma, haddr);
4498 hash = hugetlb_fault_mutex_hash(mapping, idx);
4499 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4500
4501 entry = huge_ptep_get(ptep);
4502 if (huge_pte_none(entry)) {
4503 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4504 goto out_mutex;
4505 }
4506
4507 ret = 0;
4508
4509 /*
4510 * entry could be a migration/hwpoison entry at this point, so this
4511 * check prevents the kernel from going below assuming that we have
4512 * an active hugepage in pagecache. This goto expects the 2nd page
4513 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4514 * properly handle it.
4515 */
4516 if (!pte_present(entry))
4517 goto out_mutex;
4518
4519 /*
4520 * If we are going to COW the mapping later, we examine the pending
4521 * reservations for this page now. This will ensure that any
4522 * allocations necessary to record that reservation occur outside the
4523 * spinlock. For private mappings, we also lookup the pagecache
4524 * page now as it is used to determine if a reservation has been
4525 * consumed.
4526 */
4527 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4528 if (vma_needs_reservation(h, vma, haddr) < 0) {
4529 ret = VM_FAULT_OOM;
4530 goto out_mutex;
4531 }
4532 /* Just decrements count, does not deallocate */
4533 vma_end_reservation(h, vma, haddr);
4534
4535 if (!(vma->vm_flags & VM_MAYSHARE))
4536 pagecache_page = hugetlbfs_pagecache_page(h,
4537 vma, haddr);
4538 }
4539
4540 ptl = huge_pte_lock(h, mm, ptep);
4541
4542 /* Check for a racing update before calling hugetlb_cow */
4543 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4544 goto out_ptl;
4545
4546 /*
4547 * hugetlb_cow() requires page locks of pte_page(entry) and
4548 * pagecache_page, so here we need take the former one
4549 * when page != pagecache_page or !pagecache_page.
4550 */
4551 page = pte_page(entry);
4552 if (page != pagecache_page)
4553 if (!trylock_page(page)) {
4554 need_wait_lock = 1;
4555 goto out_ptl;
4556 }
4557
4558 get_page(page);
4559
4560 if (flags & FAULT_FLAG_WRITE) {
4561 if (!huge_pte_write(entry)) {
4562 ret = hugetlb_cow(mm, vma, address, ptep,
4563 pagecache_page, ptl);
4564 goto out_put_page;
4565 }
4566 entry = huge_pte_mkdirty(entry);
4567 }
4568 entry = pte_mkyoung(entry);
4569 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4570 flags & FAULT_FLAG_WRITE))
4571 update_mmu_cache(vma, haddr, ptep);
4572 out_put_page:
4573 if (page != pagecache_page)
4574 unlock_page(page);
4575 put_page(page);
4576 out_ptl:
4577 spin_unlock(ptl);
4578
4579 if (pagecache_page) {
4580 unlock_page(pagecache_page);
4581 put_page(pagecache_page);
4582 }
4583 out_mutex:
4584 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4585 i_mmap_unlock_read(mapping);
4586 /*
4587 * Generally it's safe to hold refcount during waiting page lock. But
4588 * here we just wait to defer the next page fault to avoid busy loop and
4589 * the page is not used after unlocked before returning from the current
4590 * page fault. So we are safe from accessing freed page, even if we wait
4591 * here without taking refcount.
4592 */
4593 if (need_wait_lock)
4594 wait_on_page_locked(page);
4595 return ret;
4596 }
4597
4598 /*
4599 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4600 * modifications for huge pages.
4601 */
4602 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4603 pte_t *dst_pte,
4604 struct vm_area_struct *dst_vma,
4605 unsigned long dst_addr,
4606 unsigned long src_addr,
4607 struct page **pagep)
4608 {
4609 struct address_space *mapping;
4610 pgoff_t idx;
4611 unsigned long size;
4612 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4613 struct hstate *h = hstate_vma(dst_vma);
4614 pte_t _dst_pte;
4615 spinlock_t *ptl;
4616 int ret;
4617 struct page *page;
4618
4619 if (!*pagep) {
4620 ret = -ENOMEM;
4621 page = alloc_huge_page(dst_vma, dst_addr, 0);
4622 if (IS_ERR(page))
4623 goto out;
4624
4625 ret = copy_huge_page_from_user(page,
4626 (const void __user *) src_addr,
4627 pages_per_huge_page(h), false);
4628
4629 /* fallback to copy_from_user outside mmap_lock */
4630 if (unlikely(ret)) {
4631 ret = -ENOENT;
4632 *pagep = page;
4633 /* don't free the page */
4634 goto out;
4635 }
4636 } else {
4637 page = *pagep;
4638 *pagep = NULL;
4639 }
4640
4641 /*
4642 * The memory barrier inside __SetPageUptodate makes sure that
4643 * preceding stores to the page contents become visible before
4644 * the set_pte_at() write.
4645 */
4646 __SetPageUptodate(page);
4647
4648 mapping = dst_vma->vm_file->f_mapping;
4649 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4650
4651 /*
4652 * If shared, add to page cache
4653 */
4654 if (vm_shared) {
4655 size = i_size_read(mapping->host) >> huge_page_shift(h);
4656 ret = -EFAULT;
4657 if (idx >= size)
4658 goto out_release_nounlock;
4659
4660 /*
4661 * Serialization between remove_inode_hugepages() and
4662 * huge_add_to_page_cache() below happens through the
4663 * hugetlb_fault_mutex_table that here must be hold by
4664 * the caller.
4665 */
4666 ret = huge_add_to_page_cache(page, mapping, idx);
4667 if (ret)
4668 goto out_release_nounlock;
4669 }
4670
4671 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4672 spin_lock(ptl);
4673
4674 /*
4675 * Recheck the i_size after holding PT lock to make sure not
4676 * to leave any page mapped (as page_mapped()) beyond the end
4677 * of the i_size (remove_inode_hugepages() is strict about
4678 * enforcing that). If we bail out here, we'll also leave a
4679 * page in the radix tree in the vm_shared case beyond the end
4680 * of the i_size, but remove_inode_hugepages() will take care
4681 * of it as soon as we drop the hugetlb_fault_mutex_table.
4682 */
4683 size = i_size_read(mapping->host) >> huge_page_shift(h);
4684 ret = -EFAULT;
4685 if (idx >= size)
4686 goto out_release_unlock;
4687
4688 ret = -EEXIST;
4689 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4690 goto out_release_unlock;
4691
4692 if (vm_shared) {
4693 page_dup_rmap(page, true);
4694 } else {
4695 ClearHPageRestoreReserve(page);
4696 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4697 }
4698
4699 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4700 if (dst_vma->vm_flags & VM_WRITE)
4701 _dst_pte = huge_pte_mkdirty(_dst_pte);
4702 _dst_pte = pte_mkyoung(_dst_pte);
4703
4704 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4705
4706 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4707 dst_vma->vm_flags & VM_WRITE);
4708 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4709
4710 /* No need to invalidate - it was non-present before */
4711 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4712
4713 spin_unlock(ptl);
4714 SetHPageMigratable(page);
4715 if (vm_shared)
4716 unlock_page(page);
4717 ret = 0;
4718 out:
4719 return ret;
4720 out_release_unlock:
4721 spin_unlock(ptl);
4722 if (vm_shared)
4723 unlock_page(page);
4724 out_release_nounlock:
4725 put_page(page);
4726 goto out;
4727 }
4728
4729 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4730 int refs, struct page **pages,
4731 struct vm_area_struct **vmas)
4732 {
4733 int nr;
4734
4735 for (nr = 0; nr < refs; nr++) {
4736 if (likely(pages))
4737 pages[nr] = mem_map_offset(page, nr);
4738 if (vmas)
4739 vmas[nr] = vma;
4740 }
4741 }
4742
4743 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4744 struct page **pages, struct vm_area_struct **vmas,
4745 unsigned long *position, unsigned long *nr_pages,
4746 long i, unsigned int flags, int *locked)
4747 {
4748 unsigned long pfn_offset;
4749 unsigned long vaddr = *position;
4750 unsigned long remainder = *nr_pages;
4751 struct hstate *h = hstate_vma(vma);
4752 int err = -EFAULT, refs;
4753
4754 while (vaddr < vma->vm_end && remainder) {
4755 pte_t *pte;
4756 spinlock_t *ptl = NULL;
4757 int absent;
4758 struct page *page;
4759
4760 /*
4761 * If we have a pending SIGKILL, don't keep faulting pages and
4762 * potentially allocating memory.
4763 */
4764 if (fatal_signal_pending(current)) {
4765 remainder = 0;
4766 break;
4767 }
4768
4769 /*
4770 * Some archs (sparc64, sh*) have multiple pte_ts to
4771 * each hugepage. We have to make sure we get the
4772 * first, for the page indexing below to work.
4773 *
4774 * Note that page table lock is not held when pte is null.
4775 */
4776 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4777 huge_page_size(h));
4778 if (pte)
4779 ptl = huge_pte_lock(h, mm, pte);
4780 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4781
4782 /*
4783 * When coredumping, it suits get_dump_page if we just return
4784 * an error where there's an empty slot with no huge pagecache
4785 * to back it. This way, we avoid allocating a hugepage, and
4786 * the sparse dumpfile avoids allocating disk blocks, but its
4787 * huge holes still show up with zeroes where they need to be.
4788 */
4789 if (absent && (flags & FOLL_DUMP) &&
4790 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4791 if (pte)
4792 spin_unlock(ptl);
4793 remainder = 0;
4794 break;
4795 }
4796
4797 /*
4798 * We need call hugetlb_fault for both hugepages under migration
4799 * (in which case hugetlb_fault waits for the migration,) and
4800 * hwpoisoned hugepages (in which case we need to prevent the
4801 * caller from accessing to them.) In order to do this, we use
4802 * here is_swap_pte instead of is_hugetlb_entry_migration and
4803 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4804 * both cases, and because we can't follow correct pages
4805 * directly from any kind of swap entries.
4806 */
4807 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4808 ((flags & FOLL_WRITE) &&
4809 !huge_pte_write(huge_ptep_get(pte)))) {
4810 vm_fault_t ret;
4811 unsigned int fault_flags = 0;
4812
4813 if (pte)
4814 spin_unlock(ptl);
4815 if (flags & FOLL_WRITE)
4816 fault_flags |= FAULT_FLAG_WRITE;
4817 if (locked)
4818 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4819 FAULT_FLAG_KILLABLE;
4820 if (flags & FOLL_NOWAIT)
4821 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4822 FAULT_FLAG_RETRY_NOWAIT;
4823 if (flags & FOLL_TRIED) {
4824 /*
4825 * Note: FAULT_FLAG_ALLOW_RETRY and
4826 * FAULT_FLAG_TRIED can co-exist
4827 */
4828 fault_flags |= FAULT_FLAG_TRIED;
4829 }
4830 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4831 if (ret & VM_FAULT_ERROR) {
4832 err = vm_fault_to_errno(ret, flags);
4833 remainder = 0;
4834 break;
4835 }
4836 if (ret & VM_FAULT_RETRY) {
4837 if (locked &&
4838 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4839 *locked = 0;
4840 *nr_pages = 0;
4841 /*
4842 * VM_FAULT_RETRY must not return an
4843 * error, it will return zero
4844 * instead.
4845 *
4846 * No need to update "position" as the
4847 * caller will not check it after
4848 * *nr_pages is set to 0.
4849 */
4850 return i;
4851 }
4852 continue;
4853 }
4854
4855 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4856 page = pte_page(huge_ptep_get(pte));
4857
4858 /*
4859 * If subpage information not requested, update counters
4860 * and skip the same_page loop below.
4861 */
4862 if (!pages && !vmas && !pfn_offset &&
4863 (vaddr + huge_page_size(h) < vma->vm_end) &&
4864 (remainder >= pages_per_huge_page(h))) {
4865 vaddr += huge_page_size(h);
4866 remainder -= pages_per_huge_page(h);
4867 i += pages_per_huge_page(h);
4868 spin_unlock(ptl);
4869 continue;
4870 }
4871
4872 refs = min3(pages_per_huge_page(h) - pfn_offset,
4873 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4874
4875 if (pages || vmas)
4876 record_subpages_vmas(mem_map_offset(page, pfn_offset),
4877 vma, refs,
4878 likely(pages) ? pages + i : NULL,
4879 vmas ? vmas + i : NULL);
4880
4881 if (pages) {
4882 /*
4883 * try_grab_compound_head() should always succeed here,
4884 * because: a) we hold the ptl lock, and b) we've just
4885 * checked that the huge page is present in the page
4886 * tables. If the huge page is present, then the tail
4887 * pages must also be present. The ptl prevents the
4888 * head page and tail pages from being rearranged in
4889 * any way. So this page must be available at this
4890 * point, unless the page refcount overflowed:
4891 */
4892 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4893 refs,
4894 flags))) {
4895 spin_unlock(ptl);
4896 remainder = 0;
4897 err = -ENOMEM;
4898 break;
4899 }
4900 }
4901
4902 vaddr += (refs << PAGE_SHIFT);
4903 remainder -= refs;
4904 i += refs;
4905
4906 spin_unlock(ptl);
4907 }
4908 *nr_pages = remainder;
4909 /*
4910 * setting position is actually required only if remainder is
4911 * not zero but it's faster not to add a "if (remainder)"
4912 * branch.
4913 */
4914 *position = vaddr;
4915
4916 return i ? i : err;
4917 }
4918
4919 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4920 /*
4921 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4922 * implement this.
4923 */
4924 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4925 #endif
4926
4927 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4928 unsigned long address, unsigned long end, pgprot_t newprot)
4929 {
4930 struct mm_struct *mm = vma->vm_mm;
4931 unsigned long start = address;
4932 pte_t *ptep;
4933 pte_t pte;
4934 struct hstate *h = hstate_vma(vma);
4935 unsigned long pages = 0;
4936 bool shared_pmd = false;
4937 struct mmu_notifier_range range;
4938
4939 /*
4940 * In the case of shared PMDs, the area to flush could be beyond
4941 * start/end. Set range.start/range.end to cover the maximum possible
4942 * range if PMD sharing is possible.
4943 */
4944 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4945 0, vma, mm, start, end);
4946 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4947
4948 BUG_ON(address >= end);
4949 flush_cache_range(vma, range.start, range.end);
4950
4951 mmu_notifier_invalidate_range_start(&range);
4952 i_mmap_lock_write(vma->vm_file->f_mapping);
4953 for (; address < end; address += huge_page_size(h)) {
4954 spinlock_t *ptl;
4955 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4956 if (!ptep)
4957 continue;
4958 ptl = huge_pte_lock(h, mm, ptep);
4959 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4960 pages++;
4961 spin_unlock(ptl);
4962 shared_pmd = true;
4963 continue;
4964 }
4965 pte = huge_ptep_get(ptep);
4966 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4967 spin_unlock(ptl);
4968 continue;
4969 }
4970 if (unlikely(is_hugetlb_entry_migration(pte))) {
4971 swp_entry_t entry = pte_to_swp_entry(pte);
4972
4973 if (is_write_migration_entry(entry)) {
4974 pte_t newpte;
4975
4976 make_migration_entry_read(&entry);
4977 newpte = swp_entry_to_pte(entry);
4978 set_huge_swap_pte_at(mm, address, ptep,
4979 newpte, huge_page_size(h));
4980 pages++;
4981 }
4982 spin_unlock(ptl);
4983 continue;
4984 }
4985 if (!huge_pte_none(pte)) {
4986 pte_t old_pte;
4987
4988 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4989 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4990 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4991 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4992 pages++;
4993 }
4994 spin_unlock(ptl);
4995 }
4996 /*
4997 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4998 * may have cleared our pud entry and done put_page on the page table:
4999 * once we release i_mmap_rwsem, another task can do the final put_page
5000 * and that page table be reused and filled with junk. If we actually
5001 * did unshare a page of pmds, flush the range corresponding to the pud.
5002 */
5003 if (shared_pmd)
5004 flush_hugetlb_tlb_range(vma, range.start, range.end);
5005 else
5006 flush_hugetlb_tlb_range(vma, start, end);
5007 /*
5008 * No need to call mmu_notifier_invalidate_range() we are downgrading
5009 * page table protection not changing it to point to a new page.
5010 *
5011 * See Documentation/vm/mmu_notifier.rst
5012 */
5013 i_mmap_unlock_write(vma->vm_file->f_mapping);
5014 mmu_notifier_invalidate_range_end(&range);
5015
5016 return pages << h->order;
5017 }
5018
5019 /* Return true if reservation was successful, false otherwise. */
5020 bool hugetlb_reserve_pages(struct inode *inode,
5021 long from, long to,
5022 struct vm_area_struct *vma,
5023 vm_flags_t vm_flags)
5024 {
5025 long chg, add = -1;
5026 struct hstate *h = hstate_inode(inode);
5027 struct hugepage_subpool *spool = subpool_inode(inode);
5028 struct resv_map *resv_map;
5029 struct hugetlb_cgroup *h_cg = NULL;
5030 long gbl_reserve, regions_needed = 0;
5031
5032 /* This should never happen */
5033 if (from > to) {
5034 VM_WARN(1, "%s called with a negative range\n", __func__);
5035 return false;
5036 }
5037
5038 /*
5039 * Only apply hugepage reservation if asked. At fault time, an
5040 * attempt will be made for VM_NORESERVE to allocate a page
5041 * without using reserves
5042 */
5043 if (vm_flags & VM_NORESERVE)
5044 return true;
5045
5046 /*
5047 * Shared mappings base their reservation on the number of pages that
5048 * are already allocated on behalf of the file. Private mappings need
5049 * to reserve the full area even if read-only as mprotect() may be
5050 * called to make the mapping read-write. Assume !vma is a shm mapping
5051 */
5052 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5053 /*
5054 * resv_map can not be NULL as hugetlb_reserve_pages is only
5055 * called for inodes for which resv_maps were created (see
5056 * hugetlbfs_get_inode).
5057 */
5058 resv_map = inode_resv_map(inode);
5059
5060 chg = region_chg(resv_map, from, to, &regions_needed);
5061
5062 } else {
5063 /* Private mapping. */
5064 resv_map = resv_map_alloc();
5065 if (!resv_map)
5066 return false;
5067
5068 chg = to - from;
5069
5070 set_vma_resv_map(vma, resv_map);
5071 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5072 }
5073
5074 if (chg < 0)
5075 goto out_err;
5076
5077 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5078 chg * pages_per_huge_page(h), &h_cg) < 0)
5079 goto out_err;
5080
5081 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5082 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5083 * of the resv_map.
5084 */
5085 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5086 }
5087
5088 /*
5089 * There must be enough pages in the subpool for the mapping. If
5090 * the subpool has a minimum size, there may be some global
5091 * reservations already in place (gbl_reserve).
5092 */
5093 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5094 if (gbl_reserve < 0)
5095 goto out_uncharge_cgroup;
5096
5097 /*
5098 * Check enough hugepages are available for the reservation.
5099 * Hand the pages back to the subpool if there are not
5100 */
5101 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5102 goto out_put_pages;
5103
5104 /*
5105 * Account for the reservations made. Shared mappings record regions
5106 * that have reservations as they are shared by multiple VMAs.
5107 * When the last VMA disappears, the region map says how much
5108 * the reservation was and the page cache tells how much of
5109 * the reservation was consumed. Private mappings are per-VMA and
5110 * only the consumed reservations are tracked. When the VMA
5111 * disappears, the original reservation is the VMA size and the
5112 * consumed reservations are stored in the map. Hence, nothing
5113 * else has to be done for private mappings here
5114 */
5115 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5116 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5117
5118 if (unlikely(add < 0)) {
5119 hugetlb_acct_memory(h, -gbl_reserve);
5120 goto out_put_pages;
5121 } else if (unlikely(chg > add)) {
5122 /*
5123 * pages in this range were added to the reserve
5124 * map between region_chg and region_add. This
5125 * indicates a race with alloc_huge_page. Adjust
5126 * the subpool and reserve counts modified above
5127 * based on the difference.
5128 */
5129 long rsv_adjust;
5130
5131 hugetlb_cgroup_uncharge_cgroup_rsvd(
5132 hstate_index(h),
5133 (chg - add) * pages_per_huge_page(h), h_cg);
5134
5135 rsv_adjust = hugepage_subpool_put_pages(spool,
5136 chg - add);
5137 hugetlb_acct_memory(h, -rsv_adjust);
5138 }
5139 }
5140 return true;
5141
5142 out_put_pages:
5143 /* put back original number of pages, chg */
5144 (void)hugepage_subpool_put_pages(spool, chg);
5145 out_uncharge_cgroup:
5146 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5147 chg * pages_per_huge_page(h), h_cg);
5148 out_err:
5149 if (!vma || vma->vm_flags & VM_MAYSHARE)
5150 /* Only call region_abort if the region_chg succeeded but the
5151 * region_add failed or didn't run.
5152 */
5153 if (chg >= 0 && add < 0)
5154 region_abort(resv_map, from, to, regions_needed);
5155 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5156 kref_put(&resv_map->refs, resv_map_release);
5157 return false;
5158 }
5159
5160 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5161 long freed)
5162 {
5163 struct hstate *h = hstate_inode(inode);
5164 struct resv_map *resv_map = inode_resv_map(inode);
5165 long chg = 0;
5166 struct hugepage_subpool *spool = subpool_inode(inode);
5167 long gbl_reserve;
5168
5169 /*
5170 * Since this routine can be called in the evict inode path for all
5171 * hugetlbfs inodes, resv_map could be NULL.
5172 */
5173 if (resv_map) {
5174 chg = region_del(resv_map, start, end);
5175 /*
5176 * region_del() can fail in the rare case where a region
5177 * must be split and another region descriptor can not be
5178 * allocated. If end == LONG_MAX, it will not fail.
5179 */
5180 if (chg < 0)
5181 return chg;
5182 }
5183
5184 spin_lock(&inode->i_lock);
5185 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5186 spin_unlock(&inode->i_lock);
5187
5188 /*
5189 * If the subpool has a minimum size, the number of global
5190 * reservations to be released may be adjusted.
5191 */
5192 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5193 hugetlb_acct_memory(h, -gbl_reserve);
5194
5195 return 0;
5196 }
5197
5198 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5199 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5200 struct vm_area_struct *vma,
5201 unsigned long addr, pgoff_t idx)
5202 {
5203 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5204 svma->vm_start;
5205 unsigned long sbase = saddr & PUD_MASK;
5206 unsigned long s_end = sbase + PUD_SIZE;
5207
5208 /* Allow segments to share if only one is marked locked */
5209 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5210 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5211
5212 /*
5213 * match the virtual addresses, permission and the alignment of the
5214 * page table page.
5215 */
5216 if (pmd_index(addr) != pmd_index(saddr) ||
5217 vm_flags != svm_flags ||
5218 !range_in_vma(svma, sbase, s_end))
5219 return 0;
5220
5221 return saddr;
5222 }
5223
5224 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5225 {
5226 unsigned long base = addr & PUD_MASK;
5227 unsigned long end = base + PUD_SIZE;
5228
5229 /*
5230 * check on proper vm_flags and page table alignment
5231 */
5232 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5233 return true;
5234 return false;
5235 }
5236
5237 /*
5238 * Determine if start,end range within vma could be mapped by shared pmd.
5239 * If yes, adjust start and end to cover range associated with possible
5240 * shared pmd mappings.
5241 */
5242 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5243 unsigned long *start, unsigned long *end)
5244 {
5245 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5246 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5247
5248 /*
5249 * vma need span at least one aligned PUD size and the start,end range
5250 * must at least partialy within it.
5251 */
5252 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5253 (*end <= v_start) || (*start >= v_end))
5254 return;
5255
5256 /* Extend the range to be PUD aligned for a worst case scenario */
5257 if (*start > v_start)
5258 *start = ALIGN_DOWN(*start, PUD_SIZE);
5259
5260 if (*end < v_end)
5261 *end = ALIGN(*end, PUD_SIZE);
5262 }
5263
5264 /*
5265 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5266 * and returns the corresponding pte. While this is not necessary for the
5267 * !shared pmd case because we can allocate the pmd later as well, it makes the
5268 * code much cleaner.
5269 *
5270 * This routine must be called with i_mmap_rwsem held in at least read mode if
5271 * sharing is possible. For hugetlbfs, this prevents removal of any page
5272 * table entries associated with the address space. This is important as we
5273 * are setting up sharing based on existing page table entries (mappings).
5274 *
5275 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5276 * huge_pte_alloc know that sharing is not possible and do not take
5277 * i_mmap_rwsem as a performance optimization. This is handled by the
5278 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5279 * only required for subsequent processing.
5280 */
5281 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5282 {
5283 struct vm_area_struct *vma = find_vma(mm, addr);
5284 struct address_space *mapping = vma->vm_file->f_mapping;
5285 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5286 vma->vm_pgoff;
5287 struct vm_area_struct *svma;
5288 unsigned long saddr;
5289 pte_t *spte = NULL;
5290 pte_t *pte;
5291 spinlock_t *ptl;
5292
5293 if (!vma_shareable(vma, addr))
5294 return (pte_t *)pmd_alloc(mm, pud, addr);
5295
5296 i_mmap_assert_locked(mapping);
5297 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5298 if (svma == vma)
5299 continue;
5300
5301 saddr = page_table_shareable(svma, vma, addr, idx);
5302 if (saddr) {
5303 spte = huge_pte_offset(svma->vm_mm, saddr,
5304 vma_mmu_pagesize(svma));
5305 if (spte) {
5306 get_page(virt_to_page(spte));
5307 break;
5308 }
5309 }
5310 }
5311
5312 if (!spte)
5313 goto out;
5314
5315 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5316 if (pud_none(*pud)) {
5317 pud_populate(mm, pud,
5318 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5319 mm_inc_nr_pmds(mm);
5320 } else {
5321 put_page(virt_to_page(spte));
5322 }
5323 spin_unlock(ptl);
5324 out:
5325 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5326 return pte;
5327 }
5328
5329 /*
5330 * unmap huge page backed by shared pte.
5331 *
5332 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5333 * indicated by page_count > 1, unmap is achieved by clearing pud and
5334 * decrementing the ref count. If count == 1, the pte page is not shared.
5335 *
5336 * Called with page table lock held and i_mmap_rwsem held in write mode.
5337 *
5338 * returns: 1 successfully unmapped a shared pte page
5339 * 0 the underlying pte page is not shared, or it is the last user
5340 */
5341 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5342 unsigned long *addr, pte_t *ptep)
5343 {
5344 pgd_t *pgd = pgd_offset(mm, *addr);
5345 p4d_t *p4d = p4d_offset(pgd, *addr);
5346 pud_t *pud = pud_offset(p4d, *addr);
5347
5348 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5349 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5350 if (page_count(virt_to_page(ptep)) == 1)
5351 return 0;
5352
5353 pud_clear(pud);
5354 put_page(virt_to_page(ptep));
5355 mm_dec_nr_pmds(mm);
5356 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5357 return 1;
5358 }
5359 #define want_pmd_share() (1)
5360 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5361 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5362 {
5363 return NULL;
5364 }
5365
5366 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5367 unsigned long *addr, pte_t *ptep)
5368 {
5369 return 0;
5370 }
5371
5372 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5373 unsigned long *start, unsigned long *end)
5374 {
5375 }
5376 #define want_pmd_share() (0)
5377 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5378
5379 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5380 pte_t *huge_pte_alloc(struct mm_struct *mm,
5381 unsigned long addr, unsigned long sz)
5382 {
5383 pgd_t *pgd;
5384 p4d_t *p4d;
5385 pud_t *pud;
5386 pte_t *pte = NULL;
5387
5388 pgd = pgd_offset(mm, addr);
5389 p4d = p4d_alloc(mm, pgd, addr);
5390 if (!p4d)
5391 return NULL;
5392 pud = pud_alloc(mm, p4d, addr);
5393 if (pud) {
5394 if (sz == PUD_SIZE) {
5395 pte = (pte_t *)pud;
5396 } else {
5397 BUG_ON(sz != PMD_SIZE);
5398 if (want_pmd_share() && pud_none(*pud))
5399 pte = huge_pmd_share(mm, addr, pud);
5400 else
5401 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5402 }
5403 }
5404 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5405
5406 return pte;
5407 }
5408
5409 /*
5410 * huge_pte_offset() - Walk the page table to resolve the hugepage
5411 * entry at address @addr
5412 *
5413 * Return: Pointer to page table entry (PUD or PMD) for
5414 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5415 * size @sz doesn't match the hugepage size at this level of the page
5416 * table.
5417 */
5418 pte_t *huge_pte_offset(struct mm_struct *mm,
5419 unsigned long addr, unsigned long sz)
5420 {
5421 pgd_t *pgd;
5422 p4d_t *p4d;
5423 pud_t *pud;
5424 pmd_t *pmd;
5425
5426 pgd = pgd_offset(mm, addr);
5427 if (!pgd_present(*pgd))
5428 return NULL;
5429 p4d = p4d_offset(pgd, addr);
5430 if (!p4d_present(*p4d))
5431 return NULL;
5432
5433 pud = pud_offset(p4d, addr);
5434 if (sz == PUD_SIZE)
5435 /* must be pud huge, non-present or none */
5436 return (pte_t *)pud;
5437 if (!pud_present(*pud))
5438 return NULL;
5439 /* must have a valid entry and size to go further */
5440
5441 pmd = pmd_offset(pud, addr);
5442 /* must be pmd huge, non-present or none */
5443 return (pte_t *)pmd;
5444 }
5445
5446 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5447
5448 /*
5449 * These functions are overwritable if your architecture needs its own
5450 * behavior.
5451 */
5452 struct page * __weak
5453 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5454 int write)
5455 {
5456 return ERR_PTR(-EINVAL);
5457 }
5458
5459 struct page * __weak
5460 follow_huge_pd(struct vm_area_struct *vma,
5461 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5462 {
5463 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5464 return NULL;
5465 }
5466
5467 struct page * __weak
5468 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5469 pmd_t *pmd, int flags)
5470 {
5471 struct page *page = NULL;
5472 spinlock_t *ptl;
5473 pte_t pte;
5474
5475 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5476 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5477 (FOLL_PIN | FOLL_GET)))
5478 return NULL;
5479
5480 retry:
5481 ptl = pmd_lockptr(mm, pmd);
5482 spin_lock(ptl);
5483 /*
5484 * make sure that the address range covered by this pmd is not
5485 * unmapped from other threads.
5486 */
5487 if (!pmd_huge(*pmd))
5488 goto out;
5489 pte = huge_ptep_get((pte_t *)pmd);
5490 if (pte_present(pte)) {
5491 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5492 /*
5493 * try_grab_page() should always succeed here, because: a) we
5494 * hold the pmd (ptl) lock, and b) we've just checked that the
5495 * huge pmd (head) page is present in the page tables. The ptl
5496 * prevents the head page and tail pages from being rearranged
5497 * in any way. So this page must be available at this point,
5498 * unless the page refcount overflowed:
5499 */
5500 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5501 page = NULL;
5502 goto out;
5503 }
5504 } else {
5505 if (is_hugetlb_entry_migration(pte)) {
5506 spin_unlock(ptl);
5507 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5508 goto retry;
5509 }
5510 /*
5511 * hwpoisoned entry is treated as no_page_table in
5512 * follow_page_mask().
5513 */
5514 }
5515 out:
5516 spin_unlock(ptl);
5517 return page;
5518 }
5519
5520 struct page * __weak
5521 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5522 pud_t *pud, int flags)
5523 {
5524 if (flags & (FOLL_GET | FOLL_PIN))
5525 return NULL;
5526
5527 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5528 }
5529
5530 struct page * __weak
5531 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5532 {
5533 if (flags & (FOLL_GET | FOLL_PIN))
5534 return NULL;
5535
5536 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5537 }
5538
5539 bool isolate_huge_page(struct page *page, struct list_head *list)
5540 {
5541 bool ret = true;
5542
5543 spin_lock(&hugetlb_lock);
5544 if (!PageHeadHuge(page) ||
5545 !HPageMigratable(page) ||
5546 !get_page_unless_zero(page)) {
5547 ret = false;
5548 goto unlock;
5549 }
5550 ClearHPageMigratable(page);
5551 list_move_tail(&page->lru, list);
5552 unlock:
5553 spin_unlock(&hugetlb_lock);
5554 return ret;
5555 }
5556
5557 void putback_active_hugepage(struct page *page)
5558 {
5559 spin_lock(&hugetlb_lock);
5560 SetHPageMigratable(page);
5561 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5562 spin_unlock(&hugetlb_lock);
5563 put_page(page);
5564 }
5565
5566 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5567 {
5568 struct hstate *h = page_hstate(oldpage);
5569
5570 hugetlb_cgroup_migrate(oldpage, newpage);
5571 set_page_owner_migrate_reason(newpage, reason);
5572
5573 /*
5574 * transfer temporary state of the new huge page. This is
5575 * reverse to other transitions because the newpage is going to
5576 * be final while the old one will be freed so it takes over
5577 * the temporary status.
5578 *
5579 * Also note that we have to transfer the per-node surplus state
5580 * here as well otherwise the global surplus count will not match
5581 * the per-node's.
5582 */
5583 if (HPageTemporary(newpage)) {
5584 int old_nid = page_to_nid(oldpage);
5585 int new_nid = page_to_nid(newpage);
5586
5587 SetHPageTemporary(oldpage);
5588 ClearHPageTemporary(newpage);
5589
5590 spin_lock(&hugetlb_lock);
5591 if (h->surplus_huge_pages_node[old_nid]) {
5592 h->surplus_huge_pages_node[old_nid]--;
5593 h->surplus_huge_pages_node[new_nid]++;
5594 }
5595 spin_unlock(&hugetlb_lock);
5596 }
5597 }
5598
5599 #ifdef CONFIG_CMA
5600 static bool cma_reserve_called __initdata;
5601
5602 static int __init cmdline_parse_hugetlb_cma(char *p)
5603 {
5604 hugetlb_cma_size = memparse(p, &p);
5605 return 0;
5606 }
5607
5608 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5609
5610 void __init hugetlb_cma_reserve(int order)
5611 {
5612 unsigned long size, reserved, per_node;
5613 int nid;
5614
5615 cma_reserve_called = true;
5616
5617 if (!hugetlb_cma_size)
5618 return;
5619
5620 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5621 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5622 (PAGE_SIZE << order) / SZ_1M);
5623 return;
5624 }
5625
5626 /*
5627 * If 3 GB area is requested on a machine with 4 numa nodes,
5628 * let's allocate 1 GB on first three nodes and ignore the last one.
5629 */
5630 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5631 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5632 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5633
5634 reserved = 0;
5635 for_each_node_state(nid, N_ONLINE) {
5636 int res;
5637 char name[CMA_MAX_NAME];
5638
5639 size = min(per_node, hugetlb_cma_size - reserved);
5640 size = round_up(size, PAGE_SIZE << order);
5641
5642 snprintf(name, sizeof(name), "hugetlb%d", nid);
5643 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5644 0, false, name,
5645 &hugetlb_cma[nid], nid);
5646 if (res) {
5647 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5648 res, nid);
5649 continue;
5650 }
5651
5652 reserved += size;
5653 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5654 size / SZ_1M, nid);
5655
5656 if (reserved >= hugetlb_cma_size)
5657 break;
5658 }
5659 }
5660
5661 void __init hugetlb_cma_check(void)
5662 {
5663 if (!hugetlb_cma_size || cma_reserve_called)
5664 return;
5665
5666 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5667 }
5668
5669 #endif /* CONFIG_CMA */