]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/hugetlb.c
Merge tag 'nfs-for-5.9-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-hirsute-kernel.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
72 */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86 {
87 bool free = (spool->count == 0) && (spool->used_hpages == 0);
88
89 spin_unlock(&spool->lock);
90
91 /* If no pages are used, and no other handles to the subpool
92 * remain, give up any reservations based on minimum size and
93 * free the subpool */
94 if (free) {
95 if (spool->min_hpages != -1)
96 hugetlb_acct_memory(spool->hstate,
97 -spool->min_hpages);
98 kfree(spool);
99 }
100 }
101
102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 long min_hpages)
104 {
105 struct hugepage_subpool *spool;
106
107 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 if (!spool)
109 return NULL;
110
111 spin_lock_init(&spool->lock);
112 spool->count = 1;
113 spool->max_hpages = max_hpages;
114 spool->hstate = h;
115 spool->min_hpages = min_hpages;
116
117 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 kfree(spool);
119 return NULL;
120 }
121 spool->rsv_hpages = min_hpages;
122
123 return spool;
124 }
125
126 void hugepage_put_subpool(struct hugepage_subpool *spool)
127 {
128 spin_lock(&spool->lock);
129 BUG_ON(!spool->count);
130 spool->count--;
131 unlock_or_release_subpool(spool);
132 }
133
134 /*
135 * Subpool accounting for allocating and reserving pages.
136 * Return -ENOMEM if there are not enough resources to satisfy the
137 * request. Otherwise, return the number of pages by which the
138 * global pools must be adjusted (upward). The returned value may
139 * only be different than the passed value (delta) in the case where
140 * a subpool minimum size must be maintained.
141 */
142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 long delta)
144 {
145 long ret = delta;
146
147 if (!spool)
148 return ret;
149
150 spin_lock(&spool->lock);
151
152 if (spool->max_hpages != -1) { /* maximum size accounting */
153 if ((spool->used_hpages + delta) <= spool->max_hpages)
154 spool->used_hpages += delta;
155 else {
156 ret = -ENOMEM;
157 goto unlock_ret;
158 }
159 }
160
161 /* minimum size accounting */
162 if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 if (delta > spool->rsv_hpages) {
164 /*
165 * Asking for more reserves than those already taken on
166 * behalf of subpool. Return difference.
167 */
168 ret = delta - spool->rsv_hpages;
169 spool->rsv_hpages = 0;
170 } else {
171 ret = 0; /* reserves already accounted for */
172 spool->rsv_hpages -= delta;
173 }
174 }
175
176 unlock_ret:
177 spin_unlock(&spool->lock);
178 return ret;
179 }
180
181 /*
182 * Subpool accounting for freeing and unreserving pages.
183 * Return the number of global page reservations that must be dropped.
184 * The return value may only be different than the passed value (delta)
185 * in the case where a subpool minimum size must be maintained.
186 */
187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 long delta)
189 {
190 long ret = delta;
191
192 if (!spool)
193 return delta;
194
195 spin_lock(&spool->lock);
196
197 if (spool->max_hpages != -1) /* maximum size accounting */
198 spool->used_hpages -= delta;
199
200 /* minimum size accounting */
201 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 if (spool->rsv_hpages + delta <= spool->min_hpages)
203 ret = 0;
204 else
205 ret = spool->rsv_hpages + delta - spool->min_hpages;
206
207 spool->rsv_hpages += delta;
208 if (spool->rsv_hpages > spool->min_hpages)
209 spool->rsv_hpages = spool->min_hpages;
210 }
211
212 /*
213 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 * quota reference, free it now.
215 */
216 unlock_or_release_subpool(spool);
217
218 return ret;
219 }
220
221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222 {
223 return HUGETLBFS_SB(inode->i_sb)->spool;
224 }
225
226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227 {
228 return subpool_inode(file_inode(vma->vm_file));
229 }
230
231 /* Helper that removes a struct file_region from the resv_map cache and returns
232 * it for use.
233 */
234 static struct file_region *
235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236 {
237 struct file_region *nrg = NULL;
238
239 VM_BUG_ON(resv->region_cache_count <= 0);
240
241 resv->region_cache_count--;
242 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243 VM_BUG_ON(!nrg);
244 list_del(&nrg->link);
245
246 nrg->from = from;
247 nrg->to = to;
248
249 return nrg;
250 }
251
252 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
253 struct file_region *rg)
254 {
255 #ifdef CONFIG_CGROUP_HUGETLB
256 nrg->reservation_counter = rg->reservation_counter;
257 nrg->css = rg->css;
258 if (rg->css)
259 css_get(rg->css);
260 #endif
261 }
262
263 /* Helper that records hugetlb_cgroup uncharge info. */
264 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
265 struct hstate *h,
266 struct resv_map *resv,
267 struct file_region *nrg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270 if (h_cg) {
271 nrg->reservation_counter =
272 &h_cg->rsvd_hugepage[hstate_index(h)];
273 nrg->css = &h_cg->css;
274 if (!resv->pages_per_hpage)
275 resv->pages_per_hpage = pages_per_huge_page(h);
276 /* pages_per_hpage should be the same for all entries in
277 * a resv_map.
278 */
279 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
280 } else {
281 nrg->reservation_counter = NULL;
282 nrg->css = NULL;
283 }
284 #endif
285 }
286
287 static bool has_same_uncharge_info(struct file_region *rg,
288 struct file_region *org)
289 {
290 #ifdef CONFIG_CGROUP_HUGETLB
291 return rg && org &&
292 rg->reservation_counter == org->reservation_counter &&
293 rg->css == org->css;
294
295 #else
296 return true;
297 #endif
298 }
299
300 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
301 {
302 struct file_region *nrg = NULL, *prg = NULL;
303
304 prg = list_prev_entry(rg, link);
305 if (&prg->link != &resv->regions && prg->to == rg->from &&
306 has_same_uncharge_info(prg, rg)) {
307 prg->to = rg->to;
308
309 list_del(&rg->link);
310 kfree(rg);
311
312 coalesce_file_region(resv, prg);
313 return;
314 }
315
316 nrg = list_next_entry(rg, link);
317 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
318 has_same_uncharge_info(nrg, rg)) {
319 nrg->from = rg->from;
320
321 list_del(&rg->link);
322 kfree(rg);
323
324 coalesce_file_region(resv, nrg);
325 return;
326 }
327 }
328
329 /* Must be called with resv->lock held. Calling this with count_only == true
330 * will count the number of pages to be added but will not modify the linked
331 * list. If regions_needed != NULL and count_only == true, then regions_needed
332 * will indicate the number of file_regions needed in the cache to carry out to
333 * add the regions for this range.
334 */
335 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
336 struct hugetlb_cgroup *h_cg,
337 struct hstate *h, long *regions_needed,
338 bool count_only)
339 {
340 long add = 0;
341 struct list_head *head = &resv->regions;
342 long last_accounted_offset = f;
343 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
344
345 if (regions_needed)
346 *regions_needed = 0;
347
348 /* In this loop, we essentially handle an entry for the range
349 * [last_accounted_offset, rg->from), at every iteration, with some
350 * bounds checking.
351 */
352 list_for_each_entry_safe(rg, trg, head, link) {
353 /* Skip irrelevant regions that start before our range. */
354 if (rg->from < f) {
355 /* If this region ends after the last accounted offset,
356 * then we need to update last_accounted_offset.
357 */
358 if (rg->to > last_accounted_offset)
359 last_accounted_offset = rg->to;
360 continue;
361 }
362
363 /* When we find a region that starts beyond our range, we've
364 * finished.
365 */
366 if (rg->from > t)
367 break;
368
369 /* Add an entry for last_accounted_offset -> rg->from, and
370 * update last_accounted_offset.
371 */
372 if (rg->from > last_accounted_offset) {
373 add += rg->from - last_accounted_offset;
374 if (!count_only) {
375 nrg = get_file_region_entry_from_cache(
376 resv, last_accounted_offset, rg->from);
377 record_hugetlb_cgroup_uncharge_info(h_cg, h,
378 resv, nrg);
379 list_add(&nrg->link, rg->link.prev);
380 coalesce_file_region(resv, nrg);
381 } else if (regions_needed)
382 *regions_needed += 1;
383 }
384
385 last_accounted_offset = rg->to;
386 }
387
388 /* Handle the case where our range extends beyond
389 * last_accounted_offset.
390 */
391 if (last_accounted_offset < t) {
392 add += t - last_accounted_offset;
393 if (!count_only) {
394 nrg = get_file_region_entry_from_cache(
395 resv, last_accounted_offset, t);
396 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
397 list_add(&nrg->link, rg->link.prev);
398 coalesce_file_region(resv, nrg);
399 } else if (regions_needed)
400 *regions_needed += 1;
401 }
402
403 VM_BUG_ON(add < 0);
404 return add;
405 }
406
407 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
408 */
409 static int allocate_file_region_entries(struct resv_map *resv,
410 int regions_needed)
411 __must_hold(&resv->lock)
412 {
413 struct list_head allocated_regions;
414 int to_allocate = 0, i = 0;
415 struct file_region *trg = NULL, *rg = NULL;
416
417 VM_BUG_ON(regions_needed < 0);
418
419 INIT_LIST_HEAD(&allocated_regions);
420
421 /*
422 * Check for sufficient descriptors in the cache to accommodate
423 * the number of in progress add operations plus regions_needed.
424 *
425 * This is a while loop because when we drop the lock, some other call
426 * to region_add or region_del may have consumed some region_entries,
427 * so we keep looping here until we finally have enough entries for
428 * (adds_in_progress + regions_needed).
429 */
430 while (resv->region_cache_count <
431 (resv->adds_in_progress + regions_needed)) {
432 to_allocate = resv->adds_in_progress + regions_needed -
433 resv->region_cache_count;
434
435 /* At this point, we should have enough entries in the cache
436 * for all the existings adds_in_progress. We should only be
437 * needing to allocate for regions_needed.
438 */
439 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
440
441 spin_unlock(&resv->lock);
442 for (i = 0; i < to_allocate; i++) {
443 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
444 if (!trg)
445 goto out_of_memory;
446 list_add(&trg->link, &allocated_regions);
447 }
448
449 spin_lock(&resv->lock);
450
451 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
452 list_del(&rg->link);
453 list_add(&rg->link, &resv->region_cache);
454 resv->region_cache_count++;
455 }
456 }
457
458 return 0;
459
460 out_of_memory:
461 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
462 list_del(&rg->link);
463 kfree(rg);
464 }
465 return -ENOMEM;
466 }
467
468 /*
469 * Add the huge page range represented by [f, t) to the reserve
470 * map. Regions will be taken from the cache to fill in this range.
471 * Sufficient regions should exist in the cache due to the previous
472 * call to region_chg with the same range, but in some cases the cache will not
473 * have sufficient entries due to races with other code doing region_add or
474 * region_del. The extra needed entries will be allocated.
475 *
476 * regions_needed is the out value provided by a previous call to region_chg.
477 *
478 * Return the number of new huge pages added to the map. This number is greater
479 * than or equal to zero. If file_region entries needed to be allocated for
480 * this operation and we were not able to allocate, it returns -ENOMEM.
481 * region_add of regions of length 1 never allocate file_regions and cannot
482 * fail; region_chg will always allocate at least 1 entry and a region_add for
483 * 1 page will only require at most 1 entry.
484 */
485 static long region_add(struct resv_map *resv, long f, long t,
486 long in_regions_needed, struct hstate *h,
487 struct hugetlb_cgroup *h_cg)
488 {
489 long add = 0, actual_regions_needed = 0;
490
491 spin_lock(&resv->lock);
492 retry:
493
494 /* Count how many regions are actually needed to execute this add. */
495 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
496 true);
497
498 /*
499 * Check for sufficient descriptors in the cache to accommodate
500 * this add operation. Note that actual_regions_needed may be greater
501 * than in_regions_needed, as the resv_map may have been modified since
502 * the region_chg call. In this case, we need to make sure that we
503 * allocate extra entries, such that we have enough for all the
504 * existing adds_in_progress, plus the excess needed for this
505 * operation.
506 */
507 if (actual_regions_needed > in_regions_needed &&
508 resv->region_cache_count <
509 resv->adds_in_progress +
510 (actual_regions_needed - in_regions_needed)) {
511 /* region_add operation of range 1 should never need to
512 * allocate file_region entries.
513 */
514 VM_BUG_ON(t - f <= 1);
515
516 if (allocate_file_region_entries(
517 resv, actual_regions_needed - in_regions_needed)) {
518 return -ENOMEM;
519 }
520
521 goto retry;
522 }
523
524 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
525
526 resv->adds_in_progress -= in_regions_needed;
527
528 spin_unlock(&resv->lock);
529 VM_BUG_ON(add < 0);
530 return add;
531 }
532
533 /*
534 * Examine the existing reserve map and determine how many
535 * huge pages in the specified range [f, t) are NOT currently
536 * represented. This routine is called before a subsequent
537 * call to region_add that will actually modify the reserve
538 * map to add the specified range [f, t). region_chg does
539 * not change the number of huge pages represented by the
540 * map. A number of new file_region structures is added to the cache as a
541 * placeholder, for the subsequent region_add call to use. At least 1
542 * file_region structure is added.
543 *
544 * out_regions_needed is the number of regions added to the
545 * resv->adds_in_progress. This value needs to be provided to a follow up call
546 * to region_add or region_abort for proper accounting.
547 *
548 * Returns the number of huge pages that need to be added to the existing
549 * reservation map for the range [f, t). This number is greater or equal to
550 * zero. -ENOMEM is returned if a new file_region structure or cache entry
551 * is needed and can not be allocated.
552 */
553 static long region_chg(struct resv_map *resv, long f, long t,
554 long *out_regions_needed)
555 {
556 long chg = 0;
557
558 spin_lock(&resv->lock);
559
560 /* Count how many hugepages in this range are NOT respresented. */
561 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
562 out_regions_needed, true);
563
564 if (*out_regions_needed == 0)
565 *out_regions_needed = 1;
566
567 if (allocate_file_region_entries(resv, *out_regions_needed))
568 return -ENOMEM;
569
570 resv->adds_in_progress += *out_regions_needed;
571
572 spin_unlock(&resv->lock);
573 return chg;
574 }
575
576 /*
577 * Abort the in progress add operation. The adds_in_progress field
578 * of the resv_map keeps track of the operations in progress between
579 * calls to region_chg and region_add. Operations are sometimes
580 * aborted after the call to region_chg. In such cases, region_abort
581 * is called to decrement the adds_in_progress counter. regions_needed
582 * is the value returned by the region_chg call, it is used to decrement
583 * the adds_in_progress counter.
584 *
585 * NOTE: The range arguments [f, t) are not needed or used in this
586 * routine. They are kept to make reading the calling code easier as
587 * arguments will match the associated region_chg call.
588 */
589 static void region_abort(struct resv_map *resv, long f, long t,
590 long regions_needed)
591 {
592 spin_lock(&resv->lock);
593 VM_BUG_ON(!resv->region_cache_count);
594 resv->adds_in_progress -= regions_needed;
595 spin_unlock(&resv->lock);
596 }
597
598 /*
599 * Delete the specified range [f, t) from the reserve map. If the
600 * t parameter is LONG_MAX, this indicates that ALL regions after f
601 * should be deleted. Locate the regions which intersect [f, t)
602 * and either trim, delete or split the existing regions.
603 *
604 * Returns the number of huge pages deleted from the reserve map.
605 * In the normal case, the return value is zero or more. In the
606 * case where a region must be split, a new region descriptor must
607 * be allocated. If the allocation fails, -ENOMEM will be returned.
608 * NOTE: If the parameter t == LONG_MAX, then we will never split
609 * a region and possibly return -ENOMEM. Callers specifying
610 * t == LONG_MAX do not need to check for -ENOMEM error.
611 */
612 static long region_del(struct resv_map *resv, long f, long t)
613 {
614 struct list_head *head = &resv->regions;
615 struct file_region *rg, *trg;
616 struct file_region *nrg = NULL;
617 long del = 0;
618
619 retry:
620 spin_lock(&resv->lock);
621 list_for_each_entry_safe(rg, trg, head, link) {
622 /*
623 * Skip regions before the range to be deleted. file_region
624 * ranges are normally of the form [from, to). However, there
625 * may be a "placeholder" entry in the map which is of the form
626 * (from, to) with from == to. Check for placeholder entries
627 * at the beginning of the range to be deleted.
628 */
629 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
630 continue;
631
632 if (rg->from >= t)
633 break;
634
635 if (f > rg->from && t < rg->to) { /* Must split region */
636 /*
637 * Check for an entry in the cache before dropping
638 * lock and attempting allocation.
639 */
640 if (!nrg &&
641 resv->region_cache_count > resv->adds_in_progress) {
642 nrg = list_first_entry(&resv->region_cache,
643 struct file_region,
644 link);
645 list_del(&nrg->link);
646 resv->region_cache_count--;
647 }
648
649 if (!nrg) {
650 spin_unlock(&resv->lock);
651 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
652 if (!nrg)
653 return -ENOMEM;
654 goto retry;
655 }
656
657 del += t - f;
658
659 /* New entry for end of split region */
660 nrg->from = t;
661 nrg->to = rg->to;
662
663 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
664
665 INIT_LIST_HEAD(&nrg->link);
666
667 /* Original entry is trimmed */
668 rg->to = f;
669
670 hugetlb_cgroup_uncharge_file_region(
671 resv, rg, nrg->to - nrg->from);
672
673 list_add(&nrg->link, &rg->link);
674 nrg = NULL;
675 break;
676 }
677
678 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
679 del += rg->to - rg->from;
680 hugetlb_cgroup_uncharge_file_region(resv, rg,
681 rg->to - rg->from);
682 list_del(&rg->link);
683 kfree(rg);
684 continue;
685 }
686
687 if (f <= rg->from) { /* Trim beginning of region */
688 del += t - rg->from;
689 rg->from = t;
690
691 hugetlb_cgroup_uncharge_file_region(resv, rg,
692 t - rg->from);
693 } else { /* Trim end of region */
694 del += rg->to - f;
695 rg->to = f;
696
697 hugetlb_cgroup_uncharge_file_region(resv, rg,
698 rg->to - f);
699 }
700 }
701
702 spin_unlock(&resv->lock);
703 kfree(nrg);
704 return del;
705 }
706
707 /*
708 * A rare out of memory error was encountered which prevented removal of
709 * the reserve map region for a page. The huge page itself was free'ed
710 * and removed from the page cache. This routine will adjust the subpool
711 * usage count, and the global reserve count if needed. By incrementing
712 * these counts, the reserve map entry which could not be deleted will
713 * appear as a "reserved" entry instead of simply dangling with incorrect
714 * counts.
715 */
716 void hugetlb_fix_reserve_counts(struct inode *inode)
717 {
718 struct hugepage_subpool *spool = subpool_inode(inode);
719 long rsv_adjust;
720
721 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
722 if (rsv_adjust) {
723 struct hstate *h = hstate_inode(inode);
724
725 hugetlb_acct_memory(h, 1);
726 }
727 }
728
729 /*
730 * Count and return the number of huge pages in the reserve map
731 * that intersect with the range [f, t).
732 */
733 static long region_count(struct resv_map *resv, long f, long t)
734 {
735 struct list_head *head = &resv->regions;
736 struct file_region *rg;
737 long chg = 0;
738
739 spin_lock(&resv->lock);
740 /* Locate each segment we overlap with, and count that overlap. */
741 list_for_each_entry(rg, head, link) {
742 long seg_from;
743 long seg_to;
744
745 if (rg->to <= f)
746 continue;
747 if (rg->from >= t)
748 break;
749
750 seg_from = max(rg->from, f);
751 seg_to = min(rg->to, t);
752
753 chg += seg_to - seg_from;
754 }
755 spin_unlock(&resv->lock);
756
757 return chg;
758 }
759
760 /*
761 * Convert the address within this vma to the page offset within
762 * the mapping, in pagecache page units; huge pages here.
763 */
764 static pgoff_t vma_hugecache_offset(struct hstate *h,
765 struct vm_area_struct *vma, unsigned long address)
766 {
767 return ((address - vma->vm_start) >> huge_page_shift(h)) +
768 (vma->vm_pgoff >> huge_page_order(h));
769 }
770
771 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
772 unsigned long address)
773 {
774 return vma_hugecache_offset(hstate_vma(vma), vma, address);
775 }
776 EXPORT_SYMBOL_GPL(linear_hugepage_index);
777
778 /*
779 * Return the size of the pages allocated when backing a VMA. In the majority
780 * cases this will be same size as used by the page table entries.
781 */
782 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
783 {
784 if (vma->vm_ops && vma->vm_ops->pagesize)
785 return vma->vm_ops->pagesize(vma);
786 return PAGE_SIZE;
787 }
788 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
789
790 /*
791 * Return the page size being used by the MMU to back a VMA. In the majority
792 * of cases, the page size used by the kernel matches the MMU size. On
793 * architectures where it differs, an architecture-specific 'strong'
794 * version of this symbol is required.
795 */
796 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
797 {
798 return vma_kernel_pagesize(vma);
799 }
800
801 /*
802 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
803 * bits of the reservation map pointer, which are always clear due to
804 * alignment.
805 */
806 #define HPAGE_RESV_OWNER (1UL << 0)
807 #define HPAGE_RESV_UNMAPPED (1UL << 1)
808 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
809
810 /*
811 * These helpers are used to track how many pages are reserved for
812 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
813 * is guaranteed to have their future faults succeed.
814 *
815 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
816 * the reserve counters are updated with the hugetlb_lock held. It is safe
817 * to reset the VMA at fork() time as it is not in use yet and there is no
818 * chance of the global counters getting corrupted as a result of the values.
819 *
820 * The private mapping reservation is represented in a subtly different
821 * manner to a shared mapping. A shared mapping has a region map associated
822 * with the underlying file, this region map represents the backing file
823 * pages which have ever had a reservation assigned which this persists even
824 * after the page is instantiated. A private mapping has a region map
825 * associated with the original mmap which is attached to all VMAs which
826 * reference it, this region map represents those offsets which have consumed
827 * reservation ie. where pages have been instantiated.
828 */
829 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
830 {
831 return (unsigned long)vma->vm_private_data;
832 }
833
834 static void set_vma_private_data(struct vm_area_struct *vma,
835 unsigned long value)
836 {
837 vma->vm_private_data = (void *)value;
838 }
839
840 static void
841 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
842 struct hugetlb_cgroup *h_cg,
843 struct hstate *h)
844 {
845 #ifdef CONFIG_CGROUP_HUGETLB
846 if (!h_cg || !h) {
847 resv_map->reservation_counter = NULL;
848 resv_map->pages_per_hpage = 0;
849 resv_map->css = NULL;
850 } else {
851 resv_map->reservation_counter =
852 &h_cg->rsvd_hugepage[hstate_index(h)];
853 resv_map->pages_per_hpage = pages_per_huge_page(h);
854 resv_map->css = &h_cg->css;
855 }
856 #endif
857 }
858
859 struct resv_map *resv_map_alloc(void)
860 {
861 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
862 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
863
864 if (!resv_map || !rg) {
865 kfree(resv_map);
866 kfree(rg);
867 return NULL;
868 }
869
870 kref_init(&resv_map->refs);
871 spin_lock_init(&resv_map->lock);
872 INIT_LIST_HEAD(&resv_map->regions);
873
874 resv_map->adds_in_progress = 0;
875 /*
876 * Initialize these to 0. On shared mappings, 0's here indicate these
877 * fields don't do cgroup accounting. On private mappings, these will be
878 * re-initialized to the proper values, to indicate that hugetlb cgroup
879 * reservations are to be un-charged from here.
880 */
881 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
882
883 INIT_LIST_HEAD(&resv_map->region_cache);
884 list_add(&rg->link, &resv_map->region_cache);
885 resv_map->region_cache_count = 1;
886
887 return resv_map;
888 }
889
890 void resv_map_release(struct kref *ref)
891 {
892 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
893 struct list_head *head = &resv_map->region_cache;
894 struct file_region *rg, *trg;
895
896 /* Clear out any active regions before we release the map. */
897 region_del(resv_map, 0, LONG_MAX);
898
899 /* ... and any entries left in the cache */
900 list_for_each_entry_safe(rg, trg, head, link) {
901 list_del(&rg->link);
902 kfree(rg);
903 }
904
905 VM_BUG_ON(resv_map->adds_in_progress);
906
907 kfree(resv_map);
908 }
909
910 static inline struct resv_map *inode_resv_map(struct inode *inode)
911 {
912 /*
913 * At inode evict time, i_mapping may not point to the original
914 * address space within the inode. This original address space
915 * contains the pointer to the resv_map. So, always use the
916 * address space embedded within the inode.
917 * The VERY common case is inode->mapping == &inode->i_data but,
918 * this may not be true for device special inodes.
919 */
920 return (struct resv_map *)(&inode->i_data)->private_data;
921 }
922
923 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
924 {
925 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
926 if (vma->vm_flags & VM_MAYSHARE) {
927 struct address_space *mapping = vma->vm_file->f_mapping;
928 struct inode *inode = mapping->host;
929
930 return inode_resv_map(inode);
931
932 } else {
933 return (struct resv_map *)(get_vma_private_data(vma) &
934 ~HPAGE_RESV_MASK);
935 }
936 }
937
938 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
939 {
940 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
941 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
942
943 set_vma_private_data(vma, (get_vma_private_data(vma) &
944 HPAGE_RESV_MASK) | (unsigned long)map);
945 }
946
947 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
948 {
949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
950 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
951
952 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
953 }
954
955 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
956 {
957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958
959 return (get_vma_private_data(vma) & flag) != 0;
960 }
961
962 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
963 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
964 {
965 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
966 if (!(vma->vm_flags & VM_MAYSHARE))
967 vma->vm_private_data = (void *)0;
968 }
969
970 /* Returns true if the VMA has associated reserve pages */
971 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
972 {
973 if (vma->vm_flags & VM_NORESERVE) {
974 /*
975 * This address is already reserved by other process(chg == 0),
976 * so, we should decrement reserved count. Without decrementing,
977 * reserve count remains after releasing inode, because this
978 * allocated page will go into page cache and is regarded as
979 * coming from reserved pool in releasing step. Currently, we
980 * don't have any other solution to deal with this situation
981 * properly, so add work-around here.
982 */
983 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
984 return true;
985 else
986 return false;
987 }
988
989 /* Shared mappings always use reserves */
990 if (vma->vm_flags & VM_MAYSHARE) {
991 /*
992 * We know VM_NORESERVE is not set. Therefore, there SHOULD
993 * be a region map for all pages. The only situation where
994 * there is no region map is if a hole was punched via
995 * fallocate. In this case, there really are no reserves to
996 * use. This situation is indicated if chg != 0.
997 */
998 if (chg)
999 return false;
1000 else
1001 return true;
1002 }
1003
1004 /*
1005 * Only the process that called mmap() has reserves for
1006 * private mappings.
1007 */
1008 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1009 /*
1010 * Like the shared case above, a hole punch or truncate
1011 * could have been performed on the private mapping.
1012 * Examine the value of chg to determine if reserves
1013 * actually exist or were previously consumed.
1014 * Very Subtle - The value of chg comes from a previous
1015 * call to vma_needs_reserves(). The reserve map for
1016 * private mappings has different (opposite) semantics
1017 * than that of shared mappings. vma_needs_reserves()
1018 * has already taken this difference in semantics into
1019 * account. Therefore, the meaning of chg is the same
1020 * as in the shared case above. Code could easily be
1021 * combined, but keeping it separate draws attention to
1022 * subtle differences.
1023 */
1024 if (chg)
1025 return false;
1026 else
1027 return true;
1028 }
1029
1030 return false;
1031 }
1032
1033 static void enqueue_huge_page(struct hstate *h, struct page *page)
1034 {
1035 int nid = page_to_nid(page);
1036 list_move(&page->lru, &h->hugepage_freelists[nid]);
1037 h->free_huge_pages++;
1038 h->free_huge_pages_node[nid]++;
1039 }
1040
1041 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1042 {
1043 struct page *page;
1044 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1045
1046 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1047 if (nocma && is_migrate_cma_page(page))
1048 continue;
1049
1050 if (!PageHWPoison(page))
1051 break;
1052 }
1053
1054 /*
1055 * if 'non-isolated free hugepage' not found on the list,
1056 * the allocation fails.
1057 */
1058 if (&h->hugepage_freelists[nid] == &page->lru)
1059 return NULL;
1060 list_move(&page->lru, &h->hugepage_activelist);
1061 set_page_refcounted(page);
1062 h->free_huge_pages--;
1063 h->free_huge_pages_node[nid]--;
1064 return page;
1065 }
1066
1067 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068 nodemask_t *nmask)
1069 {
1070 unsigned int cpuset_mems_cookie;
1071 struct zonelist *zonelist;
1072 struct zone *zone;
1073 struct zoneref *z;
1074 int node = NUMA_NO_NODE;
1075
1076 zonelist = node_zonelist(nid, gfp_mask);
1077
1078 retry_cpuset:
1079 cpuset_mems_cookie = read_mems_allowed_begin();
1080 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081 struct page *page;
1082
1083 if (!cpuset_zone_allowed(zone, gfp_mask))
1084 continue;
1085 /*
1086 * no need to ask again on the same node. Pool is node rather than
1087 * zone aware
1088 */
1089 if (zone_to_nid(zone) == node)
1090 continue;
1091 node = zone_to_nid(zone);
1092
1093 page = dequeue_huge_page_node_exact(h, node);
1094 if (page)
1095 return page;
1096 }
1097 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098 goto retry_cpuset;
1099
1100 return NULL;
1101 }
1102
1103 static struct page *dequeue_huge_page_vma(struct hstate *h,
1104 struct vm_area_struct *vma,
1105 unsigned long address, int avoid_reserve,
1106 long chg)
1107 {
1108 struct page *page;
1109 struct mempolicy *mpol;
1110 gfp_t gfp_mask;
1111 nodemask_t *nodemask;
1112 int nid;
1113
1114 /*
1115 * A child process with MAP_PRIVATE mappings created by their parent
1116 * have no page reserves. This check ensures that reservations are
1117 * not "stolen". The child may still get SIGKILLed
1118 */
1119 if (!vma_has_reserves(vma, chg) &&
1120 h->free_huge_pages - h->resv_huge_pages == 0)
1121 goto err;
1122
1123 /* If reserves cannot be used, ensure enough pages are in the pool */
1124 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125 goto err;
1126
1127 gfp_mask = htlb_alloc_mask(h);
1128 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131 SetPagePrivate(page);
1132 h->resv_huge_pages--;
1133 }
1134
1135 mpol_cond_put(mpol);
1136 return page;
1137
1138 err:
1139 return NULL;
1140 }
1141
1142 /*
1143 * common helper functions for hstate_next_node_to_{alloc|free}.
1144 * We may have allocated or freed a huge page based on a different
1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146 * be outside of *nodes_allowed. Ensure that we use an allowed
1147 * node for alloc or free.
1148 */
1149 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150 {
1151 nid = next_node_in(nid, *nodes_allowed);
1152 VM_BUG_ON(nid >= MAX_NUMNODES);
1153
1154 return nid;
1155 }
1156
1157 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158 {
1159 if (!node_isset(nid, *nodes_allowed))
1160 nid = next_node_allowed(nid, nodes_allowed);
1161 return nid;
1162 }
1163
1164 /*
1165 * returns the previously saved node ["this node"] from which to
1166 * allocate a persistent huge page for the pool and advance the
1167 * next node from which to allocate, handling wrap at end of node
1168 * mask.
1169 */
1170 static int hstate_next_node_to_alloc(struct hstate *h,
1171 nodemask_t *nodes_allowed)
1172 {
1173 int nid;
1174
1175 VM_BUG_ON(!nodes_allowed);
1176
1177 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179
1180 return nid;
1181 }
1182
1183 /*
1184 * helper for free_pool_huge_page() - return the previously saved
1185 * node ["this node"] from which to free a huge page. Advance the
1186 * next node id whether or not we find a free huge page to free so
1187 * that the next attempt to free addresses the next node.
1188 */
1189 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190 {
1191 int nid;
1192
1193 VM_BUG_ON(!nodes_allowed);
1194
1195 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197
1198 return nid;
1199 }
1200
1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1202 for (nr_nodes = nodes_weight(*mask); \
1203 nr_nodes > 0 && \
1204 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1205 nr_nodes--)
1206
1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1208 for (nr_nodes = nodes_weight(*mask); \
1209 nr_nodes > 0 && \
1210 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1211 nr_nodes--)
1212
1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214 static void destroy_compound_gigantic_page(struct page *page,
1215 unsigned int order)
1216 {
1217 int i;
1218 int nr_pages = 1 << order;
1219 struct page *p = page + 1;
1220
1221 atomic_set(compound_mapcount_ptr(page), 0);
1222 if (hpage_pincount_available(page))
1223 atomic_set(compound_pincount_ptr(page), 0);
1224
1225 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1226 clear_compound_head(p);
1227 set_page_refcounted(p);
1228 }
1229
1230 set_compound_order(page, 0);
1231 __ClearPageHead(page);
1232 }
1233
1234 static void free_gigantic_page(struct page *page, unsigned int order)
1235 {
1236 /*
1237 * If the page isn't allocated using the cma allocator,
1238 * cma_release() returns false.
1239 */
1240 #ifdef CONFIG_CMA
1241 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242 return;
1243 #endif
1244
1245 free_contig_range(page_to_pfn(page), 1 << order);
1246 }
1247
1248 #ifdef CONFIG_CONTIG_ALLOC
1249 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250 int nid, nodemask_t *nodemask)
1251 {
1252 unsigned long nr_pages = 1UL << huge_page_order(h);
1253
1254 #ifdef CONFIG_CMA
1255 {
1256 struct page *page;
1257 int node;
1258
1259 for_each_node_mask(node, *nodemask) {
1260 if (!hugetlb_cma[node])
1261 continue;
1262
1263 page = cma_alloc(hugetlb_cma[node], nr_pages,
1264 huge_page_order(h), true);
1265 if (page)
1266 return page;
1267 }
1268 }
1269 #endif
1270
1271 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1272 }
1273
1274 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1275 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1276 #else /* !CONFIG_CONTIG_ALLOC */
1277 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1278 int nid, nodemask_t *nodemask)
1279 {
1280 return NULL;
1281 }
1282 #endif /* CONFIG_CONTIG_ALLOC */
1283
1284 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286 int nid, nodemask_t *nodemask)
1287 {
1288 return NULL;
1289 }
1290 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1291 static inline void destroy_compound_gigantic_page(struct page *page,
1292 unsigned int order) { }
1293 #endif
1294
1295 static void update_and_free_page(struct hstate *h, struct page *page)
1296 {
1297 int i;
1298
1299 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1300 return;
1301
1302 h->nr_huge_pages--;
1303 h->nr_huge_pages_node[page_to_nid(page)]--;
1304 for (i = 0; i < pages_per_huge_page(h); i++) {
1305 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1306 1 << PG_referenced | 1 << PG_dirty |
1307 1 << PG_active | 1 << PG_private |
1308 1 << PG_writeback);
1309 }
1310 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1311 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1312 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1313 set_page_refcounted(page);
1314 if (hstate_is_gigantic(h)) {
1315 /*
1316 * Temporarily drop the hugetlb_lock, because
1317 * we might block in free_gigantic_page().
1318 */
1319 spin_unlock(&hugetlb_lock);
1320 destroy_compound_gigantic_page(page, huge_page_order(h));
1321 free_gigantic_page(page, huge_page_order(h));
1322 spin_lock(&hugetlb_lock);
1323 } else {
1324 __free_pages(page, huge_page_order(h));
1325 }
1326 }
1327
1328 struct hstate *size_to_hstate(unsigned long size)
1329 {
1330 struct hstate *h;
1331
1332 for_each_hstate(h) {
1333 if (huge_page_size(h) == size)
1334 return h;
1335 }
1336 return NULL;
1337 }
1338
1339 /*
1340 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1341 * to hstate->hugepage_activelist.)
1342 *
1343 * This function can be called for tail pages, but never returns true for them.
1344 */
1345 bool page_huge_active(struct page *page)
1346 {
1347 VM_BUG_ON_PAGE(!PageHuge(page), page);
1348 return PageHead(page) && PagePrivate(&page[1]);
1349 }
1350
1351 /* never called for tail page */
1352 static void set_page_huge_active(struct page *page)
1353 {
1354 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1355 SetPagePrivate(&page[1]);
1356 }
1357
1358 static void clear_page_huge_active(struct page *page)
1359 {
1360 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1361 ClearPagePrivate(&page[1]);
1362 }
1363
1364 /*
1365 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1366 * code
1367 */
1368 static inline bool PageHugeTemporary(struct page *page)
1369 {
1370 if (!PageHuge(page))
1371 return false;
1372
1373 return (unsigned long)page[2].mapping == -1U;
1374 }
1375
1376 static inline void SetPageHugeTemporary(struct page *page)
1377 {
1378 page[2].mapping = (void *)-1U;
1379 }
1380
1381 static inline void ClearPageHugeTemporary(struct page *page)
1382 {
1383 page[2].mapping = NULL;
1384 }
1385
1386 static void __free_huge_page(struct page *page)
1387 {
1388 /*
1389 * Can't pass hstate in here because it is called from the
1390 * compound page destructor.
1391 */
1392 struct hstate *h = page_hstate(page);
1393 int nid = page_to_nid(page);
1394 struct hugepage_subpool *spool =
1395 (struct hugepage_subpool *)page_private(page);
1396 bool restore_reserve;
1397
1398 VM_BUG_ON_PAGE(page_count(page), page);
1399 VM_BUG_ON_PAGE(page_mapcount(page), page);
1400
1401 set_page_private(page, 0);
1402 page->mapping = NULL;
1403 restore_reserve = PagePrivate(page);
1404 ClearPagePrivate(page);
1405
1406 /*
1407 * If PagePrivate() was set on page, page allocation consumed a
1408 * reservation. If the page was associated with a subpool, there
1409 * would have been a page reserved in the subpool before allocation
1410 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1411 * reservtion, do not call hugepage_subpool_put_pages() as this will
1412 * remove the reserved page from the subpool.
1413 */
1414 if (!restore_reserve) {
1415 /*
1416 * A return code of zero implies that the subpool will be
1417 * under its minimum size if the reservation is not restored
1418 * after page is free. Therefore, force restore_reserve
1419 * operation.
1420 */
1421 if (hugepage_subpool_put_pages(spool, 1) == 0)
1422 restore_reserve = true;
1423 }
1424
1425 spin_lock(&hugetlb_lock);
1426 clear_page_huge_active(page);
1427 hugetlb_cgroup_uncharge_page(hstate_index(h),
1428 pages_per_huge_page(h), page);
1429 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1430 pages_per_huge_page(h), page);
1431 if (restore_reserve)
1432 h->resv_huge_pages++;
1433
1434 if (PageHugeTemporary(page)) {
1435 list_del(&page->lru);
1436 ClearPageHugeTemporary(page);
1437 update_and_free_page(h, page);
1438 } else if (h->surplus_huge_pages_node[nid]) {
1439 /* remove the page from active list */
1440 list_del(&page->lru);
1441 update_and_free_page(h, page);
1442 h->surplus_huge_pages--;
1443 h->surplus_huge_pages_node[nid]--;
1444 } else {
1445 arch_clear_hugepage_flags(page);
1446 enqueue_huge_page(h, page);
1447 }
1448 spin_unlock(&hugetlb_lock);
1449 }
1450
1451 /*
1452 * As free_huge_page() can be called from a non-task context, we have
1453 * to defer the actual freeing in a workqueue to prevent potential
1454 * hugetlb_lock deadlock.
1455 *
1456 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1457 * be freed and frees them one-by-one. As the page->mapping pointer is
1458 * going to be cleared in __free_huge_page() anyway, it is reused as the
1459 * llist_node structure of a lockless linked list of huge pages to be freed.
1460 */
1461 static LLIST_HEAD(hpage_freelist);
1462
1463 static void free_hpage_workfn(struct work_struct *work)
1464 {
1465 struct llist_node *node;
1466 struct page *page;
1467
1468 node = llist_del_all(&hpage_freelist);
1469
1470 while (node) {
1471 page = container_of((struct address_space **)node,
1472 struct page, mapping);
1473 node = node->next;
1474 __free_huge_page(page);
1475 }
1476 }
1477 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1478
1479 void free_huge_page(struct page *page)
1480 {
1481 /*
1482 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1483 */
1484 if (!in_task()) {
1485 /*
1486 * Only call schedule_work() if hpage_freelist is previously
1487 * empty. Otherwise, schedule_work() had been called but the
1488 * workfn hasn't retrieved the list yet.
1489 */
1490 if (llist_add((struct llist_node *)&page->mapping,
1491 &hpage_freelist))
1492 schedule_work(&free_hpage_work);
1493 return;
1494 }
1495
1496 __free_huge_page(page);
1497 }
1498
1499 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1500 {
1501 INIT_LIST_HEAD(&page->lru);
1502 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1503 spin_lock(&hugetlb_lock);
1504 set_hugetlb_cgroup(page, NULL);
1505 set_hugetlb_cgroup_rsvd(page, NULL);
1506 h->nr_huge_pages++;
1507 h->nr_huge_pages_node[nid]++;
1508 spin_unlock(&hugetlb_lock);
1509 }
1510
1511 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1512 {
1513 int i;
1514 int nr_pages = 1 << order;
1515 struct page *p = page + 1;
1516
1517 /* we rely on prep_new_huge_page to set the destructor */
1518 set_compound_order(page, order);
1519 __ClearPageReserved(page);
1520 __SetPageHead(page);
1521 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1522 /*
1523 * For gigantic hugepages allocated through bootmem at
1524 * boot, it's safer to be consistent with the not-gigantic
1525 * hugepages and clear the PG_reserved bit from all tail pages
1526 * too. Otherwise drivers using get_user_pages() to access tail
1527 * pages may get the reference counting wrong if they see
1528 * PG_reserved set on a tail page (despite the head page not
1529 * having PG_reserved set). Enforcing this consistency between
1530 * head and tail pages allows drivers to optimize away a check
1531 * on the head page when they need know if put_page() is needed
1532 * after get_user_pages().
1533 */
1534 __ClearPageReserved(p);
1535 set_page_count(p, 0);
1536 set_compound_head(p, page);
1537 }
1538 atomic_set(compound_mapcount_ptr(page), -1);
1539
1540 if (hpage_pincount_available(page))
1541 atomic_set(compound_pincount_ptr(page), 0);
1542 }
1543
1544 /*
1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546 * transparent huge pages. See the PageTransHuge() documentation for more
1547 * details.
1548 */
1549 int PageHuge(struct page *page)
1550 {
1551 if (!PageCompound(page))
1552 return 0;
1553
1554 page = compound_head(page);
1555 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556 }
1557 EXPORT_SYMBOL_GPL(PageHuge);
1558
1559 /*
1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561 * normal or transparent huge pages.
1562 */
1563 int PageHeadHuge(struct page *page_head)
1564 {
1565 if (!PageHead(page_head))
1566 return 0;
1567
1568 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1569 }
1570
1571 /*
1572 * Find address_space associated with hugetlbfs page.
1573 * Upon entry page is locked and page 'was' mapped although mapped state
1574 * could change. If necessary, use anon_vma to find vma and associated
1575 * address space. The returned mapping may be stale, but it can not be
1576 * invalid as page lock (which is held) is required to destroy mapping.
1577 */
1578 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1579 {
1580 struct anon_vma *anon_vma;
1581 pgoff_t pgoff_start, pgoff_end;
1582 struct anon_vma_chain *avc;
1583 struct address_space *mapping = page_mapping(hpage);
1584
1585 /* Simple file based mapping */
1586 if (mapping)
1587 return mapping;
1588
1589 /*
1590 * Even anonymous hugetlbfs mappings are associated with an
1591 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1592 * code). Find a vma associated with the anonymous vma, and
1593 * use the file pointer to get address_space.
1594 */
1595 anon_vma = page_lock_anon_vma_read(hpage);
1596 if (!anon_vma)
1597 return mapping; /* NULL */
1598
1599 /* Use first found vma */
1600 pgoff_start = page_to_pgoff(hpage);
1601 pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1602 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1603 pgoff_start, pgoff_end) {
1604 struct vm_area_struct *vma = avc->vma;
1605
1606 mapping = vma->vm_file->f_mapping;
1607 break;
1608 }
1609
1610 anon_vma_unlock_read(anon_vma);
1611 return mapping;
1612 }
1613
1614 /*
1615 * Find and lock address space (mapping) in write mode.
1616 *
1617 * Upon entry, the page is locked which allows us to find the mapping
1618 * even in the case of an anon page. However, locking order dictates
1619 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1620 * specific. So, we first try to lock the sema while still holding the
1621 * page lock. If this works, great! If not, then we need to drop the
1622 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1623 * course, need to revalidate state along the way.
1624 */
1625 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1626 {
1627 struct address_space *mapping, *mapping2;
1628
1629 mapping = _get_hugetlb_page_mapping(hpage);
1630 retry:
1631 if (!mapping)
1632 return mapping;
1633
1634 /*
1635 * If no contention, take lock and return
1636 */
1637 if (i_mmap_trylock_write(mapping))
1638 return mapping;
1639
1640 /*
1641 * Must drop page lock and wait on mapping sema.
1642 * Note: Once page lock is dropped, mapping could become invalid.
1643 * As a hack, increase map count until we lock page again.
1644 */
1645 atomic_inc(&hpage->_mapcount);
1646 unlock_page(hpage);
1647 i_mmap_lock_write(mapping);
1648 lock_page(hpage);
1649 atomic_add_negative(-1, &hpage->_mapcount);
1650
1651 /* verify page is still mapped */
1652 if (!page_mapped(hpage)) {
1653 i_mmap_unlock_write(mapping);
1654 return NULL;
1655 }
1656
1657 /*
1658 * Get address space again and verify it is the same one
1659 * we locked. If not, drop lock and retry.
1660 */
1661 mapping2 = _get_hugetlb_page_mapping(hpage);
1662 if (mapping2 != mapping) {
1663 i_mmap_unlock_write(mapping);
1664 mapping = mapping2;
1665 goto retry;
1666 }
1667
1668 return mapping;
1669 }
1670
1671 pgoff_t __basepage_index(struct page *page)
1672 {
1673 struct page *page_head = compound_head(page);
1674 pgoff_t index = page_index(page_head);
1675 unsigned long compound_idx;
1676
1677 if (!PageHuge(page_head))
1678 return page_index(page);
1679
1680 if (compound_order(page_head) >= MAX_ORDER)
1681 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1682 else
1683 compound_idx = page - page_head;
1684
1685 return (index << compound_order(page_head)) + compound_idx;
1686 }
1687
1688 static struct page *alloc_buddy_huge_page(struct hstate *h,
1689 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1690 nodemask_t *node_alloc_noretry)
1691 {
1692 int order = huge_page_order(h);
1693 struct page *page;
1694 bool alloc_try_hard = true;
1695
1696 /*
1697 * By default we always try hard to allocate the page with
1698 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1699 * a loop (to adjust global huge page counts) and previous allocation
1700 * failed, do not continue to try hard on the same node. Use the
1701 * node_alloc_noretry bitmap to manage this state information.
1702 */
1703 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1704 alloc_try_hard = false;
1705 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1706 if (alloc_try_hard)
1707 gfp_mask |= __GFP_RETRY_MAYFAIL;
1708 if (nid == NUMA_NO_NODE)
1709 nid = numa_mem_id();
1710 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1711 if (page)
1712 __count_vm_event(HTLB_BUDDY_PGALLOC);
1713 else
1714 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1715
1716 /*
1717 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1718 * indicates an overall state change. Clear bit so that we resume
1719 * normal 'try hard' allocations.
1720 */
1721 if (node_alloc_noretry && page && !alloc_try_hard)
1722 node_clear(nid, *node_alloc_noretry);
1723
1724 /*
1725 * If we tried hard to get a page but failed, set bit so that
1726 * subsequent attempts will not try as hard until there is an
1727 * overall state change.
1728 */
1729 if (node_alloc_noretry && !page && alloc_try_hard)
1730 node_set(nid, *node_alloc_noretry);
1731
1732 return page;
1733 }
1734
1735 /*
1736 * Common helper to allocate a fresh hugetlb page. All specific allocators
1737 * should use this function to get new hugetlb pages
1738 */
1739 static struct page *alloc_fresh_huge_page(struct hstate *h,
1740 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1741 nodemask_t *node_alloc_noretry)
1742 {
1743 struct page *page;
1744
1745 if (hstate_is_gigantic(h))
1746 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1747 else
1748 page = alloc_buddy_huge_page(h, gfp_mask,
1749 nid, nmask, node_alloc_noretry);
1750 if (!page)
1751 return NULL;
1752
1753 if (hstate_is_gigantic(h))
1754 prep_compound_gigantic_page(page, huge_page_order(h));
1755 prep_new_huge_page(h, page, page_to_nid(page));
1756
1757 return page;
1758 }
1759
1760 /*
1761 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1762 * manner.
1763 */
1764 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1765 nodemask_t *node_alloc_noretry)
1766 {
1767 struct page *page;
1768 int nr_nodes, node;
1769 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1770
1771 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1772 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1773 node_alloc_noretry);
1774 if (page)
1775 break;
1776 }
1777
1778 if (!page)
1779 return 0;
1780
1781 put_page(page); /* free it into the hugepage allocator */
1782
1783 return 1;
1784 }
1785
1786 /*
1787 * Free huge page from pool from next node to free.
1788 * Attempt to keep persistent huge pages more or less
1789 * balanced over allowed nodes.
1790 * Called with hugetlb_lock locked.
1791 */
1792 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1793 bool acct_surplus)
1794 {
1795 int nr_nodes, node;
1796 int ret = 0;
1797
1798 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1799 /*
1800 * If we're returning unused surplus pages, only examine
1801 * nodes with surplus pages.
1802 */
1803 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1804 !list_empty(&h->hugepage_freelists[node])) {
1805 struct page *page =
1806 list_entry(h->hugepage_freelists[node].next,
1807 struct page, lru);
1808 list_del(&page->lru);
1809 h->free_huge_pages--;
1810 h->free_huge_pages_node[node]--;
1811 if (acct_surplus) {
1812 h->surplus_huge_pages--;
1813 h->surplus_huge_pages_node[node]--;
1814 }
1815 update_and_free_page(h, page);
1816 ret = 1;
1817 break;
1818 }
1819 }
1820
1821 return ret;
1822 }
1823
1824 /*
1825 * Dissolve a given free hugepage into free buddy pages. This function does
1826 * nothing for in-use hugepages and non-hugepages.
1827 * This function returns values like below:
1828 *
1829 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1830 * (allocated or reserved.)
1831 * 0: successfully dissolved free hugepages or the page is not a
1832 * hugepage (considered as already dissolved)
1833 */
1834 int dissolve_free_huge_page(struct page *page)
1835 {
1836 int rc = -EBUSY;
1837
1838 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1839 if (!PageHuge(page))
1840 return 0;
1841
1842 spin_lock(&hugetlb_lock);
1843 if (!PageHuge(page)) {
1844 rc = 0;
1845 goto out;
1846 }
1847
1848 if (!page_count(page)) {
1849 struct page *head = compound_head(page);
1850 struct hstate *h = page_hstate(head);
1851 int nid = page_to_nid(head);
1852 if (h->free_huge_pages - h->resv_huge_pages == 0)
1853 goto out;
1854 /*
1855 * Move PageHWPoison flag from head page to the raw error page,
1856 * which makes any subpages rather than the error page reusable.
1857 */
1858 if (PageHWPoison(head) && page != head) {
1859 SetPageHWPoison(page);
1860 ClearPageHWPoison(head);
1861 }
1862 list_del(&head->lru);
1863 h->free_huge_pages--;
1864 h->free_huge_pages_node[nid]--;
1865 h->max_huge_pages--;
1866 update_and_free_page(h, head);
1867 rc = 0;
1868 }
1869 out:
1870 spin_unlock(&hugetlb_lock);
1871 return rc;
1872 }
1873
1874 /*
1875 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1876 * make specified memory blocks removable from the system.
1877 * Note that this will dissolve a free gigantic hugepage completely, if any
1878 * part of it lies within the given range.
1879 * Also note that if dissolve_free_huge_page() returns with an error, all
1880 * free hugepages that were dissolved before that error are lost.
1881 */
1882 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1883 {
1884 unsigned long pfn;
1885 struct page *page;
1886 int rc = 0;
1887
1888 if (!hugepages_supported())
1889 return rc;
1890
1891 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1892 page = pfn_to_page(pfn);
1893 rc = dissolve_free_huge_page(page);
1894 if (rc)
1895 break;
1896 }
1897
1898 return rc;
1899 }
1900
1901 /*
1902 * Allocates a fresh surplus page from the page allocator.
1903 */
1904 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1905 int nid, nodemask_t *nmask)
1906 {
1907 struct page *page = NULL;
1908
1909 if (hstate_is_gigantic(h))
1910 return NULL;
1911
1912 spin_lock(&hugetlb_lock);
1913 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1914 goto out_unlock;
1915 spin_unlock(&hugetlb_lock);
1916
1917 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1918 if (!page)
1919 return NULL;
1920
1921 spin_lock(&hugetlb_lock);
1922 /*
1923 * We could have raced with the pool size change.
1924 * Double check that and simply deallocate the new page
1925 * if we would end up overcommiting the surpluses. Abuse
1926 * temporary page to workaround the nasty free_huge_page
1927 * codeflow
1928 */
1929 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1930 SetPageHugeTemporary(page);
1931 spin_unlock(&hugetlb_lock);
1932 put_page(page);
1933 return NULL;
1934 } else {
1935 h->surplus_huge_pages++;
1936 h->surplus_huge_pages_node[page_to_nid(page)]++;
1937 }
1938
1939 out_unlock:
1940 spin_unlock(&hugetlb_lock);
1941
1942 return page;
1943 }
1944
1945 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1946 int nid, nodemask_t *nmask)
1947 {
1948 struct page *page;
1949
1950 if (hstate_is_gigantic(h))
1951 return NULL;
1952
1953 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1954 if (!page)
1955 return NULL;
1956
1957 /*
1958 * We do not account these pages as surplus because they are only
1959 * temporary and will be released properly on the last reference
1960 */
1961 SetPageHugeTemporary(page);
1962
1963 return page;
1964 }
1965
1966 /*
1967 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1968 */
1969 static
1970 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1971 struct vm_area_struct *vma, unsigned long addr)
1972 {
1973 struct page *page;
1974 struct mempolicy *mpol;
1975 gfp_t gfp_mask = htlb_alloc_mask(h);
1976 int nid;
1977 nodemask_t *nodemask;
1978
1979 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1980 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1981 mpol_cond_put(mpol);
1982
1983 return page;
1984 }
1985
1986 /* page migration callback function */
1987 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1988 nodemask_t *nmask, gfp_t gfp_mask)
1989 {
1990 spin_lock(&hugetlb_lock);
1991 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1992 struct page *page;
1993
1994 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1995 if (page) {
1996 spin_unlock(&hugetlb_lock);
1997 return page;
1998 }
1999 }
2000 spin_unlock(&hugetlb_lock);
2001
2002 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2003 }
2004
2005 /* mempolicy aware migration callback */
2006 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2007 unsigned long address)
2008 {
2009 struct mempolicy *mpol;
2010 nodemask_t *nodemask;
2011 struct page *page;
2012 gfp_t gfp_mask;
2013 int node;
2014
2015 gfp_mask = htlb_alloc_mask(h);
2016 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2017 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2018 mpol_cond_put(mpol);
2019
2020 return page;
2021 }
2022
2023 /*
2024 * Increase the hugetlb pool such that it can accommodate a reservation
2025 * of size 'delta'.
2026 */
2027 static int gather_surplus_pages(struct hstate *h, int delta)
2028 __must_hold(&hugetlb_lock)
2029 {
2030 struct list_head surplus_list;
2031 struct page *page, *tmp;
2032 int ret, i;
2033 int needed, allocated;
2034 bool alloc_ok = true;
2035
2036 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2037 if (needed <= 0) {
2038 h->resv_huge_pages += delta;
2039 return 0;
2040 }
2041
2042 allocated = 0;
2043 INIT_LIST_HEAD(&surplus_list);
2044
2045 ret = -ENOMEM;
2046 retry:
2047 spin_unlock(&hugetlb_lock);
2048 for (i = 0; i < needed; i++) {
2049 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2050 NUMA_NO_NODE, NULL);
2051 if (!page) {
2052 alloc_ok = false;
2053 break;
2054 }
2055 list_add(&page->lru, &surplus_list);
2056 cond_resched();
2057 }
2058 allocated += i;
2059
2060 /*
2061 * After retaking hugetlb_lock, we need to recalculate 'needed'
2062 * because either resv_huge_pages or free_huge_pages may have changed.
2063 */
2064 spin_lock(&hugetlb_lock);
2065 needed = (h->resv_huge_pages + delta) -
2066 (h->free_huge_pages + allocated);
2067 if (needed > 0) {
2068 if (alloc_ok)
2069 goto retry;
2070 /*
2071 * We were not able to allocate enough pages to
2072 * satisfy the entire reservation so we free what
2073 * we've allocated so far.
2074 */
2075 goto free;
2076 }
2077 /*
2078 * The surplus_list now contains _at_least_ the number of extra pages
2079 * needed to accommodate the reservation. Add the appropriate number
2080 * of pages to the hugetlb pool and free the extras back to the buddy
2081 * allocator. Commit the entire reservation here to prevent another
2082 * process from stealing the pages as they are added to the pool but
2083 * before they are reserved.
2084 */
2085 needed += allocated;
2086 h->resv_huge_pages += delta;
2087 ret = 0;
2088
2089 /* Free the needed pages to the hugetlb pool */
2090 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2091 if ((--needed) < 0)
2092 break;
2093 /*
2094 * This page is now managed by the hugetlb allocator and has
2095 * no users -- drop the buddy allocator's reference.
2096 */
2097 put_page_testzero(page);
2098 VM_BUG_ON_PAGE(page_count(page), page);
2099 enqueue_huge_page(h, page);
2100 }
2101 free:
2102 spin_unlock(&hugetlb_lock);
2103
2104 /* Free unnecessary surplus pages to the buddy allocator */
2105 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2106 put_page(page);
2107 spin_lock(&hugetlb_lock);
2108
2109 return ret;
2110 }
2111
2112 /*
2113 * This routine has two main purposes:
2114 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2115 * in unused_resv_pages. This corresponds to the prior adjustments made
2116 * to the associated reservation map.
2117 * 2) Free any unused surplus pages that may have been allocated to satisfy
2118 * the reservation. As many as unused_resv_pages may be freed.
2119 *
2120 * Called with hugetlb_lock held. However, the lock could be dropped (and
2121 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2122 * we must make sure nobody else can claim pages we are in the process of
2123 * freeing. Do this by ensuring resv_huge_page always is greater than the
2124 * number of huge pages we plan to free when dropping the lock.
2125 */
2126 static void return_unused_surplus_pages(struct hstate *h,
2127 unsigned long unused_resv_pages)
2128 {
2129 unsigned long nr_pages;
2130
2131 /* Cannot return gigantic pages currently */
2132 if (hstate_is_gigantic(h))
2133 goto out;
2134
2135 /*
2136 * Part (or even all) of the reservation could have been backed
2137 * by pre-allocated pages. Only free surplus pages.
2138 */
2139 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2140
2141 /*
2142 * We want to release as many surplus pages as possible, spread
2143 * evenly across all nodes with memory. Iterate across these nodes
2144 * until we can no longer free unreserved surplus pages. This occurs
2145 * when the nodes with surplus pages have no free pages.
2146 * free_pool_huge_page() will balance the freed pages across the
2147 * on-line nodes with memory and will handle the hstate accounting.
2148 *
2149 * Note that we decrement resv_huge_pages as we free the pages. If
2150 * we drop the lock, resv_huge_pages will still be sufficiently large
2151 * to cover subsequent pages we may free.
2152 */
2153 while (nr_pages--) {
2154 h->resv_huge_pages--;
2155 unused_resv_pages--;
2156 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2157 goto out;
2158 cond_resched_lock(&hugetlb_lock);
2159 }
2160
2161 out:
2162 /* Fully uncommit the reservation */
2163 h->resv_huge_pages -= unused_resv_pages;
2164 }
2165
2166
2167 /*
2168 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2169 * are used by the huge page allocation routines to manage reservations.
2170 *
2171 * vma_needs_reservation is called to determine if the huge page at addr
2172 * within the vma has an associated reservation. If a reservation is
2173 * needed, the value 1 is returned. The caller is then responsible for
2174 * managing the global reservation and subpool usage counts. After
2175 * the huge page has been allocated, vma_commit_reservation is called
2176 * to add the page to the reservation map. If the page allocation fails,
2177 * the reservation must be ended instead of committed. vma_end_reservation
2178 * is called in such cases.
2179 *
2180 * In the normal case, vma_commit_reservation returns the same value
2181 * as the preceding vma_needs_reservation call. The only time this
2182 * is not the case is if a reserve map was changed between calls. It
2183 * is the responsibility of the caller to notice the difference and
2184 * take appropriate action.
2185 *
2186 * vma_add_reservation is used in error paths where a reservation must
2187 * be restored when a newly allocated huge page must be freed. It is
2188 * to be called after calling vma_needs_reservation to determine if a
2189 * reservation exists.
2190 */
2191 enum vma_resv_mode {
2192 VMA_NEEDS_RESV,
2193 VMA_COMMIT_RESV,
2194 VMA_END_RESV,
2195 VMA_ADD_RESV,
2196 };
2197 static long __vma_reservation_common(struct hstate *h,
2198 struct vm_area_struct *vma, unsigned long addr,
2199 enum vma_resv_mode mode)
2200 {
2201 struct resv_map *resv;
2202 pgoff_t idx;
2203 long ret;
2204 long dummy_out_regions_needed;
2205
2206 resv = vma_resv_map(vma);
2207 if (!resv)
2208 return 1;
2209
2210 idx = vma_hugecache_offset(h, vma, addr);
2211 switch (mode) {
2212 case VMA_NEEDS_RESV:
2213 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2214 /* We assume that vma_reservation_* routines always operate on
2215 * 1 page, and that adding to resv map a 1 page entry can only
2216 * ever require 1 region.
2217 */
2218 VM_BUG_ON(dummy_out_regions_needed != 1);
2219 break;
2220 case VMA_COMMIT_RESV:
2221 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2222 /* region_add calls of range 1 should never fail. */
2223 VM_BUG_ON(ret < 0);
2224 break;
2225 case VMA_END_RESV:
2226 region_abort(resv, idx, idx + 1, 1);
2227 ret = 0;
2228 break;
2229 case VMA_ADD_RESV:
2230 if (vma->vm_flags & VM_MAYSHARE) {
2231 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2232 /* region_add calls of range 1 should never fail. */
2233 VM_BUG_ON(ret < 0);
2234 } else {
2235 region_abort(resv, idx, idx + 1, 1);
2236 ret = region_del(resv, idx, idx + 1);
2237 }
2238 break;
2239 default:
2240 BUG();
2241 }
2242
2243 if (vma->vm_flags & VM_MAYSHARE)
2244 return ret;
2245 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2246 /*
2247 * In most cases, reserves always exist for private mappings.
2248 * However, a file associated with mapping could have been
2249 * hole punched or truncated after reserves were consumed.
2250 * As subsequent fault on such a range will not use reserves.
2251 * Subtle - The reserve map for private mappings has the
2252 * opposite meaning than that of shared mappings. If NO
2253 * entry is in the reserve map, it means a reservation exists.
2254 * If an entry exists in the reserve map, it means the
2255 * reservation has already been consumed. As a result, the
2256 * return value of this routine is the opposite of the
2257 * value returned from reserve map manipulation routines above.
2258 */
2259 if (ret)
2260 return 0;
2261 else
2262 return 1;
2263 }
2264 else
2265 return ret < 0 ? ret : 0;
2266 }
2267
2268 static long vma_needs_reservation(struct hstate *h,
2269 struct vm_area_struct *vma, unsigned long addr)
2270 {
2271 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2272 }
2273
2274 static long vma_commit_reservation(struct hstate *h,
2275 struct vm_area_struct *vma, unsigned long addr)
2276 {
2277 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2278 }
2279
2280 static void vma_end_reservation(struct hstate *h,
2281 struct vm_area_struct *vma, unsigned long addr)
2282 {
2283 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2284 }
2285
2286 static long vma_add_reservation(struct hstate *h,
2287 struct vm_area_struct *vma, unsigned long addr)
2288 {
2289 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2290 }
2291
2292 /*
2293 * This routine is called to restore a reservation on error paths. In the
2294 * specific error paths, a huge page was allocated (via alloc_huge_page)
2295 * and is about to be freed. If a reservation for the page existed,
2296 * alloc_huge_page would have consumed the reservation and set PagePrivate
2297 * in the newly allocated page. When the page is freed via free_huge_page,
2298 * the global reservation count will be incremented if PagePrivate is set.
2299 * However, free_huge_page can not adjust the reserve map. Adjust the
2300 * reserve map here to be consistent with global reserve count adjustments
2301 * to be made by free_huge_page.
2302 */
2303 static void restore_reserve_on_error(struct hstate *h,
2304 struct vm_area_struct *vma, unsigned long address,
2305 struct page *page)
2306 {
2307 if (unlikely(PagePrivate(page))) {
2308 long rc = vma_needs_reservation(h, vma, address);
2309
2310 if (unlikely(rc < 0)) {
2311 /*
2312 * Rare out of memory condition in reserve map
2313 * manipulation. Clear PagePrivate so that
2314 * global reserve count will not be incremented
2315 * by free_huge_page. This will make it appear
2316 * as though the reservation for this page was
2317 * consumed. This may prevent the task from
2318 * faulting in the page at a later time. This
2319 * is better than inconsistent global huge page
2320 * accounting of reserve counts.
2321 */
2322 ClearPagePrivate(page);
2323 } else if (rc) {
2324 rc = vma_add_reservation(h, vma, address);
2325 if (unlikely(rc < 0))
2326 /*
2327 * See above comment about rare out of
2328 * memory condition.
2329 */
2330 ClearPagePrivate(page);
2331 } else
2332 vma_end_reservation(h, vma, address);
2333 }
2334 }
2335
2336 struct page *alloc_huge_page(struct vm_area_struct *vma,
2337 unsigned long addr, int avoid_reserve)
2338 {
2339 struct hugepage_subpool *spool = subpool_vma(vma);
2340 struct hstate *h = hstate_vma(vma);
2341 struct page *page;
2342 long map_chg, map_commit;
2343 long gbl_chg;
2344 int ret, idx;
2345 struct hugetlb_cgroup *h_cg;
2346 bool deferred_reserve;
2347
2348 idx = hstate_index(h);
2349 /*
2350 * Examine the region/reserve map to determine if the process
2351 * has a reservation for the page to be allocated. A return
2352 * code of zero indicates a reservation exists (no change).
2353 */
2354 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2355 if (map_chg < 0)
2356 return ERR_PTR(-ENOMEM);
2357
2358 /*
2359 * Processes that did not create the mapping will have no
2360 * reserves as indicated by the region/reserve map. Check
2361 * that the allocation will not exceed the subpool limit.
2362 * Allocations for MAP_NORESERVE mappings also need to be
2363 * checked against any subpool limit.
2364 */
2365 if (map_chg || avoid_reserve) {
2366 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2367 if (gbl_chg < 0) {
2368 vma_end_reservation(h, vma, addr);
2369 return ERR_PTR(-ENOSPC);
2370 }
2371
2372 /*
2373 * Even though there was no reservation in the region/reserve
2374 * map, there could be reservations associated with the
2375 * subpool that can be used. This would be indicated if the
2376 * return value of hugepage_subpool_get_pages() is zero.
2377 * However, if avoid_reserve is specified we still avoid even
2378 * the subpool reservations.
2379 */
2380 if (avoid_reserve)
2381 gbl_chg = 1;
2382 }
2383
2384 /* If this allocation is not consuming a reservation, charge it now.
2385 */
2386 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2387 if (deferred_reserve) {
2388 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2389 idx, pages_per_huge_page(h), &h_cg);
2390 if (ret)
2391 goto out_subpool_put;
2392 }
2393
2394 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2395 if (ret)
2396 goto out_uncharge_cgroup_reservation;
2397
2398 spin_lock(&hugetlb_lock);
2399 /*
2400 * glb_chg is passed to indicate whether or not a page must be taken
2401 * from the global free pool (global change). gbl_chg == 0 indicates
2402 * a reservation exists for the allocation.
2403 */
2404 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2405 if (!page) {
2406 spin_unlock(&hugetlb_lock);
2407 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2408 if (!page)
2409 goto out_uncharge_cgroup;
2410 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2411 SetPagePrivate(page);
2412 h->resv_huge_pages--;
2413 }
2414 spin_lock(&hugetlb_lock);
2415 list_move(&page->lru, &h->hugepage_activelist);
2416 /* Fall through */
2417 }
2418 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2419 /* If allocation is not consuming a reservation, also store the
2420 * hugetlb_cgroup pointer on the page.
2421 */
2422 if (deferred_reserve) {
2423 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2424 h_cg, page);
2425 }
2426
2427 spin_unlock(&hugetlb_lock);
2428
2429 set_page_private(page, (unsigned long)spool);
2430
2431 map_commit = vma_commit_reservation(h, vma, addr);
2432 if (unlikely(map_chg > map_commit)) {
2433 /*
2434 * The page was added to the reservation map between
2435 * vma_needs_reservation and vma_commit_reservation.
2436 * This indicates a race with hugetlb_reserve_pages.
2437 * Adjust for the subpool count incremented above AND
2438 * in hugetlb_reserve_pages for the same page. Also,
2439 * the reservation count added in hugetlb_reserve_pages
2440 * no longer applies.
2441 */
2442 long rsv_adjust;
2443
2444 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2445 hugetlb_acct_memory(h, -rsv_adjust);
2446 }
2447 return page;
2448
2449 out_uncharge_cgroup:
2450 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2451 out_uncharge_cgroup_reservation:
2452 if (deferred_reserve)
2453 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2454 h_cg);
2455 out_subpool_put:
2456 if (map_chg || avoid_reserve)
2457 hugepage_subpool_put_pages(spool, 1);
2458 vma_end_reservation(h, vma, addr);
2459 return ERR_PTR(-ENOSPC);
2460 }
2461
2462 int alloc_bootmem_huge_page(struct hstate *h)
2463 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2464 int __alloc_bootmem_huge_page(struct hstate *h)
2465 {
2466 struct huge_bootmem_page *m;
2467 int nr_nodes, node;
2468
2469 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2470 void *addr;
2471
2472 addr = memblock_alloc_try_nid_raw(
2473 huge_page_size(h), huge_page_size(h),
2474 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2475 if (addr) {
2476 /*
2477 * Use the beginning of the huge page to store the
2478 * huge_bootmem_page struct (until gather_bootmem
2479 * puts them into the mem_map).
2480 */
2481 m = addr;
2482 goto found;
2483 }
2484 }
2485 return 0;
2486
2487 found:
2488 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2489 /* Put them into a private list first because mem_map is not up yet */
2490 INIT_LIST_HEAD(&m->list);
2491 list_add(&m->list, &huge_boot_pages);
2492 m->hstate = h;
2493 return 1;
2494 }
2495
2496 static void __init prep_compound_huge_page(struct page *page,
2497 unsigned int order)
2498 {
2499 if (unlikely(order > (MAX_ORDER - 1)))
2500 prep_compound_gigantic_page(page, order);
2501 else
2502 prep_compound_page(page, order);
2503 }
2504
2505 /* Put bootmem huge pages into the standard lists after mem_map is up */
2506 static void __init gather_bootmem_prealloc(void)
2507 {
2508 struct huge_bootmem_page *m;
2509
2510 list_for_each_entry(m, &huge_boot_pages, list) {
2511 struct page *page = virt_to_page(m);
2512 struct hstate *h = m->hstate;
2513
2514 WARN_ON(page_count(page) != 1);
2515 prep_compound_huge_page(page, h->order);
2516 WARN_ON(PageReserved(page));
2517 prep_new_huge_page(h, page, page_to_nid(page));
2518 put_page(page); /* free it into the hugepage allocator */
2519
2520 /*
2521 * If we had gigantic hugepages allocated at boot time, we need
2522 * to restore the 'stolen' pages to totalram_pages in order to
2523 * fix confusing memory reports from free(1) and another
2524 * side-effects, like CommitLimit going negative.
2525 */
2526 if (hstate_is_gigantic(h))
2527 adjust_managed_page_count(page, 1 << h->order);
2528 cond_resched();
2529 }
2530 }
2531
2532 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2533 {
2534 unsigned long i;
2535 nodemask_t *node_alloc_noretry;
2536
2537 if (!hstate_is_gigantic(h)) {
2538 /*
2539 * Bit mask controlling how hard we retry per-node allocations.
2540 * Ignore errors as lower level routines can deal with
2541 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2542 * time, we are likely in bigger trouble.
2543 */
2544 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2545 GFP_KERNEL);
2546 } else {
2547 /* allocations done at boot time */
2548 node_alloc_noretry = NULL;
2549 }
2550
2551 /* bit mask controlling how hard we retry per-node allocations */
2552 if (node_alloc_noretry)
2553 nodes_clear(*node_alloc_noretry);
2554
2555 for (i = 0; i < h->max_huge_pages; ++i) {
2556 if (hstate_is_gigantic(h)) {
2557 if (hugetlb_cma_size) {
2558 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2559 break;
2560 }
2561 if (!alloc_bootmem_huge_page(h))
2562 break;
2563 } else if (!alloc_pool_huge_page(h,
2564 &node_states[N_MEMORY],
2565 node_alloc_noretry))
2566 break;
2567 cond_resched();
2568 }
2569 if (i < h->max_huge_pages) {
2570 char buf[32];
2571
2572 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2573 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2574 h->max_huge_pages, buf, i);
2575 h->max_huge_pages = i;
2576 }
2577
2578 kfree(node_alloc_noretry);
2579 }
2580
2581 static void __init hugetlb_init_hstates(void)
2582 {
2583 struct hstate *h;
2584
2585 for_each_hstate(h) {
2586 if (minimum_order > huge_page_order(h))
2587 minimum_order = huge_page_order(h);
2588
2589 /* oversize hugepages were init'ed in early boot */
2590 if (!hstate_is_gigantic(h))
2591 hugetlb_hstate_alloc_pages(h);
2592 }
2593 VM_BUG_ON(minimum_order == UINT_MAX);
2594 }
2595
2596 static void __init report_hugepages(void)
2597 {
2598 struct hstate *h;
2599
2600 for_each_hstate(h) {
2601 char buf[32];
2602
2603 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2604 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2605 buf, h->free_huge_pages);
2606 }
2607 }
2608
2609 #ifdef CONFIG_HIGHMEM
2610 static void try_to_free_low(struct hstate *h, unsigned long count,
2611 nodemask_t *nodes_allowed)
2612 {
2613 int i;
2614
2615 if (hstate_is_gigantic(h))
2616 return;
2617
2618 for_each_node_mask(i, *nodes_allowed) {
2619 struct page *page, *next;
2620 struct list_head *freel = &h->hugepage_freelists[i];
2621 list_for_each_entry_safe(page, next, freel, lru) {
2622 if (count >= h->nr_huge_pages)
2623 return;
2624 if (PageHighMem(page))
2625 continue;
2626 list_del(&page->lru);
2627 update_and_free_page(h, page);
2628 h->free_huge_pages--;
2629 h->free_huge_pages_node[page_to_nid(page)]--;
2630 }
2631 }
2632 }
2633 #else
2634 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2635 nodemask_t *nodes_allowed)
2636 {
2637 }
2638 #endif
2639
2640 /*
2641 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2642 * balanced by operating on them in a round-robin fashion.
2643 * Returns 1 if an adjustment was made.
2644 */
2645 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2646 int delta)
2647 {
2648 int nr_nodes, node;
2649
2650 VM_BUG_ON(delta != -1 && delta != 1);
2651
2652 if (delta < 0) {
2653 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2654 if (h->surplus_huge_pages_node[node])
2655 goto found;
2656 }
2657 } else {
2658 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2659 if (h->surplus_huge_pages_node[node] <
2660 h->nr_huge_pages_node[node])
2661 goto found;
2662 }
2663 }
2664 return 0;
2665
2666 found:
2667 h->surplus_huge_pages += delta;
2668 h->surplus_huge_pages_node[node] += delta;
2669 return 1;
2670 }
2671
2672 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2673 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2674 nodemask_t *nodes_allowed)
2675 {
2676 unsigned long min_count, ret;
2677 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2678
2679 /*
2680 * Bit mask controlling how hard we retry per-node allocations.
2681 * If we can not allocate the bit mask, do not attempt to allocate
2682 * the requested huge pages.
2683 */
2684 if (node_alloc_noretry)
2685 nodes_clear(*node_alloc_noretry);
2686 else
2687 return -ENOMEM;
2688
2689 spin_lock(&hugetlb_lock);
2690
2691 /*
2692 * Check for a node specific request.
2693 * Changing node specific huge page count may require a corresponding
2694 * change to the global count. In any case, the passed node mask
2695 * (nodes_allowed) will restrict alloc/free to the specified node.
2696 */
2697 if (nid != NUMA_NO_NODE) {
2698 unsigned long old_count = count;
2699
2700 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2701 /*
2702 * User may have specified a large count value which caused the
2703 * above calculation to overflow. In this case, they wanted
2704 * to allocate as many huge pages as possible. Set count to
2705 * largest possible value to align with their intention.
2706 */
2707 if (count < old_count)
2708 count = ULONG_MAX;
2709 }
2710
2711 /*
2712 * Gigantic pages runtime allocation depend on the capability for large
2713 * page range allocation.
2714 * If the system does not provide this feature, return an error when
2715 * the user tries to allocate gigantic pages but let the user free the
2716 * boottime allocated gigantic pages.
2717 */
2718 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2719 if (count > persistent_huge_pages(h)) {
2720 spin_unlock(&hugetlb_lock);
2721 NODEMASK_FREE(node_alloc_noretry);
2722 return -EINVAL;
2723 }
2724 /* Fall through to decrease pool */
2725 }
2726
2727 /*
2728 * Increase the pool size
2729 * First take pages out of surplus state. Then make up the
2730 * remaining difference by allocating fresh huge pages.
2731 *
2732 * We might race with alloc_surplus_huge_page() here and be unable
2733 * to convert a surplus huge page to a normal huge page. That is
2734 * not critical, though, it just means the overall size of the
2735 * pool might be one hugepage larger than it needs to be, but
2736 * within all the constraints specified by the sysctls.
2737 */
2738 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2739 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2740 break;
2741 }
2742
2743 while (count > persistent_huge_pages(h)) {
2744 /*
2745 * If this allocation races such that we no longer need the
2746 * page, free_huge_page will handle it by freeing the page
2747 * and reducing the surplus.
2748 */
2749 spin_unlock(&hugetlb_lock);
2750
2751 /* yield cpu to avoid soft lockup */
2752 cond_resched();
2753
2754 ret = alloc_pool_huge_page(h, nodes_allowed,
2755 node_alloc_noretry);
2756 spin_lock(&hugetlb_lock);
2757 if (!ret)
2758 goto out;
2759
2760 /* Bail for signals. Probably ctrl-c from user */
2761 if (signal_pending(current))
2762 goto out;
2763 }
2764
2765 /*
2766 * Decrease the pool size
2767 * First return free pages to the buddy allocator (being careful
2768 * to keep enough around to satisfy reservations). Then place
2769 * pages into surplus state as needed so the pool will shrink
2770 * to the desired size as pages become free.
2771 *
2772 * By placing pages into the surplus state independent of the
2773 * overcommit value, we are allowing the surplus pool size to
2774 * exceed overcommit. There are few sane options here. Since
2775 * alloc_surplus_huge_page() is checking the global counter,
2776 * though, we'll note that we're not allowed to exceed surplus
2777 * and won't grow the pool anywhere else. Not until one of the
2778 * sysctls are changed, or the surplus pages go out of use.
2779 */
2780 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2781 min_count = max(count, min_count);
2782 try_to_free_low(h, min_count, nodes_allowed);
2783 while (min_count < persistent_huge_pages(h)) {
2784 if (!free_pool_huge_page(h, nodes_allowed, 0))
2785 break;
2786 cond_resched_lock(&hugetlb_lock);
2787 }
2788 while (count < persistent_huge_pages(h)) {
2789 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2790 break;
2791 }
2792 out:
2793 h->max_huge_pages = persistent_huge_pages(h);
2794 spin_unlock(&hugetlb_lock);
2795
2796 NODEMASK_FREE(node_alloc_noretry);
2797
2798 return 0;
2799 }
2800
2801 #define HSTATE_ATTR_RO(_name) \
2802 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2803
2804 #define HSTATE_ATTR(_name) \
2805 static struct kobj_attribute _name##_attr = \
2806 __ATTR(_name, 0644, _name##_show, _name##_store)
2807
2808 static struct kobject *hugepages_kobj;
2809 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2810
2811 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2812
2813 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2814 {
2815 int i;
2816
2817 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2818 if (hstate_kobjs[i] == kobj) {
2819 if (nidp)
2820 *nidp = NUMA_NO_NODE;
2821 return &hstates[i];
2822 }
2823
2824 return kobj_to_node_hstate(kobj, nidp);
2825 }
2826
2827 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2828 struct kobj_attribute *attr, char *buf)
2829 {
2830 struct hstate *h;
2831 unsigned long nr_huge_pages;
2832 int nid;
2833
2834 h = kobj_to_hstate(kobj, &nid);
2835 if (nid == NUMA_NO_NODE)
2836 nr_huge_pages = h->nr_huge_pages;
2837 else
2838 nr_huge_pages = h->nr_huge_pages_node[nid];
2839
2840 return sprintf(buf, "%lu\n", nr_huge_pages);
2841 }
2842
2843 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2844 struct hstate *h, int nid,
2845 unsigned long count, size_t len)
2846 {
2847 int err;
2848 nodemask_t nodes_allowed, *n_mask;
2849
2850 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2851 return -EINVAL;
2852
2853 if (nid == NUMA_NO_NODE) {
2854 /*
2855 * global hstate attribute
2856 */
2857 if (!(obey_mempolicy &&
2858 init_nodemask_of_mempolicy(&nodes_allowed)))
2859 n_mask = &node_states[N_MEMORY];
2860 else
2861 n_mask = &nodes_allowed;
2862 } else {
2863 /*
2864 * Node specific request. count adjustment happens in
2865 * set_max_huge_pages() after acquiring hugetlb_lock.
2866 */
2867 init_nodemask_of_node(&nodes_allowed, nid);
2868 n_mask = &nodes_allowed;
2869 }
2870
2871 err = set_max_huge_pages(h, count, nid, n_mask);
2872
2873 return err ? err : len;
2874 }
2875
2876 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2877 struct kobject *kobj, const char *buf,
2878 size_t len)
2879 {
2880 struct hstate *h;
2881 unsigned long count;
2882 int nid;
2883 int err;
2884
2885 err = kstrtoul(buf, 10, &count);
2886 if (err)
2887 return err;
2888
2889 h = kobj_to_hstate(kobj, &nid);
2890 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2891 }
2892
2893 static ssize_t nr_hugepages_show(struct kobject *kobj,
2894 struct kobj_attribute *attr, char *buf)
2895 {
2896 return nr_hugepages_show_common(kobj, attr, buf);
2897 }
2898
2899 static ssize_t nr_hugepages_store(struct kobject *kobj,
2900 struct kobj_attribute *attr, const char *buf, size_t len)
2901 {
2902 return nr_hugepages_store_common(false, kobj, buf, len);
2903 }
2904 HSTATE_ATTR(nr_hugepages);
2905
2906 #ifdef CONFIG_NUMA
2907
2908 /*
2909 * hstate attribute for optionally mempolicy-based constraint on persistent
2910 * huge page alloc/free.
2911 */
2912 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2913 struct kobj_attribute *attr, char *buf)
2914 {
2915 return nr_hugepages_show_common(kobj, attr, buf);
2916 }
2917
2918 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2919 struct kobj_attribute *attr, const char *buf, size_t len)
2920 {
2921 return nr_hugepages_store_common(true, kobj, buf, len);
2922 }
2923 HSTATE_ATTR(nr_hugepages_mempolicy);
2924 #endif
2925
2926
2927 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2928 struct kobj_attribute *attr, char *buf)
2929 {
2930 struct hstate *h = kobj_to_hstate(kobj, NULL);
2931 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2932 }
2933
2934 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2935 struct kobj_attribute *attr, const char *buf, size_t count)
2936 {
2937 int err;
2938 unsigned long input;
2939 struct hstate *h = kobj_to_hstate(kobj, NULL);
2940
2941 if (hstate_is_gigantic(h))
2942 return -EINVAL;
2943
2944 err = kstrtoul(buf, 10, &input);
2945 if (err)
2946 return err;
2947
2948 spin_lock(&hugetlb_lock);
2949 h->nr_overcommit_huge_pages = input;
2950 spin_unlock(&hugetlb_lock);
2951
2952 return count;
2953 }
2954 HSTATE_ATTR(nr_overcommit_hugepages);
2955
2956 static ssize_t free_hugepages_show(struct kobject *kobj,
2957 struct kobj_attribute *attr, char *buf)
2958 {
2959 struct hstate *h;
2960 unsigned long free_huge_pages;
2961 int nid;
2962
2963 h = kobj_to_hstate(kobj, &nid);
2964 if (nid == NUMA_NO_NODE)
2965 free_huge_pages = h->free_huge_pages;
2966 else
2967 free_huge_pages = h->free_huge_pages_node[nid];
2968
2969 return sprintf(buf, "%lu\n", free_huge_pages);
2970 }
2971 HSTATE_ATTR_RO(free_hugepages);
2972
2973 static ssize_t resv_hugepages_show(struct kobject *kobj,
2974 struct kobj_attribute *attr, char *buf)
2975 {
2976 struct hstate *h = kobj_to_hstate(kobj, NULL);
2977 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2978 }
2979 HSTATE_ATTR_RO(resv_hugepages);
2980
2981 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2982 struct kobj_attribute *attr, char *buf)
2983 {
2984 struct hstate *h;
2985 unsigned long surplus_huge_pages;
2986 int nid;
2987
2988 h = kobj_to_hstate(kobj, &nid);
2989 if (nid == NUMA_NO_NODE)
2990 surplus_huge_pages = h->surplus_huge_pages;
2991 else
2992 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2993
2994 return sprintf(buf, "%lu\n", surplus_huge_pages);
2995 }
2996 HSTATE_ATTR_RO(surplus_hugepages);
2997
2998 static struct attribute *hstate_attrs[] = {
2999 &nr_hugepages_attr.attr,
3000 &nr_overcommit_hugepages_attr.attr,
3001 &free_hugepages_attr.attr,
3002 &resv_hugepages_attr.attr,
3003 &surplus_hugepages_attr.attr,
3004 #ifdef CONFIG_NUMA
3005 &nr_hugepages_mempolicy_attr.attr,
3006 #endif
3007 NULL,
3008 };
3009
3010 static const struct attribute_group hstate_attr_group = {
3011 .attrs = hstate_attrs,
3012 };
3013
3014 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3015 struct kobject **hstate_kobjs,
3016 const struct attribute_group *hstate_attr_group)
3017 {
3018 int retval;
3019 int hi = hstate_index(h);
3020
3021 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3022 if (!hstate_kobjs[hi])
3023 return -ENOMEM;
3024
3025 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3026 if (retval)
3027 kobject_put(hstate_kobjs[hi]);
3028
3029 return retval;
3030 }
3031
3032 static void __init hugetlb_sysfs_init(void)
3033 {
3034 struct hstate *h;
3035 int err;
3036
3037 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3038 if (!hugepages_kobj)
3039 return;
3040
3041 for_each_hstate(h) {
3042 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3043 hstate_kobjs, &hstate_attr_group);
3044 if (err)
3045 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3046 }
3047 }
3048
3049 #ifdef CONFIG_NUMA
3050
3051 /*
3052 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3053 * with node devices in node_devices[] using a parallel array. The array
3054 * index of a node device or _hstate == node id.
3055 * This is here to avoid any static dependency of the node device driver, in
3056 * the base kernel, on the hugetlb module.
3057 */
3058 struct node_hstate {
3059 struct kobject *hugepages_kobj;
3060 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3061 };
3062 static struct node_hstate node_hstates[MAX_NUMNODES];
3063
3064 /*
3065 * A subset of global hstate attributes for node devices
3066 */
3067 static struct attribute *per_node_hstate_attrs[] = {
3068 &nr_hugepages_attr.attr,
3069 &free_hugepages_attr.attr,
3070 &surplus_hugepages_attr.attr,
3071 NULL,
3072 };
3073
3074 static const struct attribute_group per_node_hstate_attr_group = {
3075 .attrs = per_node_hstate_attrs,
3076 };
3077
3078 /*
3079 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3080 * Returns node id via non-NULL nidp.
3081 */
3082 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3083 {
3084 int nid;
3085
3086 for (nid = 0; nid < nr_node_ids; nid++) {
3087 struct node_hstate *nhs = &node_hstates[nid];
3088 int i;
3089 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3090 if (nhs->hstate_kobjs[i] == kobj) {
3091 if (nidp)
3092 *nidp = nid;
3093 return &hstates[i];
3094 }
3095 }
3096
3097 BUG();
3098 return NULL;
3099 }
3100
3101 /*
3102 * Unregister hstate attributes from a single node device.
3103 * No-op if no hstate attributes attached.
3104 */
3105 static void hugetlb_unregister_node(struct node *node)
3106 {
3107 struct hstate *h;
3108 struct node_hstate *nhs = &node_hstates[node->dev.id];
3109
3110 if (!nhs->hugepages_kobj)
3111 return; /* no hstate attributes */
3112
3113 for_each_hstate(h) {
3114 int idx = hstate_index(h);
3115 if (nhs->hstate_kobjs[idx]) {
3116 kobject_put(nhs->hstate_kobjs[idx]);
3117 nhs->hstate_kobjs[idx] = NULL;
3118 }
3119 }
3120
3121 kobject_put(nhs->hugepages_kobj);
3122 nhs->hugepages_kobj = NULL;
3123 }
3124
3125
3126 /*
3127 * Register hstate attributes for a single node device.
3128 * No-op if attributes already registered.
3129 */
3130 static void hugetlb_register_node(struct node *node)
3131 {
3132 struct hstate *h;
3133 struct node_hstate *nhs = &node_hstates[node->dev.id];
3134 int err;
3135
3136 if (nhs->hugepages_kobj)
3137 return; /* already allocated */
3138
3139 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3140 &node->dev.kobj);
3141 if (!nhs->hugepages_kobj)
3142 return;
3143
3144 for_each_hstate(h) {
3145 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3146 nhs->hstate_kobjs,
3147 &per_node_hstate_attr_group);
3148 if (err) {
3149 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3150 h->name, node->dev.id);
3151 hugetlb_unregister_node(node);
3152 break;
3153 }
3154 }
3155 }
3156
3157 /*
3158 * hugetlb init time: register hstate attributes for all registered node
3159 * devices of nodes that have memory. All on-line nodes should have
3160 * registered their associated device by this time.
3161 */
3162 static void __init hugetlb_register_all_nodes(void)
3163 {
3164 int nid;
3165
3166 for_each_node_state(nid, N_MEMORY) {
3167 struct node *node = node_devices[nid];
3168 if (node->dev.id == nid)
3169 hugetlb_register_node(node);
3170 }
3171
3172 /*
3173 * Let the node device driver know we're here so it can
3174 * [un]register hstate attributes on node hotplug.
3175 */
3176 register_hugetlbfs_with_node(hugetlb_register_node,
3177 hugetlb_unregister_node);
3178 }
3179 #else /* !CONFIG_NUMA */
3180
3181 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3182 {
3183 BUG();
3184 if (nidp)
3185 *nidp = -1;
3186 return NULL;
3187 }
3188
3189 static void hugetlb_register_all_nodes(void) { }
3190
3191 #endif
3192
3193 static int __init hugetlb_init(void)
3194 {
3195 int i;
3196
3197 if (!hugepages_supported()) {
3198 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3199 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3200 return 0;
3201 }
3202
3203 /*
3204 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3205 * architectures depend on setup being done here.
3206 */
3207 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3208 if (!parsed_default_hugepagesz) {
3209 /*
3210 * If we did not parse a default huge page size, set
3211 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3212 * number of huge pages for this default size was implicitly
3213 * specified, set that here as well.
3214 * Note that the implicit setting will overwrite an explicit
3215 * setting. A warning will be printed in this case.
3216 */
3217 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3218 if (default_hstate_max_huge_pages) {
3219 if (default_hstate.max_huge_pages) {
3220 char buf[32];
3221
3222 string_get_size(huge_page_size(&default_hstate),
3223 1, STRING_UNITS_2, buf, 32);
3224 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3225 default_hstate.max_huge_pages, buf);
3226 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3227 default_hstate_max_huge_pages);
3228 }
3229 default_hstate.max_huge_pages =
3230 default_hstate_max_huge_pages;
3231 }
3232 }
3233
3234 hugetlb_cma_check();
3235 hugetlb_init_hstates();
3236 gather_bootmem_prealloc();
3237 report_hugepages();
3238
3239 hugetlb_sysfs_init();
3240 hugetlb_register_all_nodes();
3241 hugetlb_cgroup_file_init();
3242
3243 #ifdef CONFIG_SMP
3244 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3245 #else
3246 num_fault_mutexes = 1;
3247 #endif
3248 hugetlb_fault_mutex_table =
3249 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3250 GFP_KERNEL);
3251 BUG_ON(!hugetlb_fault_mutex_table);
3252
3253 for (i = 0; i < num_fault_mutexes; i++)
3254 mutex_init(&hugetlb_fault_mutex_table[i]);
3255 return 0;
3256 }
3257 subsys_initcall(hugetlb_init);
3258
3259 /* Overwritten by architectures with more huge page sizes */
3260 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3261 {
3262 return size == HPAGE_SIZE;
3263 }
3264
3265 void __init hugetlb_add_hstate(unsigned int order)
3266 {
3267 struct hstate *h;
3268 unsigned long i;
3269
3270 if (size_to_hstate(PAGE_SIZE << order)) {
3271 return;
3272 }
3273 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3274 BUG_ON(order == 0);
3275 h = &hstates[hugetlb_max_hstate++];
3276 h->order = order;
3277 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3278 h->nr_huge_pages = 0;
3279 h->free_huge_pages = 0;
3280 for (i = 0; i < MAX_NUMNODES; ++i)
3281 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3282 INIT_LIST_HEAD(&h->hugepage_activelist);
3283 h->next_nid_to_alloc = first_memory_node;
3284 h->next_nid_to_free = first_memory_node;
3285 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3286 huge_page_size(h)/1024);
3287
3288 parsed_hstate = h;
3289 }
3290
3291 /*
3292 * hugepages command line processing
3293 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3294 * specification. If not, ignore the hugepages value. hugepages can also
3295 * be the first huge page command line option in which case it implicitly
3296 * specifies the number of huge pages for the default size.
3297 */
3298 static int __init hugepages_setup(char *s)
3299 {
3300 unsigned long *mhp;
3301 static unsigned long *last_mhp;
3302
3303 if (!parsed_valid_hugepagesz) {
3304 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3305 parsed_valid_hugepagesz = true;
3306 return 0;
3307 }
3308
3309 /*
3310 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3311 * yet, so this hugepages= parameter goes to the "default hstate".
3312 * Otherwise, it goes with the previously parsed hugepagesz or
3313 * default_hugepagesz.
3314 */
3315 else if (!hugetlb_max_hstate)
3316 mhp = &default_hstate_max_huge_pages;
3317 else
3318 mhp = &parsed_hstate->max_huge_pages;
3319
3320 if (mhp == last_mhp) {
3321 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3322 return 0;
3323 }
3324
3325 if (sscanf(s, "%lu", mhp) <= 0)
3326 *mhp = 0;
3327
3328 /*
3329 * Global state is always initialized later in hugetlb_init.
3330 * But we need to allocate >= MAX_ORDER hstates here early to still
3331 * use the bootmem allocator.
3332 */
3333 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3334 hugetlb_hstate_alloc_pages(parsed_hstate);
3335
3336 last_mhp = mhp;
3337
3338 return 1;
3339 }
3340 __setup("hugepages=", hugepages_setup);
3341
3342 /*
3343 * hugepagesz command line processing
3344 * A specific huge page size can only be specified once with hugepagesz.
3345 * hugepagesz is followed by hugepages on the command line. The global
3346 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3347 * hugepagesz argument was valid.
3348 */
3349 static int __init hugepagesz_setup(char *s)
3350 {
3351 unsigned long size;
3352 struct hstate *h;
3353
3354 parsed_valid_hugepagesz = false;
3355 size = (unsigned long)memparse(s, NULL);
3356
3357 if (!arch_hugetlb_valid_size(size)) {
3358 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3359 return 0;
3360 }
3361
3362 h = size_to_hstate(size);
3363 if (h) {
3364 /*
3365 * hstate for this size already exists. This is normally
3366 * an error, but is allowed if the existing hstate is the
3367 * default hstate. More specifically, it is only allowed if
3368 * the number of huge pages for the default hstate was not
3369 * previously specified.
3370 */
3371 if (!parsed_default_hugepagesz || h != &default_hstate ||
3372 default_hstate.max_huge_pages) {
3373 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3374 return 0;
3375 }
3376
3377 /*
3378 * No need to call hugetlb_add_hstate() as hstate already
3379 * exists. But, do set parsed_hstate so that a following
3380 * hugepages= parameter will be applied to this hstate.
3381 */
3382 parsed_hstate = h;
3383 parsed_valid_hugepagesz = true;
3384 return 1;
3385 }
3386
3387 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3388 parsed_valid_hugepagesz = true;
3389 return 1;
3390 }
3391 __setup("hugepagesz=", hugepagesz_setup);
3392
3393 /*
3394 * default_hugepagesz command line input
3395 * Only one instance of default_hugepagesz allowed on command line.
3396 */
3397 static int __init default_hugepagesz_setup(char *s)
3398 {
3399 unsigned long size;
3400
3401 parsed_valid_hugepagesz = false;
3402 if (parsed_default_hugepagesz) {
3403 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3404 return 0;
3405 }
3406
3407 size = (unsigned long)memparse(s, NULL);
3408
3409 if (!arch_hugetlb_valid_size(size)) {
3410 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3411 return 0;
3412 }
3413
3414 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3415 parsed_valid_hugepagesz = true;
3416 parsed_default_hugepagesz = true;
3417 default_hstate_idx = hstate_index(size_to_hstate(size));
3418
3419 /*
3420 * The number of default huge pages (for this size) could have been
3421 * specified as the first hugetlb parameter: hugepages=X. If so,
3422 * then default_hstate_max_huge_pages is set. If the default huge
3423 * page size is gigantic (>= MAX_ORDER), then the pages must be
3424 * allocated here from bootmem allocator.
3425 */
3426 if (default_hstate_max_huge_pages) {
3427 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3428 if (hstate_is_gigantic(&default_hstate))
3429 hugetlb_hstate_alloc_pages(&default_hstate);
3430 default_hstate_max_huge_pages = 0;
3431 }
3432
3433 return 1;
3434 }
3435 __setup("default_hugepagesz=", default_hugepagesz_setup);
3436
3437 static unsigned int allowed_mems_nr(struct hstate *h)
3438 {
3439 int node;
3440 unsigned int nr = 0;
3441 nodemask_t *mpol_allowed;
3442 unsigned int *array = h->free_huge_pages_node;
3443 gfp_t gfp_mask = htlb_alloc_mask(h);
3444
3445 mpol_allowed = policy_nodemask_current(gfp_mask);
3446
3447 for_each_node_mask(node, cpuset_current_mems_allowed) {
3448 if (!mpol_allowed ||
3449 (mpol_allowed && node_isset(node, *mpol_allowed)))
3450 nr += array[node];
3451 }
3452
3453 return nr;
3454 }
3455
3456 #ifdef CONFIG_SYSCTL
3457 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3458 struct ctl_table *table, int write,
3459 void *buffer, size_t *length, loff_t *ppos)
3460 {
3461 struct hstate *h = &default_hstate;
3462 unsigned long tmp = h->max_huge_pages;
3463 int ret;
3464
3465 if (!hugepages_supported())
3466 return -EOPNOTSUPP;
3467
3468 table->data = &tmp;
3469 table->maxlen = sizeof(unsigned long);
3470 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3471 if (ret)
3472 goto out;
3473
3474 if (write)
3475 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3476 NUMA_NO_NODE, tmp, *length);
3477 out:
3478 return ret;
3479 }
3480
3481 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3482 void *buffer, size_t *length, loff_t *ppos)
3483 {
3484
3485 return hugetlb_sysctl_handler_common(false, table, write,
3486 buffer, length, ppos);
3487 }
3488
3489 #ifdef CONFIG_NUMA
3490 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3491 void *buffer, size_t *length, loff_t *ppos)
3492 {
3493 return hugetlb_sysctl_handler_common(true, table, write,
3494 buffer, length, ppos);
3495 }
3496 #endif /* CONFIG_NUMA */
3497
3498 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3499 void *buffer, size_t *length, loff_t *ppos)
3500 {
3501 struct hstate *h = &default_hstate;
3502 unsigned long tmp;
3503 int ret;
3504
3505 if (!hugepages_supported())
3506 return -EOPNOTSUPP;
3507
3508 tmp = h->nr_overcommit_huge_pages;
3509
3510 if (write && hstate_is_gigantic(h))
3511 return -EINVAL;
3512
3513 table->data = &tmp;
3514 table->maxlen = sizeof(unsigned long);
3515 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3516 if (ret)
3517 goto out;
3518
3519 if (write) {
3520 spin_lock(&hugetlb_lock);
3521 h->nr_overcommit_huge_pages = tmp;
3522 spin_unlock(&hugetlb_lock);
3523 }
3524 out:
3525 return ret;
3526 }
3527
3528 #endif /* CONFIG_SYSCTL */
3529
3530 void hugetlb_report_meminfo(struct seq_file *m)
3531 {
3532 struct hstate *h;
3533 unsigned long total = 0;
3534
3535 if (!hugepages_supported())
3536 return;
3537
3538 for_each_hstate(h) {
3539 unsigned long count = h->nr_huge_pages;
3540
3541 total += (PAGE_SIZE << huge_page_order(h)) * count;
3542
3543 if (h == &default_hstate)
3544 seq_printf(m,
3545 "HugePages_Total: %5lu\n"
3546 "HugePages_Free: %5lu\n"
3547 "HugePages_Rsvd: %5lu\n"
3548 "HugePages_Surp: %5lu\n"
3549 "Hugepagesize: %8lu kB\n",
3550 count,
3551 h->free_huge_pages,
3552 h->resv_huge_pages,
3553 h->surplus_huge_pages,
3554 (PAGE_SIZE << huge_page_order(h)) / 1024);
3555 }
3556
3557 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3558 }
3559
3560 int hugetlb_report_node_meminfo(int nid, char *buf)
3561 {
3562 struct hstate *h = &default_hstate;
3563 if (!hugepages_supported())
3564 return 0;
3565 return sprintf(buf,
3566 "Node %d HugePages_Total: %5u\n"
3567 "Node %d HugePages_Free: %5u\n"
3568 "Node %d HugePages_Surp: %5u\n",
3569 nid, h->nr_huge_pages_node[nid],
3570 nid, h->free_huge_pages_node[nid],
3571 nid, h->surplus_huge_pages_node[nid]);
3572 }
3573
3574 void hugetlb_show_meminfo(void)
3575 {
3576 struct hstate *h;
3577 int nid;
3578
3579 if (!hugepages_supported())
3580 return;
3581
3582 for_each_node_state(nid, N_MEMORY)
3583 for_each_hstate(h)
3584 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3585 nid,
3586 h->nr_huge_pages_node[nid],
3587 h->free_huge_pages_node[nid],
3588 h->surplus_huge_pages_node[nid],
3589 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3590 }
3591
3592 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3593 {
3594 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3595 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3596 }
3597
3598 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3599 unsigned long hugetlb_total_pages(void)
3600 {
3601 struct hstate *h;
3602 unsigned long nr_total_pages = 0;
3603
3604 for_each_hstate(h)
3605 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3606 return nr_total_pages;
3607 }
3608
3609 static int hugetlb_acct_memory(struct hstate *h, long delta)
3610 {
3611 int ret = -ENOMEM;
3612
3613 spin_lock(&hugetlb_lock);
3614 /*
3615 * When cpuset is configured, it breaks the strict hugetlb page
3616 * reservation as the accounting is done on a global variable. Such
3617 * reservation is completely rubbish in the presence of cpuset because
3618 * the reservation is not checked against page availability for the
3619 * current cpuset. Application can still potentially OOM'ed by kernel
3620 * with lack of free htlb page in cpuset that the task is in.
3621 * Attempt to enforce strict accounting with cpuset is almost
3622 * impossible (or too ugly) because cpuset is too fluid that
3623 * task or memory node can be dynamically moved between cpusets.
3624 *
3625 * The change of semantics for shared hugetlb mapping with cpuset is
3626 * undesirable. However, in order to preserve some of the semantics,
3627 * we fall back to check against current free page availability as
3628 * a best attempt and hopefully to minimize the impact of changing
3629 * semantics that cpuset has.
3630 *
3631 * Apart from cpuset, we also have memory policy mechanism that
3632 * also determines from which node the kernel will allocate memory
3633 * in a NUMA system. So similar to cpuset, we also should consider
3634 * the memory policy of the current task. Similar to the description
3635 * above.
3636 */
3637 if (delta > 0) {
3638 if (gather_surplus_pages(h, delta) < 0)
3639 goto out;
3640
3641 if (delta > allowed_mems_nr(h)) {
3642 return_unused_surplus_pages(h, delta);
3643 goto out;
3644 }
3645 }
3646
3647 ret = 0;
3648 if (delta < 0)
3649 return_unused_surplus_pages(h, (unsigned long) -delta);
3650
3651 out:
3652 spin_unlock(&hugetlb_lock);
3653 return ret;
3654 }
3655
3656 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3657 {
3658 struct resv_map *resv = vma_resv_map(vma);
3659
3660 /*
3661 * This new VMA should share its siblings reservation map if present.
3662 * The VMA will only ever have a valid reservation map pointer where
3663 * it is being copied for another still existing VMA. As that VMA
3664 * has a reference to the reservation map it cannot disappear until
3665 * after this open call completes. It is therefore safe to take a
3666 * new reference here without additional locking.
3667 */
3668 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3669 kref_get(&resv->refs);
3670 }
3671
3672 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3673 {
3674 struct hstate *h = hstate_vma(vma);
3675 struct resv_map *resv = vma_resv_map(vma);
3676 struct hugepage_subpool *spool = subpool_vma(vma);
3677 unsigned long reserve, start, end;
3678 long gbl_reserve;
3679
3680 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3681 return;
3682
3683 start = vma_hugecache_offset(h, vma, vma->vm_start);
3684 end = vma_hugecache_offset(h, vma, vma->vm_end);
3685
3686 reserve = (end - start) - region_count(resv, start, end);
3687 hugetlb_cgroup_uncharge_counter(resv, start, end);
3688 if (reserve) {
3689 /*
3690 * Decrement reserve counts. The global reserve count may be
3691 * adjusted if the subpool has a minimum size.
3692 */
3693 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3694 hugetlb_acct_memory(h, -gbl_reserve);
3695 }
3696
3697 kref_put(&resv->refs, resv_map_release);
3698 }
3699
3700 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3701 {
3702 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3703 return -EINVAL;
3704 return 0;
3705 }
3706
3707 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3708 {
3709 struct hstate *hstate = hstate_vma(vma);
3710
3711 return 1UL << huge_page_shift(hstate);
3712 }
3713
3714 /*
3715 * We cannot handle pagefaults against hugetlb pages at all. They cause
3716 * handle_mm_fault() to try to instantiate regular-sized pages in the
3717 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3718 * this far.
3719 */
3720 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3721 {
3722 BUG();
3723 return 0;
3724 }
3725
3726 /*
3727 * When a new function is introduced to vm_operations_struct and added
3728 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3729 * This is because under System V memory model, mappings created via
3730 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3731 * their original vm_ops are overwritten with shm_vm_ops.
3732 */
3733 const struct vm_operations_struct hugetlb_vm_ops = {
3734 .fault = hugetlb_vm_op_fault,
3735 .open = hugetlb_vm_op_open,
3736 .close = hugetlb_vm_op_close,
3737 .split = hugetlb_vm_op_split,
3738 .pagesize = hugetlb_vm_op_pagesize,
3739 };
3740
3741 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3742 int writable)
3743 {
3744 pte_t entry;
3745
3746 if (writable) {
3747 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3748 vma->vm_page_prot)));
3749 } else {
3750 entry = huge_pte_wrprotect(mk_huge_pte(page,
3751 vma->vm_page_prot));
3752 }
3753 entry = pte_mkyoung(entry);
3754 entry = pte_mkhuge(entry);
3755 entry = arch_make_huge_pte(entry, vma, page, writable);
3756
3757 return entry;
3758 }
3759
3760 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3761 unsigned long address, pte_t *ptep)
3762 {
3763 pte_t entry;
3764
3765 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3766 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3767 update_mmu_cache(vma, address, ptep);
3768 }
3769
3770 bool is_hugetlb_entry_migration(pte_t pte)
3771 {
3772 swp_entry_t swp;
3773
3774 if (huge_pte_none(pte) || pte_present(pte))
3775 return false;
3776 swp = pte_to_swp_entry(pte);
3777 if (non_swap_entry(swp) && is_migration_entry(swp))
3778 return true;
3779 else
3780 return false;
3781 }
3782
3783 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3784 {
3785 swp_entry_t swp;
3786
3787 if (huge_pte_none(pte) || pte_present(pte))
3788 return 0;
3789 swp = pte_to_swp_entry(pte);
3790 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3791 return 1;
3792 else
3793 return 0;
3794 }
3795
3796 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3797 struct vm_area_struct *vma)
3798 {
3799 pte_t *src_pte, *dst_pte, entry, dst_entry;
3800 struct page *ptepage;
3801 unsigned long addr;
3802 int cow;
3803 struct hstate *h = hstate_vma(vma);
3804 unsigned long sz = huge_page_size(h);
3805 struct address_space *mapping = vma->vm_file->f_mapping;
3806 struct mmu_notifier_range range;
3807 int ret = 0;
3808
3809 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3810
3811 if (cow) {
3812 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3813 vma->vm_start,
3814 vma->vm_end);
3815 mmu_notifier_invalidate_range_start(&range);
3816 } else {
3817 /*
3818 * For shared mappings i_mmap_rwsem must be held to call
3819 * huge_pte_alloc, otherwise the returned ptep could go
3820 * away if part of a shared pmd and another thread calls
3821 * huge_pmd_unshare.
3822 */
3823 i_mmap_lock_read(mapping);
3824 }
3825
3826 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3827 spinlock_t *src_ptl, *dst_ptl;
3828 src_pte = huge_pte_offset(src, addr, sz);
3829 if (!src_pte)
3830 continue;
3831 dst_pte = huge_pte_alloc(dst, addr, sz);
3832 if (!dst_pte) {
3833 ret = -ENOMEM;
3834 break;
3835 }
3836
3837 /*
3838 * If the pagetables are shared don't copy or take references.
3839 * dst_pte == src_pte is the common case of src/dest sharing.
3840 *
3841 * However, src could have 'unshared' and dst shares with
3842 * another vma. If dst_pte !none, this implies sharing.
3843 * Check here before taking page table lock, and once again
3844 * after taking the lock below.
3845 */
3846 dst_entry = huge_ptep_get(dst_pte);
3847 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3848 continue;
3849
3850 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3851 src_ptl = huge_pte_lockptr(h, src, src_pte);
3852 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3853 entry = huge_ptep_get(src_pte);
3854 dst_entry = huge_ptep_get(dst_pte);
3855 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3856 /*
3857 * Skip if src entry none. Also, skip in the
3858 * unlikely case dst entry !none as this implies
3859 * sharing with another vma.
3860 */
3861 ;
3862 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3863 is_hugetlb_entry_hwpoisoned(entry))) {
3864 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3865
3866 if (is_write_migration_entry(swp_entry) && cow) {
3867 /*
3868 * COW mappings require pages in both
3869 * parent and child to be set to read.
3870 */
3871 make_migration_entry_read(&swp_entry);
3872 entry = swp_entry_to_pte(swp_entry);
3873 set_huge_swap_pte_at(src, addr, src_pte,
3874 entry, sz);
3875 }
3876 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3877 } else {
3878 if (cow) {
3879 /*
3880 * No need to notify as we are downgrading page
3881 * table protection not changing it to point
3882 * to a new page.
3883 *
3884 * See Documentation/vm/mmu_notifier.rst
3885 */
3886 huge_ptep_set_wrprotect(src, addr, src_pte);
3887 }
3888 entry = huge_ptep_get(src_pte);
3889 ptepage = pte_page(entry);
3890 get_page(ptepage);
3891 page_dup_rmap(ptepage, true);
3892 set_huge_pte_at(dst, addr, dst_pte, entry);
3893 hugetlb_count_add(pages_per_huge_page(h), dst);
3894 }
3895 spin_unlock(src_ptl);
3896 spin_unlock(dst_ptl);
3897 }
3898
3899 if (cow)
3900 mmu_notifier_invalidate_range_end(&range);
3901 else
3902 i_mmap_unlock_read(mapping);
3903
3904 return ret;
3905 }
3906
3907 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3908 unsigned long start, unsigned long end,
3909 struct page *ref_page)
3910 {
3911 struct mm_struct *mm = vma->vm_mm;
3912 unsigned long address;
3913 pte_t *ptep;
3914 pte_t pte;
3915 spinlock_t *ptl;
3916 struct page *page;
3917 struct hstate *h = hstate_vma(vma);
3918 unsigned long sz = huge_page_size(h);
3919 struct mmu_notifier_range range;
3920
3921 WARN_ON(!is_vm_hugetlb_page(vma));
3922 BUG_ON(start & ~huge_page_mask(h));
3923 BUG_ON(end & ~huge_page_mask(h));
3924
3925 /*
3926 * This is a hugetlb vma, all the pte entries should point
3927 * to huge page.
3928 */
3929 tlb_change_page_size(tlb, sz);
3930 tlb_start_vma(tlb, vma);
3931
3932 /*
3933 * If sharing possible, alert mmu notifiers of worst case.
3934 */
3935 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3936 end);
3937 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3938 mmu_notifier_invalidate_range_start(&range);
3939 address = start;
3940 for (; address < end; address += sz) {
3941 ptep = huge_pte_offset(mm, address, sz);
3942 if (!ptep)
3943 continue;
3944
3945 ptl = huge_pte_lock(h, mm, ptep);
3946 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3947 spin_unlock(ptl);
3948 /*
3949 * We just unmapped a page of PMDs by clearing a PUD.
3950 * The caller's TLB flush range should cover this area.
3951 */
3952 continue;
3953 }
3954
3955 pte = huge_ptep_get(ptep);
3956 if (huge_pte_none(pte)) {
3957 spin_unlock(ptl);
3958 continue;
3959 }
3960
3961 /*
3962 * Migrating hugepage or HWPoisoned hugepage is already
3963 * unmapped and its refcount is dropped, so just clear pte here.
3964 */
3965 if (unlikely(!pte_present(pte))) {
3966 huge_pte_clear(mm, address, ptep, sz);
3967 spin_unlock(ptl);
3968 continue;
3969 }
3970
3971 page = pte_page(pte);
3972 /*
3973 * If a reference page is supplied, it is because a specific
3974 * page is being unmapped, not a range. Ensure the page we
3975 * are about to unmap is the actual page of interest.
3976 */
3977 if (ref_page) {
3978 if (page != ref_page) {
3979 spin_unlock(ptl);
3980 continue;
3981 }
3982 /*
3983 * Mark the VMA as having unmapped its page so that
3984 * future faults in this VMA will fail rather than
3985 * looking like data was lost
3986 */
3987 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3988 }
3989
3990 pte = huge_ptep_get_and_clear(mm, address, ptep);
3991 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3992 if (huge_pte_dirty(pte))
3993 set_page_dirty(page);
3994
3995 hugetlb_count_sub(pages_per_huge_page(h), mm);
3996 page_remove_rmap(page, true);
3997
3998 spin_unlock(ptl);
3999 tlb_remove_page_size(tlb, page, huge_page_size(h));
4000 /*
4001 * Bail out after unmapping reference page if supplied
4002 */
4003 if (ref_page)
4004 break;
4005 }
4006 mmu_notifier_invalidate_range_end(&range);
4007 tlb_end_vma(tlb, vma);
4008 }
4009
4010 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4011 struct vm_area_struct *vma, unsigned long start,
4012 unsigned long end, struct page *ref_page)
4013 {
4014 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4015
4016 /*
4017 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4018 * test will fail on a vma being torn down, and not grab a page table
4019 * on its way out. We're lucky that the flag has such an appropriate
4020 * name, and can in fact be safely cleared here. We could clear it
4021 * before the __unmap_hugepage_range above, but all that's necessary
4022 * is to clear it before releasing the i_mmap_rwsem. This works
4023 * because in the context this is called, the VMA is about to be
4024 * destroyed and the i_mmap_rwsem is held.
4025 */
4026 vma->vm_flags &= ~VM_MAYSHARE;
4027 }
4028
4029 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4030 unsigned long end, struct page *ref_page)
4031 {
4032 struct mm_struct *mm;
4033 struct mmu_gather tlb;
4034 unsigned long tlb_start = start;
4035 unsigned long tlb_end = end;
4036
4037 /*
4038 * If shared PMDs were possibly used within this vma range, adjust
4039 * start/end for worst case tlb flushing.
4040 * Note that we can not be sure if PMDs are shared until we try to
4041 * unmap pages. However, we want to make sure TLB flushing covers
4042 * the largest possible range.
4043 */
4044 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4045
4046 mm = vma->vm_mm;
4047
4048 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4049 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4050 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4051 }
4052
4053 /*
4054 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4055 * mappping it owns the reserve page for. The intention is to unmap the page
4056 * from other VMAs and let the children be SIGKILLed if they are faulting the
4057 * same region.
4058 */
4059 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4060 struct page *page, unsigned long address)
4061 {
4062 struct hstate *h = hstate_vma(vma);
4063 struct vm_area_struct *iter_vma;
4064 struct address_space *mapping;
4065 pgoff_t pgoff;
4066
4067 /*
4068 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4069 * from page cache lookup which is in HPAGE_SIZE units.
4070 */
4071 address = address & huge_page_mask(h);
4072 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4073 vma->vm_pgoff;
4074 mapping = vma->vm_file->f_mapping;
4075
4076 /*
4077 * Take the mapping lock for the duration of the table walk. As
4078 * this mapping should be shared between all the VMAs,
4079 * __unmap_hugepage_range() is called as the lock is already held
4080 */
4081 i_mmap_lock_write(mapping);
4082 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4083 /* Do not unmap the current VMA */
4084 if (iter_vma == vma)
4085 continue;
4086
4087 /*
4088 * Shared VMAs have their own reserves and do not affect
4089 * MAP_PRIVATE accounting but it is possible that a shared
4090 * VMA is using the same page so check and skip such VMAs.
4091 */
4092 if (iter_vma->vm_flags & VM_MAYSHARE)
4093 continue;
4094
4095 /*
4096 * Unmap the page from other VMAs without their own reserves.
4097 * They get marked to be SIGKILLed if they fault in these
4098 * areas. This is because a future no-page fault on this VMA
4099 * could insert a zeroed page instead of the data existing
4100 * from the time of fork. This would look like data corruption
4101 */
4102 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4103 unmap_hugepage_range(iter_vma, address,
4104 address + huge_page_size(h), page);
4105 }
4106 i_mmap_unlock_write(mapping);
4107 }
4108
4109 /*
4110 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4111 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4112 * cannot race with other handlers or page migration.
4113 * Keep the pte_same checks anyway to make transition from the mutex easier.
4114 */
4115 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4116 unsigned long address, pte_t *ptep,
4117 struct page *pagecache_page, spinlock_t *ptl)
4118 {
4119 pte_t pte;
4120 struct hstate *h = hstate_vma(vma);
4121 struct page *old_page, *new_page;
4122 int outside_reserve = 0;
4123 vm_fault_t ret = 0;
4124 unsigned long haddr = address & huge_page_mask(h);
4125 struct mmu_notifier_range range;
4126
4127 pte = huge_ptep_get(ptep);
4128 old_page = pte_page(pte);
4129
4130 retry_avoidcopy:
4131 /* If no-one else is actually using this page, avoid the copy
4132 * and just make the page writable */
4133 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4134 page_move_anon_rmap(old_page, vma);
4135 set_huge_ptep_writable(vma, haddr, ptep);
4136 return 0;
4137 }
4138
4139 /*
4140 * If the process that created a MAP_PRIVATE mapping is about to
4141 * perform a COW due to a shared page count, attempt to satisfy
4142 * the allocation without using the existing reserves. The pagecache
4143 * page is used to determine if the reserve at this address was
4144 * consumed or not. If reserves were used, a partial faulted mapping
4145 * at the time of fork() could consume its reserves on COW instead
4146 * of the full address range.
4147 */
4148 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4149 old_page != pagecache_page)
4150 outside_reserve = 1;
4151
4152 get_page(old_page);
4153
4154 /*
4155 * Drop page table lock as buddy allocator may be called. It will
4156 * be acquired again before returning to the caller, as expected.
4157 */
4158 spin_unlock(ptl);
4159 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4160
4161 if (IS_ERR(new_page)) {
4162 /*
4163 * If a process owning a MAP_PRIVATE mapping fails to COW,
4164 * it is due to references held by a child and an insufficient
4165 * huge page pool. To guarantee the original mappers
4166 * reliability, unmap the page from child processes. The child
4167 * may get SIGKILLed if it later faults.
4168 */
4169 if (outside_reserve) {
4170 put_page(old_page);
4171 BUG_ON(huge_pte_none(pte));
4172 unmap_ref_private(mm, vma, old_page, haddr);
4173 BUG_ON(huge_pte_none(pte));
4174 spin_lock(ptl);
4175 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4176 if (likely(ptep &&
4177 pte_same(huge_ptep_get(ptep), pte)))
4178 goto retry_avoidcopy;
4179 /*
4180 * race occurs while re-acquiring page table
4181 * lock, and our job is done.
4182 */
4183 return 0;
4184 }
4185
4186 ret = vmf_error(PTR_ERR(new_page));
4187 goto out_release_old;
4188 }
4189
4190 /*
4191 * When the original hugepage is shared one, it does not have
4192 * anon_vma prepared.
4193 */
4194 if (unlikely(anon_vma_prepare(vma))) {
4195 ret = VM_FAULT_OOM;
4196 goto out_release_all;
4197 }
4198
4199 copy_user_huge_page(new_page, old_page, address, vma,
4200 pages_per_huge_page(h));
4201 __SetPageUptodate(new_page);
4202
4203 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4204 haddr + huge_page_size(h));
4205 mmu_notifier_invalidate_range_start(&range);
4206
4207 /*
4208 * Retake the page table lock to check for racing updates
4209 * before the page tables are altered
4210 */
4211 spin_lock(ptl);
4212 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4213 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4214 ClearPagePrivate(new_page);
4215
4216 /* Break COW */
4217 huge_ptep_clear_flush(vma, haddr, ptep);
4218 mmu_notifier_invalidate_range(mm, range.start, range.end);
4219 set_huge_pte_at(mm, haddr, ptep,
4220 make_huge_pte(vma, new_page, 1));
4221 page_remove_rmap(old_page, true);
4222 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4223 set_page_huge_active(new_page);
4224 /* Make the old page be freed below */
4225 new_page = old_page;
4226 }
4227 spin_unlock(ptl);
4228 mmu_notifier_invalidate_range_end(&range);
4229 out_release_all:
4230 restore_reserve_on_error(h, vma, haddr, new_page);
4231 put_page(new_page);
4232 out_release_old:
4233 put_page(old_page);
4234
4235 spin_lock(ptl); /* Caller expects lock to be held */
4236 return ret;
4237 }
4238
4239 /* Return the pagecache page at a given address within a VMA */
4240 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4241 struct vm_area_struct *vma, unsigned long address)
4242 {
4243 struct address_space *mapping;
4244 pgoff_t idx;
4245
4246 mapping = vma->vm_file->f_mapping;
4247 idx = vma_hugecache_offset(h, vma, address);
4248
4249 return find_lock_page(mapping, idx);
4250 }
4251
4252 /*
4253 * Return whether there is a pagecache page to back given address within VMA.
4254 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4255 */
4256 static bool hugetlbfs_pagecache_present(struct hstate *h,
4257 struct vm_area_struct *vma, unsigned long address)
4258 {
4259 struct address_space *mapping;
4260 pgoff_t idx;
4261 struct page *page;
4262
4263 mapping = vma->vm_file->f_mapping;
4264 idx = vma_hugecache_offset(h, vma, address);
4265
4266 page = find_get_page(mapping, idx);
4267 if (page)
4268 put_page(page);
4269 return page != NULL;
4270 }
4271
4272 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4273 pgoff_t idx)
4274 {
4275 struct inode *inode = mapping->host;
4276 struct hstate *h = hstate_inode(inode);
4277 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4278
4279 if (err)
4280 return err;
4281 ClearPagePrivate(page);
4282
4283 /*
4284 * set page dirty so that it will not be removed from cache/file
4285 * by non-hugetlbfs specific code paths.
4286 */
4287 set_page_dirty(page);
4288
4289 spin_lock(&inode->i_lock);
4290 inode->i_blocks += blocks_per_huge_page(h);
4291 spin_unlock(&inode->i_lock);
4292 return 0;
4293 }
4294
4295 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4296 struct vm_area_struct *vma,
4297 struct address_space *mapping, pgoff_t idx,
4298 unsigned long address, pte_t *ptep, unsigned int flags)
4299 {
4300 struct hstate *h = hstate_vma(vma);
4301 vm_fault_t ret = VM_FAULT_SIGBUS;
4302 int anon_rmap = 0;
4303 unsigned long size;
4304 struct page *page;
4305 pte_t new_pte;
4306 spinlock_t *ptl;
4307 unsigned long haddr = address & huge_page_mask(h);
4308 bool new_page = false;
4309
4310 /*
4311 * Currently, we are forced to kill the process in the event the
4312 * original mapper has unmapped pages from the child due to a failed
4313 * COW. Warn that such a situation has occurred as it may not be obvious
4314 */
4315 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4316 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4317 current->pid);
4318 return ret;
4319 }
4320
4321 /*
4322 * We can not race with truncation due to holding i_mmap_rwsem.
4323 * i_size is modified when holding i_mmap_rwsem, so check here
4324 * once for faults beyond end of file.
4325 */
4326 size = i_size_read(mapping->host) >> huge_page_shift(h);
4327 if (idx >= size)
4328 goto out;
4329
4330 retry:
4331 page = find_lock_page(mapping, idx);
4332 if (!page) {
4333 /*
4334 * Check for page in userfault range
4335 */
4336 if (userfaultfd_missing(vma)) {
4337 u32 hash;
4338 struct vm_fault vmf = {
4339 .vma = vma,
4340 .address = haddr,
4341 .flags = flags,
4342 /*
4343 * Hard to debug if it ends up being
4344 * used by a callee that assumes
4345 * something about the other
4346 * uninitialized fields... same as in
4347 * memory.c
4348 */
4349 };
4350
4351 /*
4352 * hugetlb_fault_mutex and i_mmap_rwsem must be
4353 * dropped before handling userfault. Reacquire
4354 * after handling fault to make calling code simpler.
4355 */
4356 hash = hugetlb_fault_mutex_hash(mapping, idx);
4357 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4358 i_mmap_unlock_read(mapping);
4359 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4360 i_mmap_lock_read(mapping);
4361 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4362 goto out;
4363 }
4364
4365 page = alloc_huge_page(vma, haddr, 0);
4366 if (IS_ERR(page)) {
4367 /*
4368 * Returning error will result in faulting task being
4369 * sent SIGBUS. The hugetlb fault mutex prevents two
4370 * tasks from racing to fault in the same page which
4371 * could result in false unable to allocate errors.
4372 * Page migration does not take the fault mutex, but
4373 * does a clear then write of pte's under page table
4374 * lock. Page fault code could race with migration,
4375 * notice the clear pte and try to allocate a page
4376 * here. Before returning error, get ptl and make
4377 * sure there really is no pte entry.
4378 */
4379 ptl = huge_pte_lock(h, mm, ptep);
4380 if (!huge_pte_none(huge_ptep_get(ptep))) {
4381 ret = 0;
4382 spin_unlock(ptl);
4383 goto out;
4384 }
4385 spin_unlock(ptl);
4386 ret = vmf_error(PTR_ERR(page));
4387 goto out;
4388 }
4389 clear_huge_page(page, address, pages_per_huge_page(h));
4390 __SetPageUptodate(page);
4391 new_page = true;
4392
4393 if (vma->vm_flags & VM_MAYSHARE) {
4394 int err = huge_add_to_page_cache(page, mapping, idx);
4395 if (err) {
4396 put_page(page);
4397 if (err == -EEXIST)
4398 goto retry;
4399 goto out;
4400 }
4401 } else {
4402 lock_page(page);
4403 if (unlikely(anon_vma_prepare(vma))) {
4404 ret = VM_FAULT_OOM;
4405 goto backout_unlocked;
4406 }
4407 anon_rmap = 1;
4408 }
4409 } else {
4410 /*
4411 * If memory error occurs between mmap() and fault, some process
4412 * don't have hwpoisoned swap entry for errored virtual address.
4413 * So we need to block hugepage fault by PG_hwpoison bit check.
4414 */
4415 if (unlikely(PageHWPoison(page))) {
4416 ret = VM_FAULT_HWPOISON |
4417 VM_FAULT_SET_HINDEX(hstate_index(h));
4418 goto backout_unlocked;
4419 }
4420 }
4421
4422 /*
4423 * If we are going to COW a private mapping later, we examine the
4424 * pending reservations for this page now. This will ensure that
4425 * any allocations necessary to record that reservation occur outside
4426 * the spinlock.
4427 */
4428 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4429 if (vma_needs_reservation(h, vma, haddr) < 0) {
4430 ret = VM_FAULT_OOM;
4431 goto backout_unlocked;
4432 }
4433 /* Just decrements count, does not deallocate */
4434 vma_end_reservation(h, vma, haddr);
4435 }
4436
4437 ptl = huge_pte_lock(h, mm, ptep);
4438 ret = 0;
4439 if (!huge_pte_none(huge_ptep_get(ptep)))
4440 goto backout;
4441
4442 if (anon_rmap) {
4443 ClearPagePrivate(page);
4444 hugepage_add_new_anon_rmap(page, vma, haddr);
4445 } else
4446 page_dup_rmap(page, true);
4447 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4448 && (vma->vm_flags & VM_SHARED)));
4449 set_huge_pte_at(mm, haddr, ptep, new_pte);
4450
4451 hugetlb_count_add(pages_per_huge_page(h), mm);
4452 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4453 /* Optimization, do the COW without a second fault */
4454 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4455 }
4456
4457 spin_unlock(ptl);
4458
4459 /*
4460 * Only make newly allocated pages active. Existing pages found
4461 * in the pagecache could be !page_huge_active() if they have been
4462 * isolated for migration.
4463 */
4464 if (new_page)
4465 set_page_huge_active(page);
4466
4467 unlock_page(page);
4468 out:
4469 return ret;
4470
4471 backout:
4472 spin_unlock(ptl);
4473 backout_unlocked:
4474 unlock_page(page);
4475 restore_reserve_on_error(h, vma, haddr, page);
4476 put_page(page);
4477 goto out;
4478 }
4479
4480 #ifdef CONFIG_SMP
4481 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4482 {
4483 unsigned long key[2];
4484 u32 hash;
4485
4486 key[0] = (unsigned long) mapping;
4487 key[1] = idx;
4488
4489 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4490
4491 return hash & (num_fault_mutexes - 1);
4492 }
4493 #else
4494 /*
4495 * For uniprocesor systems we always use a single mutex, so just
4496 * return 0 and avoid the hashing overhead.
4497 */
4498 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4499 {
4500 return 0;
4501 }
4502 #endif
4503
4504 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4505 unsigned long address, unsigned int flags)
4506 {
4507 pte_t *ptep, entry;
4508 spinlock_t *ptl;
4509 vm_fault_t ret;
4510 u32 hash;
4511 pgoff_t idx;
4512 struct page *page = NULL;
4513 struct page *pagecache_page = NULL;
4514 struct hstate *h = hstate_vma(vma);
4515 struct address_space *mapping;
4516 int need_wait_lock = 0;
4517 unsigned long haddr = address & huge_page_mask(h);
4518
4519 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4520 if (ptep) {
4521 /*
4522 * Since we hold no locks, ptep could be stale. That is
4523 * OK as we are only making decisions based on content and
4524 * not actually modifying content here.
4525 */
4526 entry = huge_ptep_get(ptep);
4527 if (unlikely(is_hugetlb_entry_migration(entry))) {
4528 migration_entry_wait_huge(vma, mm, ptep);
4529 return 0;
4530 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4531 return VM_FAULT_HWPOISON_LARGE |
4532 VM_FAULT_SET_HINDEX(hstate_index(h));
4533 }
4534
4535 /*
4536 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4537 * until finished with ptep. This serves two purposes:
4538 * 1) It prevents huge_pmd_unshare from being called elsewhere
4539 * and making the ptep no longer valid.
4540 * 2) It synchronizes us with i_size modifications during truncation.
4541 *
4542 * ptep could have already be assigned via huge_pte_offset. That
4543 * is OK, as huge_pte_alloc will return the same value unless
4544 * something has changed.
4545 */
4546 mapping = vma->vm_file->f_mapping;
4547 i_mmap_lock_read(mapping);
4548 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4549 if (!ptep) {
4550 i_mmap_unlock_read(mapping);
4551 return VM_FAULT_OOM;
4552 }
4553
4554 /*
4555 * Serialize hugepage allocation and instantiation, so that we don't
4556 * get spurious allocation failures if two CPUs race to instantiate
4557 * the same page in the page cache.
4558 */
4559 idx = vma_hugecache_offset(h, vma, haddr);
4560 hash = hugetlb_fault_mutex_hash(mapping, idx);
4561 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4562
4563 entry = huge_ptep_get(ptep);
4564 if (huge_pte_none(entry)) {
4565 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4566 goto out_mutex;
4567 }
4568
4569 ret = 0;
4570
4571 /*
4572 * entry could be a migration/hwpoison entry at this point, so this
4573 * check prevents the kernel from going below assuming that we have
4574 * an active hugepage in pagecache. This goto expects the 2nd page
4575 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4576 * properly handle it.
4577 */
4578 if (!pte_present(entry))
4579 goto out_mutex;
4580
4581 /*
4582 * If we are going to COW the mapping later, we examine the pending
4583 * reservations for this page now. This will ensure that any
4584 * allocations necessary to record that reservation occur outside the
4585 * spinlock. For private mappings, we also lookup the pagecache
4586 * page now as it is used to determine if a reservation has been
4587 * consumed.
4588 */
4589 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4590 if (vma_needs_reservation(h, vma, haddr) < 0) {
4591 ret = VM_FAULT_OOM;
4592 goto out_mutex;
4593 }
4594 /* Just decrements count, does not deallocate */
4595 vma_end_reservation(h, vma, haddr);
4596
4597 if (!(vma->vm_flags & VM_MAYSHARE))
4598 pagecache_page = hugetlbfs_pagecache_page(h,
4599 vma, haddr);
4600 }
4601
4602 ptl = huge_pte_lock(h, mm, ptep);
4603
4604 /* Check for a racing update before calling hugetlb_cow */
4605 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4606 goto out_ptl;
4607
4608 /*
4609 * hugetlb_cow() requires page locks of pte_page(entry) and
4610 * pagecache_page, so here we need take the former one
4611 * when page != pagecache_page or !pagecache_page.
4612 */
4613 page = pte_page(entry);
4614 if (page != pagecache_page)
4615 if (!trylock_page(page)) {
4616 need_wait_lock = 1;
4617 goto out_ptl;
4618 }
4619
4620 get_page(page);
4621
4622 if (flags & FAULT_FLAG_WRITE) {
4623 if (!huge_pte_write(entry)) {
4624 ret = hugetlb_cow(mm, vma, address, ptep,
4625 pagecache_page, ptl);
4626 goto out_put_page;
4627 }
4628 entry = huge_pte_mkdirty(entry);
4629 }
4630 entry = pte_mkyoung(entry);
4631 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4632 flags & FAULT_FLAG_WRITE))
4633 update_mmu_cache(vma, haddr, ptep);
4634 out_put_page:
4635 if (page != pagecache_page)
4636 unlock_page(page);
4637 put_page(page);
4638 out_ptl:
4639 spin_unlock(ptl);
4640
4641 if (pagecache_page) {
4642 unlock_page(pagecache_page);
4643 put_page(pagecache_page);
4644 }
4645 out_mutex:
4646 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4647 i_mmap_unlock_read(mapping);
4648 /*
4649 * Generally it's safe to hold refcount during waiting page lock. But
4650 * here we just wait to defer the next page fault to avoid busy loop and
4651 * the page is not used after unlocked before returning from the current
4652 * page fault. So we are safe from accessing freed page, even if we wait
4653 * here without taking refcount.
4654 */
4655 if (need_wait_lock)
4656 wait_on_page_locked(page);
4657 return ret;
4658 }
4659
4660 /*
4661 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4662 * modifications for huge pages.
4663 */
4664 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4665 pte_t *dst_pte,
4666 struct vm_area_struct *dst_vma,
4667 unsigned long dst_addr,
4668 unsigned long src_addr,
4669 struct page **pagep)
4670 {
4671 struct address_space *mapping;
4672 pgoff_t idx;
4673 unsigned long size;
4674 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4675 struct hstate *h = hstate_vma(dst_vma);
4676 pte_t _dst_pte;
4677 spinlock_t *ptl;
4678 int ret;
4679 struct page *page;
4680
4681 if (!*pagep) {
4682 ret = -ENOMEM;
4683 page = alloc_huge_page(dst_vma, dst_addr, 0);
4684 if (IS_ERR(page))
4685 goto out;
4686
4687 ret = copy_huge_page_from_user(page,
4688 (const void __user *) src_addr,
4689 pages_per_huge_page(h), false);
4690
4691 /* fallback to copy_from_user outside mmap_lock */
4692 if (unlikely(ret)) {
4693 ret = -ENOENT;
4694 *pagep = page;
4695 /* don't free the page */
4696 goto out;
4697 }
4698 } else {
4699 page = *pagep;
4700 *pagep = NULL;
4701 }
4702
4703 /*
4704 * The memory barrier inside __SetPageUptodate makes sure that
4705 * preceding stores to the page contents become visible before
4706 * the set_pte_at() write.
4707 */
4708 __SetPageUptodate(page);
4709
4710 mapping = dst_vma->vm_file->f_mapping;
4711 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4712
4713 /*
4714 * If shared, add to page cache
4715 */
4716 if (vm_shared) {
4717 size = i_size_read(mapping->host) >> huge_page_shift(h);
4718 ret = -EFAULT;
4719 if (idx >= size)
4720 goto out_release_nounlock;
4721
4722 /*
4723 * Serialization between remove_inode_hugepages() and
4724 * huge_add_to_page_cache() below happens through the
4725 * hugetlb_fault_mutex_table that here must be hold by
4726 * the caller.
4727 */
4728 ret = huge_add_to_page_cache(page, mapping, idx);
4729 if (ret)
4730 goto out_release_nounlock;
4731 }
4732
4733 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4734 spin_lock(ptl);
4735
4736 /*
4737 * Recheck the i_size after holding PT lock to make sure not
4738 * to leave any page mapped (as page_mapped()) beyond the end
4739 * of the i_size (remove_inode_hugepages() is strict about
4740 * enforcing that). If we bail out here, we'll also leave a
4741 * page in the radix tree in the vm_shared case beyond the end
4742 * of the i_size, but remove_inode_hugepages() will take care
4743 * of it as soon as we drop the hugetlb_fault_mutex_table.
4744 */
4745 size = i_size_read(mapping->host) >> huge_page_shift(h);
4746 ret = -EFAULT;
4747 if (idx >= size)
4748 goto out_release_unlock;
4749
4750 ret = -EEXIST;
4751 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4752 goto out_release_unlock;
4753
4754 if (vm_shared) {
4755 page_dup_rmap(page, true);
4756 } else {
4757 ClearPagePrivate(page);
4758 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4759 }
4760
4761 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4762 if (dst_vma->vm_flags & VM_WRITE)
4763 _dst_pte = huge_pte_mkdirty(_dst_pte);
4764 _dst_pte = pte_mkyoung(_dst_pte);
4765
4766 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4767
4768 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4769 dst_vma->vm_flags & VM_WRITE);
4770 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4771
4772 /* No need to invalidate - it was non-present before */
4773 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4774
4775 spin_unlock(ptl);
4776 set_page_huge_active(page);
4777 if (vm_shared)
4778 unlock_page(page);
4779 ret = 0;
4780 out:
4781 return ret;
4782 out_release_unlock:
4783 spin_unlock(ptl);
4784 if (vm_shared)
4785 unlock_page(page);
4786 out_release_nounlock:
4787 put_page(page);
4788 goto out;
4789 }
4790
4791 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4792 struct page **pages, struct vm_area_struct **vmas,
4793 unsigned long *position, unsigned long *nr_pages,
4794 long i, unsigned int flags, int *locked)
4795 {
4796 unsigned long pfn_offset;
4797 unsigned long vaddr = *position;
4798 unsigned long remainder = *nr_pages;
4799 struct hstate *h = hstate_vma(vma);
4800 int err = -EFAULT;
4801
4802 while (vaddr < vma->vm_end && remainder) {
4803 pte_t *pte;
4804 spinlock_t *ptl = NULL;
4805 int absent;
4806 struct page *page;
4807
4808 /*
4809 * If we have a pending SIGKILL, don't keep faulting pages and
4810 * potentially allocating memory.
4811 */
4812 if (fatal_signal_pending(current)) {
4813 remainder = 0;
4814 break;
4815 }
4816
4817 /*
4818 * Some archs (sparc64, sh*) have multiple pte_ts to
4819 * each hugepage. We have to make sure we get the
4820 * first, for the page indexing below to work.
4821 *
4822 * Note that page table lock is not held when pte is null.
4823 */
4824 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4825 huge_page_size(h));
4826 if (pte)
4827 ptl = huge_pte_lock(h, mm, pte);
4828 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4829
4830 /*
4831 * When coredumping, it suits get_dump_page if we just return
4832 * an error where there's an empty slot with no huge pagecache
4833 * to back it. This way, we avoid allocating a hugepage, and
4834 * the sparse dumpfile avoids allocating disk blocks, but its
4835 * huge holes still show up with zeroes where they need to be.
4836 */
4837 if (absent && (flags & FOLL_DUMP) &&
4838 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4839 if (pte)
4840 spin_unlock(ptl);
4841 remainder = 0;
4842 break;
4843 }
4844
4845 /*
4846 * We need call hugetlb_fault for both hugepages under migration
4847 * (in which case hugetlb_fault waits for the migration,) and
4848 * hwpoisoned hugepages (in which case we need to prevent the
4849 * caller from accessing to them.) In order to do this, we use
4850 * here is_swap_pte instead of is_hugetlb_entry_migration and
4851 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4852 * both cases, and because we can't follow correct pages
4853 * directly from any kind of swap entries.
4854 */
4855 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4856 ((flags & FOLL_WRITE) &&
4857 !huge_pte_write(huge_ptep_get(pte)))) {
4858 vm_fault_t ret;
4859 unsigned int fault_flags = 0;
4860
4861 if (pte)
4862 spin_unlock(ptl);
4863 if (flags & FOLL_WRITE)
4864 fault_flags |= FAULT_FLAG_WRITE;
4865 if (locked)
4866 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4867 FAULT_FLAG_KILLABLE;
4868 if (flags & FOLL_NOWAIT)
4869 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4870 FAULT_FLAG_RETRY_NOWAIT;
4871 if (flags & FOLL_TRIED) {
4872 /*
4873 * Note: FAULT_FLAG_ALLOW_RETRY and
4874 * FAULT_FLAG_TRIED can co-exist
4875 */
4876 fault_flags |= FAULT_FLAG_TRIED;
4877 }
4878 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4879 if (ret & VM_FAULT_ERROR) {
4880 err = vm_fault_to_errno(ret, flags);
4881 remainder = 0;
4882 break;
4883 }
4884 if (ret & VM_FAULT_RETRY) {
4885 if (locked &&
4886 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4887 *locked = 0;
4888 *nr_pages = 0;
4889 /*
4890 * VM_FAULT_RETRY must not return an
4891 * error, it will return zero
4892 * instead.
4893 *
4894 * No need to update "position" as the
4895 * caller will not check it after
4896 * *nr_pages is set to 0.
4897 */
4898 return i;
4899 }
4900 continue;
4901 }
4902
4903 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4904 page = pte_page(huge_ptep_get(pte));
4905
4906 /*
4907 * If subpage information not requested, update counters
4908 * and skip the same_page loop below.
4909 */
4910 if (!pages && !vmas && !pfn_offset &&
4911 (vaddr + huge_page_size(h) < vma->vm_end) &&
4912 (remainder >= pages_per_huge_page(h))) {
4913 vaddr += huge_page_size(h);
4914 remainder -= pages_per_huge_page(h);
4915 i += pages_per_huge_page(h);
4916 spin_unlock(ptl);
4917 continue;
4918 }
4919
4920 same_page:
4921 if (pages) {
4922 pages[i] = mem_map_offset(page, pfn_offset);
4923 /*
4924 * try_grab_page() should always succeed here, because:
4925 * a) we hold the ptl lock, and b) we've just checked
4926 * that the huge page is present in the page tables. If
4927 * the huge page is present, then the tail pages must
4928 * also be present. The ptl prevents the head page and
4929 * tail pages from being rearranged in any way. So this
4930 * page must be available at this point, unless the page
4931 * refcount overflowed:
4932 */
4933 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4934 spin_unlock(ptl);
4935 remainder = 0;
4936 err = -ENOMEM;
4937 break;
4938 }
4939 }
4940
4941 if (vmas)
4942 vmas[i] = vma;
4943
4944 vaddr += PAGE_SIZE;
4945 ++pfn_offset;
4946 --remainder;
4947 ++i;
4948 if (vaddr < vma->vm_end && remainder &&
4949 pfn_offset < pages_per_huge_page(h)) {
4950 /*
4951 * We use pfn_offset to avoid touching the pageframes
4952 * of this compound page.
4953 */
4954 goto same_page;
4955 }
4956 spin_unlock(ptl);
4957 }
4958 *nr_pages = remainder;
4959 /*
4960 * setting position is actually required only if remainder is
4961 * not zero but it's faster not to add a "if (remainder)"
4962 * branch.
4963 */
4964 *position = vaddr;
4965
4966 return i ? i : err;
4967 }
4968
4969 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4970 /*
4971 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4972 * implement this.
4973 */
4974 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4975 #endif
4976
4977 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4978 unsigned long address, unsigned long end, pgprot_t newprot)
4979 {
4980 struct mm_struct *mm = vma->vm_mm;
4981 unsigned long start = address;
4982 pte_t *ptep;
4983 pte_t pte;
4984 struct hstate *h = hstate_vma(vma);
4985 unsigned long pages = 0;
4986 bool shared_pmd = false;
4987 struct mmu_notifier_range range;
4988
4989 /*
4990 * In the case of shared PMDs, the area to flush could be beyond
4991 * start/end. Set range.start/range.end to cover the maximum possible
4992 * range if PMD sharing is possible.
4993 */
4994 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4995 0, vma, mm, start, end);
4996 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4997
4998 BUG_ON(address >= end);
4999 flush_cache_range(vma, range.start, range.end);
5000
5001 mmu_notifier_invalidate_range_start(&range);
5002 i_mmap_lock_write(vma->vm_file->f_mapping);
5003 for (; address < end; address += huge_page_size(h)) {
5004 spinlock_t *ptl;
5005 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5006 if (!ptep)
5007 continue;
5008 ptl = huge_pte_lock(h, mm, ptep);
5009 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5010 pages++;
5011 spin_unlock(ptl);
5012 shared_pmd = true;
5013 continue;
5014 }
5015 pte = huge_ptep_get(ptep);
5016 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5017 spin_unlock(ptl);
5018 continue;
5019 }
5020 if (unlikely(is_hugetlb_entry_migration(pte))) {
5021 swp_entry_t entry = pte_to_swp_entry(pte);
5022
5023 if (is_write_migration_entry(entry)) {
5024 pte_t newpte;
5025
5026 make_migration_entry_read(&entry);
5027 newpte = swp_entry_to_pte(entry);
5028 set_huge_swap_pte_at(mm, address, ptep,
5029 newpte, huge_page_size(h));
5030 pages++;
5031 }
5032 spin_unlock(ptl);
5033 continue;
5034 }
5035 if (!huge_pte_none(pte)) {
5036 pte_t old_pte;
5037
5038 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5039 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5040 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5041 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5042 pages++;
5043 }
5044 spin_unlock(ptl);
5045 }
5046 /*
5047 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5048 * may have cleared our pud entry and done put_page on the page table:
5049 * once we release i_mmap_rwsem, another task can do the final put_page
5050 * and that page table be reused and filled with junk. If we actually
5051 * did unshare a page of pmds, flush the range corresponding to the pud.
5052 */
5053 if (shared_pmd)
5054 flush_hugetlb_tlb_range(vma, range.start, range.end);
5055 else
5056 flush_hugetlb_tlb_range(vma, start, end);
5057 /*
5058 * No need to call mmu_notifier_invalidate_range() we are downgrading
5059 * page table protection not changing it to point to a new page.
5060 *
5061 * See Documentation/vm/mmu_notifier.rst
5062 */
5063 i_mmap_unlock_write(vma->vm_file->f_mapping);
5064 mmu_notifier_invalidate_range_end(&range);
5065
5066 return pages << h->order;
5067 }
5068
5069 int hugetlb_reserve_pages(struct inode *inode,
5070 long from, long to,
5071 struct vm_area_struct *vma,
5072 vm_flags_t vm_flags)
5073 {
5074 long ret, chg, add = -1;
5075 struct hstate *h = hstate_inode(inode);
5076 struct hugepage_subpool *spool = subpool_inode(inode);
5077 struct resv_map *resv_map;
5078 struct hugetlb_cgroup *h_cg = NULL;
5079 long gbl_reserve, regions_needed = 0;
5080
5081 /* This should never happen */
5082 if (from > to) {
5083 VM_WARN(1, "%s called with a negative range\n", __func__);
5084 return -EINVAL;
5085 }
5086
5087 /*
5088 * Only apply hugepage reservation if asked. At fault time, an
5089 * attempt will be made for VM_NORESERVE to allocate a page
5090 * without using reserves
5091 */
5092 if (vm_flags & VM_NORESERVE)
5093 return 0;
5094
5095 /*
5096 * Shared mappings base their reservation on the number of pages that
5097 * are already allocated on behalf of the file. Private mappings need
5098 * to reserve the full area even if read-only as mprotect() may be
5099 * called to make the mapping read-write. Assume !vma is a shm mapping
5100 */
5101 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5102 /*
5103 * resv_map can not be NULL as hugetlb_reserve_pages is only
5104 * called for inodes for which resv_maps were created (see
5105 * hugetlbfs_get_inode).
5106 */
5107 resv_map = inode_resv_map(inode);
5108
5109 chg = region_chg(resv_map, from, to, &regions_needed);
5110
5111 } else {
5112 /* Private mapping. */
5113 resv_map = resv_map_alloc();
5114 if (!resv_map)
5115 return -ENOMEM;
5116
5117 chg = to - from;
5118
5119 set_vma_resv_map(vma, resv_map);
5120 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5121 }
5122
5123 if (chg < 0) {
5124 ret = chg;
5125 goto out_err;
5126 }
5127
5128 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5129 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5130
5131 if (ret < 0) {
5132 ret = -ENOMEM;
5133 goto out_err;
5134 }
5135
5136 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5137 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5138 * of the resv_map.
5139 */
5140 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5141 }
5142
5143 /*
5144 * There must be enough pages in the subpool for the mapping. If
5145 * the subpool has a minimum size, there may be some global
5146 * reservations already in place (gbl_reserve).
5147 */
5148 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5149 if (gbl_reserve < 0) {
5150 ret = -ENOSPC;
5151 goto out_uncharge_cgroup;
5152 }
5153
5154 /*
5155 * Check enough hugepages are available for the reservation.
5156 * Hand the pages back to the subpool if there are not
5157 */
5158 ret = hugetlb_acct_memory(h, gbl_reserve);
5159 if (ret < 0) {
5160 goto out_put_pages;
5161 }
5162
5163 /*
5164 * Account for the reservations made. Shared mappings record regions
5165 * that have reservations as they are shared by multiple VMAs.
5166 * When the last VMA disappears, the region map says how much
5167 * the reservation was and the page cache tells how much of
5168 * the reservation was consumed. Private mappings are per-VMA and
5169 * only the consumed reservations are tracked. When the VMA
5170 * disappears, the original reservation is the VMA size and the
5171 * consumed reservations are stored in the map. Hence, nothing
5172 * else has to be done for private mappings here
5173 */
5174 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5175 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5176
5177 if (unlikely(add < 0)) {
5178 hugetlb_acct_memory(h, -gbl_reserve);
5179 goto out_put_pages;
5180 } else if (unlikely(chg > add)) {
5181 /*
5182 * pages in this range were added to the reserve
5183 * map between region_chg and region_add. This
5184 * indicates a race with alloc_huge_page. Adjust
5185 * the subpool and reserve counts modified above
5186 * based on the difference.
5187 */
5188 long rsv_adjust;
5189
5190 hugetlb_cgroup_uncharge_cgroup_rsvd(
5191 hstate_index(h),
5192 (chg - add) * pages_per_huge_page(h), h_cg);
5193
5194 rsv_adjust = hugepage_subpool_put_pages(spool,
5195 chg - add);
5196 hugetlb_acct_memory(h, -rsv_adjust);
5197 }
5198 }
5199 return 0;
5200 out_put_pages:
5201 /* put back original number of pages, chg */
5202 (void)hugepage_subpool_put_pages(spool, chg);
5203 out_uncharge_cgroup:
5204 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5205 chg * pages_per_huge_page(h), h_cg);
5206 out_err:
5207 if (!vma || vma->vm_flags & VM_MAYSHARE)
5208 /* Only call region_abort if the region_chg succeeded but the
5209 * region_add failed or didn't run.
5210 */
5211 if (chg >= 0 && add < 0)
5212 region_abort(resv_map, from, to, regions_needed);
5213 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5214 kref_put(&resv_map->refs, resv_map_release);
5215 return ret;
5216 }
5217
5218 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5219 long freed)
5220 {
5221 struct hstate *h = hstate_inode(inode);
5222 struct resv_map *resv_map = inode_resv_map(inode);
5223 long chg = 0;
5224 struct hugepage_subpool *spool = subpool_inode(inode);
5225 long gbl_reserve;
5226
5227 /*
5228 * Since this routine can be called in the evict inode path for all
5229 * hugetlbfs inodes, resv_map could be NULL.
5230 */
5231 if (resv_map) {
5232 chg = region_del(resv_map, start, end);
5233 /*
5234 * region_del() can fail in the rare case where a region
5235 * must be split and another region descriptor can not be
5236 * allocated. If end == LONG_MAX, it will not fail.
5237 */
5238 if (chg < 0)
5239 return chg;
5240 }
5241
5242 spin_lock(&inode->i_lock);
5243 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5244 spin_unlock(&inode->i_lock);
5245
5246 /*
5247 * If the subpool has a minimum size, the number of global
5248 * reservations to be released may be adjusted.
5249 */
5250 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5251 hugetlb_acct_memory(h, -gbl_reserve);
5252
5253 return 0;
5254 }
5255
5256 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5257 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5258 struct vm_area_struct *vma,
5259 unsigned long addr, pgoff_t idx)
5260 {
5261 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5262 svma->vm_start;
5263 unsigned long sbase = saddr & PUD_MASK;
5264 unsigned long s_end = sbase + PUD_SIZE;
5265
5266 /* Allow segments to share if only one is marked locked */
5267 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5268 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5269
5270 /*
5271 * match the virtual addresses, permission and the alignment of the
5272 * page table page.
5273 */
5274 if (pmd_index(addr) != pmd_index(saddr) ||
5275 vm_flags != svm_flags ||
5276 sbase < svma->vm_start || svma->vm_end < s_end)
5277 return 0;
5278
5279 return saddr;
5280 }
5281
5282 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5283 {
5284 unsigned long base = addr & PUD_MASK;
5285 unsigned long end = base + PUD_SIZE;
5286
5287 /*
5288 * check on proper vm_flags and page table alignment
5289 */
5290 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5291 return true;
5292 return false;
5293 }
5294
5295 /*
5296 * Determine if start,end range within vma could be mapped by shared pmd.
5297 * If yes, adjust start and end to cover range associated with possible
5298 * shared pmd mappings.
5299 */
5300 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5301 unsigned long *start, unsigned long *end)
5302 {
5303 unsigned long a_start, a_end;
5304
5305 if (!(vma->vm_flags & VM_MAYSHARE))
5306 return;
5307
5308 /* Extend the range to be PUD aligned for a worst case scenario */
5309 a_start = ALIGN_DOWN(*start, PUD_SIZE);
5310 a_end = ALIGN(*end, PUD_SIZE);
5311
5312 /*
5313 * Intersect the range with the vma range, since pmd sharing won't be
5314 * across vma after all
5315 */
5316 *start = max(vma->vm_start, a_start);
5317 *end = min(vma->vm_end, a_end);
5318 }
5319
5320 /*
5321 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5322 * and returns the corresponding pte. While this is not necessary for the
5323 * !shared pmd case because we can allocate the pmd later as well, it makes the
5324 * code much cleaner.
5325 *
5326 * This routine must be called with i_mmap_rwsem held in at least read mode.
5327 * For hugetlbfs, this prevents removal of any page table entries associated
5328 * with the address space. This is important as we are setting up sharing
5329 * based on existing page table entries (mappings).
5330 */
5331 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5332 {
5333 struct vm_area_struct *vma = find_vma(mm, addr);
5334 struct address_space *mapping = vma->vm_file->f_mapping;
5335 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5336 vma->vm_pgoff;
5337 struct vm_area_struct *svma;
5338 unsigned long saddr;
5339 pte_t *spte = NULL;
5340 pte_t *pte;
5341 spinlock_t *ptl;
5342
5343 if (!vma_shareable(vma, addr))
5344 return (pte_t *)pmd_alloc(mm, pud, addr);
5345
5346 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5347 if (svma == vma)
5348 continue;
5349
5350 saddr = page_table_shareable(svma, vma, addr, idx);
5351 if (saddr) {
5352 spte = huge_pte_offset(svma->vm_mm, saddr,
5353 vma_mmu_pagesize(svma));
5354 if (spte) {
5355 get_page(virt_to_page(spte));
5356 break;
5357 }
5358 }
5359 }
5360
5361 if (!spte)
5362 goto out;
5363
5364 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5365 if (pud_none(*pud)) {
5366 pud_populate(mm, pud,
5367 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5368 mm_inc_nr_pmds(mm);
5369 } else {
5370 put_page(virt_to_page(spte));
5371 }
5372 spin_unlock(ptl);
5373 out:
5374 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5375 return pte;
5376 }
5377
5378 /*
5379 * unmap huge page backed by shared pte.
5380 *
5381 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5382 * indicated by page_count > 1, unmap is achieved by clearing pud and
5383 * decrementing the ref count. If count == 1, the pte page is not shared.
5384 *
5385 * Called with page table lock held and i_mmap_rwsem held in write mode.
5386 *
5387 * returns: 1 successfully unmapped a shared pte page
5388 * 0 the underlying pte page is not shared, or it is the last user
5389 */
5390 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5391 unsigned long *addr, pte_t *ptep)
5392 {
5393 pgd_t *pgd = pgd_offset(mm, *addr);
5394 p4d_t *p4d = p4d_offset(pgd, *addr);
5395 pud_t *pud = pud_offset(p4d, *addr);
5396
5397 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5398 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5399 if (page_count(virt_to_page(ptep)) == 1)
5400 return 0;
5401
5402 pud_clear(pud);
5403 put_page(virt_to_page(ptep));
5404 mm_dec_nr_pmds(mm);
5405 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5406 return 1;
5407 }
5408 #define want_pmd_share() (1)
5409 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5410 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5411 {
5412 return NULL;
5413 }
5414
5415 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416 unsigned long *addr, pte_t *ptep)
5417 {
5418 return 0;
5419 }
5420
5421 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5422 unsigned long *start, unsigned long *end)
5423 {
5424 }
5425 #define want_pmd_share() (0)
5426 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5427
5428 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5429 pte_t *huge_pte_alloc(struct mm_struct *mm,
5430 unsigned long addr, unsigned long sz)
5431 {
5432 pgd_t *pgd;
5433 p4d_t *p4d;
5434 pud_t *pud;
5435 pte_t *pte = NULL;
5436
5437 pgd = pgd_offset(mm, addr);
5438 p4d = p4d_alloc(mm, pgd, addr);
5439 if (!p4d)
5440 return NULL;
5441 pud = pud_alloc(mm, p4d, addr);
5442 if (pud) {
5443 if (sz == PUD_SIZE) {
5444 pte = (pte_t *)pud;
5445 } else {
5446 BUG_ON(sz != PMD_SIZE);
5447 if (want_pmd_share() && pud_none(*pud))
5448 pte = huge_pmd_share(mm, addr, pud);
5449 else
5450 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5451 }
5452 }
5453 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5454
5455 return pte;
5456 }
5457
5458 /*
5459 * huge_pte_offset() - Walk the page table to resolve the hugepage
5460 * entry at address @addr
5461 *
5462 * Return: Pointer to page table entry (PUD or PMD) for
5463 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5464 * size @sz doesn't match the hugepage size at this level of the page
5465 * table.
5466 */
5467 pte_t *huge_pte_offset(struct mm_struct *mm,
5468 unsigned long addr, unsigned long sz)
5469 {
5470 pgd_t *pgd;
5471 p4d_t *p4d;
5472 pud_t *pud;
5473 pmd_t *pmd;
5474
5475 pgd = pgd_offset(mm, addr);
5476 if (!pgd_present(*pgd))
5477 return NULL;
5478 p4d = p4d_offset(pgd, addr);
5479 if (!p4d_present(*p4d))
5480 return NULL;
5481
5482 pud = pud_offset(p4d, addr);
5483 if (sz == PUD_SIZE)
5484 /* must be pud huge, non-present or none */
5485 return (pte_t *)pud;
5486 if (!pud_present(*pud))
5487 return NULL;
5488 /* must have a valid entry and size to go further */
5489
5490 pmd = pmd_offset(pud, addr);
5491 /* must be pmd huge, non-present or none */
5492 return (pte_t *)pmd;
5493 }
5494
5495 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5496
5497 /*
5498 * These functions are overwritable if your architecture needs its own
5499 * behavior.
5500 */
5501 struct page * __weak
5502 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5503 int write)
5504 {
5505 return ERR_PTR(-EINVAL);
5506 }
5507
5508 struct page * __weak
5509 follow_huge_pd(struct vm_area_struct *vma,
5510 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5511 {
5512 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5513 return NULL;
5514 }
5515
5516 struct page * __weak
5517 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5518 pmd_t *pmd, int flags)
5519 {
5520 struct page *page = NULL;
5521 spinlock_t *ptl;
5522 pte_t pte;
5523
5524 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5525 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5526 (FOLL_PIN | FOLL_GET)))
5527 return NULL;
5528
5529 retry:
5530 ptl = pmd_lockptr(mm, pmd);
5531 spin_lock(ptl);
5532 /*
5533 * make sure that the address range covered by this pmd is not
5534 * unmapped from other threads.
5535 */
5536 if (!pmd_huge(*pmd))
5537 goto out;
5538 pte = huge_ptep_get((pte_t *)pmd);
5539 if (pte_present(pte)) {
5540 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5541 /*
5542 * try_grab_page() should always succeed here, because: a) we
5543 * hold the pmd (ptl) lock, and b) we've just checked that the
5544 * huge pmd (head) page is present in the page tables. The ptl
5545 * prevents the head page and tail pages from being rearranged
5546 * in any way. So this page must be available at this point,
5547 * unless the page refcount overflowed:
5548 */
5549 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5550 page = NULL;
5551 goto out;
5552 }
5553 } else {
5554 if (is_hugetlb_entry_migration(pte)) {
5555 spin_unlock(ptl);
5556 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5557 goto retry;
5558 }
5559 /*
5560 * hwpoisoned entry is treated as no_page_table in
5561 * follow_page_mask().
5562 */
5563 }
5564 out:
5565 spin_unlock(ptl);
5566 return page;
5567 }
5568
5569 struct page * __weak
5570 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5571 pud_t *pud, int flags)
5572 {
5573 if (flags & (FOLL_GET | FOLL_PIN))
5574 return NULL;
5575
5576 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5577 }
5578
5579 struct page * __weak
5580 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5581 {
5582 if (flags & (FOLL_GET | FOLL_PIN))
5583 return NULL;
5584
5585 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5586 }
5587
5588 bool isolate_huge_page(struct page *page, struct list_head *list)
5589 {
5590 bool ret = true;
5591
5592 VM_BUG_ON_PAGE(!PageHead(page), page);
5593 spin_lock(&hugetlb_lock);
5594 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5595 ret = false;
5596 goto unlock;
5597 }
5598 clear_page_huge_active(page);
5599 list_move_tail(&page->lru, list);
5600 unlock:
5601 spin_unlock(&hugetlb_lock);
5602 return ret;
5603 }
5604
5605 void putback_active_hugepage(struct page *page)
5606 {
5607 VM_BUG_ON_PAGE(!PageHead(page), page);
5608 spin_lock(&hugetlb_lock);
5609 set_page_huge_active(page);
5610 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5611 spin_unlock(&hugetlb_lock);
5612 put_page(page);
5613 }
5614
5615 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5616 {
5617 struct hstate *h = page_hstate(oldpage);
5618
5619 hugetlb_cgroup_migrate(oldpage, newpage);
5620 set_page_owner_migrate_reason(newpage, reason);
5621
5622 /*
5623 * transfer temporary state of the new huge page. This is
5624 * reverse to other transitions because the newpage is going to
5625 * be final while the old one will be freed so it takes over
5626 * the temporary status.
5627 *
5628 * Also note that we have to transfer the per-node surplus state
5629 * here as well otherwise the global surplus count will not match
5630 * the per-node's.
5631 */
5632 if (PageHugeTemporary(newpage)) {
5633 int old_nid = page_to_nid(oldpage);
5634 int new_nid = page_to_nid(newpage);
5635
5636 SetPageHugeTemporary(oldpage);
5637 ClearPageHugeTemporary(newpage);
5638
5639 spin_lock(&hugetlb_lock);
5640 if (h->surplus_huge_pages_node[old_nid]) {
5641 h->surplus_huge_pages_node[old_nid]--;
5642 h->surplus_huge_pages_node[new_nid]++;
5643 }
5644 spin_unlock(&hugetlb_lock);
5645 }
5646 }
5647
5648 #ifdef CONFIG_CMA
5649 static bool cma_reserve_called __initdata;
5650
5651 static int __init cmdline_parse_hugetlb_cma(char *p)
5652 {
5653 hugetlb_cma_size = memparse(p, &p);
5654 return 0;
5655 }
5656
5657 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5658
5659 void __init hugetlb_cma_reserve(int order)
5660 {
5661 unsigned long size, reserved, per_node;
5662 int nid;
5663
5664 cma_reserve_called = true;
5665
5666 if (!hugetlb_cma_size)
5667 return;
5668
5669 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5670 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5671 (PAGE_SIZE << order) / SZ_1M);
5672 return;
5673 }
5674
5675 /*
5676 * If 3 GB area is requested on a machine with 4 numa nodes,
5677 * let's allocate 1 GB on first three nodes and ignore the last one.
5678 */
5679 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5680 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5681 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5682
5683 reserved = 0;
5684 for_each_node_state(nid, N_ONLINE) {
5685 int res;
5686 char name[20];
5687
5688 size = min(per_node, hugetlb_cma_size - reserved);
5689 size = round_up(size, PAGE_SIZE << order);
5690
5691 snprintf(name, 20, "hugetlb%d", nid);
5692 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5693 0, false, name,
5694 &hugetlb_cma[nid], nid);
5695 if (res) {
5696 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5697 res, nid);
5698 continue;
5699 }
5700
5701 reserved += size;
5702 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5703 size / SZ_1M, nid);
5704
5705 if (reserved >= hugetlb_cma_size)
5706 break;
5707 }
5708 }
5709
5710 void __init hugetlb_cma_check(void)
5711 {
5712 if (!hugetlb_cma_size || cma_reserve_called)
5713 return;
5714
5715 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5716 }
5717
5718 #endif /* CONFIG_CMA */