]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hugetlb.c
hugetlb: Move update_and_free_page
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
30 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
31 unsigned long hugepages_treat_as_movable;
32
33 /*
34 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
35 */
36 static DEFINE_SPINLOCK(hugetlb_lock);
37
38 static void clear_huge_page(struct page *page, unsigned long addr)
39 {
40 int i;
41
42 might_sleep();
43 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
44 cond_resched();
45 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
46 }
47 }
48
49 static void copy_huge_page(struct page *dst, struct page *src,
50 unsigned long addr, struct vm_area_struct *vma)
51 {
52 int i;
53
54 might_sleep();
55 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
56 cond_resched();
57 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
58 }
59 }
60
61 static void enqueue_huge_page(struct page *page)
62 {
63 int nid = page_to_nid(page);
64 list_add(&page->lru, &hugepage_freelists[nid]);
65 free_huge_pages++;
66 free_huge_pages_node[nid]++;
67 }
68
69 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
70 unsigned long address)
71 {
72 int nid;
73 struct page *page = NULL;
74 struct mempolicy *mpol;
75 struct zonelist *zonelist = huge_zonelist(vma, address,
76 htlb_alloc_mask, &mpol);
77 struct zone **z;
78
79 for (z = zonelist->zones; *z; z++) {
80 nid = zone_to_nid(*z);
81 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
82 !list_empty(&hugepage_freelists[nid])) {
83 page = list_entry(hugepage_freelists[nid].next,
84 struct page, lru);
85 list_del(&page->lru);
86 free_huge_pages--;
87 free_huge_pages_node[nid]--;
88 break;
89 }
90 }
91 mpol_free(mpol); /* unref if mpol !NULL */
92 return page;
93 }
94
95 static void update_and_free_page(struct page *page)
96 {
97 int i;
98 nr_huge_pages--;
99 nr_huge_pages_node[page_to_nid(page)]--;
100 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
101 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
102 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
103 1 << PG_private | 1<< PG_writeback);
104 }
105 set_compound_page_dtor(page, NULL);
106 set_page_refcounted(page);
107 __free_pages(page, HUGETLB_PAGE_ORDER);
108 }
109
110 static void free_huge_page(struct page *page)
111 {
112 BUG_ON(page_count(page));
113
114 INIT_LIST_HEAD(&page->lru);
115
116 spin_lock(&hugetlb_lock);
117 enqueue_huge_page(page);
118 spin_unlock(&hugetlb_lock);
119 }
120
121 static int alloc_fresh_huge_page(void)
122 {
123 static int prev_nid;
124 struct page *page;
125 int nid;
126
127 /*
128 * Copy static prev_nid to local nid, work on that, then copy it
129 * back to prev_nid afterwards: otherwise there's a window in which
130 * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node.
131 * But we don't need to use a spin_lock here: it really doesn't
132 * matter if occasionally a racer chooses the same nid as we do.
133 */
134 nid = next_node(prev_nid, node_online_map);
135 if (nid == MAX_NUMNODES)
136 nid = first_node(node_online_map);
137 prev_nid = nid;
138
139 page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
140 HUGETLB_PAGE_ORDER);
141 if (page) {
142 set_compound_page_dtor(page, free_huge_page);
143 spin_lock(&hugetlb_lock);
144 nr_huge_pages++;
145 nr_huge_pages_node[page_to_nid(page)]++;
146 spin_unlock(&hugetlb_lock);
147 put_page(page); /* free it into the hugepage allocator */
148 return 1;
149 }
150 return 0;
151 }
152
153 static struct page *alloc_huge_page(struct vm_area_struct *vma,
154 unsigned long addr)
155 {
156 struct page *page;
157
158 spin_lock(&hugetlb_lock);
159 if (vma->vm_flags & VM_MAYSHARE)
160 resv_huge_pages--;
161 else if (free_huge_pages <= resv_huge_pages)
162 goto fail;
163
164 page = dequeue_huge_page(vma, addr);
165 if (!page)
166 goto fail;
167
168 spin_unlock(&hugetlb_lock);
169 set_page_refcounted(page);
170 return page;
171
172 fail:
173 if (vma->vm_flags & VM_MAYSHARE)
174 resv_huge_pages++;
175 spin_unlock(&hugetlb_lock);
176 return NULL;
177 }
178
179 static int __init hugetlb_init(void)
180 {
181 unsigned long i;
182
183 if (HPAGE_SHIFT == 0)
184 return 0;
185
186 for (i = 0; i < MAX_NUMNODES; ++i)
187 INIT_LIST_HEAD(&hugepage_freelists[i]);
188
189 for (i = 0; i < max_huge_pages; ++i) {
190 if (!alloc_fresh_huge_page())
191 break;
192 }
193 max_huge_pages = free_huge_pages = nr_huge_pages = i;
194 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
195 return 0;
196 }
197 module_init(hugetlb_init);
198
199 static int __init hugetlb_setup(char *s)
200 {
201 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
202 max_huge_pages = 0;
203 return 1;
204 }
205 __setup("hugepages=", hugetlb_setup);
206
207 static unsigned int cpuset_mems_nr(unsigned int *array)
208 {
209 int node;
210 unsigned int nr = 0;
211
212 for_each_node_mask(node, cpuset_current_mems_allowed)
213 nr += array[node];
214
215 return nr;
216 }
217
218 #ifdef CONFIG_SYSCTL
219 #ifdef CONFIG_HIGHMEM
220 static void try_to_free_low(unsigned long count)
221 {
222 int i;
223
224 for (i = 0; i < MAX_NUMNODES; ++i) {
225 struct page *page, *next;
226 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
227 if (PageHighMem(page))
228 continue;
229 list_del(&page->lru);
230 update_and_free_page(page);
231 free_huge_pages--;
232 free_huge_pages_node[page_to_nid(page)]--;
233 if (count >= nr_huge_pages)
234 return;
235 }
236 }
237 }
238 #else
239 static inline void try_to_free_low(unsigned long count)
240 {
241 }
242 #endif
243
244 static unsigned long set_max_huge_pages(unsigned long count)
245 {
246 while (count > nr_huge_pages) {
247 if (!alloc_fresh_huge_page())
248 return nr_huge_pages;
249 }
250 if (count >= nr_huge_pages)
251 return nr_huge_pages;
252
253 spin_lock(&hugetlb_lock);
254 count = max(count, resv_huge_pages);
255 try_to_free_low(count);
256 while (count < nr_huge_pages) {
257 struct page *page = dequeue_huge_page(NULL, 0);
258 if (!page)
259 break;
260 update_and_free_page(page);
261 }
262 spin_unlock(&hugetlb_lock);
263 return nr_huge_pages;
264 }
265
266 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
267 struct file *file, void __user *buffer,
268 size_t *length, loff_t *ppos)
269 {
270 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
271 max_huge_pages = set_max_huge_pages(max_huge_pages);
272 return 0;
273 }
274
275 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
276 struct file *file, void __user *buffer,
277 size_t *length, loff_t *ppos)
278 {
279 proc_dointvec(table, write, file, buffer, length, ppos);
280 if (hugepages_treat_as_movable)
281 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
282 else
283 htlb_alloc_mask = GFP_HIGHUSER;
284 return 0;
285 }
286
287 #endif /* CONFIG_SYSCTL */
288
289 int hugetlb_report_meminfo(char *buf)
290 {
291 return sprintf(buf,
292 "HugePages_Total: %5lu\n"
293 "HugePages_Free: %5lu\n"
294 "HugePages_Rsvd: %5lu\n"
295 "Hugepagesize: %5lu kB\n",
296 nr_huge_pages,
297 free_huge_pages,
298 resv_huge_pages,
299 HPAGE_SIZE/1024);
300 }
301
302 int hugetlb_report_node_meminfo(int nid, char *buf)
303 {
304 return sprintf(buf,
305 "Node %d HugePages_Total: %5u\n"
306 "Node %d HugePages_Free: %5u\n",
307 nid, nr_huge_pages_node[nid],
308 nid, free_huge_pages_node[nid]);
309 }
310
311 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
312 unsigned long hugetlb_total_pages(void)
313 {
314 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
315 }
316
317 /*
318 * We cannot handle pagefaults against hugetlb pages at all. They cause
319 * handle_mm_fault() to try to instantiate regular-sized pages in the
320 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
321 * this far.
322 */
323 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
324 {
325 BUG();
326 return 0;
327 }
328
329 struct vm_operations_struct hugetlb_vm_ops = {
330 .fault = hugetlb_vm_op_fault,
331 };
332
333 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
334 int writable)
335 {
336 pte_t entry;
337
338 if (writable) {
339 entry =
340 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
341 } else {
342 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
343 }
344 entry = pte_mkyoung(entry);
345 entry = pte_mkhuge(entry);
346
347 return entry;
348 }
349
350 static void set_huge_ptep_writable(struct vm_area_struct *vma,
351 unsigned long address, pte_t *ptep)
352 {
353 pte_t entry;
354
355 entry = pte_mkwrite(pte_mkdirty(*ptep));
356 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
357 update_mmu_cache(vma, address, entry);
358 }
359 }
360
361
362 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
363 struct vm_area_struct *vma)
364 {
365 pte_t *src_pte, *dst_pte, entry;
366 struct page *ptepage;
367 unsigned long addr;
368 int cow;
369
370 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
371
372 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
373 src_pte = huge_pte_offset(src, addr);
374 if (!src_pte)
375 continue;
376 dst_pte = huge_pte_alloc(dst, addr);
377 if (!dst_pte)
378 goto nomem;
379 spin_lock(&dst->page_table_lock);
380 spin_lock(&src->page_table_lock);
381 if (!pte_none(*src_pte)) {
382 if (cow)
383 ptep_set_wrprotect(src, addr, src_pte);
384 entry = *src_pte;
385 ptepage = pte_page(entry);
386 get_page(ptepage);
387 set_huge_pte_at(dst, addr, dst_pte, entry);
388 }
389 spin_unlock(&src->page_table_lock);
390 spin_unlock(&dst->page_table_lock);
391 }
392 return 0;
393
394 nomem:
395 return -ENOMEM;
396 }
397
398 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
399 unsigned long end)
400 {
401 struct mm_struct *mm = vma->vm_mm;
402 unsigned long address;
403 pte_t *ptep;
404 pte_t pte;
405 struct page *page;
406 struct page *tmp;
407 /*
408 * A page gathering list, protected by per file i_mmap_lock. The
409 * lock is used to avoid list corruption from multiple unmapping
410 * of the same page since we are using page->lru.
411 */
412 LIST_HEAD(page_list);
413
414 WARN_ON(!is_vm_hugetlb_page(vma));
415 BUG_ON(start & ~HPAGE_MASK);
416 BUG_ON(end & ~HPAGE_MASK);
417
418 spin_lock(&mm->page_table_lock);
419 for (address = start; address < end; address += HPAGE_SIZE) {
420 ptep = huge_pte_offset(mm, address);
421 if (!ptep)
422 continue;
423
424 if (huge_pmd_unshare(mm, &address, ptep))
425 continue;
426
427 pte = huge_ptep_get_and_clear(mm, address, ptep);
428 if (pte_none(pte))
429 continue;
430
431 page = pte_page(pte);
432 if (pte_dirty(pte))
433 set_page_dirty(page);
434 list_add(&page->lru, &page_list);
435 }
436 spin_unlock(&mm->page_table_lock);
437 flush_tlb_range(vma, start, end);
438 list_for_each_entry_safe(page, tmp, &page_list, lru) {
439 list_del(&page->lru);
440 put_page(page);
441 }
442 }
443
444 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
445 unsigned long end)
446 {
447 /*
448 * It is undesirable to test vma->vm_file as it should be non-null
449 * for valid hugetlb area. However, vm_file will be NULL in the error
450 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
451 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
452 * to clean up. Since no pte has actually been setup, it is safe to
453 * do nothing in this case.
454 */
455 if (vma->vm_file) {
456 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
457 __unmap_hugepage_range(vma, start, end);
458 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
459 }
460 }
461
462 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
463 unsigned long address, pte_t *ptep, pte_t pte)
464 {
465 struct page *old_page, *new_page;
466 int avoidcopy;
467
468 old_page = pte_page(pte);
469
470 /* If no-one else is actually using this page, avoid the copy
471 * and just make the page writable */
472 avoidcopy = (page_count(old_page) == 1);
473 if (avoidcopy) {
474 set_huge_ptep_writable(vma, address, ptep);
475 return 0;
476 }
477
478 page_cache_get(old_page);
479 new_page = alloc_huge_page(vma, address);
480
481 if (!new_page) {
482 page_cache_release(old_page);
483 return VM_FAULT_OOM;
484 }
485
486 spin_unlock(&mm->page_table_lock);
487 copy_huge_page(new_page, old_page, address, vma);
488 spin_lock(&mm->page_table_lock);
489
490 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
491 if (likely(pte_same(*ptep, pte))) {
492 /* Break COW */
493 set_huge_pte_at(mm, address, ptep,
494 make_huge_pte(vma, new_page, 1));
495 /* Make the old page be freed below */
496 new_page = old_page;
497 }
498 page_cache_release(new_page);
499 page_cache_release(old_page);
500 return 0;
501 }
502
503 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
504 unsigned long address, pte_t *ptep, int write_access)
505 {
506 int ret = VM_FAULT_SIGBUS;
507 unsigned long idx;
508 unsigned long size;
509 struct page *page;
510 struct address_space *mapping;
511 pte_t new_pte;
512
513 mapping = vma->vm_file->f_mapping;
514 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
515 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
516
517 /*
518 * Use page lock to guard against racing truncation
519 * before we get page_table_lock.
520 */
521 retry:
522 page = find_lock_page(mapping, idx);
523 if (!page) {
524 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
525 if (idx >= size)
526 goto out;
527 if (hugetlb_get_quota(mapping))
528 goto out;
529 page = alloc_huge_page(vma, address);
530 if (!page) {
531 hugetlb_put_quota(mapping);
532 ret = VM_FAULT_OOM;
533 goto out;
534 }
535 clear_huge_page(page, address);
536
537 if (vma->vm_flags & VM_SHARED) {
538 int err;
539
540 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
541 if (err) {
542 put_page(page);
543 hugetlb_put_quota(mapping);
544 if (err == -EEXIST)
545 goto retry;
546 goto out;
547 }
548 } else
549 lock_page(page);
550 }
551
552 spin_lock(&mm->page_table_lock);
553 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
554 if (idx >= size)
555 goto backout;
556
557 ret = 0;
558 if (!pte_none(*ptep))
559 goto backout;
560
561 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
562 && (vma->vm_flags & VM_SHARED)));
563 set_huge_pte_at(mm, address, ptep, new_pte);
564
565 if (write_access && !(vma->vm_flags & VM_SHARED)) {
566 /* Optimization, do the COW without a second fault */
567 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
568 }
569
570 spin_unlock(&mm->page_table_lock);
571 unlock_page(page);
572 out:
573 return ret;
574
575 backout:
576 spin_unlock(&mm->page_table_lock);
577 hugetlb_put_quota(mapping);
578 unlock_page(page);
579 put_page(page);
580 goto out;
581 }
582
583 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
584 unsigned long address, int write_access)
585 {
586 pte_t *ptep;
587 pte_t entry;
588 int ret;
589 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
590
591 ptep = huge_pte_alloc(mm, address);
592 if (!ptep)
593 return VM_FAULT_OOM;
594
595 /*
596 * Serialize hugepage allocation and instantiation, so that we don't
597 * get spurious allocation failures if two CPUs race to instantiate
598 * the same page in the page cache.
599 */
600 mutex_lock(&hugetlb_instantiation_mutex);
601 entry = *ptep;
602 if (pte_none(entry)) {
603 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
604 mutex_unlock(&hugetlb_instantiation_mutex);
605 return ret;
606 }
607
608 ret = 0;
609
610 spin_lock(&mm->page_table_lock);
611 /* Check for a racing update before calling hugetlb_cow */
612 if (likely(pte_same(entry, *ptep)))
613 if (write_access && !pte_write(entry))
614 ret = hugetlb_cow(mm, vma, address, ptep, entry);
615 spin_unlock(&mm->page_table_lock);
616 mutex_unlock(&hugetlb_instantiation_mutex);
617
618 return ret;
619 }
620
621 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
622 struct page **pages, struct vm_area_struct **vmas,
623 unsigned long *position, int *length, int i)
624 {
625 unsigned long pfn_offset;
626 unsigned long vaddr = *position;
627 int remainder = *length;
628
629 spin_lock(&mm->page_table_lock);
630 while (vaddr < vma->vm_end && remainder) {
631 pte_t *pte;
632 struct page *page;
633
634 /*
635 * Some archs (sparc64, sh*) have multiple pte_ts to
636 * each hugepage. We have to make * sure we get the
637 * first, for the page indexing below to work.
638 */
639 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
640
641 if (!pte || pte_none(*pte)) {
642 int ret;
643
644 spin_unlock(&mm->page_table_lock);
645 ret = hugetlb_fault(mm, vma, vaddr, 0);
646 spin_lock(&mm->page_table_lock);
647 if (!(ret & VM_FAULT_ERROR))
648 continue;
649
650 remainder = 0;
651 if (!i)
652 i = -EFAULT;
653 break;
654 }
655
656 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
657 page = pte_page(*pte);
658 same_page:
659 if (pages) {
660 get_page(page);
661 pages[i] = page + pfn_offset;
662 }
663
664 if (vmas)
665 vmas[i] = vma;
666
667 vaddr += PAGE_SIZE;
668 ++pfn_offset;
669 --remainder;
670 ++i;
671 if (vaddr < vma->vm_end && remainder &&
672 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
673 /*
674 * We use pfn_offset to avoid touching the pageframes
675 * of this compound page.
676 */
677 goto same_page;
678 }
679 }
680 spin_unlock(&mm->page_table_lock);
681 *length = remainder;
682 *position = vaddr;
683
684 return i;
685 }
686
687 void hugetlb_change_protection(struct vm_area_struct *vma,
688 unsigned long address, unsigned long end, pgprot_t newprot)
689 {
690 struct mm_struct *mm = vma->vm_mm;
691 unsigned long start = address;
692 pte_t *ptep;
693 pte_t pte;
694
695 BUG_ON(address >= end);
696 flush_cache_range(vma, address, end);
697
698 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
699 spin_lock(&mm->page_table_lock);
700 for (; address < end; address += HPAGE_SIZE) {
701 ptep = huge_pte_offset(mm, address);
702 if (!ptep)
703 continue;
704 if (huge_pmd_unshare(mm, &address, ptep))
705 continue;
706 if (!pte_none(*ptep)) {
707 pte = huge_ptep_get_and_clear(mm, address, ptep);
708 pte = pte_mkhuge(pte_modify(pte, newprot));
709 set_huge_pte_at(mm, address, ptep, pte);
710 }
711 }
712 spin_unlock(&mm->page_table_lock);
713 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
714
715 flush_tlb_range(vma, start, end);
716 }
717
718 struct file_region {
719 struct list_head link;
720 long from;
721 long to;
722 };
723
724 static long region_add(struct list_head *head, long f, long t)
725 {
726 struct file_region *rg, *nrg, *trg;
727
728 /* Locate the region we are either in or before. */
729 list_for_each_entry(rg, head, link)
730 if (f <= rg->to)
731 break;
732
733 /* Round our left edge to the current segment if it encloses us. */
734 if (f > rg->from)
735 f = rg->from;
736
737 /* Check for and consume any regions we now overlap with. */
738 nrg = rg;
739 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
740 if (&rg->link == head)
741 break;
742 if (rg->from > t)
743 break;
744
745 /* If this area reaches higher then extend our area to
746 * include it completely. If this is not the first area
747 * which we intend to reuse, free it. */
748 if (rg->to > t)
749 t = rg->to;
750 if (rg != nrg) {
751 list_del(&rg->link);
752 kfree(rg);
753 }
754 }
755 nrg->from = f;
756 nrg->to = t;
757 return 0;
758 }
759
760 static long region_chg(struct list_head *head, long f, long t)
761 {
762 struct file_region *rg, *nrg;
763 long chg = 0;
764
765 /* Locate the region we are before or in. */
766 list_for_each_entry(rg, head, link)
767 if (f <= rg->to)
768 break;
769
770 /* If we are below the current region then a new region is required.
771 * Subtle, allocate a new region at the position but make it zero
772 * size such that we can guarentee to record the reservation. */
773 if (&rg->link == head || t < rg->from) {
774 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
775 if (nrg == 0)
776 return -ENOMEM;
777 nrg->from = f;
778 nrg->to = f;
779 INIT_LIST_HEAD(&nrg->link);
780 list_add(&nrg->link, rg->link.prev);
781
782 return t - f;
783 }
784
785 /* Round our left edge to the current segment if it encloses us. */
786 if (f > rg->from)
787 f = rg->from;
788 chg = t - f;
789
790 /* Check for and consume any regions we now overlap with. */
791 list_for_each_entry(rg, rg->link.prev, link) {
792 if (&rg->link == head)
793 break;
794 if (rg->from > t)
795 return chg;
796
797 /* We overlap with this area, if it extends futher than
798 * us then we must extend ourselves. Account for its
799 * existing reservation. */
800 if (rg->to > t) {
801 chg += rg->to - t;
802 t = rg->to;
803 }
804 chg -= rg->to - rg->from;
805 }
806 return chg;
807 }
808
809 static long region_truncate(struct list_head *head, long end)
810 {
811 struct file_region *rg, *trg;
812 long chg = 0;
813
814 /* Locate the region we are either in or before. */
815 list_for_each_entry(rg, head, link)
816 if (end <= rg->to)
817 break;
818 if (&rg->link == head)
819 return 0;
820
821 /* If we are in the middle of a region then adjust it. */
822 if (end > rg->from) {
823 chg = rg->to - end;
824 rg->to = end;
825 rg = list_entry(rg->link.next, typeof(*rg), link);
826 }
827
828 /* Drop any remaining regions. */
829 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
830 if (&rg->link == head)
831 break;
832 chg += rg->to - rg->from;
833 list_del(&rg->link);
834 kfree(rg);
835 }
836 return chg;
837 }
838
839 static int hugetlb_acct_memory(long delta)
840 {
841 int ret = -ENOMEM;
842
843 spin_lock(&hugetlb_lock);
844 if ((delta + resv_huge_pages) <= free_huge_pages) {
845 resv_huge_pages += delta;
846 ret = 0;
847 }
848 spin_unlock(&hugetlb_lock);
849 return ret;
850 }
851
852 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
853 {
854 long ret, chg;
855
856 chg = region_chg(&inode->i_mapping->private_list, from, to);
857 if (chg < 0)
858 return chg;
859 /*
860 * When cpuset is configured, it breaks the strict hugetlb page
861 * reservation as the accounting is done on a global variable. Such
862 * reservation is completely rubbish in the presence of cpuset because
863 * the reservation is not checked against page availability for the
864 * current cpuset. Application can still potentially OOM'ed by kernel
865 * with lack of free htlb page in cpuset that the task is in.
866 * Attempt to enforce strict accounting with cpuset is almost
867 * impossible (or too ugly) because cpuset is too fluid that
868 * task or memory node can be dynamically moved between cpusets.
869 *
870 * The change of semantics for shared hugetlb mapping with cpuset is
871 * undesirable. However, in order to preserve some of the semantics,
872 * we fall back to check against current free page availability as
873 * a best attempt and hopefully to minimize the impact of changing
874 * semantics that cpuset has.
875 */
876 if (chg > cpuset_mems_nr(free_huge_pages_node))
877 return -ENOMEM;
878
879 ret = hugetlb_acct_memory(chg);
880 if (ret < 0)
881 return ret;
882 region_add(&inode->i_mapping->private_list, from, to);
883 return 0;
884 }
885
886 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
887 {
888 long chg = region_truncate(&inode->i_mapping->private_list, offset);
889 hugetlb_acct_memory(freed - chg);
890 }