]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hugetlb.c
ARM: dts: Cygnus: Fix MDIO node address/size cells
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28
29 #include <asm/page.h>
30 #include <asm/pgtable.h>
31 #include <asm/tlb.h>
32
33 #include <linux/io.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/node.h>
37 #include <linux/userfaultfd_k.h>
38 #include "internal.h"
39
40 int hugepages_treat_as_movable;
41
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
45 /*
46 * Minimum page order among possible hugepage sizes, set to a proper value
47 * at boot time.
48 */
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
50
51 __initdata LIST_HEAD(huge_boot_pages);
52
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
58
59 /*
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
62 */
63 DEFINE_SPINLOCK(hugetlb_lock);
64
65 /*
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 */
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate *h, long delta);
74
75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 {
77 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79 spin_unlock(&spool->lock);
80
81 /* If no pages are used, and no other handles to the subpool
82 * remain, give up any reservations mased on minimum size and
83 * free the subpool */
84 if (free) {
85 if (spool->min_hpages != -1)
86 hugetlb_acct_memory(spool->hstate,
87 -spool->min_hpages);
88 kfree(spool);
89 }
90 }
91
92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 long min_hpages)
94 {
95 struct hugepage_subpool *spool;
96
97 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98 if (!spool)
99 return NULL;
100
101 spin_lock_init(&spool->lock);
102 spool->count = 1;
103 spool->max_hpages = max_hpages;
104 spool->hstate = h;
105 spool->min_hpages = min_hpages;
106
107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 kfree(spool);
109 return NULL;
110 }
111 spool->rsv_hpages = min_hpages;
112
113 return spool;
114 }
115
116 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 {
118 spin_lock(&spool->lock);
119 BUG_ON(!spool->count);
120 spool->count--;
121 unlock_or_release_subpool(spool);
122 }
123
124 /*
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
131 */
132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133 long delta)
134 {
135 long ret = delta;
136
137 if (!spool)
138 return ret;
139
140 spin_lock(&spool->lock);
141
142 if (spool->max_hpages != -1) { /* maximum size accounting */
143 if ((spool->used_hpages + delta) <= spool->max_hpages)
144 spool->used_hpages += delta;
145 else {
146 ret = -ENOMEM;
147 goto unlock_ret;
148 }
149 }
150
151 /* minimum size accounting */
152 if (spool->min_hpages != -1 && spool->rsv_hpages) {
153 if (delta > spool->rsv_hpages) {
154 /*
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
157 */
158 ret = delta - spool->rsv_hpages;
159 spool->rsv_hpages = 0;
160 } else {
161 ret = 0; /* reserves already accounted for */
162 spool->rsv_hpages -= delta;
163 }
164 }
165
166 unlock_ret:
167 spin_unlock(&spool->lock);
168 return ret;
169 }
170
171 /*
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
176 */
177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178 long delta)
179 {
180 long ret = delta;
181
182 if (!spool)
183 return delta;
184
185 spin_lock(&spool->lock);
186
187 if (spool->max_hpages != -1) /* maximum size accounting */
188 spool->used_hpages -= delta;
189
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = 0;
194 else
195 ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197 spool->rsv_hpages += delta;
198 if (spool->rsv_hpages > spool->min_hpages)
199 spool->rsv_hpages = spool->min_hpages;
200 }
201
202 /*
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
205 */
206 unlock_or_release_subpool(spool);
207
208 return ret;
209 }
210
211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 {
213 return HUGETLBFS_SB(inode->i_sb)->spool;
214 }
215
216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 {
218 return subpool_inode(file_inode(vma->vm_file));
219 }
220
221 /*
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
224 *
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
231 *
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 *
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
239 */
240 struct file_region {
241 struct list_head link;
242 long from;
243 long to;
244 };
245
246 /*
247 * Add the huge page range represented by [f, t) to the reserve
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
256 *
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
259 */
260 static long region_add(struct resv_map *resv, long f, long t)
261 {
262 struct list_head *head = &resv->regions;
263 struct file_region *rg, *nrg, *trg;
264 long add = 0;
265
266 spin_lock(&resv->lock);
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (f <= rg->to)
270 break;
271
272 /*
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
277 */
278 if (&rg->link == head || t < rg->from) {
279 VM_BUG_ON(resv->region_cache_count <= 0);
280
281 resv->region_cache_count--;
282 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 link);
284 list_del(&nrg->link);
285
286 nrg->from = f;
287 nrg->to = t;
288 list_add(&nrg->link, rg->link.prev);
289
290 add += t - f;
291 goto out_locked;
292 }
293
294 /* Round our left edge to the current segment if it encloses us. */
295 if (f > rg->from)
296 f = rg->from;
297
298 /* Check for and consume any regions we now overlap with. */
299 nrg = rg;
300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 if (&rg->link == head)
302 break;
303 if (rg->from > t)
304 break;
305
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
309 if (rg->to > t)
310 t = rg->to;
311 if (rg != nrg) {
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
315 */
316 add -= (rg->to - rg->from);
317 list_del(&rg->link);
318 kfree(rg);
319 }
320 }
321
322 add += (nrg->from - f); /* Added to beginning of region */
323 nrg->from = f;
324 add += t - nrg->to; /* Added to end of region */
325 nrg->to = t;
326
327 out_locked:
328 resv->adds_in_progress--;
329 spin_unlock(&resv->lock);
330 VM_BUG_ON(add < 0);
331 return add;
332 }
333
334 /*
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
346 *
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
350 *
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
355 */
356 static long region_chg(struct resv_map *resv, long f, long t)
357 {
358 struct list_head *head = &resv->regions;
359 struct file_region *rg, *nrg = NULL;
360 long chg = 0;
361
362 retry:
363 spin_lock(&resv->lock);
364 retry_locked:
365 resv->adds_in_progress++;
366
367 /*
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
370 */
371 if (resv->adds_in_progress > resv->region_cache_count) {
372 struct file_region *trg;
373
374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv->adds_in_progress--;
377 spin_unlock(&resv->lock);
378
379 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380 if (!trg) {
381 kfree(nrg);
382 return -ENOMEM;
383 }
384
385 spin_lock(&resv->lock);
386 list_add(&trg->link, &resv->region_cache);
387 resv->region_cache_count++;
388 goto retry_locked;
389 }
390
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg, head, link)
393 if (f <= rg->to)
394 break;
395
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg->link == head || t < rg->from) {
400 if (!nrg) {
401 resv->adds_in_progress--;
402 spin_unlock(&resv->lock);
403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 if (!nrg)
405 return -ENOMEM;
406
407 nrg->from = f;
408 nrg->to = f;
409 INIT_LIST_HEAD(&nrg->link);
410 goto retry;
411 }
412
413 list_add(&nrg->link, rg->link.prev);
414 chg = t - f;
415 goto out_nrg;
416 }
417
418 /* Round our left edge to the current segment if it encloses us. */
419 if (f > rg->from)
420 f = rg->from;
421 chg = t - f;
422
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg, rg->link.prev, link) {
425 if (&rg->link == head)
426 break;
427 if (rg->from > t)
428 goto out;
429
430 /* We overlap with this area, if it extends further than
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
433 if (rg->to > t) {
434 chg += rg->to - t;
435 t = rg->to;
436 }
437 chg -= rg->to - rg->from;
438 }
439
440 out:
441 spin_unlock(&resv->lock);
442 /* We already know we raced and no longer need the new region */
443 kfree(nrg);
444 return chg;
445 out_nrg:
446 spin_unlock(&resv->lock);
447 return chg;
448 }
449
450 /*
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
456 *
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
460 */
461 static void region_abort(struct resv_map *resv, long f, long t)
462 {
463 spin_lock(&resv->lock);
464 VM_BUG_ON(!resv->region_cache_count);
465 resv->adds_in_progress--;
466 spin_unlock(&resv->lock);
467 }
468
469 /*
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
474 *
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
482 */
483 static long region_del(struct resv_map *resv, long f, long t)
484 {
485 struct list_head *head = &resv->regions;
486 struct file_region *rg, *trg;
487 struct file_region *nrg = NULL;
488 long del = 0;
489
490 retry:
491 spin_lock(&resv->lock);
492 list_for_each_entry_safe(rg, trg, head, link) {
493 /*
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
499 */
500 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501 continue;
502
503 if (rg->from >= t)
504 break;
505
506 if (f > rg->from && t < rg->to) { /* Must split region */
507 /*
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
510 */
511 if (!nrg &&
512 resv->region_cache_count > resv->adds_in_progress) {
513 nrg = list_first_entry(&resv->region_cache,
514 struct file_region,
515 link);
516 list_del(&nrg->link);
517 resv->region_cache_count--;
518 }
519
520 if (!nrg) {
521 spin_unlock(&resv->lock);
522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 if (!nrg)
524 return -ENOMEM;
525 goto retry;
526 }
527
528 del += t - f;
529
530 /* New entry for end of split region */
531 nrg->from = t;
532 nrg->to = rg->to;
533 INIT_LIST_HEAD(&nrg->link);
534
535 /* Original entry is trimmed */
536 rg->to = f;
537
538 list_add(&nrg->link, &rg->link);
539 nrg = NULL;
540 break;
541 }
542
543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 del += rg->to - rg->from;
545 list_del(&rg->link);
546 kfree(rg);
547 continue;
548 }
549
550 if (f <= rg->from) { /* Trim beginning of region */
551 del += t - rg->from;
552 rg->from = t;
553 } else { /* Trim end of region */
554 del += rg->to - f;
555 rg->to = f;
556 }
557 }
558
559 spin_unlock(&resv->lock);
560 kfree(nrg);
561 return del;
562 }
563
564 /*
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
571 * counts.
572 */
573 void hugetlb_fix_reserve_counts(struct inode *inode)
574 {
575 struct hugepage_subpool *spool = subpool_inode(inode);
576 long rsv_adjust;
577
578 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579 if (rsv_adjust) {
580 struct hstate *h = hstate_inode(inode);
581
582 hugetlb_acct_memory(h, 1);
583 }
584 }
585
586 /*
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
589 */
590 static long region_count(struct resv_map *resv, long f, long t)
591 {
592 struct list_head *head = &resv->regions;
593 struct file_region *rg;
594 long chg = 0;
595
596 spin_lock(&resv->lock);
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg, head, link) {
599 long seg_from;
600 long seg_to;
601
602 if (rg->to <= f)
603 continue;
604 if (rg->from >= t)
605 break;
606
607 seg_from = max(rg->from, f);
608 seg_to = min(rg->to, t);
609
610 chg += seg_to - seg_from;
611 }
612 spin_unlock(&resv->lock);
613
614 return chg;
615 }
616
617 /*
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
620 */
621 static pgoff_t vma_hugecache_offset(struct hstate *h,
622 struct vm_area_struct *vma, unsigned long address)
623 {
624 return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 (vma->vm_pgoff >> huge_page_order(h));
626 }
627
628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 unsigned long address)
630 {
631 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 }
633 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634
635 /*
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
638 */
639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 {
641 struct hstate *hstate;
642
643 if (!is_vm_hugetlb_page(vma))
644 return PAGE_SIZE;
645
646 hstate = hstate_vma(vma);
647
648 return 1UL << huge_page_shift(hstate);
649 }
650 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
651
652 /*
653 * Return the page size being used by the MMU to back a VMA. In the majority
654 * of cases, the page size used by the kernel matches the MMU size. On
655 * architectures where it differs, an architecture-specific version of this
656 * function is required.
657 */
658 #ifndef vma_mmu_pagesize
659 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
660 {
661 return vma_kernel_pagesize(vma);
662 }
663 #endif
664
665 /*
666 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
667 * bits of the reservation map pointer, which are always clear due to
668 * alignment.
669 */
670 #define HPAGE_RESV_OWNER (1UL << 0)
671 #define HPAGE_RESV_UNMAPPED (1UL << 1)
672 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
673
674 /*
675 * These helpers are used to track how many pages are reserved for
676 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
677 * is guaranteed to have their future faults succeed.
678 *
679 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
680 * the reserve counters are updated with the hugetlb_lock held. It is safe
681 * to reset the VMA at fork() time as it is not in use yet and there is no
682 * chance of the global counters getting corrupted as a result of the values.
683 *
684 * The private mapping reservation is represented in a subtly different
685 * manner to a shared mapping. A shared mapping has a region map associated
686 * with the underlying file, this region map represents the backing file
687 * pages which have ever had a reservation assigned which this persists even
688 * after the page is instantiated. A private mapping has a region map
689 * associated with the original mmap which is attached to all VMAs which
690 * reference it, this region map represents those offsets which have consumed
691 * reservation ie. where pages have been instantiated.
692 */
693 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
694 {
695 return (unsigned long)vma->vm_private_data;
696 }
697
698 static void set_vma_private_data(struct vm_area_struct *vma,
699 unsigned long value)
700 {
701 vma->vm_private_data = (void *)value;
702 }
703
704 struct resv_map *resv_map_alloc(void)
705 {
706 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
707 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
708
709 if (!resv_map || !rg) {
710 kfree(resv_map);
711 kfree(rg);
712 return NULL;
713 }
714
715 kref_init(&resv_map->refs);
716 spin_lock_init(&resv_map->lock);
717 INIT_LIST_HEAD(&resv_map->regions);
718
719 resv_map->adds_in_progress = 0;
720
721 INIT_LIST_HEAD(&resv_map->region_cache);
722 list_add(&rg->link, &resv_map->region_cache);
723 resv_map->region_cache_count = 1;
724
725 return resv_map;
726 }
727
728 void resv_map_release(struct kref *ref)
729 {
730 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
731 struct list_head *head = &resv_map->region_cache;
732 struct file_region *rg, *trg;
733
734 /* Clear out any active regions before we release the map. */
735 region_del(resv_map, 0, LONG_MAX);
736
737 /* ... and any entries left in the cache */
738 list_for_each_entry_safe(rg, trg, head, link) {
739 list_del(&rg->link);
740 kfree(rg);
741 }
742
743 VM_BUG_ON(resv_map->adds_in_progress);
744
745 kfree(resv_map);
746 }
747
748 static inline struct resv_map *inode_resv_map(struct inode *inode)
749 {
750 return inode->i_mapping->private_data;
751 }
752
753 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
754 {
755 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
756 if (vma->vm_flags & VM_MAYSHARE) {
757 struct address_space *mapping = vma->vm_file->f_mapping;
758 struct inode *inode = mapping->host;
759
760 return inode_resv_map(inode);
761
762 } else {
763 return (struct resv_map *)(get_vma_private_data(vma) &
764 ~HPAGE_RESV_MASK);
765 }
766 }
767
768 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
769 {
770 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
771 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
772
773 set_vma_private_data(vma, (get_vma_private_data(vma) &
774 HPAGE_RESV_MASK) | (unsigned long)map);
775 }
776
777 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
778 {
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
781
782 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
783 }
784
785 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
786 {
787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
788
789 return (get_vma_private_data(vma) & flag) != 0;
790 }
791
792 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
793 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
794 {
795 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
796 if (!(vma->vm_flags & VM_MAYSHARE))
797 vma->vm_private_data = (void *)0;
798 }
799
800 /* Returns true if the VMA has associated reserve pages */
801 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
802 {
803 if (vma->vm_flags & VM_NORESERVE) {
804 /*
805 * This address is already reserved by other process(chg == 0),
806 * so, we should decrement reserved count. Without decrementing,
807 * reserve count remains after releasing inode, because this
808 * allocated page will go into page cache and is regarded as
809 * coming from reserved pool in releasing step. Currently, we
810 * don't have any other solution to deal with this situation
811 * properly, so add work-around here.
812 */
813 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
814 return true;
815 else
816 return false;
817 }
818
819 /* Shared mappings always use reserves */
820 if (vma->vm_flags & VM_MAYSHARE) {
821 /*
822 * We know VM_NORESERVE is not set. Therefore, there SHOULD
823 * be a region map for all pages. The only situation where
824 * there is no region map is if a hole was punched via
825 * fallocate. In this case, there really are no reverves to
826 * use. This situation is indicated if chg != 0.
827 */
828 if (chg)
829 return false;
830 else
831 return true;
832 }
833
834 /*
835 * Only the process that called mmap() has reserves for
836 * private mappings.
837 */
838 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
839 /*
840 * Like the shared case above, a hole punch or truncate
841 * could have been performed on the private mapping.
842 * Examine the value of chg to determine if reserves
843 * actually exist or were previously consumed.
844 * Very Subtle - The value of chg comes from a previous
845 * call to vma_needs_reserves(). The reserve map for
846 * private mappings has different (opposite) semantics
847 * than that of shared mappings. vma_needs_reserves()
848 * has already taken this difference in semantics into
849 * account. Therefore, the meaning of chg is the same
850 * as in the shared case above. Code could easily be
851 * combined, but keeping it separate draws attention to
852 * subtle differences.
853 */
854 if (chg)
855 return false;
856 else
857 return true;
858 }
859
860 return false;
861 }
862
863 static void enqueue_huge_page(struct hstate *h, struct page *page)
864 {
865 int nid = page_to_nid(page);
866 list_move(&page->lru, &h->hugepage_freelists[nid]);
867 h->free_huge_pages++;
868 h->free_huge_pages_node[nid]++;
869 }
870
871 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
872 {
873 struct page *page;
874
875 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
876 if (!PageHWPoison(page))
877 break;
878 /*
879 * if 'non-isolated free hugepage' not found on the list,
880 * the allocation fails.
881 */
882 if (&h->hugepage_freelists[nid] == &page->lru)
883 return NULL;
884 list_move(&page->lru, &h->hugepage_activelist);
885 set_page_refcounted(page);
886 h->free_huge_pages--;
887 h->free_huge_pages_node[nid]--;
888 return page;
889 }
890
891 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
892 nodemask_t *nmask)
893 {
894 unsigned int cpuset_mems_cookie;
895 struct zonelist *zonelist;
896 struct zone *zone;
897 struct zoneref *z;
898 int node = -1;
899
900 zonelist = node_zonelist(nid, gfp_mask);
901
902 retry_cpuset:
903 cpuset_mems_cookie = read_mems_allowed_begin();
904 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
905 struct page *page;
906
907 if (!cpuset_zone_allowed(zone, gfp_mask))
908 continue;
909 /*
910 * no need to ask again on the same node. Pool is node rather than
911 * zone aware
912 */
913 if (zone_to_nid(zone) == node)
914 continue;
915 node = zone_to_nid(zone);
916
917 page = dequeue_huge_page_node_exact(h, node);
918 if (page)
919 return page;
920 }
921 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
922 goto retry_cpuset;
923
924 return NULL;
925 }
926
927 /* Movability of hugepages depends on migration support. */
928 static inline gfp_t htlb_alloc_mask(struct hstate *h)
929 {
930 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
931 return GFP_HIGHUSER_MOVABLE;
932 else
933 return GFP_HIGHUSER;
934 }
935
936 static struct page *dequeue_huge_page_vma(struct hstate *h,
937 struct vm_area_struct *vma,
938 unsigned long address, int avoid_reserve,
939 long chg)
940 {
941 struct page *page;
942 struct mempolicy *mpol;
943 gfp_t gfp_mask;
944 nodemask_t *nodemask;
945 int nid;
946
947 /*
948 * A child process with MAP_PRIVATE mappings created by their parent
949 * have no page reserves. This check ensures that reservations are
950 * not "stolen". The child may still get SIGKILLed
951 */
952 if (!vma_has_reserves(vma, chg) &&
953 h->free_huge_pages - h->resv_huge_pages == 0)
954 goto err;
955
956 /* If reserves cannot be used, ensure enough pages are in the pool */
957 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
958 goto err;
959
960 gfp_mask = htlb_alloc_mask(h);
961 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
962 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
963 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
964 SetPagePrivate(page);
965 h->resv_huge_pages--;
966 }
967
968 mpol_cond_put(mpol);
969 return page;
970
971 err:
972 return NULL;
973 }
974
975 /*
976 * common helper functions for hstate_next_node_to_{alloc|free}.
977 * We may have allocated or freed a huge page based on a different
978 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
979 * be outside of *nodes_allowed. Ensure that we use an allowed
980 * node for alloc or free.
981 */
982 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
983 {
984 nid = next_node_in(nid, *nodes_allowed);
985 VM_BUG_ON(nid >= MAX_NUMNODES);
986
987 return nid;
988 }
989
990 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
991 {
992 if (!node_isset(nid, *nodes_allowed))
993 nid = next_node_allowed(nid, nodes_allowed);
994 return nid;
995 }
996
997 /*
998 * returns the previously saved node ["this node"] from which to
999 * allocate a persistent huge page for the pool and advance the
1000 * next node from which to allocate, handling wrap at end of node
1001 * mask.
1002 */
1003 static int hstate_next_node_to_alloc(struct hstate *h,
1004 nodemask_t *nodes_allowed)
1005 {
1006 int nid;
1007
1008 VM_BUG_ON(!nodes_allowed);
1009
1010 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1011 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1012
1013 return nid;
1014 }
1015
1016 /*
1017 * helper for free_pool_huge_page() - return the previously saved
1018 * node ["this node"] from which to free a huge page. Advance the
1019 * next node id whether or not we find a free huge page to free so
1020 * that the next attempt to free addresses the next node.
1021 */
1022 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1023 {
1024 int nid;
1025
1026 VM_BUG_ON(!nodes_allowed);
1027
1028 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1029 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1030
1031 return nid;
1032 }
1033
1034 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1035 for (nr_nodes = nodes_weight(*mask); \
1036 nr_nodes > 0 && \
1037 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1038 nr_nodes--)
1039
1040 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1041 for (nr_nodes = nodes_weight(*mask); \
1042 nr_nodes > 0 && \
1043 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1044 nr_nodes--)
1045
1046 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1047 static void destroy_compound_gigantic_page(struct page *page,
1048 unsigned int order)
1049 {
1050 int i;
1051 int nr_pages = 1 << order;
1052 struct page *p = page + 1;
1053
1054 atomic_set(compound_mapcount_ptr(page), 0);
1055 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1056 clear_compound_head(p);
1057 set_page_refcounted(p);
1058 }
1059
1060 set_compound_order(page, 0);
1061 __ClearPageHead(page);
1062 }
1063
1064 static void free_gigantic_page(struct page *page, unsigned int order)
1065 {
1066 free_contig_range(page_to_pfn(page), 1 << order);
1067 }
1068
1069 static int __alloc_gigantic_page(unsigned long start_pfn,
1070 unsigned long nr_pages, gfp_t gfp_mask)
1071 {
1072 unsigned long end_pfn = start_pfn + nr_pages;
1073 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1074 gfp_mask);
1075 }
1076
1077 static bool pfn_range_valid_gigantic(struct zone *z,
1078 unsigned long start_pfn, unsigned long nr_pages)
1079 {
1080 unsigned long i, end_pfn = start_pfn + nr_pages;
1081 struct page *page;
1082
1083 for (i = start_pfn; i < end_pfn; i++) {
1084 page = pfn_to_online_page(i);
1085 if (!page)
1086 return false;
1087
1088 if (page_zone(page) != z)
1089 return false;
1090
1091 if (PageReserved(page))
1092 return false;
1093
1094 if (page_count(page) > 0)
1095 return false;
1096
1097 if (PageHuge(page))
1098 return false;
1099 }
1100
1101 return true;
1102 }
1103
1104 static bool zone_spans_last_pfn(const struct zone *zone,
1105 unsigned long start_pfn, unsigned long nr_pages)
1106 {
1107 unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 return zone_spans_pfn(zone, last_pfn);
1109 }
1110
1111 static struct page *alloc_gigantic_page(int nid, struct hstate *h)
1112 {
1113 unsigned int order = huge_page_order(h);
1114 unsigned long nr_pages = 1 << order;
1115 unsigned long ret, pfn, flags;
1116 struct zonelist *zonelist;
1117 struct zone *zone;
1118 struct zoneref *z;
1119 gfp_t gfp_mask;
1120
1121 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1122 zonelist = node_zonelist(nid, gfp_mask);
1123 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1124 spin_lock_irqsave(&zone->lock, flags);
1125
1126 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1127 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1128 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1129 /*
1130 * We release the zone lock here because
1131 * alloc_contig_range() will also lock the zone
1132 * at some point. If there's an allocation
1133 * spinning on this lock, it may win the race
1134 * and cause alloc_contig_range() to fail...
1135 */
1136 spin_unlock_irqrestore(&zone->lock, flags);
1137 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1138 if (!ret)
1139 return pfn_to_page(pfn);
1140 spin_lock_irqsave(&zone->lock, flags);
1141 }
1142 pfn += nr_pages;
1143 }
1144
1145 spin_unlock_irqrestore(&zone->lock, flags);
1146 }
1147
1148 return NULL;
1149 }
1150
1151 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1152 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1153
1154 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1155 {
1156 struct page *page;
1157
1158 page = alloc_gigantic_page(nid, h);
1159 if (page) {
1160 prep_compound_gigantic_page(page, huge_page_order(h));
1161 prep_new_huge_page(h, page, nid);
1162 }
1163
1164 return page;
1165 }
1166
1167 static int alloc_fresh_gigantic_page(struct hstate *h,
1168 nodemask_t *nodes_allowed)
1169 {
1170 struct page *page = NULL;
1171 int nr_nodes, node;
1172
1173 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1174 page = alloc_fresh_gigantic_page_node(h, node);
1175 if (page)
1176 return 1;
1177 }
1178
1179 return 0;
1180 }
1181
1182 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1183 static inline bool gigantic_page_supported(void) { return false; }
1184 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1185 static inline void destroy_compound_gigantic_page(struct page *page,
1186 unsigned int order) { }
1187 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1188 nodemask_t *nodes_allowed) { return 0; }
1189 #endif
1190
1191 static void update_and_free_page(struct hstate *h, struct page *page)
1192 {
1193 int i;
1194
1195 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1196 return;
1197
1198 h->nr_huge_pages--;
1199 h->nr_huge_pages_node[page_to_nid(page)]--;
1200 for (i = 0; i < pages_per_huge_page(h); i++) {
1201 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1202 1 << PG_referenced | 1 << PG_dirty |
1203 1 << PG_active | 1 << PG_private |
1204 1 << PG_writeback);
1205 }
1206 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1207 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1208 set_page_refcounted(page);
1209 if (hstate_is_gigantic(h)) {
1210 destroy_compound_gigantic_page(page, huge_page_order(h));
1211 free_gigantic_page(page, huge_page_order(h));
1212 } else {
1213 __free_pages(page, huge_page_order(h));
1214 }
1215 }
1216
1217 struct hstate *size_to_hstate(unsigned long size)
1218 {
1219 struct hstate *h;
1220
1221 for_each_hstate(h) {
1222 if (huge_page_size(h) == size)
1223 return h;
1224 }
1225 return NULL;
1226 }
1227
1228 /*
1229 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1230 * to hstate->hugepage_activelist.)
1231 *
1232 * This function can be called for tail pages, but never returns true for them.
1233 */
1234 bool page_huge_active(struct page *page)
1235 {
1236 VM_BUG_ON_PAGE(!PageHuge(page), page);
1237 return PageHead(page) && PagePrivate(&page[1]);
1238 }
1239
1240 /* never called for tail page */
1241 static void set_page_huge_active(struct page *page)
1242 {
1243 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1244 SetPagePrivate(&page[1]);
1245 }
1246
1247 static void clear_page_huge_active(struct page *page)
1248 {
1249 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1250 ClearPagePrivate(&page[1]);
1251 }
1252
1253 void free_huge_page(struct page *page)
1254 {
1255 /*
1256 * Can't pass hstate in here because it is called from the
1257 * compound page destructor.
1258 */
1259 struct hstate *h = page_hstate(page);
1260 int nid = page_to_nid(page);
1261 struct hugepage_subpool *spool =
1262 (struct hugepage_subpool *)page_private(page);
1263 bool restore_reserve;
1264
1265 set_page_private(page, 0);
1266 page->mapping = NULL;
1267 VM_BUG_ON_PAGE(page_count(page), page);
1268 VM_BUG_ON_PAGE(page_mapcount(page), page);
1269 restore_reserve = PagePrivate(page);
1270 ClearPagePrivate(page);
1271
1272 /*
1273 * If PagePrivate() was set on page, page allocation consumed a
1274 * reservation. If the page was associated with a subpool, there
1275 * would have been a page reserved in the subpool before allocation
1276 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1277 * reservtion, do not call hugepage_subpool_put_pages() as this will
1278 * remove the reserved page from the subpool.
1279 */
1280 if (!restore_reserve) {
1281 /*
1282 * A return code of zero implies that the subpool will be
1283 * under its minimum size if the reservation is not restored
1284 * after page is free. Therefore, force restore_reserve
1285 * operation.
1286 */
1287 if (hugepage_subpool_put_pages(spool, 1) == 0)
1288 restore_reserve = true;
1289 }
1290
1291 spin_lock(&hugetlb_lock);
1292 clear_page_huge_active(page);
1293 hugetlb_cgroup_uncharge_page(hstate_index(h),
1294 pages_per_huge_page(h), page);
1295 if (restore_reserve)
1296 h->resv_huge_pages++;
1297
1298 if (h->surplus_huge_pages_node[nid]) {
1299 /* remove the page from active list */
1300 list_del(&page->lru);
1301 update_and_free_page(h, page);
1302 h->surplus_huge_pages--;
1303 h->surplus_huge_pages_node[nid]--;
1304 } else {
1305 arch_clear_hugepage_flags(page);
1306 enqueue_huge_page(h, page);
1307 }
1308 spin_unlock(&hugetlb_lock);
1309 }
1310
1311 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1312 {
1313 INIT_LIST_HEAD(&page->lru);
1314 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1315 spin_lock(&hugetlb_lock);
1316 set_hugetlb_cgroup(page, NULL);
1317 h->nr_huge_pages++;
1318 h->nr_huge_pages_node[nid]++;
1319 spin_unlock(&hugetlb_lock);
1320 put_page(page); /* free it into the hugepage allocator */
1321 }
1322
1323 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1324 {
1325 int i;
1326 int nr_pages = 1 << order;
1327 struct page *p = page + 1;
1328
1329 /* we rely on prep_new_huge_page to set the destructor */
1330 set_compound_order(page, order);
1331 __ClearPageReserved(page);
1332 __SetPageHead(page);
1333 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1334 /*
1335 * For gigantic hugepages allocated through bootmem at
1336 * boot, it's safer to be consistent with the not-gigantic
1337 * hugepages and clear the PG_reserved bit from all tail pages
1338 * too. Otherwse drivers using get_user_pages() to access tail
1339 * pages may get the reference counting wrong if they see
1340 * PG_reserved set on a tail page (despite the head page not
1341 * having PG_reserved set). Enforcing this consistency between
1342 * head and tail pages allows drivers to optimize away a check
1343 * on the head page when they need know if put_page() is needed
1344 * after get_user_pages().
1345 */
1346 __ClearPageReserved(p);
1347 set_page_count(p, 0);
1348 set_compound_head(p, page);
1349 }
1350 atomic_set(compound_mapcount_ptr(page), -1);
1351 }
1352
1353 /*
1354 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1355 * transparent huge pages. See the PageTransHuge() documentation for more
1356 * details.
1357 */
1358 int PageHuge(struct page *page)
1359 {
1360 if (!PageCompound(page))
1361 return 0;
1362
1363 page = compound_head(page);
1364 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1365 }
1366 EXPORT_SYMBOL_GPL(PageHuge);
1367
1368 /*
1369 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1370 * normal or transparent huge pages.
1371 */
1372 int PageHeadHuge(struct page *page_head)
1373 {
1374 if (!PageHead(page_head))
1375 return 0;
1376
1377 return get_compound_page_dtor(page_head) == free_huge_page;
1378 }
1379
1380 pgoff_t __basepage_index(struct page *page)
1381 {
1382 struct page *page_head = compound_head(page);
1383 pgoff_t index = page_index(page_head);
1384 unsigned long compound_idx;
1385
1386 if (!PageHuge(page_head))
1387 return page_index(page);
1388
1389 if (compound_order(page_head) >= MAX_ORDER)
1390 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1391 else
1392 compound_idx = page - page_head;
1393
1394 return (index << compound_order(page_head)) + compound_idx;
1395 }
1396
1397 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1398 {
1399 struct page *page;
1400
1401 page = __alloc_pages_node(nid,
1402 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1403 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
1404 huge_page_order(h));
1405 if (page) {
1406 prep_new_huge_page(h, page, nid);
1407 }
1408
1409 return page;
1410 }
1411
1412 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1413 {
1414 struct page *page;
1415 int nr_nodes, node;
1416 int ret = 0;
1417
1418 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1419 page = alloc_fresh_huge_page_node(h, node);
1420 if (page) {
1421 ret = 1;
1422 break;
1423 }
1424 }
1425
1426 if (ret)
1427 count_vm_event(HTLB_BUDDY_PGALLOC);
1428 else
1429 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1430
1431 return ret;
1432 }
1433
1434 /*
1435 * Free huge page from pool from next node to free.
1436 * Attempt to keep persistent huge pages more or less
1437 * balanced over allowed nodes.
1438 * Called with hugetlb_lock locked.
1439 */
1440 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1441 bool acct_surplus)
1442 {
1443 int nr_nodes, node;
1444 int ret = 0;
1445
1446 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1447 /*
1448 * If we're returning unused surplus pages, only examine
1449 * nodes with surplus pages.
1450 */
1451 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1452 !list_empty(&h->hugepage_freelists[node])) {
1453 struct page *page =
1454 list_entry(h->hugepage_freelists[node].next,
1455 struct page, lru);
1456 list_del(&page->lru);
1457 h->free_huge_pages--;
1458 h->free_huge_pages_node[node]--;
1459 if (acct_surplus) {
1460 h->surplus_huge_pages--;
1461 h->surplus_huge_pages_node[node]--;
1462 }
1463 update_and_free_page(h, page);
1464 ret = 1;
1465 break;
1466 }
1467 }
1468
1469 return ret;
1470 }
1471
1472 /*
1473 * Dissolve a given free hugepage into free buddy pages. This function does
1474 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1475 * number of free hugepages would be reduced below the number of reserved
1476 * hugepages.
1477 */
1478 int dissolve_free_huge_page(struct page *page)
1479 {
1480 int rc = 0;
1481
1482 spin_lock(&hugetlb_lock);
1483 if (PageHuge(page) && !page_count(page)) {
1484 struct page *head = compound_head(page);
1485 struct hstate *h = page_hstate(head);
1486 int nid = page_to_nid(head);
1487 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1488 rc = -EBUSY;
1489 goto out;
1490 }
1491 /*
1492 * Move PageHWPoison flag from head page to the raw error page,
1493 * which makes any subpages rather than the error page reusable.
1494 */
1495 if (PageHWPoison(head) && page != head) {
1496 SetPageHWPoison(page);
1497 ClearPageHWPoison(head);
1498 }
1499 list_del(&head->lru);
1500 h->free_huge_pages--;
1501 h->free_huge_pages_node[nid]--;
1502 h->max_huge_pages--;
1503 update_and_free_page(h, head);
1504 }
1505 out:
1506 spin_unlock(&hugetlb_lock);
1507 return rc;
1508 }
1509
1510 /*
1511 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1512 * make specified memory blocks removable from the system.
1513 * Note that this will dissolve a free gigantic hugepage completely, if any
1514 * part of it lies within the given range.
1515 * Also note that if dissolve_free_huge_page() returns with an error, all
1516 * free hugepages that were dissolved before that error are lost.
1517 */
1518 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1519 {
1520 unsigned long pfn;
1521 struct page *page;
1522 int rc = 0;
1523
1524 if (!hugepages_supported())
1525 return rc;
1526
1527 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1528 page = pfn_to_page(pfn);
1529 if (PageHuge(page) && !page_count(page)) {
1530 rc = dissolve_free_huge_page(page);
1531 if (rc)
1532 break;
1533 }
1534 }
1535
1536 return rc;
1537 }
1538
1539 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1540 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1541 {
1542 int order = huge_page_order(h);
1543
1544 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1545 if (nid == NUMA_NO_NODE)
1546 nid = numa_mem_id();
1547 return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1548 }
1549
1550 static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1551 int nid, nodemask_t *nmask)
1552 {
1553 struct page *page;
1554 unsigned int r_nid;
1555
1556 if (hstate_is_gigantic(h))
1557 return NULL;
1558
1559 /*
1560 * Assume we will successfully allocate the surplus page to
1561 * prevent racing processes from causing the surplus to exceed
1562 * overcommit
1563 *
1564 * This however introduces a different race, where a process B
1565 * tries to grow the static hugepage pool while alloc_pages() is
1566 * called by process A. B will only examine the per-node
1567 * counters in determining if surplus huge pages can be
1568 * converted to normal huge pages in adjust_pool_surplus(). A
1569 * won't be able to increment the per-node counter, until the
1570 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1571 * no more huge pages can be converted from surplus to normal
1572 * state (and doesn't try to convert again). Thus, we have a
1573 * case where a surplus huge page exists, the pool is grown, and
1574 * the surplus huge page still exists after, even though it
1575 * should just have been converted to a normal huge page. This
1576 * does not leak memory, though, as the hugepage will be freed
1577 * once it is out of use. It also does not allow the counters to
1578 * go out of whack in adjust_pool_surplus() as we don't modify
1579 * the node values until we've gotten the hugepage and only the
1580 * per-node value is checked there.
1581 */
1582 spin_lock(&hugetlb_lock);
1583 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1584 spin_unlock(&hugetlb_lock);
1585 return NULL;
1586 } else {
1587 h->nr_huge_pages++;
1588 h->surplus_huge_pages++;
1589 }
1590 spin_unlock(&hugetlb_lock);
1591
1592 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
1593
1594 spin_lock(&hugetlb_lock);
1595 if (page) {
1596 INIT_LIST_HEAD(&page->lru);
1597 r_nid = page_to_nid(page);
1598 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1599 set_hugetlb_cgroup(page, NULL);
1600 /*
1601 * We incremented the global counters already
1602 */
1603 h->nr_huge_pages_node[r_nid]++;
1604 h->surplus_huge_pages_node[r_nid]++;
1605 __count_vm_event(HTLB_BUDDY_PGALLOC);
1606 } else {
1607 h->nr_huge_pages--;
1608 h->surplus_huge_pages--;
1609 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1610 }
1611 spin_unlock(&hugetlb_lock);
1612
1613 return page;
1614 }
1615
1616 /*
1617 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1618 */
1619 static
1620 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1621 struct vm_area_struct *vma, unsigned long addr)
1622 {
1623 struct page *page;
1624 struct mempolicy *mpol;
1625 gfp_t gfp_mask = htlb_alloc_mask(h);
1626 int nid;
1627 nodemask_t *nodemask;
1628
1629 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1630 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1631 mpol_cond_put(mpol);
1632
1633 return page;
1634 }
1635
1636 /*
1637 * This allocation function is useful in the context where vma is irrelevant.
1638 * E.g. soft-offlining uses this function because it only cares physical
1639 * address of error page.
1640 */
1641 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1642 {
1643 gfp_t gfp_mask = htlb_alloc_mask(h);
1644 struct page *page = NULL;
1645
1646 if (nid != NUMA_NO_NODE)
1647 gfp_mask |= __GFP_THISNODE;
1648
1649 spin_lock(&hugetlb_lock);
1650 if (h->free_huge_pages - h->resv_huge_pages > 0)
1651 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1652 spin_unlock(&hugetlb_lock);
1653
1654 if (!page)
1655 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
1656
1657 return page;
1658 }
1659
1660
1661 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1662 nodemask_t *nmask)
1663 {
1664 gfp_t gfp_mask = htlb_alloc_mask(h);
1665
1666 spin_lock(&hugetlb_lock);
1667 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1668 struct page *page;
1669
1670 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1671 if (page) {
1672 spin_unlock(&hugetlb_lock);
1673 return page;
1674 }
1675 }
1676 spin_unlock(&hugetlb_lock);
1677
1678 /* No reservations, try to overcommit */
1679
1680 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
1681 }
1682
1683 /*
1684 * Increase the hugetlb pool such that it can accommodate a reservation
1685 * of size 'delta'.
1686 */
1687 static int gather_surplus_pages(struct hstate *h, int delta)
1688 {
1689 struct list_head surplus_list;
1690 struct page *page, *tmp;
1691 int ret, i;
1692 int needed, allocated;
1693 bool alloc_ok = true;
1694
1695 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1696 if (needed <= 0) {
1697 h->resv_huge_pages += delta;
1698 return 0;
1699 }
1700
1701 allocated = 0;
1702 INIT_LIST_HEAD(&surplus_list);
1703
1704 ret = -ENOMEM;
1705 retry:
1706 spin_unlock(&hugetlb_lock);
1707 for (i = 0; i < needed; i++) {
1708 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1709 NUMA_NO_NODE, NULL);
1710 if (!page) {
1711 alloc_ok = false;
1712 break;
1713 }
1714 list_add(&page->lru, &surplus_list);
1715 cond_resched();
1716 }
1717 allocated += i;
1718
1719 /*
1720 * After retaking hugetlb_lock, we need to recalculate 'needed'
1721 * because either resv_huge_pages or free_huge_pages may have changed.
1722 */
1723 spin_lock(&hugetlb_lock);
1724 needed = (h->resv_huge_pages + delta) -
1725 (h->free_huge_pages + allocated);
1726 if (needed > 0) {
1727 if (alloc_ok)
1728 goto retry;
1729 /*
1730 * We were not able to allocate enough pages to
1731 * satisfy the entire reservation so we free what
1732 * we've allocated so far.
1733 */
1734 goto free;
1735 }
1736 /*
1737 * The surplus_list now contains _at_least_ the number of extra pages
1738 * needed to accommodate the reservation. Add the appropriate number
1739 * of pages to the hugetlb pool and free the extras back to the buddy
1740 * allocator. Commit the entire reservation here to prevent another
1741 * process from stealing the pages as they are added to the pool but
1742 * before they are reserved.
1743 */
1744 needed += allocated;
1745 h->resv_huge_pages += delta;
1746 ret = 0;
1747
1748 /* Free the needed pages to the hugetlb pool */
1749 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1750 if ((--needed) < 0)
1751 break;
1752 /*
1753 * This page is now managed by the hugetlb allocator and has
1754 * no users -- drop the buddy allocator's reference.
1755 */
1756 put_page_testzero(page);
1757 VM_BUG_ON_PAGE(page_count(page), page);
1758 enqueue_huge_page(h, page);
1759 }
1760 free:
1761 spin_unlock(&hugetlb_lock);
1762
1763 /* Free unnecessary surplus pages to the buddy allocator */
1764 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1765 put_page(page);
1766 spin_lock(&hugetlb_lock);
1767
1768 return ret;
1769 }
1770
1771 /*
1772 * This routine has two main purposes:
1773 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1774 * in unused_resv_pages. This corresponds to the prior adjustments made
1775 * to the associated reservation map.
1776 * 2) Free any unused surplus pages that may have been allocated to satisfy
1777 * the reservation. As many as unused_resv_pages may be freed.
1778 *
1779 * Called with hugetlb_lock held. However, the lock could be dropped (and
1780 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1781 * we must make sure nobody else can claim pages we are in the process of
1782 * freeing. Do this by ensuring resv_huge_page always is greater than the
1783 * number of huge pages we plan to free when dropping the lock.
1784 */
1785 static void return_unused_surplus_pages(struct hstate *h,
1786 unsigned long unused_resv_pages)
1787 {
1788 unsigned long nr_pages;
1789
1790 /* Cannot return gigantic pages currently */
1791 if (hstate_is_gigantic(h))
1792 goto out;
1793
1794 /*
1795 * Part (or even all) of the reservation could have been backed
1796 * by pre-allocated pages. Only free surplus pages.
1797 */
1798 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1799
1800 /*
1801 * We want to release as many surplus pages as possible, spread
1802 * evenly across all nodes with memory. Iterate across these nodes
1803 * until we can no longer free unreserved surplus pages. This occurs
1804 * when the nodes with surplus pages have no free pages.
1805 * free_pool_huge_page() will balance the the freed pages across the
1806 * on-line nodes with memory and will handle the hstate accounting.
1807 *
1808 * Note that we decrement resv_huge_pages as we free the pages. If
1809 * we drop the lock, resv_huge_pages will still be sufficiently large
1810 * to cover subsequent pages we may free.
1811 */
1812 while (nr_pages--) {
1813 h->resv_huge_pages--;
1814 unused_resv_pages--;
1815 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1816 goto out;
1817 cond_resched_lock(&hugetlb_lock);
1818 }
1819
1820 out:
1821 /* Fully uncommit the reservation */
1822 h->resv_huge_pages -= unused_resv_pages;
1823 }
1824
1825
1826 /*
1827 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1828 * are used by the huge page allocation routines to manage reservations.
1829 *
1830 * vma_needs_reservation is called to determine if the huge page at addr
1831 * within the vma has an associated reservation. If a reservation is
1832 * needed, the value 1 is returned. The caller is then responsible for
1833 * managing the global reservation and subpool usage counts. After
1834 * the huge page has been allocated, vma_commit_reservation is called
1835 * to add the page to the reservation map. If the page allocation fails,
1836 * the reservation must be ended instead of committed. vma_end_reservation
1837 * is called in such cases.
1838 *
1839 * In the normal case, vma_commit_reservation returns the same value
1840 * as the preceding vma_needs_reservation call. The only time this
1841 * is not the case is if a reserve map was changed between calls. It
1842 * is the responsibility of the caller to notice the difference and
1843 * take appropriate action.
1844 *
1845 * vma_add_reservation is used in error paths where a reservation must
1846 * be restored when a newly allocated huge page must be freed. It is
1847 * to be called after calling vma_needs_reservation to determine if a
1848 * reservation exists.
1849 */
1850 enum vma_resv_mode {
1851 VMA_NEEDS_RESV,
1852 VMA_COMMIT_RESV,
1853 VMA_END_RESV,
1854 VMA_ADD_RESV,
1855 };
1856 static long __vma_reservation_common(struct hstate *h,
1857 struct vm_area_struct *vma, unsigned long addr,
1858 enum vma_resv_mode mode)
1859 {
1860 struct resv_map *resv;
1861 pgoff_t idx;
1862 long ret;
1863
1864 resv = vma_resv_map(vma);
1865 if (!resv)
1866 return 1;
1867
1868 idx = vma_hugecache_offset(h, vma, addr);
1869 switch (mode) {
1870 case VMA_NEEDS_RESV:
1871 ret = region_chg(resv, idx, idx + 1);
1872 break;
1873 case VMA_COMMIT_RESV:
1874 ret = region_add(resv, idx, idx + 1);
1875 break;
1876 case VMA_END_RESV:
1877 region_abort(resv, idx, idx + 1);
1878 ret = 0;
1879 break;
1880 case VMA_ADD_RESV:
1881 if (vma->vm_flags & VM_MAYSHARE)
1882 ret = region_add(resv, idx, idx + 1);
1883 else {
1884 region_abort(resv, idx, idx + 1);
1885 ret = region_del(resv, idx, idx + 1);
1886 }
1887 break;
1888 default:
1889 BUG();
1890 }
1891
1892 if (vma->vm_flags & VM_MAYSHARE)
1893 return ret;
1894 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1895 /*
1896 * In most cases, reserves always exist for private mappings.
1897 * However, a file associated with mapping could have been
1898 * hole punched or truncated after reserves were consumed.
1899 * As subsequent fault on such a range will not use reserves.
1900 * Subtle - The reserve map for private mappings has the
1901 * opposite meaning than that of shared mappings. If NO
1902 * entry is in the reserve map, it means a reservation exists.
1903 * If an entry exists in the reserve map, it means the
1904 * reservation has already been consumed. As a result, the
1905 * return value of this routine is the opposite of the
1906 * value returned from reserve map manipulation routines above.
1907 */
1908 if (ret)
1909 return 0;
1910 else
1911 return 1;
1912 }
1913 else
1914 return ret < 0 ? ret : 0;
1915 }
1916
1917 static long vma_needs_reservation(struct hstate *h,
1918 struct vm_area_struct *vma, unsigned long addr)
1919 {
1920 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1921 }
1922
1923 static long vma_commit_reservation(struct hstate *h,
1924 struct vm_area_struct *vma, unsigned long addr)
1925 {
1926 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1927 }
1928
1929 static void vma_end_reservation(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1931 {
1932 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1933 }
1934
1935 static long vma_add_reservation(struct hstate *h,
1936 struct vm_area_struct *vma, unsigned long addr)
1937 {
1938 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1939 }
1940
1941 /*
1942 * This routine is called to restore a reservation on error paths. In the
1943 * specific error paths, a huge page was allocated (via alloc_huge_page)
1944 * and is about to be freed. If a reservation for the page existed,
1945 * alloc_huge_page would have consumed the reservation and set PagePrivate
1946 * in the newly allocated page. When the page is freed via free_huge_page,
1947 * the global reservation count will be incremented if PagePrivate is set.
1948 * However, free_huge_page can not adjust the reserve map. Adjust the
1949 * reserve map here to be consistent with global reserve count adjustments
1950 * to be made by free_huge_page.
1951 */
1952 static void restore_reserve_on_error(struct hstate *h,
1953 struct vm_area_struct *vma, unsigned long address,
1954 struct page *page)
1955 {
1956 if (unlikely(PagePrivate(page))) {
1957 long rc = vma_needs_reservation(h, vma, address);
1958
1959 if (unlikely(rc < 0)) {
1960 /*
1961 * Rare out of memory condition in reserve map
1962 * manipulation. Clear PagePrivate so that
1963 * global reserve count will not be incremented
1964 * by free_huge_page. This will make it appear
1965 * as though the reservation for this page was
1966 * consumed. This may prevent the task from
1967 * faulting in the page at a later time. This
1968 * is better than inconsistent global huge page
1969 * accounting of reserve counts.
1970 */
1971 ClearPagePrivate(page);
1972 } else if (rc) {
1973 rc = vma_add_reservation(h, vma, address);
1974 if (unlikely(rc < 0))
1975 /*
1976 * See above comment about rare out of
1977 * memory condition.
1978 */
1979 ClearPagePrivate(page);
1980 } else
1981 vma_end_reservation(h, vma, address);
1982 }
1983 }
1984
1985 struct page *alloc_huge_page(struct vm_area_struct *vma,
1986 unsigned long addr, int avoid_reserve)
1987 {
1988 struct hugepage_subpool *spool = subpool_vma(vma);
1989 struct hstate *h = hstate_vma(vma);
1990 struct page *page;
1991 long map_chg, map_commit;
1992 long gbl_chg;
1993 int ret, idx;
1994 struct hugetlb_cgroup *h_cg;
1995
1996 idx = hstate_index(h);
1997 /*
1998 * Examine the region/reserve map to determine if the process
1999 * has a reservation for the page to be allocated. A return
2000 * code of zero indicates a reservation exists (no change).
2001 */
2002 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2003 if (map_chg < 0)
2004 return ERR_PTR(-ENOMEM);
2005
2006 /*
2007 * Processes that did not create the mapping will have no
2008 * reserves as indicated by the region/reserve map. Check
2009 * that the allocation will not exceed the subpool limit.
2010 * Allocations for MAP_NORESERVE mappings also need to be
2011 * checked against any subpool limit.
2012 */
2013 if (map_chg || avoid_reserve) {
2014 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2015 if (gbl_chg < 0) {
2016 vma_end_reservation(h, vma, addr);
2017 return ERR_PTR(-ENOSPC);
2018 }
2019
2020 /*
2021 * Even though there was no reservation in the region/reserve
2022 * map, there could be reservations associated with the
2023 * subpool that can be used. This would be indicated if the
2024 * return value of hugepage_subpool_get_pages() is zero.
2025 * However, if avoid_reserve is specified we still avoid even
2026 * the subpool reservations.
2027 */
2028 if (avoid_reserve)
2029 gbl_chg = 1;
2030 }
2031
2032 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2033 if (ret)
2034 goto out_subpool_put;
2035
2036 spin_lock(&hugetlb_lock);
2037 /*
2038 * glb_chg is passed to indicate whether or not a page must be taken
2039 * from the global free pool (global change). gbl_chg == 0 indicates
2040 * a reservation exists for the allocation.
2041 */
2042 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2043 if (!page) {
2044 spin_unlock(&hugetlb_lock);
2045 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2046 if (!page)
2047 goto out_uncharge_cgroup;
2048 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2049 SetPagePrivate(page);
2050 h->resv_huge_pages--;
2051 }
2052 spin_lock(&hugetlb_lock);
2053 list_move(&page->lru, &h->hugepage_activelist);
2054 /* Fall through */
2055 }
2056 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2057 spin_unlock(&hugetlb_lock);
2058
2059 set_page_private(page, (unsigned long)spool);
2060
2061 map_commit = vma_commit_reservation(h, vma, addr);
2062 if (unlikely(map_chg > map_commit)) {
2063 /*
2064 * The page was added to the reservation map between
2065 * vma_needs_reservation and vma_commit_reservation.
2066 * This indicates a race with hugetlb_reserve_pages.
2067 * Adjust for the subpool count incremented above AND
2068 * in hugetlb_reserve_pages for the same page. Also,
2069 * the reservation count added in hugetlb_reserve_pages
2070 * no longer applies.
2071 */
2072 long rsv_adjust;
2073
2074 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2075 hugetlb_acct_memory(h, -rsv_adjust);
2076 }
2077 return page;
2078
2079 out_uncharge_cgroup:
2080 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2081 out_subpool_put:
2082 if (map_chg || avoid_reserve)
2083 hugepage_subpool_put_pages(spool, 1);
2084 vma_end_reservation(h, vma, addr);
2085 return ERR_PTR(-ENOSPC);
2086 }
2087
2088 /*
2089 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2090 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2091 * where no ERR_VALUE is expected to be returned.
2092 */
2093 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2094 unsigned long addr, int avoid_reserve)
2095 {
2096 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2097 if (IS_ERR(page))
2098 page = NULL;
2099 return page;
2100 }
2101
2102 int alloc_bootmem_huge_page(struct hstate *h)
2103 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2104 int __alloc_bootmem_huge_page(struct hstate *h)
2105 {
2106 struct huge_bootmem_page *m;
2107 int nr_nodes, node;
2108
2109 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2110 void *addr;
2111
2112 addr = memblock_virt_alloc_try_nid_nopanic(
2113 huge_page_size(h), huge_page_size(h),
2114 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2115 if (addr) {
2116 /*
2117 * Use the beginning of the huge page to store the
2118 * huge_bootmem_page struct (until gather_bootmem
2119 * puts them into the mem_map).
2120 */
2121 m = addr;
2122 goto found;
2123 }
2124 }
2125 return 0;
2126
2127 found:
2128 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2129 /* Put them into a private list first because mem_map is not up yet */
2130 list_add(&m->list, &huge_boot_pages);
2131 m->hstate = h;
2132 return 1;
2133 }
2134
2135 static void __init prep_compound_huge_page(struct page *page,
2136 unsigned int order)
2137 {
2138 if (unlikely(order > (MAX_ORDER - 1)))
2139 prep_compound_gigantic_page(page, order);
2140 else
2141 prep_compound_page(page, order);
2142 }
2143
2144 /* Put bootmem huge pages into the standard lists after mem_map is up */
2145 static void __init gather_bootmem_prealloc(void)
2146 {
2147 struct huge_bootmem_page *m;
2148
2149 list_for_each_entry(m, &huge_boot_pages, list) {
2150 struct hstate *h = m->hstate;
2151 struct page *page;
2152
2153 #ifdef CONFIG_HIGHMEM
2154 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2155 memblock_free_late(__pa(m),
2156 sizeof(struct huge_bootmem_page));
2157 #else
2158 page = virt_to_page(m);
2159 #endif
2160 WARN_ON(page_count(page) != 1);
2161 prep_compound_huge_page(page, h->order);
2162 WARN_ON(PageReserved(page));
2163 prep_new_huge_page(h, page, page_to_nid(page));
2164 /*
2165 * If we had gigantic hugepages allocated at boot time, we need
2166 * to restore the 'stolen' pages to totalram_pages in order to
2167 * fix confusing memory reports from free(1) and another
2168 * side-effects, like CommitLimit going negative.
2169 */
2170 if (hstate_is_gigantic(h))
2171 adjust_managed_page_count(page, 1 << h->order);
2172 cond_resched();
2173 }
2174 }
2175
2176 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2177 {
2178 unsigned long i;
2179
2180 for (i = 0; i < h->max_huge_pages; ++i) {
2181 if (hstate_is_gigantic(h)) {
2182 if (!alloc_bootmem_huge_page(h))
2183 break;
2184 } else if (!alloc_fresh_huge_page(h,
2185 &node_states[N_MEMORY]))
2186 break;
2187 cond_resched();
2188 }
2189 if (i < h->max_huge_pages) {
2190 char buf[32];
2191
2192 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2193 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2194 h->max_huge_pages, buf, i);
2195 h->max_huge_pages = i;
2196 }
2197 }
2198
2199 static void __init hugetlb_init_hstates(void)
2200 {
2201 struct hstate *h;
2202
2203 for_each_hstate(h) {
2204 if (minimum_order > huge_page_order(h))
2205 minimum_order = huge_page_order(h);
2206
2207 /* oversize hugepages were init'ed in early boot */
2208 if (!hstate_is_gigantic(h))
2209 hugetlb_hstate_alloc_pages(h);
2210 }
2211 VM_BUG_ON(minimum_order == UINT_MAX);
2212 }
2213
2214 static void __init report_hugepages(void)
2215 {
2216 struct hstate *h;
2217
2218 for_each_hstate(h) {
2219 char buf[32];
2220
2221 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2222 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2223 buf, h->free_huge_pages);
2224 }
2225 }
2226
2227 #ifdef CONFIG_HIGHMEM
2228 static void try_to_free_low(struct hstate *h, unsigned long count,
2229 nodemask_t *nodes_allowed)
2230 {
2231 int i;
2232
2233 if (hstate_is_gigantic(h))
2234 return;
2235
2236 for_each_node_mask(i, *nodes_allowed) {
2237 struct page *page, *next;
2238 struct list_head *freel = &h->hugepage_freelists[i];
2239 list_for_each_entry_safe(page, next, freel, lru) {
2240 if (count >= h->nr_huge_pages)
2241 return;
2242 if (PageHighMem(page))
2243 continue;
2244 list_del(&page->lru);
2245 update_and_free_page(h, page);
2246 h->free_huge_pages--;
2247 h->free_huge_pages_node[page_to_nid(page)]--;
2248 }
2249 }
2250 }
2251 #else
2252 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2253 nodemask_t *nodes_allowed)
2254 {
2255 }
2256 #endif
2257
2258 /*
2259 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2260 * balanced by operating on them in a round-robin fashion.
2261 * Returns 1 if an adjustment was made.
2262 */
2263 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2264 int delta)
2265 {
2266 int nr_nodes, node;
2267
2268 VM_BUG_ON(delta != -1 && delta != 1);
2269
2270 if (delta < 0) {
2271 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2272 if (h->surplus_huge_pages_node[node])
2273 goto found;
2274 }
2275 } else {
2276 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2277 if (h->surplus_huge_pages_node[node] <
2278 h->nr_huge_pages_node[node])
2279 goto found;
2280 }
2281 }
2282 return 0;
2283
2284 found:
2285 h->surplus_huge_pages += delta;
2286 h->surplus_huge_pages_node[node] += delta;
2287 return 1;
2288 }
2289
2290 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2291 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2292 nodemask_t *nodes_allowed)
2293 {
2294 unsigned long min_count, ret;
2295
2296 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2297 return h->max_huge_pages;
2298
2299 /*
2300 * Increase the pool size
2301 * First take pages out of surplus state. Then make up the
2302 * remaining difference by allocating fresh huge pages.
2303 *
2304 * We might race with __alloc_buddy_huge_page() here and be unable
2305 * to convert a surplus huge page to a normal huge page. That is
2306 * not critical, though, it just means the overall size of the
2307 * pool might be one hugepage larger than it needs to be, but
2308 * within all the constraints specified by the sysctls.
2309 */
2310 spin_lock(&hugetlb_lock);
2311 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2312 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2313 break;
2314 }
2315
2316 while (count > persistent_huge_pages(h)) {
2317 /*
2318 * If this allocation races such that we no longer need the
2319 * page, free_huge_page will handle it by freeing the page
2320 * and reducing the surplus.
2321 */
2322 spin_unlock(&hugetlb_lock);
2323
2324 /* yield cpu to avoid soft lockup */
2325 cond_resched();
2326
2327 if (hstate_is_gigantic(h))
2328 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2329 else
2330 ret = alloc_fresh_huge_page(h, nodes_allowed);
2331 spin_lock(&hugetlb_lock);
2332 if (!ret)
2333 goto out;
2334
2335 /* Bail for signals. Probably ctrl-c from user */
2336 if (signal_pending(current))
2337 goto out;
2338 }
2339
2340 /*
2341 * Decrease the pool size
2342 * First return free pages to the buddy allocator (being careful
2343 * to keep enough around to satisfy reservations). Then place
2344 * pages into surplus state as needed so the pool will shrink
2345 * to the desired size as pages become free.
2346 *
2347 * By placing pages into the surplus state independent of the
2348 * overcommit value, we are allowing the surplus pool size to
2349 * exceed overcommit. There are few sane options here. Since
2350 * __alloc_buddy_huge_page() is checking the global counter,
2351 * though, we'll note that we're not allowed to exceed surplus
2352 * and won't grow the pool anywhere else. Not until one of the
2353 * sysctls are changed, or the surplus pages go out of use.
2354 */
2355 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2356 min_count = max(count, min_count);
2357 try_to_free_low(h, min_count, nodes_allowed);
2358 while (min_count < persistent_huge_pages(h)) {
2359 if (!free_pool_huge_page(h, nodes_allowed, 0))
2360 break;
2361 cond_resched_lock(&hugetlb_lock);
2362 }
2363 while (count < persistent_huge_pages(h)) {
2364 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2365 break;
2366 }
2367 out:
2368 ret = persistent_huge_pages(h);
2369 spin_unlock(&hugetlb_lock);
2370 return ret;
2371 }
2372
2373 #define HSTATE_ATTR_RO(_name) \
2374 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2375
2376 #define HSTATE_ATTR(_name) \
2377 static struct kobj_attribute _name##_attr = \
2378 __ATTR(_name, 0644, _name##_show, _name##_store)
2379
2380 static struct kobject *hugepages_kobj;
2381 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2382
2383 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2384
2385 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2386 {
2387 int i;
2388
2389 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2390 if (hstate_kobjs[i] == kobj) {
2391 if (nidp)
2392 *nidp = NUMA_NO_NODE;
2393 return &hstates[i];
2394 }
2395
2396 return kobj_to_node_hstate(kobj, nidp);
2397 }
2398
2399 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2400 struct kobj_attribute *attr, char *buf)
2401 {
2402 struct hstate *h;
2403 unsigned long nr_huge_pages;
2404 int nid;
2405
2406 h = kobj_to_hstate(kobj, &nid);
2407 if (nid == NUMA_NO_NODE)
2408 nr_huge_pages = h->nr_huge_pages;
2409 else
2410 nr_huge_pages = h->nr_huge_pages_node[nid];
2411
2412 return sprintf(buf, "%lu\n", nr_huge_pages);
2413 }
2414
2415 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2416 struct hstate *h, int nid,
2417 unsigned long count, size_t len)
2418 {
2419 int err;
2420 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2421
2422 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2423 err = -EINVAL;
2424 goto out;
2425 }
2426
2427 if (nid == NUMA_NO_NODE) {
2428 /*
2429 * global hstate attribute
2430 */
2431 if (!(obey_mempolicy &&
2432 init_nodemask_of_mempolicy(nodes_allowed))) {
2433 NODEMASK_FREE(nodes_allowed);
2434 nodes_allowed = &node_states[N_MEMORY];
2435 }
2436 } else if (nodes_allowed) {
2437 /*
2438 * per node hstate attribute: adjust count to global,
2439 * but restrict alloc/free to the specified node.
2440 */
2441 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2442 init_nodemask_of_node(nodes_allowed, nid);
2443 } else
2444 nodes_allowed = &node_states[N_MEMORY];
2445
2446 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2447
2448 if (nodes_allowed != &node_states[N_MEMORY])
2449 NODEMASK_FREE(nodes_allowed);
2450
2451 return len;
2452 out:
2453 NODEMASK_FREE(nodes_allowed);
2454 return err;
2455 }
2456
2457 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2458 struct kobject *kobj, const char *buf,
2459 size_t len)
2460 {
2461 struct hstate *h;
2462 unsigned long count;
2463 int nid;
2464 int err;
2465
2466 err = kstrtoul(buf, 10, &count);
2467 if (err)
2468 return err;
2469
2470 h = kobj_to_hstate(kobj, &nid);
2471 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2472 }
2473
2474 static ssize_t nr_hugepages_show(struct kobject *kobj,
2475 struct kobj_attribute *attr, char *buf)
2476 {
2477 return nr_hugepages_show_common(kobj, attr, buf);
2478 }
2479
2480 static ssize_t nr_hugepages_store(struct kobject *kobj,
2481 struct kobj_attribute *attr, const char *buf, size_t len)
2482 {
2483 return nr_hugepages_store_common(false, kobj, buf, len);
2484 }
2485 HSTATE_ATTR(nr_hugepages);
2486
2487 #ifdef CONFIG_NUMA
2488
2489 /*
2490 * hstate attribute for optionally mempolicy-based constraint on persistent
2491 * huge page alloc/free.
2492 */
2493 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2494 struct kobj_attribute *attr, char *buf)
2495 {
2496 return nr_hugepages_show_common(kobj, attr, buf);
2497 }
2498
2499 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2500 struct kobj_attribute *attr, const char *buf, size_t len)
2501 {
2502 return nr_hugepages_store_common(true, kobj, buf, len);
2503 }
2504 HSTATE_ATTR(nr_hugepages_mempolicy);
2505 #endif
2506
2507
2508 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2509 struct kobj_attribute *attr, char *buf)
2510 {
2511 struct hstate *h = kobj_to_hstate(kobj, NULL);
2512 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2513 }
2514
2515 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2516 struct kobj_attribute *attr, const char *buf, size_t count)
2517 {
2518 int err;
2519 unsigned long input;
2520 struct hstate *h = kobj_to_hstate(kobj, NULL);
2521
2522 if (hstate_is_gigantic(h))
2523 return -EINVAL;
2524
2525 err = kstrtoul(buf, 10, &input);
2526 if (err)
2527 return err;
2528
2529 spin_lock(&hugetlb_lock);
2530 h->nr_overcommit_huge_pages = input;
2531 spin_unlock(&hugetlb_lock);
2532
2533 return count;
2534 }
2535 HSTATE_ATTR(nr_overcommit_hugepages);
2536
2537 static ssize_t free_hugepages_show(struct kobject *kobj,
2538 struct kobj_attribute *attr, char *buf)
2539 {
2540 struct hstate *h;
2541 unsigned long free_huge_pages;
2542 int nid;
2543
2544 h = kobj_to_hstate(kobj, &nid);
2545 if (nid == NUMA_NO_NODE)
2546 free_huge_pages = h->free_huge_pages;
2547 else
2548 free_huge_pages = h->free_huge_pages_node[nid];
2549
2550 return sprintf(buf, "%lu\n", free_huge_pages);
2551 }
2552 HSTATE_ATTR_RO(free_hugepages);
2553
2554 static ssize_t resv_hugepages_show(struct kobject *kobj,
2555 struct kobj_attribute *attr, char *buf)
2556 {
2557 struct hstate *h = kobj_to_hstate(kobj, NULL);
2558 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2559 }
2560 HSTATE_ATTR_RO(resv_hugepages);
2561
2562 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2563 struct kobj_attribute *attr, char *buf)
2564 {
2565 struct hstate *h;
2566 unsigned long surplus_huge_pages;
2567 int nid;
2568
2569 h = kobj_to_hstate(kobj, &nid);
2570 if (nid == NUMA_NO_NODE)
2571 surplus_huge_pages = h->surplus_huge_pages;
2572 else
2573 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2574
2575 return sprintf(buf, "%lu\n", surplus_huge_pages);
2576 }
2577 HSTATE_ATTR_RO(surplus_hugepages);
2578
2579 static struct attribute *hstate_attrs[] = {
2580 &nr_hugepages_attr.attr,
2581 &nr_overcommit_hugepages_attr.attr,
2582 &free_hugepages_attr.attr,
2583 &resv_hugepages_attr.attr,
2584 &surplus_hugepages_attr.attr,
2585 #ifdef CONFIG_NUMA
2586 &nr_hugepages_mempolicy_attr.attr,
2587 #endif
2588 NULL,
2589 };
2590
2591 static const struct attribute_group hstate_attr_group = {
2592 .attrs = hstate_attrs,
2593 };
2594
2595 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2596 struct kobject **hstate_kobjs,
2597 const struct attribute_group *hstate_attr_group)
2598 {
2599 int retval;
2600 int hi = hstate_index(h);
2601
2602 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2603 if (!hstate_kobjs[hi])
2604 return -ENOMEM;
2605
2606 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2607 if (retval)
2608 kobject_put(hstate_kobjs[hi]);
2609
2610 return retval;
2611 }
2612
2613 static void __init hugetlb_sysfs_init(void)
2614 {
2615 struct hstate *h;
2616 int err;
2617
2618 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2619 if (!hugepages_kobj)
2620 return;
2621
2622 for_each_hstate(h) {
2623 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2624 hstate_kobjs, &hstate_attr_group);
2625 if (err)
2626 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2627 }
2628 }
2629
2630 #ifdef CONFIG_NUMA
2631
2632 /*
2633 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2634 * with node devices in node_devices[] using a parallel array. The array
2635 * index of a node device or _hstate == node id.
2636 * This is here to avoid any static dependency of the node device driver, in
2637 * the base kernel, on the hugetlb module.
2638 */
2639 struct node_hstate {
2640 struct kobject *hugepages_kobj;
2641 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2642 };
2643 static struct node_hstate node_hstates[MAX_NUMNODES];
2644
2645 /*
2646 * A subset of global hstate attributes for node devices
2647 */
2648 static struct attribute *per_node_hstate_attrs[] = {
2649 &nr_hugepages_attr.attr,
2650 &free_hugepages_attr.attr,
2651 &surplus_hugepages_attr.attr,
2652 NULL,
2653 };
2654
2655 static const struct attribute_group per_node_hstate_attr_group = {
2656 .attrs = per_node_hstate_attrs,
2657 };
2658
2659 /*
2660 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2661 * Returns node id via non-NULL nidp.
2662 */
2663 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2664 {
2665 int nid;
2666
2667 for (nid = 0; nid < nr_node_ids; nid++) {
2668 struct node_hstate *nhs = &node_hstates[nid];
2669 int i;
2670 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2671 if (nhs->hstate_kobjs[i] == kobj) {
2672 if (nidp)
2673 *nidp = nid;
2674 return &hstates[i];
2675 }
2676 }
2677
2678 BUG();
2679 return NULL;
2680 }
2681
2682 /*
2683 * Unregister hstate attributes from a single node device.
2684 * No-op if no hstate attributes attached.
2685 */
2686 static void hugetlb_unregister_node(struct node *node)
2687 {
2688 struct hstate *h;
2689 struct node_hstate *nhs = &node_hstates[node->dev.id];
2690
2691 if (!nhs->hugepages_kobj)
2692 return; /* no hstate attributes */
2693
2694 for_each_hstate(h) {
2695 int idx = hstate_index(h);
2696 if (nhs->hstate_kobjs[idx]) {
2697 kobject_put(nhs->hstate_kobjs[idx]);
2698 nhs->hstate_kobjs[idx] = NULL;
2699 }
2700 }
2701
2702 kobject_put(nhs->hugepages_kobj);
2703 nhs->hugepages_kobj = NULL;
2704 }
2705
2706
2707 /*
2708 * Register hstate attributes for a single node device.
2709 * No-op if attributes already registered.
2710 */
2711 static void hugetlb_register_node(struct node *node)
2712 {
2713 struct hstate *h;
2714 struct node_hstate *nhs = &node_hstates[node->dev.id];
2715 int err;
2716
2717 if (nhs->hugepages_kobj)
2718 return; /* already allocated */
2719
2720 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2721 &node->dev.kobj);
2722 if (!nhs->hugepages_kobj)
2723 return;
2724
2725 for_each_hstate(h) {
2726 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2727 nhs->hstate_kobjs,
2728 &per_node_hstate_attr_group);
2729 if (err) {
2730 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2731 h->name, node->dev.id);
2732 hugetlb_unregister_node(node);
2733 break;
2734 }
2735 }
2736 }
2737
2738 /*
2739 * hugetlb init time: register hstate attributes for all registered node
2740 * devices of nodes that have memory. All on-line nodes should have
2741 * registered their associated device by this time.
2742 */
2743 static void __init hugetlb_register_all_nodes(void)
2744 {
2745 int nid;
2746
2747 for_each_node_state(nid, N_MEMORY) {
2748 struct node *node = node_devices[nid];
2749 if (node->dev.id == nid)
2750 hugetlb_register_node(node);
2751 }
2752
2753 /*
2754 * Let the node device driver know we're here so it can
2755 * [un]register hstate attributes on node hotplug.
2756 */
2757 register_hugetlbfs_with_node(hugetlb_register_node,
2758 hugetlb_unregister_node);
2759 }
2760 #else /* !CONFIG_NUMA */
2761
2762 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2763 {
2764 BUG();
2765 if (nidp)
2766 *nidp = -1;
2767 return NULL;
2768 }
2769
2770 static void hugetlb_register_all_nodes(void) { }
2771
2772 #endif
2773
2774 static int __init hugetlb_init(void)
2775 {
2776 int i;
2777
2778 if (!hugepages_supported())
2779 return 0;
2780
2781 if (!size_to_hstate(default_hstate_size)) {
2782 if (default_hstate_size != 0) {
2783 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2784 default_hstate_size, HPAGE_SIZE);
2785 }
2786
2787 default_hstate_size = HPAGE_SIZE;
2788 if (!size_to_hstate(default_hstate_size))
2789 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2790 }
2791 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2792 if (default_hstate_max_huge_pages) {
2793 if (!default_hstate.max_huge_pages)
2794 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2795 }
2796
2797 hugetlb_init_hstates();
2798 gather_bootmem_prealloc();
2799 report_hugepages();
2800
2801 hugetlb_sysfs_init();
2802 hugetlb_register_all_nodes();
2803 hugetlb_cgroup_file_init();
2804
2805 #ifdef CONFIG_SMP
2806 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2807 #else
2808 num_fault_mutexes = 1;
2809 #endif
2810 hugetlb_fault_mutex_table =
2811 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2812 BUG_ON(!hugetlb_fault_mutex_table);
2813
2814 for (i = 0; i < num_fault_mutexes; i++)
2815 mutex_init(&hugetlb_fault_mutex_table[i]);
2816 return 0;
2817 }
2818 subsys_initcall(hugetlb_init);
2819
2820 /* Should be called on processing a hugepagesz=... option */
2821 void __init hugetlb_bad_size(void)
2822 {
2823 parsed_valid_hugepagesz = false;
2824 }
2825
2826 void __init hugetlb_add_hstate(unsigned int order)
2827 {
2828 struct hstate *h;
2829 unsigned long i;
2830
2831 if (size_to_hstate(PAGE_SIZE << order)) {
2832 pr_warn("hugepagesz= specified twice, ignoring\n");
2833 return;
2834 }
2835 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2836 BUG_ON(order == 0);
2837 h = &hstates[hugetlb_max_hstate++];
2838 h->order = order;
2839 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2840 h->nr_huge_pages = 0;
2841 h->free_huge_pages = 0;
2842 for (i = 0; i < MAX_NUMNODES; ++i)
2843 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2844 INIT_LIST_HEAD(&h->hugepage_activelist);
2845 h->next_nid_to_alloc = first_memory_node;
2846 h->next_nid_to_free = first_memory_node;
2847 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2848 huge_page_size(h)/1024);
2849
2850 parsed_hstate = h;
2851 }
2852
2853 static int __init hugetlb_nrpages_setup(char *s)
2854 {
2855 unsigned long *mhp;
2856 static unsigned long *last_mhp;
2857
2858 if (!parsed_valid_hugepagesz) {
2859 pr_warn("hugepages = %s preceded by "
2860 "an unsupported hugepagesz, ignoring\n", s);
2861 parsed_valid_hugepagesz = true;
2862 return 1;
2863 }
2864 /*
2865 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2866 * so this hugepages= parameter goes to the "default hstate".
2867 */
2868 else if (!hugetlb_max_hstate)
2869 mhp = &default_hstate_max_huge_pages;
2870 else
2871 mhp = &parsed_hstate->max_huge_pages;
2872
2873 if (mhp == last_mhp) {
2874 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2875 return 1;
2876 }
2877
2878 if (sscanf(s, "%lu", mhp) <= 0)
2879 *mhp = 0;
2880
2881 /*
2882 * Global state is always initialized later in hugetlb_init.
2883 * But we need to allocate >= MAX_ORDER hstates here early to still
2884 * use the bootmem allocator.
2885 */
2886 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2887 hugetlb_hstate_alloc_pages(parsed_hstate);
2888
2889 last_mhp = mhp;
2890
2891 return 1;
2892 }
2893 __setup("hugepages=", hugetlb_nrpages_setup);
2894
2895 static int __init hugetlb_default_setup(char *s)
2896 {
2897 default_hstate_size = memparse(s, &s);
2898 return 1;
2899 }
2900 __setup("default_hugepagesz=", hugetlb_default_setup);
2901
2902 static unsigned int cpuset_mems_nr(unsigned int *array)
2903 {
2904 int node;
2905 unsigned int nr = 0;
2906
2907 for_each_node_mask(node, cpuset_current_mems_allowed)
2908 nr += array[node];
2909
2910 return nr;
2911 }
2912
2913 #ifdef CONFIG_SYSCTL
2914 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2915 struct ctl_table *table, int write,
2916 void __user *buffer, size_t *length, loff_t *ppos)
2917 {
2918 struct hstate *h = &default_hstate;
2919 unsigned long tmp = h->max_huge_pages;
2920 int ret;
2921
2922 if (!hugepages_supported())
2923 return -EOPNOTSUPP;
2924
2925 table->data = &tmp;
2926 table->maxlen = sizeof(unsigned long);
2927 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2928 if (ret)
2929 goto out;
2930
2931 if (write)
2932 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2933 NUMA_NO_NODE, tmp, *length);
2934 out:
2935 return ret;
2936 }
2937
2938 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2939 void __user *buffer, size_t *length, loff_t *ppos)
2940 {
2941
2942 return hugetlb_sysctl_handler_common(false, table, write,
2943 buffer, length, ppos);
2944 }
2945
2946 #ifdef CONFIG_NUMA
2947 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2948 void __user *buffer, size_t *length, loff_t *ppos)
2949 {
2950 return hugetlb_sysctl_handler_common(true, table, write,
2951 buffer, length, ppos);
2952 }
2953 #endif /* CONFIG_NUMA */
2954
2955 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2956 void __user *buffer,
2957 size_t *length, loff_t *ppos)
2958 {
2959 struct hstate *h = &default_hstate;
2960 unsigned long tmp;
2961 int ret;
2962
2963 if (!hugepages_supported())
2964 return -EOPNOTSUPP;
2965
2966 tmp = h->nr_overcommit_huge_pages;
2967
2968 if (write && hstate_is_gigantic(h))
2969 return -EINVAL;
2970
2971 table->data = &tmp;
2972 table->maxlen = sizeof(unsigned long);
2973 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2974 if (ret)
2975 goto out;
2976
2977 if (write) {
2978 spin_lock(&hugetlb_lock);
2979 h->nr_overcommit_huge_pages = tmp;
2980 spin_unlock(&hugetlb_lock);
2981 }
2982 out:
2983 return ret;
2984 }
2985
2986 #endif /* CONFIG_SYSCTL */
2987
2988 void hugetlb_report_meminfo(struct seq_file *m)
2989 {
2990 struct hstate *h = &default_hstate;
2991 if (!hugepages_supported())
2992 return;
2993 seq_printf(m,
2994 "HugePages_Total: %5lu\n"
2995 "HugePages_Free: %5lu\n"
2996 "HugePages_Rsvd: %5lu\n"
2997 "HugePages_Surp: %5lu\n"
2998 "Hugepagesize: %8lu kB\n",
2999 h->nr_huge_pages,
3000 h->free_huge_pages,
3001 h->resv_huge_pages,
3002 h->surplus_huge_pages,
3003 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3004 }
3005
3006 int hugetlb_report_node_meminfo(int nid, char *buf)
3007 {
3008 struct hstate *h = &default_hstate;
3009 if (!hugepages_supported())
3010 return 0;
3011 return sprintf(buf,
3012 "Node %d HugePages_Total: %5u\n"
3013 "Node %d HugePages_Free: %5u\n"
3014 "Node %d HugePages_Surp: %5u\n",
3015 nid, h->nr_huge_pages_node[nid],
3016 nid, h->free_huge_pages_node[nid],
3017 nid, h->surplus_huge_pages_node[nid]);
3018 }
3019
3020 void hugetlb_show_meminfo(void)
3021 {
3022 struct hstate *h;
3023 int nid;
3024
3025 if (!hugepages_supported())
3026 return;
3027
3028 for_each_node_state(nid, N_MEMORY)
3029 for_each_hstate(h)
3030 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3031 nid,
3032 h->nr_huge_pages_node[nid],
3033 h->free_huge_pages_node[nid],
3034 h->surplus_huge_pages_node[nid],
3035 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3036 }
3037
3038 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3039 {
3040 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3041 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3042 }
3043
3044 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3045 unsigned long hugetlb_total_pages(void)
3046 {
3047 struct hstate *h;
3048 unsigned long nr_total_pages = 0;
3049
3050 for_each_hstate(h)
3051 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3052 return nr_total_pages;
3053 }
3054
3055 static int hugetlb_acct_memory(struct hstate *h, long delta)
3056 {
3057 int ret = -ENOMEM;
3058
3059 spin_lock(&hugetlb_lock);
3060 /*
3061 * When cpuset is configured, it breaks the strict hugetlb page
3062 * reservation as the accounting is done on a global variable. Such
3063 * reservation is completely rubbish in the presence of cpuset because
3064 * the reservation is not checked against page availability for the
3065 * current cpuset. Application can still potentially OOM'ed by kernel
3066 * with lack of free htlb page in cpuset that the task is in.
3067 * Attempt to enforce strict accounting with cpuset is almost
3068 * impossible (or too ugly) because cpuset is too fluid that
3069 * task or memory node can be dynamically moved between cpusets.
3070 *
3071 * The change of semantics for shared hugetlb mapping with cpuset is
3072 * undesirable. However, in order to preserve some of the semantics,
3073 * we fall back to check against current free page availability as
3074 * a best attempt and hopefully to minimize the impact of changing
3075 * semantics that cpuset has.
3076 */
3077 if (delta > 0) {
3078 if (gather_surplus_pages(h, delta) < 0)
3079 goto out;
3080
3081 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3082 return_unused_surplus_pages(h, delta);
3083 goto out;
3084 }
3085 }
3086
3087 ret = 0;
3088 if (delta < 0)
3089 return_unused_surplus_pages(h, (unsigned long) -delta);
3090
3091 out:
3092 spin_unlock(&hugetlb_lock);
3093 return ret;
3094 }
3095
3096 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3097 {
3098 struct resv_map *resv = vma_resv_map(vma);
3099
3100 /*
3101 * This new VMA should share its siblings reservation map if present.
3102 * The VMA will only ever have a valid reservation map pointer where
3103 * it is being copied for another still existing VMA. As that VMA
3104 * has a reference to the reservation map it cannot disappear until
3105 * after this open call completes. It is therefore safe to take a
3106 * new reference here without additional locking.
3107 */
3108 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3109 kref_get(&resv->refs);
3110 }
3111
3112 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3113 {
3114 struct hstate *h = hstate_vma(vma);
3115 struct resv_map *resv = vma_resv_map(vma);
3116 struct hugepage_subpool *spool = subpool_vma(vma);
3117 unsigned long reserve, start, end;
3118 long gbl_reserve;
3119
3120 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3121 return;
3122
3123 start = vma_hugecache_offset(h, vma, vma->vm_start);
3124 end = vma_hugecache_offset(h, vma, vma->vm_end);
3125
3126 reserve = (end - start) - region_count(resv, start, end);
3127
3128 kref_put(&resv->refs, resv_map_release);
3129
3130 if (reserve) {
3131 /*
3132 * Decrement reserve counts. The global reserve count may be
3133 * adjusted if the subpool has a minimum size.
3134 */
3135 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3136 hugetlb_acct_memory(h, -gbl_reserve);
3137 }
3138 }
3139
3140 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3141 {
3142 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3143 return -EINVAL;
3144 return 0;
3145 }
3146
3147 /*
3148 * We cannot handle pagefaults against hugetlb pages at all. They cause
3149 * handle_mm_fault() to try to instantiate regular-sized pages in the
3150 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3151 * this far.
3152 */
3153 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3154 {
3155 BUG();
3156 return 0;
3157 }
3158
3159 const struct vm_operations_struct hugetlb_vm_ops = {
3160 .fault = hugetlb_vm_op_fault,
3161 .open = hugetlb_vm_op_open,
3162 .close = hugetlb_vm_op_close,
3163 .split = hugetlb_vm_op_split,
3164 };
3165
3166 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3167 int writable)
3168 {
3169 pte_t entry;
3170
3171 if (writable) {
3172 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3173 vma->vm_page_prot)));
3174 } else {
3175 entry = huge_pte_wrprotect(mk_huge_pte(page,
3176 vma->vm_page_prot));
3177 }
3178 entry = pte_mkyoung(entry);
3179 entry = pte_mkhuge(entry);
3180 entry = arch_make_huge_pte(entry, vma, page, writable);
3181
3182 return entry;
3183 }
3184
3185 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3186 unsigned long address, pte_t *ptep)
3187 {
3188 pte_t entry;
3189
3190 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3191 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3192 update_mmu_cache(vma, address, ptep);
3193 }
3194
3195 bool is_hugetlb_entry_migration(pte_t pte)
3196 {
3197 swp_entry_t swp;
3198
3199 if (huge_pte_none(pte) || pte_present(pte))
3200 return false;
3201 swp = pte_to_swp_entry(pte);
3202 if (non_swap_entry(swp) && is_migration_entry(swp))
3203 return true;
3204 else
3205 return false;
3206 }
3207
3208 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3209 {
3210 swp_entry_t swp;
3211
3212 if (huge_pte_none(pte) || pte_present(pte))
3213 return 0;
3214 swp = pte_to_swp_entry(pte);
3215 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3216 return 1;
3217 else
3218 return 0;
3219 }
3220
3221 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3222 struct vm_area_struct *vma)
3223 {
3224 pte_t *src_pte, *dst_pte, entry, dst_entry;
3225 struct page *ptepage;
3226 unsigned long addr;
3227 int cow;
3228 struct hstate *h = hstate_vma(vma);
3229 unsigned long sz = huge_page_size(h);
3230 unsigned long mmun_start; /* For mmu_notifiers */
3231 unsigned long mmun_end; /* For mmu_notifiers */
3232 int ret = 0;
3233
3234 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3235
3236 mmun_start = vma->vm_start;
3237 mmun_end = vma->vm_end;
3238 if (cow)
3239 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3240
3241 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3242 spinlock_t *src_ptl, *dst_ptl;
3243 src_pte = huge_pte_offset(src, addr, sz);
3244 if (!src_pte)
3245 continue;
3246 dst_pte = huge_pte_alloc(dst, addr, sz);
3247 if (!dst_pte) {
3248 ret = -ENOMEM;
3249 break;
3250 }
3251
3252 /*
3253 * If the pagetables are shared don't copy or take references.
3254 * dst_pte == src_pte is the common case of src/dest sharing.
3255 *
3256 * However, src could have 'unshared' and dst shares with
3257 * another vma. If dst_pte !none, this implies sharing.
3258 * Check here before taking page table lock, and once again
3259 * after taking the lock below.
3260 */
3261 dst_entry = huge_ptep_get(dst_pte);
3262 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3263 continue;
3264
3265 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3266 src_ptl = huge_pte_lockptr(h, src, src_pte);
3267 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3268 entry = huge_ptep_get(src_pte);
3269 dst_entry = huge_ptep_get(dst_pte);
3270 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3271 /*
3272 * Skip if src entry none. Also, skip in the
3273 * unlikely case dst entry !none as this implies
3274 * sharing with another vma.
3275 */
3276 ;
3277 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3278 is_hugetlb_entry_hwpoisoned(entry))) {
3279 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3280
3281 if (is_write_migration_entry(swp_entry) && cow) {
3282 /*
3283 * COW mappings require pages in both
3284 * parent and child to be set to read.
3285 */
3286 make_migration_entry_read(&swp_entry);
3287 entry = swp_entry_to_pte(swp_entry);
3288 set_huge_swap_pte_at(src, addr, src_pte,
3289 entry, sz);
3290 }
3291 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3292 } else {
3293 if (cow) {
3294 /*
3295 * No need to notify as we are downgrading page
3296 * table protection not changing it to point
3297 * to a new page.
3298 *
3299 * See Documentation/vm/mmu_notifier.txt
3300 */
3301 huge_ptep_set_wrprotect(src, addr, src_pte);
3302 }
3303 entry = huge_ptep_get(src_pte);
3304 ptepage = pte_page(entry);
3305 get_page(ptepage);
3306 page_dup_rmap(ptepage, true);
3307 set_huge_pte_at(dst, addr, dst_pte, entry);
3308 hugetlb_count_add(pages_per_huge_page(h), dst);
3309 }
3310 spin_unlock(src_ptl);
3311 spin_unlock(dst_ptl);
3312 }
3313
3314 if (cow)
3315 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3316
3317 return ret;
3318 }
3319
3320 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3321 unsigned long start, unsigned long end,
3322 struct page *ref_page)
3323 {
3324 struct mm_struct *mm = vma->vm_mm;
3325 unsigned long address;
3326 pte_t *ptep;
3327 pte_t pte;
3328 spinlock_t *ptl;
3329 struct page *page;
3330 struct hstate *h = hstate_vma(vma);
3331 unsigned long sz = huge_page_size(h);
3332 const unsigned long mmun_start = start; /* For mmu_notifiers */
3333 const unsigned long mmun_end = end; /* For mmu_notifiers */
3334
3335 WARN_ON(!is_vm_hugetlb_page(vma));
3336 BUG_ON(start & ~huge_page_mask(h));
3337 BUG_ON(end & ~huge_page_mask(h));
3338
3339 /*
3340 * This is a hugetlb vma, all the pte entries should point
3341 * to huge page.
3342 */
3343 tlb_remove_check_page_size_change(tlb, sz);
3344 tlb_start_vma(tlb, vma);
3345 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3346 address = start;
3347 for (; address < end; address += sz) {
3348 ptep = huge_pte_offset(mm, address, sz);
3349 if (!ptep)
3350 continue;
3351
3352 ptl = huge_pte_lock(h, mm, ptep);
3353 if (huge_pmd_unshare(mm, &address, ptep)) {
3354 spin_unlock(ptl);
3355 continue;
3356 }
3357
3358 pte = huge_ptep_get(ptep);
3359 if (huge_pte_none(pte)) {
3360 spin_unlock(ptl);
3361 continue;
3362 }
3363
3364 /*
3365 * Migrating hugepage or HWPoisoned hugepage is already
3366 * unmapped and its refcount is dropped, so just clear pte here.
3367 */
3368 if (unlikely(!pte_present(pte))) {
3369 huge_pte_clear(mm, address, ptep, sz);
3370 spin_unlock(ptl);
3371 continue;
3372 }
3373
3374 page = pte_page(pte);
3375 /*
3376 * If a reference page is supplied, it is because a specific
3377 * page is being unmapped, not a range. Ensure the page we
3378 * are about to unmap is the actual page of interest.
3379 */
3380 if (ref_page) {
3381 if (page != ref_page) {
3382 spin_unlock(ptl);
3383 continue;
3384 }
3385 /*
3386 * Mark the VMA as having unmapped its page so that
3387 * future faults in this VMA will fail rather than
3388 * looking like data was lost
3389 */
3390 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3391 }
3392
3393 pte = huge_ptep_get_and_clear(mm, address, ptep);
3394 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3395 if (huge_pte_dirty(pte))
3396 set_page_dirty(page);
3397
3398 hugetlb_count_sub(pages_per_huge_page(h), mm);
3399 page_remove_rmap(page, true);
3400
3401 spin_unlock(ptl);
3402 tlb_remove_page_size(tlb, page, huge_page_size(h));
3403 /*
3404 * Bail out after unmapping reference page if supplied
3405 */
3406 if (ref_page)
3407 break;
3408 }
3409 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3410 tlb_end_vma(tlb, vma);
3411 }
3412
3413 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3414 struct vm_area_struct *vma, unsigned long start,
3415 unsigned long end, struct page *ref_page)
3416 {
3417 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3418
3419 /*
3420 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3421 * test will fail on a vma being torn down, and not grab a page table
3422 * on its way out. We're lucky that the flag has such an appropriate
3423 * name, and can in fact be safely cleared here. We could clear it
3424 * before the __unmap_hugepage_range above, but all that's necessary
3425 * is to clear it before releasing the i_mmap_rwsem. This works
3426 * because in the context this is called, the VMA is about to be
3427 * destroyed and the i_mmap_rwsem is held.
3428 */
3429 vma->vm_flags &= ~VM_MAYSHARE;
3430 }
3431
3432 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3433 unsigned long end, struct page *ref_page)
3434 {
3435 struct mm_struct *mm;
3436 struct mmu_gather tlb;
3437
3438 mm = vma->vm_mm;
3439
3440 tlb_gather_mmu(&tlb, mm, start, end);
3441 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3442 tlb_finish_mmu(&tlb, start, end);
3443 }
3444
3445 /*
3446 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3447 * mappping it owns the reserve page for. The intention is to unmap the page
3448 * from other VMAs and let the children be SIGKILLed if they are faulting the
3449 * same region.
3450 */
3451 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3452 struct page *page, unsigned long address)
3453 {
3454 struct hstate *h = hstate_vma(vma);
3455 struct vm_area_struct *iter_vma;
3456 struct address_space *mapping;
3457 pgoff_t pgoff;
3458
3459 /*
3460 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3461 * from page cache lookup which is in HPAGE_SIZE units.
3462 */
3463 address = address & huge_page_mask(h);
3464 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3465 vma->vm_pgoff;
3466 mapping = vma->vm_file->f_mapping;
3467
3468 /*
3469 * Take the mapping lock for the duration of the table walk. As
3470 * this mapping should be shared between all the VMAs,
3471 * __unmap_hugepage_range() is called as the lock is already held
3472 */
3473 i_mmap_lock_write(mapping);
3474 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3475 /* Do not unmap the current VMA */
3476 if (iter_vma == vma)
3477 continue;
3478
3479 /*
3480 * Shared VMAs have their own reserves and do not affect
3481 * MAP_PRIVATE accounting but it is possible that a shared
3482 * VMA is using the same page so check and skip such VMAs.
3483 */
3484 if (iter_vma->vm_flags & VM_MAYSHARE)
3485 continue;
3486
3487 /*
3488 * Unmap the page from other VMAs without their own reserves.
3489 * They get marked to be SIGKILLed if they fault in these
3490 * areas. This is because a future no-page fault on this VMA
3491 * could insert a zeroed page instead of the data existing
3492 * from the time of fork. This would look like data corruption
3493 */
3494 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3495 unmap_hugepage_range(iter_vma, address,
3496 address + huge_page_size(h), page);
3497 }
3498 i_mmap_unlock_write(mapping);
3499 }
3500
3501 /*
3502 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3503 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3504 * cannot race with other handlers or page migration.
3505 * Keep the pte_same checks anyway to make transition from the mutex easier.
3506 */
3507 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3508 unsigned long address, pte_t *ptep,
3509 struct page *pagecache_page, spinlock_t *ptl)
3510 {
3511 pte_t pte;
3512 struct hstate *h = hstate_vma(vma);
3513 struct page *old_page, *new_page;
3514 int ret = 0, outside_reserve = 0;
3515 unsigned long mmun_start; /* For mmu_notifiers */
3516 unsigned long mmun_end; /* For mmu_notifiers */
3517
3518 pte = huge_ptep_get(ptep);
3519 old_page = pte_page(pte);
3520
3521 retry_avoidcopy:
3522 /* If no-one else is actually using this page, avoid the copy
3523 * and just make the page writable */
3524 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3525 page_move_anon_rmap(old_page, vma);
3526 set_huge_ptep_writable(vma, address, ptep);
3527 return 0;
3528 }
3529
3530 /*
3531 * If the process that created a MAP_PRIVATE mapping is about to
3532 * perform a COW due to a shared page count, attempt to satisfy
3533 * the allocation without using the existing reserves. The pagecache
3534 * page is used to determine if the reserve at this address was
3535 * consumed or not. If reserves were used, a partial faulted mapping
3536 * at the time of fork() could consume its reserves on COW instead
3537 * of the full address range.
3538 */
3539 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3540 old_page != pagecache_page)
3541 outside_reserve = 1;
3542
3543 get_page(old_page);
3544
3545 /*
3546 * Drop page table lock as buddy allocator may be called. It will
3547 * be acquired again before returning to the caller, as expected.
3548 */
3549 spin_unlock(ptl);
3550 new_page = alloc_huge_page(vma, address, outside_reserve);
3551
3552 if (IS_ERR(new_page)) {
3553 /*
3554 * If a process owning a MAP_PRIVATE mapping fails to COW,
3555 * it is due to references held by a child and an insufficient
3556 * huge page pool. To guarantee the original mappers
3557 * reliability, unmap the page from child processes. The child
3558 * may get SIGKILLed if it later faults.
3559 */
3560 if (outside_reserve) {
3561 put_page(old_page);
3562 BUG_ON(huge_pte_none(pte));
3563 unmap_ref_private(mm, vma, old_page, address);
3564 BUG_ON(huge_pte_none(pte));
3565 spin_lock(ptl);
3566 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3567 huge_page_size(h));
3568 if (likely(ptep &&
3569 pte_same(huge_ptep_get(ptep), pte)))
3570 goto retry_avoidcopy;
3571 /*
3572 * race occurs while re-acquiring page table
3573 * lock, and our job is done.
3574 */
3575 return 0;
3576 }
3577
3578 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3579 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3580 goto out_release_old;
3581 }
3582
3583 /*
3584 * When the original hugepage is shared one, it does not have
3585 * anon_vma prepared.
3586 */
3587 if (unlikely(anon_vma_prepare(vma))) {
3588 ret = VM_FAULT_OOM;
3589 goto out_release_all;
3590 }
3591
3592 copy_user_huge_page(new_page, old_page, address, vma,
3593 pages_per_huge_page(h));
3594 __SetPageUptodate(new_page);
3595
3596 mmun_start = address & huge_page_mask(h);
3597 mmun_end = mmun_start + huge_page_size(h);
3598 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3599
3600 /*
3601 * Retake the page table lock to check for racing updates
3602 * before the page tables are altered
3603 */
3604 spin_lock(ptl);
3605 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3606 huge_page_size(h));
3607 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3608 ClearPagePrivate(new_page);
3609
3610 /* Break COW */
3611 huge_ptep_clear_flush(vma, address, ptep);
3612 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3613 set_huge_pte_at(mm, address, ptep,
3614 make_huge_pte(vma, new_page, 1));
3615 page_remove_rmap(old_page, true);
3616 hugepage_add_new_anon_rmap(new_page, vma, address);
3617 set_page_huge_active(new_page);
3618 /* Make the old page be freed below */
3619 new_page = old_page;
3620 }
3621 spin_unlock(ptl);
3622 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3623 out_release_all:
3624 restore_reserve_on_error(h, vma, address, new_page);
3625 put_page(new_page);
3626 out_release_old:
3627 put_page(old_page);
3628
3629 spin_lock(ptl); /* Caller expects lock to be held */
3630 return ret;
3631 }
3632
3633 /* Return the pagecache page at a given address within a VMA */
3634 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3635 struct vm_area_struct *vma, unsigned long address)
3636 {
3637 struct address_space *mapping;
3638 pgoff_t idx;
3639
3640 mapping = vma->vm_file->f_mapping;
3641 idx = vma_hugecache_offset(h, vma, address);
3642
3643 return find_lock_page(mapping, idx);
3644 }
3645
3646 /*
3647 * Return whether there is a pagecache page to back given address within VMA.
3648 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3649 */
3650 static bool hugetlbfs_pagecache_present(struct hstate *h,
3651 struct vm_area_struct *vma, unsigned long address)
3652 {
3653 struct address_space *mapping;
3654 pgoff_t idx;
3655 struct page *page;
3656
3657 mapping = vma->vm_file->f_mapping;
3658 idx = vma_hugecache_offset(h, vma, address);
3659
3660 page = find_get_page(mapping, idx);
3661 if (page)
3662 put_page(page);
3663 return page != NULL;
3664 }
3665
3666 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3667 pgoff_t idx)
3668 {
3669 struct inode *inode = mapping->host;
3670 struct hstate *h = hstate_inode(inode);
3671 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3672
3673 if (err)
3674 return err;
3675 ClearPagePrivate(page);
3676
3677 /*
3678 * set page dirty so that it will not be removed from cache/file
3679 * by non-hugetlbfs specific code paths.
3680 */
3681 set_page_dirty(page);
3682
3683 spin_lock(&inode->i_lock);
3684 inode->i_blocks += blocks_per_huge_page(h);
3685 spin_unlock(&inode->i_lock);
3686 return 0;
3687 }
3688
3689 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3690 struct address_space *mapping, pgoff_t idx,
3691 unsigned long address, pte_t *ptep, unsigned int flags)
3692 {
3693 struct hstate *h = hstate_vma(vma);
3694 int ret = VM_FAULT_SIGBUS;
3695 int anon_rmap = 0;
3696 unsigned long size;
3697 struct page *page;
3698 pte_t new_pte;
3699 spinlock_t *ptl;
3700 bool new_page = false;
3701
3702 /*
3703 * Currently, we are forced to kill the process in the event the
3704 * original mapper has unmapped pages from the child due to a failed
3705 * COW. Warn that such a situation has occurred as it may not be obvious
3706 */
3707 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3708 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3709 current->pid);
3710 return ret;
3711 }
3712
3713 /*
3714 * Use page lock to guard against racing truncation
3715 * before we get page_table_lock.
3716 */
3717 retry:
3718 page = find_lock_page(mapping, idx);
3719 if (!page) {
3720 size = i_size_read(mapping->host) >> huge_page_shift(h);
3721 if (idx >= size)
3722 goto out;
3723
3724 /*
3725 * Check for page in userfault range
3726 */
3727 if (userfaultfd_missing(vma)) {
3728 u32 hash;
3729 struct vm_fault vmf = {
3730 .vma = vma,
3731 .address = address,
3732 .flags = flags,
3733 /*
3734 * Hard to debug if it ends up being
3735 * used by a callee that assumes
3736 * something about the other
3737 * uninitialized fields... same as in
3738 * memory.c
3739 */
3740 };
3741
3742 /*
3743 * hugetlb_fault_mutex must be dropped before
3744 * handling userfault. Reacquire after handling
3745 * fault to make calling code simpler.
3746 */
3747 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
3748 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3749 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3750 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3751 goto out;
3752 }
3753
3754 page = alloc_huge_page(vma, address, 0);
3755 if (IS_ERR(page)) {
3756 ret = PTR_ERR(page);
3757 if (ret == -ENOMEM)
3758 ret = VM_FAULT_OOM;
3759 else
3760 ret = VM_FAULT_SIGBUS;
3761 goto out;
3762 }
3763 clear_huge_page(page, address, pages_per_huge_page(h));
3764 __SetPageUptodate(page);
3765 new_page = true;
3766
3767 if (vma->vm_flags & VM_MAYSHARE) {
3768 int err = huge_add_to_page_cache(page, mapping, idx);
3769 if (err) {
3770 put_page(page);
3771 if (err == -EEXIST)
3772 goto retry;
3773 goto out;
3774 }
3775 } else {
3776 lock_page(page);
3777 if (unlikely(anon_vma_prepare(vma))) {
3778 ret = VM_FAULT_OOM;
3779 goto backout_unlocked;
3780 }
3781 anon_rmap = 1;
3782 }
3783 } else {
3784 /*
3785 * If memory error occurs between mmap() and fault, some process
3786 * don't have hwpoisoned swap entry for errored virtual address.
3787 * So we need to block hugepage fault by PG_hwpoison bit check.
3788 */
3789 if (unlikely(PageHWPoison(page))) {
3790 ret = VM_FAULT_HWPOISON |
3791 VM_FAULT_SET_HINDEX(hstate_index(h));
3792 goto backout_unlocked;
3793 }
3794 }
3795
3796 /*
3797 * If we are going to COW a private mapping later, we examine the
3798 * pending reservations for this page now. This will ensure that
3799 * any allocations necessary to record that reservation occur outside
3800 * the spinlock.
3801 */
3802 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3803 if (vma_needs_reservation(h, vma, address) < 0) {
3804 ret = VM_FAULT_OOM;
3805 goto backout_unlocked;
3806 }
3807 /* Just decrements count, does not deallocate */
3808 vma_end_reservation(h, vma, address);
3809 }
3810
3811 ptl = huge_pte_lock(h, mm, ptep);
3812 size = i_size_read(mapping->host) >> huge_page_shift(h);
3813 if (idx >= size)
3814 goto backout;
3815
3816 ret = 0;
3817 if (!huge_pte_none(huge_ptep_get(ptep)))
3818 goto backout;
3819
3820 if (anon_rmap) {
3821 ClearPagePrivate(page);
3822 hugepage_add_new_anon_rmap(page, vma, address);
3823 } else
3824 page_dup_rmap(page, true);
3825 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3826 && (vma->vm_flags & VM_SHARED)));
3827 set_huge_pte_at(mm, address, ptep, new_pte);
3828
3829 hugetlb_count_add(pages_per_huge_page(h), mm);
3830 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3831 /* Optimization, do the COW without a second fault */
3832 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3833 }
3834
3835 spin_unlock(ptl);
3836
3837 /*
3838 * Only make newly allocated pages active. Existing pages found
3839 * in the pagecache could be !page_huge_active() if they have been
3840 * isolated for migration.
3841 */
3842 if (new_page)
3843 set_page_huge_active(page);
3844
3845 unlock_page(page);
3846 out:
3847 return ret;
3848
3849 backout:
3850 spin_unlock(ptl);
3851 backout_unlocked:
3852 unlock_page(page);
3853 restore_reserve_on_error(h, vma, address, page);
3854 put_page(page);
3855 goto out;
3856 }
3857
3858 #ifdef CONFIG_SMP
3859 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3860 pgoff_t idx, unsigned long address)
3861 {
3862 unsigned long key[2];
3863 u32 hash;
3864
3865 key[0] = (unsigned long) mapping;
3866 key[1] = idx;
3867
3868 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3869
3870 return hash & (num_fault_mutexes - 1);
3871 }
3872 #else
3873 /*
3874 * For uniprocesor systems we always use a single mutex, so just
3875 * return 0 and avoid the hashing overhead.
3876 */
3877 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3878 pgoff_t idx, unsigned long address)
3879 {
3880 return 0;
3881 }
3882 #endif
3883
3884 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3885 unsigned long address, unsigned int flags)
3886 {
3887 pte_t *ptep, entry;
3888 spinlock_t *ptl;
3889 int ret;
3890 u32 hash;
3891 pgoff_t idx;
3892 struct page *page = NULL;
3893 struct page *pagecache_page = NULL;
3894 struct hstate *h = hstate_vma(vma);
3895 struct address_space *mapping;
3896 int need_wait_lock = 0;
3897
3898 address &= huge_page_mask(h);
3899
3900 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3901 if (ptep) {
3902 entry = huge_ptep_get(ptep);
3903 if (unlikely(is_hugetlb_entry_migration(entry))) {
3904 migration_entry_wait_huge(vma, mm, ptep);
3905 return 0;
3906 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3907 return VM_FAULT_HWPOISON_LARGE |
3908 VM_FAULT_SET_HINDEX(hstate_index(h));
3909 } else {
3910 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3911 if (!ptep)
3912 return VM_FAULT_OOM;
3913 }
3914
3915 mapping = vma->vm_file->f_mapping;
3916 idx = vma_hugecache_offset(h, vma, address);
3917
3918 /*
3919 * Serialize hugepage allocation and instantiation, so that we don't
3920 * get spurious allocation failures if two CPUs race to instantiate
3921 * the same page in the page cache.
3922 */
3923 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
3924 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3925
3926 entry = huge_ptep_get(ptep);
3927 if (huge_pte_none(entry)) {
3928 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3929 goto out_mutex;
3930 }
3931
3932 ret = 0;
3933
3934 /*
3935 * entry could be a migration/hwpoison entry at this point, so this
3936 * check prevents the kernel from going below assuming that we have
3937 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3938 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3939 * handle it.
3940 */
3941 if (!pte_present(entry))
3942 goto out_mutex;
3943
3944 /*
3945 * If we are going to COW the mapping later, we examine the pending
3946 * reservations for this page now. This will ensure that any
3947 * allocations necessary to record that reservation occur outside the
3948 * spinlock. For private mappings, we also lookup the pagecache
3949 * page now as it is used to determine if a reservation has been
3950 * consumed.
3951 */
3952 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3953 if (vma_needs_reservation(h, vma, address) < 0) {
3954 ret = VM_FAULT_OOM;
3955 goto out_mutex;
3956 }
3957 /* Just decrements count, does not deallocate */
3958 vma_end_reservation(h, vma, address);
3959
3960 if (!(vma->vm_flags & VM_MAYSHARE))
3961 pagecache_page = hugetlbfs_pagecache_page(h,
3962 vma, address);
3963 }
3964
3965 ptl = huge_pte_lock(h, mm, ptep);
3966
3967 /* Check for a racing update before calling hugetlb_cow */
3968 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3969 goto out_ptl;
3970
3971 /*
3972 * hugetlb_cow() requires page locks of pte_page(entry) and
3973 * pagecache_page, so here we need take the former one
3974 * when page != pagecache_page or !pagecache_page.
3975 */
3976 page = pte_page(entry);
3977 if (page != pagecache_page)
3978 if (!trylock_page(page)) {
3979 need_wait_lock = 1;
3980 goto out_ptl;
3981 }
3982
3983 get_page(page);
3984
3985 if (flags & FAULT_FLAG_WRITE) {
3986 if (!huge_pte_write(entry)) {
3987 ret = hugetlb_cow(mm, vma, address, ptep,
3988 pagecache_page, ptl);
3989 goto out_put_page;
3990 }
3991 entry = huge_pte_mkdirty(entry);
3992 }
3993 entry = pte_mkyoung(entry);
3994 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3995 flags & FAULT_FLAG_WRITE))
3996 update_mmu_cache(vma, address, ptep);
3997 out_put_page:
3998 if (page != pagecache_page)
3999 unlock_page(page);
4000 put_page(page);
4001 out_ptl:
4002 spin_unlock(ptl);
4003
4004 if (pagecache_page) {
4005 unlock_page(pagecache_page);
4006 put_page(pagecache_page);
4007 }
4008 out_mutex:
4009 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4010 /*
4011 * Generally it's safe to hold refcount during waiting page lock. But
4012 * here we just wait to defer the next page fault to avoid busy loop and
4013 * the page is not used after unlocked before returning from the current
4014 * page fault. So we are safe from accessing freed page, even if we wait
4015 * here without taking refcount.
4016 */
4017 if (need_wait_lock)
4018 wait_on_page_locked(page);
4019 return ret;
4020 }
4021
4022 /*
4023 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4024 * modifications for huge pages.
4025 */
4026 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4027 pte_t *dst_pte,
4028 struct vm_area_struct *dst_vma,
4029 unsigned long dst_addr,
4030 unsigned long src_addr,
4031 struct page **pagep)
4032 {
4033 struct address_space *mapping;
4034 pgoff_t idx;
4035 unsigned long size;
4036 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4037 struct hstate *h = hstate_vma(dst_vma);
4038 pte_t _dst_pte;
4039 spinlock_t *ptl;
4040 int ret;
4041 struct page *page;
4042
4043 if (!*pagep) {
4044 ret = -ENOMEM;
4045 page = alloc_huge_page(dst_vma, dst_addr, 0);
4046 if (IS_ERR(page))
4047 goto out;
4048
4049 ret = copy_huge_page_from_user(page,
4050 (const void __user *) src_addr,
4051 pages_per_huge_page(h), false);
4052
4053 /* fallback to copy_from_user outside mmap_sem */
4054 if (unlikely(ret)) {
4055 ret = -ENOENT;
4056 *pagep = page;
4057 /* don't free the page */
4058 goto out;
4059 }
4060 } else {
4061 page = *pagep;
4062 *pagep = NULL;
4063 }
4064
4065 /*
4066 * The memory barrier inside __SetPageUptodate makes sure that
4067 * preceding stores to the page contents become visible before
4068 * the set_pte_at() write.
4069 */
4070 __SetPageUptodate(page);
4071
4072 mapping = dst_vma->vm_file->f_mapping;
4073 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4074
4075 /*
4076 * If shared, add to page cache
4077 */
4078 if (vm_shared) {
4079 size = i_size_read(mapping->host) >> huge_page_shift(h);
4080 ret = -EFAULT;
4081 if (idx >= size)
4082 goto out_release_nounlock;
4083
4084 /*
4085 * Serialization between remove_inode_hugepages() and
4086 * huge_add_to_page_cache() below happens through the
4087 * hugetlb_fault_mutex_table that here must be hold by
4088 * the caller.
4089 */
4090 ret = huge_add_to_page_cache(page, mapping, idx);
4091 if (ret)
4092 goto out_release_nounlock;
4093 }
4094
4095 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4096 spin_lock(ptl);
4097
4098 /*
4099 * Recheck the i_size after holding PT lock to make sure not
4100 * to leave any page mapped (as page_mapped()) beyond the end
4101 * of the i_size (remove_inode_hugepages() is strict about
4102 * enforcing that). If we bail out here, we'll also leave a
4103 * page in the radix tree in the vm_shared case beyond the end
4104 * of the i_size, but remove_inode_hugepages() will take care
4105 * of it as soon as we drop the hugetlb_fault_mutex_table.
4106 */
4107 size = i_size_read(mapping->host) >> huge_page_shift(h);
4108 ret = -EFAULT;
4109 if (idx >= size)
4110 goto out_release_unlock;
4111
4112 ret = -EEXIST;
4113 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4114 goto out_release_unlock;
4115
4116 if (vm_shared) {
4117 page_dup_rmap(page, true);
4118 } else {
4119 ClearPagePrivate(page);
4120 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4121 }
4122
4123 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4124 if (dst_vma->vm_flags & VM_WRITE)
4125 _dst_pte = huge_pte_mkdirty(_dst_pte);
4126 _dst_pte = pte_mkyoung(_dst_pte);
4127
4128 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4129
4130 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4131 dst_vma->vm_flags & VM_WRITE);
4132 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4133
4134 /* No need to invalidate - it was non-present before */
4135 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4136
4137 spin_unlock(ptl);
4138 set_page_huge_active(page);
4139 if (vm_shared)
4140 unlock_page(page);
4141 ret = 0;
4142 out:
4143 return ret;
4144 out_release_unlock:
4145 spin_unlock(ptl);
4146 if (vm_shared)
4147 unlock_page(page);
4148 out_release_nounlock:
4149 put_page(page);
4150 goto out;
4151 }
4152
4153 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4154 struct page **pages, struct vm_area_struct **vmas,
4155 unsigned long *position, unsigned long *nr_pages,
4156 long i, unsigned int flags, int *nonblocking)
4157 {
4158 unsigned long pfn_offset;
4159 unsigned long vaddr = *position;
4160 unsigned long remainder = *nr_pages;
4161 struct hstate *h = hstate_vma(vma);
4162 int err = -EFAULT;
4163
4164 while (vaddr < vma->vm_end && remainder) {
4165 pte_t *pte;
4166 spinlock_t *ptl = NULL;
4167 int absent;
4168 struct page *page;
4169
4170 /*
4171 * If we have a pending SIGKILL, don't keep faulting pages and
4172 * potentially allocating memory.
4173 */
4174 if (unlikely(fatal_signal_pending(current))) {
4175 remainder = 0;
4176 break;
4177 }
4178
4179 /*
4180 * Some archs (sparc64, sh*) have multiple pte_ts to
4181 * each hugepage. We have to make sure we get the
4182 * first, for the page indexing below to work.
4183 *
4184 * Note that page table lock is not held when pte is null.
4185 */
4186 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4187 huge_page_size(h));
4188 if (pte)
4189 ptl = huge_pte_lock(h, mm, pte);
4190 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4191
4192 /*
4193 * When coredumping, it suits get_dump_page if we just return
4194 * an error where there's an empty slot with no huge pagecache
4195 * to back it. This way, we avoid allocating a hugepage, and
4196 * the sparse dumpfile avoids allocating disk blocks, but its
4197 * huge holes still show up with zeroes where they need to be.
4198 */
4199 if (absent && (flags & FOLL_DUMP) &&
4200 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4201 if (pte)
4202 spin_unlock(ptl);
4203 remainder = 0;
4204 break;
4205 }
4206
4207 /*
4208 * We need call hugetlb_fault for both hugepages under migration
4209 * (in which case hugetlb_fault waits for the migration,) and
4210 * hwpoisoned hugepages (in which case we need to prevent the
4211 * caller from accessing to them.) In order to do this, we use
4212 * here is_swap_pte instead of is_hugetlb_entry_migration and
4213 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4214 * both cases, and because we can't follow correct pages
4215 * directly from any kind of swap entries.
4216 */
4217 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4218 ((flags & FOLL_WRITE) &&
4219 !huge_pte_write(huge_ptep_get(pte)))) {
4220 int ret;
4221 unsigned int fault_flags = 0;
4222
4223 if (pte)
4224 spin_unlock(ptl);
4225 if (flags & FOLL_WRITE)
4226 fault_flags |= FAULT_FLAG_WRITE;
4227 if (nonblocking)
4228 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4229 if (flags & FOLL_NOWAIT)
4230 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4231 FAULT_FLAG_RETRY_NOWAIT;
4232 if (flags & FOLL_TRIED) {
4233 VM_WARN_ON_ONCE(fault_flags &
4234 FAULT_FLAG_ALLOW_RETRY);
4235 fault_flags |= FAULT_FLAG_TRIED;
4236 }
4237 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4238 if (ret & VM_FAULT_ERROR) {
4239 err = vm_fault_to_errno(ret, flags);
4240 remainder = 0;
4241 break;
4242 }
4243 if (ret & VM_FAULT_RETRY) {
4244 if (nonblocking &&
4245 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4246 *nonblocking = 0;
4247 *nr_pages = 0;
4248 /*
4249 * VM_FAULT_RETRY must not return an
4250 * error, it will return zero
4251 * instead.
4252 *
4253 * No need to update "position" as the
4254 * caller will not check it after
4255 * *nr_pages is set to 0.
4256 */
4257 return i;
4258 }
4259 continue;
4260 }
4261
4262 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4263 page = pte_page(huge_ptep_get(pte));
4264
4265 /*
4266 * Instead of doing 'try_get_page()' below in the same_page
4267 * loop, just check the count once here.
4268 */
4269 if (unlikely(page_count(page) <= 0)) {
4270 if (pages) {
4271 spin_unlock(ptl);
4272 remainder = 0;
4273 err = -ENOMEM;
4274 break;
4275 }
4276 }
4277 same_page:
4278 if (pages) {
4279 pages[i] = mem_map_offset(page, pfn_offset);
4280 get_page(pages[i]);
4281 }
4282
4283 if (vmas)
4284 vmas[i] = vma;
4285
4286 vaddr += PAGE_SIZE;
4287 ++pfn_offset;
4288 --remainder;
4289 ++i;
4290 if (vaddr < vma->vm_end && remainder &&
4291 pfn_offset < pages_per_huge_page(h)) {
4292 /*
4293 * We use pfn_offset to avoid touching the pageframes
4294 * of this compound page.
4295 */
4296 goto same_page;
4297 }
4298 spin_unlock(ptl);
4299 }
4300 *nr_pages = remainder;
4301 /*
4302 * setting position is actually required only if remainder is
4303 * not zero but it's faster not to add a "if (remainder)"
4304 * branch.
4305 */
4306 *position = vaddr;
4307
4308 return i ? i : err;
4309 }
4310
4311 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4312 /*
4313 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4314 * implement this.
4315 */
4316 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4317 #endif
4318
4319 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4320 unsigned long address, unsigned long end, pgprot_t newprot)
4321 {
4322 struct mm_struct *mm = vma->vm_mm;
4323 unsigned long start = address;
4324 pte_t *ptep;
4325 pte_t pte;
4326 struct hstate *h = hstate_vma(vma);
4327 unsigned long pages = 0;
4328
4329 BUG_ON(address >= end);
4330 flush_cache_range(vma, address, end);
4331
4332 mmu_notifier_invalidate_range_start(mm, start, end);
4333 i_mmap_lock_write(vma->vm_file->f_mapping);
4334 for (; address < end; address += huge_page_size(h)) {
4335 spinlock_t *ptl;
4336 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4337 if (!ptep)
4338 continue;
4339 ptl = huge_pte_lock(h, mm, ptep);
4340 if (huge_pmd_unshare(mm, &address, ptep)) {
4341 pages++;
4342 spin_unlock(ptl);
4343 continue;
4344 }
4345 pte = huge_ptep_get(ptep);
4346 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4347 spin_unlock(ptl);
4348 continue;
4349 }
4350 if (unlikely(is_hugetlb_entry_migration(pte))) {
4351 swp_entry_t entry = pte_to_swp_entry(pte);
4352
4353 if (is_write_migration_entry(entry)) {
4354 pte_t newpte;
4355
4356 make_migration_entry_read(&entry);
4357 newpte = swp_entry_to_pte(entry);
4358 set_huge_swap_pte_at(mm, address, ptep,
4359 newpte, huge_page_size(h));
4360 pages++;
4361 }
4362 spin_unlock(ptl);
4363 continue;
4364 }
4365 if (!huge_pte_none(pte)) {
4366 pte = huge_ptep_get_and_clear(mm, address, ptep);
4367 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4368 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4369 set_huge_pte_at(mm, address, ptep, pte);
4370 pages++;
4371 }
4372 spin_unlock(ptl);
4373 }
4374 /*
4375 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4376 * may have cleared our pud entry and done put_page on the page table:
4377 * once we release i_mmap_rwsem, another task can do the final put_page
4378 * and that page table be reused and filled with junk.
4379 */
4380 flush_hugetlb_tlb_range(vma, start, end);
4381 /*
4382 * No need to call mmu_notifier_invalidate_range() we are downgrading
4383 * page table protection not changing it to point to a new page.
4384 *
4385 * See Documentation/vm/mmu_notifier.txt
4386 */
4387 i_mmap_unlock_write(vma->vm_file->f_mapping);
4388 mmu_notifier_invalidate_range_end(mm, start, end);
4389
4390 return pages << h->order;
4391 }
4392
4393 int hugetlb_reserve_pages(struct inode *inode,
4394 long from, long to,
4395 struct vm_area_struct *vma,
4396 vm_flags_t vm_flags)
4397 {
4398 long ret, chg;
4399 struct hstate *h = hstate_inode(inode);
4400 struct hugepage_subpool *spool = subpool_inode(inode);
4401 struct resv_map *resv_map;
4402 long gbl_reserve;
4403
4404 /* This should never happen */
4405 if (from > to) {
4406 VM_WARN(1, "%s called with a negative range\n", __func__);
4407 return -EINVAL;
4408 }
4409
4410 /*
4411 * Only apply hugepage reservation if asked. At fault time, an
4412 * attempt will be made for VM_NORESERVE to allocate a page
4413 * without using reserves
4414 */
4415 if (vm_flags & VM_NORESERVE)
4416 return 0;
4417
4418 /*
4419 * Shared mappings base their reservation on the number of pages that
4420 * are already allocated on behalf of the file. Private mappings need
4421 * to reserve the full area even if read-only as mprotect() may be
4422 * called to make the mapping read-write. Assume !vma is a shm mapping
4423 */
4424 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4425 resv_map = inode_resv_map(inode);
4426
4427 chg = region_chg(resv_map, from, to);
4428
4429 } else {
4430 resv_map = resv_map_alloc();
4431 if (!resv_map)
4432 return -ENOMEM;
4433
4434 chg = to - from;
4435
4436 set_vma_resv_map(vma, resv_map);
4437 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4438 }
4439
4440 if (chg < 0) {
4441 ret = chg;
4442 goto out_err;
4443 }
4444
4445 /*
4446 * There must be enough pages in the subpool for the mapping. If
4447 * the subpool has a minimum size, there may be some global
4448 * reservations already in place (gbl_reserve).
4449 */
4450 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4451 if (gbl_reserve < 0) {
4452 ret = -ENOSPC;
4453 goto out_err;
4454 }
4455
4456 /*
4457 * Check enough hugepages are available for the reservation.
4458 * Hand the pages back to the subpool if there are not
4459 */
4460 ret = hugetlb_acct_memory(h, gbl_reserve);
4461 if (ret < 0) {
4462 /* put back original number of pages, chg */
4463 (void)hugepage_subpool_put_pages(spool, chg);
4464 goto out_err;
4465 }
4466
4467 /*
4468 * Account for the reservations made. Shared mappings record regions
4469 * that have reservations as they are shared by multiple VMAs.
4470 * When the last VMA disappears, the region map says how much
4471 * the reservation was and the page cache tells how much of
4472 * the reservation was consumed. Private mappings are per-VMA and
4473 * only the consumed reservations are tracked. When the VMA
4474 * disappears, the original reservation is the VMA size and the
4475 * consumed reservations are stored in the map. Hence, nothing
4476 * else has to be done for private mappings here
4477 */
4478 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4479 long add = region_add(resv_map, from, to);
4480
4481 if (unlikely(chg > add)) {
4482 /*
4483 * pages in this range were added to the reserve
4484 * map between region_chg and region_add. This
4485 * indicates a race with alloc_huge_page. Adjust
4486 * the subpool and reserve counts modified above
4487 * based on the difference.
4488 */
4489 long rsv_adjust;
4490
4491 rsv_adjust = hugepage_subpool_put_pages(spool,
4492 chg - add);
4493 hugetlb_acct_memory(h, -rsv_adjust);
4494 }
4495 }
4496 return 0;
4497 out_err:
4498 if (!vma || vma->vm_flags & VM_MAYSHARE)
4499 /* Don't call region_abort if region_chg failed */
4500 if (chg >= 0)
4501 region_abort(resv_map, from, to);
4502 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4503 kref_put(&resv_map->refs, resv_map_release);
4504 return ret;
4505 }
4506
4507 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4508 long freed)
4509 {
4510 struct hstate *h = hstate_inode(inode);
4511 struct resv_map *resv_map = inode_resv_map(inode);
4512 long chg = 0;
4513 struct hugepage_subpool *spool = subpool_inode(inode);
4514 long gbl_reserve;
4515
4516 if (resv_map) {
4517 chg = region_del(resv_map, start, end);
4518 /*
4519 * region_del() can fail in the rare case where a region
4520 * must be split and another region descriptor can not be
4521 * allocated. If end == LONG_MAX, it will not fail.
4522 */
4523 if (chg < 0)
4524 return chg;
4525 }
4526
4527 spin_lock(&inode->i_lock);
4528 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4529 spin_unlock(&inode->i_lock);
4530
4531 /*
4532 * If the subpool has a minimum size, the number of global
4533 * reservations to be released may be adjusted.
4534 */
4535 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4536 hugetlb_acct_memory(h, -gbl_reserve);
4537
4538 return 0;
4539 }
4540
4541 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4542 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4543 struct vm_area_struct *vma,
4544 unsigned long addr, pgoff_t idx)
4545 {
4546 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4547 svma->vm_start;
4548 unsigned long sbase = saddr & PUD_MASK;
4549 unsigned long s_end = sbase + PUD_SIZE;
4550
4551 /* Allow segments to share if only one is marked locked */
4552 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4553 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4554
4555 /*
4556 * match the virtual addresses, permission and the alignment of the
4557 * page table page.
4558 */
4559 if (pmd_index(addr) != pmd_index(saddr) ||
4560 vm_flags != svm_flags ||
4561 sbase < svma->vm_start || svma->vm_end < s_end)
4562 return 0;
4563
4564 return saddr;
4565 }
4566
4567 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4568 {
4569 unsigned long base = addr & PUD_MASK;
4570 unsigned long end = base + PUD_SIZE;
4571
4572 /*
4573 * check on proper vm_flags and page table alignment
4574 */
4575 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4576 return true;
4577 return false;
4578 }
4579
4580 /*
4581 * Determine if start,end range within vma could be mapped by shared pmd.
4582 * If yes, adjust start and end to cover range associated with possible
4583 * shared pmd mappings.
4584 */
4585 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4586 unsigned long *start, unsigned long *end)
4587 {
4588 unsigned long check_addr = *start;
4589
4590 if (!(vma->vm_flags & VM_MAYSHARE))
4591 return;
4592
4593 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4594 unsigned long a_start = check_addr & PUD_MASK;
4595 unsigned long a_end = a_start + PUD_SIZE;
4596
4597 /*
4598 * If sharing is possible, adjust start/end if necessary.
4599 */
4600 if (range_in_vma(vma, a_start, a_end)) {
4601 if (a_start < *start)
4602 *start = a_start;
4603 if (a_end > *end)
4604 *end = a_end;
4605 }
4606 }
4607 }
4608
4609 /*
4610 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4611 * and returns the corresponding pte. While this is not necessary for the
4612 * !shared pmd case because we can allocate the pmd later as well, it makes the
4613 * code much cleaner. pmd allocation is essential for the shared case because
4614 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4615 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4616 * bad pmd for sharing.
4617 */
4618 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4619 {
4620 struct vm_area_struct *vma = find_vma(mm, addr);
4621 struct address_space *mapping = vma->vm_file->f_mapping;
4622 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4623 vma->vm_pgoff;
4624 struct vm_area_struct *svma;
4625 unsigned long saddr;
4626 pte_t *spte = NULL;
4627 pte_t *pte;
4628 spinlock_t *ptl;
4629
4630 if (!vma_shareable(vma, addr))
4631 return (pte_t *)pmd_alloc(mm, pud, addr);
4632
4633 i_mmap_lock_write(mapping);
4634 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4635 if (svma == vma)
4636 continue;
4637
4638 saddr = page_table_shareable(svma, vma, addr, idx);
4639 if (saddr) {
4640 spte = huge_pte_offset(svma->vm_mm, saddr,
4641 vma_mmu_pagesize(svma));
4642 if (spte) {
4643 get_page(virt_to_page(spte));
4644 break;
4645 }
4646 }
4647 }
4648
4649 if (!spte)
4650 goto out;
4651
4652 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4653 if (pud_none(*pud)) {
4654 pud_populate(mm, pud,
4655 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4656 mm_inc_nr_pmds(mm);
4657 } else {
4658 put_page(virt_to_page(spte));
4659 }
4660 spin_unlock(ptl);
4661 out:
4662 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4663 i_mmap_unlock_write(mapping);
4664 return pte;
4665 }
4666
4667 /*
4668 * unmap huge page backed by shared pte.
4669 *
4670 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4671 * indicated by page_count > 1, unmap is achieved by clearing pud and
4672 * decrementing the ref count. If count == 1, the pte page is not shared.
4673 *
4674 * called with page table lock held.
4675 *
4676 * returns: 1 successfully unmapped a shared pte page
4677 * 0 the underlying pte page is not shared, or it is the last user
4678 */
4679 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4680 {
4681 pgd_t *pgd = pgd_offset(mm, *addr);
4682 p4d_t *p4d = p4d_offset(pgd, *addr);
4683 pud_t *pud = pud_offset(p4d, *addr);
4684
4685 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4686 if (page_count(virt_to_page(ptep)) == 1)
4687 return 0;
4688
4689 pud_clear(pud);
4690 put_page(virt_to_page(ptep));
4691 mm_dec_nr_pmds(mm);
4692 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4693 return 1;
4694 }
4695 #define want_pmd_share() (1)
4696 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4697 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4698 {
4699 return NULL;
4700 }
4701
4702 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4703 {
4704 return 0;
4705 }
4706
4707 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4708 unsigned long *start, unsigned long *end)
4709 {
4710 }
4711 #define want_pmd_share() (0)
4712 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4713
4714 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4715 pte_t *huge_pte_alloc(struct mm_struct *mm,
4716 unsigned long addr, unsigned long sz)
4717 {
4718 pgd_t *pgd;
4719 p4d_t *p4d;
4720 pud_t *pud;
4721 pte_t *pte = NULL;
4722
4723 pgd = pgd_offset(mm, addr);
4724 p4d = p4d_alloc(mm, pgd, addr);
4725 if (!p4d)
4726 return NULL;
4727 pud = pud_alloc(mm, p4d, addr);
4728 if (pud) {
4729 if (sz == PUD_SIZE) {
4730 pte = (pte_t *)pud;
4731 } else {
4732 BUG_ON(sz != PMD_SIZE);
4733 if (want_pmd_share() && pud_none(*pud))
4734 pte = huge_pmd_share(mm, addr, pud);
4735 else
4736 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4737 }
4738 }
4739 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4740
4741 return pte;
4742 }
4743
4744 /*
4745 * huge_pte_offset() - Walk the page table to resolve the hugepage
4746 * entry at address @addr
4747 *
4748 * Return: Pointer to page table or swap entry (PUD or PMD) for
4749 * address @addr, or NULL if a p*d_none() entry is encountered and the
4750 * size @sz doesn't match the hugepage size at this level of the page
4751 * table.
4752 */
4753 pte_t *huge_pte_offset(struct mm_struct *mm,
4754 unsigned long addr, unsigned long sz)
4755 {
4756 pgd_t *pgd;
4757 p4d_t *p4d;
4758 pud_t *pud;
4759 pmd_t *pmd;
4760
4761 pgd = pgd_offset(mm, addr);
4762 if (!pgd_present(*pgd))
4763 return NULL;
4764 p4d = p4d_offset(pgd, addr);
4765 if (!p4d_present(*p4d))
4766 return NULL;
4767
4768 pud = pud_offset(p4d, addr);
4769 if (sz != PUD_SIZE && pud_none(*pud))
4770 return NULL;
4771 /* hugepage or swap? */
4772 if (pud_huge(*pud) || !pud_present(*pud))
4773 return (pte_t *)pud;
4774
4775 pmd = pmd_offset(pud, addr);
4776 if (sz != PMD_SIZE && pmd_none(*pmd))
4777 return NULL;
4778 /* hugepage or swap? */
4779 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4780 return (pte_t *)pmd;
4781
4782 return NULL;
4783 }
4784
4785 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4786
4787 /*
4788 * These functions are overwritable if your architecture needs its own
4789 * behavior.
4790 */
4791 struct page * __weak
4792 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4793 int write)
4794 {
4795 return ERR_PTR(-EINVAL);
4796 }
4797
4798 struct page * __weak
4799 follow_huge_pd(struct vm_area_struct *vma,
4800 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4801 {
4802 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4803 return NULL;
4804 }
4805
4806 struct page * __weak
4807 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4808 pmd_t *pmd, int flags)
4809 {
4810 struct page *page = NULL;
4811 spinlock_t *ptl;
4812 pte_t pte;
4813 retry:
4814 ptl = pmd_lockptr(mm, pmd);
4815 spin_lock(ptl);
4816 /*
4817 * make sure that the address range covered by this pmd is not
4818 * unmapped from other threads.
4819 */
4820 if (!pmd_huge(*pmd))
4821 goto out;
4822 pte = huge_ptep_get((pte_t *)pmd);
4823 if (pte_present(pte)) {
4824 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4825 if (flags & FOLL_GET)
4826 get_page(page);
4827 } else {
4828 if (is_hugetlb_entry_migration(pte)) {
4829 spin_unlock(ptl);
4830 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4831 goto retry;
4832 }
4833 /*
4834 * hwpoisoned entry is treated as no_page_table in
4835 * follow_page_mask().
4836 */
4837 }
4838 out:
4839 spin_unlock(ptl);
4840 return page;
4841 }
4842
4843 struct page * __weak
4844 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4845 pud_t *pud, int flags)
4846 {
4847 if (flags & FOLL_GET)
4848 return NULL;
4849
4850 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4851 }
4852
4853 struct page * __weak
4854 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4855 {
4856 if (flags & FOLL_GET)
4857 return NULL;
4858
4859 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4860 }
4861
4862 bool isolate_huge_page(struct page *page, struct list_head *list)
4863 {
4864 bool ret = true;
4865
4866 VM_BUG_ON_PAGE(!PageHead(page), page);
4867 spin_lock(&hugetlb_lock);
4868 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4869 ret = false;
4870 goto unlock;
4871 }
4872 clear_page_huge_active(page);
4873 list_move_tail(&page->lru, list);
4874 unlock:
4875 spin_unlock(&hugetlb_lock);
4876 return ret;
4877 }
4878
4879 void putback_active_hugepage(struct page *page)
4880 {
4881 VM_BUG_ON_PAGE(!PageHead(page), page);
4882 spin_lock(&hugetlb_lock);
4883 set_page_huge_active(page);
4884 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4885 spin_unlock(&hugetlb_lock);
4886 put_page(page);
4887 }