]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hugetlb.c
mm: hugetlb: add arch hook for clearing page flags before entering pool
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/tlb.h>
28
29 #include <linux/io.h>
30 #include <linux/hugetlb.h>
31 #include <linux/hugetlb_cgroup.h>
32 #include <linux/node.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94 {
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113 {
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 return subpool_inode(vma->vm_file->f_dentry->d_inode);
132 }
133
134 /*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291 }
292
293 /*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
299 {
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306 {
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << (hstate->order + PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375 {
376 vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
389
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
392
393 return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435 return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate *h,
440 struct vm_area_struct *vma)
441 {
442 if (vma->vm_flags & VM_NORESERVE)
443 return;
444
445 if (vma->vm_flags & VM_MAYSHARE) {
446 /* Shared mappings always use reserves */
447 h->resv_huge_pages--;
448 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
449 /*
450 * Only the process that called mmap() has reserves for
451 * private mappings.
452 */
453 h->resv_huge_pages--;
454 }
455 }
456
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
459 {
460 VM_BUG_ON(!is_vm_hugetlb_page(vma));
461 if (!(vma->vm_flags & VM_MAYSHARE))
462 vma->vm_private_data = (void *)0;
463 }
464
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct *vma)
467 {
468 if (vma->vm_flags & VM_MAYSHARE)
469 return 1;
470 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
471 return 1;
472 return 0;
473 }
474
475 static void copy_gigantic_page(struct page *dst, struct page *src)
476 {
477 int i;
478 struct hstate *h = page_hstate(src);
479 struct page *dst_base = dst;
480 struct page *src_base = src;
481
482 for (i = 0; i < pages_per_huge_page(h); ) {
483 cond_resched();
484 copy_highpage(dst, src);
485
486 i++;
487 dst = mem_map_next(dst, dst_base, i);
488 src = mem_map_next(src, src_base, i);
489 }
490 }
491
492 void copy_huge_page(struct page *dst, struct page *src)
493 {
494 int i;
495 struct hstate *h = page_hstate(src);
496
497 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
498 copy_gigantic_page(dst, src);
499 return;
500 }
501
502 might_sleep();
503 for (i = 0; i < pages_per_huge_page(h); i++) {
504 cond_resched();
505 copy_highpage(dst + i, src + i);
506 }
507 }
508
509 static void enqueue_huge_page(struct hstate *h, struct page *page)
510 {
511 int nid = page_to_nid(page);
512 list_move(&page->lru, &h->hugepage_freelists[nid]);
513 h->free_huge_pages++;
514 h->free_huge_pages_node[nid]++;
515 }
516
517 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
518 {
519 struct page *page;
520
521 if (list_empty(&h->hugepage_freelists[nid]))
522 return NULL;
523 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
524 list_move(&page->lru, &h->hugepage_activelist);
525 set_page_refcounted(page);
526 h->free_huge_pages--;
527 h->free_huge_pages_node[nid]--;
528 return page;
529 }
530
531 static struct page *dequeue_huge_page_vma(struct hstate *h,
532 struct vm_area_struct *vma,
533 unsigned long address, int avoid_reserve)
534 {
535 struct page *page = NULL;
536 struct mempolicy *mpol;
537 nodemask_t *nodemask;
538 struct zonelist *zonelist;
539 struct zone *zone;
540 struct zoneref *z;
541 unsigned int cpuset_mems_cookie;
542
543 retry_cpuset:
544 cpuset_mems_cookie = get_mems_allowed();
545 zonelist = huge_zonelist(vma, address,
546 htlb_alloc_mask, &mpol, &nodemask);
547 /*
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
551 */
552 if (!vma_has_reserves(vma) &&
553 h->free_huge_pages - h->resv_huge_pages == 0)
554 goto err;
555
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
558 goto err;
559
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
568 }
569 }
570 }
571
572 mpol_cond_put(mpol);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
575 return page;
576
577 err:
578 mpol_cond_put(mpol);
579 return NULL;
580 }
581
582 static void update_and_free_page(struct hstate *h, struct page *page)
583 {
584 int i;
585
586 VM_BUG_ON(h->order >= MAX_ORDER);
587
588 h->nr_huge_pages--;
589 h->nr_huge_pages_node[page_to_nid(page)]--;
590 for (i = 0; i < pages_per_huge_page(h); i++) {
591 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
592 1 << PG_referenced | 1 << PG_dirty |
593 1 << PG_active | 1 << PG_reserved |
594 1 << PG_private | 1 << PG_writeback);
595 }
596 VM_BUG_ON(hugetlb_cgroup_from_page(page));
597 set_compound_page_dtor(page, NULL);
598 set_page_refcounted(page);
599 arch_release_hugepage(page);
600 __free_pages(page, huge_page_order(h));
601 }
602
603 struct hstate *size_to_hstate(unsigned long size)
604 {
605 struct hstate *h;
606
607 for_each_hstate(h) {
608 if (huge_page_size(h) == size)
609 return h;
610 }
611 return NULL;
612 }
613
614 static void free_huge_page(struct page *page)
615 {
616 /*
617 * Can't pass hstate in here because it is called from the
618 * compound page destructor.
619 */
620 struct hstate *h = page_hstate(page);
621 int nid = page_to_nid(page);
622 struct hugepage_subpool *spool =
623 (struct hugepage_subpool *)page_private(page);
624
625 set_page_private(page, 0);
626 page->mapping = NULL;
627 BUG_ON(page_count(page));
628 BUG_ON(page_mapcount(page));
629
630 spin_lock(&hugetlb_lock);
631 hugetlb_cgroup_uncharge_page(hstate_index(h),
632 pages_per_huge_page(h), page);
633 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
634 /* remove the page from active list */
635 list_del(&page->lru);
636 update_and_free_page(h, page);
637 h->surplus_huge_pages--;
638 h->surplus_huge_pages_node[nid]--;
639 } else {
640 arch_clear_hugepage_flags(page);
641 enqueue_huge_page(h, page);
642 }
643 spin_unlock(&hugetlb_lock);
644 hugepage_subpool_put_pages(spool, 1);
645 }
646
647 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
648 {
649 INIT_LIST_HEAD(&page->lru);
650 set_compound_page_dtor(page, free_huge_page);
651 spin_lock(&hugetlb_lock);
652 set_hugetlb_cgroup(page, NULL);
653 h->nr_huge_pages++;
654 h->nr_huge_pages_node[nid]++;
655 spin_unlock(&hugetlb_lock);
656 put_page(page); /* free it into the hugepage allocator */
657 }
658
659 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
660 {
661 int i;
662 int nr_pages = 1 << order;
663 struct page *p = page + 1;
664
665 /* we rely on prep_new_huge_page to set the destructor */
666 set_compound_order(page, order);
667 __SetPageHead(page);
668 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
669 __SetPageTail(p);
670 set_page_count(p, 0);
671 p->first_page = page;
672 }
673 }
674
675 int PageHuge(struct page *page)
676 {
677 compound_page_dtor *dtor;
678
679 if (!PageCompound(page))
680 return 0;
681
682 page = compound_head(page);
683 dtor = get_compound_page_dtor(page);
684
685 return dtor == free_huge_page;
686 }
687 EXPORT_SYMBOL_GPL(PageHuge);
688
689 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
690 {
691 struct page *page;
692
693 if (h->order >= MAX_ORDER)
694 return NULL;
695
696 page = alloc_pages_exact_node(nid,
697 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
698 __GFP_REPEAT|__GFP_NOWARN,
699 huge_page_order(h));
700 if (page) {
701 if (arch_prepare_hugepage(page)) {
702 __free_pages(page, huge_page_order(h));
703 return NULL;
704 }
705 prep_new_huge_page(h, page, nid);
706 }
707
708 return page;
709 }
710
711 /*
712 * common helper functions for hstate_next_node_to_{alloc|free}.
713 * We may have allocated or freed a huge page based on a different
714 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
715 * be outside of *nodes_allowed. Ensure that we use an allowed
716 * node for alloc or free.
717 */
718 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
719 {
720 nid = next_node(nid, *nodes_allowed);
721 if (nid == MAX_NUMNODES)
722 nid = first_node(*nodes_allowed);
723 VM_BUG_ON(nid >= MAX_NUMNODES);
724
725 return nid;
726 }
727
728 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
729 {
730 if (!node_isset(nid, *nodes_allowed))
731 nid = next_node_allowed(nid, nodes_allowed);
732 return nid;
733 }
734
735 /*
736 * returns the previously saved node ["this node"] from which to
737 * allocate a persistent huge page for the pool and advance the
738 * next node from which to allocate, handling wrap at end of node
739 * mask.
740 */
741 static int hstate_next_node_to_alloc(struct hstate *h,
742 nodemask_t *nodes_allowed)
743 {
744 int nid;
745
746 VM_BUG_ON(!nodes_allowed);
747
748 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
749 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
750
751 return nid;
752 }
753
754 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
755 {
756 struct page *page;
757 int start_nid;
758 int next_nid;
759 int ret = 0;
760
761 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
762 next_nid = start_nid;
763
764 do {
765 page = alloc_fresh_huge_page_node(h, next_nid);
766 if (page) {
767 ret = 1;
768 break;
769 }
770 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
771 } while (next_nid != start_nid);
772
773 if (ret)
774 count_vm_event(HTLB_BUDDY_PGALLOC);
775 else
776 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
777
778 return ret;
779 }
780
781 /*
782 * helper for free_pool_huge_page() - return the previously saved
783 * node ["this node"] from which to free a huge page. Advance the
784 * next node id whether or not we find a free huge page to free so
785 * that the next attempt to free addresses the next node.
786 */
787 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
788 {
789 int nid;
790
791 VM_BUG_ON(!nodes_allowed);
792
793 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
794 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
795
796 return nid;
797 }
798
799 /*
800 * Free huge page from pool from next node to free.
801 * Attempt to keep persistent huge pages more or less
802 * balanced over allowed nodes.
803 * Called with hugetlb_lock locked.
804 */
805 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
806 bool acct_surplus)
807 {
808 int start_nid;
809 int next_nid;
810 int ret = 0;
811
812 start_nid = hstate_next_node_to_free(h, nodes_allowed);
813 next_nid = start_nid;
814
815 do {
816 /*
817 * If we're returning unused surplus pages, only examine
818 * nodes with surplus pages.
819 */
820 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
821 !list_empty(&h->hugepage_freelists[next_nid])) {
822 struct page *page =
823 list_entry(h->hugepage_freelists[next_nid].next,
824 struct page, lru);
825 list_del(&page->lru);
826 h->free_huge_pages--;
827 h->free_huge_pages_node[next_nid]--;
828 if (acct_surplus) {
829 h->surplus_huge_pages--;
830 h->surplus_huge_pages_node[next_nid]--;
831 }
832 update_and_free_page(h, page);
833 ret = 1;
834 break;
835 }
836 next_nid = hstate_next_node_to_free(h, nodes_allowed);
837 } while (next_nid != start_nid);
838
839 return ret;
840 }
841
842 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
843 {
844 struct page *page;
845 unsigned int r_nid;
846
847 if (h->order >= MAX_ORDER)
848 return NULL;
849
850 /*
851 * Assume we will successfully allocate the surplus page to
852 * prevent racing processes from causing the surplus to exceed
853 * overcommit
854 *
855 * This however introduces a different race, where a process B
856 * tries to grow the static hugepage pool while alloc_pages() is
857 * called by process A. B will only examine the per-node
858 * counters in determining if surplus huge pages can be
859 * converted to normal huge pages in adjust_pool_surplus(). A
860 * won't be able to increment the per-node counter, until the
861 * lock is dropped by B, but B doesn't drop hugetlb_lock until
862 * no more huge pages can be converted from surplus to normal
863 * state (and doesn't try to convert again). Thus, we have a
864 * case where a surplus huge page exists, the pool is grown, and
865 * the surplus huge page still exists after, even though it
866 * should just have been converted to a normal huge page. This
867 * does not leak memory, though, as the hugepage will be freed
868 * once it is out of use. It also does not allow the counters to
869 * go out of whack in adjust_pool_surplus() as we don't modify
870 * the node values until we've gotten the hugepage and only the
871 * per-node value is checked there.
872 */
873 spin_lock(&hugetlb_lock);
874 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
875 spin_unlock(&hugetlb_lock);
876 return NULL;
877 } else {
878 h->nr_huge_pages++;
879 h->surplus_huge_pages++;
880 }
881 spin_unlock(&hugetlb_lock);
882
883 if (nid == NUMA_NO_NODE)
884 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
885 __GFP_REPEAT|__GFP_NOWARN,
886 huge_page_order(h));
887 else
888 page = alloc_pages_exact_node(nid,
889 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
890 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
891
892 if (page && arch_prepare_hugepage(page)) {
893 __free_pages(page, huge_page_order(h));
894 page = NULL;
895 }
896
897 spin_lock(&hugetlb_lock);
898 if (page) {
899 INIT_LIST_HEAD(&page->lru);
900 r_nid = page_to_nid(page);
901 set_compound_page_dtor(page, free_huge_page);
902 set_hugetlb_cgroup(page, NULL);
903 /*
904 * We incremented the global counters already
905 */
906 h->nr_huge_pages_node[r_nid]++;
907 h->surplus_huge_pages_node[r_nid]++;
908 __count_vm_event(HTLB_BUDDY_PGALLOC);
909 } else {
910 h->nr_huge_pages--;
911 h->surplus_huge_pages--;
912 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
913 }
914 spin_unlock(&hugetlb_lock);
915
916 return page;
917 }
918
919 /*
920 * This allocation function is useful in the context where vma is irrelevant.
921 * E.g. soft-offlining uses this function because it only cares physical
922 * address of error page.
923 */
924 struct page *alloc_huge_page_node(struct hstate *h, int nid)
925 {
926 struct page *page;
927
928 spin_lock(&hugetlb_lock);
929 page = dequeue_huge_page_node(h, nid);
930 spin_unlock(&hugetlb_lock);
931
932 if (!page)
933 page = alloc_buddy_huge_page(h, nid);
934
935 return page;
936 }
937
938 /*
939 * Increase the hugetlb pool such that it can accommodate a reservation
940 * of size 'delta'.
941 */
942 static int gather_surplus_pages(struct hstate *h, int delta)
943 {
944 struct list_head surplus_list;
945 struct page *page, *tmp;
946 int ret, i;
947 int needed, allocated;
948 bool alloc_ok = true;
949
950 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
951 if (needed <= 0) {
952 h->resv_huge_pages += delta;
953 return 0;
954 }
955
956 allocated = 0;
957 INIT_LIST_HEAD(&surplus_list);
958
959 ret = -ENOMEM;
960 retry:
961 spin_unlock(&hugetlb_lock);
962 for (i = 0; i < needed; i++) {
963 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
964 if (!page) {
965 alloc_ok = false;
966 break;
967 }
968 list_add(&page->lru, &surplus_list);
969 }
970 allocated += i;
971
972 /*
973 * After retaking hugetlb_lock, we need to recalculate 'needed'
974 * because either resv_huge_pages or free_huge_pages may have changed.
975 */
976 spin_lock(&hugetlb_lock);
977 needed = (h->resv_huge_pages + delta) -
978 (h->free_huge_pages + allocated);
979 if (needed > 0) {
980 if (alloc_ok)
981 goto retry;
982 /*
983 * We were not able to allocate enough pages to
984 * satisfy the entire reservation so we free what
985 * we've allocated so far.
986 */
987 goto free;
988 }
989 /*
990 * The surplus_list now contains _at_least_ the number of extra pages
991 * needed to accommodate the reservation. Add the appropriate number
992 * of pages to the hugetlb pool and free the extras back to the buddy
993 * allocator. Commit the entire reservation here to prevent another
994 * process from stealing the pages as they are added to the pool but
995 * before they are reserved.
996 */
997 needed += allocated;
998 h->resv_huge_pages += delta;
999 ret = 0;
1000
1001 /* Free the needed pages to the hugetlb pool */
1002 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1003 if ((--needed) < 0)
1004 break;
1005 /*
1006 * This page is now managed by the hugetlb allocator and has
1007 * no users -- drop the buddy allocator's reference.
1008 */
1009 put_page_testzero(page);
1010 VM_BUG_ON(page_count(page));
1011 enqueue_huge_page(h, page);
1012 }
1013 free:
1014 spin_unlock(&hugetlb_lock);
1015
1016 /* Free unnecessary surplus pages to the buddy allocator */
1017 if (!list_empty(&surplus_list)) {
1018 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1019 put_page(page);
1020 }
1021 }
1022 spin_lock(&hugetlb_lock);
1023
1024 return ret;
1025 }
1026
1027 /*
1028 * When releasing a hugetlb pool reservation, any surplus pages that were
1029 * allocated to satisfy the reservation must be explicitly freed if they were
1030 * never used.
1031 * Called with hugetlb_lock held.
1032 */
1033 static void return_unused_surplus_pages(struct hstate *h,
1034 unsigned long unused_resv_pages)
1035 {
1036 unsigned long nr_pages;
1037
1038 /* Uncommit the reservation */
1039 h->resv_huge_pages -= unused_resv_pages;
1040
1041 /* Cannot return gigantic pages currently */
1042 if (h->order >= MAX_ORDER)
1043 return;
1044
1045 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1046
1047 /*
1048 * We want to release as many surplus pages as possible, spread
1049 * evenly across all nodes with memory. Iterate across these nodes
1050 * until we can no longer free unreserved surplus pages. This occurs
1051 * when the nodes with surplus pages have no free pages.
1052 * free_pool_huge_page() will balance the the freed pages across the
1053 * on-line nodes with memory and will handle the hstate accounting.
1054 */
1055 while (nr_pages--) {
1056 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1057 break;
1058 }
1059 }
1060
1061 /*
1062 * Determine if the huge page at addr within the vma has an associated
1063 * reservation. Where it does not we will need to logically increase
1064 * reservation and actually increase subpool usage before an allocation
1065 * can occur. Where any new reservation would be required the
1066 * reservation change is prepared, but not committed. Once the page
1067 * has been allocated from the subpool and instantiated the change should
1068 * be committed via vma_commit_reservation. No action is required on
1069 * failure.
1070 */
1071 static long vma_needs_reservation(struct hstate *h,
1072 struct vm_area_struct *vma, unsigned long addr)
1073 {
1074 struct address_space *mapping = vma->vm_file->f_mapping;
1075 struct inode *inode = mapping->host;
1076
1077 if (vma->vm_flags & VM_MAYSHARE) {
1078 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1079 return region_chg(&inode->i_mapping->private_list,
1080 idx, idx + 1);
1081
1082 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1083 return 1;
1084
1085 } else {
1086 long err;
1087 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1088 struct resv_map *reservations = vma_resv_map(vma);
1089
1090 err = region_chg(&reservations->regions, idx, idx + 1);
1091 if (err < 0)
1092 return err;
1093 return 0;
1094 }
1095 }
1096 static void vma_commit_reservation(struct hstate *h,
1097 struct vm_area_struct *vma, unsigned long addr)
1098 {
1099 struct address_space *mapping = vma->vm_file->f_mapping;
1100 struct inode *inode = mapping->host;
1101
1102 if (vma->vm_flags & VM_MAYSHARE) {
1103 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1104 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1105
1106 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1107 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108 struct resv_map *reservations = vma_resv_map(vma);
1109
1110 /* Mark this page used in the map. */
1111 region_add(&reservations->regions, idx, idx + 1);
1112 }
1113 }
1114
1115 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1116 unsigned long addr, int avoid_reserve)
1117 {
1118 struct hugepage_subpool *spool = subpool_vma(vma);
1119 struct hstate *h = hstate_vma(vma);
1120 struct page *page;
1121 long chg;
1122 int ret, idx;
1123 struct hugetlb_cgroup *h_cg;
1124
1125 idx = hstate_index(h);
1126 /*
1127 * Processes that did not create the mapping will have no
1128 * reserves and will not have accounted against subpool
1129 * limit. Check that the subpool limit can be made before
1130 * satisfying the allocation MAP_NORESERVE mappings may also
1131 * need pages and subpool limit allocated allocated if no reserve
1132 * mapping overlaps.
1133 */
1134 chg = vma_needs_reservation(h, vma, addr);
1135 if (chg < 0)
1136 return ERR_PTR(-ENOMEM);
1137 if (chg)
1138 if (hugepage_subpool_get_pages(spool, chg))
1139 return ERR_PTR(-ENOSPC);
1140
1141 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1142 if (ret) {
1143 hugepage_subpool_put_pages(spool, chg);
1144 return ERR_PTR(-ENOSPC);
1145 }
1146 spin_lock(&hugetlb_lock);
1147 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1148 if (page) {
1149 /* update page cgroup details */
1150 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1151 h_cg, page);
1152 spin_unlock(&hugetlb_lock);
1153 } else {
1154 spin_unlock(&hugetlb_lock);
1155 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1156 if (!page) {
1157 hugetlb_cgroup_uncharge_cgroup(idx,
1158 pages_per_huge_page(h),
1159 h_cg);
1160 hugepage_subpool_put_pages(spool, chg);
1161 return ERR_PTR(-ENOSPC);
1162 }
1163 spin_lock(&hugetlb_lock);
1164 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
1165 h_cg, page);
1166 list_move(&page->lru, &h->hugepage_activelist);
1167 spin_unlock(&hugetlb_lock);
1168 }
1169
1170 set_page_private(page, (unsigned long)spool);
1171
1172 vma_commit_reservation(h, vma, addr);
1173 return page;
1174 }
1175
1176 int __weak alloc_bootmem_huge_page(struct hstate *h)
1177 {
1178 struct huge_bootmem_page *m;
1179 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1180
1181 while (nr_nodes) {
1182 void *addr;
1183
1184 addr = __alloc_bootmem_node_nopanic(
1185 NODE_DATA(hstate_next_node_to_alloc(h,
1186 &node_states[N_HIGH_MEMORY])),
1187 huge_page_size(h), huge_page_size(h), 0);
1188
1189 if (addr) {
1190 /*
1191 * Use the beginning of the huge page to store the
1192 * huge_bootmem_page struct (until gather_bootmem
1193 * puts them into the mem_map).
1194 */
1195 m = addr;
1196 goto found;
1197 }
1198 nr_nodes--;
1199 }
1200 return 0;
1201
1202 found:
1203 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1204 /* Put them into a private list first because mem_map is not up yet */
1205 list_add(&m->list, &huge_boot_pages);
1206 m->hstate = h;
1207 return 1;
1208 }
1209
1210 static void prep_compound_huge_page(struct page *page, int order)
1211 {
1212 if (unlikely(order > (MAX_ORDER - 1)))
1213 prep_compound_gigantic_page(page, order);
1214 else
1215 prep_compound_page(page, order);
1216 }
1217
1218 /* Put bootmem huge pages into the standard lists after mem_map is up */
1219 static void __init gather_bootmem_prealloc(void)
1220 {
1221 struct huge_bootmem_page *m;
1222
1223 list_for_each_entry(m, &huge_boot_pages, list) {
1224 struct hstate *h = m->hstate;
1225 struct page *page;
1226
1227 #ifdef CONFIG_HIGHMEM
1228 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1229 free_bootmem_late((unsigned long)m,
1230 sizeof(struct huge_bootmem_page));
1231 #else
1232 page = virt_to_page(m);
1233 #endif
1234 __ClearPageReserved(page);
1235 WARN_ON(page_count(page) != 1);
1236 prep_compound_huge_page(page, h->order);
1237 prep_new_huge_page(h, page, page_to_nid(page));
1238 /*
1239 * If we had gigantic hugepages allocated at boot time, we need
1240 * to restore the 'stolen' pages to totalram_pages in order to
1241 * fix confusing memory reports from free(1) and another
1242 * side-effects, like CommitLimit going negative.
1243 */
1244 if (h->order > (MAX_ORDER - 1))
1245 totalram_pages += 1 << h->order;
1246 }
1247 }
1248
1249 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1250 {
1251 unsigned long i;
1252
1253 for (i = 0; i < h->max_huge_pages; ++i) {
1254 if (h->order >= MAX_ORDER) {
1255 if (!alloc_bootmem_huge_page(h))
1256 break;
1257 } else if (!alloc_fresh_huge_page(h,
1258 &node_states[N_HIGH_MEMORY]))
1259 break;
1260 }
1261 h->max_huge_pages = i;
1262 }
1263
1264 static void __init hugetlb_init_hstates(void)
1265 {
1266 struct hstate *h;
1267
1268 for_each_hstate(h) {
1269 /* oversize hugepages were init'ed in early boot */
1270 if (h->order < MAX_ORDER)
1271 hugetlb_hstate_alloc_pages(h);
1272 }
1273 }
1274
1275 static char * __init memfmt(char *buf, unsigned long n)
1276 {
1277 if (n >= (1UL << 30))
1278 sprintf(buf, "%lu GB", n >> 30);
1279 else if (n >= (1UL << 20))
1280 sprintf(buf, "%lu MB", n >> 20);
1281 else
1282 sprintf(buf, "%lu KB", n >> 10);
1283 return buf;
1284 }
1285
1286 static void __init report_hugepages(void)
1287 {
1288 struct hstate *h;
1289
1290 for_each_hstate(h) {
1291 char buf[32];
1292 printk(KERN_INFO "HugeTLB registered %s page size, "
1293 "pre-allocated %ld pages\n",
1294 memfmt(buf, huge_page_size(h)),
1295 h->free_huge_pages);
1296 }
1297 }
1298
1299 #ifdef CONFIG_HIGHMEM
1300 static void try_to_free_low(struct hstate *h, unsigned long count,
1301 nodemask_t *nodes_allowed)
1302 {
1303 int i;
1304
1305 if (h->order >= MAX_ORDER)
1306 return;
1307
1308 for_each_node_mask(i, *nodes_allowed) {
1309 struct page *page, *next;
1310 struct list_head *freel = &h->hugepage_freelists[i];
1311 list_for_each_entry_safe(page, next, freel, lru) {
1312 if (count >= h->nr_huge_pages)
1313 return;
1314 if (PageHighMem(page))
1315 continue;
1316 list_del(&page->lru);
1317 update_and_free_page(h, page);
1318 h->free_huge_pages--;
1319 h->free_huge_pages_node[page_to_nid(page)]--;
1320 }
1321 }
1322 }
1323 #else
1324 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1325 nodemask_t *nodes_allowed)
1326 {
1327 }
1328 #endif
1329
1330 /*
1331 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1332 * balanced by operating on them in a round-robin fashion.
1333 * Returns 1 if an adjustment was made.
1334 */
1335 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1336 int delta)
1337 {
1338 int start_nid, next_nid;
1339 int ret = 0;
1340
1341 VM_BUG_ON(delta != -1 && delta != 1);
1342
1343 if (delta < 0)
1344 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1345 else
1346 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1347 next_nid = start_nid;
1348
1349 do {
1350 int nid = next_nid;
1351 if (delta < 0) {
1352 /*
1353 * To shrink on this node, there must be a surplus page
1354 */
1355 if (!h->surplus_huge_pages_node[nid]) {
1356 next_nid = hstate_next_node_to_alloc(h,
1357 nodes_allowed);
1358 continue;
1359 }
1360 }
1361 if (delta > 0) {
1362 /*
1363 * Surplus cannot exceed the total number of pages
1364 */
1365 if (h->surplus_huge_pages_node[nid] >=
1366 h->nr_huge_pages_node[nid]) {
1367 next_nid = hstate_next_node_to_free(h,
1368 nodes_allowed);
1369 continue;
1370 }
1371 }
1372
1373 h->surplus_huge_pages += delta;
1374 h->surplus_huge_pages_node[nid] += delta;
1375 ret = 1;
1376 break;
1377 } while (next_nid != start_nid);
1378
1379 return ret;
1380 }
1381
1382 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1383 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1384 nodemask_t *nodes_allowed)
1385 {
1386 unsigned long min_count, ret;
1387
1388 if (h->order >= MAX_ORDER)
1389 return h->max_huge_pages;
1390
1391 /*
1392 * Increase the pool size
1393 * First take pages out of surplus state. Then make up the
1394 * remaining difference by allocating fresh huge pages.
1395 *
1396 * We might race with alloc_buddy_huge_page() here and be unable
1397 * to convert a surplus huge page to a normal huge page. That is
1398 * not critical, though, it just means the overall size of the
1399 * pool might be one hugepage larger than it needs to be, but
1400 * within all the constraints specified by the sysctls.
1401 */
1402 spin_lock(&hugetlb_lock);
1403 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1404 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1405 break;
1406 }
1407
1408 while (count > persistent_huge_pages(h)) {
1409 /*
1410 * If this allocation races such that we no longer need the
1411 * page, free_huge_page will handle it by freeing the page
1412 * and reducing the surplus.
1413 */
1414 spin_unlock(&hugetlb_lock);
1415 ret = alloc_fresh_huge_page(h, nodes_allowed);
1416 spin_lock(&hugetlb_lock);
1417 if (!ret)
1418 goto out;
1419
1420 /* Bail for signals. Probably ctrl-c from user */
1421 if (signal_pending(current))
1422 goto out;
1423 }
1424
1425 /*
1426 * Decrease the pool size
1427 * First return free pages to the buddy allocator (being careful
1428 * to keep enough around to satisfy reservations). Then place
1429 * pages into surplus state as needed so the pool will shrink
1430 * to the desired size as pages become free.
1431 *
1432 * By placing pages into the surplus state independent of the
1433 * overcommit value, we are allowing the surplus pool size to
1434 * exceed overcommit. There are few sane options here. Since
1435 * alloc_buddy_huge_page() is checking the global counter,
1436 * though, we'll note that we're not allowed to exceed surplus
1437 * and won't grow the pool anywhere else. Not until one of the
1438 * sysctls are changed, or the surplus pages go out of use.
1439 */
1440 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1441 min_count = max(count, min_count);
1442 try_to_free_low(h, min_count, nodes_allowed);
1443 while (min_count < persistent_huge_pages(h)) {
1444 if (!free_pool_huge_page(h, nodes_allowed, 0))
1445 break;
1446 }
1447 while (count < persistent_huge_pages(h)) {
1448 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1449 break;
1450 }
1451 out:
1452 ret = persistent_huge_pages(h);
1453 spin_unlock(&hugetlb_lock);
1454 return ret;
1455 }
1456
1457 #define HSTATE_ATTR_RO(_name) \
1458 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1459
1460 #define HSTATE_ATTR(_name) \
1461 static struct kobj_attribute _name##_attr = \
1462 __ATTR(_name, 0644, _name##_show, _name##_store)
1463
1464 static struct kobject *hugepages_kobj;
1465 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1466
1467 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1468
1469 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1470 {
1471 int i;
1472
1473 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1474 if (hstate_kobjs[i] == kobj) {
1475 if (nidp)
1476 *nidp = NUMA_NO_NODE;
1477 return &hstates[i];
1478 }
1479
1480 return kobj_to_node_hstate(kobj, nidp);
1481 }
1482
1483 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1484 struct kobj_attribute *attr, char *buf)
1485 {
1486 struct hstate *h;
1487 unsigned long nr_huge_pages;
1488 int nid;
1489
1490 h = kobj_to_hstate(kobj, &nid);
1491 if (nid == NUMA_NO_NODE)
1492 nr_huge_pages = h->nr_huge_pages;
1493 else
1494 nr_huge_pages = h->nr_huge_pages_node[nid];
1495
1496 return sprintf(buf, "%lu\n", nr_huge_pages);
1497 }
1498
1499 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1500 struct kobject *kobj, struct kobj_attribute *attr,
1501 const char *buf, size_t len)
1502 {
1503 int err;
1504 int nid;
1505 unsigned long count;
1506 struct hstate *h;
1507 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1508
1509 err = strict_strtoul(buf, 10, &count);
1510 if (err)
1511 goto out;
1512
1513 h = kobj_to_hstate(kobj, &nid);
1514 if (h->order >= MAX_ORDER) {
1515 err = -EINVAL;
1516 goto out;
1517 }
1518
1519 if (nid == NUMA_NO_NODE) {
1520 /*
1521 * global hstate attribute
1522 */
1523 if (!(obey_mempolicy &&
1524 init_nodemask_of_mempolicy(nodes_allowed))) {
1525 NODEMASK_FREE(nodes_allowed);
1526 nodes_allowed = &node_states[N_HIGH_MEMORY];
1527 }
1528 } else if (nodes_allowed) {
1529 /*
1530 * per node hstate attribute: adjust count to global,
1531 * but restrict alloc/free to the specified node.
1532 */
1533 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1534 init_nodemask_of_node(nodes_allowed, nid);
1535 } else
1536 nodes_allowed = &node_states[N_HIGH_MEMORY];
1537
1538 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1539
1540 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1541 NODEMASK_FREE(nodes_allowed);
1542
1543 return len;
1544 out:
1545 NODEMASK_FREE(nodes_allowed);
1546 return err;
1547 }
1548
1549 static ssize_t nr_hugepages_show(struct kobject *kobj,
1550 struct kobj_attribute *attr, char *buf)
1551 {
1552 return nr_hugepages_show_common(kobj, attr, buf);
1553 }
1554
1555 static ssize_t nr_hugepages_store(struct kobject *kobj,
1556 struct kobj_attribute *attr, const char *buf, size_t len)
1557 {
1558 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1559 }
1560 HSTATE_ATTR(nr_hugepages);
1561
1562 #ifdef CONFIG_NUMA
1563
1564 /*
1565 * hstate attribute for optionally mempolicy-based constraint on persistent
1566 * huge page alloc/free.
1567 */
1568 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1569 struct kobj_attribute *attr, char *buf)
1570 {
1571 return nr_hugepages_show_common(kobj, attr, buf);
1572 }
1573
1574 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1575 struct kobj_attribute *attr, const char *buf, size_t len)
1576 {
1577 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1578 }
1579 HSTATE_ATTR(nr_hugepages_mempolicy);
1580 #endif
1581
1582
1583 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1584 struct kobj_attribute *attr, char *buf)
1585 {
1586 struct hstate *h = kobj_to_hstate(kobj, NULL);
1587 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1588 }
1589
1590 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1591 struct kobj_attribute *attr, const char *buf, size_t count)
1592 {
1593 int err;
1594 unsigned long input;
1595 struct hstate *h = kobj_to_hstate(kobj, NULL);
1596
1597 if (h->order >= MAX_ORDER)
1598 return -EINVAL;
1599
1600 err = strict_strtoul(buf, 10, &input);
1601 if (err)
1602 return err;
1603
1604 spin_lock(&hugetlb_lock);
1605 h->nr_overcommit_huge_pages = input;
1606 spin_unlock(&hugetlb_lock);
1607
1608 return count;
1609 }
1610 HSTATE_ATTR(nr_overcommit_hugepages);
1611
1612 static ssize_t free_hugepages_show(struct kobject *kobj,
1613 struct kobj_attribute *attr, char *buf)
1614 {
1615 struct hstate *h;
1616 unsigned long free_huge_pages;
1617 int nid;
1618
1619 h = kobj_to_hstate(kobj, &nid);
1620 if (nid == NUMA_NO_NODE)
1621 free_huge_pages = h->free_huge_pages;
1622 else
1623 free_huge_pages = h->free_huge_pages_node[nid];
1624
1625 return sprintf(buf, "%lu\n", free_huge_pages);
1626 }
1627 HSTATE_ATTR_RO(free_hugepages);
1628
1629 static ssize_t resv_hugepages_show(struct kobject *kobj,
1630 struct kobj_attribute *attr, char *buf)
1631 {
1632 struct hstate *h = kobj_to_hstate(kobj, NULL);
1633 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1634 }
1635 HSTATE_ATTR_RO(resv_hugepages);
1636
1637 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1638 struct kobj_attribute *attr, char *buf)
1639 {
1640 struct hstate *h;
1641 unsigned long surplus_huge_pages;
1642 int nid;
1643
1644 h = kobj_to_hstate(kobj, &nid);
1645 if (nid == NUMA_NO_NODE)
1646 surplus_huge_pages = h->surplus_huge_pages;
1647 else
1648 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1649
1650 return sprintf(buf, "%lu\n", surplus_huge_pages);
1651 }
1652 HSTATE_ATTR_RO(surplus_hugepages);
1653
1654 static struct attribute *hstate_attrs[] = {
1655 &nr_hugepages_attr.attr,
1656 &nr_overcommit_hugepages_attr.attr,
1657 &free_hugepages_attr.attr,
1658 &resv_hugepages_attr.attr,
1659 &surplus_hugepages_attr.attr,
1660 #ifdef CONFIG_NUMA
1661 &nr_hugepages_mempolicy_attr.attr,
1662 #endif
1663 NULL,
1664 };
1665
1666 static struct attribute_group hstate_attr_group = {
1667 .attrs = hstate_attrs,
1668 };
1669
1670 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1671 struct kobject **hstate_kobjs,
1672 struct attribute_group *hstate_attr_group)
1673 {
1674 int retval;
1675 int hi = hstate_index(h);
1676
1677 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1678 if (!hstate_kobjs[hi])
1679 return -ENOMEM;
1680
1681 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1682 if (retval)
1683 kobject_put(hstate_kobjs[hi]);
1684
1685 return retval;
1686 }
1687
1688 static void __init hugetlb_sysfs_init(void)
1689 {
1690 struct hstate *h;
1691 int err;
1692
1693 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1694 if (!hugepages_kobj)
1695 return;
1696
1697 for_each_hstate(h) {
1698 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1699 hstate_kobjs, &hstate_attr_group);
1700 if (err)
1701 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1702 h->name);
1703 }
1704 }
1705
1706 #ifdef CONFIG_NUMA
1707
1708 /*
1709 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1710 * with node devices in node_devices[] using a parallel array. The array
1711 * index of a node device or _hstate == node id.
1712 * This is here to avoid any static dependency of the node device driver, in
1713 * the base kernel, on the hugetlb module.
1714 */
1715 struct node_hstate {
1716 struct kobject *hugepages_kobj;
1717 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1718 };
1719 struct node_hstate node_hstates[MAX_NUMNODES];
1720
1721 /*
1722 * A subset of global hstate attributes for node devices
1723 */
1724 static struct attribute *per_node_hstate_attrs[] = {
1725 &nr_hugepages_attr.attr,
1726 &free_hugepages_attr.attr,
1727 &surplus_hugepages_attr.attr,
1728 NULL,
1729 };
1730
1731 static struct attribute_group per_node_hstate_attr_group = {
1732 .attrs = per_node_hstate_attrs,
1733 };
1734
1735 /*
1736 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1737 * Returns node id via non-NULL nidp.
1738 */
1739 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1740 {
1741 int nid;
1742
1743 for (nid = 0; nid < nr_node_ids; nid++) {
1744 struct node_hstate *nhs = &node_hstates[nid];
1745 int i;
1746 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1747 if (nhs->hstate_kobjs[i] == kobj) {
1748 if (nidp)
1749 *nidp = nid;
1750 return &hstates[i];
1751 }
1752 }
1753
1754 BUG();
1755 return NULL;
1756 }
1757
1758 /*
1759 * Unregister hstate attributes from a single node device.
1760 * No-op if no hstate attributes attached.
1761 */
1762 void hugetlb_unregister_node(struct node *node)
1763 {
1764 struct hstate *h;
1765 struct node_hstate *nhs = &node_hstates[node->dev.id];
1766
1767 if (!nhs->hugepages_kobj)
1768 return; /* no hstate attributes */
1769
1770 for_each_hstate(h) {
1771 int idx = hstate_index(h);
1772 if (nhs->hstate_kobjs[idx]) {
1773 kobject_put(nhs->hstate_kobjs[idx]);
1774 nhs->hstate_kobjs[idx] = NULL;
1775 }
1776 }
1777
1778 kobject_put(nhs->hugepages_kobj);
1779 nhs->hugepages_kobj = NULL;
1780 }
1781
1782 /*
1783 * hugetlb module exit: unregister hstate attributes from node devices
1784 * that have them.
1785 */
1786 static void hugetlb_unregister_all_nodes(void)
1787 {
1788 int nid;
1789
1790 /*
1791 * disable node device registrations.
1792 */
1793 register_hugetlbfs_with_node(NULL, NULL);
1794
1795 /*
1796 * remove hstate attributes from any nodes that have them.
1797 */
1798 for (nid = 0; nid < nr_node_ids; nid++)
1799 hugetlb_unregister_node(&node_devices[nid]);
1800 }
1801
1802 /*
1803 * Register hstate attributes for a single node device.
1804 * No-op if attributes already registered.
1805 */
1806 void hugetlb_register_node(struct node *node)
1807 {
1808 struct hstate *h;
1809 struct node_hstate *nhs = &node_hstates[node->dev.id];
1810 int err;
1811
1812 if (nhs->hugepages_kobj)
1813 return; /* already allocated */
1814
1815 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1816 &node->dev.kobj);
1817 if (!nhs->hugepages_kobj)
1818 return;
1819
1820 for_each_hstate(h) {
1821 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1822 nhs->hstate_kobjs,
1823 &per_node_hstate_attr_group);
1824 if (err) {
1825 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1826 " for node %d\n",
1827 h->name, node->dev.id);
1828 hugetlb_unregister_node(node);
1829 break;
1830 }
1831 }
1832 }
1833
1834 /*
1835 * hugetlb init time: register hstate attributes for all registered node
1836 * devices of nodes that have memory. All on-line nodes should have
1837 * registered their associated device by this time.
1838 */
1839 static void hugetlb_register_all_nodes(void)
1840 {
1841 int nid;
1842
1843 for_each_node_state(nid, N_HIGH_MEMORY) {
1844 struct node *node = &node_devices[nid];
1845 if (node->dev.id == nid)
1846 hugetlb_register_node(node);
1847 }
1848
1849 /*
1850 * Let the node device driver know we're here so it can
1851 * [un]register hstate attributes on node hotplug.
1852 */
1853 register_hugetlbfs_with_node(hugetlb_register_node,
1854 hugetlb_unregister_node);
1855 }
1856 #else /* !CONFIG_NUMA */
1857
1858 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1859 {
1860 BUG();
1861 if (nidp)
1862 *nidp = -1;
1863 return NULL;
1864 }
1865
1866 static void hugetlb_unregister_all_nodes(void) { }
1867
1868 static void hugetlb_register_all_nodes(void) { }
1869
1870 #endif
1871
1872 static void __exit hugetlb_exit(void)
1873 {
1874 struct hstate *h;
1875
1876 hugetlb_unregister_all_nodes();
1877
1878 for_each_hstate(h) {
1879 kobject_put(hstate_kobjs[hstate_index(h)]);
1880 }
1881
1882 kobject_put(hugepages_kobj);
1883 }
1884 module_exit(hugetlb_exit);
1885
1886 static int __init hugetlb_init(void)
1887 {
1888 /* Some platform decide whether they support huge pages at boot
1889 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1890 * there is no such support
1891 */
1892 if (HPAGE_SHIFT == 0)
1893 return 0;
1894
1895 if (!size_to_hstate(default_hstate_size)) {
1896 default_hstate_size = HPAGE_SIZE;
1897 if (!size_to_hstate(default_hstate_size))
1898 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1899 }
1900 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1901 if (default_hstate_max_huge_pages)
1902 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1903
1904 hugetlb_init_hstates();
1905
1906 gather_bootmem_prealloc();
1907
1908 report_hugepages();
1909
1910 hugetlb_sysfs_init();
1911
1912 hugetlb_register_all_nodes();
1913
1914 return 0;
1915 }
1916 module_init(hugetlb_init);
1917
1918 /* Should be called on processing a hugepagesz=... option */
1919 void __init hugetlb_add_hstate(unsigned order)
1920 {
1921 struct hstate *h;
1922 unsigned long i;
1923
1924 if (size_to_hstate(PAGE_SIZE << order)) {
1925 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1926 return;
1927 }
1928 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1929 BUG_ON(order == 0);
1930 h = &hstates[hugetlb_max_hstate++];
1931 h->order = order;
1932 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1933 h->nr_huge_pages = 0;
1934 h->free_huge_pages = 0;
1935 for (i = 0; i < MAX_NUMNODES; ++i)
1936 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1937 INIT_LIST_HEAD(&h->hugepage_activelist);
1938 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1939 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1940 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1941 huge_page_size(h)/1024);
1942 /*
1943 * Add cgroup control files only if the huge page consists
1944 * of more than two normal pages. This is because we use
1945 * page[2].lru.next for storing cgoup details.
1946 */
1947 if (order >= HUGETLB_CGROUP_MIN_ORDER)
1948 hugetlb_cgroup_file_init(hugetlb_max_hstate - 1);
1949
1950 parsed_hstate = h;
1951 }
1952
1953 static int __init hugetlb_nrpages_setup(char *s)
1954 {
1955 unsigned long *mhp;
1956 static unsigned long *last_mhp;
1957
1958 /*
1959 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1960 * so this hugepages= parameter goes to the "default hstate".
1961 */
1962 if (!hugetlb_max_hstate)
1963 mhp = &default_hstate_max_huge_pages;
1964 else
1965 mhp = &parsed_hstate->max_huge_pages;
1966
1967 if (mhp == last_mhp) {
1968 printk(KERN_WARNING "hugepages= specified twice without "
1969 "interleaving hugepagesz=, ignoring\n");
1970 return 1;
1971 }
1972
1973 if (sscanf(s, "%lu", mhp) <= 0)
1974 *mhp = 0;
1975
1976 /*
1977 * Global state is always initialized later in hugetlb_init.
1978 * But we need to allocate >= MAX_ORDER hstates here early to still
1979 * use the bootmem allocator.
1980 */
1981 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1982 hugetlb_hstate_alloc_pages(parsed_hstate);
1983
1984 last_mhp = mhp;
1985
1986 return 1;
1987 }
1988 __setup("hugepages=", hugetlb_nrpages_setup);
1989
1990 static int __init hugetlb_default_setup(char *s)
1991 {
1992 default_hstate_size = memparse(s, &s);
1993 return 1;
1994 }
1995 __setup("default_hugepagesz=", hugetlb_default_setup);
1996
1997 static unsigned int cpuset_mems_nr(unsigned int *array)
1998 {
1999 int node;
2000 unsigned int nr = 0;
2001
2002 for_each_node_mask(node, cpuset_current_mems_allowed)
2003 nr += array[node];
2004
2005 return nr;
2006 }
2007
2008 #ifdef CONFIG_SYSCTL
2009 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2010 struct ctl_table *table, int write,
2011 void __user *buffer, size_t *length, loff_t *ppos)
2012 {
2013 struct hstate *h = &default_hstate;
2014 unsigned long tmp;
2015 int ret;
2016
2017 tmp = h->max_huge_pages;
2018
2019 if (write && h->order >= MAX_ORDER)
2020 return -EINVAL;
2021
2022 table->data = &tmp;
2023 table->maxlen = sizeof(unsigned long);
2024 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2025 if (ret)
2026 goto out;
2027
2028 if (write) {
2029 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2030 GFP_KERNEL | __GFP_NORETRY);
2031 if (!(obey_mempolicy &&
2032 init_nodemask_of_mempolicy(nodes_allowed))) {
2033 NODEMASK_FREE(nodes_allowed);
2034 nodes_allowed = &node_states[N_HIGH_MEMORY];
2035 }
2036 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2037
2038 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2039 NODEMASK_FREE(nodes_allowed);
2040 }
2041 out:
2042 return ret;
2043 }
2044
2045 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2046 void __user *buffer, size_t *length, loff_t *ppos)
2047 {
2048
2049 return hugetlb_sysctl_handler_common(false, table, write,
2050 buffer, length, ppos);
2051 }
2052
2053 #ifdef CONFIG_NUMA
2054 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2055 void __user *buffer, size_t *length, loff_t *ppos)
2056 {
2057 return hugetlb_sysctl_handler_common(true, table, write,
2058 buffer, length, ppos);
2059 }
2060 #endif /* CONFIG_NUMA */
2061
2062 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2063 void __user *buffer,
2064 size_t *length, loff_t *ppos)
2065 {
2066 proc_dointvec(table, write, buffer, length, ppos);
2067 if (hugepages_treat_as_movable)
2068 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2069 else
2070 htlb_alloc_mask = GFP_HIGHUSER;
2071 return 0;
2072 }
2073
2074 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2075 void __user *buffer,
2076 size_t *length, loff_t *ppos)
2077 {
2078 struct hstate *h = &default_hstate;
2079 unsigned long tmp;
2080 int ret;
2081
2082 tmp = h->nr_overcommit_huge_pages;
2083
2084 if (write && h->order >= MAX_ORDER)
2085 return -EINVAL;
2086
2087 table->data = &tmp;
2088 table->maxlen = sizeof(unsigned long);
2089 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2090 if (ret)
2091 goto out;
2092
2093 if (write) {
2094 spin_lock(&hugetlb_lock);
2095 h->nr_overcommit_huge_pages = tmp;
2096 spin_unlock(&hugetlb_lock);
2097 }
2098 out:
2099 return ret;
2100 }
2101
2102 #endif /* CONFIG_SYSCTL */
2103
2104 void hugetlb_report_meminfo(struct seq_file *m)
2105 {
2106 struct hstate *h = &default_hstate;
2107 seq_printf(m,
2108 "HugePages_Total: %5lu\n"
2109 "HugePages_Free: %5lu\n"
2110 "HugePages_Rsvd: %5lu\n"
2111 "HugePages_Surp: %5lu\n"
2112 "Hugepagesize: %8lu kB\n",
2113 h->nr_huge_pages,
2114 h->free_huge_pages,
2115 h->resv_huge_pages,
2116 h->surplus_huge_pages,
2117 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2118 }
2119
2120 int hugetlb_report_node_meminfo(int nid, char *buf)
2121 {
2122 struct hstate *h = &default_hstate;
2123 return sprintf(buf,
2124 "Node %d HugePages_Total: %5u\n"
2125 "Node %d HugePages_Free: %5u\n"
2126 "Node %d HugePages_Surp: %5u\n",
2127 nid, h->nr_huge_pages_node[nid],
2128 nid, h->free_huge_pages_node[nid],
2129 nid, h->surplus_huge_pages_node[nid]);
2130 }
2131
2132 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2133 unsigned long hugetlb_total_pages(void)
2134 {
2135 struct hstate *h = &default_hstate;
2136 return h->nr_huge_pages * pages_per_huge_page(h);
2137 }
2138
2139 static int hugetlb_acct_memory(struct hstate *h, long delta)
2140 {
2141 int ret = -ENOMEM;
2142
2143 spin_lock(&hugetlb_lock);
2144 /*
2145 * When cpuset is configured, it breaks the strict hugetlb page
2146 * reservation as the accounting is done on a global variable. Such
2147 * reservation is completely rubbish in the presence of cpuset because
2148 * the reservation is not checked against page availability for the
2149 * current cpuset. Application can still potentially OOM'ed by kernel
2150 * with lack of free htlb page in cpuset that the task is in.
2151 * Attempt to enforce strict accounting with cpuset is almost
2152 * impossible (or too ugly) because cpuset is too fluid that
2153 * task or memory node can be dynamically moved between cpusets.
2154 *
2155 * The change of semantics for shared hugetlb mapping with cpuset is
2156 * undesirable. However, in order to preserve some of the semantics,
2157 * we fall back to check against current free page availability as
2158 * a best attempt and hopefully to minimize the impact of changing
2159 * semantics that cpuset has.
2160 */
2161 if (delta > 0) {
2162 if (gather_surplus_pages(h, delta) < 0)
2163 goto out;
2164
2165 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2166 return_unused_surplus_pages(h, delta);
2167 goto out;
2168 }
2169 }
2170
2171 ret = 0;
2172 if (delta < 0)
2173 return_unused_surplus_pages(h, (unsigned long) -delta);
2174
2175 out:
2176 spin_unlock(&hugetlb_lock);
2177 return ret;
2178 }
2179
2180 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2181 {
2182 struct resv_map *reservations = vma_resv_map(vma);
2183
2184 /*
2185 * This new VMA should share its siblings reservation map if present.
2186 * The VMA will only ever have a valid reservation map pointer where
2187 * it is being copied for another still existing VMA. As that VMA
2188 * has a reference to the reservation map it cannot disappear until
2189 * after this open call completes. It is therefore safe to take a
2190 * new reference here without additional locking.
2191 */
2192 if (reservations)
2193 kref_get(&reservations->refs);
2194 }
2195
2196 static void resv_map_put(struct vm_area_struct *vma)
2197 {
2198 struct resv_map *reservations = vma_resv_map(vma);
2199
2200 if (!reservations)
2201 return;
2202 kref_put(&reservations->refs, resv_map_release);
2203 }
2204
2205 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2206 {
2207 struct hstate *h = hstate_vma(vma);
2208 struct resv_map *reservations = vma_resv_map(vma);
2209 struct hugepage_subpool *spool = subpool_vma(vma);
2210 unsigned long reserve;
2211 unsigned long start;
2212 unsigned long end;
2213
2214 if (reservations) {
2215 start = vma_hugecache_offset(h, vma, vma->vm_start);
2216 end = vma_hugecache_offset(h, vma, vma->vm_end);
2217
2218 reserve = (end - start) -
2219 region_count(&reservations->regions, start, end);
2220
2221 resv_map_put(vma);
2222
2223 if (reserve) {
2224 hugetlb_acct_memory(h, -reserve);
2225 hugepage_subpool_put_pages(spool, reserve);
2226 }
2227 }
2228 }
2229
2230 /*
2231 * We cannot handle pagefaults against hugetlb pages at all. They cause
2232 * handle_mm_fault() to try to instantiate regular-sized pages in the
2233 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2234 * this far.
2235 */
2236 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2237 {
2238 BUG();
2239 return 0;
2240 }
2241
2242 const struct vm_operations_struct hugetlb_vm_ops = {
2243 .fault = hugetlb_vm_op_fault,
2244 .open = hugetlb_vm_op_open,
2245 .close = hugetlb_vm_op_close,
2246 };
2247
2248 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2249 int writable)
2250 {
2251 pte_t entry;
2252
2253 if (writable) {
2254 entry =
2255 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2256 } else {
2257 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2258 }
2259 entry = pte_mkyoung(entry);
2260 entry = pte_mkhuge(entry);
2261 entry = arch_make_huge_pte(entry, vma, page, writable);
2262
2263 return entry;
2264 }
2265
2266 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2267 unsigned long address, pte_t *ptep)
2268 {
2269 pte_t entry;
2270
2271 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2272 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2273 update_mmu_cache(vma, address, ptep);
2274 }
2275
2276
2277 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2278 struct vm_area_struct *vma)
2279 {
2280 pte_t *src_pte, *dst_pte, entry;
2281 struct page *ptepage;
2282 unsigned long addr;
2283 int cow;
2284 struct hstate *h = hstate_vma(vma);
2285 unsigned long sz = huge_page_size(h);
2286
2287 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2288
2289 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2290 src_pte = huge_pte_offset(src, addr);
2291 if (!src_pte)
2292 continue;
2293 dst_pte = huge_pte_alloc(dst, addr, sz);
2294 if (!dst_pte)
2295 goto nomem;
2296
2297 /* If the pagetables are shared don't copy or take references */
2298 if (dst_pte == src_pte)
2299 continue;
2300
2301 spin_lock(&dst->page_table_lock);
2302 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2303 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2304 if (cow)
2305 huge_ptep_set_wrprotect(src, addr, src_pte);
2306 entry = huge_ptep_get(src_pte);
2307 ptepage = pte_page(entry);
2308 get_page(ptepage);
2309 page_dup_rmap(ptepage);
2310 set_huge_pte_at(dst, addr, dst_pte, entry);
2311 }
2312 spin_unlock(&src->page_table_lock);
2313 spin_unlock(&dst->page_table_lock);
2314 }
2315 return 0;
2316
2317 nomem:
2318 return -ENOMEM;
2319 }
2320
2321 static int is_hugetlb_entry_migration(pte_t pte)
2322 {
2323 swp_entry_t swp;
2324
2325 if (huge_pte_none(pte) || pte_present(pte))
2326 return 0;
2327 swp = pte_to_swp_entry(pte);
2328 if (non_swap_entry(swp) && is_migration_entry(swp))
2329 return 1;
2330 else
2331 return 0;
2332 }
2333
2334 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2335 {
2336 swp_entry_t swp;
2337
2338 if (huge_pte_none(pte) || pte_present(pte))
2339 return 0;
2340 swp = pte_to_swp_entry(pte);
2341 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2342 return 1;
2343 else
2344 return 0;
2345 }
2346
2347 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2348 unsigned long start, unsigned long end,
2349 struct page *ref_page)
2350 {
2351 int force_flush = 0;
2352 struct mm_struct *mm = vma->vm_mm;
2353 unsigned long address;
2354 pte_t *ptep;
2355 pte_t pte;
2356 struct page *page;
2357 struct hstate *h = hstate_vma(vma);
2358 unsigned long sz = huge_page_size(h);
2359
2360 WARN_ON(!is_vm_hugetlb_page(vma));
2361 BUG_ON(start & ~huge_page_mask(h));
2362 BUG_ON(end & ~huge_page_mask(h));
2363
2364 tlb_start_vma(tlb, vma);
2365 mmu_notifier_invalidate_range_start(mm, start, end);
2366 again:
2367 spin_lock(&mm->page_table_lock);
2368 for (address = start; address < end; address += sz) {
2369 ptep = huge_pte_offset(mm, address);
2370 if (!ptep)
2371 continue;
2372
2373 if (huge_pmd_unshare(mm, &address, ptep))
2374 continue;
2375
2376 pte = huge_ptep_get(ptep);
2377 if (huge_pte_none(pte))
2378 continue;
2379
2380 /*
2381 * HWPoisoned hugepage is already unmapped and dropped reference
2382 */
2383 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2384 continue;
2385
2386 page = pte_page(pte);
2387 /*
2388 * If a reference page is supplied, it is because a specific
2389 * page is being unmapped, not a range. Ensure the page we
2390 * are about to unmap is the actual page of interest.
2391 */
2392 if (ref_page) {
2393 if (page != ref_page)
2394 continue;
2395
2396 /*
2397 * Mark the VMA as having unmapped its page so that
2398 * future faults in this VMA will fail rather than
2399 * looking like data was lost
2400 */
2401 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2402 }
2403
2404 pte = huge_ptep_get_and_clear(mm, address, ptep);
2405 tlb_remove_tlb_entry(tlb, ptep, address);
2406 if (pte_dirty(pte))
2407 set_page_dirty(page);
2408
2409 page_remove_rmap(page);
2410 force_flush = !__tlb_remove_page(tlb, page);
2411 if (force_flush)
2412 break;
2413 /* Bail out after unmapping reference page if supplied */
2414 if (ref_page)
2415 break;
2416 }
2417 spin_unlock(&mm->page_table_lock);
2418 /*
2419 * mmu_gather ran out of room to batch pages, we break out of
2420 * the PTE lock to avoid doing the potential expensive TLB invalidate
2421 * and page-free while holding it.
2422 */
2423 if (force_flush) {
2424 force_flush = 0;
2425 tlb_flush_mmu(tlb);
2426 if (address < end && !ref_page)
2427 goto again;
2428 }
2429 mmu_notifier_invalidate_range_end(mm, start, end);
2430 tlb_end_vma(tlb, vma);
2431 }
2432
2433 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2434 struct vm_area_struct *vma, unsigned long start,
2435 unsigned long end, struct page *ref_page)
2436 {
2437 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2438
2439 /*
2440 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2441 * test will fail on a vma being torn down, and not grab a page table
2442 * on its way out. We're lucky that the flag has such an appropriate
2443 * name, and can in fact be safely cleared here. We could clear it
2444 * before the __unmap_hugepage_range above, but all that's necessary
2445 * is to clear it before releasing the i_mmap_mutex. This works
2446 * because in the context this is called, the VMA is about to be
2447 * destroyed and the i_mmap_mutex is held.
2448 */
2449 vma->vm_flags &= ~VM_MAYSHARE;
2450 }
2451
2452 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2453 unsigned long end, struct page *ref_page)
2454 {
2455 struct mm_struct *mm;
2456 struct mmu_gather tlb;
2457
2458 mm = vma->vm_mm;
2459
2460 tlb_gather_mmu(&tlb, mm, 0);
2461 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2462 tlb_finish_mmu(&tlb, start, end);
2463 }
2464
2465 /*
2466 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2467 * mappping it owns the reserve page for. The intention is to unmap the page
2468 * from other VMAs and let the children be SIGKILLed if they are faulting the
2469 * same region.
2470 */
2471 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2472 struct page *page, unsigned long address)
2473 {
2474 struct hstate *h = hstate_vma(vma);
2475 struct vm_area_struct *iter_vma;
2476 struct address_space *mapping;
2477 struct prio_tree_iter iter;
2478 pgoff_t pgoff;
2479
2480 /*
2481 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2482 * from page cache lookup which is in HPAGE_SIZE units.
2483 */
2484 address = address & huge_page_mask(h);
2485 pgoff = vma_hugecache_offset(h, vma, address);
2486 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2487
2488 /*
2489 * Take the mapping lock for the duration of the table walk. As
2490 * this mapping should be shared between all the VMAs,
2491 * __unmap_hugepage_range() is called as the lock is already held
2492 */
2493 mutex_lock(&mapping->i_mmap_mutex);
2494 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2495 /* Do not unmap the current VMA */
2496 if (iter_vma == vma)
2497 continue;
2498
2499 /*
2500 * Unmap the page from other VMAs without their own reserves.
2501 * They get marked to be SIGKILLed if they fault in these
2502 * areas. This is because a future no-page fault on this VMA
2503 * could insert a zeroed page instead of the data existing
2504 * from the time of fork. This would look like data corruption
2505 */
2506 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2507 unmap_hugepage_range(iter_vma, address,
2508 address + huge_page_size(h), page);
2509 }
2510 mutex_unlock(&mapping->i_mmap_mutex);
2511
2512 return 1;
2513 }
2514
2515 /*
2516 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2517 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2518 * cannot race with other handlers or page migration.
2519 * Keep the pte_same checks anyway to make transition from the mutex easier.
2520 */
2521 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2522 unsigned long address, pte_t *ptep, pte_t pte,
2523 struct page *pagecache_page)
2524 {
2525 struct hstate *h = hstate_vma(vma);
2526 struct page *old_page, *new_page;
2527 int avoidcopy;
2528 int outside_reserve = 0;
2529
2530 old_page = pte_page(pte);
2531
2532 retry_avoidcopy:
2533 /* If no-one else is actually using this page, avoid the copy
2534 * and just make the page writable */
2535 avoidcopy = (page_mapcount(old_page) == 1);
2536 if (avoidcopy) {
2537 if (PageAnon(old_page))
2538 page_move_anon_rmap(old_page, vma, address);
2539 set_huge_ptep_writable(vma, address, ptep);
2540 return 0;
2541 }
2542
2543 /*
2544 * If the process that created a MAP_PRIVATE mapping is about to
2545 * perform a COW due to a shared page count, attempt to satisfy
2546 * the allocation without using the existing reserves. The pagecache
2547 * page is used to determine if the reserve at this address was
2548 * consumed or not. If reserves were used, a partial faulted mapping
2549 * at the time of fork() could consume its reserves on COW instead
2550 * of the full address range.
2551 */
2552 if (!(vma->vm_flags & VM_MAYSHARE) &&
2553 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2554 old_page != pagecache_page)
2555 outside_reserve = 1;
2556
2557 page_cache_get(old_page);
2558
2559 /* Drop page_table_lock as buddy allocator may be called */
2560 spin_unlock(&mm->page_table_lock);
2561 new_page = alloc_huge_page(vma, address, outside_reserve);
2562
2563 if (IS_ERR(new_page)) {
2564 long err = PTR_ERR(new_page);
2565 page_cache_release(old_page);
2566
2567 /*
2568 * If a process owning a MAP_PRIVATE mapping fails to COW,
2569 * it is due to references held by a child and an insufficient
2570 * huge page pool. To guarantee the original mappers
2571 * reliability, unmap the page from child processes. The child
2572 * may get SIGKILLed if it later faults.
2573 */
2574 if (outside_reserve) {
2575 BUG_ON(huge_pte_none(pte));
2576 if (unmap_ref_private(mm, vma, old_page, address)) {
2577 BUG_ON(huge_pte_none(pte));
2578 spin_lock(&mm->page_table_lock);
2579 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2580 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2581 goto retry_avoidcopy;
2582 /*
2583 * race occurs while re-acquiring page_table_lock, and
2584 * our job is done.
2585 */
2586 return 0;
2587 }
2588 WARN_ON_ONCE(1);
2589 }
2590
2591 /* Caller expects lock to be held */
2592 spin_lock(&mm->page_table_lock);
2593 if (err == -ENOMEM)
2594 return VM_FAULT_OOM;
2595 else
2596 return VM_FAULT_SIGBUS;
2597 }
2598
2599 /*
2600 * When the original hugepage is shared one, it does not have
2601 * anon_vma prepared.
2602 */
2603 if (unlikely(anon_vma_prepare(vma))) {
2604 page_cache_release(new_page);
2605 page_cache_release(old_page);
2606 /* Caller expects lock to be held */
2607 spin_lock(&mm->page_table_lock);
2608 return VM_FAULT_OOM;
2609 }
2610
2611 copy_user_huge_page(new_page, old_page, address, vma,
2612 pages_per_huge_page(h));
2613 __SetPageUptodate(new_page);
2614
2615 /*
2616 * Retake the page_table_lock to check for racing updates
2617 * before the page tables are altered
2618 */
2619 spin_lock(&mm->page_table_lock);
2620 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2621 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2622 /* Break COW */
2623 mmu_notifier_invalidate_range_start(mm,
2624 address & huge_page_mask(h),
2625 (address & huge_page_mask(h)) + huge_page_size(h));
2626 huge_ptep_clear_flush(vma, address, ptep);
2627 set_huge_pte_at(mm, address, ptep,
2628 make_huge_pte(vma, new_page, 1));
2629 page_remove_rmap(old_page);
2630 hugepage_add_new_anon_rmap(new_page, vma, address);
2631 /* Make the old page be freed below */
2632 new_page = old_page;
2633 mmu_notifier_invalidate_range_end(mm,
2634 address & huge_page_mask(h),
2635 (address & huge_page_mask(h)) + huge_page_size(h));
2636 }
2637 page_cache_release(new_page);
2638 page_cache_release(old_page);
2639 return 0;
2640 }
2641
2642 /* Return the pagecache page at a given address within a VMA */
2643 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2644 struct vm_area_struct *vma, unsigned long address)
2645 {
2646 struct address_space *mapping;
2647 pgoff_t idx;
2648
2649 mapping = vma->vm_file->f_mapping;
2650 idx = vma_hugecache_offset(h, vma, address);
2651
2652 return find_lock_page(mapping, idx);
2653 }
2654
2655 /*
2656 * Return whether there is a pagecache page to back given address within VMA.
2657 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2658 */
2659 static bool hugetlbfs_pagecache_present(struct hstate *h,
2660 struct vm_area_struct *vma, unsigned long address)
2661 {
2662 struct address_space *mapping;
2663 pgoff_t idx;
2664 struct page *page;
2665
2666 mapping = vma->vm_file->f_mapping;
2667 idx = vma_hugecache_offset(h, vma, address);
2668
2669 page = find_get_page(mapping, idx);
2670 if (page)
2671 put_page(page);
2672 return page != NULL;
2673 }
2674
2675 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2676 unsigned long address, pte_t *ptep, unsigned int flags)
2677 {
2678 struct hstate *h = hstate_vma(vma);
2679 int ret = VM_FAULT_SIGBUS;
2680 int anon_rmap = 0;
2681 pgoff_t idx;
2682 unsigned long size;
2683 struct page *page;
2684 struct address_space *mapping;
2685 pte_t new_pte;
2686
2687 /*
2688 * Currently, we are forced to kill the process in the event the
2689 * original mapper has unmapped pages from the child due to a failed
2690 * COW. Warn that such a situation has occurred as it may not be obvious
2691 */
2692 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2693 printk(KERN_WARNING
2694 "PID %d killed due to inadequate hugepage pool\n",
2695 current->pid);
2696 return ret;
2697 }
2698
2699 mapping = vma->vm_file->f_mapping;
2700 idx = vma_hugecache_offset(h, vma, address);
2701
2702 /*
2703 * Use page lock to guard against racing truncation
2704 * before we get page_table_lock.
2705 */
2706 retry:
2707 page = find_lock_page(mapping, idx);
2708 if (!page) {
2709 size = i_size_read(mapping->host) >> huge_page_shift(h);
2710 if (idx >= size)
2711 goto out;
2712 page = alloc_huge_page(vma, address, 0);
2713 if (IS_ERR(page)) {
2714 ret = PTR_ERR(page);
2715 if (ret == -ENOMEM)
2716 ret = VM_FAULT_OOM;
2717 else
2718 ret = VM_FAULT_SIGBUS;
2719 goto out;
2720 }
2721 clear_huge_page(page, address, pages_per_huge_page(h));
2722 __SetPageUptodate(page);
2723
2724 if (vma->vm_flags & VM_MAYSHARE) {
2725 int err;
2726 struct inode *inode = mapping->host;
2727
2728 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2729 if (err) {
2730 put_page(page);
2731 if (err == -EEXIST)
2732 goto retry;
2733 goto out;
2734 }
2735
2736 spin_lock(&inode->i_lock);
2737 inode->i_blocks += blocks_per_huge_page(h);
2738 spin_unlock(&inode->i_lock);
2739 } else {
2740 lock_page(page);
2741 if (unlikely(anon_vma_prepare(vma))) {
2742 ret = VM_FAULT_OOM;
2743 goto backout_unlocked;
2744 }
2745 anon_rmap = 1;
2746 }
2747 } else {
2748 /*
2749 * If memory error occurs between mmap() and fault, some process
2750 * don't have hwpoisoned swap entry for errored virtual address.
2751 * So we need to block hugepage fault by PG_hwpoison bit check.
2752 */
2753 if (unlikely(PageHWPoison(page))) {
2754 ret = VM_FAULT_HWPOISON |
2755 VM_FAULT_SET_HINDEX(hstate_index(h));
2756 goto backout_unlocked;
2757 }
2758 }
2759
2760 /*
2761 * If we are going to COW a private mapping later, we examine the
2762 * pending reservations for this page now. This will ensure that
2763 * any allocations necessary to record that reservation occur outside
2764 * the spinlock.
2765 */
2766 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2767 if (vma_needs_reservation(h, vma, address) < 0) {
2768 ret = VM_FAULT_OOM;
2769 goto backout_unlocked;
2770 }
2771
2772 spin_lock(&mm->page_table_lock);
2773 size = i_size_read(mapping->host) >> huge_page_shift(h);
2774 if (idx >= size)
2775 goto backout;
2776
2777 ret = 0;
2778 if (!huge_pte_none(huge_ptep_get(ptep)))
2779 goto backout;
2780
2781 if (anon_rmap)
2782 hugepage_add_new_anon_rmap(page, vma, address);
2783 else
2784 page_dup_rmap(page);
2785 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2786 && (vma->vm_flags & VM_SHARED)));
2787 set_huge_pte_at(mm, address, ptep, new_pte);
2788
2789 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2790 /* Optimization, do the COW without a second fault */
2791 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2792 }
2793
2794 spin_unlock(&mm->page_table_lock);
2795 unlock_page(page);
2796 out:
2797 return ret;
2798
2799 backout:
2800 spin_unlock(&mm->page_table_lock);
2801 backout_unlocked:
2802 unlock_page(page);
2803 put_page(page);
2804 goto out;
2805 }
2806
2807 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2808 unsigned long address, unsigned int flags)
2809 {
2810 pte_t *ptep;
2811 pte_t entry;
2812 int ret;
2813 struct page *page = NULL;
2814 struct page *pagecache_page = NULL;
2815 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2816 struct hstate *h = hstate_vma(vma);
2817
2818 address &= huge_page_mask(h);
2819
2820 ptep = huge_pte_offset(mm, address);
2821 if (ptep) {
2822 entry = huge_ptep_get(ptep);
2823 if (unlikely(is_hugetlb_entry_migration(entry))) {
2824 migration_entry_wait(mm, (pmd_t *)ptep, address);
2825 return 0;
2826 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2827 return VM_FAULT_HWPOISON_LARGE |
2828 VM_FAULT_SET_HINDEX(hstate_index(h));
2829 }
2830
2831 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2832 if (!ptep)
2833 return VM_FAULT_OOM;
2834
2835 /*
2836 * Serialize hugepage allocation and instantiation, so that we don't
2837 * get spurious allocation failures if two CPUs race to instantiate
2838 * the same page in the page cache.
2839 */
2840 mutex_lock(&hugetlb_instantiation_mutex);
2841 entry = huge_ptep_get(ptep);
2842 if (huge_pte_none(entry)) {
2843 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2844 goto out_mutex;
2845 }
2846
2847 ret = 0;
2848
2849 /*
2850 * If we are going to COW the mapping later, we examine the pending
2851 * reservations for this page now. This will ensure that any
2852 * allocations necessary to record that reservation occur outside the
2853 * spinlock. For private mappings, we also lookup the pagecache
2854 * page now as it is used to determine if a reservation has been
2855 * consumed.
2856 */
2857 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2858 if (vma_needs_reservation(h, vma, address) < 0) {
2859 ret = VM_FAULT_OOM;
2860 goto out_mutex;
2861 }
2862
2863 if (!(vma->vm_flags & VM_MAYSHARE))
2864 pagecache_page = hugetlbfs_pagecache_page(h,
2865 vma, address);
2866 }
2867
2868 /*
2869 * hugetlb_cow() requires page locks of pte_page(entry) and
2870 * pagecache_page, so here we need take the former one
2871 * when page != pagecache_page or !pagecache_page.
2872 * Note that locking order is always pagecache_page -> page,
2873 * so no worry about deadlock.
2874 */
2875 page = pte_page(entry);
2876 get_page(page);
2877 if (page != pagecache_page)
2878 lock_page(page);
2879
2880 spin_lock(&mm->page_table_lock);
2881 /* Check for a racing update before calling hugetlb_cow */
2882 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2883 goto out_page_table_lock;
2884
2885
2886 if (flags & FAULT_FLAG_WRITE) {
2887 if (!pte_write(entry)) {
2888 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2889 pagecache_page);
2890 goto out_page_table_lock;
2891 }
2892 entry = pte_mkdirty(entry);
2893 }
2894 entry = pte_mkyoung(entry);
2895 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2896 flags & FAULT_FLAG_WRITE))
2897 update_mmu_cache(vma, address, ptep);
2898
2899 out_page_table_lock:
2900 spin_unlock(&mm->page_table_lock);
2901
2902 if (pagecache_page) {
2903 unlock_page(pagecache_page);
2904 put_page(pagecache_page);
2905 }
2906 if (page != pagecache_page)
2907 unlock_page(page);
2908 put_page(page);
2909
2910 out_mutex:
2911 mutex_unlock(&hugetlb_instantiation_mutex);
2912
2913 return ret;
2914 }
2915
2916 /* Can be overriden by architectures */
2917 __attribute__((weak)) struct page *
2918 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2919 pud_t *pud, int write)
2920 {
2921 BUG();
2922 return NULL;
2923 }
2924
2925 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2926 struct page **pages, struct vm_area_struct **vmas,
2927 unsigned long *position, int *length, int i,
2928 unsigned int flags)
2929 {
2930 unsigned long pfn_offset;
2931 unsigned long vaddr = *position;
2932 int remainder = *length;
2933 struct hstate *h = hstate_vma(vma);
2934
2935 spin_lock(&mm->page_table_lock);
2936 while (vaddr < vma->vm_end && remainder) {
2937 pte_t *pte;
2938 int absent;
2939 struct page *page;
2940
2941 /*
2942 * Some archs (sparc64, sh*) have multiple pte_ts to
2943 * each hugepage. We have to make sure we get the
2944 * first, for the page indexing below to work.
2945 */
2946 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2947 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2948
2949 /*
2950 * When coredumping, it suits get_dump_page if we just return
2951 * an error where there's an empty slot with no huge pagecache
2952 * to back it. This way, we avoid allocating a hugepage, and
2953 * the sparse dumpfile avoids allocating disk blocks, but its
2954 * huge holes still show up with zeroes where they need to be.
2955 */
2956 if (absent && (flags & FOLL_DUMP) &&
2957 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2958 remainder = 0;
2959 break;
2960 }
2961
2962 if (absent ||
2963 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2964 int ret;
2965
2966 spin_unlock(&mm->page_table_lock);
2967 ret = hugetlb_fault(mm, vma, vaddr,
2968 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2969 spin_lock(&mm->page_table_lock);
2970 if (!(ret & VM_FAULT_ERROR))
2971 continue;
2972
2973 remainder = 0;
2974 break;
2975 }
2976
2977 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2978 page = pte_page(huge_ptep_get(pte));
2979 same_page:
2980 if (pages) {
2981 pages[i] = mem_map_offset(page, pfn_offset);
2982 get_page(pages[i]);
2983 }
2984
2985 if (vmas)
2986 vmas[i] = vma;
2987
2988 vaddr += PAGE_SIZE;
2989 ++pfn_offset;
2990 --remainder;
2991 ++i;
2992 if (vaddr < vma->vm_end && remainder &&
2993 pfn_offset < pages_per_huge_page(h)) {
2994 /*
2995 * We use pfn_offset to avoid touching the pageframes
2996 * of this compound page.
2997 */
2998 goto same_page;
2999 }
3000 }
3001 spin_unlock(&mm->page_table_lock);
3002 *length = remainder;
3003 *position = vaddr;
3004
3005 return i ? i : -EFAULT;
3006 }
3007
3008 void hugetlb_change_protection(struct vm_area_struct *vma,
3009 unsigned long address, unsigned long end, pgprot_t newprot)
3010 {
3011 struct mm_struct *mm = vma->vm_mm;
3012 unsigned long start = address;
3013 pte_t *ptep;
3014 pte_t pte;
3015 struct hstate *h = hstate_vma(vma);
3016
3017 BUG_ON(address >= end);
3018 flush_cache_range(vma, address, end);
3019
3020 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3021 spin_lock(&mm->page_table_lock);
3022 for (; address < end; address += huge_page_size(h)) {
3023 ptep = huge_pte_offset(mm, address);
3024 if (!ptep)
3025 continue;
3026 if (huge_pmd_unshare(mm, &address, ptep))
3027 continue;
3028 if (!huge_pte_none(huge_ptep_get(ptep))) {
3029 pte = huge_ptep_get_and_clear(mm, address, ptep);
3030 pte = pte_mkhuge(pte_modify(pte, newprot));
3031 set_huge_pte_at(mm, address, ptep, pte);
3032 }
3033 }
3034 spin_unlock(&mm->page_table_lock);
3035 /*
3036 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3037 * may have cleared our pud entry and done put_page on the page table:
3038 * once we release i_mmap_mutex, another task can do the final put_page
3039 * and that page table be reused and filled with junk.
3040 */
3041 flush_tlb_range(vma, start, end);
3042 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3043 }
3044
3045 int hugetlb_reserve_pages(struct inode *inode,
3046 long from, long to,
3047 struct vm_area_struct *vma,
3048 vm_flags_t vm_flags)
3049 {
3050 long ret, chg;
3051 struct hstate *h = hstate_inode(inode);
3052 struct hugepage_subpool *spool = subpool_inode(inode);
3053
3054 /*
3055 * Only apply hugepage reservation if asked. At fault time, an
3056 * attempt will be made for VM_NORESERVE to allocate a page
3057 * without using reserves
3058 */
3059 if (vm_flags & VM_NORESERVE)
3060 return 0;
3061
3062 /*
3063 * Shared mappings base their reservation on the number of pages that
3064 * are already allocated on behalf of the file. Private mappings need
3065 * to reserve the full area even if read-only as mprotect() may be
3066 * called to make the mapping read-write. Assume !vma is a shm mapping
3067 */
3068 if (!vma || vma->vm_flags & VM_MAYSHARE)
3069 chg = region_chg(&inode->i_mapping->private_list, from, to);
3070 else {
3071 struct resv_map *resv_map = resv_map_alloc();
3072 if (!resv_map)
3073 return -ENOMEM;
3074
3075 chg = to - from;
3076
3077 set_vma_resv_map(vma, resv_map);
3078 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3079 }
3080
3081 if (chg < 0) {
3082 ret = chg;
3083 goto out_err;
3084 }
3085
3086 /* There must be enough pages in the subpool for the mapping */
3087 if (hugepage_subpool_get_pages(spool, chg)) {
3088 ret = -ENOSPC;
3089 goto out_err;
3090 }
3091
3092 /*
3093 * Check enough hugepages are available for the reservation.
3094 * Hand the pages back to the subpool if there are not
3095 */
3096 ret = hugetlb_acct_memory(h, chg);
3097 if (ret < 0) {
3098 hugepage_subpool_put_pages(spool, chg);
3099 goto out_err;
3100 }
3101
3102 /*
3103 * Account for the reservations made. Shared mappings record regions
3104 * that have reservations as they are shared by multiple VMAs.
3105 * When the last VMA disappears, the region map says how much
3106 * the reservation was and the page cache tells how much of
3107 * the reservation was consumed. Private mappings are per-VMA and
3108 * only the consumed reservations are tracked. When the VMA
3109 * disappears, the original reservation is the VMA size and the
3110 * consumed reservations are stored in the map. Hence, nothing
3111 * else has to be done for private mappings here
3112 */
3113 if (!vma || vma->vm_flags & VM_MAYSHARE)
3114 region_add(&inode->i_mapping->private_list, from, to);
3115 return 0;
3116 out_err:
3117 if (vma)
3118 resv_map_put(vma);
3119 return ret;
3120 }
3121
3122 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3123 {
3124 struct hstate *h = hstate_inode(inode);
3125 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3126 struct hugepage_subpool *spool = subpool_inode(inode);
3127
3128 spin_lock(&inode->i_lock);
3129 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3130 spin_unlock(&inode->i_lock);
3131
3132 hugepage_subpool_put_pages(spool, (chg - freed));
3133 hugetlb_acct_memory(h, -(chg - freed));
3134 }
3135
3136 #ifdef CONFIG_MEMORY_FAILURE
3137
3138 /* Should be called in hugetlb_lock */
3139 static int is_hugepage_on_freelist(struct page *hpage)
3140 {
3141 struct page *page;
3142 struct page *tmp;
3143 struct hstate *h = page_hstate(hpage);
3144 int nid = page_to_nid(hpage);
3145
3146 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3147 if (page == hpage)
3148 return 1;
3149 return 0;
3150 }
3151
3152 /*
3153 * This function is called from memory failure code.
3154 * Assume the caller holds page lock of the head page.
3155 */
3156 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3157 {
3158 struct hstate *h = page_hstate(hpage);
3159 int nid = page_to_nid(hpage);
3160 int ret = -EBUSY;
3161
3162 spin_lock(&hugetlb_lock);
3163 if (is_hugepage_on_freelist(hpage)) {
3164 list_del(&hpage->lru);
3165 set_page_refcounted(hpage);
3166 h->free_huge_pages--;
3167 h->free_huge_pages_node[nid]--;
3168 ret = 0;
3169 }
3170 spin_unlock(&hugetlb_lock);
3171 return ret;
3172 }
3173 #endif