]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/hugetlb.c
f2fs: replace congestion_wait() calls with io_schedule_timeout()
[mirror_ubuntu-kernels.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
54 static bool hugetlb_cma_page(struct page *page, unsigned int order)
55 {
56 return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
57 1 << order);
58 }
59 #else
60 static bool hugetlb_cma_page(struct page *page, unsigned int order)
61 {
62 return false;
63 }
64 #endif
65 static unsigned long hugetlb_cma_size __initdata;
66
67 /*
68 * Minimum page order among possible hugepage sizes, set to a proper value
69 * at boot time.
70 */
71 static unsigned int minimum_order __read_mostly = UINT_MAX;
72
73 __initdata LIST_HEAD(huge_boot_pages);
74
75 /* for command line parsing */
76 static struct hstate * __initdata parsed_hstate;
77 static unsigned long __initdata default_hstate_max_huge_pages;
78 static bool __initdata parsed_valid_hugepagesz = true;
79 static bool __initdata parsed_default_hugepagesz;
80 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
81
82 /*
83 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
84 * free_huge_pages, and surplus_huge_pages.
85 */
86 DEFINE_SPINLOCK(hugetlb_lock);
87
88 /*
89 * Serializes faults on the same logical page. This is used to
90 * prevent spurious OOMs when the hugepage pool is fully utilized.
91 */
92 static int num_fault_mutexes;
93 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
94
95 /* Forward declaration */
96 static int hugetlb_acct_memory(struct hstate *h, long delta);
97
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100 if (spool->count)
101 return false;
102 if (spool->max_hpages != -1)
103 return spool->used_hpages == 0;
104 if (spool->min_hpages != -1)
105 return spool->rsv_hpages == spool->min_hpages;
106
107 return true;
108 }
109
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 unsigned long irq_flags)
112 {
113 spin_unlock_irqrestore(&spool->lock, irq_flags);
114
115 /* If no pages are used, and no other handles to the subpool
116 * remain, give up any reservations based on minimum size and
117 * free the subpool */
118 if (subpool_is_free(spool)) {
119 if (spool->min_hpages != -1)
120 hugetlb_acct_memory(spool->hstate,
121 -spool->min_hpages);
122 kfree(spool);
123 }
124 }
125
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127 long min_hpages)
128 {
129 struct hugepage_subpool *spool;
130
131 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132 if (!spool)
133 return NULL;
134
135 spin_lock_init(&spool->lock);
136 spool->count = 1;
137 spool->max_hpages = max_hpages;
138 spool->hstate = h;
139 spool->min_hpages = min_hpages;
140
141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142 kfree(spool);
143 return NULL;
144 }
145 spool->rsv_hpages = min_hpages;
146
147 return spool;
148 }
149
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152 unsigned long flags;
153
154 spin_lock_irqsave(&spool->lock, flags);
155 BUG_ON(!spool->count);
156 spool->count--;
157 unlock_or_release_subpool(spool, flags);
158 }
159
160 /*
161 * Subpool accounting for allocating and reserving pages.
162 * Return -ENOMEM if there are not enough resources to satisfy the
163 * request. Otherwise, return the number of pages by which the
164 * global pools must be adjusted (upward). The returned value may
165 * only be different than the passed value (delta) in the case where
166 * a subpool minimum size must be maintained.
167 */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169 long delta)
170 {
171 long ret = delta;
172
173 if (!spool)
174 return ret;
175
176 spin_lock_irq(&spool->lock);
177
178 if (spool->max_hpages != -1) { /* maximum size accounting */
179 if ((spool->used_hpages + delta) <= spool->max_hpages)
180 spool->used_hpages += delta;
181 else {
182 ret = -ENOMEM;
183 goto unlock_ret;
184 }
185 }
186
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 if (delta > spool->rsv_hpages) {
190 /*
191 * Asking for more reserves than those already taken on
192 * behalf of subpool. Return difference.
193 */
194 ret = delta - spool->rsv_hpages;
195 spool->rsv_hpages = 0;
196 } else {
197 ret = 0; /* reserves already accounted for */
198 spool->rsv_hpages -= delta;
199 }
200 }
201
202 unlock_ret:
203 spin_unlock_irq(&spool->lock);
204 return ret;
205 }
206
207 /*
208 * Subpool accounting for freeing and unreserving pages.
209 * Return the number of global page reservations that must be dropped.
210 * The return value may only be different than the passed value (delta)
211 * in the case where a subpool minimum size must be maintained.
212 */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214 long delta)
215 {
216 long ret = delta;
217 unsigned long flags;
218
219 if (!spool)
220 return delta;
221
222 spin_lock_irqsave(&spool->lock, flags);
223
224 if (spool->max_hpages != -1) /* maximum size accounting */
225 spool->used_hpages -= delta;
226
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 if (spool->rsv_hpages + delta <= spool->min_hpages)
230 ret = 0;
231 else
232 ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234 spool->rsv_hpages += delta;
235 if (spool->rsv_hpages > spool->min_hpages)
236 spool->rsv_hpages = spool->min_hpages;
237 }
238
239 /*
240 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 * quota reference, free it now.
242 */
243 unlock_or_release_subpool(spool, flags);
244
245 return ret;
246 }
247
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250 return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255 return subpool_inode(file_inode(vma->vm_file));
256 }
257
258 /* Helper that removes a struct file_region from the resv_map cache and returns
259 * it for use.
260 */
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263 {
264 struct file_region *nrg = NULL;
265
266 VM_BUG_ON(resv->region_cache_count <= 0);
267
268 resv->region_cache_count--;
269 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270 list_del(&nrg->link);
271
272 nrg->from = from;
273 nrg->to = to;
274
275 return nrg;
276 }
277
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 struct file_region *rg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282 nrg->reservation_counter = rg->reservation_counter;
283 nrg->css = rg->css;
284 if (rg->css)
285 css_get(rg->css);
286 #endif
287 }
288
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291 struct hstate *h,
292 struct resv_map *resv,
293 struct file_region *nrg)
294 {
295 #ifdef CONFIG_CGROUP_HUGETLB
296 if (h_cg) {
297 nrg->reservation_counter =
298 &h_cg->rsvd_hugepage[hstate_index(h)];
299 nrg->css = &h_cg->css;
300 /*
301 * The caller will hold exactly one h_cg->css reference for the
302 * whole contiguous reservation region. But this area might be
303 * scattered when there are already some file_regions reside in
304 * it. As a result, many file_regions may share only one css
305 * reference. In order to ensure that one file_region must hold
306 * exactly one h_cg->css reference, we should do css_get for
307 * each file_region and leave the reference held by caller
308 * untouched.
309 */
310 css_get(&h_cg->css);
311 if (!resv->pages_per_hpage)
312 resv->pages_per_hpage = pages_per_huge_page(h);
313 /* pages_per_hpage should be the same for all entries in
314 * a resv_map.
315 */
316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317 } else {
318 nrg->reservation_counter = NULL;
319 nrg->css = NULL;
320 }
321 #endif
322 }
323
324 static void put_uncharge_info(struct file_region *rg)
325 {
326 #ifdef CONFIG_CGROUP_HUGETLB
327 if (rg->css)
328 css_put(rg->css);
329 #endif
330 }
331
332 static bool has_same_uncharge_info(struct file_region *rg,
333 struct file_region *org)
334 {
335 #ifdef CONFIG_CGROUP_HUGETLB
336 return rg->reservation_counter == org->reservation_counter &&
337 rg->css == org->css;
338
339 #else
340 return true;
341 #endif
342 }
343
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345 {
346 struct file_region *nrg = NULL, *prg = NULL;
347
348 prg = list_prev_entry(rg, link);
349 if (&prg->link != &resv->regions && prg->to == rg->from &&
350 has_same_uncharge_info(prg, rg)) {
351 prg->to = rg->to;
352
353 list_del(&rg->link);
354 put_uncharge_info(rg);
355 kfree(rg);
356
357 rg = prg;
358 }
359
360 nrg = list_next_entry(rg, link);
361 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 has_same_uncharge_info(nrg, rg)) {
363 nrg->from = rg->from;
364
365 list_del(&rg->link);
366 put_uncharge_info(rg);
367 kfree(rg);
368 }
369 }
370
371 static inline long
372 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
373 long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 long *regions_needed)
375 {
376 struct file_region *nrg;
377
378 if (!regions_needed) {
379 nrg = get_file_region_entry_from_cache(map, from, to);
380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381 list_add(&nrg->link, rg->link.prev);
382 coalesce_file_region(map, nrg);
383 } else
384 *regions_needed += 1;
385
386 return to - from;
387 }
388
389 /*
390 * Must be called with resv->lock held.
391 *
392 * Calling this with regions_needed != NULL will count the number of pages
393 * to be added but will not modify the linked list. And regions_needed will
394 * indicate the number of file_regions needed in the cache to carry out to add
395 * the regions for this range.
396 */
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398 struct hugetlb_cgroup *h_cg,
399 struct hstate *h, long *regions_needed)
400 {
401 long add = 0;
402 struct list_head *head = &resv->regions;
403 long last_accounted_offset = f;
404 struct file_region *rg = NULL, *trg = NULL;
405
406 if (regions_needed)
407 *regions_needed = 0;
408
409 /* In this loop, we essentially handle an entry for the range
410 * [last_accounted_offset, rg->from), at every iteration, with some
411 * bounds checking.
412 */
413 list_for_each_entry_safe(rg, trg, head, link) {
414 /* Skip irrelevant regions that start before our range. */
415 if (rg->from < f) {
416 /* If this region ends after the last accounted offset,
417 * then we need to update last_accounted_offset.
418 */
419 if (rg->to > last_accounted_offset)
420 last_accounted_offset = rg->to;
421 continue;
422 }
423
424 /* When we find a region that starts beyond our range, we've
425 * finished.
426 */
427 if (rg->from >= t)
428 break;
429
430 /* Add an entry for last_accounted_offset -> rg->from, and
431 * update last_accounted_offset.
432 */
433 if (rg->from > last_accounted_offset)
434 add += hugetlb_resv_map_add(resv, rg,
435 last_accounted_offset,
436 rg->from, h, h_cg,
437 regions_needed);
438
439 last_accounted_offset = rg->to;
440 }
441
442 /* Handle the case where our range extends beyond
443 * last_accounted_offset.
444 */
445 if (last_accounted_offset < t)
446 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
447 t, h, h_cg, regions_needed);
448
449 return add;
450 }
451
452 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
453 */
454 static int allocate_file_region_entries(struct resv_map *resv,
455 int regions_needed)
456 __must_hold(&resv->lock)
457 {
458 struct list_head allocated_regions;
459 int to_allocate = 0, i = 0;
460 struct file_region *trg = NULL, *rg = NULL;
461
462 VM_BUG_ON(regions_needed < 0);
463
464 INIT_LIST_HEAD(&allocated_regions);
465
466 /*
467 * Check for sufficient descriptors in the cache to accommodate
468 * the number of in progress add operations plus regions_needed.
469 *
470 * This is a while loop because when we drop the lock, some other call
471 * to region_add or region_del may have consumed some region_entries,
472 * so we keep looping here until we finally have enough entries for
473 * (adds_in_progress + regions_needed).
474 */
475 while (resv->region_cache_count <
476 (resv->adds_in_progress + regions_needed)) {
477 to_allocate = resv->adds_in_progress + regions_needed -
478 resv->region_cache_count;
479
480 /* At this point, we should have enough entries in the cache
481 * for all the existing adds_in_progress. We should only be
482 * needing to allocate for regions_needed.
483 */
484 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
485
486 spin_unlock(&resv->lock);
487 for (i = 0; i < to_allocate; i++) {
488 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
489 if (!trg)
490 goto out_of_memory;
491 list_add(&trg->link, &allocated_regions);
492 }
493
494 spin_lock(&resv->lock);
495
496 list_splice(&allocated_regions, &resv->region_cache);
497 resv->region_cache_count += to_allocate;
498 }
499
500 return 0;
501
502 out_of_memory:
503 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
504 list_del(&rg->link);
505 kfree(rg);
506 }
507 return -ENOMEM;
508 }
509
510 /*
511 * Add the huge page range represented by [f, t) to the reserve
512 * map. Regions will be taken from the cache to fill in this range.
513 * Sufficient regions should exist in the cache due to the previous
514 * call to region_chg with the same range, but in some cases the cache will not
515 * have sufficient entries due to races with other code doing region_add or
516 * region_del. The extra needed entries will be allocated.
517 *
518 * regions_needed is the out value provided by a previous call to region_chg.
519 *
520 * Return the number of new huge pages added to the map. This number is greater
521 * than or equal to zero. If file_region entries needed to be allocated for
522 * this operation and we were not able to allocate, it returns -ENOMEM.
523 * region_add of regions of length 1 never allocate file_regions and cannot
524 * fail; region_chg will always allocate at least 1 entry and a region_add for
525 * 1 page will only require at most 1 entry.
526 */
527 static long region_add(struct resv_map *resv, long f, long t,
528 long in_regions_needed, struct hstate *h,
529 struct hugetlb_cgroup *h_cg)
530 {
531 long add = 0, actual_regions_needed = 0;
532
533 spin_lock(&resv->lock);
534 retry:
535
536 /* Count how many regions are actually needed to execute this add. */
537 add_reservation_in_range(resv, f, t, NULL, NULL,
538 &actual_regions_needed);
539
540 /*
541 * Check for sufficient descriptors in the cache to accommodate
542 * this add operation. Note that actual_regions_needed may be greater
543 * than in_regions_needed, as the resv_map may have been modified since
544 * the region_chg call. In this case, we need to make sure that we
545 * allocate extra entries, such that we have enough for all the
546 * existing adds_in_progress, plus the excess needed for this
547 * operation.
548 */
549 if (actual_regions_needed > in_regions_needed &&
550 resv->region_cache_count <
551 resv->adds_in_progress +
552 (actual_regions_needed - in_regions_needed)) {
553 /* region_add operation of range 1 should never need to
554 * allocate file_region entries.
555 */
556 VM_BUG_ON(t - f <= 1);
557
558 if (allocate_file_region_entries(
559 resv, actual_regions_needed - in_regions_needed)) {
560 return -ENOMEM;
561 }
562
563 goto retry;
564 }
565
566 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
567
568 resv->adds_in_progress -= in_regions_needed;
569
570 spin_unlock(&resv->lock);
571 return add;
572 }
573
574 /*
575 * Examine the existing reserve map and determine how many
576 * huge pages in the specified range [f, t) are NOT currently
577 * represented. This routine is called before a subsequent
578 * call to region_add that will actually modify the reserve
579 * map to add the specified range [f, t). region_chg does
580 * not change the number of huge pages represented by the
581 * map. A number of new file_region structures is added to the cache as a
582 * placeholder, for the subsequent region_add call to use. At least 1
583 * file_region structure is added.
584 *
585 * out_regions_needed is the number of regions added to the
586 * resv->adds_in_progress. This value needs to be provided to a follow up call
587 * to region_add or region_abort for proper accounting.
588 *
589 * Returns the number of huge pages that need to be added to the existing
590 * reservation map for the range [f, t). This number is greater or equal to
591 * zero. -ENOMEM is returned if a new file_region structure or cache entry
592 * is needed and can not be allocated.
593 */
594 static long region_chg(struct resv_map *resv, long f, long t,
595 long *out_regions_needed)
596 {
597 long chg = 0;
598
599 spin_lock(&resv->lock);
600
601 /* Count how many hugepages in this range are NOT represented. */
602 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
603 out_regions_needed);
604
605 if (*out_regions_needed == 0)
606 *out_regions_needed = 1;
607
608 if (allocate_file_region_entries(resv, *out_regions_needed))
609 return -ENOMEM;
610
611 resv->adds_in_progress += *out_regions_needed;
612
613 spin_unlock(&resv->lock);
614 return chg;
615 }
616
617 /*
618 * Abort the in progress add operation. The adds_in_progress field
619 * of the resv_map keeps track of the operations in progress between
620 * calls to region_chg and region_add. Operations are sometimes
621 * aborted after the call to region_chg. In such cases, region_abort
622 * is called to decrement the adds_in_progress counter. regions_needed
623 * is the value returned by the region_chg call, it is used to decrement
624 * the adds_in_progress counter.
625 *
626 * NOTE: The range arguments [f, t) are not needed or used in this
627 * routine. They are kept to make reading the calling code easier as
628 * arguments will match the associated region_chg call.
629 */
630 static void region_abort(struct resv_map *resv, long f, long t,
631 long regions_needed)
632 {
633 spin_lock(&resv->lock);
634 VM_BUG_ON(!resv->region_cache_count);
635 resv->adds_in_progress -= regions_needed;
636 spin_unlock(&resv->lock);
637 }
638
639 /*
640 * Delete the specified range [f, t) from the reserve map. If the
641 * t parameter is LONG_MAX, this indicates that ALL regions after f
642 * should be deleted. Locate the regions which intersect [f, t)
643 * and either trim, delete or split the existing regions.
644 *
645 * Returns the number of huge pages deleted from the reserve map.
646 * In the normal case, the return value is zero or more. In the
647 * case where a region must be split, a new region descriptor must
648 * be allocated. If the allocation fails, -ENOMEM will be returned.
649 * NOTE: If the parameter t == LONG_MAX, then we will never split
650 * a region and possibly return -ENOMEM. Callers specifying
651 * t == LONG_MAX do not need to check for -ENOMEM error.
652 */
653 static long region_del(struct resv_map *resv, long f, long t)
654 {
655 struct list_head *head = &resv->regions;
656 struct file_region *rg, *trg;
657 struct file_region *nrg = NULL;
658 long del = 0;
659
660 retry:
661 spin_lock(&resv->lock);
662 list_for_each_entry_safe(rg, trg, head, link) {
663 /*
664 * Skip regions before the range to be deleted. file_region
665 * ranges are normally of the form [from, to). However, there
666 * may be a "placeholder" entry in the map which is of the form
667 * (from, to) with from == to. Check for placeholder entries
668 * at the beginning of the range to be deleted.
669 */
670 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
671 continue;
672
673 if (rg->from >= t)
674 break;
675
676 if (f > rg->from && t < rg->to) { /* Must split region */
677 /*
678 * Check for an entry in the cache before dropping
679 * lock and attempting allocation.
680 */
681 if (!nrg &&
682 resv->region_cache_count > resv->adds_in_progress) {
683 nrg = list_first_entry(&resv->region_cache,
684 struct file_region,
685 link);
686 list_del(&nrg->link);
687 resv->region_cache_count--;
688 }
689
690 if (!nrg) {
691 spin_unlock(&resv->lock);
692 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
693 if (!nrg)
694 return -ENOMEM;
695 goto retry;
696 }
697
698 del += t - f;
699 hugetlb_cgroup_uncharge_file_region(
700 resv, rg, t - f, false);
701
702 /* New entry for end of split region */
703 nrg->from = t;
704 nrg->to = rg->to;
705
706 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
707
708 INIT_LIST_HEAD(&nrg->link);
709
710 /* Original entry is trimmed */
711 rg->to = f;
712
713 list_add(&nrg->link, &rg->link);
714 nrg = NULL;
715 break;
716 }
717
718 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
719 del += rg->to - rg->from;
720 hugetlb_cgroup_uncharge_file_region(resv, rg,
721 rg->to - rg->from, true);
722 list_del(&rg->link);
723 kfree(rg);
724 continue;
725 }
726
727 if (f <= rg->from) { /* Trim beginning of region */
728 hugetlb_cgroup_uncharge_file_region(resv, rg,
729 t - rg->from, false);
730
731 del += t - rg->from;
732 rg->from = t;
733 } else { /* Trim end of region */
734 hugetlb_cgroup_uncharge_file_region(resv, rg,
735 rg->to - f, false);
736
737 del += rg->to - f;
738 rg->to = f;
739 }
740 }
741
742 spin_unlock(&resv->lock);
743 kfree(nrg);
744 return del;
745 }
746
747 /*
748 * A rare out of memory error was encountered which prevented removal of
749 * the reserve map region for a page. The huge page itself was free'ed
750 * and removed from the page cache. This routine will adjust the subpool
751 * usage count, and the global reserve count if needed. By incrementing
752 * these counts, the reserve map entry which could not be deleted will
753 * appear as a "reserved" entry instead of simply dangling with incorrect
754 * counts.
755 */
756 void hugetlb_fix_reserve_counts(struct inode *inode)
757 {
758 struct hugepage_subpool *spool = subpool_inode(inode);
759 long rsv_adjust;
760 bool reserved = false;
761
762 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
763 if (rsv_adjust > 0) {
764 struct hstate *h = hstate_inode(inode);
765
766 if (!hugetlb_acct_memory(h, 1))
767 reserved = true;
768 } else if (!rsv_adjust) {
769 reserved = true;
770 }
771
772 if (!reserved)
773 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
774 }
775
776 /*
777 * Count and return the number of huge pages in the reserve map
778 * that intersect with the range [f, t).
779 */
780 static long region_count(struct resv_map *resv, long f, long t)
781 {
782 struct list_head *head = &resv->regions;
783 struct file_region *rg;
784 long chg = 0;
785
786 spin_lock(&resv->lock);
787 /* Locate each segment we overlap with, and count that overlap. */
788 list_for_each_entry(rg, head, link) {
789 long seg_from;
790 long seg_to;
791
792 if (rg->to <= f)
793 continue;
794 if (rg->from >= t)
795 break;
796
797 seg_from = max(rg->from, f);
798 seg_to = min(rg->to, t);
799
800 chg += seg_to - seg_from;
801 }
802 spin_unlock(&resv->lock);
803
804 return chg;
805 }
806
807 /*
808 * Convert the address within this vma to the page offset within
809 * the mapping, in pagecache page units; huge pages here.
810 */
811 static pgoff_t vma_hugecache_offset(struct hstate *h,
812 struct vm_area_struct *vma, unsigned long address)
813 {
814 return ((address - vma->vm_start) >> huge_page_shift(h)) +
815 (vma->vm_pgoff >> huge_page_order(h));
816 }
817
818 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
819 unsigned long address)
820 {
821 return vma_hugecache_offset(hstate_vma(vma), vma, address);
822 }
823 EXPORT_SYMBOL_GPL(linear_hugepage_index);
824
825 /*
826 * Return the size of the pages allocated when backing a VMA. In the majority
827 * cases this will be same size as used by the page table entries.
828 */
829 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
830 {
831 if (vma->vm_ops && vma->vm_ops->pagesize)
832 return vma->vm_ops->pagesize(vma);
833 return PAGE_SIZE;
834 }
835 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
836
837 /*
838 * Return the page size being used by the MMU to back a VMA. In the majority
839 * of cases, the page size used by the kernel matches the MMU size. On
840 * architectures where it differs, an architecture-specific 'strong'
841 * version of this symbol is required.
842 */
843 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
844 {
845 return vma_kernel_pagesize(vma);
846 }
847
848 /*
849 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
850 * bits of the reservation map pointer, which are always clear due to
851 * alignment.
852 */
853 #define HPAGE_RESV_OWNER (1UL << 0)
854 #define HPAGE_RESV_UNMAPPED (1UL << 1)
855 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
856
857 /*
858 * These helpers are used to track how many pages are reserved for
859 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
860 * is guaranteed to have their future faults succeed.
861 *
862 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
863 * the reserve counters are updated with the hugetlb_lock held. It is safe
864 * to reset the VMA at fork() time as it is not in use yet and there is no
865 * chance of the global counters getting corrupted as a result of the values.
866 *
867 * The private mapping reservation is represented in a subtly different
868 * manner to a shared mapping. A shared mapping has a region map associated
869 * with the underlying file, this region map represents the backing file
870 * pages which have ever had a reservation assigned which this persists even
871 * after the page is instantiated. A private mapping has a region map
872 * associated with the original mmap which is attached to all VMAs which
873 * reference it, this region map represents those offsets which have consumed
874 * reservation ie. where pages have been instantiated.
875 */
876 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
877 {
878 return (unsigned long)vma->vm_private_data;
879 }
880
881 static void set_vma_private_data(struct vm_area_struct *vma,
882 unsigned long value)
883 {
884 vma->vm_private_data = (void *)value;
885 }
886
887 static void
888 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
889 struct hugetlb_cgroup *h_cg,
890 struct hstate *h)
891 {
892 #ifdef CONFIG_CGROUP_HUGETLB
893 if (!h_cg || !h) {
894 resv_map->reservation_counter = NULL;
895 resv_map->pages_per_hpage = 0;
896 resv_map->css = NULL;
897 } else {
898 resv_map->reservation_counter =
899 &h_cg->rsvd_hugepage[hstate_index(h)];
900 resv_map->pages_per_hpage = pages_per_huge_page(h);
901 resv_map->css = &h_cg->css;
902 }
903 #endif
904 }
905
906 struct resv_map *resv_map_alloc(void)
907 {
908 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
909 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
910
911 if (!resv_map || !rg) {
912 kfree(resv_map);
913 kfree(rg);
914 return NULL;
915 }
916
917 kref_init(&resv_map->refs);
918 spin_lock_init(&resv_map->lock);
919 INIT_LIST_HEAD(&resv_map->regions);
920
921 resv_map->adds_in_progress = 0;
922 /*
923 * Initialize these to 0. On shared mappings, 0's here indicate these
924 * fields don't do cgroup accounting. On private mappings, these will be
925 * re-initialized to the proper values, to indicate that hugetlb cgroup
926 * reservations are to be un-charged from here.
927 */
928 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
929
930 INIT_LIST_HEAD(&resv_map->region_cache);
931 list_add(&rg->link, &resv_map->region_cache);
932 resv_map->region_cache_count = 1;
933
934 return resv_map;
935 }
936
937 void resv_map_release(struct kref *ref)
938 {
939 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
940 struct list_head *head = &resv_map->region_cache;
941 struct file_region *rg, *trg;
942
943 /* Clear out any active regions before we release the map. */
944 region_del(resv_map, 0, LONG_MAX);
945
946 /* ... and any entries left in the cache */
947 list_for_each_entry_safe(rg, trg, head, link) {
948 list_del(&rg->link);
949 kfree(rg);
950 }
951
952 VM_BUG_ON(resv_map->adds_in_progress);
953
954 kfree(resv_map);
955 }
956
957 static inline struct resv_map *inode_resv_map(struct inode *inode)
958 {
959 /*
960 * At inode evict time, i_mapping may not point to the original
961 * address space within the inode. This original address space
962 * contains the pointer to the resv_map. So, always use the
963 * address space embedded within the inode.
964 * The VERY common case is inode->mapping == &inode->i_data but,
965 * this may not be true for device special inodes.
966 */
967 return (struct resv_map *)(&inode->i_data)->private_data;
968 }
969
970 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
971 {
972 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973 if (vma->vm_flags & VM_MAYSHARE) {
974 struct address_space *mapping = vma->vm_file->f_mapping;
975 struct inode *inode = mapping->host;
976
977 return inode_resv_map(inode);
978
979 } else {
980 return (struct resv_map *)(get_vma_private_data(vma) &
981 ~HPAGE_RESV_MASK);
982 }
983 }
984
985 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
986 {
987 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
988 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
989
990 set_vma_private_data(vma, (get_vma_private_data(vma) &
991 HPAGE_RESV_MASK) | (unsigned long)map);
992 }
993
994 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
995 {
996 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
997 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
998
999 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1000 }
1001
1002 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1003 {
1004 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1005
1006 return (get_vma_private_data(vma) & flag) != 0;
1007 }
1008
1009 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1010 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1011 {
1012 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1013 if (!(vma->vm_flags & VM_MAYSHARE))
1014 vma->vm_private_data = (void *)0;
1015 }
1016
1017 /*
1018 * Reset and decrement one ref on hugepage private reservation.
1019 * Called with mm->mmap_sem writer semaphore held.
1020 * This function should be only used by move_vma() and operate on
1021 * same sized vma. It should never come here with last ref on the
1022 * reservation.
1023 */
1024 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1025 {
1026 /*
1027 * Clear the old hugetlb private page reservation.
1028 * It has already been transferred to new_vma.
1029 *
1030 * During a mremap() operation of a hugetlb vma we call move_vma()
1031 * which copies vma into new_vma and unmaps vma. After the copy
1032 * operation both new_vma and vma share a reference to the resv_map
1033 * struct, and at that point vma is about to be unmapped. We don't
1034 * want to return the reservation to the pool at unmap of vma because
1035 * the reservation still lives on in new_vma, so simply decrement the
1036 * ref here and remove the resv_map reference from this vma.
1037 */
1038 struct resv_map *reservations = vma_resv_map(vma);
1039
1040 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1041 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1042 kref_put(&reservations->refs, resv_map_release);
1043 }
1044
1045 reset_vma_resv_huge_pages(vma);
1046 }
1047
1048 /* Returns true if the VMA has associated reserve pages */
1049 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1050 {
1051 if (vma->vm_flags & VM_NORESERVE) {
1052 /*
1053 * This address is already reserved by other process(chg == 0),
1054 * so, we should decrement reserved count. Without decrementing,
1055 * reserve count remains after releasing inode, because this
1056 * allocated page will go into page cache and is regarded as
1057 * coming from reserved pool in releasing step. Currently, we
1058 * don't have any other solution to deal with this situation
1059 * properly, so add work-around here.
1060 */
1061 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1062 return true;
1063 else
1064 return false;
1065 }
1066
1067 /* Shared mappings always use reserves */
1068 if (vma->vm_flags & VM_MAYSHARE) {
1069 /*
1070 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1071 * be a region map for all pages. The only situation where
1072 * there is no region map is if a hole was punched via
1073 * fallocate. In this case, there really are no reserves to
1074 * use. This situation is indicated if chg != 0.
1075 */
1076 if (chg)
1077 return false;
1078 else
1079 return true;
1080 }
1081
1082 /*
1083 * Only the process that called mmap() has reserves for
1084 * private mappings.
1085 */
1086 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1087 /*
1088 * Like the shared case above, a hole punch or truncate
1089 * could have been performed on the private mapping.
1090 * Examine the value of chg to determine if reserves
1091 * actually exist or were previously consumed.
1092 * Very Subtle - The value of chg comes from a previous
1093 * call to vma_needs_reserves(). The reserve map for
1094 * private mappings has different (opposite) semantics
1095 * than that of shared mappings. vma_needs_reserves()
1096 * has already taken this difference in semantics into
1097 * account. Therefore, the meaning of chg is the same
1098 * as in the shared case above. Code could easily be
1099 * combined, but keeping it separate draws attention to
1100 * subtle differences.
1101 */
1102 if (chg)
1103 return false;
1104 else
1105 return true;
1106 }
1107
1108 return false;
1109 }
1110
1111 static void enqueue_huge_page(struct hstate *h, struct page *page)
1112 {
1113 int nid = page_to_nid(page);
1114
1115 lockdep_assert_held(&hugetlb_lock);
1116 VM_BUG_ON_PAGE(page_count(page), page);
1117
1118 list_move(&page->lru, &h->hugepage_freelists[nid]);
1119 h->free_huge_pages++;
1120 h->free_huge_pages_node[nid]++;
1121 SetHPageFreed(page);
1122 }
1123
1124 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1125 {
1126 struct page *page;
1127 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1128
1129 lockdep_assert_held(&hugetlb_lock);
1130 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1131 if (pin && !is_pinnable_page(page))
1132 continue;
1133
1134 if (PageHWPoison(page))
1135 continue;
1136
1137 list_move(&page->lru, &h->hugepage_activelist);
1138 set_page_refcounted(page);
1139 ClearHPageFreed(page);
1140 h->free_huge_pages--;
1141 h->free_huge_pages_node[nid]--;
1142 return page;
1143 }
1144
1145 return NULL;
1146 }
1147
1148 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1149 nodemask_t *nmask)
1150 {
1151 unsigned int cpuset_mems_cookie;
1152 struct zonelist *zonelist;
1153 struct zone *zone;
1154 struct zoneref *z;
1155 int node = NUMA_NO_NODE;
1156
1157 zonelist = node_zonelist(nid, gfp_mask);
1158
1159 retry_cpuset:
1160 cpuset_mems_cookie = read_mems_allowed_begin();
1161 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1162 struct page *page;
1163
1164 if (!cpuset_zone_allowed(zone, gfp_mask))
1165 continue;
1166 /*
1167 * no need to ask again on the same node. Pool is node rather than
1168 * zone aware
1169 */
1170 if (zone_to_nid(zone) == node)
1171 continue;
1172 node = zone_to_nid(zone);
1173
1174 page = dequeue_huge_page_node_exact(h, node);
1175 if (page)
1176 return page;
1177 }
1178 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1179 goto retry_cpuset;
1180
1181 return NULL;
1182 }
1183
1184 static struct page *dequeue_huge_page_vma(struct hstate *h,
1185 struct vm_area_struct *vma,
1186 unsigned long address, int avoid_reserve,
1187 long chg)
1188 {
1189 struct page *page = NULL;
1190 struct mempolicy *mpol;
1191 gfp_t gfp_mask;
1192 nodemask_t *nodemask;
1193 int nid;
1194
1195 /*
1196 * A child process with MAP_PRIVATE mappings created by their parent
1197 * have no page reserves. This check ensures that reservations are
1198 * not "stolen". The child may still get SIGKILLed
1199 */
1200 if (!vma_has_reserves(vma, chg) &&
1201 h->free_huge_pages - h->resv_huge_pages == 0)
1202 goto err;
1203
1204 /* If reserves cannot be used, ensure enough pages are in the pool */
1205 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1206 goto err;
1207
1208 gfp_mask = htlb_alloc_mask(h);
1209 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1210
1211 if (mpol_is_preferred_many(mpol)) {
1212 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1213
1214 /* Fallback to all nodes if page==NULL */
1215 nodemask = NULL;
1216 }
1217
1218 if (!page)
1219 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1220
1221 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1222 SetHPageRestoreReserve(page);
1223 h->resv_huge_pages--;
1224 }
1225
1226 mpol_cond_put(mpol);
1227 return page;
1228
1229 err:
1230 return NULL;
1231 }
1232
1233 /*
1234 * common helper functions for hstate_next_node_to_{alloc|free}.
1235 * We may have allocated or freed a huge page based on a different
1236 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1237 * be outside of *nodes_allowed. Ensure that we use an allowed
1238 * node for alloc or free.
1239 */
1240 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1241 {
1242 nid = next_node_in(nid, *nodes_allowed);
1243 VM_BUG_ON(nid >= MAX_NUMNODES);
1244
1245 return nid;
1246 }
1247
1248 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1249 {
1250 if (!node_isset(nid, *nodes_allowed))
1251 nid = next_node_allowed(nid, nodes_allowed);
1252 return nid;
1253 }
1254
1255 /*
1256 * returns the previously saved node ["this node"] from which to
1257 * allocate a persistent huge page for the pool and advance the
1258 * next node from which to allocate, handling wrap at end of node
1259 * mask.
1260 */
1261 static int hstate_next_node_to_alloc(struct hstate *h,
1262 nodemask_t *nodes_allowed)
1263 {
1264 int nid;
1265
1266 VM_BUG_ON(!nodes_allowed);
1267
1268 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1269 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1270
1271 return nid;
1272 }
1273
1274 /*
1275 * helper for remove_pool_huge_page() - return the previously saved
1276 * node ["this node"] from which to free a huge page. Advance the
1277 * next node id whether or not we find a free huge page to free so
1278 * that the next attempt to free addresses the next node.
1279 */
1280 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1281 {
1282 int nid;
1283
1284 VM_BUG_ON(!nodes_allowed);
1285
1286 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1287 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1288
1289 return nid;
1290 }
1291
1292 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1293 for (nr_nodes = nodes_weight(*mask); \
1294 nr_nodes > 0 && \
1295 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1296 nr_nodes--)
1297
1298 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1299 for (nr_nodes = nodes_weight(*mask); \
1300 nr_nodes > 0 && \
1301 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1302 nr_nodes--)
1303
1304 /* used to demote non-gigantic_huge pages as well */
1305 static void __destroy_compound_gigantic_page(struct page *page,
1306 unsigned int order, bool demote)
1307 {
1308 int i;
1309 int nr_pages = 1 << order;
1310 struct page *p = page + 1;
1311
1312 atomic_set(compound_mapcount_ptr(page), 0);
1313 atomic_set(compound_pincount_ptr(page), 0);
1314
1315 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1316 p->mapping = NULL;
1317 clear_compound_head(p);
1318 if (!demote)
1319 set_page_refcounted(p);
1320 }
1321
1322 set_compound_order(page, 0);
1323 page[1].compound_nr = 0;
1324 __ClearPageHead(page);
1325 }
1326
1327 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1328 unsigned int order)
1329 {
1330 __destroy_compound_gigantic_page(page, order, true);
1331 }
1332
1333 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1334 static void destroy_compound_gigantic_page(struct page *page,
1335 unsigned int order)
1336 {
1337 __destroy_compound_gigantic_page(page, order, false);
1338 }
1339
1340 static void free_gigantic_page(struct page *page, unsigned int order)
1341 {
1342 /*
1343 * If the page isn't allocated using the cma allocator,
1344 * cma_release() returns false.
1345 */
1346 #ifdef CONFIG_CMA
1347 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1348 return;
1349 #endif
1350
1351 free_contig_range(page_to_pfn(page), 1 << order);
1352 }
1353
1354 #ifdef CONFIG_CONTIG_ALLOC
1355 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1356 int nid, nodemask_t *nodemask)
1357 {
1358 unsigned long nr_pages = pages_per_huge_page(h);
1359 if (nid == NUMA_NO_NODE)
1360 nid = numa_mem_id();
1361
1362 #ifdef CONFIG_CMA
1363 {
1364 struct page *page;
1365 int node;
1366
1367 if (hugetlb_cma[nid]) {
1368 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1369 huge_page_order(h), true);
1370 if (page)
1371 return page;
1372 }
1373
1374 if (!(gfp_mask & __GFP_THISNODE)) {
1375 for_each_node_mask(node, *nodemask) {
1376 if (node == nid || !hugetlb_cma[node])
1377 continue;
1378
1379 page = cma_alloc(hugetlb_cma[node], nr_pages,
1380 huge_page_order(h), true);
1381 if (page)
1382 return page;
1383 }
1384 }
1385 }
1386 #endif
1387
1388 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1389 }
1390
1391 #else /* !CONFIG_CONTIG_ALLOC */
1392 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1393 int nid, nodemask_t *nodemask)
1394 {
1395 return NULL;
1396 }
1397 #endif /* CONFIG_CONTIG_ALLOC */
1398
1399 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1400 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1401 int nid, nodemask_t *nodemask)
1402 {
1403 return NULL;
1404 }
1405 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1406 static inline void destroy_compound_gigantic_page(struct page *page,
1407 unsigned int order) { }
1408 #endif
1409
1410 /*
1411 * Remove hugetlb page from lists, and update dtor so that page appears
1412 * as just a compound page.
1413 *
1414 * A reference is held on the page, except in the case of demote.
1415 *
1416 * Must be called with hugetlb lock held.
1417 */
1418 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1419 bool adjust_surplus,
1420 bool demote)
1421 {
1422 int nid = page_to_nid(page);
1423
1424 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1425 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1426
1427 lockdep_assert_held(&hugetlb_lock);
1428 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1429 return;
1430
1431 list_del(&page->lru);
1432
1433 if (HPageFreed(page)) {
1434 h->free_huge_pages--;
1435 h->free_huge_pages_node[nid]--;
1436 }
1437 if (adjust_surplus) {
1438 h->surplus_huge_pages--;
1439 h->surplus_huge_pages_node[nid]--;
1440 }
1441
1442 /*
1443 * Very subtle
1444 *
1445 * For non-gigantic pages set the destructor to the normal compound
1446 * page dtor. This is needed in case someone takes an additional
1447 * temporary ref to the page, and freeing is delayed until they drop
1448 * their reference.
1449 *
1450 * For gigantic pages set the destructor to the null dtor. This
1451 * destructor will never be called. Before freeing the gigantic
1452 * page destroy_compound_gigantic_page will turn the compound page
1453 * into a simple group of pages. After this the destructor does not
1454 * apply.
1455 *
1456 * This handles the case where more than one ref is held when and
1457 * after update_and_free_page is called.
1458 *
1459 * In the case of demote we do not ref count the page as it will soon
1460 * be turned into a page of smaller size.
1461 */
1462 if (!demote)
1463 set_page_refcounted(page);
1464 if (hstate_is_gigantic(h))
1465 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1466 else
1467 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1468
1469 h->nr_huge_pages--;
1470 h->nr_huge_pages_node[nid]--;
1471 }
1472
1473 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1474 bool adjust_surplus)
1475 {
1476 __remove_hugetlb_page(h, page, adjust_surplus, false);
1477 }
1478
1479 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1480 bool adjust_surplus)
1481 {
1482 __remove_hugetlb_page(h, page, adjust_surplus, true);
1483 }
1484
1485 static void add_hugetlb_page(struct hstate *h, struct page *page,
1486 bool adjust_surplus)
1487 {
1488 int zeroed;
1489 int nid = page_to_nid(page);
1490
1491 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1492
1493 lockdep_assert_held(&hugetlb_lock);
1494
1495 INIT_LIST_HEAD(&page->lru);
1496 h->nr_huge_pages++;
1497 h->nr_huge_pages_node[nid]++;
1498
1499 if (adjust_surplus) {
1500 h->surplus_huge_pages++;
1501 h->surplus_huge_pages_node[nid]++;
1502 }
1503
1504 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1505 set_page_private(page, 0);
1506 SetHPageVmemmapOptimized(page);
1507
1508 /*
1509 * This page is about to be managed by the hugetlb allocator and
1510 * should have no users. Drop our reference, and check for others
1511 * just in case.
1512 */
1513 zeroed = put_page_testzero(page);
1514 if (!zeroed)
1515 /*
1516 * It is VERY unlikely soneone else has taken a ref on
1517 * the page. In this case, we simply return as the
1518 * hugetlb destructor (free_huge_page) will be called
1519 * when this other ref is dropped.
1520 */
1521 return;
1522
1523 arch_clear_hugepage_flags(page);
1524 enqueue_huge_page(h, page);
1525 }
1526
1527 static void __update_and_free_page(struct hstate *h, struct page *page)
1528 {
1529 int i;
1530 struct page *subpage = page;
1531
1532 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1533 return;
1534
1535 if (alloc_huge_page_vmemmap(h, page)) {
1536 spin_lock_irq(&hugetlb_lock);
1537 /*
1538 * If we cannot allocate vmemmap pages, just refuse to free the
1539 * page and put the page back on the hugetlb free list and treat
1540 * as a surplus page.
1541 */
1542 add_hugetlb_page(h, page, true);
1543 spin_unlock_irq(&hugetlb_lock);
1544 return;
1545 }
1546
1547 for (i = 0; i < pages_per_huge_page(h);
1548 i++, subpage = mem_map_next(subpage, page, i)) {
1549 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1550 1 << PG_referenced | 1 << PG_dirty |
1551 1 << PG_active | 1 << PG_private |
1552 1 << PG_writeback);
1553 }
1554
1555 /*
1556 * Non-gigantic pages demoted from CMA allocated gigantic pages
1557 * need to be given back to CMA in free_gigantic_page.
1558 */
1559 if (hstate_is_gigantic(h) ||
1560 hugetlb_cma_page(page, huge_page_order(h))) {
1561 destroy_compound_gigantic_page(page, huge_page_order(h));
1562 free_gigantic_page(page, huge_page_order(h));
1563 } else {
1564 __free_pages(page, huge_page_order(h));
1565 }
1566 }
1567
1568 /*
1569 * As update_and_free_page() can be called under any context, so we cannot
1570 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1571 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1572 * the vmemmap pages.
1573 *
1574 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1575 * freed and frees them one-by-one. As the page->mapping pointer is going
1576 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1577 * structure of a lockless linked list of huge pages to be freed.
1578 */
1579 static LLIST_HEAD(hpage_freelist);
1580
1581 static void free_hpage_workfn(struct work_struct *work)
1582 {
1583 struct llist_node *node;
1584
1585 node = llist_del_all(&hpage_freelist);
1586
1587 while (node) {
1588 struct page *page;
1589 struct hstate *h;
1590
1591 page = container_of((struct address_space **)node,
1592 struct page, mapping);
1593 node = node->next;
1594 page->mapping = NULL;
1595 /*
1596 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1597 * is going to trigger because a previous call to
1598 * remove_hugetlb_page() will set_compound_page_dtor(page,
1599 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1600 */
1601 h = size_to_hstate(page_size(page));
1602
1603 __update_and_free_page(h, page);
1604
1605 cond_resched();
1606 }
1607 }
1608 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1609
1610 static inline void flush_free_hpage_work(struct hstate *h)
1611 {
1612 if (free_vmemmap_pages_per_hpage(h))
1613 flush_work(&free_hpage_work);
1614 }
1615
1616 static void update_and_free_page(struct hstate *h, struct page *page,
1617 bool atomic)
1618 {
1619 if (!HPageVmemmapOptimized(page) || !atomic) {
1620 __update_and_free_page(h, page);
1621 return;
1622 }
1623
1624 /*
1625 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1626 *
1627 * Only call schedule_work() if hpage_freelist is previously
1628 * empty. Otherwise, schedule_work() had been called but the workfn
1629 * hasn't retrieved the list yet.
1630 */
1631 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1632 schedule_work(&free_hpage_work);
1633 }
1634
1635 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1636 {
1637 struct page *page, *t_page;
1638
1639 list_for_each_entry_safe(page, t_page, list, lru) {
1640 update_and_free_page(h, page, false);
1641 cond_resched();
1642 }
1643 }
1644
1645 struct hstate *size_to_hstate(unsigned long size)
1646 {
1647 struct hstate *h;
1648
1649 for_each_hstate(h) {
1650 if (huge_page_size(h) == size)
1651 return h;
1652 }
1653 return NULL;
1654 }
1655
1656 void free_huge_page(struct page *page)
1657 {
1658 /*
1659 * Can't pass hstate in here because it is called from the
1660 * compound page destructor.
1661 */
1662 struct hstate *h = page_hstate(page);
1663 int nid = page_to_nid(page);
1664 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1665 bool restore_reserve;
1666 unsigned long flags;
1667
1668 VM_BUG_ON_PAGE(page_count(page), page);
1669 VM_BUG_ON_PAGE(page_mapcount(page), page);
1670
1671 hugetlb_set_page_subpool(page, NULL);
1672 page->mapping = NULL;
1673 restore_reserve = HPageRestoreReserve(page);
1674 ClearHPageRestoreReserve(page);
1675
1676 /*
1677 * If HPageRestoreReserve was set on page, page allocation consumed a
1678 * reservation. If the page was associated with a subpool, there
1679 * would have been a page reserved in the subpool before allocation
1680 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1681 * reservation, do not call hugepage_subpool_put_pages() as this will
1682 * remove the reserved page from the subpool.
1683 */
1684 if (!restore_reserve) {
1685 /*
1686 * A return code of zero implies that the subpool will be
1687 * under its minimum size if the reservation is not restored
1688 * after page is free. Therefore, force restore_reserve
1689 * operation.
1690 */
1691 if (hugepage_subpool_put_pages(spool, 1) == 0)
1692 restore_reserve = true;
1693 }
1694
1695 spin_lock_irqsave(&hugetlb_lock, flags);
1696 ClearHPageMigratable(page);
1697 hugetlb_cgroup_uncharge_page(hstate_index(h),
1698 pages_per_huge_page(h), page);
1699 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1700 pages_per_huge_page(h), page);
1701 if (restore_reserve)
1702 h->resv_huge_pages++;
1703
1704 if (HPageTemporary(page)) {
1705 remove_hugetlb_page(h, page, false);
1706 spin_unlock_irqrestore(&hugetlb_lock, flags);
1707 update_and_free_page(h, page, true);
1708 } else if (h->surplus_huge_pages_node[nid]) {
1709 /* remove the page from active list */
1710 remove_hugetlb_page(h, page, true);
1711 spin_unlock_irqrestore(&hugetlb_lock, flags);
1712 update_and_free_page(h, page, true);
1713 } else {
1714 arch_clear_hugepage_flags(page);
1715 enqueue_huge_page(h, page);
1716 spin_unlock_irqrestore(&hugetlb_lock, flags);
1717 }
1718 }
1719
1720 /*
1721 * Must be called with the hugetlb lock held
1722 */
1723 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1724 {
1725 lockdep_assert_held(&hugetlb_lock);
1726 h->nr_huge_pages++;
1727 h->nr_huge_pages_node[nid]++;
1728 }
1729
1730 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1731 {
1732 free_huge_page_vmemmap(h, page);
1733 INIT_LIST_HEAD(&page->lru);
1734 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1735 hugetlb_set_page_subpool(page, NULL);
1736 set_hugetlb_cgroup(page, NULL);
1737 set_hugetlb_cgroup_rsvd(page, NULL);
1738 }
1739
1740 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1741 {
1742 __prep_new_huge_page(h, page);
1743 spin_lock_irq(&hugetlb_lock);
1744 __prep_account_new_huge_page(h, nid);
1745 spin_unlock_irq(&hugetlb_lock);
1746 }
1747
1748 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1749 bool demote)
1750 {
1751 int i, j;
1752 int nr_pages = 1 << order;
1753 struct page *p = page + 1;
1754
1755 /* we rely on prep_new_huge_page to set the destructor */
1756 set_compound_order(page, order);
1757 __ClearPageReserved(page);
1758 __SetPageHead(page);
1759 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1760 /*
1761 * For gigantic hugepages allocated through bootmem at
1762 * boot, it's safer to be consistent with the not-gigantic
1763 * hugepages and clear the PG_reserved bit from all tail pages
1764 * too. Otherwise drivers using get_user_pages() to access tail
1765 * pages may get the reference counting wrong if they see
1766 * PG_reserved set on a tail page (despite the head page not
1767 * having PG_reserved set). Enforcing this consistency between
1768 * head and tail pages allows drivers to optimize away a check
1769 * on the head page when they need know if put_page() is needed
1770 * after get_user_pages().
1771 */
1772 __ClearPageReserved(p);
1773 /*
1774 * Subtle and very unlikely
1775 *
1776 * Gigantic 'page allocators' such as memblock or cma will
1777 * return a set of pages with each page ref counted. We need
1778 * to turn this set of pages into a compound page with tail
1779 * page ref counts set to zero. Code such as speculative page
1780 * cache adding could take a ref on a 'to be' tail page.
1781 * We need to respect any increased ref count, and only set
1782 * the ref count to zero if count is currently 1. If count
1783 * is not 1, we return an error. An error return indicates
1784 * the set of pages can not be converted to a gigantic page.
1785 * The caller who allocated the pages should then discard the
1786 * pages using the appropriate free interface.
1787 *
1788 * In the case of demote, the ref count will be zero.
1789 */
1790 if (!demote) {
1791 if (!page_ref_freeze(p, 1)) {
1792 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1793 goto out_error;
1794 }
1795 } else {
1796 VM_BUG_ON_PAGE(page_count(p), p);
1797 }
1798 set_compound_head(p, page);
1799 }
1800 atomic_set(compound_mapcount_ptr(page), -1);
1801 atomic_set(compound_pincount_ptr(page), 0);
1802 return true;
1803
1804 out_error:
1805 /* undo tail page modifications made above */
1806 p = page + 1;
1807 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1808 clear_compound_head(p);
1809 set_page_refcounted(p);
1810 }
1811 /* need to clear PG_reserved on remaining tail pages */
1812 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1813 __ClearPageReserved(p);
1814 set_compound_order(page, 0);
1815 page[1].compound_nr = 0;
1816 __ClearPageHead(page);
1817 return false;
1818 }
1819
1820 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1821 {
1822 return __prep_compound_gigantic_page(page, order, false);
1823 }
1824
1825 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1826 unsigned int order)
1827 {
1828 return __prep_compound_gigantic_page(page, order, true);
1829 }
1830
1831 /*
1832 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1833 * transparent huge pages. See the PageTransHuge() documentation for more
1834 * details.
1835 */
1836 int PageHuge(struct page *page)
1837 {
1838 if (!PageCompound(page))
1839 return 0;
1840
1841 page = compound_head(page);
1842 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1843 }
1844 EXPORT_SYMBOL_GPL(PageHuge);
1845
1846 /*
1847 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1848 * normal or transparent huge pages.
1849 */
1850 int PageHeadHuge(struct page *page_head)
1851 {
1852 if (!PageHead(page_head))
1853 return 0;
1854
1855 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1856 }
1857
1858 /*
1859 * Find and lock address space (mapping) in write mode.
1860 *
1861 * Upon entry, the page is locked which means that page_mapping() is
1862 * stable. Due to locking order, we can only trylock_write. If we can
1863 * not get the lock, simply return NULL to caller.
1864 */
1865 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1866 {
1867 struct address_space *mapping = page_mapping(hpage);
1868
1869 if (!mapping)
1870 return mapping;
1871
1872 if (i_mmap_trylock_write(mapping))
1873 return mapping;
1874
1875 return NULL;
1876 }
1877
1878 pgoff_t hugetlb_basepage_index(struct page *page)
1879 {
1880 struct page *page_head = compound_head(page);
1881 pgoff_t index = page_index(page_head);
1882 unsigned long compound_idx;
1883
1884 if (compound_order(page_head) >= MAX_ORDER)
1885 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1886 else
1887 compound_idx = page - page_head;
1888
1889 return (index << compound_order(page_head)) + compound_idx;
1890 }
1891
1892 static struct page *alloc_buddy_huge_page(struct hstate *h,
1893 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1894 nodemask_t *node_alloc_noretry)
1895 {
1896 int order = huge_page_order(h);
1897 struct page *page;
1898 bool alloc_try_hard = true;
1899
1900 /*
1901 * By default we always try hard to allocate the page with
1902 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1903 * a loop (to adjust global huge page counts) and previous allocation
1904 * failed, do not continue to try hard on the same node. Use the
1905 * node_alloc_noretry bitmap to manage this state information.
1906 */
1907 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1908 alloc_try_hard = false;
1909 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1910 if (alloc_try_hard)
1911 gfp_mask |= __GFP_RETRY_MAYFAIL;
1912 if (nid == NUMA_NO_NODE)
1913 nid = numa_mem_id();
1914 page = __alloc_pages(gfp_mask, order, nid, nmask);
1915 if (page)
1916 __count_vm_event(HTLB_BUDDY_PGALLOC);
1917 else
1918 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1919
1920 /*
1921 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1922 * indicates an overall state change. Clear bit so that we resume
1923 * normal 'try hard' allocations.
1924 */
1925 if (node_alloc_noretry && page && !alloc_try_hard)
1926 node_clear(nid, *node_alloc_noretry);
1927
1928 /*
1929 * If we tried hard to get a page but failed, set bit so that
1930 * subsequent attempts will not try as hard until there is an
1931 * overall state change.
1932 */
1933 if (node_alloc_noretry && !page && alloc_try_hard)
1934 node_set(nid, *node_alloc_noretry);
1935
1936 return page;
1937 }
1938
1939 /*
1940 * Common helper to allocate a fresh hugetlb page. All specific allocators
1941 * should use this function to get new hugetlb pages
1942 */
1943 static struct page *alloc_fresh_huge_page(struct hstate *h,
1944 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1945 nodemask_t *node_alloc_noretry)
1946 {
1947 struct page *page;
1948 bool retry = false;
1949
1950 retry:
1951 if (hstate_is_gigantic(h))
1952 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1953 else
1954 page = alloc_buddy_huge_page(h, gfp_mask,
1955 nid, nmask, node_alloc_noretry);
1956 if (!page)
1957 return NULL;
1958
1959 if (hstate_is_gigantic(h)) {
1960 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1961 /*
1962 * Rare failure to convert pages to compound page.
1963 * Free pages and try again - ONCE!
1964 */
1965 free_gigantic_page(page, huge_page_order(h));
1966 if (!retry) {
1967 retry = true;
1968 goto retry;
1969 }
1970 return NULL;
1971 }
1972 }
1973 prep_new_huge_page(h, page, page_to_nid(page));
1974
1975 return page;
1976 }
1977
1978 /*
1979 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1980 * manner.
1981 */
1982 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1983 nodemask_t *node_alloc_noretry)
1984 {
1985 struct page *page;
1986 int nr_nodes, node;
1987 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1988
1989 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1990 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1991 node_alloc_noretry);
1992 if (page)
1993 break;
1994 }
1995
1996 if (!page)
1997 return 0;
1998
1999 put_page(page); /* free it into the hugepage allocator */
2000
2001 return 1;
2002 }
2003
2004 /*
2005 * Remove huge page from pool from next node to free. Attempt to keep
2006 * persistent huge pages more or less balanced over allowed nodes.
2007 * This routine only 'removes' the hugetlb page. The caller must make
2008 * an additional call to free the page to low level allocators.
2009 * Called with hugetlb_lock locked.
2010 */
2011 static struct page *remove_pool_huge_page(struct hstate *h,
2012 nodemask_t *nodes_allowed,
2013 bool acct_surplus)
2014 {
2015 int nr_nodes, node;
2016 struct page *page = NULL;
2017
2018 lockdep_assert_held(&hugetlb_lock);
2019 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2020 /*
2021 * If we're returning unused surplus pages, only examine
2022 * nodes with surplus pages.
2023 */
2024 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2025 !list_empty(&h->hugepage_freelists[node])) {
2026 page = list_entry(h->hugepage_freelists[node].next,
2027 struct page, lru);
2028 remove_hugetlb_page(h, page, acct_surplus);
2029 break;
2030 }
2031 }
2032
2033 return page;
2034 }
2035
2036 /*
2037 * Dissolve a given free hugepage into free buddy pages. This function does
2038 * nothing for in-use hugepages and non-hugepages.
2039 * This function returns values like below:
2040 *
2041 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2042 * when the system is under memory pressure and the feature of
2043 * freeing unused vmemmap pages associated with each hugetlb page
2044 * is enabled.
2045 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2046 * (allocated or reserved.)
2047 * 0: successfully dissolved free hugepages or the page is not a
2048 * hugepage (considered as already dissolved)
2049 */
2050 int dissolve_free_huge_page(struct page *page)
2051 {
2052 int rc = -EBUSY;
2053
2054 retry:
2055 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2056 if (!PageHuge(page))
2057 return 0;
2058
2059 spin_lock_irq(&hugetlb_lock);
2060 if (!PageHuge(page)) {
2061 rc = 0;
2062 goto out;
2063 }
2064
2065 if (!page_count(page)) {
2066 struct page *head = compound_head(page);
2067 struct hstate *h = page_hstate(head);
2068 if (h->free_huge_pages - h->resv_huge_pages == 0)
2069 goto out;
2070
2071 /*
2072 * We should make sure that the page is already on the free list
2073 * when it is dissolved.
2074 */
2075 if (unlikely(!HPageFreed(head))) {
2076 spin_unlock_irq(&hugetlb_lock);
2077 cond_resched();
2078
2079 /*
2080 * Theoretically, we should return -EBUSY when we
2081 * encounter this race. In fact, we have a chance
2082 * to successfully dissolve the page if we do a
2083 * retry. Because the race window is quite small.
2084 * If we seize this opportunity, it is an optimization
2085 * for increasing the success rate of dissolving page.
2086 */
2087 goto retry;
2088 }
2089
2090 remove_hugetlb_page(h, head, false);
2091 h->max_huge_pages--;
2092 spin_unlock_irq(&hugetlb_lock);
2093
2094 /*
2095 * Normally update_and_free_page will allocate required vmemmmap
2096 * before freeing the page. update_and_free_page will fail to
2097 * free the page if it can not allocate required vmemmap. We
2098 * need to adjust max_huge_pages if the page is not freed.
2099 * Attempt to allocate vmemmmap here so that we can take
2100 * appropriate action on failure.
2101 */
2102 rc = alloc_huge_page_vmemmap(h, head);
2103 if (!rc) {
2104 /*
2105 * Move PageHWPoison flag from head page to the raw
2106 * error page, which makes any subpages rather than
2107 * the error page reusable.
2108 */
2109 if (PageHWPoison(head) && page != head) {
2110 SetPageHWPoison(page);
2111 ClearPageHWPoison(head);
2112 }
2113 update_and_free_page(h, head, false);
2114 } else {
2115 spin_lock_irq(&hugetlb_lock);
2116 add_hugetlb_page(h, head, false);
2117 h->max_huge_pages++;
2118 spin_unlock_irq(&hugetlb_lock);
2119 }
2120
2121 return rc;
2122 }
2123 out:
2124 spin_unlock_irq(&hugetlb_lock);
2125 return rc;
2126 }
2127
2128 /*
2129 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2130 * make specified memory blocks removable from the system.
2131 * Note that this will dissolve a free gigantic hugepage completely, if any
2132 * part of it lies within the given range.
2133 * Also note that if dissolve_free_huge_page() returns with an error, all
2134 * free hugepages that were dissolved before that error are lost.
2135 */
2136 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2137 {
2138 unsigned long pfn;
2139 struct page *page;
2140 int rc = 0;
2141
2142 if (!hugepages_supported())
2143 return rc;
2144
2145 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2146 page = pfn_to_page(pfn);
2147 rc = dissolve_free_huge_page(page);
2148 if (rc)
2149 break;
2150 }
2151
2152 return rc;
2153 }
2154
2155 /*
2156 * Allocates a fresh surplus page from the page allocator.
2157 */
2158 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2159 int nid, nodemask_t *nmask, bool zero_ref)
2160 {
2161 struct page *page = NULL;
2162 bool retry = false;
2163
2164 if (hstate_is_gigantic(h))
2165 return NULL;
2166
2167 spin_lock_irq(&hugetlb_lock);
2168 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2169 goto out_unlock;
2170 spin_unlock_irq(&hugetlb_lock);
2171
2172 retry:
2173 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2174 if (!page)
2175 return NULL;
2176
2177 spin_lock_irq(&hugetlb_lock);
2178 /*
2179 * We could have raced with the pool size change.
2180 * Double check that and simply deallocate the new page
2181 * if we would end up overcommiting the surpluses. Abuse
2182 * temporary page to workaround the nasty free_huge_page
2183 * codeflow
2184 */
2185 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2186 SetHPageTemporary(page);
2187 spin_unlock_irq(&hugetlb_lock);
2188 put_page(page);
2189 return NULL;
2190 }
2191
2192 if (zero_ref) {
2193 /*
2194 * Caller requires a page with zero ref count.
2195 * We will drop ref count here. If someone else is holding
2196 * a ref, the page will be freed when they drop it. Abuse
2197 * temporary page flag to accomplish this.
2198 */
2199 SetHPageTemporary(page);
2200 if (!put_page_testzero(page)) {
2201 /*
2202 * Unexpected inflated ref count on freshly allocated
2203 * huge. Retry once.
2204 */
2205 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2206 spin_unlock_irq(&hugetlb_lock);
2207 if (retry)
2208 return NULL;
2209
2210 retry = true;
2211 goto retry;
2212 }
2213 ClearHPageTemporary(page);
2214 }
2215
2216 h->surplus_huge_pages++;
2217 h->surplus_huge_pages_node[page_to_nid(page)]++;
2218
2219 out_unlock:
2220 spin_unlock_irq(&hugetlb_lock);
2221
2222 return page;
2223 }
2224
2225 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2226 int nid, nodemask_t *nmask)
2227 {
2228 struct page *page;
2229
2230 if (hstate_is_gigantic(h))
2231 return NULL;
2232
2233 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2234 if (!page)
2235 return NULL;
2236
2237 /*
2238 * We do not account these pages as surplus because they are only
2239 * temporary and will be released properly on the last reference
2240 */
2241 SetHPageTemporary(page);
2242
2243 return page;
2244 }
2245
2246 /*
2247 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2248 */
2249 static
2250 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2251 struct vm_area_struct *vma, unsigned long addr)
2252 {
2253 struct page *page = NULL;
2254 struct mempolicy *mpol;
2255 gfp_t gfp_mask = htlb_alloc_mask(h);
2256 int nid;
2257 nodemask_t *nodemask;
2258
2259 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2260 if (mpol_is_preferred_many(mpol)) {
2261 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2262
2263 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2264 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2265
2266 /* Fallback to all nodes if page==NULL */
2267 nodemask = NULL;
2268 }
2269
2270 if (!page)
2271 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2272 mpol_cond_put(mpol);
2273 return page;
2274 }
2275
2276 /* page migration callback function */
2277 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2278 nodemask_t *nmask, gfp_t gfp_mask)
2279 {
2280 spin_lock_irq(&hugetlb_lock);
2281 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2282 struct page *page;
2283
2284 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2285 if (page) {
2286 spin_unlock_irq(&hugetlb_lock);
2287 return page;
2288 }
2289 }
2290 spin_unlock_irq(&hugetlb_lock);
2291
2292 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2293 }
2294
2295 /* mempolicy aware migration callback */
2296 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2297 unsigned long address)
2298 {
2299 struct mempolicy *mpol;
2300 nodemask_t *nodemask;
2301 struct page *page;
2302 gfp_t gfp_mask;
2303 int node;
2304
2305 gfp_mask = htlb_alloc_mask(h);
2306 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2307 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2308 mpol_cond_put(mpol);
2309
2310 return page;
2311 }
2312
2313 /*
2314 * Increase the hugetlb pool such that it can accommodate a reservation
2315 * of size 'delta'.
2316 */
2317 static int gather_surplus_pages(struct hstate *h, long delta)
2318 __must_hold(&hugetlb_lock)
2319 {
2320 struct list_head surplus_list;
2321 struct page *page, *tmp;
2322 int ret;
2323 long i;
2324 long needed, allocated;
2325 bool alloc_ok = true;
2326
2327 lockdep_assert_held(&hugetlb_lock);
2328 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2329 if (needed <= 0) {
2330 h->resv_huge_pages += delta;
2331 return 0;
2332 }
2333
2334 allocated = 0;
2335 INIT_LIST_HEAD(&surplus_list);
2336
2337 ret = -ENOMEM;
2338 retry:
2339 spin_unlock_irq(&hugetlb_lock);
2340 for (i = 0; i < needed; i++) {
2341 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2342 NUMA_NO_NODE, NULL, true);
2343 if (!page) {
2344 alloc_ok = false;
2345 break;
2346 }
2347 list_add(&page->lru, &surplus_list);
2348 cond_resched();
2349 }
2350 allocated += i;
2351
2352 /*
2353 * After retaking hugetlb_lock, we need to recalculate 'needed'
2354 * because either resv_huge_pages or free_huge_pages may have changed.
2355 */
2356 spin_lock_irq(&hugetlb_lock);
2357 needed = (h->resv_huge_pages + delta) -
2358 (h->free_huge_pages + allocated);
2359 if (needed > 0) {
2360 if (alloc_ok)
2361 goto retry;
2362 /*
2363 * We were not able to allocate enough pages to
2364 * satisfy the entire reservation so we free what
2365 * we've allocated so far.
2366 */
2367 goto free;
2368 }
2369 /*
2370 * The surplus_list now contains _at_least_ the number of extra pages
2371 * needed to accommodate the reservation. Add the appropriate number
2372 * of pages to the hugetlb pool and free the extras back to the buddy
2373 * allocator. Commit the entire reservation here to prevent another
2374 * process from stealing the pages as they are added to the pool but
2375 * before they are reserved.
2376 */
2377 needed += allocated;
2378 h->resv_huge_pages += delta;
2379 ret = 0;
2380
2381 /* Free the needed pages to the hugetlb pool */
2382 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2383 if ((--needed) < 0)
2384 break;
2385 /* Add the page to the hugetlb allocator */
2386 enqueue_huge_page(h, page);
2387 }
2388 free:
2389 spin_unlock_irq(&hugetlb_lock);
2390
2391 /*
2392 * Free unnecessary surplus pages to the buddy allocator.
2393 * Pages have no ref count, call free_huge_page directly.
2394 */
2395 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2396 free_huge_page(page);
2397 spin_lock_irq(&hugetlb_lock);
2398
2399 return ret;
2400 }
2401
2402 /*
2403 * This routine has two main purposes:
2404 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2405 * in unused_resv_pages. This corresponds to the prior adjustments made
2406 * to the associated reservation map.
2407 * 2) Free any unused surplus pages that may have been allocated to satisfy
2408 * the reservation. As many as unused_resv_pages may be freed.
2409 */
2410 static void return_unused_surplus_pages(struct hstate *h,
2411 unsigned long unused_resv_pages)
2412 {
2413 unsigned long nr_pages;
2414 struct page *page;
2415 LIST_HEAD(page_list);
2416
2417 lockdep_assert_held(&hugetlb_lock);
2418 /* Uncommit the reservation */
2419 h->resv_huge_pages -= unused_resv_pages;
2420
2421 /* Cannot return gigantic pages currently */
2422 if (hstate_is_gigantic(h))
2423 goto out;
2424
2425 /*
2426 * Part (or even all) of the reservation could have been backed
2427 * by pre-allocated pages. Only free surplus pages.
2428 */
2429 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2430
2431 /*
2432 * We want to release as many surplus pages as possible, spread
2433 * evenly across all nodes with memory. Iterate across these nodes
2434 * until we can no longer free unreserved surplus pages. This occurs
2435 * when the nodes with surplus pages have no free pages.
2436 * remove_pool_huge_page() will balance the freed pages across the
2437 * on-line nodes with memory and will handle the hstate accounting.
2438 */
2439 while (nr_pages--) {
2440 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2441 if (!page)
2442 goto out;
2443
2444 list_add(&page->lru, &page_list);
2445 }
2446
2447 out:
2448 spin_unlock_irq(&hugetlb_lock);
2449 update_and_free_pages_bulk(h, &page_list);
2450 spin_lock_irq(&hugetlb_lock);
2451 }
2452
2453
2454 /*
2455 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2456 * are used by the huge page allocation routines to manage reservations.
2457 *
2458 * vma_needs_reservation is called to determine if the huge page at addr
2459 * within the vma has an associated reservation. If a reservation is
2460 * needed, the value 1 is returned. The caller is then responsible for
2461 * managing the global reservation and subpool usage counts. After
2462 * the huge page has been allocated, vma_commit_reservation is called
2463 * to add the page to the reservation map. If the page allocation fails,
2464 * the reservation must be ended instead of committed. vma_end_reservation
2465 * is called in such cases.
2466 *
2467 * In the normal case, vma_commit_reservation returns the same value
2468 * as the preceding vma_needs_reservation call. The only time this
2469 * is not the case is if a reserve map was changed between calls. It
2470 * is the responsibility of the caller to notice the difference and
2471 * take appropriate action.
2472 *
2473 * vma_add_reservation is used in error paths where a reservation must
2474 * be restored when a newly allocated huge page must be freed. It is
2475 * to be called after calling vma_needs_reservation to determine if a
2476 * reservation exists.
2477 *
2478 * vma_del_reservation is used in error paths where an entry in the reserve
2479 * map was created during huge page allocation and must be removed. It is to
2480 * be called after calling vma_needs_reservation to determine if a reservation
2481 * exists.
2482 */
2483 enum vma_resv_mode {
2484 VMA_NEEDS_RESV,
2485 VMA_COMMIT_RESV,
2486 VMA_END_RESV,
2487 VMA_ADD_RESV,
2488 VMA_DEL_RESV,
2489 };
2490 static long __vma_reservation_common(struct hstate *h,
2491 struct vm_area_struct *vma, unsigned long addr,
2492 enum vma_resv_mode mode)
2493 {
2494 struct resv_map *resv;
2495 pgoff_t idx;
2496 long ret;
2497 long dummy_out_regions_needed;
2498
2499 resv = vma_resv_map(vma);
2500 if (!resv)
2501 return 1;
2502
2503 idx = vma_hugecache_offset(h, vma, addr);
2504 switch (mode) {
2505 case VMA_NEEDS_RESV:
2506 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2507 /* We assume that vma_reservation_* routines always operate on
2508 * 1 page, and that adding to resv map a 1 page entry can only
2509 * ever require 1 region.
2510 */
2511 VM_BUG_ON(dummy_out_regions_needed != 1);
2512 break;
2513 case VMA_COMMIT_RESV:
2514 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2515 /* region_add calls of range 1 should never fail. */
2516 VM_BUG_ON(ret < 0);
2517 break;
2518 case VMA_END_RESV:
2519 region_abort(resv, idx, idx + 1, 1);
2520 ret = 0;
2521 break;
2522 case VMA_ADD_RESV:
2523 if (vma->vm_flags & VM_MAYSHARE) {
2524 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2525 /* region_add calls of range 1 should never fail. */
2526 VM_BUG_ON(ret < 0);
2527 } else {
2528 region_abort(resv, idx, idx + 1, 1);
2529 ret = region_del(resv, idx, idx + 1);
2530 }
2531 break;
2532 case VMA_DEL_RESV:
2533 if (vma->vm_flags & VM_MAYSHARE) {
2534 region_abort(resv, idx, idx + 1, 1);
2535 ret = region_del(resv, idx, idx + 1);
2536 } else {
2537 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2538 /* region_add calls of range 1 should never fail. */
2539 VM_BUG_ON(ret < 0);
2540 }
2541 break;
2542 default:
2543 BUG();
2544 }
2545
2546 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2547 return ret;
2548 /*
2549 * We know private mapping must have HPAGE_RESV_OWNER set.
2550 *
2551 * In most cases, reserves always exist for private mappings.
2552 * However, a file associated with mapping could have been
2553 * hole punched or truncated after reserves were consumed.
2554 * As subsequent fault on such a range will not use reserves.
2555 * Subtle - The reserve map for private mappings has the
2556 * opposite meaning than that of shared mappings. If NO
2557 * entry is in the reserve map, it means a reservation exists.
2558 * If an entry exists in the reserve map, it means the
2559 * reservation has already been consumed. As a result, the
2560 * return value of this routine is the opposite of the
2561 * value returned from reserve map manipulation routines above.
2562 */
2563 if (ret > 0)
2564 return 0;
2565 if (ret == 0)
2566 return 1;
2567 return ret;
2568 }
2569
2570 static long vma_needs_reservation(struct hstate *h,
2571 struct vm_area_struct *vma, unsigned long addr)
2572 {
2573 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2574 }
2575
2576 static long vma_commit_reservation(struct hstate *h,
2577 struct vm_area_struct *vma, unsigned long addr)
2578 {
2579 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2580 }
2581
2582 static void vma_end_reservation(struct hstate *h,
2583 struct vm_area_struct *vma, unsigned long addr)
2584 {
2585 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2586 }
2587
2588 static long vma_add_reservation(struct hstate *h,
2589 struct vm_area_struct *vma, unsigned long addr)
2590 {
2591 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2592 }
2593
2594 static long vma_del_reservation(struct hstate *h,
2595 struct vm_area_struct *vma, unsigned long addr)
2596 {
2597 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2598 }
2599
2600 /*
2601 * This routine is called to restore reservation information on error paths.
2602 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2603 * the hugetlb mutex should remain held when calling this routine.
2604 *
2605 * It handles two specific cases:
2606 * 1) A reservation was in place and the page consumed the reservation.
2607 * HPageRestoreReserve is set in the page.
2608 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2609 * not set. However, alloc_huge_page always updates the reserve map.
2610 *
2611 * In case 1, free_huge_page later in the error path will increment the
2612 * global reserve count. But, free_huge_page does not have enough context
2613 * to adjust the reservation map. This case deals primarily with private
2614 * mappings. Adjust the reserve map here to be consistent with global
2615 * reserve count adjustments to be made by free_huge_page. Make sure the
2616 * reserve map indicates there is a reservation present.
2617 *
2618 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2619 */
2620 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2621 unsigned long address, struct page *page)
2622 {
2623 long rc = vma_needs_reservation(h, vma, address);
2624
2625 if (HPageRestoreReserve(page)) {
2626 if (unlikely(rc < 0))
2627 /*
2628 * Rare out of memory condition in reserve map
2629 * manipulation. Clear HPageRestoreReserve so that
2630 * global reserve count will not be incremented
2631 * by free_huge_page. This will make it appear
2632 * as though the reservation for this page was
2633 * consumed. This may prevent the task from
2634 * faulting in the page at a later time. This
2635 * is better than inconsistent global huge page
2636 * accounting of reserve counts.
2637 */
2638 ClearHPageRestoreReserve(page);
2639 else if (rc)
2640 (void)vma_add_reservation(h, vma, address);
2641 else
2642 vma_end_reservation(h, vma, address);
2643 } else {
2644 if (!rc) {
2645 /*
2646 * This indicates there is an entry in the reserve map
2647 * not added by alloc_huge_page. We know it was added
2648 * before the alloc_huge_page call, otherwise
2649 * HPageRestoreReserve would be set on the page.
2650 * Remove the entry so that a subsequent allocation
2651 * does not consume a reservation.
2652 */
2653 rc = vma_del_reservation(h, vma, address);
2654 if (rc < 0)
2655 /*
2656 * VERY rare out of memory condition. Since
2657 * we can not delete the entry, set
2658 * HPageRestoreReserve so that the reserve
2659 * count will be incremented when the page
2660 * is freed. This reserve will be consumed
2661 * on a subsequent allocation.
2662 */
2663 SetHPageRestoreReserve(page);
2664 } else if (rc < 0) {
2665 /*
2666 * Rare out of memory condition from
2667 * vma_needs_reservation call. Memory allocation is
2668 * only attempted if a new entry is needed. Therefore,
2669 * this implies there is not an entry in the
2670 * reserve map.
2671 *
2672 * For shared mappings, no entry in the map indicates
2673 * no reservation. We are done.
2674 */
2675 if (!(vma->vm_flags & VM_MAYSHARE))
2676 /*
2677 * For private mappings, no entry indicates
2678 * a reservation is present. Since we can
2679 * not add an entry, set SetHPageRestoreReserve
2680 * on the page so reserve count will be
2681 * incremented when freed. This reserve will
2682 * be consumed on a subsequent allocation.
2683 */
2684 SetHPageRestoreReserve(page);
2685 } else
2686 /*
2687 * No reservation present, do nothing
2688 */
2689 vma_end_reservation(h, vma, address);
2690 }
2691 }
2692
2693 /*
2694 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2695 * @h: struct hstate old page belongs to
2696 * @old_page: Old page to dissolve
2697 * @list: List to isolate the page in case we need to
2698 * Returns 0 on success, otherwise negated error.
2699 */
2700 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2701 struct list_head *list)
2702 {
2703 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2704 int nid = page_to_nid(old_page);
2705 bool alloc_retry = false;
2706 struct page *new_page;
2707 int ret = 0;
2708
2709 /*
2710 * Before dissolving the page, we need to allocate a new one for the
2711 * pool to remain stable. Here, we allocate the page and 'prep' it
2712 * by doing everything but actually updating counters and adding to
2713 * the pool. This simplifies and let us do most of the processing
2714 * under the lock.
2715 */
2716 alloc_retry:
2717 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2718 if (!new_page)
2719 return -ENOMEM;
2720 /*
2721 * If all goes well, this page will be directly added to the free
2722 * list in the pool. For this the ref count needs to be zero.
2723 * Attempt to drop now, and retry once if needed. It is VERY
2724 * unlikely there is another ref on the page.
2725 *
2726 * If someone else has a reference to the page, it will be freed
2727 * when they drop their ref. Abuse temporary page flag to accomplish
2728 * this. Retry once if there is an inflated ref count.
2729 */
2730 SetHPageTemporary(new_page);
2731 if (!put_page_testzero(new_page)) {
2732 if (alloc_retry)
2733 return -EBUSY;
2734
2735 alloc_retry = true;
2736 goto alloc_retry;
2737 }
2738 ClearHPageTemporary(new_page);
2739
2740 __prep_new_huge_page(h, new_page);
2741
2742 retry:
2743 spin_lock_irq(&hugetlb_lock);
2744 if (!PageHuge(old_page)) {
2745 /*
2746 * Freed from under us. Drop new_page too.
2747 */
2748 goto free_new;
2749 } else if (page_count(old_page)) {
2750 /*
2751 * Someone has grabbed the page, try to isolate it here.
2752 * Fail with -EBUSY if not possible.
2753 */
2754 spin_unlock_irq(&hugetlb_lock);
2755 if (!isolate_huge_page(old_page, list))
2756 ret = -EBUSY;
2757 spin_lock_irq(&hugetlb_lock);
2758 goto free_new;
2759 } else if (!HPageFreed(old_page)) {
2760 /*
2761 * Page's refcount is 0 but it has not been enqueued in the
2762 * freelist yet. Race window is small, so we can succeed here if
2763 * we retry.
2764 */
2765 spin_unlock_irq(&hugetlb_lock);
2766 cond_resched();
2767 goto retry;
2768 } else {
2769 /*
2770 * Ok, old_page is still a genuine free hugepage. Remove it from
2771 * the freelist and decrease the counters. These will be
2772 * incremented again when calling __prep_account_new_huge_page()
2773 * and enqueue_huge_page() for new_page. The counters will remain
2774 * stable since this happens under the lock.
2775 */
2776 remove_hugetlb_page(h, old_page, false);
2777
2778 /*
2779 * Ref count on new page is already zero as it was dropped
2780 * earlier. It can be directly added to the pool free list.
2781 */
2782 __prep_account_new_huge_page(h, nid);
2783 enqueue_huge_page(h, new_page);
2784
2785 /*
2786 * Pages have been replaced, we can safely free the old one.
2787 */
2788 spin_unlock_irq(&hugetlb_lock);
2789 update_and_free_page(h, old_page, false);
2790 }
2791
2792 return ret;
2793
2794 free_new:
2795 spin_unlock_irq(&hugetlb_lock);
2796 /* Page has a zero ref count, but needs a ref to be freed */
2797 set_page_refcounted(new_page);
2798 update_and_free_page(h, new_page, false);
2799
2800 return ret;
2801 }
2802
2803 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2804 {
2805 struct hstate *h;
2806 struct page *head;
2807 int ret = -EBUSY;
2808
2809 /*
2810 * The page might have been dissolved from under our feet, so make sure
2811 * to carefully check the state under the lock.
2812 * Return success when racing as if we dissolved the page ourselves.
2813 */
2814 spin_lock_irq(&hugetlb_lock);
2815 if (PageHuge(page)) {
2816 head = compound_head(page);
2817 h = page_hstate(head);
2818 } else {
2819 spin_unlock_irq(&hugetlb_lock);
2820 return 0;
2821 }
2822 spin_unlock_irq(&hugetlb_lock);
2823
2824 /*
2825 * Fence off gigantic pages as there is a cyclic dependency between
2826 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2827 * of bailing out right away without further retrying.
2828 */
2829 if (hstate_is_gigantic(h))
2830 return -ENOMEM;
2831
2832 if (page_count(head) && isolate_huge_page(head, list))
2833 ret = 0;
2834 else if (!page_count(head))
2835 ret = alloc_and_dissolve_huge_page(h, head, list);
2836
2837 return ret;
2838 }
2839
2840 struct page *alloc_huge_page(struct vm_area_struct *vma,
2841 unsigned long addr, int avoid_reserve)
2842 {
2843 struct hugepage_subpool *spool = subpool_vma(vma);
2844 struct hstate *h = hstate_vma(vma);
2845 struct page *page;
2846 long map_chg, map_commit;
2847 long gbl_chg;
2848 int ret, idx;
2849 struct hugetlb_cgroup *h_cg;
2850 bool deferred_reserve;
2851
2852 idx = hstate_index(h);
2853 /*
2854 * Examine the region/reserve map to determine if the process
2855 * has a reservation for the page to be allocated. A return
2856 * code of zero indicates a reservation exists (no change).
2857 */
2858 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2859 if (map_chg < 0)
2860 return ERR_PTR(-ENOMEM);
2861
2862 /*
2863 * Processes that did not create the mapping will have no
2864 * reserves as indicated by the region/reserve map. Check
2865 * that the allocation will not exceed the subpool limit.
2866 * Allocations for MAP_NORESERVE mappings also need to be
2867 * checked against any subpool limit.
2868 */
2869 if (map_chg || avoid_reserve) {
2870 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2871 if (gbl_chg < 0) {
2872 vma_end_reservation(h, vma, addr);
2873 return ERR_PTR(-ENOSPC);
2874 }
2875
2876 /*
2877 * Even though there was no reservation in the region/reserve
2878 * map, there could be reservations associated with the
2879 * subpool that can be used. This would be indicated if the
2880 * return value of hugepage_subpool_get_pages() is zero.
2881 * However, if avoid_reserve is specified we still avoid even
2882 * the subpool reservations.
2883 */
2884 if (avoid_reserve)
2885 gbl_chg = 1;
2886 }
2887
2888 /* If this allocation is not consuming a reservation, charge it now.
2889 */
2890 deferred_reserve = map_chg || avoid_reserve;
2891 if (deferred_reserve) {
2892 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2893 idx, pages_per_huge_page(h), &h_cg);
2894 if (ret)
2895 goto out_subpool_put;
2896 }
2897
2898 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2899 if (ret)
2900 goto out_uncharge_cgroup_reservation;
2901
2902 spin_lock_irq(&hugetlb_lock);
2903 /*
2904 * glb_chg is passed to indicate whether or not a page must be taken
2905 * from the global free pool (global change). gbl_chg == 0 indicates
2906 * a reservation exists for the allocation.
2907 */
2908 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2909 if (!page) {
2910 spin_unlock_irq(&hugetlb_lock);
2911 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2912 if (!page)
2913 goto out_uncharge_cgroup;
2914 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2915 SetHPageRestoreReserve(page);
2916 h->resv_huge_pages--;
2917 }
2918 spin_lock_irq(&hugetlb_lock);
2919 list_add(&page->lru, &h->hugepage_activelist);
2920 /* Fall through */
2921 }
2922 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2923 /* If allocation is not consuming a reservation, also store the
2924 * hugetlb_cgroup pointer on the page.
2925 */
2926 if (deferred_reserve) {
2927 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2928 h_cg, page);
2929 }
2930
2931 spin_unlock_irq(&hugetlb_lock);
2932
2933 hugetlb_set_page_subpool(page, spool);
2934
2935 map_commit = vma_commit_reservation(h, vma, addr);
2936 if (unlikely(map_chg > map_commit)) {
2937 /*
2938 * The page was added to the reservation map between
2939 * vma_needs_reservation and vma_commit_reservation.
2940 * This indicates a race with hugetlb_reserve_pages.
2941 * Adjust for the subpool count incremented above AND
2942 * in hugetlb_reserve_pages for the same page. Also,
2943 * the reservation count added in hugetlb_reserve_pages
2944 * no longer applies.
2945 */
2946 long rsv_adjust;
2947
2948 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2949 hugetlb_acct_memory(h, -rsv_adjust);
2950 if (deferred_reserve)
2951 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2952 pages_per_huge_page(h), page);
2953 }
2954 return page;
2955
2956 out_uncharge_cgroup:
2957 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2958 out_uncharge_cgroup_reservation:
2959 if (deferred_reserve)
2960 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2961 h_cg);
2962 out_subpool_put:
2963 if (map_chg || avoid_reserve)
2964 hugepage_subpool_put_pages(spool, 1);
2965 vma_end_reservation(h, vma, addr);
2966 return ERR_PTR(-ENOSPC);
2967 }
2968
2969 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2970 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2971 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2972 {
2973 struct huge_bootmem_page *m = NULL; /* initialize for clang */
2974 int nr_nodes, node;
2975
2976 if (nid != NUMA_NO_NODE && nid >= nr_online_nodes)
2977 return 0;
2978 /* do node specific alloc */
2979 if (nid != NUMA_NO_NODE) {
2980 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2981 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2982 if (!m)
2983 return 0;
2984 goto found;
2985 }
2986 /* allocate from next node when distributing huge pages */
2987 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2988 m = memblock_alloc_try_nid_raw(
2989 huge_page_size(h), huge_page_size(h),
2990 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2991 /*
2992 * Use the beginning of the huge page to store the
2993 * huge_bootmem_page struct (until gather_bootmem
2994 * puts them into the mem_map).
2995 */
2996 if (!m)
2997 return 0;
2998 goto found;
2999 }
3000
3001 found:
3002 /* Put them into a private list first because mem_map is not up yet */
3003 INIT_LIST_HEAD(&m->list);
3004 list_add(&m->list, &huge_boot_pages);
3005 m->hstate = h;
3006 return 1;
3007 }
3008
3009 /*
3010 * Put bootmem huge pages into the standard lists after mem_map is up.
3011 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3012 */
3013 static void __init gather_bootmem_prealloc(void)
3014 {
3015 struct huge_bootmem_page *m;
3016
3017 list_for_each_entry(m, &huge_boot_pages, list) {
3018 struct page *page = virt_to_page(m);
3019 struct hstate *h = m->hstate;
3020
3021 VM_BUG_ON(!hstate_is_gigantic(h));
3022 WARN_ON(page_count(page) != 1);
3023 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3024 WARN_ON(PageReserved(page));
3025 prep_new_huge_page(h, page, page_to_nid(page));
3026 put_page(page); /* add to the hugepage allocator */
3027 } else {
3028 /* VERY unlikely inflated ref count on a tail page */
3029 free_gigantic_page(page, huge_page_order(h));
3030 }
3031
3032 /*
3033 * We need to restore the 'stolen' pages to totalram_pages
3034 * in order to fix confusing memory reports from free(1) and
3035 * other side-effects, like CommitLimit going negative.
3036 */
3037 adjust_managed_page_count(page, pages_per_huge_page(h));
3038 cond_resched();
3039 }
3040 }
3041 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3042 {
3043 unsigned long i;
3044 char buf[32];
3045
3046 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3047 if (hstate_is_gigantic(h)) {
3048 if (!alloc_bootmem_huge_page(h, nid))
3049 break;
3050 } else {
3051 struct page *page;
3052 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3053
3054 page = alloc_fresh_huge_page(h, gfp_mask, nid,
3055 &node_states[N_MEMORY], NULL);
3056 if (!page)
3057 break;
3058 put_page(page); /* free it into the hugepage allocator */
3059 }
3060 cond_resched();
3061 }
3062 if (i == h->max_huge_pages_node[nid])
3063 return;
3064
3065 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3066 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3067 h->max_huge_pages_node[nid], buf, nid, i);
3068 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3069 h->max_huge_pages_node[nid] = i;
3070 }
3071
3072 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3073 {
3074 unsigned long i;
3075 nodemask_t *node_alloc_noretry;
3076 bool node_specific_alloc = false;
3077
3078 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3079 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3080 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3081 return;
3082 }
3083
3084 /* do node specific alloc */
3085 for (i = 0; i < nr_online_nodes; i++) {
3086 if (h->max_huge_pages_node[i] > 0) {
3087 hugetlb_hstate_alloc_pages_onenode(h, i);
3088 node_specific_alloc = true;
3089 }
3090 }
3091
3092 if (node_specific_alloc)
3093 return;
3094
3095 /* below will do all node balanced alloc */
3096 if (!hstate_is_gigantic(h)) {
3097 /*
3098 * Bit mask controlling how hard we retry per-node allocations.
3099 * Ignore errors as lower level routines can deal with
3100 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3101 * time, we are likely in bigger trouble.
3102 */
3103 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3104 GFP_KERNEL);
3105 } else {
3106 /* allocations done at boot time */
3107 node_alloc_noretry = NULL;
3108 }
3109
3110 /* bit mask controlling how hard we retry per-node allocations */
3111 if (node_alloc_noretry)
3112 nodes_clear(*node_alloc_noretry);
3113
3114 for (i = 0; i < h->max_huge_pages; ++i) {
3115 if (hstate_is_gigantic(h)) {
3116 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3117 break;
3118 } else if (!alloc_pool_huge_page(h,
3119 &node_states[N_MEMORY],
3120 node_alloc_noretry))
3121 break;
3122 cond_resched();
3123 }
3124 if (i < h->max_huge_pages) {
3125 char buf[32];
3126
3127 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3128 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3129 h->max_huge_pages, buf, i);
3130 h->max_huge_pages = i;
3131 }
3132 kfree(node_alloc_noretry);
3133 }
3134
3135 static void __init hugetlb_init_hstates(void)
3136 {
3137 struct hstate *h, *h2;
3138
3139 for_each_hstate(h) {
3140 if (minimum_order > huge_page_order(h))
3141 minimum_order = huge_page_order(h);
3142
3143 /* oversize hugepages were init'ed in early boot */
3144 if (!hstate_is_gigantic(h))
3145 hugetlb_hstate_alloc_pages(h);
3146
3147 /*
3148 * Set demote order for each hstate. Note that
3149 * h->demote_order is initially 0.
3150 * - We can not demote gigantic pages if runtime freeing
3151 * is not supported, so skip this.
3152 * - If CMA allocation is possible, we can not demote
3153 * HUGETLB_PAGE_ORDER or smaller size pages.
3154 */
3155 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3156 continue;
3157 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3158 continue;
3159 for_each_hstate(h2) {
3160 if (h2 == h)
3161 continue;
3162 if (h2->order < h->order &&
3163 h2->order > h->demote_order)
3164 h->demote_order = h2->order;
3165 }
3166 }
3167 VM_BUG_ON(minimum_order == UINT_MAX);
3168 }
3169
3170 static void __init report_hugepages(void)
3171 {
3172 struct hstate *h;
3173
3174 for_each_hstate(h) {
3175 char buf[32];
3176
3177 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3178 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3179 buf, h->free_huge_pages);
3180 }
3181 }
3182
3183 #ifdef CONFIG_HIGHMEM
3184 static void try_to_free_low(struct hstate *h, unsigned long count,
3185 nodemask_t *nodes_allowed)
3186 {
3187 int i;
3188 LIST_HEAD(page_list);
3189
3190 lockdep_assert_held(&hugetlb_lock);
3191 if (hstate_is_gigantic(h))
3192 return;
3193
3194 /*
3195 * Collect pages to be freed on a list, and free after dropping lock
3196 */
3197 for_each_node_mask(i, *nodes_allowed) {
3198 struct page *page, *next;
3199 struct list_head *freel = &h->hugepage_freelists[i];
3200 list_for_each_entry_safe(page, next, freel, lru) {
3201 if (count >= h->nr_huge_pages)
3202 goto out;
3203 if (PageHighMem(page))
3204 continue;
3205 remove_hugetlb_page(h, page, false);
3206 list_add(&page->lru, &page_list);
3207 }
3208 }
3209
3210 out:
3211 spin_unlock_irq(&hugetlb_lock);
3212 update_and_free_pages_bulk(h, &page_list);
3213 spin_lock_irq(&hugetlb_lock);
3214 }
3215 #else
3216 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3217 nodemask_t *nodes_allowed)
3218 {
3219 }
3220 #endif
3221
3222 /*
3223 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3224 * balanced by operating on them in a round-robin fashion.
3225 * Returns 1 if an adjustment was made.
3226 */
3227 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3228 int delta)
3229 {
3230 int nr_nodes, node;
3231
3232 lockdep_assert_held(&hugetlb_lock);
3233 VM_BUG_ON(delta != -1 && delta != 1);
3234
3235 if (delta < 0) {
3236 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3237 if (h->surplus_huge_pages_node[node])
3238 goto found;
3239 }
3240 } else {
3241 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3242 if (h->surplus_huge_pages_node[node] <
3243 h->nr_huge_pages_node[node])
3244 goto found;
3245 }
3246 }
3247 return 0;
3248
3249 found:
3250 h->surplus_huge_pages += delta;
3251 h->surplus_huge_pages_node[node] += delta;
3252 return 1;
3253 }
3254
3255 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3256 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3257 nodemask_t *nodes_allowed)
3258 {
3259 unsigned long min_count, ret;
3260 struct page *page;
3261 LIST_HEAD(page_list);
3262 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3263
3264 /*
3265 * Bit mask controlling how hard we retry per-node allocations.
3266 * If we can not allocate the bit mask, do not attempt to allocate
3267 * the requested huge pages.
3268 */
3269 if (node_alloc_noretry)
3270 nodes_clear(*node_alloc_noretry);
3271 else
3272 return -ENOMEM;
3273
3274 /*
3275 * resize_lock mutex prevents concurrent adjustments to number of
3276 * pages in hstate via the proc/sysfs interfaces.
3277 */
3278 mutex_lock(&h->resize_lock);
3279 flush_free_hpage_work(h);
3280 spin_lock_irq(&hugetlb_lock);
3281
3282 /*
3283 * Check for a node specific request.
3284 * Changing node specific huge page count may require a corresponding
3285 * change to the global count. In any case, the passed node mask
3286 * (nodes_allowed) will restrict alloc/free to the specified node.
3287 */
3288 if (nid != NUMA_NO_NODE) {
3289 unsigned long old_count = count;
3290
3291 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3292 /*
3293 * User may have specified a large count value which caused the
3294 * above calculation to overflow. In this case, they wanted
3295 * to allocate as many huge pages as possible. Set count to
3296 * largest possible value to align with their intention.
3297 */
3298 if (count < old_count)
3299 count = ULONG_MAX;
3300 }
3301
3302 /*
3303 * Gigantic pages runtime allocation depend on the capability for large
3304 * page range allocation.
3305 * If the system does not provide this feature, return an error when
3306 * the user tries to allocate gigantic pages but let the user free the
3307 * boottime allocated gigantic pages.
3308 */
3309 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3310 if (count > persistent_huge_pages(h)) {
3311 spin_unlock_irq(&hugetlb_lock);
3312 mutex_unlock(&h->resize_lock);
3313 NODEMASK_FREE(node_alloc_noretry);
3314 return -EINVAL;
3315 }
3316 /* Fall through to decrease pool */
3317 }
3318
3319 /*
3320 * Increase the pool size
3321 * First take pages out of surplus state. Then make up the
3322 * remaining difference by allocating fresh huge pages.
3323 *
3324 * We might race with alloc_surplus_huge_page() here and be unable
3325 * to convert a surplus huge page to a normal huge page. That is
3326 * not critical, though, it just means the overall size of the
3327 * pool might be one hugepage larger than it needs to be, but
3328 * within all the constraints specified by the sysctls.
3329 */
3330 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3331 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3332 break;
3333 }
3334
3335 while (count > persistent_huge_pages(h)) {
3336 /*
3337 * If this allocation races such that we no longer need the
3338 * page, free_huge_page will handle it by freeing the page
3339 * and reducing the surplus.
3340 */
3341 spin_unlock_irq(&hugetlb_lock);
3342
3343 /* yield cpu to avoid soft lockup */
3344 cond_resched();
3345
3346 ret = alloc_pool_huge_page(h, nodes_allowed,
3347 node_alloc_noretry);
3348 spin_lock_irq(&hugetlb_lock);
3349 if (!ret)
3350 goto out;
3351
3352 /* Bail for signals. Probably ctrl-c from user */
3353 if (signal_pending(current))
3354 goto out;
3355 }
3356
3357 /*
3358 * Decrease the pool size
3359 * First return free pages to the buddy allocator (being careful
3360 * to keep enough around to satisfy reservations). Then place
3361 * pages into surplus state as needed so the pool will shrink
3362 * to the desired size as pages become free.
3363 *
3364 * By placing pages into the surplus state independent of the
3365 * overcommit value, we are allowing the surplus pool size to
3366 * exceed overcommit. There are few sane options here. Since
3367 * alloc_surplus_huge_page() is checking the global counter,
3368 * though, we'll note that we're not allowed to exceed surplus
3369 * and won't grow the pool anywhere else. Not until one of the
3370 * sysctls are changed, or the surplus pages go out of use.
3371 */
3372 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3373 min_count = max(count, min_count);
3374 try_to_free_low(h, min_count, nodes_allowed);
3375
3376 /*
3377 * Collect pages to be removed on list without dropping lock
3378 */
3379 while (min_count < persistent_huge_pages(h)) {
3380 page = remove_pool_huge_page(h, nodes_allowed, 0);
3381 if (!page)
3382 break;
3383
3384 list_add(&page->lru, &page_list);
3385 }
3386 /* free the pages after dropping lock */
3387 spin_unlock_irq(&hugetlb_lock);
3388 update_and_free_pages_bulk(h, &page_list);
3389 flush_free_hpage_work(h);
3390 spin_lock_irq(&hugetlb_lock);
3391
3392 while (count < persistent_huge_pages(h)) {
3393 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3394 break;
3395 }
3396 out:
3397 h->max_huge_pages = persistent_huge_pages(h);
3398 spin_unlock_irq(&hugetlb_lock);
3399 mutex_unlock(&h->resize_lock);
3400
3401 NODEMASK_FREE(node_alloc_noretry);
3402
3403 return 0;
3404 }
3405
3406 static int demote_free_huge_page(struct hstate *h, struct page *page)
3407 {
3408 int i, nid = page_to_nid(page);
3409 struct hstate *target_hstate;
3410 int rc = 0;
3411
3412 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3413
3414 remove_hugetlb_page_for_demote(h, page, false);
3415 spin_unlock_irq(&hugetlb_lock);
3416
3417 rc = alloc_huge_page_vmemmap(h, page);
3418 if (rc) {
3419 /* Allocation of vmemmmap failed, we can not demote page */
3420 spin_lock_irq(&hugetlb_lock);
3421 set_page_refcounted(page);
3422 add_hugetlb_page(h, page, false);
3423 return rc;
3424 }
3425
3426 /*
3427 * Use destroy_compound_hugetlb_page_for_demote for all huge page
3428 * sizes as it will not ref count pages.
3429 */
3430 destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3431
3432 /*
3433 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3434 * Without the mutex, pages added to target hstate could be marked
3435 * as surplus.
3436 *
3437 * Note that we already hold h->resize_lock. To prevent deadlock,
3438 * use the convention of always taking larger size hstate mutex first.
3439 */
3440 mutex_lock(&target_hstate->resize_lock);
3441 for (i = 0; i < pages_per_huge_page(h);
3442 i += pages_per_huge_page(target_hstate)) {
3443 if (hstate_is_gigantic(target_hstate))
3444 prep_compound_gigantic_page_for_demote(page + i,
3445 target_hstate->order);
3446 else
3447 prep_compound_page(page + i, target_hstate->order);
3448 set_page_private(page + i, 0);
3449 set_page_refcounted(page + i);
3450 prep_new_huge_page(target_hstate, page + i, nid);
3451 put_page(page + i);
3452 }
3453 mutex_unlock(&target_hstate->resize_lock);
3454
3455 spin_lock_irq(&hugetlb_lock);
3456
3457 /*
3458 * Not absolutely necessary, but for consistency update max_huge_pages
3459 * based on pool changes for the demoted page.
3460 */
3461 h->max_huge_pages--;
3462 target_hstate->max_huge_pages += pages_per_huge_page(h);
3463
3464 return rc;
3465 }
3466
3467 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3468 __must_hold(&hugetlb_lock)
3469 {
3470 int nr_nodes, node;
3471 struct page *page;
3472 int rc = 0;
3473
3474 lockdep_assert_held(&hugetlb_lock);
3475
3476 /* We should never get here if no demote order */
3477 if (!h->demote_order) {
3478 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3479 return -EINVAL; /* internal error */
3480 }
3481
3482 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3483 if (!list_empty(&h->hugepage_freelists[node])) {
3484 page = list_entry(h->hugepage_freelists[node].next,
3485 struct page, lru);
3486 rc = demote_free_huge_page(h, page);
3487 break;
3488 }
3489 }
3490
3491 return rc;
3492 }
3493
3494 #define HSTATE_ATTR_RO(_name) \
3495 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3496
3497 #define HSTATE_ATTR_WO(_name) \
3498 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3499
3500 #define HSTATE_ATTR(_name) \
3501 static struct kobj_attribute _name##_attr = \
3502 __ATTR(_name, 0644, _name##_show, _name##_store)
3503
3504 static struct kobject *hugepages_kobj;
3505 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3506
3507 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3508
3509 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3510 {
3511 int i;
3512
3513 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3514 if (hstate_kobjs[i] == kobj) {
3515 if (nidp)
3516 *nidp = NUMA_NO_NODE;
3517 return &hstates[i];
3518 }
3519
3520 return kobj_to_node_hstate(kobj, nidp);
3521 }
3522
3523 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3524 struct kobj_attribute *attr, char *buf)
3525 {
3526 struct hstate *h;
3527 unsigned long nr_huge_pages;
3528 int nid;
3529
3530 h = kobj_to_hstate(kobj, &nid);
3531 if (nid == NUMA_NO_NODE)
3532 nr_huge_pages = h->nr_huge_pages;
3533 else
3534 nr_huge_pages = h->nr_huge_pages_node[nid];
3535
3536 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3537 }
3538
3539 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3540 struct hstate *h, int nid,
3541 unsigned long count, size_t len)
3542 {
3543 int err;
3544 nodemask_t nodes_allowed, *n_mask;
3545
3546 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3547 return -EINVAL;
3548
3549 if (nid == NUMA_NO_NODE) {
3550 /*
3551 * global hstate attribute
3552 */
3553 if (!(obey_mempolicy &&
3554 init_nodemask_of_mempolicy(&nodes_allowed)))
3555 n_mask = &node_states[N_MEMORY];
3556 else
3557 n_mask = &nodes_allowed;
3558 } else {
3559 /*
3560 * Node specific request. count adjustment happens in
3561 * set_max_huge_pages() after acquiring hugetlb_lock.
3562 */
3563 init_nodemask_of_node(&nodes_allowed, nid);
3564 n_mask = &nodes_allowed;
3565 }
3566
3567 err = set_max_huge_pages(h, count, nid, n_mask);
3568
3569 return err ? err : len;
3570 }
3571
3572 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3573 struct kobject *kobj, const char *buf,
3574 size_t len)
3575 {
3576 struct hstate *h;
3577 unsigned long count;
3578 int nid;
3579 int err;
3580
3581 err = kstrtoul(buf, 10, &count);
3582 if (err)
3583 return err;
3584
3585 h = kobj_to_hstate(kobj, &nid);
3586 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3587 }
3588
3589 static ssize_t nr_hugepages_show(struct kobject *kobj,
3590 struct kobj_attribute *attr, char *buf)
3591 {
3592 return nr_hugepages_show_common(kobj, attr, buf);
3593 }
3594
3595 static ssize_t nr_hugepages_store(struct kobject *kobj,
3596 struct kobj_attribute *attr, const char *buf, size_t len)
3597 {
3598 return nr_hugepages_store_common(false, kobj, buf, len);
3599 }
3600 HSTATE_ATTR(nr_hugepages);
3601
3602 #ifdef CONFIG_NUMA
3603
3604 /*
3605 * hstate attribute for optionally mempolicy-based constraint on persistent
3606 * huge page alloc/free.
3607 */
3608 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3609 struct kobj_attribute *attr,
3610 char *buf)
3611 {
3612 return nr_hugepages_show_common(kobj, attr, buf);
3613 }
3614
3615 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3616 struct kobj_attribute *attr, const char *buf, size_t len)
3617 {
3618 return nr_hugepages_store_common(true, kobj, buf, len);
3619 }
3620 HSTATE_ATTR(nr_hugepages_mempolicy);
3621 #endif
3622
3623
3624 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3625 struct kobj_attribute *attr, char *buf)
3626 {
3627 struct hstate *h = kobj_to_hstate(kobj, NULL);
3628 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3629 }
3630
3631 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3632 struct kobj_attribute *attr, const char *buf, size_t count)
3633 {
3634 int err;
3635 unsigned long input;
3636 struct hstate *h = kobj_to_hstate(kobj, NULL);
3637
3638 if (hstate_is_gigantic(h))
3639 return -EINVAL;
3640
3641 err = kstrtoul(buf, 10, &input);
3642 if (err)
3643 return err;
3644
3645 spin_lock_irq(&hugetlb_lock);
3646 h->nr_overcommit_huge_pages = input;
3647 spin_unlock_irq(&hugetlb_lock);
3648
3649 return count;
3650 }
3651 HSTATE_ATTR(nr_overcommit_hugepages);
3652
3653 static ssize_t free_hugepages_show(struct kobject *kobj,
3654 struct kobj_attribute *attr, char *buf)
3655 {
3656 struct hstate *h;
3657 unsigned long free_huge_pages;
3658 int nid;
3659
3660 h = kobj_to_hstate(kobj, &nid);
3661 if (nid == NUMA_NO_NODE)
3662 free_huge_pages = h->free_huge_pages;
3663 else
3664 free_huge_pages = h->free_huge_pages_node[nid];
3665
3666 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3667 }
3668 HSTATE_ATTR_RO(free_hugepages);
3669
3670 static ssize_t resv_hugepages_show(struct kobject *kobj,
3671 struct kobj_attribute *attr, char *buf)
3672 {
3673 struct hstate *h = kobj_to_hstate(kobj, NULL);
3674 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3675 }
3676 HSTATE_ATTR_RO(resv_hugepages);
3677
3678 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3679 struct kobj_attribute *attr, char *buf)
3680 {
3681 struct hstate *h;
3682 unsigned long surplus_huge_pages;
3683 int nid;
3684
3685 h = kobj_to_hstate(kobj, &nid);
3686 if (nid == NUMA_NO_NODE)
3687 surplus_huge_pages = h->surplus_huge_pages;
3688 else
3689 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3690
3691 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3692 }
3693 HSTATE_ATTR_RO(surplus_hugepages);
3694
3695 static ssize_t demote_store(struct kobject *kobj,
3696 struct kobj_attribute *attr, const char *buf, size_t len)
3697 {
3698 unsigned long nr_demote;
3699 unsigned long nr_available;
3700 nodemask_t nodes_allowed, *n_mask;
3701 struct hstate *h;
3702 int err = 0;
3703 int nid;
3704
3705 err = kstrtoul(buf, 10, &nr_demote);
3706 if (err)
3707 return err;
3708 h = kobj_to_hstate(kobj, &nid);
3709
3710 if (nid != NUMA_NO_NODE) {
3711 init_nodemask_of_node(&nodes_allowed, nid);
3712 n_mask = &nodes_allowed;
3713 } else {
3714 n_mask = &node_states[N_MEMORY];
3715 }
3716
3717 /* Synchronize with other sysfs operations modifying huge pages */
3718 mutex_lock(&h->resize_lock);
3719 spin_lock_irq(&hugetlb_lock);
3720
3721 while (nr_demote) {
3722 /*
3723 * Check for available pages to demote each time thorough the
3724 * loop as demote_pool_huge_page will drop hugetlb_lock.
3725 */
3726 if (nid != NUMA_NO_NODE)
3727 nr_available = h->free_huge_pages_node[nid];
3728 else
3729 nr_available = h->free_huge_pages;
3730 nr_available -= h->resv_huge_pages;
3731 if (!nr_available)
3732 break;
3733
3734 err = demote_pool_huge_page(h, n_mask);
3735 if (err)
3736 break;
3737
3738 nr_demote--;
3739 }
3740
3741 spin_unlock_irq(&hugetlb_lock);
3742 mutex_unlock(&h->resize_lock);
3743
3744 if (err)
3745 return err;
3746 return len;
3747 }
3748 HSTATE_ATTR_WO(demote);
3749
3750 static ssize_t demote_size_show(struct kobject *kobj,
3751 struct kobj_attribute *attr, char *buf)
3752 {
3753 int nid;
3754 struct hstate *h = kobj_to_hstate(kobj, &nid);
3755 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3756
3757 return sysfs_emit(buf, "%lukB\n", demote_size);
3758 }
3759
3760 static ssize_t demote_size_store(struct kobject *kobj,
3761 struct kobj_attribute *attr,
3762 const char *buf, size_t count)
3763 {
3764 struct hstate *h, *demote_hstate;
3765 unsigned long demote_size;
3766 unsigned int demote_order;
3767 int nid;
3768
3769 demote_size = (unsigned long)memparse(buf, NULL);
3770
3771 demote_hstate = size_to_hstate(demote_size);
3772 if (!demote_hstate)
3773 return -EINVAL;
3774 demote_order = demote_hstate->order;
3775 if (demote_order < HUGETLB_PAGE_ORDER)
3776 return -EINVAL;
3777
3778 /* demote order must be smaller than hstate order */
3779 h = kobj_to_hstate(kobj, &nid);
3780 if (demote_order >= h->order)
3781 return -EINVAL;
3782
3783 /* resize_lock synchronizes access to demote size and writes */
3784 mutex_lock(&h->resize_lock);
3785 h->demote_order = demote_order;
3786 mutex_unlock(&h->resize_lock);
3787
3788 return count;
3789 }
3790 HSTATE_ATTR(demote_size);
3791
3792 static struct attribute *hstate_attrs[] = {
3793 &nr_hugepages_attr.attr,
3794 &nr_overcommit_hugepages_attr.attr,
3795 &free_hugepages_attr.attr,
3796 &resv_hugepages_attr.attr,
3797 &surplus_hugepages_attr.attr,
3798 #ifdef CONFIG_NUMA
3799 &nr_hugepages_mempolicy_attr.attr,
3800 #endif
3801 NULL,
3802 };
3803
3804 static const struct attribute_group hstate_attr_group = {
3805 .attrs = hstate_attrs,
3806 };
3807
3808 static struct attribute *hstate_demote_attrs[] = {
3809 &demote_size_attr.attr,
3810 &demote_attr.attr,
3811 NULL,
3812 };
3813
3814 static const struct attribute_group hstate_demote_attr_group = {
3815 .attrs = hstate_demote_attrs,
3816 };
3817
3818 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3819 struct kobject **hstate_kobjs,
3820 const struct attribute_group *hstate_attr_group)
3821 {
3822 int retval;
3823 int hi = hstate_index(h);
3824
3825 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3826 if (!hstate_kobjs[hi])
3827 return -ENOMEM;
3828
3829 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3830 if (retval) {
3831 kobject_put(hstate_kobjs[hi]);
3832 hstate_kobjs[hi] = NULL;
3833 }
3834
3835 if (h->demote_order) {
3836 if (sysfs_create_group(hstate_kobjs[hi],
3837 &hstate_demote_attr_group))
3838 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3839 }
3840
3841 return retval;
3842 }
3843
3844 static void __init hugetlb_sysfs_init(void)
3845 {
3846 struct hstate *h;
3847 int err;
3848
3849 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3850 if (!hugepages_kobj)
3851 return;
3852
3853 for_each_hstate(h) {
3854 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3855 hstate_kobjs, &hstate_attr_group);
3856 if (err)
3857 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3858 }
3859 }
3860
3861 #ifdef CONFIG_NUMA
3862
3863 /*
3864 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3865 * with node devices in node_devices[] using a parallel array. The array
3866 * index of a node device or _hstate == node id.
3867 * This is here to avoid any static dependency of the node device driver, in
3868 * the base kernel, on the hugetlb module.
3869 */
3870 struct node_hstate {
3871 struct kobject *hugepages_kobj;
3872 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3873 };
3874 static struct node_hstate node_hstates[MAX_NUMNODES];
3875
3876 /*
3877 * A subset of global hstate attributes for node devices
3878 */
3879 static struct attribute *per_node_hstate_attrs[] = {
3880 &nr_hugepages_attr.attr,
3881 &free_hugepages_attr.attr,
3882 &surplus_hugepages_attr.attr,
3883 NULL,
3884 };
3885
3886 static const struct attribute_group per_node_hstate_attr_group = {
3887 .attrs = per_node_hstate_attrs,
3888 };
3889
3890 /*
3891 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3892 * Returns node id via non-NULL nidp.
3893 */
3894 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3895 {
3896 int nid;
3897
3898 for (nid = 0; nid < nr_node_ids; nid++) {
3899 struct node_hstate *nhs = &node_hstates[nid];
3900 int i;
3901 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3902 if (nhs->hstate_kobjs[i] == kobj) {
3903 if (nidp)
3904 *nidp = nid;
3905 return &hstates[i];
3906 }
3907 }
3908
3909 BUG();
3910 return NULL;
3911 }
3912
3913 /*
3914 * Unregister hstate attributes from a single node device.
3915 * No-op if no hstate attributes attached.
3916 */
3917 static void hugetlb_unregister_node(struct node *node)
3918 {
3919 struct hstate *h;
3920 struct node_hstate *nhs = &node_hstates[node->dev.id];
3921
3922 if (!nhs->hugepages_kobj)
3923 return; /* no hstate attributes */
3924
3925 for_each_hstate(h) {
3926 int idx = hstate_index(h);
3927 if (nhs->hstate_kobjs[idx]) {
3928 kobject_put(nhs->hstate_kobjs[idx]);
3929 nhs->hstate_kobjs[idx] = NULL;
3930 }
3931 }
3932
3933 kobject_put(nhs->hugepages_kobj);
3934 nhs->hugepages_kobj = NULL;
3935 }
3936
3937
3938 /*
3939 * Register hstate attributes for a single node device.
3940 * No-op if attributes already registered.
3941 */
3942 static void hugetlb_register_node(struct node *node)
3943 {
3944 struct hstate *h;
3945 struct node_hstate *nhs = &node_hstates[node->dev.id];
3946 int err;
3947
3948 if (nhs->hugepages_kobj)
3949 return; /* already allocated */
3950
3951 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3952 &node->dev.kobj);
3953 if (!nhs->hugepages_kobj)
3954 return;
3955
3956 for_each_hstate(h) {
3957 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3958 nhs->hstate_kobjs,
3959 &per_node_hstate_attr_group);
3960 if (err) {
3961 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3962 h->name, node->dev.id);
3963 hugetlb_unregister_node(node);
3964 break;
3965 }
3966 }
3967 }
3968
3969 /*
3970 * hugetlb init time: register hstate attributes for all registered node
3971 * devices of nodes that have memory. All on-line nodes should have
3972 * registered their associated device by this time.
3973 */
3974 static void __init hugetlb_register_all_nodes(void)
3975 {
3976 int nid;
3977
3978 for_each_node_state(nid, N_MEMORY) {
3979 struct node *node = node_devices[nid];
3980 if (node->dev.id == nid)
3981 hugetlb_register_node(node);
3982 }
3983
3984 /*
3985 * Let the node device driver know we're here so it can
3986 * [un]register hstate attributes on node hotplug.
3987 */
3988 register_hugetlbfs_with_node(hugetlb_register_node,
3989 hugetlb_unregister_node);
3990 }
3991 #else /* !CONFIG_NUMA */
3992
3993 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3994 {
3995 BUG();
3996 if (nidp)
3997 *nidp = -1;
3998 return NULL;
3999 }
4000
4001 static void hugetlb_register_all_nodes(void) { }
4002
4003 #endif
4004
4005 static int __init hugetlb_init(void)
4006 {
4007 int i;
4008
4009 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4010 __NR_HPAGEFLAGS);
4011
4012 if (!hugepages_supported()) {
4013 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4014 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4015 return 0;
4016 }
4017
4018 /*
4019 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4020 * architectures depend on setup being done here.
4021 */
4022 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4023 if (!parsed_default_hugepagesz) {
4024 /*
4025 * If we did not parse a default huge page size, set
4026 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4027 * number of huge pages for this default size was implicitly
4028 * specified, set that here as well.
4029 * Note that the implicit setting will overwrite an explicit
4030 * setting. A warning will be printed in this case.
4031 */
4032 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4033 if (default_hstate_max_huge_pages) {
4034 if (default_hstate.max_huge_pages) {
4035 char buf[32];
4036
4037 string_get_size(huge_page_size(&default_hstate),
4038 1, STRING_UNITS_2, buf, 32);
4039 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4040 default_hstate.max_huge_pages, buf);
4041 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4042 default_hstate_max_huge_pages);
4043 }
4044 default_hstate.max_huge_pages =
4045 default_hstate_max_huge_pages;
4046
4047 for (i = 0; i < nr_online_nodes; i++)
4048 default_hstate.max_huge_pages_node[i] =
4049 default_hugepages_in_node[i];
4050 }
4051 }
4052
4053 hugetlb_cma_check();
4054 hugetlb_init_hstates();
4055 gather_bootmem_prealloc();
4056 report_hugepages();
4057
4058 hugetlb_sysfs_init();
4059 hugetlb_register_all_nodes();
4060 hugetlb_cgroup_file_init();
4061
4062 #ifdef CONFIG_SMP
4063 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4064 #else
4065 num_fault_mutexes = 1;
4066 #endif
4067 hugetlb_fault_mutex_table =
4068 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4069 GFP_KERNEL);
4070 BUG_ON(!hugetlb_fault_mutex_table);
4071
4072 for (i = 0; i < num_fault_mutexes; i++)
4073 mutex_init(&hugetlb_fault_mutex_table[i]);
4074 return 0;
4075 }
4076 subsys_initcall(hugetlb_init);
4077
4078 /* Overwritten by architectures with more huge page sizes */
4079 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4080 {
4081 return size == HPAGE_SIZE;
4082 }
4083
4084 void __init hugetlb_add_hstate(unsigned int order)
4085 {
4086 struct hstate *h;
4087 unsigned long i;
4088
4089 if (size_to_hstate(PAGE_SIZE << order)) {
4090 return;
4091 }
4092 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4093 BUG_ON(order == 0);
4094 h = &hstates[hugetlb_max_hstate++];
4095 mutex_init(&h->resize_lock);
4096 h->order = order;
4097 h->mask = ~(huge_page_size(h) - 1);
4098 for (i = 0; i < MAX_NUMNODES; ++i)
4099 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4100 INIT_LIST_HEAD(&h->hugepage_activelist);
4101 h->next_nid_to_alloc = first_memory_node;
4102 h->next_nid_to_free = first_memory_node;
4103 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4104 huge_page_size(h)/1024);
4105 hugetlb_vmemmap_init(h);
4106
4107 parsed_hstate = h;
4108 }
4109
4110 bool __init __weak hugetlb_node_alloc_supported(void)
4111 {
4112 return true;
4113 }
4114 /*
4115 * hugepages command line processing
4116 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4117 * specification. If not, ignore the hugepages value. hugepages can also
4118 * be the first huge page command line option in which case it implicitly
4119 * specifies the number of huge pages for the default size.
4120 */
4121 static int __init hugepages_setup(char *s)
4122 {
4123 unsigned long *mhp;
4124 static unsigned long *last_mhp;
4125 int node = NUMA_NO_NODE;
4126 int count;
4127 unsigned long tmp;
4128 char *p = s;
4129
4130 if (!parsed_valid_hugepagesz) {
4131 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4132 parsed_valid_hugepagesz = true;
4133 return 0;
4134 }
4135
4136 /*
4137 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4138 * yet, so this hugepages= parameter goes to the "default hstate".
4139 * Otherwise, it goes with the previously parsed hugepagesz or
4140 * default_hugepagesz.
4141 */
4142 else if (!hugetlb_max_hstate)
4143 mhp = &default_hstate_max_huge_pages;
4144 else
4145 mhp = &parsed_hstate->max_huge_pages;
4146
4147 if (mhp == last_mhp) {
4148 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4149 return 0;
4150 }
4151
4152 while (*p) {
4153 count = 0;
4154 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4155 goto invalid;
4156 /* Parameter is node format */
4157 if (p[count] == ':') {
4158 if (!hugetlb_node_alloc_supported()) {
4159 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4160 return 0;
4161 }
4162 if (tmp >= nr_online_nodes)
4163 goto invalid;
4164 node = tmp;
4165 p += count + 1;
4166 /* Parse hugepages */
4167 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4168 goto invalid;
4169 if (!hugetlb_max_hstate)
4170 default_hugepages_in_node[node] = tmp;
4171 else
4172 parsed_hstate->max_huge_pages_node[node] = tmp;
4173 *mhp += tmp;
4174 /* Go to parse next node*/
4175 if (p[count] == ',')
4176 p += count + 1;
4177 else
4178 break;
4179 } else {
4180 if (p != s)
4181 goto invalid;
4182 *mhp = tmp;
4183 break;
4184 }
4185 }
4186
4187 /*
4188 * Global state is always initialized later in hugetlb_init.
4189 * But we need to allocate gigantic hstates here early to still
4190 * use the bootmem allocator.
4191 */
4192 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4193 hugetlb_hstate_alloc_pages(parsed_hstate);
4194
4195 last_mhp = mhp;
4196
4197 return 1;
4198
4199 invalid:
4200 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4201 return 0;
4202 }
4203 __setup("hugepages=", hugepages_setup);
4204
4205 /*
4206 * hugepagesz command line processing
4207 * A specific huge page size can only be specified once with hugepagesz.
4208 * hugepagesz is followed by hugepages on the command line. The global
4209 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4210 * hugepagesz argument was valid.
4211 */
4212 static int __init hugepagesz_setup(char *s)
4213 {
4214 unsigned long size;
4215 struct hstate *h;
4216
4217 parsed_valid_hugepagesz = false;
4218 size = (unsigned long)memparse(s, NULL);
4219
4220 if (!arch_hugetlb_valid_size(size)) {
4221 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4222 return 0;
4223 }
4224
4225 h = size_to_hstate(size);
4226 if (h) {
4227 /*
4228 * hstate for this size already exists. This is normally
4229 * an error, but is allowed if the existing hstate is the
4230 * default hstate. More specifically, it is only allowed if
4231 * the number of huge pages for the default hstate was not
4232 * previously specified.
4233 */
4234 if (!parsed_default_hugepagesz || h != &default_hstate ||
4235 default_hstate.max_huge_pages) {
4236 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4237 return 0;
4238 }
4239
4240 /*
4241 * No need to call hugetlb_add_hstate() as hstate already
4242 * exists. But, do set parsed_hstate so that a following
4243 * hugepages= parameter will be applied to this hstate.
4244 */
4245 parsed_hstate = h;
4246 parsed_valid_hugepagesz = true;
4247 return 1;
4248 }
4249
4250 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4251 parsed_valid_hugepagesz = true;
4252 return 1;
4253 }
4254 __setup("hugepagesz=", hugepagesz_setup);
4255
4256 /*
4257 * default_hugepagesz command line input
4258 * Only one instance of default_hugepagesz allowed on command line.
4259 */
4260 static int __init default_hugepagesz_setup(char *s)
4261 {
4262 unsigned long size;
4263 int i;
4264
4265 parsed_valid_hugepagesz = false;
4266 if (parsed_default_hugepagesz) {
4267 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4268 return 0;
4269 }
4270
4271 size = (unsigned long)memparse(s, NULL);
4272
4273 if (!arch_hugetlb_valid_size(size)) {
4274 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4275 return 0;
4276 }
4277
4278 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4279 parsed_valid_hugepagesz = true;
4280 parsed_default_hugepagesz = true;
4281 default_hstate_idx = hstate_index(size_to_hstate(size));
4282
4283 /*
4284 * The number of default huge pages (for this size) could have been
4285 * specified as the first hugetlb parameter: hugepages=X. If so,
4286 * then default_hstate_max_huge_pages is set. If the default huge
4287 * page size is gigantic (>= MAX_ORDER), then the pages must be
4288 * allocated here from bootmem allocator.
4289 */
4290 if (default_hstate_max_huge_pages) {
4291 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4292 for (i = 0; i < nr_online_nodes; i++)
4293 default_hstate.max_huge_pages_node[i] =
4294 default_hugepages_in_node[i];
4295 if (hstate_is_gigantic(&default_hstate))
4296 hugetlb_hstate_alloc_pages(&default_hstate);
4297 default_hstate_max_huge_pages = 0;
4298 }
4299
4300 return 1;
4301 }
4302 __setup("default_hugepagesz=", default_hugepagesz_setup);
4303
4304 static unsigned int allowed_mems_nr(struct hstate *h)
4305 {
4306 int node;
4307 unsigned int nr = 0;
4308 nodemask_t *mpol_allowed;
4309 unsigned int *array = h->free_huge_pages_node;
4310 gfp_t gfp_mask = htlb_alloc_mask(h);
4311
4312 mpol_allowed = policy_nodemask_current(gfp_mask);
4313
4314 for_each_node_mask(node, cpuset_current_mems_allowed) {
4315 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4316 nr += array[node];
4317 }
4318
4319 return nr;
4320 }
4321
4322 #ifdef CONFIG_SYSCTL
4323 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4324 void *buffer, size_t *length,
4325 loff_t *ppos, unsigned long *out)
4326 {
4327 struct ctl_table dup_table;
4328
4329 /*
4330 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4331 * can duplicate the @table and alter the duplicate of it.
4332 */
4333 dup_table = *table;
4334 dup_table.data = out;
4335
4336 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4337 }
4338
4339 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4340 struct ctl_table *table, int write,
4341 void *buffer, size_t *length, loff_t *ppos)
4342 {
4343 struct hstate *h = &default_hstate;
4344 unsigned long tmp = h->max_huge_pages;
4345 int ret;
4346
4347 if (!hugepages_supported())
4348 return -EOPNOTSUPP;
4349
4350 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4351 &tmp);
4352 if (ret)
4353 goto out;
4354
4355 if (write)
4356 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4357 NUMA_NO_NODE, tmp, *length);
4358 out:
4359 return ret;
4360 }
4361
4362 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4363 void *buffer, size_t *length, loff_t *ppos)
4364 {
4365
4366 return hugetlb_sysctl_handler_common(false, table, write,
4367 buffer, length, ppos);
4368 }
4369
4370 #ifdef CONFIG_NUMA
4371 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4372 void *buffer, size_t *length, loff_t *ppos)
4373 {
4374 return hugetlb_sysctl_handler_common(true, table, write,
4375 buffer, length, ppos);
4376 }
4377 #endif /* CONFIG_NUMA */
4378
4379 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4380 void *buffer, size_t *length, loff_t *ppos)
4381 {
4382 struct hstate *h = &default_hstate;
4383 unsigned long tmp;
4384 int ret;
4385
4386 if (!hugepages_supported())
4387 return -EOPNOTSUPP;
4388
4389 tmp = h->nr_overcommit_huge_pages;
4390
4391 if (write && hstate_is_gigantic(h))
4392 return -EINVAL;
4393
4394 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4395 &tmp);
4396 if (ret)
4397 goto out;
4398
4399 if (write) {
4400 spin_lock_irq(&hugetlb_lock);
4401 h->nr_overcommit_huge_pages = tmp;
4402 spin_unlock_irq(&hugetlb_lock);
4403 }
4404 out:
4405 return ret;
4406 }
4407
4408 #endif /* CONFIG_SYSCTL */
4409
4410 void hugetlb_report_meminfo(struct seq_file *m)
4411 {
4412 struct hstate *h;
4413 unsigned long total = 0;
4414
4415 if (!hugepages_supported())
4416 return;
4417
4418 for_each_hstate(h) {
4419 unsigned long count = h->nr_huge_pages;
4420
4421 total += huge_page_size(h) * count;
4422
4423 if (h == &default_hstate)
4424 seq_printf(m,
4425 "HugePages_Total: %5lu\n"
4426 "HugePages_Free: %5lu\n"
4427 "HugePages_Rsvd: %5lu\n"
4428 "HugePages_Surp: %5lu\n"
4429 "Hugepagesize: %8lu kB\n",
4430 count,
4431 h->free_huge_pages,
4432 h->resv_huge_pages,
4433 h->surplus_huge_pages,
4434 huge_page_size(h) / SZ_1K);
4435 }
4436
4437 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4438 }
4439
4440 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4441 {
4442 struct hstate *h = &default_hstate;
4443
4444 if (!hugepages_supported())
4445 return 0;
4446
4447 return sysfs_emit_at(buf, len,
4448 "Node %d HugePages_Total: %5u\n"
4449 "Node %d HugePages_Free: %5u\n"
4450 "Node %d HugePages_Surp: %5u\n",
4451 nid, h->nr_huge_pages_node[nid],
4452 nid, h->free_huge_pages_node[nid],
4453 nid, h->surplus_huge_pages_node[nid]);
4454 }
4455
4456 void hugetlb_show_meminfo(void)
4457 {
4458 struct hstate *h;
4459 int nid;
4460
4461 if (!hugepages_supported())
4462 return;
4463
4464 for_each_node_state(nid, N_MEMORY)
4465 for_each_hstate(h)
4466 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4467 nid,
4468 h->nr_huge_pages_node[nid],
4469 h->free_huge_pages_node[nid],
4470 h->surplus_huge_pages_node[nid],
4471 huge_page_size(h) / SZ_1K);
4472 }
4473
4474 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4475 {
4476 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4477 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4478 }
4479
4480 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4481 unsigned long hugetlb_total_pages(void)
4482 {
4483 struct hstate *h;
4484 unsigned long nr_total_pages = 0;
4485
4486 for_each_hstate(h)
4487 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4488 return nr_total_pages;
4489 }
4490
4491 static int hugetlb_acct_memory(struct hstate *h, long delta)
4492 {
4493 int ret = -ENOMEM;
4494
4495 if (!delta)
4496 return 0;
4497
4498 spin_lock_irq(&hugetlb_lock);
4499 /*
4500 * When cpuset is configured, it breaks the strict hugetlb page
4501 * reservation as the accounting is done on a global variable. Such
4502 * reservation is completely rubbish in the presence of cpuset because
4503 * the reservation is not checked against page availability for the
4504 * current cpuset. Application can still potentially OOM'ed by kernel
4505 * with lack of free htlb page in cpuset that the task is in.
4506 * Attempt to enforce strict accounting with cpuset is almost
4507 * impossible (or too ugly) because cpuset is too fluid that
4508 * task or memory node can be dynamically moved between cpusets.
4509 *
4510 * The change of semantics for shared hugetlb mapping with cpuset is
4511 * undesirable. However, in order to preserve some of the semantics,
4512 * we fall back to check against current free page availability as
4513 * a best attempt and hopefully to minimize the impact of changing
4514 * semantics that cpuset has.
4515 *
4516 * Apart from cpuset, we also have memory policy mechanism that
4517 * also determines from which node the kernel will allocate memory
4518 * in a NUMA system. So similar to cpuset, we also should consider
4519 * the memory policy of the current task. Similar to the description
4520 * above.
4521 */
4522 if (delta > 0) {
4523 if (gather_surplus_pages(h, delta) < 0)
4524 goto out;
4525
4526 if (delta > allowed_mems_nr(h)) {
4527 return_unused_surplus_pages(h, delta);
4528 goto out;
4529 }
4530 }
4531
4532 ret = 0;
4533 if (delta < 0)
4534 return_unused_surplus_pages(h, (unsigned long) -delta);
4535
4536 out:
4537 spin_unlock_irq(&hugetlb_lock);
4538 return ret;
4539 }
4540
4541 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4542 {
4543 struct resv_map *resv = vma_resv_map(vma);
4544
4545 /*
4546 * This new VMA should share its siblings reservation map if present.
4547 * The VMA will only ever have a valid reservation map pointer where
4548 * it is being copied for another still existing VMA. As that VMA
4549 * has a reference to the reservation map it cannot disappear until
4550 * after this open call completes. It is therefore safe to take a
4551 * new reference here without additional locking.
4552 */
4553 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4554 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4555 kref_get(&resv->refs);
4556 }
4557 }
4558
4559 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4560 {
4561 struct hstate *h = hstate_vma(vma);
4562 struct resv_map *resv = vma_resv_map(vma);
4563 struct hugepage_subpool *spool = subpool_vma(vma);
4564 unsigned long reserve, start, end;
4565 long gbl_reserve;
4566
4567 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4568 return;
4569
4570 start = vma_hugecache_offset(h, vma, vma->vm_start);
4571 end = vma_hugecache_offset(h, vma, vma->vm_end);
4572
4573 reserve = (end - start) - region_count(resv, start, end);
4574 hugetlb_cgroup_uncharge_counter(resv, start, end);
4575 if (reserve) {
4576 /*
4577 * Decrement reserve counts. The global reserve count may be
4578 * adjusted if the subpool has a minimum size.
4579 */
4580 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4581 hugetlb_acct_memory(h, -gbl_reserve);
4582 }
4583
4584 kref_put(&resv->refs, resv_map_release);
4585 }
4586
4587 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4588 {
4589 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4590 return -EINVAL;
4591 return 0;
4592 }
4593
4594 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4595 {
4596 return huge_page_size(hstate_vma(vma));
4597 }
4598
4599 /*
4600 * We cannot handle pagefaults against hugetlb pages at all. They cause
4601 * handle_mm_fault() to try to instantiate regular-sized pages in the
4602 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4603 * this far.
4604 */
4605 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4606 {
4607 BUG();
4608 return 0;
4609 }
4610
4611 /*
4612 * When a new function is introduced to vm_operations_struct and added
4613 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4614 * This is because under System V memory model, mappings created via
4615 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4616 * their original vm_ops are overwritten with shm_vm_ops.
4617 */
4618 const struct vm_operations_struct hugetlb_vm_ops = {
4619 .fault = hugetlb_vm_op_fault,
4620 .open = hugetlb_vm_op_open,
4621 .close = hugetlb_vm_op_close,
4622 .may_split = hugetlb_vm_op_split,
4623 .pagesize = hugetlb_vm_op_pagesize,
4624 };
4625
4626 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4627 int writable)
4628 {
4629 pte_t entry;
4630 unsigned int shift = huge_page_shift(hstate_vma(vma));
4631
4632 if (writable) {
4633 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4634 vma->vm_page_prot)));
4635 } else {
4636 entry = huge_pte_wrprotect(mk_huge_pte(page,
4637 vma->vm_page_prot));
4638 }
4639 entry = pte_mkyoung(entry);
4640 entry = pte_mkhuge(entry);
4641 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4642
4643 return entry;
4644 }
4645
4646 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4647 unsigned long address, pte_t *ptep)
4648 {
4649 pte_t entry;
4650
4651 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4652 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4653 update_mmu_cache(vma, address, ptep);
4654 }
4655
4656 bool is_hugetlb_entry_migration(pte_t pte)
4657 {
4658 swp_entry_t swp;
4659
4660 if (huge_pte_none(pte) || pte_present(pte))
4661 return false;
4662 swp = pte_to_swp_entry(pte);
4663 if (is_migration_entry(swp))
4664 return true;
4665 else
4666 return false;
4667 }
4668
4669 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4670 {
4671 swp_entry_t swp;
4672
4673 if (huge_pte_none(pte) || pte_present(pte))
4674 return false;
4675 swp = pte_to_swp_entry(pte);
4676 if (is_hwpoison_entry(swp))
4677 return true;
4678 else
4679 return false;
4680 }
4681
4682 static void
4683 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4684 struct page *new_page)
4685 {
4686 __SetPageUptodate(new_page);
4687 hugepage_add_new_anon_rmap(new_page, vma, addr);
4688 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4689 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4690 ClearHPageRestoreReserve(new_page);
4691 SetHPageMigratable(new_page);
4692 }
4693
4694 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4695 struct vm_area_struct *vma)
4696 {
4697 pte_t *src_pte, *dst_pte, entry, dst_entry;
4698 struct page *ptepage;
4699 unsigned long addr;
4700 bool cow = is_cow_mapping(vma->vm_flags);
4701 struct hstate *h = hstate_vma(vma);
4702 unsigned long sz = huge_page_size(h);
4703 unsigned long npages = pages_per_huge_page(h);
4704 struct address_space *mapping = vma->vm_file->f_mapping;
4705 struct mmu_notifier_range range;
4706 int ret = 0;
4707
4708 if (cow) {
4709 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4710 vma->vm_start,
4711 vma->vm_end);
4712 mmu_notifier_invalidate_range_start(&range);
4713 } else {
4714 /*
4715 * For shared mappings i_mmap_rwsem must be held to call
4716 * huge_pte_alloc, otherwise the returned ptep could go
4717 * away if part of a shared pmd and another thread calls
4718 * huge_pmd_unshare.
4719 */
4720 i_mmap_lock_read(mapping);
4721 }
4722
4723 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4724 spinlock_t *src_ptl, *dst_ptl;
4725 src_pte = huge_pte_offset(src, addr, sz);
4726 if (!src_pte)
4727 continue;
4728 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4729 if (!dst_pte) {
4730 ret = -ENOMEM;
4731 break;
4732 }
4733
4734 /*
4735 * If the pagetables are shared don't copy or take references.
4736 * dst_pte == src_pte is the common case of src/dest sharing.
4737 *
4738 * However, src could have 'unshared' and dst shares with
4739 * another vma. If dst_pte !none, this implies sharing.
4740 * Check here before taking page table lock, and once again
4741 * after taking the lock below.
4742 */
4743 dst_entry = huge_ptep_get(dst_pte);
4744 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4745 continue;
4746
4747 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4748 src_ptl = huge_pte_lockptr(h, src, src_pte);
4749 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4750 entry = huge_ptep_get(src_pte);
4751 dst_entry = huge_ptep_get(dst_pte);
4752 again:
4753 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4754 /*
4755 * Skip if src entry none. Also, skip in the
4756 * unlikely case dst entry !none as this implies
4757 * sharing with another vma.
4758 */
4759 ;
4760 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4761 is_hugetlb_entry_hwpoisoned(entry))) {
4762 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4763
4764 if (is_writable_migration_entry(swp_entry) && cow) {
4765 /*
4766 * COW mappings require pages in both
4767 * parent and child to be set to read.
4768 */
4769 swp_entry = make_readable_migration_entry(
4770 swp_offset(swp_entry));
4771 entry = swp_entry_to_pte(swp_entry);
4772 set_huge_swap_pte_at(src, addr, src_pte,
4773 entry, sz);
4774 }
4775 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4776 } else {
4777 entry = huge_ptep_get(src_pte);
4778 ptepage = pte_page(entry);
4779 get_page(ptepage);
4780
4781 /*
4782 * This is a rare case where we see pinned hugetlb
4783 * pages while they're prone to COW. We need to do the
4784 * COW earlier during fork.
4785 *
4786 * When pre-allocating the page or copying data, we
4787 * need to be without the pgtable locks since we could
4788 * sleep during the process.
4789 */
4790 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4791 pte_t src_pte_old = entry;
4792 struct page *new;
4793
4794 spin_unlock(src_ptl);
4795 spin_unlock(dst_ptl);
4796 /* Do not use reserve as it's private owned */
4797 new = alloc_huge_page(vma, addr, 1);
4798 if (IS_ERR(new)) {
4799 put_page(ptepage);
4800 ret = PTR_ERR(new);
4801 break;
4802 }
4803 copy_user_huge_page(new, ptepage, addr, vma,
4804 npages);
4805 put_page(ptepage);
4806
4807 /* Install the new huge page if src pte stable */
4808 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4809 src_ptl = huge_pte_lockptr(h, src, src_pte);
4810 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4811 entry = huge_ptep_get(src_pte);
4812 if (!pte_same(src_pte_old, entry)) {
4813 restore_reserve_on_error(h, vma, addr,
4814 new);
4815 put_page(new);
4816 /* dst_entry won't change as in child */
4817 goto again;
4818 }
4819 hugetlb_install_page(vma, dst_pte, addr, new);
4820 spin_unlock(src_ptl);
4821 spin_unlock(dst_ptl);
4822 continue;
4823 }
4824
4825 if (cow) {
4826 /*
4827 * No need to notify as we are downgrading page
4828 * table protection not changing it to point
4829 * to a new page.
4830 *
4831 * See Documentation/vm/mmu_notifier.rst
4832 */
4833 huge_ptep_set_wrprotect(src, addr, src_pte);
4834 entry = huge_pte_wrprotect(entry);
4835 }
4836
4837 page_dup_rmap(ptepage, true);
4838 set_huge_pte_at(dst, addr, dst_pte, entry);
4839 hugetlb_count_add(npages, dst);
4840 }
4841 spin_unlock(src_ptl);
4842 spin_unlock(dst_ptl);
4843 }
4844
4845 if (cow)
4846 mmu_notifier_invalidate_range_end(&range);
4847 else
4848 i_mmap_unlock_read(mapping);
4849
4850 return ret;
4851 }
4852
4853 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4854 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4855 {
4856 struct hstate *h = hstate_vma(vma);
4857 struct mm_struct *mm = vma->vm_mm;
4858 spinlock_t *src_ptl, *dst_ptl;
4859 pte_t pte;
4860
4861 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4862 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4863
4864 /*
4865 * We don't have to worry about the ordering of src and dst ptlocks
4866 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4867 */
4868 if (src_ptl != dst_ptl)
4869 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4870
4871 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4872 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4873
4874 if (src_ptl != dst_ptl)
4875 spin_unlock(src_ptl);
4876 spin_unlock(dst_ptl);
4877 }
4878
4879 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4880 struct vm_area_struct *new_vma,
4881 unsigned long old_addr, unsigned long new_addr,
4882 unsigned long len)
4883 {
4884 struct hstate *h = hstate_vma(vma);
4885 struct address_space *mapping = vma->vm_file->f_mapping;
4886 unsigned long sz = huge_page_size(h);
4887 struct mm_struct *mm = vma->vm_mm;
4888 unsigned long old_end = old_addr + len;
4889 unsigned long old_addr_copy;
4890 pte_t *src_pte, *dst_pte;
4891 struct mmu_notifier_range range;
4892
4893 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4894 old_end);
4895 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4896 mmu_notifier_invalidate_range_start(&range);
4897 /* Prevent race with file truncation */
4898 i_mmap_lock_write(mapping);
4899 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4900 src_pte = huge_pte_offset(mm, old_addr, sz);
4901 if (!src_pte)
4902 continue;
4903 if (huge_pte_none(huge_ptep_get(src_pte)))
4904 continue;
4905
4906 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4907 * arg may be modified. Pass a copy instead to preserve the
4908 * value in old_addr.
4909 */
4910 old_addr_copy = old_addr;
4911
4912 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4913 continue;
4914
4915 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4916 if (!dst_pte)
4917 break;
4918
4919 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4920 }
4921 flush_tlb_range(vma, old_end - len, old_end);
4922 mmu_notifier_invalidate_range_end(&range);
4923 i_mmap_unlock_write(mapping);
4924
4925 return len + old_addr - old_end;
4926 }
4927
4928 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4929 unsigned long start, unsigned long end,
4930 struct page *ref_page)
4931 {
4932 struct mm_struct *mm = vma->vm_mm;
4933 unsigned long address;
4934 pte_t *ptep;
4935 pte_t pte;
4936 spinlock_t *ptl;
4937 struct page *page;
4938 struct hstate *h = hstate_vma(vma);
4939 unsigned long sz = huge_page_size(h);
4940 struct mmu_notifier_range range;
4941 bool force_flush = false;
4942
4943 WARN_ON(!is_vm_hugetlb_page(vma));
4944 BUG_ON(start & ~huge_page_mask(h));
4945 BUG_ON(end & ~huge_page_mask(h));
4946
4947 /*
4948 * This is a hugetlb vma, all the pte entries should point
4949 * to huge page.
4950 */
4951 tlb_change_page_size(tlb, sz);
4952 tlb_start_vma(tlb, vma);
4953
4954 /*
4955 * If sharing possible, alert mmu notifiers of worst case.
4956 */
4957 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4958 end);
4959 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4960 mmu_notifier_invalidate_range_start(&range);
4961 address = start;
4962 for (; address < end; address += sz) {
4963 ptep = huge_pte_offset(mm, address, sz);
4964 if (!ptep)
4965 continue;
4966
4967 ptl = huge_pte_lock(h, mm, ptep);
4968 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4969 spin_unlock(ptl);
4970 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4971 force_flush = true;
4972 continue;
4973 }
4974
4975 pte = huge_ptep_get(ptep);
4976 if (huge_pte_none(pte)) {
4977 spin_unlock(ptl);
4978 continue;
4979 }
4980
4981 /*
4982 * Migrating hugepage or HWPoisoned hugepage is already
4983 * unmapped and its refcount is dropped, so just clear pte here.
4984 */
4985 if (unlikely(!pte_present(pte))) {
4986 huge_pte_clear(mm, address, ptep, sz);
4987 spin_unlock(ptl);
4988 continue;
4989 }
4990
4991 page = pte_page(pte);
4992 /*
4993 * If a reference page is supplied, it is because a specific
4994 * page is being unmapped, not a range. Ensure the page we
4995 * are about to unmap is the actual page of interest.
4996 */
4997 if (ref_page) {
4998 if (page != ref_page) {
4999 spin_unlock(ptl);
5000 continue;
5001 }
5002 /*
5003 * Mark the VMA as having unmapped its page so that
5004 * future faults in this VMA will fail rather than
5005 * looking like data was lost
5006 */
5007 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5008 }
5009
5010 pte = huge_ptep_get_and_clear(mm, address, ptep);
5011 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5012 if (huge_pte_dirty(pte))
5013 set_page_dirty(page);
5014
5015 hugetlb_count_sub(pages_per_huge_page(h), mm);
5016 page_remove_rmap(page, true);
5017
5018 spin_unlock(ptl);
5019 tlb_remove_page_size(tlb, page, huge_page_size(h));
5020 /*
5021 * Bail out after unmapping reference page if supplied
5022 */
5023 if (ref_page)
5024 break;
5025 }
5026 mmu_notifier_invalidate_range_end(&range);
5027 tlb_end_vma(tlb, vma);
5028
5029 /*
5030 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5031 * could defer the flush until now, since by holding i_mmap_rwsem we
5032 * guaranteed that the last refernece would not be dropped. But we must
5033 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5034 * dropped and the last reference to the shared PMDs page might be
5035 * dropped as well.
5036 *
5037 * In theory we could defer the freeing of the PMD pages as well, but
5038 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5039 * detect sharing, so we cannot defer the release of the page either.
5040 * Instead, do flush now.
5041 */
5042 if (force_flush)
5043 tlb_flush_mmu_tlbonly(tlb);
5044 }
5045
5046 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5047 struct vm_area_struct *vma, unsigned long start,
5048 unsigned long end, struct page *ref_page)
5049 {
5050 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
5051
5052 /*
5053 * Clear this flag so that x86's huge_pmd_share page_table_shareable
5054 * test will fail on a vma being torn down, and not grab a page table
5055 * on its way out. We're lucky that the flag has such an appropriate
5056 * name, and can in fact be safely cleared here. We could clear it
5057 * before the __unmap_hugepage_range above, but all that's necessary
5058 * is to clear it before releasing the i_mmap_rwsem. This works
5059 * because in the context this is called, the VMA is about to be
5060 * destroyed and the i_mmap_rwsem is held.
5061 */
5062 vma->vm_flags &= ~VM_MAYSHARE;
5063 }
5064
5065 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5066 unsigned long end, struct page *ref_page)
5067 {
5068 struct mmu_gather tlb;
5069
5070 tlb_gather_mmu(&tlb, vma->vm_mm);
5071 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5072 tlb_finish_mmu(&tlb);
5073 }
5074
5075 /*
5076 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5077 * mapping it owns the reserve page for. The intention is to unmap the page
5078 * from other VMAs and let the children be SIGKILLed if they are faulting the
5079 * same region.
5080 */
5081 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5082 struct page *page, unsigned long address)
5083 {
5084 struct hstate *h = hstate_vma(vma);
5085 struct vm_area_struct *iter_vma;
5086 struct address_space *mapping;
5087 pgoff_t pgoff;
5088
5089 /*
5090 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5091 * from page cache lookup which is in HPAGE_SIZE units.
5092 */
5093 address = address & huge_page_mask(h);
5094 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5095 vma->vm_pgoff;
5096 mapping = vma->vm_file->f_mapping;
5097
5098 /*
5099 * Take the mapping lock for the duration of the table walk. As
5100 * this mapping should be shared between all the VMAs,
5101 * __unmap_hugepage_range() is called as the lock is already held
5102 */
5103 i_mmap_lock_write(mapping);
5104 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5105 /* Do not unmap the current VMA */
5106 if (iter_vma == vma)
5107 continue;
5108
5109 /*
5110 * Shared VMAs have their own reserves and do not affect
5111 * MAP_PRIVATE accounting but it is possible that a shared
5112 * VMA is using the same page so check and skip such VMAs.
5113 */
5114 if (iter_vma->vm_flags & VM_MAYSHARE)
5115 continue;
5116
5117 /*
5118 * Unmap the page from other VMAs without their own reserves.
5119 * They get marked to be SIGKILLed if they fault in these
5120 * areas. This is because a future no-page fault on this VMA
5121 * could insert a zeroed page instead of the data existing
5122 * from the time of fork. This would look like data corruption
5123 */
5124 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5125 unmap_hugepage_range(iter_vma, address,
5126 address + huge_page_size(h), page);
5127 }
5128 i_mmap_unlock_write(mapping);
5129 }
5130
5131 /*
5132 * Hugetlb_cow() should be called with page lock of the original hugepage held.
5133 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5134 * cannot race with other handlers or page migration.
5135 * Keep the pte_same checks anyway to make transition from the mutex easier.
5136 */
5137 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5138 unsigned long address, pte_t *ptep,
5139 struct page *pagecache_page, spinlock_t *ptl)
5140 {
5141 pte_t pte;
5142 struct hstate *h = hstate_vma(vma);
5143 struct page *old_page, *new_page;
5144 int outside_reserve = 0;
5145 vm_fault_t ret = 0;
5146 unsigned long haddr = address & huge_page_mask(h);
5147 struct mmu_notifier_range range;
5148
5149 pte = huge_ptep_get(ptep);
5150 old_page = pte_page(pte);
5151
5152 retry_avoidcopy:
5153 /* If no-one else is actually using this page, avoid the copy
5154 * and just make the page writable */
5155 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5156 page_move_anon_rmap(old_page, vma);
5157 set_huge_ptep_writable(vma, haddr, ptep);
5158 return 0;
5159 }
5160
5161 /*
5162 * If the process that created a MAP_PRIVATE mapping is about to
5163 * perform a COW due to a shared page count, attempt to satisfy
5164 * the allocation without using the existing reserves. The pagecache
5165 * page is used to determine if the reserve at this address was
5166 * consumed or not. If reserves were used, a partial faulted mapping
5167 * at the time of fork() could consume its reserves on COW instead
5168 * of the full address range.
5169 */
5170 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5171 old_page != pagecache_page)
5172 outside_reserve = 1;
5173
5174 get_page(old_page);
5175
5176 /*
5177 * Drop page table lock as buddy allocator may be called. It will
5178 * be acquired again before returning to the caller, as expected.
5179 */
5180 spin_unlock(ptl);
5181 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5182
5183 if (IS_ERR(new_page)) {
5184 /*
5185 * If a process owning a MAP_PRIVATE mapping fails to COW,
5186 * it is due to references held by a child and an insufficient
5187 * huge page pool. To guarantee the original mappers
5188 * reliability, unmap the page from child processes. The child
5189 * may get SIGKILLed if it later faults.
5190 */
5191 if (outside_reserve) {
5192 struct address_space *mapping = vma->vm_file->f_mapping;
5193 pgoff_t idx;
5194 u32 hash;
5195
5196 put_page(old_page);
5197 BUG_ON(huge_pte_none(pte));
5198 /*
5199 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5200 * unmapping. unmapping needs to hold i_mmap_rwsem
5201 * in write mode. Dropping i_mmap_rwsem in read mode
5202 * here is OK as COW mappings do not interact with
5203 * PMD sharing.
5204 *
5205 * Reacquire both after unmap operation.
5206 */
5207 idx = vma_hugecache_offset(h, vma, haddr);
5208 hash = hugetlb_fault_mutex_hash(mapping, idx);
5209 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5210 i_mmap_unlock_read(mapping);
5211
5212 unmap_ref_private(mm, vma, old_page, haddr);
5213
5214 i_mmap_lock_read(mapping);
5215 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5216 spin_lock(ptl);
5217 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5218 if (likely(ptep &&
5219 pte_same(huge_ptep_get(ptep), pte)))
5220 goto retry_avoidcopy;
5221 /*
5222 * race occurs while re-acquiring page table
5223 * lock, and our job is done.
5224 */
5225 return 0;
5226 }
5227
5228 ret = vmf_error(PTR_ERR(new_page));
5229 goto out_release_old;
5230 }
5231
5232 /*
5233 * When the original hugepage is shared one, it does not have
5234 * anon_vma prepared.
5235 */
5236 if (unlikely(anon_vma_prepare(vma))) {
5237 ret = VM_FAULT_OOM;
5238 goto out_release_all;
5239 }
5240
5241 copy_user_huge_page(new_page, old_page, address, vma,
5242 pages_per_huge_page(h));
5243 __SetPageUptodate(new_page);
5244
5245 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5246 haddr + huge_page_size(h));
5247 mmu_notifier_invalidate_range_start(&range);
5248
5249 /*
5250 * Retake the page table lock to check for racing updates
5251 * before the page tables are altered
5252 */
5253 spin_lock(ptl);
5254 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5255 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5256 ClearHPageRestoreReserve(new_page);
5257
5258 /* Break COW */
5259 huge_ptep_clear_flush(vma, haddr, ptep);
5260 mmu_notifier_invalidate_range(mm, range.start, range.end);
5261 page_remove_rmap(old_page, true);
5262 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5263 set_huge_pte_at(mm, haddr, ptep,
5264 make_huge_pte(vma, new_page, 1));
5265 SetHPageMigratable(new_page);
5266 /* Make the old page be freed below */
5267 new_page = old_page;
5268 }
5269 spin_unlock(ptl);
5270 mmu_notifier_invalidate_range_end(&range);
5271 out_release_all:
5272 /* No restore in case of successful pagetable update (Break COW) */
5273 if (new_page != old_page)
5274 restore_reserve_on_error(h, vma, haddr, new_page);
5275 put_page(new_page);
5276 out_release_old:
5277 put_page(old_page);
5278
5279 spin_lock(ptl); /* Caller expects lock to be held */
5280 return ret;
5281 }
5282
5283 /* Return the pagecache page at a given address within a VMA */
5284 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5285 struct vm_area_struct *vma, unsigned long address)
5286 {
5287 struct address_space *mapping;
5288 pgoff_t idx;
5289
5290 mapping = vma->vm_file->f_mapping;
5291 idx = vma_hugecache_offset(h, vma, address);
5292
5293 return find_lock_page(mapping, idx);
5294 }
5295
5296 /*
5297 * Return whether there is a pagecache page to back given address within VMA.
5298 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5299 */
5300 static bool hugetlbfs_pagecache_present(struct hstate *h,
5301 struct vm_area_struct *vma, unsigned long address)
5302 {
5303 struct address_space *mapping;
5304 pgoff_t idx;
5305 struct page *page;
5306
5307 mapping = vma->vm_file->f_mapping;
5308 idx = vma_hugecache_offset(h, vma, address);
5309
5310 page = find_get_page(mapping, idx);
5311 if (page)
5312 put_page(page);
5313 return page != NULL;
5314 }
5315
5316 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5317 pgoff_t idx)
5318 {
5319 struct inode *inode = mapping->host;
5320 struct hstate *h = hstate_inode(inode);
5321 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5322
5323 if (err)
5324 return err;
5325 ClearHPageRestoreReserve(page);
5326
5327 /*
5328 * set page dirty so that it will not be removed from cache/file
5329 * by non-hugetlbfs specific code paths.
5330 */
5331 set_page_dirty(page);
5332
5333 spin_lock(&inode->i_lock);
5334 inode->i_blocks += blocks_per_huge_page(h);
5335 spin_unlock(&inode->i_lock);
5336 return 0;
5337 }
5338
5339 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5340 struct address_space *mapping,
5341 pgoff_t idx,
5342 unsigned int flags,
5343 unsigned long haddr,
5344 unsigned long reason)
5345 {
5346 vm_fault_t ret;
5347 u32 hash;
5348 struct vm_fault vmf = {
5349 .vma = vma,
5350 .address = haddr,
5351 .flags = flags,
5352
5353 /*
5354 * Hard to debug if it ends up being
5355 * used by a callee that assumes
5356 * something about the other
5357 * uninitialized fields... same as in
5358 * memory.c
5359 */
5360 };
5361
5362 /*
5363 * hugetlb_fault_mutex and i_mmap_rwsem must be
5364 * dropped before handling userfault. Reacquire
5365 * after handling fault to make calling code simpler.
5366 */
5367 hash = hugetlb_fault_mutex_hash(mapping, idx);
5368 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5369 i_mmap_unlock_read(mapping);
5370 ret = handle_userfault(&vmf, reason);
5371 i_mmap_lock_read(mapping);
5372 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5373
5374 return ret;
5375 }
5376
5377 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5378 struct vm_area_struct *vma,
5379 struct address_space *mapping, pgoff_t idx,
5380 unsigned long address, pte_t *ptep, unsigned int flags)
5381 {
5382 struct hstate *h = hstate_vma(vma);
5383 vm_fault_t ret = VM_FAULT_SIGBUS;
5384 int anon_rmap = 0;
5385 unsigned long size;
5386 struct page *page;
5387 pte_t new_pte;
5388 spinlock_t *ptl;
5389 unsigned long haddr = address & huge_page_mask(h);
5390 bool new_page, new_pagecache_page = false;
5391
5392 /*
5393 * Currently, we are forced to kill the process in the event the
5394 * original mapper has unmapped pages from the child due to a failed
5395 * COW. Warn that such a situation has occurred as it may not be obvious
5396 */
5397 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5398 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5399 current->pid);
5400 return ret;
5401 }
5402
5403 /*
5404 * We can not race with truncation due to holding i_mmap_rwsem.
5405 * i_size is modified when holding i_mmap_rwsem, so check here
5406 * once for faults beyond end of file.
5407 */
5408 size = i_size_read(mapping->host) >> huge_page_shift(h);
5409 if (idx >= size)
5410 goto out;
5411
5412 retry:
5413 new_page = false;
5414 page = find_lock_page(mapping, idx);
5415 if (!page) {
5416 /* Check for page in userfault range */
5417 if (userfaultfd_missing(vma)) {
5418 ret = hugetlb_handle_userfault(vma, mapping, idx,
5419 flags, haddr,
5420 VM_UFFD_MISSING);
5421 goto out;
5422 }
5423
5424 page = alloc_huge_page(vma, haddr, 0);
5425 if (IS_ERR(page)) {
5426 /*
5427 * Returning error will result in faulting task being
5428 * sent SIGBUS. The hugetlb fault mutex prevents two
5429 * tasks from racing to fault in the same page which
5430 * could result in false unable to allocate errors.
5431 * Page migration does not take the fault mutex, but
5432 * does a clear then write of pte's under page table
5433 * lock. Page fault code could race with migration,
5434 * notice the clear pte and try to allocate a page
5435 * here. Before returning error, get ptl and make
5436 * sure there really is no pte entry.
5437 */
5438 ptl = huge_pte_lock(h, mm, ptep);
5439 ret = 0;
5440 if (huge_pte_none(huge_ptep_get(ptep)))
5441 ret = vmf_error(PTR_ERR(page));
5442 spin_unlock(ptl);
5443 goto out;
5444 }
5445 clear_huge_page(page, address, pages_per_huge_page(h));
5446 __SetPageUptodate(page);
5447 new_page = true;
5448
5449 if (vma->vm_flags & VM_MAYSHARE) {
5450 int err = huge_add_to_page_cache(page, mapping, idx);
5451 if (err) {
5452 put_page(page);
5453 if (err == -EEXIST)
5454 goto retry;
5455 goto out;
5456 }
5457 new_pagecache_page = true;
5458 } else {
5459 lock_page(page);
5460 if (unlikely(anon_vma_prepare(vma))) {
5461 ret = VM_FAULT_OOM;
5462 goto backout_unlocked;
5463 }
5464 anon_rmap = 1;
5465 }
5466 } else {
5467 /*
5468 * If memory error occurs between mmap() and fault, some process
5469 * don't have hwpoisoned swap entry for errored virtual address.
5470 * So we need to block hugepage fault by PG_hwpoison bit check.
5471 */
5472 if (unlikely(PageHWPoison(page))) {
5473 ret = VM_FAULT_HWPOISON_LARGE |
5474 VM_FAULT_SET_HINDEX(hstate_index(h));
5475 goto backout_unlocked;
5476 }
5477
5478 /* Check for page in userfault range. */
5479 if (userfaultfd_minor(vma)) {
5480 unlock_page(page);
5481 put_page(page);
5482 ret = hugetlb_handle_userfault(vma, mapping, idx,
5483 flags, haddr,
5484 VM_UFFD_MINOR);
5485 goto out;
5486 }
5487 }
5488
5489 /*
5490 * If we are going to COW a private mapping later, we examine the
5491 * pending reservations for this page now. This will ensure that
5492 * any allocations necessary to record that reservation occur outside
5493 * the spinlock.
5494 */
5495 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5496 if (vma_needs_reservation(h, vma, haddr) < 0) {
5497 ret = VM_FAULT_OOM;
5498 goto backout_unlocked;
5499 }
5500 /* Just decrements count, does not deallocate */
5501 vma_end_reservation(h, vma, haddr);
5502 }
5503
5504 ptl = huge_pte_lock(h, mm, ptep);
5505 ret = 0;
5506 if (!huge_pte_none(huge_ptep_get(ptep)))
5507 goto backout;
5508
5509 if (anon_rmap) {
5510 ClearHPageRestoreReserve(page);
5511 hugepage_add_new_anon_rmap(page, vma, haddr);
5512 } else
5513 page_dup_rmap(page, true);
5514 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5515 && (vma->vm_flags & VM_SHARED)));
5516 set_huge_pte_at(mm, haddr, ptep, new_pte);
5517
5518 hugetlb_count_add(pages_per_huge_page(h), mm);
5519 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5520 /* Optimization, do the COW without a second fault */
5521 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5522 }
5523
5524 spin_unlock(ptl);
5525
5526 /*
5527 * Only set HPageMigratable in newly allocated pages. Existing pages
5528 * found in the pagecache may not have HPageMigratableset if they have
5529 * been isolated for migration.
5530 */
5531 if (new_page)
5532 SetHPageMigratable(page);
5533
5534 unlock_page(page);
5535 out:
5536 return ret;
5537
5538 backout:
5539 spin_unlock(ptl);
5540 backout_unlocked:
5541 unlock_page(page);
5542 /* restore reserve for newly allocated pages not in page cache */
5543 if (new_page && !new_pagecache_page)
5544 restore_reserve_on_error(h, vma, haddr, page);
5545 put_page(page);
5546 goto out;
5547 }
5548
5549 #ifdef CONFIG_SMP
5550 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5551 {
5552 unsigned long key[2];
5553 u32 hash;
5554
5555 key[0] = (unsigned long) mapping;
5556 key[1] = idx;
5557
5558 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5559
5560 return hash & (num_fault_mutexes - 1);
5561 }
5562 #else
5563 /*
5564 * For uniprocessor systems we always use a single mutex, so just
5565 * return 0 and avoid the hashing overhead.
5566 */
5567 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5568 {
5569 return 0;
5570 }
5571 #endif
5572
5573 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5574 unsigned long address, unsigned int flags)
5575 {
5576 pte_t *ptep, entry;
5577 spinlock_t *ptl;
5578 vm_fault_t ret;
5579 u32 hash;
5580 pgoff_t idx;
5581 struct page *page = NULL;
5582 struct page *pagecache_page = NULL;
5583 struct hstate *h = hstate_vma(vma);
5584 struct address_space *mapping;
5585 int need_wait_lock = 0;
5586 unsigned long haddr = address & huge_page_mask(h);
5587
5588 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5589 if (ptep) {
5590 /*
5591 * Since we hold no locks, ptep could be stale. That is
5592 * OK as we are only making decisions based on content and
5593 * not actually modifying content here.
5594 */
5595 entry = huge_ptep_get(ptep);
5596 if (unlikely(is_hugetlb_entry_migration(entry))) {
5597 migration_entry_wait_huge(vma, mm, ptep);
5598 return 0;
5599 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5600 return VM_FAULT_HWPOISON_LARGE |
5601 VM_FAULT_SET_HINDEX(hstate_index(h));
5602 }
5603
5604 /*
5605 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5606 * until finished with ptep. This serves two purposes:
5607 * 1) It prevents huge_pmd_unshare from being called elsewhere
5608 * and making the ptep no longer valid.
5609 * 2) It synchronizes us with i_size modifications during truncation.
5610 *
5611 * ptep could have already be assigned via huge_pte_offset. That
5612 * is OK, as huge_pte_alloc will return the same value unless
5613 * something has changed.
5614 */
5615 mapping = vma->vm_file->f_mapping;
5616 i_mmap_lock_read(mapping);
5617 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5618 if (!ptep) {
5619 i_mmap_unlock_read(mapping);
5620 return VM_FAULT_OOM;
5621 }
5622
5623 /*
5624 * Serialize hugepage allocation and instantiation, so that we don't
5625 * get spurious allocation failures if two CPUs race to instantiate
5626 * the same page in the page cache.
5627 */
5628 idx = vma_hugecache_offset(h, vma, haddr);
5629 hash = hugetlb_fault_mutex_hash(mapping, idx);
5630 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5631
5632 entry = huge_ptep_get(ptep);
5633 if (huge_pte_none(entry)) {
5634 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5635 goto out_mutex;
5636 }
5637
5638 ret = 0;
5639
5640 /*
5641 * entry could be a migration/hwpoison entry at this point, so this
5642 * check prevents the kernel from going below assuming that we have
5643 * an active hugepage in pagecache. This goto expects the 2nd page
5644 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5645 * properly handle it.
5646 */
5647 if (!pte_present(entry))
5648 goto out_mutex;
5649
5650 /*
5651 * If we are going to COW the mapping later, we examine the pending
5652 * reservations for this page now. This will ensure that any
5653 * allocations necessary to record that reservation occur outside the
5654 * spinlock. For private mappings, we also lookup the pagecache
5655 * page now as it is used to determine if a reservation has been
5656 * consumed.
5657 */
5658 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5659 if (vma_needs_reservation(h, vma, haddr) < 0) {
5660 ret = VM_FAULT_OOM;
5661 goto out_mutex;
5662 }
5663 /* Just decrements count, does not deallocate */
5664 vma_end_reservation(h, vma, haddr);
5665
5666 if (!(vma->vm_flags & VM_MAYSHARE))
5667 pagecache_page = hugetlbfs_pagecache_page(h,
5668 vma, haddr);
5669 }
5670
5671 ptl = huge_pte_lock(h, mm, ptep);
5672
5673 /* Check for a racing update before calling hugetlb_cow */
5674 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5675 goto out_ptl;
5676
5677 /*
5678 * hugetlb_cow() requires page locks of pte_page(entry) and
5679 * pagecache_page, so here we need take the former one
5680 * when page != pagecache_page or !pagecache_page.
5681 */
5682 page = pte_page(entry);
5683 if (page != pagecache_page)
5684 if (!trylock_page(page)) {
5685 need_wait_lock = 1;
5686 goto out_ptl;
5687 }
5688
5689 get_page(page);
5690
5691 if (flags & FAULT_FLAG_WRITE) {
5692 if (!huge_pte_write(entry)) {
5693 ret = hugetlb_cow(mm, vma, address, ptep,
5694 pagecache_page, ptl);
5695 goto out_put_page;
5696 }
5697 entry = huge_pte_mkdirty(entry);
5698 }
5699 entry = pte_mkyoung(entry);
5700 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5701 flags & FAULT_FLAG_WRITE))
5702 update_mmu_cache(vma, haddr, ptep);
5703 out_put_page:
5704 if (page != pagecache_page)
5705 unlock_page(page);
5706 put_page(page);
5707 out_ptl:
5708 spin_unlock(ptl);
5709
5710 if (pagecache_page) {
5711 unlock_page(pagecache_page);
5712 put_page(pagecache_page);
5713 }
5714 out_mutex:
5715 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5716 i_mmap_unlock_read(mapping);
5717 /*
5718 * Generally it's safe to hold refcount during waiting page lock. But
5719 * here we just wait to defer the next page fault to avoid busy loop and
5720 * the page is not used after unlocked before returning from the current
5721 * page fault. So we are safe from accessing freed page, even if we wait
5722 * here without taking refcount.
5723 */
5724 if (need_wait_lock)
5725 wait_on_page_locked(page);
5726 return ret;
5727 }
5728
5729 #ifdef CONFIG_USERFAULTFD
5730 /*
5731 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5732 * modifications for huge pages.
5733 */
5734 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5735 pte_t *dst_pte,
5736 struct vm_area_struct *dst_vma,
5737 unsigned long dst_addr,
5738 unsigned long src_addr,
5739 enum mcopy_atomic_mode mode,
5740 struct page **pagep)
5741 {
5742 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5743 struct hstate *h = hstate_vma(dst_vma);
5744 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5745 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5746 unsigned long size;
5747 int vm_shared = dst_vma->vm_flags & VM_SHARED;
5748 pte_t _dst_pte;
5749 spinlock_t *ptl;
5750 int ret = -ENOMEM;
5751 struct page *page;
5752 int writable;
5753 bool page_in_pagecache = false;
5754
5755 if (is_continue) {
5756 ret = -EFAULT;
5757 page = find_lock_page(mapping, idx);
5758 if (!page)
5759 goto out;
5760 page_in_pagecache = true;
5761 } else if (!*pagep) {
5762 /* If a page already exists, then it's UFFDIO_COPY for
5763 * a non-missing case. Return -EEXIST.
5764 */
5765 if (vm_shared &&
5766 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5767 ret = -EEXIST;
5768 goto out;
5769 }
5770
5771 page = alloc_huge_page(dst_vma, dst_addr, 0);
5772 if (IS_ERR(page)) {
5773 ret = -ENOMEM;
5774 goto out;
5775 }
5776
5777 ret = copy_huge_page_from_user(page,
5778 (const void __user *) src_addr,
5779 pages_per_huge_page(h), false);
5780
5781 /* fallback to copy_from_user outside mmap_lock */
5782 if (unlikely(ret)) {
5783 ret = -ENOENT;
5784 /* Free the allocated page which may have
5785 * consumed a reservation.
5786 */
5787 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5788 put_page(page);
5789
5790 /* Allocate a temporary page to hold the copied
5791 * contents.
5792 */
5793 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5794 if (!page) {
5795 ret = -ENOMEM;
5796 goto out;
5797 }
5798 *pagep = page;
5799 /* Set the outparam pagep and return to the caller to
5800 * copy the contents outside the lock. Don't free the
5801 * page.
5802 */
5803 goto out;
5804 }
5805 } else {
5806 if (vm_shared &&
5807 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5808 put_page(*pagep);
5809 ret = -EEXIST;
5810 *pagep = NULL;
5811 goto out;
5812 }
5813
5814 page = alloc_huge_page(dst_vma, dst_addr, 0);
5815 if (IS_ERR(page)) {
5816 ret = -ENOMEM;
5817 *pagep = NULL;
5818 goto out;
5819 }
5820 folio_copy(page_folio(page), page_folio(*pagep));
5821 put_page(*pagep);
5822 *pagep = NULL;
5823 }
5824
5825 /*
5826 * The memory barrier inside __SetPageUptodate makes sure that
5827 * preceding stores to the page contents become visible before
5828 * the set_pte_at() write.
5829 */
5830 __SetPageUptodate(page);
5831
5832 /* Add shared, newly allocated pages to the page cache. */
5833 if (vm_shared && !is_continue) {
5834 size = i_size_read(mapping->host) >> huge_page_shift(h);
5835 ret = -EFAULT;
5836 if (idx >= size)
5837 goto out_release_nounlock;
5838
5839 /*
5840 * Serialization between remove_inode_hugepages() and
5841 * huge_add_to_page_cache() below happens through the
5842 * hugetlb_fault_mutex_table that here must be hold by
5843 * the caller.
5844 */
5845 ret = huge_add_to_page_cache(page, mapping, idx);
5846 if (ret)
5847 goto out_release_nounlock;
5848 page_in_pagecache = true;
5849 }
5850
5851 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5852 spin_lock(ptl);
5853
5854 /*
5855 * Recheck the i_size after holding PT lock to make sure not
5856 * to leave any page mapped (as page_mapped()) beyond the end
5857 * of the i_size (remove_inode_hugepages() is strict about
5858 * enforcing that). If we bail out here, we'll also leave a
5859 * page in the radix tree in the vm_shared case beyond the end
5860 * of the i_size, but remove_inode_hugepages() will take care
5861 * of it as soon as we drop the hugetlb_fault_mutex_table.
5862 */
5863 size = i_size_read(mapping->host) >> huge_page_shift(h);
5864 ret = -EFAULT;
5865 if (idx >= size)
5866 goto out_release_unlock;
5867
5868 ret = -EEXIST;
5869 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5870 goto out_release_unlock;
5871
5872 if (vm_shared) {
5873 page_dup_rmap(page, true);
5874 } else {
5875 ClearHPageRestoreReserve(page);
5876 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5877 }
5878
5879 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5880 if (is_continue && !vm_shared)
5881 writable = 0;
5882 else
5883 writable = dst_vma->vm_flags & VM_WRITE;
5884
5885 _dst_pte = make_huge_pte(dst_vma, page, writable);
5886 if (writable)
5887 _dst_pte = huge_pte_mkdirty(_dst_pte);
5888 _dst_pte = pte_mkyoung(_dst_pte);
5889
5890 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5891
5892 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5893 dst_vma->vm_flags & VM_WRITE);
5894 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5895
5896 /* No need to invalidate - it was non-present before */
5897 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5898
5899 spin_unlock(ptl);
5900 if (!is_continue)
5901 SetHPageMigratable(page);
5902 if (vm_shared || is_continue)
5903 unlock_page(page);
5904 ret = 0;
5905 out:
5906 return ret;
5907 out_release_unlock:
5908 spin_unlock(ptl);
5909 if (vm_shared || is_continue)
5910 unlock_page(page);
5911 out_release_nounlock:
5912 if (!page_in_pagecache)
5913 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5914 put_page(page);
5915 goto out;
5916 }
5917 #endif /* CONFIG_USERFAULTFD */
5918
5919 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5920 int refs, struct page **pages,
5921 struct vm_area_struct **vmas)
5922 {
5923 int nr;
5924
5925 for (nr = 0; nr < refs; nr++) {
5926 if (likely(pages))
5927 pages[nr] = mem_map_offset(page, nr);
5928 if (vmas)
5929 vmas[nr] = vma;
5930 }
5931 }
5932
5933 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5934 struct page **pages, struct vm_area_struct **vmas,
5935 unsigned long *position, unsigned long *nr_pages,
5936 long i, unsigned int flags, int *locked)
5937 {
5938 unsigned long pfn_offset;
5939 unsigned long vaddr = *position;
5940 unsigned long remainder = *nr_pages;
5941 struct hstate *h = hstate_vma(vma);
5942 int err = -EFAULT, refs;
5943
5944 while (vaddr < vma->vm_end && remainder) {
5945 pte_t *pte;
5946 spinlock_t *ptl = NULL;
5947 int absent;
5948 struct page *page;
5949
5950 /*
5951 * If we have a pending SIGKILL, don't keep faulting pages and
5952 * potentially allocating memory.
5953 */
5954 if (fatal_signal_pending(current)) {
5955 remainder = 0;
5956 break;
5957 }
5958
5959 /*
5960 * Some archs (sparc64, sh*) have multiple pte_ts to
5961 * each hugepage. We have to make sure we get the
5962 * first, for the page indexing below to work.
5963 *
5964 * Note that page table lock is not held when pte is null.
5965 */
5966 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5967 huge_page_size(h));
5968 if (pte)
5969 ptl = huge_pte_lock(h, mm, pte);
5970 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5971
5972 /*
5973 * When coredumping, it suits get_dump_page if we just return
5974 * an error where there's an empty slot with no huge pagecache
5975 * to back it. This way, we avoid allocating a hugepage, and
5976 * the sparse dumpfile avoids allocating disk blocks, but its
5977 * huge holes still show up with zeroes where they need to be.
5978 */
5979 if (absent && (flags & FOLL_DUMP) &&
5980 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5981 if (pte)
5982 spin_unlock(ptl);
5983 remainder = 0;
5984 break;
5985 }
5986
5987 /*
5988 * We need call hugetlb_fault for both hugepages under migration
5989 * (in which case hugetlb_fault waits for the migration,) and
5990 * hwpoisoned hugepages (in which case we need to prevent the
5991 * caller from accessing to them.) In order to do this, we use
5992 * here is_swap_pte instead of is_hugetlb_entry_migration and
5993 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5994 * both cases, and because we can't follow correct pages
5995 * directly from any kind of swap entries.
5996 */
5997 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5998 ((flags & FOLL_WRITE) &&
5999 !huge_pte_write(huge_ptep_get(pte)))) {
6000 vm_fault_t ret;
6001 unsigned int fault_flags = 0;
6002
6003 if (pte)
6004 spin_unlock(ptl);
6005 if (flags & FOLL_WRITE)
6006 fault_flags |= FAULT_FLAG_WRITE;
6007 if (locked)
6008 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6009 FAULT_FLAG_KILLABLE;
6010 if (flags & FOLL_NOWAIT)
6011 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6012 FAULT_FLAG_RETRY_NOWAIT;
6013 if (flags & FOLL_TRIED) {
6014 /*
6015 * Note: FAULT_FLAG_ALLOW_RETRY and
6016 * FAULT_FLAG_TRIED can co-exist
6017 */
6018 fault_flags |= FAULT_FLAG_TRIED;
6019 }
6020 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6021 if (ret & VM_FAULT_ERROR) {
6022 err = vm_fault_to_errno(ret, flags);
6023 remainder = 0;
6024 break;
6025 }
6026 if (ret & VM_FAULT_RETRY) {
6027 if (locked &&
6028 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6029 *locked = 0;
6030 *nr_pages = 0;
6031 /*
6032 * VM_FAULT_RETRY must not return an
6033 * error, it will return zero
6034 * instead.
6035 *
6036 * No need to update "position" as the
6037 * caller will not check it after
6038 * *nr_pages is set to 0.
6039 */
6040 return i;
6041 }
6042 continue;
6043 }
6044
6045 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6046 page = pte_page(huge_ptep_get(pte));
6047
6048 /*
6049 * If subpage information not requested, update counters
6050 * and skip the same_page loop below.
6051 */
6052 if (!pages && !vmas && !pfn_offset &&
6053 (vaddr + huge_page_size(h) < vma->vm_end) &&
6054 (remainder >= pages_per_huge_page(h))) {
6055 vaddr += huge_page_size(h);
6056 remainder -= pages_per_huge_page(h);
6057 i += pages_per_huge_page(h);
6058 spin_unlock(ptl);
6059 continue;
6060 }
6061
6062 /* vaddr may not be aligned to PAGE_SIZE */
6063 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6064 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6065
6066 if (pages || vmas)
6067 record_subpages_vmas(mem_map_offset(page, pfn_offset),
6068 vma, refs,
6069 likely(pages) ? pages + i : NULL,
6070 vmas ? vmas + i : NULL);
6071
6072 if (pages) {
6073 /*
6074 * try_grab_compound_head() should always succeed here,
6075 * because: a) we hold the ptl lock, and b) we've just
6076 * checked that the huge page is present in the page
6077 * tables. If the huge page is present, then the tail
6078 * pages must also be present. The ptl prevents the
6079 * head page and tail pages from being rearranged in
6080 * any way. So this page must be available at this
6081 * point, unless the page refcount overflowed:
6082 */
6083 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
6084 refs,
6085 flags))) {
6086 spin_unlock(ptl);
6087 remainder = 0;
6088 err = -ENOMEM;
6089 break;
6090 }
6091 }
6092
6093 vaddr += (refs << PAGE_SHIFT);
6094 remainder -= refs;
6095 i += refs;
6096
6097 spin_unlock(ptl);
6098 }
6099 *nr_pages = remainder;
6100 /*
6101 * setting position is actually required only if remainder is
6102 * not zero but it's faster not to add a "if (remainder)"
6103 * branch.
6104 */
6105 *position = vaddr;
6106
6107 return i ? i : err;
6108 }
6109
6110 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6111 unsigned long address, unsigned long end, pgprot_t newprot)
6112 {
6113 struct mm_struct *mm = vma->vm_mm;
6114 unsigned long start = address;
6115 pte_t *ptep;
6116 pte_t pte;
6117 struct hstate *h = hstate_vma(vma);
6118 unsigned long pages = 0;
6119 bool shared_pmd = false;
6120 struct mmu_notifier_range range;
6121
6122 /*
6123 * In the case of shared PMDs, the area to flush could be beyond
6124 * start/end. Set range.start/range.end to cover the maximum possible
6125 * range if PMD sharing is possible.
6126 */
6127 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6128 0, vma, mm, start, end);
6129 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6130
6131 BUG_ON(address >= end);
6132 flush_cache_range(vma, range.start, range.end);
6133
6134 mmu_notifier_invalidate_range_start(&range);
6135 i_mmap_lock_write(vma->vm_file->f_mapping);
6136 for (; address < end; address += huge_page_size(h)) {
6137 spinlock_t *ptl;
6138 ptep = huge_pte_offset(mm, address, huge_page_size(h));
6139 if (!ptep)
6140 continue;
6141 ptl = huge_pte_lock(h, mm, ptep);
6142 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6143 pages++;
6144 spin_unlock(ptl);
6145 shared_pmd = true;
6146 continue;
6147 }
6148 pte = huge_ptep_get(ptep);
6149 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6150 spin_unlock(ptl);
6151 continue;
6152 }
6153 if (unlikely(is_hugetlb_entry_migration(pte))) {
6154 swp_entry_t entry = pte_to_swp_entry(pte);
6155
6156 if (is_writable_migration_entry(entry)) {
6157 pte_t newpte;
6158
6159 entry = make_readable_migration_entry(
6160 swp_offset(entry));
6161 newpte = swp_entry_to_pte(entry);
6162 set_huge_swap_pte_at(mm, address, ptep,
6163 newpte, huge_page_size(h));
6164 pages++;
6165 }
6166 spin_unlock(ptl);
6167 continue;
6168 }
6169 if (!huge_pte_none(pte)) {
6170 pte_t old_pte;
6171 unsigned int shift = huge_page_shift(hstate_vma(vma));
6172
6173 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6174 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
6175 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6176 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6177 pages++;
6178 }
6179 spin_unlock(ptl);
6180 }
6181 /*
6182 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6183 * may have cleared our pud entry and done put_page on the page table:
6184 * once we release i_mmap_rwsem, another task can do the final put_page
6185 * and that page table be reused and filled with junk. If we actually
6186 * did unshare a page of pmds, flush the range corresponding to the pud.
6187 */
6188 if (shared_pmd)
6189 flush_hugetlb_tlb_range(vma, range.start, range.end);
6190 else
6191 flush_hugetlb_tlb_range(vma, start, end);
6192 /*
6193 * No need to call mmu_notifier_invalidate_range() we are downgrading
6194 * page table protection not changing it to point to a new page.
6195 *
6196 * See Documentation/vm/mmu_notifier.rst
6197 */
6198 i_mmap_unlock_write(vma->vm_file->f_mapping);
6199 mmu_notifier_invalidate_range_end(&range);
6200
6201 return pages << h->order;
6202 }
6203
6204 /* Return true if reservation was successful, false otherwise. */
6205 bool hugetlb_reserve_pages(struct inode *inode,
6206 long from, long to,
6207 struct vm_area_struct *vma,
6208 vm_flags_t vm_flags)
6209 {
6210 long chg, add = -1;
6211 struct hstate *h = hstate_inode(inode);
6212 struct hugepage_subpool *spool = subpool_inode(inode);
6213 struct resv_map *resv_map;
6214 struct hugetlb_cgroup *h_cg = NULL;
6215 long gbl_reserve, regions_needed = 0;
6216
6217 /* This should never happen */
6218 if (from > to) {
6219 VM_WARN(1, "%s called with a negative range\n", __func__);
6220 return false;
6221 }
6222
6223 /*
6224 * Only apply hugepage reservation if asked. At fault time, an
6225 * attempt will be made for VM_NORESERVE to allocate a page
6226 * without using reserves
6227 */
6228 if (vm_flags & VM_NORESERVE)
6229 return true;
6230
6231 /*
6232 * Shared mappings base their reservation on the number of pages that
6233 * are already allocated on behalf of the file. Private mappings need
6234 * to reserve the full area even if read-only as mprotect() may be
6235 * called to make the mapping read-write. Assume !vma is a shm mapping
6236 */
6237 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6238 /*
6239 * resv_map can not be NULL as hugetlb_reserve_pages is only
6240 * called for inodes for which resv_maps were created (see
6241 * hugetlbfs_get_inode).
6242 */
6243 resv_map = inode_resv_map(inode);
6244
6245 chg = region_chg(resv_map, from, to, &regions_needed);
6246
6247 } else {
6248 /* Private mapping. */
6249 resv_map = resv_map_alloc();
6250 if (!resv_map)
6251 return false;
6252
6253 chg = to - from;
6254
6255 set_vma_resv_map(vma, resv_map);
6256 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6257 }
6258
6259 if (chg < 0)
6260 goto out_err;
6261
6262 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6263 chg * pages_per_huge_page(h), &h_cg) < 0)
6264 goto out_err;
6265
6266 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6267 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6268 * of the resv_map.
6269 */
6270 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6271 }
6272
6273 /*
6274 * There must be enough pages in the subpool for the mapping. If
6275 * the subpool has a minimum size, there may be some global
6276 * reservations already in place (gbl_reserve).
6277 */
6278 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6279 if (gbl_reserve < 0)
6280 goto out_uncharge_cgroup;
6281
6282 /*
6283 * Check enough hugepages are available for the reservation.
6284 * Hand the pages back to the subpool if there are not
6285 */
6286 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6287 goto out_put_pages;
6288
6289 /*
6290 * Account for the reservations made. Shared mappings record regions
6291 * that have reservations as they are shared by multiple VMAs.
6292 * When the last VMA disappears, the region map says how much
6293 * the reservation was and the page cache tells how much of
6294 * the reservation was consumed. Private mappings are per-VMA and
6295 * only the consumed reservations are tracked. When the VMA
6296 * disappears, the original reservation is the VMA size and the
6297 * consumed reservations are stored in the map. Hence, nothing
6298 * else has to be done for private mappings here
6299 */
6300 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6301 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6302
6303 if (unlikely(add < 0)) {
6304 hugetlb_acct_memory(h, -gbl_reserve);
6305 goto out_put_pages;
6306 } else if (unlikely(chg > add)) {
6307 /*
6308 * pages in this range were added to the reserve
6309 * map between region_chg and region_add. This
6310 * indicates a race with alloc_huge_page. Adjust
6311 * the subpool and reserve counts modified above
6312 * based on the difference.
6313 */
6314 long rsv_adjust;
6315
6316 /*
6317 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6318 * reference to h_cg->css. See comment below for detail.
6319 */
6320 hugetlb_cgroup_uncharge_cgroup_rsvd(
6321 hstate_index(h),
6322 (chg - add) * pages_per_huge_page(h), h_cg);
6323
6324 rsv_adjust = hugepage_subpool_put_pages(spool,
6325 chg - add);
6326 hugetlb_acct_memory(h, -rsv_adjust);
6327 } else if (h_cg) {
6328 /*
6329 * The file_regions will hold their own reference to
6330 * h_cg->css. So we should release the reference held
6331 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6332 * done.
6333 */
6334 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6335 }
6336 }
6337 return true;
6338
6339 out_put_pages:
6340 /* put back original number of pages, chg */
6341 (void)hugepage_subpool_put_pages(spool, chg);
6342 out_uncharge_cgroup:
6343 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6344 chg * pages_per_huge_page(h), h_cg);
6345 out_err:
6346 if (!vma || vma->vm_flags & VM_MAYSHARE)
6347 /* Only call region_abort if the region_chg succeeded but the
6348 * region_add failed or didn't run.
6349 */
6350 if (chg >= 0 && add < 0)
6351 region_abort(resv_map, from, to, regions_needed);
6352 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6353 kref_put(&resv_map->refs, resv_map_release);
6354 return false;
6355 }
6356
6357 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6358 long freed)
6359 {
6360 struct hstate *h = hstate_inode(inode);
6361 struct resv_map *resv_map = inode_resv_map(inode);
6362 long chg = 0;
6363 struct hugepage_subpool *spool = subpool_inode(inode);
6364 long gbl_reserve;
6365
6366 /*
6367 * Since this routine can be called in the evict inode path for all
6368 * hugetlbfs inodes, resv_map could be NULL.
6369 */
6370 if (resv_map) {
6371 chg = region_del(resv_map, start, end);
6372 /*
6373 * region_del() can fail in the rare case where a region
6374 * must be split and another region descriptor can not be
6375 * allocated. If end == LONG_MAX, it will not fail.
6376 */
6377 if (chg < 0)
6378 return chg;
6379 }
6380
6381 spin_lock(&inode->i_lock);
6382 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6383 spin_unlock(&inode->i_lock);
6384
6385 /*
6386 * If the subpool has a minimum size, the number of global
6387 * reservations to be released may be adjusted.
6388 *
6389 * Note that !resv_map implies freed == 0. So (chg - freed)
6390 * won't go negative.
6391 */
6392 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6393 hugetlb_acct_memory(h, -gbl_reserve);
6394
6395 return 0;
6396 }
6397
6398 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6399 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6400 struct vm_area_struct *vma,
6401 unsigned long addr, pgoff_t idx)
6402 {
6403 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6404 svma->vm_start;
6405 unsigned long sbase = saddr & PUD_MASK;
6406 unsigned long s_end = sbase + PUD_SIZE;
6407
6408 /* Allow segments to share if only one is marked locked */
6409 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6410 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6411
6412 /*
6413 * match the virtual addresses, permission and the alignment of the
6414 * page table page.
6415 */
6416 if (pmd_index(addr) != pmd_index(saddr) ||
6417 vm_flags != svm_flags ||
6418 !range_in_vma(svma, sbase, s_end))
6419 return 0;
6420
6421 return saddr;
6422 }
6423
6424 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6425 {
6426 unsigned long base = addr & PUD_MASK;
6427 unsigned long end = base + PUD_SIZE;
6428
6429 /*
6430 * check on proper vm_flags and page table alignment
6431 */
6432 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6433 return true;
6434 return false;
6435 }
6436
6437 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6438 {
6439 #ifdef CONFIG_USERFAULTFD
6440 if (uffd_disable_huge_pmd_share(vma))
6441 return false;
6442 #endif
6443 return vma_shareable(vma, addr);
6444 }
6445
6446 /*
6447 * Determine if start,end range within vma could be mapped by shared pmd.
6448 * If yes, adjust start and end to cover range associated with possible
6449 * shared pmd mappings.
6450 */
6451 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6452 unsigned long *start, unsigned long *end)
6453 {
6454 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6455 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6456
6457 /*
6458 * vma needs to span at least one aligned PUD size, and the range
6459 * must be at least partially within in.
6460 */
6461 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6462 (*end <= v_start) || (*start >= v_end))
6463 return;
6464
6465 /* Extend the range to be PUD aligned for a worst case scenario */
6466 if (*start > v_start)
6467 *start = ALIGN_DOWN(*start, PUD_SIZE);
6468
6469 if (*end < v_end)
6470 *end = ALIGN(*end, PUD_SIZE);
6471 }
6472
6473 /*
6474 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6475 * and returns the corresponding pte. While this is not necessary for the
6476 * !shared pmd case because we can allocate the pmd later as well, it makes the
6477 * code much cleaner.
6478 *
6479 * This routine must be called with i_mmap_rwsem held in at least read mode if
6480 * sharing is possible. For hugetlbfs, this prevents removal of any page
6481 * table entries associated with the address space. This is important as we
6482 * are setting up sharing based on existing page table entries (mappings).
6483 */
6484 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6485 unsigned long addr, pud_t *pud)
6486 {
6487 struct address_space *mapping = vma->vm_file->f_mapping;
6488 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6489 vma->vm_pgoff;
6490 struct vm_area_struct *svma;
6491 unsigned long saddr;
6492 pte_t *spte = NULL;
6493 pte_t *pte;
6494 spinlock_t *ptl;
6495
6496 i_mmap_assert_locked(mapping);
6497 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6498 if (svma == vma)
6499 continue;
6500
6501 saddr = page_table_shareable(svma, vma, addr, idx);
6502 if (saddr) {
6503 spte = huge_pte_offset(svma->vm_mm, saddr,
6504 vma_mmu_pagesize(svma));
6505 if (spte) {
6506 get_page(virt_to_page(spte));
6507 break;
6508 }
6509 }
6510 }
6511
6512 if (!spte)
6513 goto out;
6514
6515 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6516 if (pud_none(*pud)) {
6517 pud_populate(mm, pud,
6518 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6519 mm_inc_nr_pmds(mm);
6520 } else {
6521 put_page(virt_to_page(spte));
6522 }
6523 spin_unlock(ptl);
6524 out:
6525 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6526 return pte;
6527 }
6528
6529 /*
6530 * unmap huge page backed by shared pte.
6531 *
6532 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6533 * indicated by page_count > 1, unmap is achieved by clearing pud and
6534 * decrementing the ref count. If count == 1, the pte page is not shared.
6535 *
6536 * Called with page table lock held and i_mmap_rwsem held in write mode.
6537 *
6538 * returns: 1 successfully unmapped a shared pte page
6539 * 0 the underlying pte page is not shared, or it is the last user
6540 */
6541 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6542 unsigned long *addr, pte_t *ptep)
6543 {
6544 pgd_t *pgd = pgd_offset(mm, *addr);
6545 p4d_t *p4d = p4d_offset(pgd, *addr);
6546 pud_t *pud = pud_offset(p4d, *addr);
6547
6548 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6549 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6550 if (page_count(virt_to_page(ptep)) == 1)
6551 return 0;
6552
6553 pud_clear(pud);
6554 put_page(virt_to_page(ptep));
6555 mm_dec_nr_pmds(mm);
6556 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6557 return 1;
6558 }
6559
6560 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6561 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6562 unsigned long addr, pud_t *pud)
6563 {
6564 return NULL;
6565 }
6566
6567 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6568 unsigned long *addr, pte_t *ptep)
6569 {
6570 return 0;
6571 }
6572
6573 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6574 unsigned long *start, unsigned long *end)
6575 {
6576 }
6577
6578 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6579 {
6580 return false;
6581 }
6582 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6583
6584 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6585 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6586 unsigned long addr, unsigned long sz)
6587 {
6588 pgd_t *pgd;
6589 p4d_t *p4d;
6590 pud_t *pud;
6591 pte_t *pte = NULL;
6592
6593 pgd = pgd_offset(mm, addr);
6594 p4d = p4d_alloc(mm, pgd, addr);
6595 if (!p4d)
6596 return NULL;
6597 pud = pud_alloc(mm, p4d, addr);
6598 if (pud) {
6599 if (sz == PUD_SIZE) {
6600 pte = (pte_t *)pud;
6601 } else {
6602 BUG_ON(sz != PMD_SIZE);
6603 if (want_pmd_share(vma, addr) && pud_none(*pud))
6604 pte = huge_pmd_share(mm, vma, addr, pud);
6605 else
6606 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6607 }
6608 }
6609 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6610
6611 return pte;
6612 }
6613
6614 /*
6615 * huge_pte_offset() - Walk the page table to resolve the hugepage
6616 * entry at address @addr
6617 *
6618 * Return: Pointer to page table entry (PUD or PMD) for
6619 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6620 * size @sz doesn't match the hugepage size at this level of the page
6621 * table.
6622 */
6623 pte_t *huge_pte_offset(struct mm_struct *mm,
6624 unsigned long addr, unsigned long sz)
6625 {
6626 pgd_t *pgd;
6627 p4d_t *p4d;
6628 pud_t *pud;
6629 pmd_t *pmd;
6630
6631 pgd = pgd_offset(mm, addr);
6632 if (!pgd_present(*pgd))
6633 return NULL;
6634 p4d = p4d_offset(pgd, addr);
6635 if (!p4d_present(*p4d))
6636 return NULL;
6637
6638 pud = pud_offset(p4d, addr);
6639 if (sz == PUD_SIZE)
6640 /* must be pud huge, non-present or none */
6641 return (pte_t *)pud;
6642 if (!pud_present(*pud))
6643 return NULL;
6644 /* must have a valid entry and size to go further */
6645
6646 pmd = pmd_offset(pud, addr);
6647 /* must be pmd huge, non-present or none */
6648 return (pte_t *)pmd;
6649 }
6650
6651 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6652
6653 /*
6654 * These functions are overwritable if your architecture needs its own
6655 * behavior.
6656 */
6657 struct page * __weak
6658 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6659 int write)
6660 {
6661 return ERR_PTR(-EINVAL);
6662 }
6663
6664 struct page * __weak
6665 follow_huge_pd(struct vm_area_struct *vma,
6666 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6667 {
6668 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6669 return NULL;
6670 }
6671
6672 struct page * __weak
6673 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6674 pmd_t *pmd, int flags)
6675 {
6676 struct page *page = NULL;
6677 spinlock_t *ptl;
6678 pte_t pte;
6679
6680 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6681 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6682 (FOLL_PIN | FOLL_GET)))
6683 return NULL;
6684
6685 retry:
6686 ptl = pmd_lockptr(mm, pmd);
6687 spin_lock(ptl);
6688 /*
6689 * make sure that the address range covered by this pmd is not
6690 * unmapped from other threads.
6691 */
6692 if (!pmd_huge(*pmd))
6693 goto out;
6694 pte = huge_ptep_get((pte_t *)pmd);
6695 if (pte_present(pte)) {
6696 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6697 /*
6698 * try_grab_page() should always succeed here, because: a) we
6699 * hold the pmd (ptl) lock, and b) we've just checked that the
6700 * huge pmd (head) page is present in the page tables. The ptl
6701 * prevents the head page and tail pages from being rearranged
6702 * in any way. So this page must be available at this point,
6703 * unless the page refcount overflowed:
6704 */
6705 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6706 page = NULL;
6707 goto out;
6708 }
6709 } else {
6710 if (is_hugetlb_entry_migration(pte)) {
6711 spin_unlock(ptl);
6712 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6713 goto retry;
6714 }
6715 /*
6716 * hwpoisoned entry is treated as no_page_table in
6717 * follow_page_mask().
6718 */
6719 }
6720 out:
6721 spin_unlock(ptl);
6722 return page;
6723 }
6724
6725 struct page * __weak
6726 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6727 pud_t *pud, int flags)
6728 {
6729 if (flags & (FOLL_GET | FOLL_PIN))
6730 return NULL;
6731
6732 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6733 }
6734
6735 struct page * __weak
6736 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6737 {
6738 if (flags & (FOLL_GET | FOLL_PIN))
6739 return NULL;
6740
6741 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6742 }
6743
6744 bool isolate_huge_page(struct page *page, struct list_head *list)
6745 {
6746 bool ret = true;
6747
6748 spin_lock_irq(&hugetlb_lock);
6749 if (!PageHeadHuge(page) ||
6750 !HPageMigratable(page) ||
6751 !get_page_unless_zero(page)) {
6752 ret = false;
6753 goto unlock;
6754 }
6755 ClearHPageMigratable(page);
6756 list_move_tail(&page->lru, list);
6757 unlock:
6758 spin_unlock_irq(&hugetlb_lock);
6759 return ret;
6760 }
6761
6762 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6763 {
6764 int ret = 0;
6765
6766 *hugetlb = false;
6767 spin_lock_irq(&hugetlb_lock);
6768 if (PageHeadHuge(page)) {
6769 *hugetlb = true;
6770 if (HPageFreed(page) || HPageMigratable(page))
6771 ret = get_page_unless_zero(page);
6772 else
6773 ret = -EBUSY;
6774 }
6775 spin_unlock_irq(&hugetlb_lock);
6776 return ret;
6777 }
6778
6779 void putback_active_hugepage(struct page *page)
6780 {
6781 spin_lock_irq(&hugetlb_lock);
6782 SetHPageMigratable(page);
6783 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6784 spin_unlock_irq(&hugetlb_lock);
6785 put_page(page);
6786 }
6787
6788 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6789 {
6790 struct hstate *h = page_hstate(oldpage);
6791
6792 hugetlb_cgroup_migrate(oldpage, newpage);
6793 set_page_owner_migrate_reason(newpage, reason);
6794
6795 /*
6796 * transfer temporary state of the new huge page. This is
6797 * reverse to other transitions because the newpage is going to
6798 * be final while the old one will be freed so it takes over
6799 * the temporary status.
6800 *
6801 * Also note that we have to transfer the per-node surplus state
6802 * here as well otherwise the global surplus count will not match
6803 * the per-node's.
6804 */
6805 if (HPageTemporary(newpage)) {
6806 int old_nid = page_to_nid(oldpage);
6807 int new_nid = page_to_nid(newpage);
6808
6809 SetHPageTemporary(oldpage);
6810 ClearHPageTemporary(newpage);
6811
6812 /*
6813 * There is no need to transfer the per-node surplus state
6814 * when we do not cross the node.
6815 */
6816 if (new_nid == old_nid)
6817 return;
6818 spin_lock_irq(&hugetlb_lock);
6819 if (h->surplus_huge_pages_node[old_nid]) {
6820 h->surplus_huge_pages_node[old_nid]--;
6821 h->surplus_huge_pages_node[new_nid]++;
6822 }
6823 spin_unlock_irq(&hugetlb_lock);
6824 }
6825 }
6826
6827 /*
6828 * This function will unconditionally remove all the shared pmd pgtable entries
6829 * within the specific vma for a hugetlbfs memory range.
6830 */
6831 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6832 {
6833 struct hstate *h = hstate_vma(vma);
6834 unsigned long sz = huge_page_size(h);
6835 struct mm_struct *mm = vma->vm_mm;
6836 struct mmu_notifier_range range;
6837 unsigned long address, start, end;
6838 spinlock_t *ptl;
6839 pte_t *ptep;
6840
6841 if (!(vma->vm_flags & VM_MAYSHARE))
6842 return;
6843
6844 start = ALIGN(vma->vm_start, PUD_SIZE);
6845 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6846
6847 if (start >= end)
6848 return;
6849
6850 /*
6851 * No need to call adjust_range_if_pmd_sharing_possible(), because
6852 * we have already done the PUD_SIZE alignment.
6853 */
6854 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6855 start, end);
6856 mmu_notifier_invalidate_range_start(&range);
6857 i_mmap_lock_write(vma->vm_file->f_mapping);
6858 for (address = start; address < end; address += PUD_SIZE) {
6859 unsigned long tmp = address;
6860
6861 ptep = huge_pte_offset(mm, address, sz);
6862 if (!ptep)
6863 continue;
6864 ptl = huge_pte_lock(h, mm, ptep);
6865 /* We don't want 'address' to be changed */
6866 huge_pmd_unshare(mm, vma, &tmp, ptep);
6867 spin_unlock(ptl);
6868 }
6869 flush_hugetlb_tlb_range(vma, start, end);
6870 i_mmap_unlock_write(vma->vm_file->f_mapping);
6871 /*
6872 * No need to call mmu_notifier_invalidate_range(), see
6873 * Documentation/vm/mmu_notifier.rst.
6874 */
6875 mmu_notifier_invalidate_range_end(&range);
6876 }
6877
6878 #ifdef CONFIG_CMA
6879 static bool cma_reserve_called __initdata;
6880
6881 static int __init cmdline_parse_hugetlb_cma(char *p)
6882 {
6883 int nid, count = 0;
6884 unsigned long tmp;
6885 char *s = p;
6886
6887 while (*s) {
6888 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6889 break;
6890
6891 if (s[count] == ':') {
6892 nid = tmp;
6893 if (nid < 0 || nid >= MAX_NUMNODES)
6894 break;
6895
6896 s += count + 1;
6897 tmp = memparse(s, &s);
6898 hugetlb_cma_size_in_node[nid] = tmp;
6899 hugetlb_cma_size += tmp;
6900
6901 /*
6902 * Skip the separator if have one, otherwise
6903 * break the parsing.
6904 */
6905 if (*s == ',')
6906 s++;
6907 else
6908 break;
6909 } else {
6910 hugetlb_cma_size = memparse(p, &p);
6911 break;
6912 }
6913 }
6914
6915 return 0;
6916 }
6917
6918 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6919
6920 void __init hugetlb_cma_reserve(int order)
6921 {
6922 unsigned long size, reserved, per_node;
6923 bool node_specific_cma_alloc = false;
6924 int nid;
6925
6926 cma_reserve_called = true;
6927
6928 if (!hugetlb_cma_size)
6929 return;
6930
6931 for (nid = 0; nid < MAX_NUMNODES; nid++) {
6932 if (hugetlb_cma_size_in_node[nid] == 0)
6933 continue;
6934
6935 if (!node_state(nid, N_ONLINE)) {
6936 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6937 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6938 hugetlb_cma_size_in_node[nid] = 0;
6939 continue;
6940 }
6941
6942 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6943 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6944 nid, (PAGE_SIZE << order) / SZ_1M);
6945 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6946 hugetlb_cma_size_in_node[nid] = 0;
6947 } else {
6948 node_specific_cma_alloc = true;
6949 }
6950 }
6951
6952 /* Validate the CMA size again in case some invalid nodes specified. */
6953 if (!hugetlb_cma_size)
6954 return;
6955
6956 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6957 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6958 (PAGE_SIZE << order) / SZ_1M);
6959 hugetlb_cma_size = 0;
6960 return;
6961 }
6962
6963 if (!node_specific_cma_alloc) {
6964 /*
6965 * If 3 GB area is requested on a machine with 4 numa nodes,
6966 * let's allocate 1 GB on first three nodes and ignore the last one.
6967 */
6968 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6969 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6970 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6971 }
6972
6973 reserved = 0;
6974 for_each_node_state(nid, N_ONLINE) {
6975 int res;
6976 char name[CMA_MAX_NAME];
6977
6978 if (node_specific_cma_alloc) {
6979 if (hugetlb_cma_size_in_node[nid] == 0)
6980 continue;
6981
6982 size = hugetlb_cma_size_in_node[nid];
6983 } else {
6984 size = min(per_node, hugetlb_cma_size - reserved);
6985 }
6986
6987 size = round_up(size, PAGE_SIZE << order);
6988
6989 snprintf(name, sizeof(name), "hugetlb%d", nid);
6990 /*
6991 * Note that 'order per bit' is based on smallest size that
6992 * may be returned to CMA allocator in the case of
6993 * huge page demotion.
6994 */
6995 res = cma_declare_contiguous_nid(0, size, 0,
6996 PAGE_SIZE << HUGETLB_PAGE_ORDER,
6997 0, false, name,
6998 &hugetlb_cma[nid], nid);
6999 if (res) {
7000 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7001 res, nid);
7002 continue;
7003 }
7004
7005 reserved += size;
7006 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7007 size / SZ_1M, nid);
7008
7009 if (reserved >= hugetlb_cma_size)
7010 break;
7011 }
7012
7013 if (!reserved)
7014 /*
7015 * hugetlb_cma_size is used to determine if allocations from
7016 * cma are possible. Set to zero if no cma regions are set up.
7017 */
7018 hugetlb_cma_size = 0;
7019 }
7020
7021 void __init hugetlb_cma_check(void)
7022 {
7023 if (!hugetlb_cma_size || cma_reserve_called)
7024 return;
7025
7026 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7027 }
7028
7029 #endif /* CONFIG_CMA */