]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/hugetlb.c
KVM: x86/speculation: Disable Fill buffer clear within guests
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 #endif
54 static unsigned long hugetlb_cma_size __initdata;
55
56 /*
57 * Minimum page order among possible hugepage sizes, set to a proper value
58 * at boot time.
59 */
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
61
62 __initdata LIST_HEAD(huge_boot_pages);
63
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69
70 /*
71 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72 * free_huge_pages, and surplus_huge_pages.
73 */
74 DEFINE_SPINLOCK(hugetlb_lock);
75
76 /*
77 * Serializes faults on the same logical page. This is used to
78 * prevent spurious OOMs when the hugepage pool is fully utilized.
79 */
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
85
86 static inline bool subpool_is_free(struct hugepage_subpool *spool)
87 {
88 if (spool->count)
89 return false;
90 if (spool->max_hpages != -1)
91 return spool->used_hpages == 0;
92 if (spool->min_hpages != -1)
93 return spool->rsv_hpages == spool->min_hpages;
94
95 return true;
96 }
97
98 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
99 unsigned long irq_flags)
100 {
101 spin_unlock_irqrestore(&spool->lock, irq_flags);
102
103 /* If no pages are used, and no other handles to the subpool
104 * remain, give up any reservations based on minimum size and
105 * free the subpool */
106 if (subpool_is_free(spool)) {
107 if (spool->min_hpages != -1)
108 hugetlb_acct_memory(spool->hstate,
109 -spool->min_hpages);
110 kfree(spool);
111 }
112 }
113
114 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
115 long min_hpages)
116 {
117 struct hugepage_subpool *spool;
118
119 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
120 if (!spool)
121 return NULL;
122
123 spin_lock_init(&spool->lock);
124 spool->count = 1;
125 spool->max_hpages = max_hpages;
126 spool->hstate = h;
127 spool->min_hpages = min_hpages;
128
129 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
130 kfree(spool);
131 return NULL;
132 }
133 spool->rsv_hpages = min_hpages;
134
135 return spool;
136 }
137
138 void hugepage_put_subpool(struct hugepage_subpool *spool)
139 {
140 unsigned long flags;
141
142 spin_lock_irqsave(&spool->lock, flags);
143 BUG_ON(!spool->count);
144 spool->count--;
145 unlock_or_release_subpool(spool, flags);
146 }
147
148 /*
149 * Subpool accounting for allocating and reserving pages.
150 * Return -ENOMEM if there are not enough resources to satisfy the
151 * request. Otherwise, return the number of pages by which the
152 * global pools must be adjusted (upward). The returned value may
153 * only be different than the passed value (delta) in the case where
154 * a subpool minimum size must be maintained.
155 */
156 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
157 long delta)
158 {
159 long ret = delta;
160
161 if (!spool)
162 return ret;
163
164 spin_lock_irq(&spool->lock);
165
166 if (spool->max_hpages != -1) { /* maximum size accounting */
167 if ((spool->used_hpages + delta) <= spool->max_hpages)
168 spool->used_hpages += delta;
169 else {
170 ret = -ENOMEM;
171 goto unlock_ret;
172 }
173 }
174
175 /* minimum size accounting */
176 if (spool->min_hpages != -1 && spool->rsv_hpages) {
177 if (delta > spool->rsv_hpages) {
178 /*
179 * Asking for more reserves than those already taken on
180 * behalf of subpool. Return difference.
181 */
182 ret = delta - spool->rsv_hpages;
183 spool->rsv_hpages = 0;
184 } else {
185 ret = 0; /* reserves already accounted for */
186 spool->rsv_hpages -= delta;
187 }
188 }
189
190 unlock_ret:
191 spin_unlock_irq(&spool->lock);
192 return ret;
193 }
194
195 /*
196 * Subpool accounting for freeing and unreserving pages.
197 * Return the number of global page reservations that must be dropped.
198 * The return value may only be different than the passed value (delta)
199 * in the case where a subpool minimum size must be maintained.
200 */
201 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
202 long delta)
203 {
204 long ret = delta;
205 unsigned long flags;
206
207 if (!spool)
208 return delta;
209
210 spin_lock_irqsave(&spool->lock, flags);
211
212 if (spool->max_hpages != -1) /* maximum size accounting */
213 spool->used_hpages -= delta;
214
215 /* minimum size accounting */
216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217 if (spool->rsv_hpages + delta <= spool->min_hpages)
218 ret = 0;
219 else
220 ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222 spool->rsv_hpages += delta;
223 if (spool->rsv_hpages > spool->min_hpages)
224 spool->rsv_hpages = spool->min_hpages;
225 }
226
227 /*
228 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 * quota reference, free it now.
230 */
231 unlock_or_release_subpool(spool, flags);
232
233 return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238 return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243 return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247 * it for use.
248 */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252 struct file_region *nrg = NULL;
253
254 VM_BUG_ON(resv->region_cache_count <= 0);
255
256 resv->region_cache_count--;
257 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258 list_del(&nrg->link);
259
260 nrg->from = from;
261 nrg->to = to;
262
263 return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270 nrg->reservation_counter = rg->reservation_counter;
271 nrg->css = rg->css;
272 if (rg->css)
273 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279 struct hstate *h,
280 struct resv_map *resv,
281 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284 if (h_cg) {
285 nrg->reservation_counter =
286 &h_cg->rsvd_hugepage[hstate_index(h)];
287 nrg->css = &h_cg->css;
288 /*
289 * The caller will hold exactly one h_cg->css reference for the
290 * whole contiguous reservation region. But this area might be
291 * scattered when there are already some file_regions reside in
292 * it. As a result, many file_regions may share only one css
293 * reference. In order to ensure that one file_region must hold
294 * exactly one h_cg->css reference, we should do css_get for
295 * each file_region and leave the reference held by caller
296 * untouched.
297 */
298 css_get(&h_cg->css);
299 if (!resv->pages_per_hpage)
300 resv->pages_per_hpage = pages_per_huge_page(h);
301 /* pages_per_hpage should be the same for all entries in
302 * a resv_map.
303 */
304 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305 } else {
306 nrg->reservation_counter = NULL;
307 nrg->css = NULL;
308 }
309 #endif
310 }
311
312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315 if (rg->css)
316 css_put(rg->css);
317 #endif
318 }
319
320 static bool has_same_uncharge_info(struct file_region *rg,
321 struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324 return rg && org &&
325 rg->reservation_counter == org->reservation_counter &&
326 rg->css == org->css;
327
328 #else
329 return true;
330 #endif
331 }
332
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335 struct file_region *nrg = NULL, *prg = NULL;
336
337 prg = list_prev_entry(rg, link);
338 if (&prg->link != &resv->regions && prg->to == rg->from &&
339 has_same_uncharge_info(prg, rg)) {
340 prg->to = rg->to;
341
342 list_del(&rg->link);
343 put_uncharge_info(rg);
344 kfree(rg);
345
346 rg = prg;
347 }
348
349 nrg = list_next_entry(rg, link);
350 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351 has_same_uncharge_info(nrg, rg)) {
352 nrg->from = rg->from;
353
354 list_del(&rg->link);
355 put_uncharge_info(rg);
356 kfree(rg);
357 }
358 }
359
360 static inline long
361 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
362 long to, struct hstate *h, struct hugetlb_cgroup *cg,
363 long *regions_needed)
364 {
365 struct file_region *nrg;
366
367 if (!regions_needed) {
368 nrg = get_file_region_entry_from_cache(map, from, to);
369 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
370 list_add(&nrg->link, rg->link.prev);
371 coalesce_file_region(map, nrg);
372 } else
373 *regions_needed += 1;
374
375 return to - from;
376 }
377
378 /*
379 * Must be called with resv->lock held.
380 *
381 * Calling this with regions_needed != NULL will count the number of pages
382 * to be added but will not modify the linked list. And regions_needed will
383 * indicate the number of file_regions needed in the cache to carry out to add
384 * the regions for this range.
385 */
386 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
387 struct hugetlb_cgroup *h_cg,
388 struct hstate *h, long *regions_needed)
389 {
390 long add = 0;
391 struct list_head *head = &resv->regions;
392 long last_accounted_offset = f;
393 struct file_region *rg = NULL, *trg = NULL;
394
395 if (regions_needed)
396 *regions_needed = 0;
397
398 /* In this loop, we essentially handle an entry for the range
399 * [last_accounted_offset, rg->from), at every iteration, with some
400 * bounds checking.
401 */
402 list_for_each_entry_safe(rg, trg, head, link) {
403 /* Skip irrelevant regions that start before our range. */
404 if (rg->from < f) {
405 /* If this region ends after the last accounted offset,
406 * then we need to update last_accounted_offset.
407 */
408 if (rg->to > last_accounted_offset)
409 last_accounted_offset = rg->to;
410 continue;
411 }
412
413 /* When we find a region that starts beyond our range, we've
414 * finished.
415 */
416 if (rg->from >= t)
417 break;
418
419 /* Add an entry for last_accounted_offset -> rg->from, and
420 * update last_accounted_offset.
421 */
422 if (rg->from > last_accounted_offset)
423 add += hugetlb_resv_map_add(resv, rg,
424 last_accounted_offset,
425 rg->from, h, h_cg,
426 regions_needed);
427
428 last_accounted_offset = rg->to;
429 }
430
431 /* Handle the case where our range extends beyond
432 * last_accounted_offset.
433 */
434 if (last_accounted_offset < t)
435 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
436 t, h, h_cg, regions_needed);
437
438 VM_BUG_ON(add < 0);
439 return add;
440 }
441
442 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
443 */
444 static int allocate_file_region_entries(struct resv_map *resv,
445 int regions_needed)
446 __must_hold(&resv->lock)
447 {
448 struct list_head allocated_regions;
449 int to_allocate = 0, i = 0;
450 struct file_region *trg = NULL, *rg = NULL;
451
452 VM_BUG_ON(regions_needed < 0);
453
454 INIT_LIST_HEAD(&allocated_regions);
455
456 /*
457 * Check for sufficient descriptors in the cache to accommodate
458 * the number of in progress add operations plus regions_needed.
459 *
460 * This is a while loop because when we drop the lock, some other call
461 * to region_add or region_del may have consumed some region_entries,
462 * so we keep looping here until we finally have enough entries for
463 * (adds_in_progress + regions_needed).
464 */
465 while (resv->region_cache_count <
466 (resv->adds_in_progress + regions_needed)) {
467 to_allocate = resv->adds_in_progress + regions_needed -
468 resv->region_cache_count;
469
470 /* At this point, we should have enough entries in the cache
471 * for all the existing adds_in_progress. We should only be
472 * needing to allocate for regions_needed.
473 */
474 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
475
476 spin_unlock(&resv->lock);
477 for (i = 0; i < to_allocate; i++) {
478 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
479 if (!trg)
480 goto out_of_memory;
481 list_add(&trg->link, &allocated_regions);
482 }
483
484 spin_lock(&resv->lock);
485
486 list_splice(&allocated_regions, &resv->region_cache);
487 resv->region_cache_count += to_allocate;
488 }
489
490 return 0;
491
492 out_of_memory:
493 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
494 list_del(&rg->link);
495 kfree(rg);
496 }
497 return -ENOMEM;
498 }
499
500 /*
501 * Add the huge page range represented by [f, t) to the reserve
502 * map. Regions will be taken from the cache to fill in this range.
503 * Sufficient regions should exist in the cache due to the previous
504 * call to region_chg with the same range, but in some cases the cache will not
505 * have sufficient entries due to races with other code doing region_add or
506 * region_del. The extra needed entries will be allocated.
507 *
508 * regions_needed is the out value provided by a previous call to region_chg.
509 *
510 * Return the number of new huge pages added to the map. This number is greater
511 * than or equal to zero. If file_region entries needed to be allocated for
512 * this operation and we were not able to allocate, it returns -ENOMEM.
513 * region_add of regions of length 1 never allocate file_regions and cannot
514 * fail; region_chg will always allocate at least 1 entry and a region_add for
515 * 1 page will only require at most 1 entry.
516 */
517 static long region_add(struct resv_map *resv, long f, long t,
518 long in_regions_needed, struct hstate *h,
519 struct hugetlb_cgroup *h_cg)
520 {
521 long add = 0, actual_regions_needed = 0;
522
523 spin_lock(&resv->lock);
524 retry:
525
526 /* Count how many regions are actually needed to execute this add. */
527 add_reservation_in_range(resv, f, t, NULL, NULL,
528 &actual_regions_needed);
529
530 /*
531 * Check for sufficient descriptors in the cache to accommodate
532 * this add operation. Note that actual_regions_needed may be greater
533 * than in_regions_needed, as the resv_map may have been modified since
534 * the region_chg call. In this case, we need to make sure that we
535 * allocate extra entries, such that we have enough for all the
536 * existing adds_in_progress, plus the excess needed for this
537 * operation.
538 */
539 if (actual_regions_needed > in_regions_needed &&
540 resv->region_cache_count <
541 resv->adds_in_progress +
542 (actual_regions_needed - in_regions_needed)) {
543 /* region_add operation of range 1 should never need to
544 * allocate file_region entries.
545 */
546 VM_BUG_ON(t - f <= 1);
547
548 if (allocate_file_region_entries(
549 resv, actual_regions_needed - in_regions_needed)) {
550 return -ENOMEM;
551 }
552
553 goto retry;
554 }
555
556 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
557
558 resv->adds_in_progress -= in_regions_needed;
559
560 spin_unlock(&resv->lock);
561 return add;
562 }
563
564 /*
565 * Examine the existing reserve map and determine how many
566 * huge pages in the specified range [f, t) are NOT currently
567 * represented. This routine is called before a subsequent
568 * call to region_add that will actually modify the reserve
569 * map to add the specified range [f, t). region_chg does
570 * not change the number of huge pages represented by the
571 * map. A number of new file_region structures is added to the cache as a
572 * placeholder, for the subsequent region_add call to use. At least 1
573 * file_region structure is added.
574 *
575 * out_regions_needed is the number of regions added to the
576 * resv->adds_in_progress. This value needs to be provided to a follow up call
577 * to region_add or region_abort for proper accounting.
578 *
579 * Returns the number of huge pages that need to be added to the existing
580 * reservation map for the range [f, t). This number is greater or equal to
581 * zero. -ENOMEM is returned if a new file_region structure or cache entry
582 * is needed and can not be allocated.
583 */
584 static long region_chg(struct resv_map *resv, long f, long t,
585 long *out_regions_needed)
586 {
587 long chg = 0;
588
589 spin_lock(&resv->lock);
590
591 /* Count how many hugepages in this range are NOT represented. */
592 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
593 out_regions_needed);
594
595 if (*out_regions_needed == 0)
596 *out_regions_needed = 1;
597
598 if (allocate_file_region_entries(resv, *out_regions_needed))
599 return -ENOMEM;
600
601 resv->adds_in_progress += *out_regions_needed;
602
603 spin_unlock(&resv->lock);
604 return chg;
605 }
606
607 /*
608 * Abort the in progress add operation. The adds_in_progress field
609 * of the resv_map keeps track of the operations in progress between
610 * calls to region_chg and region_add. Operations are sometimes
611 * aborted after the call to region_chg. In such cases, region_abort
612 * is called to decrement the adds_in_progress counter. regions_needed
613 * is the value returned by the region_chg call, it is used to decrement
614 * the adds_in_progress counter.
615 *
616 * NOTE: The range arguments [f, t) are not needed or used in this
617 * routine. They are kept to make reading the calling code easier as
618 * arguments will match the associated region_chg call.
619 */
620 static void region_abort(struct resv_map *resv, long f, long t,
621 long regions_needed)
622 {
623 spin_lock(&resv->lock);
624 VM_BUG_ON(!resv->region_cache_count);
625 resv->adds_in_progress -= regions_needed;
626 spin_unlock(&resv->lock);
627 }
628
629 /*
630 * Delete the specified range [f, t) from the reserve map. If the
631 * t parameter is LONG_MAX, this indicates that ALL regions after f
632 * should be deleted. Locate the regions which intersect [f, t)
633 * and either trim, delete or split the existing regions.
634 *
635 * Returns the number of huge pages deleted from the reserve map.
636 * In the normal case, the return value is zero or more. In the
637 * case where a region must be split, a new region descriptor must
638 * be allocated. If the allocation fails, -ENOMEM will be returned.
639 * NOTE: If the parameter t == LONG_MAX, then we will never split
640 * a region and possibly return -ENOMEM. Callers specifying
641 * t == LONG_MAX do not need to check for -ENOMEM error.
642 */
643 static long region_del(struct resv_map *resv, long f, long t)
644 {
645 struct list_head *head = &resv->regions;
646 struct file_region *rg, *trg;
647 struct file_region *nrg = NULL;
648 long del = 0;
649
650 retry:
651 spin_lock(&resv->lock);
652 list_for_each_entry_safe(rg, trg, head, link) {
653 /*
654 * Skip regions before the range to be deleted. file_region
655 * ranges are normally of the form [from, to). However, there
656 * may be a "placeholder" entry in the map which is of the form
657 * (from, to) with from == to. Check for placeholder entries
658 * at the beginning of the range to be deleted.
659 */
660 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
661 continue;
662
663 if (rg->from >= t)
664 break;
665
666 if (f > rg->from && t < rg->to) { /* Must split region */
667 /*
668 * Check for an entry in the cache before dropping
669 * lock and attempting allocation.
670 */
671 if (!nrg &&
672 resv->region_cache_count > resv->adds_in_progress) {
673 nrg = list_first_entry(&resv->region_cache,
674 struct file_region,
675 link);
676 list_del(&nrg->link);
677 resv->region_cache_count--;
678 }
679
680 if (!nrg) {
681 spin_unlock(&resv->lock);
682 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
683 if (!nrg)
684 return -ENOMEM;
685 goto retry;
686 }
687
688 del += t - f;
689 hugetlb_cgroup_uncharge_file_region(
690 resv, rg, t - f, false);
691
692 /* New entry for end of split region */
693 nrg->from = t;
694 nrg->to = rg->to;
695
696 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
697
698 INIT_LIST_HEAD(&nrg->link);
699
700 /* Original entry is trimmed */
701 rg->to = f;
702
703 list_add(&nrg->link, &rg->link);
704 nrg = NULL;
705 break;
706 }
707
708 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
709 del += rg->to - rg->from;
710 hugetlb_cgroup_uncharge_file_region(resv, rg,
711 rg->to - rg->from, true);
712 list_del(&rg->link);
713 kfree(rg);
714 continue;
715 }
716
717 if (f <= rg->from) { /* Trim beginning of region */
718 hugetlb_cgroup_uncharge_file_region(resv, rg,
719 t - rg->from, false);
720
721 del += t - rg->from;
722 rg->from = t;
723 } else { /* Trim end of region */
724 hugetlb_cgroup_uncharge_file_region(resv, rg,
725 rg->to - f, false);
726
727 del += rg->to - f;
728 rg->to = f;
729 }
730 }
731
732 spin_unlock(&resv->lock);
733 kfree(nrg);
734 return del;
735 }
736
737 /*
738 * A rare out of memory error was encountered which prevented removal of
739 * the reserve map region for a page. The huge page itself was free'ed
740 * and removed from the page cache. This routine will adjust the subpool
741 * usage count, and the global reserve count if needed. By incrementing
742 * these counts, the reserve map entry which could not be deleted will
743 * appear as a "reserved" entry instead of simply dangling with incorrect
744 * counts.
745 */
746 void hugetlb_fix_reserve_counts(struct inode *inode)
747 {
748 struct hugepage_subpool *spool = subpool_inode(inode);
749 long rsv_adjust;
750 bool reserved = false;
751
752 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
753 if (rsv_adjust > 0) {
754 struct hstate *h = hstate_inode(inode);
755
756 if (!hugetlb_acct_memory(h, 1))
757 reserved = true;
758 } else if (!rsv_adjust) {
759 reserved = true;
760 }
761
762 if (!reserved)
763 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
764 }
765
766 /*
767 * Count and return the number of huge pages in the reserve map
768 * that intersect with the range [f, t).
769 */
770 static long region_count(struct resv_map *resv, long f, long t)
771 {
772 struct list_head *head = &resv->regions;
773 struct file_region *rg;
774 long chg = 0;
775
776 spin_lock(&resv->lock);
777 /* Locate each segment we overlap with, and count that overlap. */
778 list_for_each_entry(rg, head, link) {
779 long seg_from;
780 long seg_to;
781
782 if (rg->to <= f)
783 continue;
784 if (rg->from >= t)
785 break;
786
787 seg_from = max(rg->from, f);
788 seg_to = min(rg->to, t);
789
790 chg += seg_to - seg_from;
791 }
792 spin_unlock(&resv->lock);
793
794 return chg;
795 }
796
797 /*
798 * Convert the address within this vma to the page offset within
799 * the mapping, in pagecache page units; huge pages here.
800 */
801 static pgoff_t vma_hugecache_offset(struct hstate *h,
802 struct vm_area_struct *vma, unsigned long address)
803 {
804 return ((address - vma->vm_start) >> huge_page_shift(h)) +
805 (vma->vm_pgoff >> huge_page_order(h));
806 }
807
808 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
809 unsigned long address)
810 {
811 return vma_hugecache_offset(hstate_vma(vma), vma, address);
812 }
813 EXPORT_SYMBOL_GPL(linear_hugepage_index);
814
815 /*
816 * Return the size of the pages allocated when backing a VMA. In the majority
817 * cases this will be same size as used by the page table entries.
818 */
819 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
820 {
821 if (vma->vm_ops && vma->vm_ops->pagesize)
822 return vma->vm_ops->pagesize(vma);
823 return PAGE_SIZE;
824 }
825 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
826
827 /*
828 * Return the page size being used by the MMU to back a VMA. In the majority
829 * of cases, the page size used by the kernel matches the MMU size. On
830 * architectures where it differs, an architecture-specific 'strong'
831 * version of this symbol is required.
832 */
833 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
834 {
835 return vma_kernel_pagesize(vma);
836 }
837
838 /*
839 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
840 * bits of the reservation map pointer, which are always clear due to
841 * alignment.
842 */
843 #define HPAGE_RESV_OWNER (1UL << 0)
844 #define HPAGE_RESV_UNMAPPED (1UL << 1)
845 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
846
847 /*
848 * These helpers are used to track how many pages are reserved for
849 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
850 * is guaranteed to have their future faults succeed.
851 *
852 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
853 * the reserve counters are updated with the hugetlb_lock held. It is safe
854 * to reset the VMA at fork() time as it is not in use yet and there is no
855 * chance of the global counters getting corrupted as a result of the values.
856 *
857 * The private mapping reservation is represented in a subtly different
858 * manner to a shared mapping. A shared mapping has a region map associated
859 * with the underlying file, this region map represents the backing file
860 * pages which have ever had a reservation assigned which this persists even
861 * after the page is instantiated. A private mapping has a region map
862 * associated with the original mmap which is attached to all VMAs which
863 * reference it, this region map represents those offsets which have consumed
864 * reservation ie. where pages have been instantiated.
865 */
866 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
867 {
868 return (unsigned long)vma->vm_private_data;
869 }
870
871 static void set_vma_private_data(struct vm_area_struct *vma,
872 unsigned long value)
873 {
874 vma->vm_private_data = (void *)value;
875 }
876
877 static void
878 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
879 struct hugetlb_cgroup *h_cg,
880 struct hstate *h)
881 {
882 #ifdef CONFIG_CGROUP_HUGETLB
883 if (!h_cg || !h) {
884 resv_map->reservation_counter = NULL;
885 resv_map->pages_per_hpage = 0;
886 resv_map->css = NULL;
887 } else {
888 resv_map->reservation_counter =
889 &h_cg->rsvd_hugepage[hstate_index(h)];
890 resv_map->pages_per_hpage = pages_per_huge_page(h);
891 resv_map->css = &h_cg->css;
892 }
893 #endif
894 }
895
896 struct resv_map *resv_map_alloc(void)
897 {
898 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
899 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
900
901 if (!resv_map || !rg) {
902 kfree(resv_map);
903 kfree(rg);
904 return NULL;
905 }
906
907 kref_init(&resv_map->refs);
908 spin_lock_init(&resv_map->lock);
909 INIT_LIST_HEAD(&resv_map->regions);
910
911 resv_map->adds_in_progress = 0;
912 /*
913 * Initialize these to 0. On shared mappings, 0's here indicate these
914 * fields don't do cgroup accounting. On private mappings, these will be
915 * re-initialized to the proper values, to indicate that hugetlb cgroup
916 * reservations are to be un-charged from here.
917 */
918 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
919
920 INIT_LIST_HEAD(&resv_map->region_cache);
921 list_add(&rg->link, &resv_map->region_cache);
922 resv_map->region_cache_count = 1;
923
924 return resv_map;
925 }
926
927 void resv_map_release(struct kref *ref)
928 {
929 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
930 struct list_head *head = &resv_map->region_cache;
931 struct file_region *rg, *trg;
932
933 /* Clear out any active regions before we release the map. */
934 region_del(resv_map, 0, LONG_MAX);
935
936 /* ... and any entries left in the cache */
937 list_for_each_entry_safe(rg, trg, head, link) {
938 list_del(&rg->link);
939 kfree(rg);
940 }
941
942 VM_BUG_ON(resv_map->adds_in_progress);
943
944 kfree(resv_map);
945 }
946
947 static inline struct resv_map *inode_resv_map(struct inode *inode)
948 {
949 /*
950 * At inode evict time, i_mapping may not point to the original
951 * address space within the inode. This original address space
952 * contains the pointer to the resv_map. So, always use the
953 * address space embedded within the inode.
954 * The VERY common case is inode->mapping == &inode->i_data but,
955 * this may not be true for device special inodes.
956 */
957 return (struct resv_map *)(&inode->i_data)->private_data;
958 }
959
960 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
961 {
962 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
963 if (vma->vm_flags & VM_MAYSHARE) {
964 struct address_space *mapping = vma->vm_file->f_mapping;
965 struct inode *inode = mapping->host;
966
967 return inode_resv_map(inode);
968
969 } else {
970 return (struct resv_map *)(get_vma_private_data(vma) &
971 ~HPAGE_RESV_MASK);
972 }
973 }
974
975 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
976 {
977 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
979
980 set_vma_private_data(vma, (get_vma_private_data(vma) &
981 HPAGE_RESV_MASK) | (unsigned long)map);
982 }
983
984 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
985 {
986 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
988
989 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
990 }
991
992 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
993 {
994 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995
996 return (get_vma_private_data(vma) & flag) != 0;
997 }
998
999 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1000 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001 {
1002 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003 if (!(vma->vm_flags & VM_MAYSHARE))
1004 vma->vm_private_data = (void *)0;
1005 }
1006
1007 /* Returns true if the VMA has associated reserve pages */
1008 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1009 {
1010 if (vma->vm_flags & VM_NORESERVE) {
1011 /*
1012 * This address is already reserved by other process(chg == 0),
1013 * so, we should decrement reserved count. Without decrementing,
1014 * reserve count remains after releasing inode, because this
1015 * allocated page will go into page cache and is regarded as
1016 * coming from reserved pool in releasing step. Currently, we
1017 * don't have any other solution to deal with this situation
1018 * properly, so add work-around here.
1019 */
1020 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1021 return true;
1022 else
1023 return false;
1024 }
1025
1026 /* Shared mappings always use reserves */
1027 if (vma->vm_flags & VM_MAYSHARE) {
1028 /*
1029 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1030 * be a region map for all pages. The only situation where
1031 * there is no region map is if a hole was punched via
1032 * fallocate. In this case, there really are no reserves to
1033 * use. This situation is indicated if chg != 0.
1034 */
1035 if (chg)
1036 return false;
1037 else
1038 return true;
1039 }
1040
1041 /*
1042 * Only the process that called mmap() has reserves for
1043 * private mappings.
1044 */
1045 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046 /*
1047 * Like the shared case above, a hole punch or truncate
1048 * could have been performed on the private mapping.
1049 * Examine the value of chg to determine if reserves
1050 * actually exist or were previously consumed.
1051 * Very Subtle - The value of chg comes from a previous
1052 * call to vma_needs_reserves(). The reserve map for
1053 * private mappings has different (opposite) semantics
1054 * than that of shared mappings. vma_needs_reserves()
1055 * has already taken this difference in semantics into
1056 * account. Therefore, the meaning of chg is the same
1057 * as in the shared case above. Code could easily be
1058 * combined, but keeping it separate draws attention to
1059 * subtle differences.
1060 */
1061 if (chg)
1062 return false;
1063 else
1064 return true;
1065 }
1066
1067 return false;
1068 }
1069
1070 static void enqueue_huge_page(struct hstate *h, struct page *page)
1071 {
1072 int nid = page_to_nid(page);
1073
1074 lockdep_assert_held(&hugetlb_lock);
1075 VM_BUG_ON_PAGE(page_count(page), page);
1076
1077 list_move(&page->lru, &h->hugepage_freelists[nid]);
1078 h->free_huge_pages++;
1079 h->free_huge_pages_node[nid]++;
1080 SetHPageFreed(page);
1081 }
1082
1083 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1084 {
1085 struct page *page;
1086 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1087
1088 lockdep_assert_held(&hugetlb_lock);
1089 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1090 if (pin && !is_pinnable_page(page))
1091 continue;
1092
1093 if (PageHWPoison(page))
1094 continue;
1095
1096 list_move(&page->lru, &h->hugepage_activelist);
1097 set_page_refcounted(page);
1098 ClearHPageFreed(page);
1099 h->free_huge_pages--;
1100 h->free_huge_pages_node[nid]--;
1101 return page;
1102 }
1103
1104 return NULL;
1105 }
1106
1107 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1108 nodemask_t *nmask)
1109 {
1110 unsigned int cpuset_mems_cookie;
1111 struct zonelist *zonelist;
1112 struct zone *zone;
1113 struct zoneref *z;
1114 int node = NUMA_NO_NODE;
1115
1116 zonelist = node_zonelist(nid, gfp_mask);
1117
1118 retry_cpuset:
1119 cpuset_mems_cookie = read_mems_allowed_begin();
1120 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1121 struct page *page;
1122
1123 if (!cpuset_zone_allowed(zone, gfp_mask))
1124 continue;
1125 /*
1126 * no need to ask again on the same node. Pool is node rather than
1127 * zone aware
1128 */
1129 if (zone_to_nid(zone) == node)
1130 continue;
1131 node = zone_to_nid(zone);
1132
1133 page = dequeue_huge_page_node_exact(h, node);
1134 if (page)
1135 return page;
1136 }
1137 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1138 goto retry_cpuset;
1139
1140 return NULL;
1141 }
1142
1143 static struct page *dequeue_huge_page_vma(struct hstate *h,
1144 struct vm_area_struct *vma,
1145 unsigned long address, int avoid_reserve,
1146 long chg)
1147 {
1148 struct page *page = NULL;
1149 struct mempolicy *mpol;
1150 gfp_t gfp_mask;
1151 nodemask_t *nodemask;
1152 int nid;
1153
1154 /*
1155 * A child process with MAP_PRIVATE mappings created by their parent
1156 * have no page reserves. This check ensures that reservations are
1157 * not "stolen". The child may still get SIGKILLed
1158 */
1159 if (!vma_has_reserves(vma, chg) &&
1160 h->free_huge_pages - h->resv_huge_pages == 0)
1161 goto err;
1162
1163 /* If reserves cannot be used, ensure enough pages are in the pool */
1164 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1165 goto err;
1166
1167 gfp_mask = htlb_alloc_mask(h);
1168 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1169
1170 if (mpol_is_preferred_many(mpol)) {
1171 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1172
1173 /* Fallback to all nodes if page==NULL */
1174 nodemask = NULL;
1175 }
1176
1177 if (!page)
1178 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1179
1180 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1181 SetHPageRestoreReserve(page);
1182 h->resv_huge_pages--;
1183 }
1184
1185 mpol_cond_put(mpol);
1186 return page;
1187
1188 err:
1189 return NULL;
1190 }
1191
1192 /*
1193 * common helper functions for hstate_next_node_to_{alloc|free}.
1194 * We may have allocated or freed a huge page based on a different
1195 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1196 * be outside of *nodes_allowed. Ensure that we use an allowed
1197 * node for alloc or free.
1198 */
1199 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1200 {
1201 nid = next_node_in(nid, *nodes_allowed);
1202 VM_BUG_ON(nid >= MAX_NUMNODES);
1203
1204 return nid;
1205 }
1206
1207 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1208 {
1209 if (!node_isset(nid, *nodes_allowed))
1210 nid = next_node_allowed(nid, nodes_allowed);
1211 return nid;
1212 }
1213
1214 /*
1215 * returns the previously saved node ["this node"] from which to
1216 * allocate a persistent huge page for the pool and advance the
1217 * next node from which to allocate, handling wrap at end of node
1218 * mask.
1219 */
1220 static int hstate_next_node_to_alloc(struct hstate *h,
1221 nodemask_t *nodes_allowed)
1222 {
1223 int nid;
1224
1225 VM_BUG_ON(!nodes_allowed);
1226
1227 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1228 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1229
1230 return nid;
1231 }
1232
1233 /*
1234 * helper for remove_pool_huge_page() - return the previously saved
1235 * node ["this node"] from which to free a huge page. Advance the
1236 * next node id whether or not we find a free huge page to free so
1237 * that the next attempt to free addresses the next node.
1238 */
1239 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1240 {
1241 int nid;
1242
1243 VM_BUG_ON(!nodes_allowed);
1244
1245 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1246 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1247
1248 return nid;
1249 }
1250
1251 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1252 for (nr_nodes = nodes_weight(*mask); \
1253 nr_nodes > 0 && \
1254 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1255 nr_nodes--)
1256
1257 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1258 for (nr_nodes = nodes_weight(*mask); \
1259 nr_nodes > 0 && \
1260 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1261 nr_nodes--)
1262
1263 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1264 static void destroy_compound_gigantic_page(struct page *page,
1265 unsigned int order)
1266 {
1267 int i;
1268 int nr_pages = 1 << order;
1269 struct page *p = page + 1;
1270
1271 atomic_set(compound_mapcount_ptr(page), 0);
1272 atomic_set(compound_pincount_ptr(page), 0);
1273
1274 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1275 clear_compound_head(p);
1276 set_page_refcounted(p);
1277 }
1278
1279 set_compound_order(page, 0);
1280 page[1].compound_nr = 0;
1281 __ClearPageHead(page);
1282 }
1283
1284 static void free_gigantic_page(struct page *page, unsigned int order)
1285 {
1286 /*
1287 * If the page isn't allocated using the cma allocator,
1288 * cma_release() returns false.
1289 */
1290 #ifdef CONFIG_CMA
1291 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1292 return;
1293 #endif
1294
1295 free_contig_range(page_to_pfn(page), 1 << order);
1296 }
1297
1298 #ifdef CONFIG_CONTIG_ALLOC
1299 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1300 int nid, nodemask_t *nodemask)
1301 {
1302 unsigned long nr_pages = pages_per_huge_page(h);
1303 if (nid == NUMA_NO_NODE)
1304 nid = numa_mem_id();
1305
1306 #ifdef CONFIG_CMA
1307 {
1308 struct page *page;
1309 int node;
1310
1311 if (hugetlb_cma[nid]) {
1312 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1313 huge_page_order(h), true);
1314 if (page)
1315 return page;
1316 }
1317
1318 if (!(gfp_mask & __GFP_THISNODE)) {
1319 for_each_node_mask(node, *nodemask) {
1320 if (node == nid || !hugetlb_cma[node])
1321 continue;
1322
1323 page = cma_alloc(hugetlb_cma[node], nr_pages,
1324 huge_page_order(h), true);
1325 if (page)
1326 return page;
1327 }
1328 }
1329 }
1330 #endif
1331
1332 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1333 }
1334
1335 #else /* !CONFIG_CONTIG_ALLOC */
1336 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1337 int nid, nodemask_t *nodemask)
1338 {
1339 return NULL;
1340 }
1341 #endif /* CONFIG_CONTIG_ALLOC */
1342
1343 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1344 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1345 int nid, nodemask_t *nodemask)
1346 {
1347 return NULL;
1348 }
1349 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1350 static inline void destroy_compound_gigantic_page(struct page *page,
1351 unsigned int order) { }
1352 #endif
1353
1354 /*
1355 * Remove hugetlb page from lists, and update dtor so that page appears
1356 * as just a compound page. A reference is held on the page.
1357 *
1358 * Must be called with hugetlb lock held.
1359 */
1360 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1361 bool adjust_surplus)
1362 {
1363 int nid = page_to_nid(page);
1364
1365 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1366 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1367
1368 lockdep_assert_held(&hugetlb_lock);
1369 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1370 return;
1371
1372 list_del(&page->lru);
1373
1374 if (HPageFreed(page)) {
1375 h->free_huge_pages--;
1376 h->free_huge_pages_node[nid]--;
1377 }
1378 if (adjust_surplus) {
1379 h->surplus_huge_pages--;
1380 h->surplus_huge_pages_node[nid]--;
1381 }
1382
1383 /*
1384 * Very subtle
1385 *
1386 * For non-gigantic pages set the destructor to the normal compound
1387 * page dtor. This is needed in case someone takes an additional
1388 * temporary ref to the page, and freeing is delayed until they drop
1389 * their reference.
1390 *
1391 * For gigantic pages set the destructor to the null dtor. This
1392 * destructor will never be called. Before freeing the gigantic
1393 * page destroy_compound_gigantic_page will turn the compound page
1394 * into a simple group of pages. After this the destructor does not
1395 * apply.
1396 *
1397 * This handles the case where more than one ref is held when and
1398 * after update_and_free_page is called.
1399 */
1400 set_page_refcounted(page);
1401 if (hstate_is_gigantic(h))
1402 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1403 else
1404 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1405
1406 h->nr_huge_pages--;
1407 h->nr_huge_pages_node[nid]--;
1408 }
1409
1410 static void add_hugetlb_page(struct hstate *h, struct page *page,
1411 bool adjust_surplus)
1412 {
1413 int zeroed;
1414 int nid = page_to_nid(page);
1415
1416 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1417
1418 lockdep_assert_held(&hugetlb_lock);
1419
1420 INIT_LIST_HEAD(&page->lru);
1421 h->nr_huge_pages++;
1422 h->nr_huge_pages_node[nid]++;
1423
1424 if (adjust_surplus) {
1425 h->surplus_huge_pages++;
1426 h->surplus_huge_pages_node[nid]++;
1427 }
1428
1429 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1430 set_page_private(page, 0);
1431 SetHPageVmemmapOptimized(page);
1432
1433 /*
1434 * This page is about to be managed by the hugetlb allocator and
1435 * should have no users. Drop our reference, and check for others
1436 * just in case.
1437 */
1438 zeroed = put_page_testzero(page);
1439 if (!zeroed)
1440 /*
1441 * It is VERY unlikely soneone else has taken a ref on
1442 * the page. In this case, we simply return as the
1443 * hugetlb destructor (free_huge_page) will be called
1444 * when this other ref is dropped.
1445 */
1446 return;
1447
1448 arch_clear_hugepage_flags(page);
1449 enqueue_huge_page(h, page);
1450 }
1451
1452 static void __update_and_free_page(struct hstate *h, struct page *page)
1453 {
1454 int i;
1455 struct page *subpage = page;
1456
1457 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1458 return;
1459
1460 if (alloc_huge_page_vmemmap(h, page)) {
1461 spin_lock_irq(&hugetlb_lock);
1462 /*
1463 * If we cannot allocate vmemmap pages, just refuse to free the
1464 * page and put the page back on the hugetlb free list and treat
1465 * as a surplus page.
1466 */
1467 add_hugetlb_page(h, page, true);
1468 spin_unlock_irq(&hugetlb_lock);
1469 return;
1470 }
1471
1472 for (i = 0; i < pages_per_huge_page(h);
1473 i++, subpage = mem_map_next(subpage, page, i)) {
1474 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1475 1 << PG_referenced | 1 << PG_dirty |
1476 1 << PG_active | 1 << PG_private |
1477 1 << PG_writeback);
1478 }
1479 if (hstate_is_gigantic(h)) {
1480 destroy_compound_gigantic_page(page, huge_page_order(h));
1481 free_gigantic_page(page, huge_page_order(h));
1482 } else {
1483 __free_pages(page, huge_page_order(h));
1484 }
1485 }
1486
1487 /*
1488 * As update_and_free_page() can be called under any context, so we cannot
1489 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1490 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1491 * the vmemmap pages.
1492 *
1493 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1494 * freed and frees them one-by-one. As the page->mapping pointer is going
1495 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1496 * structure of a lockless linked list of huge pages to be freed.
1497 */
1498 static LLIST_HEAD(hpage_freelist);
1499
1500 static void free_hpage_workfn(struct work_struct *work)
1501 {
1502 struct llist_node *node;
1503
1504 node = llist_del_all(&hpage_freelist);
1505
1506 while (node) {
1507 struct page *page;
1508 struct hstate *h;
1509
1510 page = container_of((struct address_space **)node,
1511 struct page, mapping);
1512 node = node->next;
1513 page->mapping = NULL;
1514 /*
1515 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1516 * is going to trigger because a previous call to
1517 * remove_hugetlb_page() will set_compound_page_dtor(page,
1518 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1519 */
1520 h = size_to_hstate(page_size(page));
1521
1522 __update_and_free_page(h, page);
1523
1524 cond_resched();
1525 }
1526 }
1527 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1528
1529 static inline void flush_free_hpage_work(struct hstate *h)
1530 {
1531 if (free_vmemmap_pages_per_hpage(h))
1532 flush_work(&free_hpage_work);
1533 }
1534
1535 static void update_and_free_page(struct hstate *h, struct page *page,
1536 bool atomic)
1537 {
1538 if (!HPageVmemmapOptimized(page) || !atomic) {
1539 __update_and_free_page(h, page);
1540 return;
1541 }
1542
1543 /*
1544 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1545 *
1546 * Only call schedule_work() if hpage_freelist is previously
1547 * empty. Otherwise, schedule_work() had been called but the workfn
1548 * hasn't retrieved the list yet.
1549 */
1550 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1551 schedule_work(&free_hpage_work);
1552 }
1553
1554 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1555 {
1556 struct page *page, *t_page;
1557
1558 list_for_each_entry_safe(page, t_page, list, lru) {
1559 update_and_free_page(h, page, false);
1560 cond_resched();
1561 }
1562 }
1563
1564 struct hstate *size_to_hstate(unsigned long size)
1565 {
1566 struct hstate *h;
1567
1568 for_each_hstate(h) {
1569 if (huge_page_size(h) == size)
1570 return h;
1571 }
1572 return NULL;
1573 }
1574
1575 void free_huge_page(struct page *page)
1576 {
1577 /*
1578 * Can't pass hstate in here because it is called from the
1579 * compound page destructor.
1580 */
1581 struct hstate *h = page_hstate(page);
1582 int nid = page_to_nid(page);
1583 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1584 bool restore_reserve;
1585 unsigned long flags;
1586
1587 VM_BUG_ON_PAGE(page_count(page), page);
1588 VM_BUG_ON_PAGE(page_mapcount(page), page);
1589
1590 hugetlb_set_page_subpool(page, NULL);
1591 page->mapping = NULL;
1592 restore_reserve = HPageRestoreReserve(page);
1593 ClearHPageRestoreReserve(page);
1594
1595 /*
1596 * If HPageRestoreReserve was set on page, page allocation consumed a
1597 * reservation. If the page was associated with a subpool, there
1598 * would have been a page reserved in the subpool before allocation
1599 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1600 * reservation, do not call hugepage_subpool_put_pages() as this will
1601 * remove the reserved page from the subpool.
1602 */
1603 if (!restore_reserve) {
1604 /*
1605 * A return code of zero implies that the subpool will be
1606 * under its minimum size if the reservation is not restored
1607 * after page is free. Therefore, force restore_reserve
1608 * operation.
1609 */
1610 if (hugepage_subpool_put_pages(spool, 1) == 0)
1611 restore_reserve = true;
1612 }
1613
1614 spin_lock_irqsave(&hugetlb_lock, flags);
1615 ClearHPageMigratable(page);
1616 hugetlb_cgroup_uncharge_page(hstate_index(h),
1617 pages_per_huge_page(h), page);
1618 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1619 pages_per_huge_page(h), page);
1620 if (restore_reserve)
1621 h->resv_huge_pages++;
1622
1623 if (HPageTemporary(page)) {
1624 remove_hugetlb_page(h, page, false);
1625 spin_unlock_irqrestore(&hugetlb_lock, flags);
1626 update_and_free_page(h, page, true);
1627 } else if (h->surplus_huge_pages_node[nid]) {
1628 /* remove the page from active list */
1629 remove_hugetlb_page(h, page, true);
1630 spin_unlock_irqrestore(&hugetlb_lock, flags);
1631 update_and_free_page(h, page, true);
1632 } else {
1633 arch_clear_hugepage_flags(page);
1634 enqueue_huge_page(h, page);
1635 spin_unlock_irqrestore(&hugetlb_lock, flags);
1636 }
1637 }
1638
1639 /*
1640 * Must be called with the hugetlb lock held
1641 */
1642 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1643 {
1644 lockdep_assert_held(&hugetlb_lock);
1645 h->nr_huge_pages++;
1646 h->nr_huge_pages_node[nid]++;
1647 }
1648
1649 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1650 {
1651 free_huge_page_vmemmap(h, page);
1652 INIT_LIST_HEAD(&page->lru);
1653 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1654 hugetlb_set_page_subpool(page, NULL);
1655 set_hugetlb_cgroup(page, NULL);
1656 set_hugetlb_cgroup_rsvd(page, NULL);
1657 }
1658
1659 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1660 {
1661 __prep_new_huge_page(h, page);
1662 spin_lock_irq(&hugetlb_lock);
1663 __prep_account_new_huge_page(h, nid);
1664 spin_unlock_irq(&hugetlb_lock);
1665 }
1666
1667 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1668 {
1669 int i, j;
1670 int nr_pages = 1 << order;
1671 struct page *p = page + 1;
1672
1673 /* we rely on prep_new_huge_page to set the destructor */
1674 set_compound_order(page, order);
1675 __ClearPageReserved(page);
1676 __SetPageHead(page);
1677 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1678 /*
1679 * For gigantic hugepages allocated through bootmem at
1680 * boot, it's safer to be consistent with the not-gigantic
1681 * hugepages and clear the PG_reserved bit from all tail pages
1682 * too. Otherwise drivers using get_user_pages() to access tail
1683 * pages may get the reference counting wrong if they see
1684 * PG_reserved set on a tail page (despite the head page not
1685 * having PG_reserved set). Enforcing this consistency between
1686 * head and tail pages allows drivers to optimize away a check
1687 * on the head page when they need know if put_page() is needed
1688 * after get_user_pages().
1689 */
1690 __ClearPageReserved(p);
1691 /*
1692 * Subtle and very unlikely
1693 *
1694 * Gigantic 'page allocators' such as memblock or cma will
1695 * return a set of pages with each page ref counted. We need
1696 * to turn this set of pages into a compound page with tail
1697 * page ref counts set to zero. Code such as speculative page
1698 * cache adding could take a ref on a 'to be' tail page.
1699 * We need to respect any increased ref count, and only set
1700 * the ref count to zero if count is currently 1. If count
1701 * is not 1, we return an error. An error return indicates
1702 * the set of pages can not be converted to a gigantic page.
1703 * The caller who allocated the pages should then discard the
1704 * pages using the appropriate free interface.
1705 */
1706 if (!page_ref_freeze(p, 1)) {
1707 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1708 goto out_error;
1709 }
1710 set_page_count(p, 0);
1711 set_compound_head(p, page);
1712 }
1713 atomic_set(compound_mapcount_ptr(page), -1);
1714 atomic_set(compound_pincount_ptr(page), 0);
1715 return true;
1716
1717 out_error:
1718 /* undo tail page modifications made above */
1719 p = page + 1;
1720 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1721 clear_compound_head(p);
1722 set_page_refcounted(p);
1723 }
1724 /* need to clear PG_reserved on remaining tail pages */
1725 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1726 __ClearPageReserved(p);
1727 set_compound_order(page, 0);
1728 page[1].compound_nr = 0;
1729 __ClearPageHead(page);
1730 return false;
1731 }
1732
1733 /*
1734 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1735 * transparent huge pages. See the PageTransHuge() documentation for more
1736 * details.
1737 */
1738 int PageHuge(struct page *page)
1739 {
1740 if (!PageCompound(page))
1741 return 0;
1742
1743 page = compound_head(page);
1744 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1745 }
1746 EXPORT_SYMBOL_GPL(PageHuge);
1747
1748 /*
1749 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1750 * normal or transparent huge pages.
1751 */
1752 int PageHeadHuge(struct page *page_head)
1753 {
1754 if (!PageHead(page_head))
1755 return 0;
1756
1757 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1758 }
1759
1760 /*
1761 * Find and lock address space (mapping) in write mode.
1762 *
1763 * Upon entry, the page is locked which means that page_mapping() is
1764 * stable. Due to locking order, we can only trylock_write. If we can
1765 * not get the lock, simply return NULL to caller.
1766 */
1767 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1768 {
1769 struct address_space *mapping = page_mapping(hpage);
1770
1771 if (!mapping)
1772 return mapping;
1773
1774 if (i_mmap_trylock_write(mapping))
1775 return mapping;
1776
1777 return NULL;
1778 }
1779
1780 pgoff_t hugetlb_basepage_index(struct page *page)
1781 {
1782 struct page *page_head = compound_head(page);
1783 pgoff_t index = page_index(page_head);
1784 unsigned long compound_idx;
1785
1786 if (compound_order(page_head) >= MAX_ORDER)
1787 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1788 else
1789 compound_idx = page - page_head;
1790
1791 return (index << compound_order(page_head)) + compound_idx;
1792 }
1793
1794 static struct page *alloc_buddy_huge_page(struct hstate *h,
1795 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1796 nodemask_t *node_alloc_noretry)
1797 {
1798 int order = huge_page_order(h);
1799 struct page *page;
1800 bool alloc_try_hard = true;
1801
1802 /*
1803 * By default we always try hard to allocate the page with
1804 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1805 * a loop (to adjust global huge page counts) and previous allocation
1806 * failed, do not continue to try hard on the same node. Use the
1807 * node_alloc_noretry bitmap to manage this state information.
1808 */
1809 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1810 alloc_try_hard = false;
1811 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1812 if (alloc_try_hard)
1813 gfp_mask |= __GFP_RETRY_MAYFAIL;
1814 if (nid == NUMA_NO_NODE)
1815 nid = numa_mem_id();
1816 page = __alloc_pages(gfp_mask, order, nid, nmask);
1817 if (page)
1818 __count_vm_event(HTLB_BUDDY_PGALLOC);
1819 else
1820 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1821
1822 /*
1823 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1824 * indicates an overall state change. Clear bit so that we resume
1825 * normal 'try hard' allocations.
1826 */
1827 if (node_alloc_noretry && page && !alloc_try_hard)
1828 node_clear(nid, *node_alloc_noretry);
1829
1830 /*
1831 * If we tried hard to get a page but failed, set bit so that
1832 * subsequent attempts will not try as hard until there is an
1833 * overall state change.
1834 */
1835 if (node_alloc_noretry && !page && alloc_try_hard)
1836 node_set(nid, *node_alloc_noretry);
1837
1838 return page;
1839 }
1840
1841 /*
1842 * Common helper to allocate a fresh hugetlb page. All specific allocators
1843 * should use this function to get new hugetlb pages
1844 */
1845 static struct page *alloc_fresh_huge_page(struct hstate *h,
1846 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1847 nodemask_t *node_alloc_noretry)
1848 {
1849 struct page *page;
1850 bool retry = false;
1851
1852 retry:
1853 if (hstate_is_gigantic(h))
1854 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1855 else
1856 page = alloc_buddy_huge_page(h, gfp_mask,
1857 nid, nmask, node_alloc_noretry);
1858 if (!page)
1859 return NULL;
1860
1861 if (hstate_is_gigantic(h)) {
1862 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1863 /*
1864 * Rare failure to convert pages to compound page.
1865 * Free pages and try again - ONCE!
1866 */
1867 free_gigantic_page(page, huge_page_order(h));
1868 if (!retry) {
1869 retry = true;
1870 goto retry;
1871 }
1872 return NULL;
1873 }
1874 }
1875 prep_new_huge_page(h, page, page_to_nid(page));
1876
1877 return page;
1878 }
1879
1880 /*
1881 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1882 * manner.
1883 */
1884 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1885 nodemask_t *node_alloc_noretry)
1886 {
1887 struct page *page;
1888 int nr_nodes, node;
1889 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1890
1891 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1892 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1893 node_alloc_noretry);
1894 if (page)
1895 break;
1896 }
1897
1898 if (!page)
1899 return 0;
1900
1901 put_page(page); /* free it into the hugepage allocator */
1902
1903 return 1;
1904 }
1905
1906 /*
1907 * Remove huge page from pool from next node to free. Attempt to keep
1908 * persistent huge pages more or less balanced over allowed nodes.
1909 * This routine only 'removes' the hugetlb page. The caller must make
1910 * an additional call to free the page to low level allocators.
1911 * Called with hugetlb_lock locked.
1912 */
1913 static struct page *remove_pool_huge_page(struct hstate *h,
1914 nodemask_t *nodes_allowed,
1915 bool acct_surplus)
1916 {
1917 int nr_nodes, node;
1918 struct page *page = NULL;
1919
1920 lockdep_assert_held(&hugetlb_lock);
1921 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1922 /*
1923 * If we're returning unused surplus pages, only examine
1924 * nodes with surplus pages.
1925 */
1926 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1927 !list_empty(&h->hugepage_freelists[node])) {
1928 page = list_entry(h->hugepage_freelists[node].next,
1929 struct page, lru);
1930 remove_hugetlb_page(h, page, acct_surplus);
1931 break;
1932 }
1933 }
1934
1935 return page;
1936 }
1937
1938 /*
1939 * Dissolve a given free hugepage into free buddy pages. This function does
1940 * nothing for in-use hugepages and non-hugepages.
1941 * This function returns values like below:
1942 *
1943 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1944 * when the system is under memory pressure and the feature of
1945 * freeing unused vmemmap pages associated with each hugetlb page
1946 * is enabled.
1947 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1948 * (allocated or reserved.)
1949 * 0: successfully dissolved free hugepages or the page is not a
1950 * hugepage (considered as already dissolved)
1951 */
1952 int dissolve_free_huge_page(struct page *page)
1953 {
1954 int rc = -EBUSY;
1955
1956 retry:
1957 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1958 if (!PageHuge(page))
1959 return 0;
1960
1961 spin_lock_irq(&hugetlb_lock);
1962 if (!PageHuge(page)) {
1963 rc = 0;
1964 goto out;
1965 }
1966
1967 if (!page_count(page)) {
1968 struct page *head = compound_head(page);
1969 struct hstate *h = page_hstate(head);
1970 if (h->free_huge_pages - h->resv_huge_pages == 0)
1971 goto out;
1972
1973 /*
1974 * We should make sure that the page is already on the free list
1975 * when it is dissolved.
1976 */
1977 if (unlikely(!HPageFreed(head))) {
1978 spin_unlock_irq(&hugetlb_lock);
1979 cond_resched();
1980
1981 /*
1982 * Theoretically, we should return -EBUSY when we
1983 * encounter this race. In fact, we have a chance
1984 * to successfully dissolve the page if we do a
1985 * retry. Because the race window is quite small.
1986 * If we seize this opportunity, it is an optimization
1987 * for increasing the success rate of dissolving page.
1988 */
1989 goto retry;
1990 }
1991
1992 remove_hugetlb_page(h, head, false);
1993 h->max_huge_pages--;
1994 spin_unlock_irq(&hugetlb_lock);
1995
1996 /*
1997 * Normally update_and_free_page will allocate required vmemmmap
1998 * before freeing the page. update_and_free_page will fail to
1999 * free the page if it can not allocate required vmemmap. We
2000 * need to adjust max_huge_pages if the page is not freed.
2001 * Attempt to allocate vmemmmap here so that we can take
2002 * appropriate action on failure.
2003 */
2004 rc = alloc_huge_page_vmemmap(h, head);
2005 if (!rc) {
2006 /*
2007 * Move PageHWPoison flag from head page to the raw
2008 * error page, which makes any subpages rather than
2009 * the error page reusable.
2010 */
2011 if (PageHWPoison(head) && page != head) {
2012 SetPageHWPoison(page);
2013 ClearPageHWPoison(head);
2014 }
2015 update_and_free_page(h, head, false);
2016 } else {
2017 spin_lock_irq(&hugetlb_lock);
2018 add_hugetlb_page(h, head, false);
2019 h->max_huge_pages++;
2020 spin_unlock_irq(&hugetlb_lock);
2021 }
2022
2023 return rc;
2024 }
2025 out:
2026 spin_unlock_irq(&hugetlb_lock);
2027 return rc;
2028 }
2029
2030 /*
2031 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2032 * make specified memory blocks removable from the system.
2033 * Note that this will dissolve a free gigantic hugepage completely, if any
2034 * part of it lies within the given range.
2035 * Also note that if dissolve_free_huge_page() returns with an error, all
2036 * free hugepages that were dissolved before that error are lost.
2037 */
2038 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2039 {
2040 unsigned long pfn;
2041 struct page *page;
2042 int rc = 0;
2043
2044 if (!hugepages_supported())
2045 return rc;
2046
2047 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2048 page = pfn_to_page(pfn);
2049 rc = dissolve_free_huge_page(page);
2050 if (rc)
2051 break;
2052 }
2053
2054 return rc;
2055 }
2056
2057 /*
2058 * Allocates a fresh surplus page from the page allocator.
2059 */
2060 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2061 int nid, nodemask_t *nmask, bool zero_ref)
2062 {
2063 struct page *page = NULL;
2064 bool retry = false;
2065
2066 if (hstate_is_gigantic(h))
2067 return NULL;
2068
2069 spin_lock_irq(&hugetlb_lock);
2070 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2071 goto out_unlock;
2072 spin_unlock_irq(&hugetlb_lock);
2073
2074 retry:
2075 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2076 if (!page)
2077 return NULL;
2078
2079 spin_lock_irq(&hugetlb_lock);
2080 /*
2081 * We could have raced with the pool size change.
2082 * Double check that and simply deallocate the new page
2083 * if we would end up overcommiting the surpluses. Abuse
2084 * temporary page to workaround the nasty free_huge_page
2085 * codeflow
2086 */
2087 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2088 SetHPageTemporary(page);
2089 spin_unlock_irq(&hugetlb_lock);
2090 put_page(page);
2091 return NULL;
2092 }
2093
2094 if (zero_ref) {
2095 /*
2096 * Caller requires a page with zero ref count.
2097 * We will drop ref count here. If someone else is holding
2098 * a ref, the page will be freed when they drop it. Abuse
2099 * temporary page flag to accomplish this.
2100 */
2101 SetHPageTemporary(page);
2102 if (!put_page_testzero(page)) {
2103 /*
2104 * Unexpected inflated ref count on freshly allocated
2105 * huge. Retry once.
2106 */
2107 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2108 spin_unlock_irq(&hugetlb_lock);
2109 if (retry)
2110 return NULL;
2111
2112 retry = true;
2113 goto retry;
2114 }
2115 ClearHPageTemporary(page);
2116 }
2117
2118 h->surplus_huge_pages++;
2119 h->surplus_huge_pages_node[page_to_nid(page)]++;
2120
2121 out_unlock:
2122 spin_unlock_irq(&hugetlb_lock);
2123
2124 return page;
2125 }
2126
2127 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2128 int nid, nodemask_t *nmask)
2129 {
2130 struct page *page;
2131
2132 if (hstate_is_gigantic(h))
2133 return NULL;
2134
2135 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2136 if (!page)
2137 return NULL;
2138
2139 /*
2140 * We do not account these pages as surplus because they are only
2141 * temporary and will be released properly on the last reference
2142 */
2143 SetHPageTemporary(page);
2144
2145 return page;
2146 }
2147
2148 /*
2149 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2150 */
2151 static
2152 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2153 struct vm_area_struct *vma, unsigned long addr)
2154 {
2155 struct page *page = NULL;
2156 struct mempolicy *mpol;
2157 gfp_t gfp_mask = htlb_alloc_mask(h);
2158 int nid;
2159 nodemask_t *nodemask;
2160
2161 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2162 if (mpol_is_preferred_many(mpol)) {
2163 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2164
2165 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2166 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2167
2168 /* Fallback to all nodes if page==NULL */
2169 nodemask = NULL;
2170 }
2171
2172 if (!page)
2173 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2174 mpol_cond_put(mpol);
2175 return page;
2176 }
2177
2178 /* page migration callback function */
2179 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2180 nodemask_t *nmask, gfp_t gfp_mask)
2181 {
2182 spin_lock_irq(&hugetlb_lock);
2183 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2184 struct page *page;
2185
2186 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2187 if (page) {
2188 spin_unlock_irq(&hugetlb_lock);
2189 return page;
2190 }
2191 }
2192 spin_unlock_irq(&hugetlb_lock);
2193
2194 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2195 }
2196
2197 /* mempolicy aware migration callback */
2198 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2199 unsigned long address)
2200 {
2201 struct mempolicy *mpol;
2202 nodemask_t *nodemask;
2203 struct page *page;
2204 gfp_t gfp_mask;
2205 int node;
2206
2207 gfp_mask = htlb_alloc_mask(h);
2208 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2209 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2210 mpol_cond_put(mpol);
2211
2212 return page;
2213 }
2214
2215 /*
2216 * Increase the hugetlb pool such that it can accommodate a reservation
2217 * of size 'delta'.
2218 */
2219 static int gather_surplus_pages(struct hstate *h, long delta)
2220 __must_hold(&hugetlb_lock)
2221 {
2222 struct list_head surplus_list;
2223 struct page *page, *tmp;
2224 int ret;
2225 long i;
2226 long needed, allocated;
2227 bool alloc_ok = true;
2228
2229 lockdep_assert_held(&hugetlb_lock);
2230 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2231 if (needed <= 0) {
2232 h->resv_huge_pages += delta;
2233 return 0;
2234 }
2235
2236 allocated = 0;
2237 INIT_LIST_HEAD(&surplus_list);
2238
2239 ret = -ENOMEM;
2240 retry:
2241 spin_unlock_irq(&hugetlb_lock);
2242 for (i = 0; i < needed; i++) {
2243 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2244 NUMA_NO_NODE, NULL, true);
2245 if (!page) {
2246 alloc_ok = false;
2247 break;
2248 }
2249 list_add(&page->lru, &surplus_list);
2250 cond_resched();
2251 }
2252 allocated += i;
2253
2254 /*
2255 * After retaking hugetlb_lock, we need to recalculate 'needed'
2256 * because either resv_huge_pages or free_huge_pages may have changed.
2257 */
2258 spin_lock_irq(&hugetlb_lock);
2259 needed = (h->resv_huge_pages + delta) -
2260 (h->free_huge_pages + allocated);
2261 if (needed > 0) {
2262 if (alloc_ok)
2263 goto retry;
2264 /*
2265 * We were not able to allocate enough pages to
2266 * satisfy the entire reservation so we free what
2267 * we've allocated so far.
2268 */
2269 goto free;
2270 }
2271 /*
2272 * The surplus_list now contains _at_least_ the number of extra pages
2273 * needed to accommodate the reservation. Add the appropriate number
2274 * of pages to the hugetlb pool and free the extras back to the buddy
2275 * allocator. Commit the entire reservation here to prevent another
2276 * process from stealing the pages as they are added to the pool but
2277 * before they are reserved.
2278 */
2279 needed += allocated;
2280 h->resv_huge_pages += delta;
2281 ret = 0;
2282
2283 /* Free the needed pages to the hugetlb pool */
2284 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2285 if ((--needed) < 0)
2286 break;
2287 /* Add the page to the hugetlb allocator */
2288 enqueue_huge_page(h, page);
2289 }
2290 free:
2291 spin_unlock_irq(&hugetlb_lock);
2292
2293 /*
2294 * Free unnecessary surplus pages to the buddy allocator.
2295 * Pages have no ref count, call free_huge_page directly.
2296 */
2297 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2298 free_huge_page(page);
2299 spin_lock_irq(&hugetlb_lock);
2300
2301 return ret;
2302 }
2303
2304 /*
2305 * This routine has two main purposes:
2306 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2307 * in unused_resv_pages. This corresponds to the prior adjustments made
2308 * to the associated reservation map.
2309 * 2) Free any unused surplus pages that may have been allocated to satisfy
2310 * the reservation. As many as unused_resv_pages may be freed.
2311 */
2312 static void return_unused_surplus_pages(struct hstate *h,
2313 unsigned long unused_resv_pages)
2314 {
2315 unsigned long nr_pages;
2316 struct page *page;
2317 LIST_HEAD(page_list);
2318
2319 lockdep_assert_held(&hugetlb_lock);
2320 /* Uncommit the reservation */
2321 h->resv_huge_pages -= unused_resv_pages;
2322
2323 /* Cannot return gigantic pages currently */
2324 if (hstate_is_gigantic(h))
2325 goto out;
2326
2327 /*
2328 * Part (or even all) of the reservation could have been backed
2329 * by pre-allocated pages. Only free surplus pages.
2330 */
2331 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2332
2333 /*
2334 * We want to release as many surplus pages as possible, spread
2335 * evenly across all nodes with memory. Iterate across these nodes
2336 * until we can no longer free unreserved surplus pages. This occurs
2337 * when the nodes with surplus pages have no free pages.
2338 * remove_pool_huge_page() will balance the freed pages across the
2339 * on-line nodes with memory and will handle the hstate accounting.
2340 */
2341 while (nr_pages--) {
2342 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2343 if (!page)
2344 goto out;
2345
2346 list_add(&page->lru, &page_list);
2347 }
2348
2349 out:
2350 spin_unlock_irq(&hugetlb_lock);
2351 update_and_free_pages_bulk(h, &page_list);
2352 spin_lock_irq(&hugetlb_lock);
2353 }
2354
2355
2356 /*
2357 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2358 * are used by the huge page allocation routines to manage reservations.
2359 *
2360 * vma_needs_reservation is called to determine if the huge page at addr
2361 * within the vma has an associated reservation. If a reservation is
2362 * needed, the value 1 is returned. The caller is then responsible for
2363 * managing the global reservation and subpool usage counts. After
2364 * the huge page has been allocated, vma_commit_reservation is called
2365 * to add the page to the reservation map. If the page allocation fails,
2366 * the reservation must be ended instead of committed. vma_end_reservation
2367 * is called in such cases.
2368 *
2369 * In the normal case, vma_commit_reservation returns the same value
2370 * as the preceding vma_needs_reservation call. The only time this
2371 * is not the case is if a reserve map was changed between calls. It
2372 * is the responsibility of the caller to notice the difference and
2373 * take appropriate action.
2374 *
2375 * vma_add_reservation is used in error paths where a reservation must
2376 * be restored when a newly allocated huge page must be freed. It is
2377 * to be called after calling vma_needs_reservation to determine if a
2378 * reservation exists.
2379 *
2380 * vma_del_reservation is used in error paths where an entry in the reserve
2381 * map was created during huge page allocation and must be removed. It is to
2382 * be called after calling vma_needs_reservation to determine if a reservation
2383 * exists.
2384 */
2385 enum vma_resv_mode {
2386 VMA_NEEDS_RESV,
2387 VMA_COMMIT_RESV,
2388 VMA_END_RESV,
2389 VMA_ADD_RESV,
2390 VMA_DEL_RESV,
2391 };
2392 static long __vma_reservation_common(struct hstate *h,
2393 struct vm_area_struct *vma, unsigned long addr,
2394 enum vma_resv_mode mode)
2395 {
2396 struct resv_map *resv;
2397 pgoff_t idx;
2398 long ret;
2399 long dummy_out_regions_needed;
2400
2401 resv = vma_resv_map(vma);
2402 if (!resv)
2403 return 1;
2404
2405 idx = vma_hugecache_offset(h, vma, addr);
2406 switch (mode) {
2407 case VMA_NEEDS_RESV:
2408 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2409 /* We assume that vma_reservation_* routines always operate on
2410 * 1 page, and that adding to resv map a 1 page entry can only
2411 * ever require 1 region.
2412 */
2413 VM_BUG_ON(dummy_out_regions_needed != 1);
2414 break;
2415 case VMA_COMMIT_RESV:
2416 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2417 /* region_add calls of range 1 should never fail. */
2418 VM_BUG_ON(ret < 0);
2419 break;
2420 case VMA_END_RESV:
2421 region_abort(resv, idx, idx + 1, 1);
2422 ret = 0;
2423 break;
2424 case VMA_ADD_RESV:
2425 if (vma->vm_flags & VM_MAYSHARE) {
2426 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2427 /* region_add calls of range 1 should never fail. */
2428 VM_BUG_ON(ret < 0);
2429 } else {
2430 region_abort(resv, idx, idx + 1, 1);
2431 ret = region_del(resv, idx, idx + 1);
2432 }
2433 break;
2434 case VMA_DEL_RESV:
2435 if (vma->vm_flags & VM_MAYSHARE) {
2436 region_abort(resv, idx, idx + 1, 1);
2437 ret = region_del(resv, idx, idx + 1);
2438 } else {
2439 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2440 /* region_add calls of range 1 should never fail. */
2441 VM_BUG_ON(ret < 0);
2442 }
2443 break;
2444 default:
2445 BUG();
2446 }
2447
2448 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2449 return ret;
2450 /*
2451 * We know private mapping must have HPAGE_RESV_OWNER set.
2452 *
2453 * In most cases, reserves always exist for private mappings.
2454 * However, a file associated with mapping could have been
2455 * hole punched or truncated after reserves were consumed.
2456 * As subsequent fault on such a range will not use reserves.
2457 * Subtle - The reserve map for private mappings has the
2458 * opposite meaning than that of shared mappings. If NO
2459 * entry is in the reserve map, it means a reservation exists.
2460 * If an entry exists in the reserve map, it means the
2461 * reservation has already been consumed. As a result, the
2462 * return value of this routine is the opposite of the
2463 * value returned from reserve map manipulation routines above.
2464 */
2465 if (ret > 0)
2466 return 0;
2467 if (ret == 0)
2468 return 1;
2469 return ret;
2470 }
2471
2472 static long vma_needs_reservation(struct hstate *h,
2473 struct vm_area_struct *vma, unsigned long addr)
2474 {
2475 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2476 }
2477
2478 static long vma_commit_reservation(struct hstate *h,
2479 struct vm_area_struct *vma, unsigned long addr)
2480 {
2481 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2482 }
2483
2484 static void vma_end_reservation(struct hstate *h,
2485 struct vm_area_struct *vma, unsigned long addr)
2486 {
2487 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2488 }
2489
2490 static long vma_add_reservation(struct hstate *h,
2491 struct vm_area_struct *vma, unsigned long addr)
2492 {
2493 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2494 }
2495
2496 static long vma_del_reservation(struct hstate *h,
2497 struct vm_area_struct *vma, unsigned long addr)
2498 {
2499 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2500 }
2501
2502 /*
2503 * This routine is called to restore reservation information on error paths.
2504 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2505 * the hugetlb mutex should remain held when calling this routine.
2506 *
2507 * It handles two specific cases:
2508 * 1) A reservation was in place and the page consumed the reservation.
2509 * HPageRestoreReserve is set in the page.
2510 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2511 * not set. However, alloc_huge_page always updates the reserve map.
2512 *
2513 * In case 1, free_huge_page later in the error path will increment the
2514 * global reserve count. But, free_huge_page does not have enough context
2515 * to adjust the reservation map. This case deals primarily with private
2516 * mappings. Adjust the reserve map here to be consistent with global
2517 * reserve count adjustments to be made by free_huge_page. Make sure the
2518 * reserve map indicates there is a reservation present.
2519 *
2520 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2521 */
2522 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2523 unsigned long address, struct page *page)
2524 {
2525 long rc = vma_needs_reservation(h, vma, address);
2526
2527 if (HPageRestoreReserve(page)) {
2528 if (unlikely(rc < 0))
2529 /*
2530 * Rare out of memory condition in reserve map
2531 * manipulation. Clear HPageRestoreReserve so that
2532 * global reserve count will not be incremented
2533 * by free_huge_page. This will make it appear
2534 * as though the reservation for this page was
2535 * consumed. This may prevent the task from
2536 * faulting in the page at a later time. This
2537 * is better than inconsistent global huge page
2538 * accounting of reserve counts.
2539 */
2540 ClearHPageRestoreReserve(page);
2541 else if (rc)
2542 (void)vma_add_reservation(h, vma, address);
2543 else
2544 vma_end_reservation(h, vma, address);
2545 } else {
2546 if (!rc) {
2547 /*
2548 * This indicates there is an entry in the reserve map
2549 * not added by alloc_huge_page. We know it was added
2550 * before the alloc_huge_page call, otherwise
2551 * HPageRestoreReserve would be set on the page.
2552 * Remove the entry so that a subsequent allocation
2553 * does not consume a reservation.
2554 */
2555 rc = vma_del_reservation(h, vma, address);
2556 if (rc < 0)
2557 /*
2558 * VERY rare out of memory condition. Since
2559 * we can not delete the entry, set
2560 * HPageRestoreReserve so that the reserve
2561 * count will be incremented when the page
2562 * is freed. This reserve will be consumed
2563 * on a subsequent allocation.
2564 */
2565 SetHPageRestoreReserve(page);
2566 } else if (rc < 0) {
2567 /*
2568 * Rare out of memory condition from
2569 * vma_needs_reservation call. Memory allocation is
2570 * only attempted if a new entry is needed. Therefore,
2571 * this implies there is not an entry in the
2572 * reserve map.
2573 *
2574 * For shared mappings, no entry in the map indicates
2575 * no reservation. We are done.
2576 */
2577 if (!(vma->vm_flags & VM_MAYSHARE))
2578 /*
2579 * For private mappings, no entry indicates
2580 * a reservation is present. Since we can
2581 * not add an entry, set SetHPageRestoreReserve
2582 * on the page so reserve count will be
2583 * incremented when freed. This reserve will
2584 * be consumed on a subsequent allocation.
2585 */
2586 SetHPageRestoreReserve(page);
2587 } else
2588 /*
2589 * No reservation present, do nothing
2590 */
2591 vma_end_reservation(h, vma, address);
2592 }
2593 }
2594
2595 /*
2596 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2597 * @h: struct hstate old page belongs to
2598 * @old_page: Old page to dissolve
2599 * @list: List to isolate the page in case we need to
2600 * Returns 0 on success, otherwise negated error.
2601 */
2602 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2603 struct list_head *list)
2604 {
2605 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2606 int nid = page_to_nid(old_page);
2607 bool alloc_retry = false;
2608 struct page *new_page;
2609 int ret = 0;
2610
2611 /*
2612 * Before dissolving the page, we need to allocate a new one for the
2613 * pool to remain stable. Here, we allocate the page and 'prep' it
2614 * by doing everything but actually updating counters and adding to
2615 * the pool. This simplifies and let us do most of the processing
2616 * under the lock.
2617 */
2618 alloc_retry:
2619 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2620 if (!new_page)
2621 return -ENOMEM;
2622 /*
2623 * If all goes well, this page will be directly added to the free
2624 * list in the pool. For this the ref count needs to be zero.
2625 * Attempt to drop now, and retry once if needed. It is VERY
2626 * unlikely there is another ref on the page.
2627 *
2628 * If someone else has a reference to the page, it will be freed
2629 * when they drop their ref. Abuse temporary page flag to accomplish
2630 * this. Retry once if there is an inflated ref count.
2631 */
2632 SetHPageTemporary(new_page);
2633 if (!put_page_testzero(new_page)) {
2634 if (alloc_retry)
2635 return -EBUSY;
2636
2637 alloc_retry = true;
2638 goto alloc_retry;
2639 }
2640 ClearHPageTemporary(new_page);
2641
2642 __prep_new_huge_page(h, new_page);
2643
2644 retry:
2645 spin_lock_irq(&hugetlb_lock);
2646 if (!PageHuge(old_page)) {
2647 /*
2648 * Freed from under us. Drop new_page too.
2649 */
2650 goto free_new;
2651 } else if (page_count(old_page)) {
2652 /*
2653 * Someone has grabbed the page, try to isolate it here.
2654 * Fail with -EBUSY if not possible.
2655 */
2656 spin_unlock_irq(&hugetlb_lock);
2657 if (!isolate_huge_page(old_page, list))
2658 ret = -EBUSY;
2659 spin_lock_irq(&hugetlb_lock);
2660 goto free_new;
2661 } else if (!HPageFreed(old_page)) {
2662 /*
2663 * Page's refcount is 0 but it has not been enqueued in the
2664 * freelist yet. Race window is small, so we can succeed here if
2665 * we retry.
2666 */
2667 spin_unlock_irq(&hugetlb_lock);
2668 cond_resched();
2669 goto retry;
2670 } else {
2671 /*
2672 * Ok, old_page is still a genuine free hugepage. Remove it from
2673 * the freelist and decrease the counters. These will be
2674 * incremented again when calling __prep_account_new_huge_page()
2675 * and enqueue_huge_page() for new_page. The counters will remain
2676 * stable since this happens under the lock.
2677 */
2678 remove_hugetlb_page(h, old_page, false);
2679
2680 /*
2681 * Ref count on new page is already zero as it was dropped
2682 * earlier. It can be directly added to the pool free list.
2683 */
2684 __prep_account_new_huge_page(h, nid);
2685 enqueue_huge_page(h, new_page);
2686
2687 /*
2688 * Pages have been replaced, we can safely free the old one.
2689 */
2690 spin_unlock_irq(&hugetlb_lock);
2691 update_and_free_page(h, old_page, false);
2692 }
2693
2694 return ret;
2695
2696 free_new:
2697 spin_unlock_irq(&hugetlb_lock);
2698 /* Page has a zero ref count, but needs a ref to be freed */
2699 set_page_refcounted(new_page);
2700 update_and_free_page(h, new_page, false);
2701
2702 return ret;
2703 }
2704
2705 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2706 {
2707 struct hstate *h;
2708 struct page *head;
2709 int ret = -EBUSY;
2710
2711 /*
2712 * The page might have been dissolved from under our feet, so make sure
2713 * to carefully check the state under the lock.
2714 * Return success when racing as if we dissolved the page ourselves.
2715 */
2716 spin_lock_irq(&hugetlb_lock);
2717 if (PageHuge(page)) {
2718 head = compound_head(page);
2719 h = page_hstate(head);
2720 } else {
2721 spin_unlock_irq(&hugetlb_lock);
2722 return 0;
2723 }
2724 spin_unlock_irq(&hugetlb_lock);
2725
2726 /*
2727 * Fence off gigantic pages as there is a cyclic dependency between
2728 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2729 * of bailing out right away without further retrying.
2730 */
2731 if (hstate_is_gigantic(h))
2732 return -ENOMEM;
2733
2734 if (page_count(head) && isolate_huge_page(head, list))
2735 ret = 0;
2736 else if (!page_count(head))
2737 ret = alloc_and_dissolve_huge_page(h, head, list);
2738
2739 return ret;
2740 }
2741
2742 struct page *alloc_huge_page(struct vm_area_struct *vma,
2743 unsigned long addr, int avoid_reserve)
2744 {
2745 struct hugepage_subpool *spool = subpool_vma(vma);
2746 struct hstate *h = hstate_vma(vma);
2747 struct page *page;
2748 long map_chg, map_commit;
2749 long gbl_chg;
2750 int ret, idx;
2751 struct hugetlb_cgroup *h_cg;
2752 bool deferred_reserve;
2753
2754 idx = hstate_index(h);
2755 /*
2756 * Examine the region/reserve map to determine if the process
2757 * has a reservation for the page to be allocated. A return
2758 * code of zero indicates a reservation exists (no change).
2759 */
2760 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2761 if (map_chg < 0)
2762 return ERR_PTR(-ENOMEM);
2763
2764 /*
2765 * Processes that did not create the mapping will have no
2766 * reserves as indicated by the region/reserve map. Check
2767 * that the allocation will not exceed the subpool limit.
2768 * Allocations for MAP_NORESERVE mappings also need to be
2769 * checked against any subpool limit.
2770 */
2771 if (map_chg || avoid_reserve) {
2772 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2773 if (gbl_chg < 0) {
2774 vma_end_reservation(h, vma, addr);
2775 return ERR_PTR(-ENOSPC);
2776 }
2777
2778 /*
2779 * Even though there was no reservation in the region/reserve
2780 * map, there could be reservations associated with the
2781 * subpool that can be used. This would be indicated if the
2782 * return value of hugepage_subpool_get_pages() is zero.
2783 * However, if avoid_reserve is specified we still avoid even
2784 * the subpool reservations.
2785 */
2786 if (avoid_reserve)
2787 gbl_chg = 1;
2788 }
2789
2790 /* If this allocation is not consuming a reservation, charge it now.
2791 */
2792 deferred_reserve = map_chg || avoid_reserve;
2793 if (deferred_reserve) {
2794 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2795 idx, pages_per_huge_page(h), &h_cg);
2796 if (ret)
2797 goto out_subpool_put;
2798 }
2799
2800 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2801 if (ret)
2802 goto out_uncharge_cgroup_reservation;
2803
2804 spin_lock_irq(&hugetlb_lock);
2805 /*
2806 * glb_chg is passed to indicate whether or not a page must be taken
2807 * from the global free pool (global change). gbl_chg == 0 indicates
2808 * a reservation exists for the allocation.
2809 */
2810 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2811 if (!page) {
2812 spin_unlock_irq(&hugetlb_lock);
2813 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2814 if (!page)
2815 goto out_uncharge_cgroup;
2816 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2817 SetHPageRestoreReserve(page);
2818 h->resv_huge_pages--;
2819 }
2820 spin_lock_irq(&hugetlb_lock);
2821 list_add(&page->lru, &h->hugepage_activelist);
2822 /* Fall through */
2823 }
2824 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2825 /* If allocation is not consuming a reservation, also store the
2826 * hugetlb_cgroup pointer on the page.
2827 */
2828 if (deferred_reserve) {
2829 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2830 h_cg, page);
2831 }
2832
2833 spin_unlock_irq(&hugetlb_lock);
2834
2835 hugetlb_set_page_subpool(page, spool);
2836
2837 map_commit = vma_commit_reservation(h, vma, addr);
2838 if (unlikely(map_chg > map_commit)) {
2839 /*
2840 * The page was added to the reservation map between
2841 * vma_needs_reservation and vma_commit_reservation.
2842 * This indicates a race with hugetlb_reserve_pages.
2843 * Adjust for the subpool count incremented above AND
2844 * in hugetlb_reserve_pages for the same page. Also,
2845 * the reservation count added in hugetlb_reserve_pages
2846 * no longer applies.
2847 */
2848 long rsv_adjust;
2849
2850 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2851 hugetlb_acct_memory(h, -rsv_adjust);
2852 if (deferred_reserve)
2853 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2854 pages_per_huge_page(h), page);
2855 }
2856 return page;
2857
2858 out_uncharge_cgroup:
2859 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2860 out_uncharge_cgroup_reservation:
2861 if (deferred_reserve)
2862 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2863 h_cg);
2864 out_subpool_put:
2865 if (map_chg || avoid_reserve)
2866 hugepage_subpool_put_pages(spool, 1);
2867 vma_end_reservation(h, vma, addr);
2868 return ERR_PTR(-ENOSPC);
2869 }
2870
2871 int alloc_bootmem_huge_page(struct hstate *h)
2872 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2873 int __alloc_bootmem_huge_page(struct hstate *h)
2874 {
2875 struct huge_bootmem_page *m;
2876 int nr_nodes, node;
2877
2878 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2879 void *addr;
2880
2881 addr = memblock_alloc_try_nid_raw(
2882 huge_page_size(h), huge_page_size(h),
2883 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2884 if (addr) {
2885 /*
2886 * Use the beginning of the huge page to store the
2887 * huge_bootmem_page struct (until gather_bootmem
2888 * puts them into the mem_map).
2889 */
2890 m = addr;
2891 goto found;
2892 }
2893 }
2894 return 0;
2895
2896 found:
2897 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2898 /* Put them into a private list first because mem_map is not up yet */
2899 INIT_LIST_HEAD(&m->list);
2900 list_add(&m->list, &huge_boot_pages);
2901 m->hstate = h;
2902 return 1;
2903 }
2904
2905 /*
2906 * Put bootmem huge pages into the standard lists after mem_map is up.
2907 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2908 */
2909 static void __init gather_bootmem_prealloc(void)
2910 {
2911 struct huge_bootmem_page *m;
2912
2913 list_for_each_entry(m, &huge_boot_pages, list) {
2914 struct page *page = virt_to_page(m);
2915 struct hstate *h = m->hstate;
2916
2917 VM_BUG_ON(!hstate_is_gigantic(h));
2918 WARN_ON(page_count(page) != 1);
2919 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2920 WARN_ON(PageReserved(page));
2921 prep_new_huge_page(h, page, page_to_nid(page));
2922 put_page(page); /* add to the hugepage allocator */
2923 } else {
2924 /* VERY unlikely inflated ref count on a tail page */
2925 free_gigantic_page(page, huge_page_order(h));
2926 }
2927
2928 /*
2929 * We need to restore the 'stolen' pages to totalram_pages
2930 * in order to fix confusing memory reports from free(1) and
2931 * other side-effects, like CommitLimit going negative.
2932 */
2933 adjust_managed_page_count(page, pages_per_huge_page(h));
2934 cond_resched();
2935 }
2936 }
2937
2938 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2939 {
2940 unsigned long i;
2941 nodemask_t *node_alloc_noretry;
2942
2943 if (!hstate_is_gigantic(h)) {
2944 /*
2945 * Bit mask controlling how hard we retry per-node allocations.
2946 * Ignore errors as lower level routines can deal with
2947 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2948 * time, we are likely in bigger trouble.
2949 */
2950 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2951 GFP_KERNEL);
2952 } else {
2953 /* allocations done at boot time */
2954 node_alloc_noretry = NULL;
2955 }
2956
2957 /* bit mask controlling how hard we retry per-node allocations */
2958 if (node_alloc_noretry)
2959 nodes_clear(*node_alloc_noretry);
2960
2961 for (i = 0; i < h->max_huge_pages; ++i) {
2962 if (hstate_is_gigantic(h)) {
2963 if (hugetlb_cma_size) {
2964 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2965 goto free;
2966 }
2967 if (!alloc_bootmem_huge_page(h))
2968 break;
2969 } else if (!alloc_pool_huge_page(h,
2970 &node_states[N_MEMORY],
2971 node_alloc_noretry))
2972 break;
2973 cond_resched();
2974 }
2975 if (i < h->max_huge_pages) {
2976 char buf[32];
2977
2978 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2979 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2980 h->max_huge_pages, buf, i);
2981 h->max_huge_pages = i;
2982 }
2983 free:
2984 kfree(node_alloc_noretry);
2985 }
2986
2987 static void __init hugetlb_init_hstates(void)
2988 {
2989 struct hstate *h;
2990
2991 for_each_hstate(h) {
2992 if (minimum_order > huge_page_order(h))
2993 minimum_order = huge_page_order(h);
2994
2995 /* oversize hugepages were init'ed in early boot */
2996 if (!hstate_is_gigantic(h))
2997 hugetlb_hstate_alloc_pages(h);
2998 }
2999 VM_BUG_ON(minimum_order == UINT_MAX);
3000 }
3001
3002 static void __init report_hugepages(void)
3003 {
3004 struct hstate *h;
3005
3006 for_each_hstate(h) {
3007 char buf[32];
3008
3009 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3010 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3011 buf, h->free_huge_pages);
3012 }
3013 }
3014
3015 #ifdef CONFIG_HIGHMEM
3016 static void try_to_free_low(struct hstate *h, unsigned long count,
3017 nodemask_t *nodes_allowed)
3018 {
3019 int i;
3020 LIST_HEAD(page_list);
3021
3022 lockdep_assert_held(&hugetlb_lock);
3023 if (hstate_is_gigantic(h))
3024 return;
3025
3026 /*
3027 * Collect pages to be freed on a list, and free after dropping lock
3028 */
3029 for_each_node_mask(i, *nodes_allowed) {
3030 struct page *page, *next;
3031 struct list_head *freel = &h->hugepage_freelists[i];
3032 list_for_each_entry_safe(page, next, freel, lru) {
3033 if (count >= h->nr_huge_pages)
3034 goto out;
3035 if (PageHighMem(page))
3036 continue;
3037 remove_hugetlb_page(h, page, false);
3038 list_add(&page->lru, &page_list);
3039 }
3040 }
3041
3042 out:
3043 spin_unlock_irq(&hugetlb_lock);
3044 update_and_free_pages_bulk(h, &page_list);
3045 spin_lock_irq(&hugetlb_lock);
3046 }
3047 #else
3048 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3049 nodemask_t *nodes_allowed)
3050 {
3051 }
3052 #endif
3053
3054 /*
3055 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3056 * balanced by operating on them in a round-robin fashion.
3057 * Returns 1 if an adjustment was made.
3058 */
3059 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3060 int delta)
3061 {
3062 int nr_nodes, node;
3063
3064 lockdep_assert_held(&hugetlb_lock);
3065 VM_BUG_ON(delta != -1 && delta != 1);
3066
3067 if (delta < 0) {
3068 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3069 if (h->surplus_huge_pages_node[node])
3070 goto found;
3071 }
3072 } else {
3073 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3074 if (h->surplus_huge_pages_node[node] <
3075 h->nr_huge_pages_node[node])
3076 goto found;
3077 }
3078 }
3079 return 0;
3080
3081 found:
3082 h->surplus_huge_pages += delta;
3083 h->surplus_huge_pages_node[node] += delta;
3084 return 1;
3085 }
3086
3087 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3088 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3089 nodemask_t *nodes_allowed)
3090 {
3091 unsigned long min_count, ret;
3092 struct page *page;
3093 LIST_HEAD(page_list);
3094 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3095
3096 /*
3097 * Bit mask controlling how hard we retry per-node allocations.
3098 * If we can not allocate the bit mask, do not attempt to allocate
3099 * the requested huge pages.
3100 */
3101 if (node_alloc_noretry)
3102 nodes_clear(*node_alloc_noretry);
3103 else
3104 return -ENOMEM;
3105
3106 /*
3107 * resize_lock mutex prevents concurrent adjustments to number of
3108 * pages in hstate via the proc/sysfs interfaces.
3109 */
3110 mutex_lock(&h->resize_lock);
3111 flush_free_hpage_work(h);
3112 spin_lock_irq(&hugetlb_lock);
3113
3114 /*
3115 * Check for a node specific request.
3116 * Changing node specific huge page count may require a corresponding
3117 * change to the global count. In any case, the passed node mask
3118 * (nodes_allowed) will restrict alloc/free to the specified node.
3119 */
3120 if (nid != NUMA_NO_NODE) {
3121 unsigned long old_count = count;
3122
3123 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3124 /*
3125 * User may have specified a large count value which caused the
3126 * above calculation to overflow. In this case, they wanted
3127 * to allocate as many huge pages as possible. Set count to
3128 * largest possible value to align with their intention.
3129 */
3130 if (count < old_count)
3131 count = ULONG_MAX;
3132 }
3133
3134 /*
3135 * Gigantic pages runtime allocation depend on the capability for large
3136 * page range allocation.
3137 * If the system does not provide this feature, return an error when
3138 * the user tries to allocate gigantic pages but let the user free the
3139 * boottime allocated gigantic pages.
3140 */
3141 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3142 if (count > persistent_huge_pages(h)) {
3143 spin_unlock_irq(&hugetlb_lock);
3144 mutex_unlock(&h->resize_lock);
3145 NODEMASK_FREE(node_alloc_noretry);
3146 return -EINVAL;
3147 }
3148 /* Fall through to decrease pool */
3149 }
3150
3151 /*
3152 * Increase the pool size
3153 * First take pages out of surplus state. Then make up the
3154 * remaining difference by allocating fresh huge pages.
3155 *
3156 * We might race with alloc_surplus_huge_page() here and be unable
3157 * to convert a surplus huge page to a normal huge page. That is
3158 * not critical, though, it just means the overall size of the
3159 * pool might be one hugepage larger than it needs to be, but
3160 * within all the constraints specified by the sysctls.
3161 */
3162 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3163 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3164 break;
3165 }
3166
3167 while (count > persistent_huge_pages(h)) {
3168 /*
3169 * If this allocation races such that we no longer need the
3170 * page, free_huge_page will handle it by freeing the page
3171 * and reducing the surplus.
3172 */
3173 spin_unlock_irq(&hugetlb_lock);
3174
3175 /* yield cpu to avoid soft lockup */
3176 cond_resched();
3177
3178 ret = alloc_pool_huge_page(h, nodes_allowed,
3179 node_alloc_noretry);
3180 spin_lock_irq(&hugetlb_lock);
3181 if (!ret)
3182 goto out;
3183
3184 /* Bail for signals. Probably ctrl-c from user */
3185 if (signal_pending(current))
3186 goto out;
3187 }
3188
3189 /*
3190 * Decrease the pool size
3191 * First return free pages to the buddy allocator (being careful
3192 * to keep enough around to satisfy reservations). Then place
3193 * pages into surplus state as needed so the pool will shrink
3194 * to the desired size as pages become free.
3195 *
3196 * By placing pages into the surplus state independent of the
3197 * overcommit value, we are allowing the surplus pool size to
3198 * exceed overcommit. There are few sane options here. Since
3199 * alloc_surplus_huge_page() is checking the global counter,
3200 * though, we'll note that we're not allowed to exceed surplus
3201 * and won't grow the pool anywhere else. Not until one of the
3202 * sysctls are changed, or the surplus pages go out of use.
3203 */
3204 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3205 min_count = max(count, min_count);
3206 try_to_free_low(h, min_count, nodes_allowed);
3207
3208 /*
3209 * Collect pages to be removed on list without dropping lock
3210 */
3211 while (min_count < persistent_huge_pages(h)) {
3212 page = remove_pool_huge_page(h, nodes_allowed, 0);
3213 if (!page)
3214 break;
3215
3216 list_add(&page->lru, &page_list);
3217 }
3218 /* free the pages after dropping lock */
3219 spin_unlock_irq(&hugetlb_lock);
3220 update_and_free_pages_bulk(h, &page_list);
3221 flush_free_hpage_work(h);
3222 spin_lock_irq(&hugetlb_lock);
3223
3224 while (count < persistent_huge_pages(h)) {
3225 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3226 break;
3227 }
3228 out:
3229 h->max_huge_pages = persistent_huge_pages(h);
3230 spin_unlock_irq(&hugetlb_lock);
3231 mutex_unlock(&h->resize_lock);
3232
3233 NODEMASK_FREE(node_alloc_noretry);
3234
3235 return 0;
3236 }
3237
3238 #define HSTATE_ATTR_RO(_name) \
3239 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3240
3241 #define HSTATE_ATTR(_name) \
3242 static struct kobj_attribute _name##_attr = \
3243 __ATTR(_name, 0644, _name##_show, _name##_store)
3244
3245 static struct kobject *hugepages_kobj;
3246 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3247
3248 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3249
3250 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3251 {
3252 int i;
3253
3254 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3255 if (hstate_kobjs[i] == kobj) {
3256 if (nidp)
3257 *nidp = NUMA_NO_NODE;
3258 return &hstates[i];
3259 }
3260
3261 return kobj_to_node_hstate(kobj, nidp);
3262 }
3263
3264 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3265 struct kobj_attribute *attr, char *buf)
3266 {
3267 struct hstate *h;
3268 unsigned long nr_huge_pages;
3269 int nid;
3270
3271 h = kobj_to_hstate(kobj, &nid);
3272 if (nid == NUMA_NO_NODE)
3273 nr_huge_pages = h->nr_huge_pages;
3274 else
3275 nr_huge_pages = h->nr_huge_pages_node[nid];
3276
3277 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3278 }
3279
3280 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3281 struct hstate *h, int nid,
3282 unsigned long count, size_t len)
3283 {
3284 int err;
3285 nodemask_t nodes_allowed, *n_mask;
3286
3287 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3288 return -EINVAL;
3289
3290 if (nid == NUMA_NO_NODE) {
3291 /*
3292 * global hstate attribute
3293 */
3294 if (!(obey_mempolicy &&
3295 init_nodemask_of_mempolicy(&nodes_allowed)))
3296 n_mask = &node_states[N_MEMORY];
3297 else
3298 n_mask = &nodes_allowed;
3299 } else {
3300 /*
3301 * Node specific request. count adjustment happens in
3302 * set_max_huge_pages() after acquiring hugetlb_lock.
3303 */
3304 init_nodemask_of_node(&nodes_allowed, nid);
3305 n_mask = &nodes_allowed;
3306 }
3307
3308 err = set_max_huge_pages(h, count, nid, n_mask);
3309
3310 return err ? err : len;
3311 }
3312
3313 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3314 struct kobject *kobj, const char *buf,
3315 size_t len)
3316 {
3317 struct hstate *h;
3318 unsigned long count;
3319 int nid;
3320 int err;
3321
3322 err = kstrtoul(buf, 10, &count);
3323 if (err)
3324 return err;
3325
3326 h = kobj_to_hstate(kobj, &nid);
3327 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3328 }
3329
3330 static ssize_t nr_hugepages_show(struct kobject *kobj,
3331 struct kobj_attribute *attr, char *buf)
3332 {
3333 return nr_hugepages_show_common(kobj, attr, buf);
3334 }
3335
3336 static ssize_t nr_hugepages_store(struct kobject *kobj,
3337 struct kobj_attribute *attr, const char *buf, size_t len)
3338 {
3339 return nr_hugepages_store_common(false, kobj, buf, len);
3340 }
3341 HSTATE_ATTR(nr_hugepages);
3342
3343 #ifdef CONFIG_NUMA
3344
3345 /*
3346 * hstate attribute for optionally mempolicy-based constraint on persistent
3347 * huge page alloc/free.
3348 */
3349 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3350 struct kobj_attribute *attr,
3351 char *buf)
3352 {
3353 return nr_hugepages_show_common(kobj, attr, buf);
3354 }
3355
3356 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3357 struct kobj_attribute *attr, const char *buf, size_t len)
3358 {
3359 return nr_hugepages_store_common(true, kobj, buf, len);
3360 }
3361 HSTATE_ATTR(nr_hugepages_mempolicy);
3362 #endif
3363
3364
3365 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3366 struct kobj_attribute *attr, char *buf)
3367 {
3368 struct hstate *h = kobj_to_hstate(kobj, NULL);
3369 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3370 }
3371
3372 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3373 struct kobj_attribute *attr, const char *buf, size_t count)
3374 {
3375 int err;
3376 unsigned long input;
3377 struct hstate *h = kobj_to_hstate(kobj, NULL);
3378
3379 if (hstate_is_gigantic(h))
3380 return -EINVAL;
3381
3382 err = kstrtoul(buf, 10, &input);
3383 if (err)
3384 return err;
3385
3386 spin_lock_irq(&hugetlb_lock);
3387 h->nr_overcommit_huge_pages = input;
3388 spin_unlock_irq(&hugetlb_lock);
3389
3390 return count;
3391 }
3392 HSTATE_ATTR(nr_overcommit_hugepages);
3393
3394 static ssize_t free_hugepages_show(struct kobject *kobj,
3395 struct kobj_attribute *attr, char *buf)
3396 {
3397 struct hstate *h;
3398 unsigned long free_huge_pages;
3399 int nid;
3400
3401 h = kobj_to_hstate(kobj, &nid);
3402 if (nid == NUMA_NO_NODE)
3403 free_huge_pages = h->free_huge_pages;
3404 else
3405 free_huge_pages = h->free_huge_pages_node[nid];
3406
3407 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3408 }
3409 HSTATE_ATTR_RO(free_hugepages);
3410
3411 static ssize_t resv_hugepages_show(struct kobject *kobj,
3412 struct kobj_attribute *attr, char *buf)
3413 {
3414 struct hstate *h = kobj_to_hstate(kobj, NULL);
3415 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3416 }
3417 HSTATE_ATTR_RO(resv_hugepages);
3418
3419 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3420 struct kobj_attribute *attr, char *buf)
3421 {
3422 struct hstate *h;
3423 unsigned long surplus_huge_pages;
3424 int nid;
3425
3426 h = kobj_to_hstate(kobj, &nid);
3427 if (nid == NUMA_NO_NODE)
3428 surplus_huge_pages = h->surplus_huge_pages;
3429 else
3430 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3431
3432 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3433 }
3434 HSTATE_ATTR_RO(surplus_hugepages);
3435
3436 static struct attribute *hstate_attrs[] = {
3437 &nr_hugepages_attr.attr,
3438 &nr_overcommit_hugepages_attr.attr,
3439 &free_hugepages_attr.attr,
3440 &resv_hugepages_attr.attr,
3441 &surplus_hugepages_attr.attr,
3442 #ifdef CONFIG_NUMA
3443 &nr_hugepages_mempolicy_attr.attr,
3444 #endif
3445 NULL,
3446 };
3447
3448 static const struct attribute_group hstate_attr_group = {
3449 .attrs = hstate_attrs,
3450 };
3451
3452 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3453 struct kobject **hstate_kobjs,
3454 const struct attribute_group *hstate_attr_group)
3455 {
3456 int retval;
3457 int hi = hstate_index(h);
3458
3459 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3460 if (!hstate_kobjs[hi])
3461 return -ENOMEM;
3462
3463 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3464 if (retval) {
3465 kobject_put(hstate_kobjs[hi]);
3466 hstate_kobjs[hi] = NULL;
3467 }
3468
3469 return retval;
3470 }
3471
3472 static void __init hugetlb_sysfs_init(void)
3473 {
3474 struct hstate *h;
3475 int err;
3476
3477 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3478 if (!hugepages_kobj)
3479 return;
3480
3481 for_each_hstate(h) {
3482 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3483 hstate_kobjs, &hstate_attr_group);
3484 if (err)
3485 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3486 }
3487 }
3488
3489 #ifdef CONFIG_NUMA
3490
3491 /*
3492 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3493 * with node devices in node_devices[] using a parallel array. The array
3494 * index of a node device or _hstate == node id.
3495 * This is here to avoid any static dependency of the node device driver, in
3496 * the base kernel, on the hugetlb module.
3497 */
3498 struct node_hstate {
3499 struct kobject *hugepages_kobj;
3500 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3501 };
3502 static struct node_hstate node_hstates[MAX_NUMNODES];
3503
3504 /*
3505 * A subset of global hstate attributes for node devices
3506 */
3507 static struct attribute *per_node_hstate_attrs[] = {
3508 &nr_hugepages_attr.attr,
3509 &free_hugepages_attr.attr,
3510 &surplus_hugepages_attr.attr,
3511 NULL,
3512 };
3513
3514 static const struct attribute_group per_node_hstate_attr_group = {
3515 .attrs = per_node_hstate_attrs,
3516 };
3517
3518 /*
3519 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3520 * Returns node id via non-NULL nidp.
3521 */
3522 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3523 {
3524 int nid;
3525
3526 for (nid = 0; nid < nr_node_ids; nid++) {
3527 struct node_hstate *nhs = &node_hstates[nid];
3528 int i;
3529 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3530 if (nhs->hstate_kobjs[i] == kobj) {
3531 if (nidp)
3532 *nidp = nid;
3533 return &hstates[i];
3534 }
3535 }
3536
3537 BUG();
3538 return NULL;
3539 }
3540
3541 /*
3542 * Unregister hstate attributes from a single node device.
3543 * No-op if no hstate attributes attached.
3544 */
3545 static void hugetlb_unregister_node(struct node *node)
3546 {
3547 struct hstate *h;
3548 struct node_hstate *nhs = &node_hstates[node->dev.id];
3549
3550 if (!nhs->hugepages_kobj)
3551 return; /* no hstate attributes */
3552
3553 for_each_hstate(h) {
3554 int idx = hstate_index(h);
3555 if (nhs->hstate_kobjs[idx]) {
3556 kobject_put(nhs->hstate_kobjs[idx]);
3557 nhs->hstate_kobjs[idx] = NULL;
3558 }
3559 }
3560
3561 kobject_put(nhs->hugepages_kobj);
3562 nhs->hugepages_kobj = NULL;
3563 }
3564
3565
3566 /*
3567 * Register hstate attributes for a single node device.
3568 * No-op if attributes already registered.
3569 */
3570 static void hugetlb_register_node(struct node *node)
3571 {
3572 struct hstate *h;
3573 struct node_hstate *nhs = &node_hstates[node->dev.id];
3574 int err;
3575
3576 if (nhs->hugepages_kobj)
3577 return; /* already allocated */
3578
3579 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3580 &node->dev.kobj);
3581 if (!nhs->hugepages_kobj)
3582 return;
3583
3584 for_each_hstate(h) {
3585 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3586 nhs->hstate_kobjs,
3587 &per_node_hstate_attr_group);
3588 if (err) {
3589 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3590 h->name, node->dev.id);
3591 hugetlb_unregister_node(node);
3592 break;
3593 }
3594 }
3595 }
3596
3597 /*
3598 * hugetlb init time: register hstate attributes for all registered node
3599 * devices of nodes that have memory. All on-line nodes should have
3600 * registered their associated device by this time.
3601 */
3602 static void __init hugetlb_register_all_nodes(void)
3603 {
3604 int nid;
3605
3606 for_each_node_state(nid, N_MEMORY) {
3607 struct node *node = node_devices[nid];
3608 if (node->dev.id == nid)
3609 hugetlb_register_node(node);
3610 }
3611
3612 /*
3613 * Let the node device driver know we're here so it can
3614 * [un]register hstate attributes on node hotplug.
3615 */
3616 register_hugetlbfs_with_node(hugetlb_register_node,
3617 hugetlb_unregister_node);
3618 }
3619 #else /* !CONFIG_NUMA */
3620
3621 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3622 {
3623 BUG();
3624 if (nidp)
3625 *nidp = -1;
3626 return NULL;
3627 }
3628
3629 static void hugetlb_register_all_nodes(void) { }
3630
3631 #endif
3632
3633 static int __init hugetlb_init(void)
3634 {
3635 int i;
3636
3637 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3638 __NR_HPAGEFLAGS);
3639
3640 if (!hugepages_supported()) {
3641 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3642 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3643 return 0;
3644 }
3645
3646 /*
3647 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3648 * architectures depend on setup being done here.
3649 */
3650 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3651 if (!parsed_default_hugepagesz) {
3652 /*
3653 * If we did not parse a default huge page size, set
3654 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3655 * number of huge pages for this default size was implicitly
3656 * specified, set that here as well.
3657 * Note that the implicit setting will overwrite an explicit
3658 * setting. A warning will be printed in this case.
3659 */
3660 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3661 if (default_hstate_max_huge_pages) {
3662 if (default_hstate.max_huge_pages) {
3663 char buf[32];
3664
3665 string_get_size(huge_page_size(&default_hstate),
3666 1, STRING_UNITS_2, buf, 32);
3667 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3668 default_hstate.max_huge_pages, buf);
3669 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3670 default_hstate_max_huge_pages);
3671 }
3672 default_hstate.max_huge_pages =
3673 default_hstate_max_huge_pages;
3674 }
3675 }
3676
3677 hugetlb_cma_check();
3678 hugetlb_init_hstates();
3679 gather_bootmem_prealloc();
3680 report_hugepages();
3681
3682 hugetlb_sysfs_init();
3683 hugetlb_register_all_nodes();
3684 hugetlb_cgroup_file_init();
3685
3686 #ifdef CONFIG_SMP
3687 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3688 #else
3689 num_fault_mutexes = 1;
3690 #endif
3691 hugetlb_fault_mutex_table =
3692 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3693 GFP_KERNEL);
3694 BUG_ON(!hugetlb_fault_mutex_table);
3695
3696 for (i = 0; i < num_fault_mutexes; i++)
3697 mutex_init(&hugetlb_fault_mutex_table[i]);
3698 return 0;
3699 }
3700 subsys_initcall(hugetlb_init);
3701
3702 /* Overwritten by architectures with more huge page sizes */
3703 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3704 {
3705 return size == HPAGE_SIZE;
3706 }
3707
3708 void __init hugetlb_add_hstate(unsigned int order)
3709 {
3710 struct hstate *h;
3711 unsigned long i;
3712
3713 if (size_to_hstate(PAGE_SIZE << order)) {
3714 return;
3715 }
3716 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3717 BUG_ON(order == 0);
3718 h = &hstates[hugetlb_max_hstate++];
3719 mutex_init(&h->resize_lock);
3720 h->order = order;
3721 h->mask = ~(huge_page_size(h) - 1);
3722 for (i = 0; i < MAX_NUMNODES; ++i)
3723 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3724 INIT_LIST_HEAD(&h->hugepage_activelist);
3725 h->next_nid_to_alloc = first_memory_node;
3726 h->next_nid_to_free = first_memory_node;
3727 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3728 huge_page_size(h)/1024);
3729 hugetlb_vmemmap_init(h);
3730
3731 parsed_hstate = h;
3732 }
3733
3734 /*
3735 * hugepages command line processing
3736 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3737 * specification. If not, ignore the hugepages value. hugepages can also
3738 * be the first huge page command line option in which case it implicitly
3739 * specifies the number of huge pages for the default size.
3740 */
3741 static int __init hugepages_setup(char *s)
3742 {
3743 unsigned long *mhp;
3744 static unsigned long *last_mhp;
3745
3746 if (!parsed_valid_hugepagesz) {
3747 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3748 parsed_valid_hugepagesz = true;
3749 return 0;
3750 }
3751
3752 /*
3753 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3754 * yet, so this hugepages= parameter goes to the "default hstate".
3755 * Otherwise, it goes with the previously parsed hugepagesz or
3756 * default_hugepagesz.
3757 */
3758 else if (!hugetlb_max_hstate)
3759 mhp = &default_hstate_max_huge_pages;
3760 else
3761 mhp = &parsed_hstate->max_huge_pages;
3762
3763 if (mhp == last_mhp) {
3764 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3765 return 0;
3766 }
3767
3768 if (sscanf(s, "%lu", mhp) <= 0)
3769 *mhp = 0;
3770
3771 /*
3772 * Global state is always initialized later in hugetlb_init.
3773 * But we need to allocate gigantic hstates here early to still
3774 * use the bootmem allocator.
3775 */
3776 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3777 hugetlb_hstate_alloc_pages(parsed_hstate);
3778
3779 last_mhp = mhp;
3780
3781 return 1;
3782 }
3783 __setup("hugepages=", hugepages_setup);
3784
3785 /*
3786 * hugepagesz command line processing
3787 * A specific huge page size can only be specified once with hugepagesz.
3788 * hugepagesz is followed by hugepages on the command line. The global
3789 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3790 * hugepagesz argument was valid.
3791 */
3792 static int __init hugepagesz_setup(char *s)
3793 {
3794 unsigned long size;
3795 struct hstate *h;
3796
3797 parsed_valid_hugepagesz = false;
3798 size = (unsigned long)memparse(s, NULL);
3799
3800 if (!arch_hugetlb_valid_size(size)) {
3801 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3802 return 0;
3803 }
3804
3805 h = size_to_hstate(size);
3806 if (h) {
3807 /*
3808 * hstate for this size already exists. This is normally
3809 * an error, but is allowed if the existing hstate is the
3810 * default hstate. More specifically, it is only allowed if
3811 * the number of huge pages for the default hstate was not
3812 * previously specified.
3813 */
3814 if (!parsed_default_hugepagesz || h != &default_hstate ||
3815 default_hstate.max_huge_pages) {
3816 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3817 return 0;
3818 }
3819
3820 /*
3821 * No need to call hugetlb_add_hstate() as hstate already
3822 * exists. But, do set parsed_hstate so that a following
3823 * hugepages= parameter will be applied to this hstate.
3824 */
3825 parsed_hstate = h;
3826 parsed_valid_hugepagesz = true;
3827 return 1;
3828 }
3829
3830 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3831 parsed_valid_hugepagesz = true;
3832 return 1;
3833 }
3834 __setup("hugepagesz=", hugepagesz_setup);
3835
3836 /*
3837 * default_hugepagesz command line input
3838 * Only one instance of default_hugepagesz allowed on command line.
3839 */
3840 static int __init default_hugepagesz_setup(char *s)
3841 {
3842 unsigned long size;
3843
3844 parsed_valid_hugepagesz = false;
3845 if (parsed_default_hugepagesz) {
3846 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3847 return 0;
3848 }
3849
3850 size = (unsigned long)memparse(s, NULL);
3851
3852 if (!arch_hugetlb_valid_size(size)) {
3853 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3854 return 0;
3855 }
3856
3857 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3858 parsed_valid_hugepagesz = true;
3859 parsed_default_hugepagesz = true;
3860 default_hstate_idx = hstate_index(size_to_hstate(size));
3861
3862 /*
3863 * The number of default huge pages (for this size) could have been
3864 * specified as the first hugetlb parameter: hugepages=X. If so,
3865 * then default_hstate_max_huge_pages is set. If the default huge
3866 * page size is gigantic (>= MAX_ORDER), then the pages must be
3867 * allocated here from bootmem allocator.
3868 */
3869 if (default_hstate_max_huge_pages) {
3870 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3871 if (hstate_is_gigantic(&default_hstate))
3872 hugetlb_hstate_alloc_pages(&default_hstate);
3873 default_hstate_max_huge_pages = 0;
3874 }
3875
3876 return 1;
3877 }
3878 __setup("default_hugepagesz=", default_hugepagesz_setup);
3879
3880 static unsigned int allowed_mems_nr(struct hstate *h)
3881 {
3882 int node;
3883 unsigned int nr = 0;
3884 nodemask_t *mpol_allowed;
3885 unsigned int *array = h->free_huge_pages_node;
3886 gfp_t gfp_mask = htlb_alloc_mask(h);
3887
3888 mpol_allowed = policy_nodemask_current(gfp_mask);
3889
3890 for_each_node_mask(node, cpuset_current_mems_allowed) {
3891 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3892 nr += array[node];
3893 }
3894
3895 return nr;
3896 }
3897
3898 #ifdef CONFIG_SYSCTL
3899 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3900 void *buffer, size_t *length,
3901 loff_t *ppos, unsigned long *out)
3902 {
3903 struct ctl_table dup_table;
3904
3905 /*
3906 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3907 * can duplicate the @table and alter the duplicate of it.
3908 */
3909 dup_table = *table;
3910 dup_table.data = out;
3911
3912 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3913 }
3914
3915 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3916 struct ctl_table *table, int write,
3917 void *buffer, size_t *length, loff_t *ppos)
3918 {
3919 struct hstate *h = &default_hstate;
3920 unsigned long tmp = h->max_huge_pages;
3921 int ret;
3922
3923 if (!hugepages_supported())
3924 return -EOPNOTSUPP;
3925
3926 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3927 &tmp);
3928 if (ret)
3929 goto out;
3930
3931 if (write)
3932 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3933 NUMA_NO_NODE, tmp, *length);
3934 out:
3935 return ret;
3936 }
3937
3938 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3939 void *buffer, size_t *length, loff_t *ppos)
3940 {
3941
3942 return hugetlb_sysctl_handler_common(false, table, write,
3943 buffer, length, ppos);
3944 }
3945
3946 #ifdef CONFIG_NUMA
3947 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3948 void *buffer, size_t *length, loff_t *ppos)
3949 {
3950 return hugetlb_sysctl_handler_common(true, table, write,
3951 buffer, length, ppos);
3952 }
3953 #endif /* CONFIG_NUMA */
3954
3955 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3956 void *buffer, size_t *length, loff_t *ppos)
3957 {
3958 struct hstate *h = &default_hstate;
3959 unsigned long tmp;
3960 int ret;
3961
3962 if (!hugepages_supported())
3963 return -EOPNOTSUPP;
3964
3965 tmp = h->nr_overcommit_huge_pages;
3966
3967 if (write && hstate_is_gigantic(h))
3968 return -EINVAL;
3969
3970 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3971 &tmp);
3972 if (ret)
3973 goto out;
3974
3975 if (write) {
3976 spin_lock_irq(&hugetlb_lock);
3977 h->nr_overcommit_huge_pages = tmp;
3978 spin_unlock_irq(&hugetlb_lock);
3979 }
3980 out:
3981 return ret;
3982 }
3983
3984 #endif /* CONFIG_SYSCTL */
3985
3986 void hugetlb_report_meminfo(struct seq_file *m)
3987 {
3988 struct hstate *h;
3989 unsigned long total = 0;
3990
3991 if (!hugepages_supported())
3992 return;
3993
3994 for_each_hstate(h) {
3995 unsigned long count = h->nr_huge_pages;
3996
3997 total += huge_page_size(h) * count;
3998
3999 if (h == &default_hstate)
4000 seq_printf(m,
4001 "HugePages_Total: %5lu\n"
4002 "HugePages_Free: %5lu\n"
4003 "HugePages_Rsvd: %5lu\n"
4004 "HugePages_Surp: %5lu\n"
4005 "Hugepagesize: %8lu kB\n",
4006 count,
4007 h->free_huge_pages,
4008 h->resv_huge_pages,
4009 h->surplus_huge_pages,
4010 huge_page_size(h) / SZ_1K);
4011 }
4012
4013 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4014 }
4015
4016 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4017 {
4018 struct hstate *h = &default_hstate;
4019
4020 if (!hugepages_supported())
4021 return 0;
4022
4023 return sysfs_emit_at(buf, len,
4024 "Node %d HugePages_Total: %5u\n"
4025 "Node %d HugePages_Free: %5u\n"
4026 "Node %d HugePages_Surp: %5u\n",
4027 nid, h->nr_huge_pages_node[nid],
4028 nid, h->free_huge_pages_node[nid],
4029 nid, h->surplus_huge_pages_node[nid]);
4030 }
4031
4032 void hugetlb_show_meminfo(void)
4033 {
4034 struct hstate *h;
4035 int nid;
4036
4037 if (!hugepages_supported())
4038 return;
4039
4040 for_each_node_state(nid, N_MEMORY)
4041 for_each_hstate(h)
4042 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4043 nid,
4044 h->nr_huge_pages_node[nid],
4045 h->free_huge_pages_node[nid],
4046 h->surplus_huge_pages_node[nid],
4047 huge_page_size(h) / SZ_1K);
4048 }
4049
4050 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4051 {
4052 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4053 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4054 }
4055
4056 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4057 unsigned long hugetlb_total_pages(void)
4058 {
4059 struct hstate *h;
4060 unsigned long nr_total_pages = 0;
4061
4062 for_each_hstate(h)
4063 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4064 return nr_total_pages;
4065 }
4066
4067 static int hugetlb_acct_memory(struct hstate *h, long delta)
4068 {
4069 int ret = -ENOMEM;
4070
4071 if (!delta)
4072 return 0;
4073
4074 spin_lock_irq(&hugetlb_lock);
4075 /*
4076 * When cpuset is configured, it breaks the strict hugetlb page
4077 * reservation as the accounting is done on a global variable. Such
4078 * reservation is completely rubbish in the presence of cpuset because
4079 * the reservation is not checked against page availability for the
4080 * current cpuset. Application can still potentially OOM'ed by kernel
4081 * with lack of free htlb page in cpuset that the task is in.
4082 * Attempt to enforce strict accounting with cpuset is almost
4083 * impossible (or too ugly) because cpuset is too fluid that
4084 * task or memory node can be dynamically moved between cpusets.
4085 *
4086 * The change of semantics for shared hugetlb mapping with cpuset is
4087 * undesirable. However, in order to preserve some of the semantics,
4088 * we fall back to check against current free page availability as
4089 * a best attempt and hopefully to minimize the impact of changing
4090 * semantics that cpuset has.
4091 *
4092 * Apart from cpuset, we also have memory policy mechanism that
4093 * also determines from which node the kernel will allocate memory
4094 * in a NUMA system. So similar to cpuset, we also should consider
4095 * the memory policy of the current task. Similar to the description
4096 * above.
4097 */
4098 if (delta > 0) {
4099 if (gather_surplus_pages(h, delta) < 0)
4100 goto out;
4101
4102 if (delta > allowed_mems_nr(h)) {
4103 return_unused_surplus_pages(h, delta);
4104 goto out;
4105 }
4106 }
4107
4108 ret = 0;
4109 if (delta < 0)
4110 return_unused_surplus_pages(h, (unsigned long) -delta);
4111
4112 out:
4113 spin_unlock_irq(&hugetlb_lock);
4114 return ret;
4115 }
4116
4117 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4118 {
4119 struct resv_map *resv = vma_resv_map(vma);
4120
4121 /*
4122 * This new VMA should share its siblings reservation map if present.
4123 * The VMA will only ever have a valid reservation map pointer where
4124 * it is being copied for another still existing VMA. As that VMA
4125 * has a reference to the reservation map it cannot disappear until
4126 * after this open call completes. It is therefore safe to take a
4127 * new reference here without additional locking.
4128 */
4129 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4130 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4131 kref_get(&resv->refs);
4132 }
4133 }
4134
4135 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4136 {
4137 struct hstate *h = hstate_vma(vma);
4138 struct resv_map *resv = vma_resv_map(vma);
4139 struct hugepage_subpool *spool = subpool_vma(vma);
4140 unsigned long reserve, start, end;
4141 long gbl_reserve;
4142
4143 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4144 return;
4145
4146 start = vma_hugecache_offset(h, vma, vma->vm_start);
4147 end = vma_hugecache_offset(h, vma, vma->vm_end);
4148
4149 reserve = (end - start) - region_count(resv, start, end);
4150 hugetlb_cgroup_uncharge_counter(resv, start, end);
4151 if (reserve) {
4152 /*
4153 * Decrement reserve counts. The global reserve count may be
4154 * adjusted if the subpool has a minimum size.
4155 */
4156 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4157 hugetlb_acct_memory(h, -gbl_reserve);
4158 }
4159
4160 kref_put(&resv->refs, resv_map_release);
4161 }
4162
4163 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4164 {
4165 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4166 return -EINVAL;
4167 return 0;
4168 }
4169
4170 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4171 {
4172 return huge_page_size(hstate_vma(vma));
4173 }
4174
4175 /*
4176 * We cannot handle pagefaults against hugetlb pages at all. They cause
4177 * handle_mm_fault() to try to instantiate regular-sized pages in the
4178 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4179 * this far.
4180 */
4181 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4182 {
4183 BUG();
4184 return 0;
4185 }
4186
4187 /*
4188 * When a new function is introduced to vm_operations_struct and added
4189 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4190 * This is because under System V memory model, mappings created via
4191 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4192 * their original vm_ops are overwritten with shm_vm_ops.
4193 */
4194 const struct vm_operations_struct hugetlb_vm_ops = {
4195 .fault = hugetlb_vm_op_fault,
4196 .open = hugetlb_vm_op_open,
4197 .close = hugetlb_vm_op_close,
4198 .may_split = hugetlb_vm_op_split,
4199 .pagesize = hugetlb_vm_op_pagesize,
4200 };
4201
4202 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4203 int writable)
4204 {
4205 pte_t entry;
4206 unsigned int shift = huge_page_shift(hstate_vma(vma));
4207
4208 if (writable) {
4209 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4210 vma->vm_page_prot)));
4211 } else {
4212 entry = huge_pte_wrprotect(mk_huge_pte(page,
4213 vma->vm_page_prot));
4214 }
4215 entry = pte_mkyoung(entry);
4216 entry = pte_mkhuge(entry);
4217 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4218
4219 return entry;
4220 }
4221
4222 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4223 unsigned long address, pte_t *ptep)
4224 {
4225 pte_t entry;
4226
4227 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4228 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4229 update_mmu_cache(vma, address, ptep);
4230 }
4231
4232 bool is_hugetlb_entry_migration(pte_t pte)
4233 {
4234 swp_entry_t swp;
4235
4236 if (huge_pte_none(pte) || pte_present(pte))
4237 return false;
4238 swp = pte_to_swp_entry(pte);
4239 if (is_migration_entry(swp))
4240 return true;
4241 else
4242 return false;
4243 }
4244
4245 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4246 {
4247 swp_entry_t swp;
4248
4249 if (huge_pte_none(pte) || pte_present(pte))
4250 return false;
4251 swp = pte_to_swp_entry(pte);
4252 if (is_hwpoison_entry(swp))
4253 return true;
4254 else
4255 return false;
4256 }
4257
4258 static void
4259 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4260 struct page *new_page)
4261 {
4262 __SetPageUptodate(new_page);
4263 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4264 hugepage_add_new_anon_rmap(new_page, vma, addr);
4265 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4266 ClearHPageRestoreReserve(new_page);
4267 SetHPageMigratable(new_page);
4268 }
4269
4270 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4271 struct vm_area_struct *vma)
4272 {
4273 pte_t *src_pte, *dst_pte, entry, dst_entry;
4274 struct page *ptepage;
4275 unsigned long addr;
4276 bool cow = is_cow_mapping(vma->vm_flags);
4277 struct hstate *h = hstate_vma(vma);
4278 unsigned long sz = huge_page_size(h);
4279 unsigned long npages = pages_per_huge_page(h);
4280 struct address_space *mapping = vma->vm_file->f_mapping;
4281 struct mmu_notifier_range range;
4282 int ret = 0;
4283
4284 if (cow) {
4285 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4286 vma->vm_start,
4287 vma->vm_end);
4288 mmu_notifier_invalidate_range_start(&range);
4289 } else {
4290 /*
4291 * For shared mappings i_mmap_rwsem must be held to call
4292 * huge_pte_alloc, otherwise the returned ptep could go
4293 * away if part of a shared pmd and another thread calls
4294 * huge_pmd_unshare.
4295 */
4296 i_mmap_lock_read(mapping);
4297 }
4298
4299 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4300 spinlock_t *src_ptl, *dst_ptl;
4301 src_pte = huge_pte_offset(src, addr, sz);
4302 if (!src_pte)
4303 continue;
4304 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4305 if (!dst_pte) {
4306 ret = -ENOMEM;
4307 break;
4308 }
4309
4310 /*
4311 * If the pagetables are shared don't copy or take references.
4312 * dst_pte == src_pte is the common case of src/dest sharing.
4313 *
4314 * However, src could have 'unshared' and dst shares with
4315 * another vma. If dst_pte !none, this implies sharing.
4316 * Check here before taking page table lock, and once again
4317 * after taking the lock below.
4318 */
4319 dst_entry = huge_ptep_get(dst_pte);
4320 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4321 continue;
4322
4323 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4324 src_ptl = huge_pte_lockptr(h, src, src_pte);
4325 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4326 entry = huge_ptep_get(src_pte);
4327 dst_entry = huge_ptep_get(dst_pte);
4328 again:
4329 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4330 /*
4331 * Skip if src entry none. Also, skip in the
4332 * unlikely case dst entry !none as this implies
4333 * sharing with another vma.
4334 */
4335 ;
4336 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4337 is_hugetlb_entry_hwpoisoned(entry))) {
4338 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4339
4340 if (is_writable_migration_entry(swp_entry) && cow) {
4341 /*
4342 * COW mappings require pages in both
4343 * parent and child to be set to read.
4344 */
4345 swp_entry = make_readable_migration_entry(
4346 swp_offset(swp_entry));
4347 entry = swp_entry_to_pte(swp_entry);
4348 set_huge_swap_pte_at(src, addr, src_pte,
4349 entry, sz);
4350 }
4351 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4352 } else {
4353 entry = huge_ptep_get(src_pte);
4354 ptepage = pte_page(entry);
4355 get_page(ptepage);
4356
4357 /*
4358 * This is a rare case where we see pinned hugetlb
4359 * pages while they're prone to COW. We need to do the
4360 * COW earlier during fork.
4361 *
4362 * When pre-allocating the page or copying data, we
4363 * need to be without the pgtable locks since we could
4364 * sleep during the process.
4365 */
4366 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4367 pte_t src_pte_old = entry;
4368 struct page *new;
4369
4370 spin_unlock(src_ptl);
4371 spin_unlock(dst_ptl);
4372 /* Do not use reserve as it's private owned */
4373 new = alloc_huge_page(vma, addr, 1);
4374 if (IS_ERR(new)) {
4375 put_page(ptepage);
4376 ret = PTR_ERR(new);
4377 break;
4378 }
4379 copy_user_huge_page(new, ptepage, addr, vma,
4380 npages);
4381 put_page(ptepage);
4382
4383 /* Install the new huge page if src pte stable */
4384 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4385 src_ptl = huge_pte_lockptr(h, src, src_pte);
4386 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4387 entry = huge_ptep_get(src_pte);
4388 if (!pte_same(src_pte_old, entry)) {
4389 restore_reserve_on_error(h, vma, addr,
4390 new);
4391 put_page(new);
4392 /* dst_entry won't change as in child */
4393 goto again;
4394 }
4395 hugetlb_install_page(vma, dst_pte, addr, new);
4396 spin_unlock(src_ptl);
4397 spin_unlock(dst_ptl);
4398 continue;
4399 }
4400
4401 if (cow) {
4402 /*
4403 * No need to notify as we are downgrading page
4404 * table protection not changing it to point
4405 * to a new page.
4406 *
4407 * See Documentation/vm/mmu_notifier.rst
4408 */
4409 huge_ptep_set_wrprotect(src, addr, src_pte);
4410 entry = huge_pte_wrprotect(entry);
4411 }
4412
4413 page_dup_rmap(ptepage, true);
4414 set_huge_pte_at(dst, addr, dst_pte, entry);
4415 hugetlb_count_add(npages, dst);
4416 }
4417 spin_unlock(src_ptl);
4418 spin_unlock(dst_ptl);
4419 }
4420
4421 if (cow)
4422 mmu_notifier_invalidate_range_end(&range);
4423 else
4424 i_mmap_unlock_read(mapping);
4425
4426 return ret;
4427 }
4428
4429 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4430 unsigned long start, unsigned long end,
4431 struct page *ref_page)
4432 {
4433 struct mm_struct *mm = vma->vm_mm;
4434 unsigned long address;
4435 pte_t *ptep;
4436 pte_t pte;
4437 spinlock_t *ptl;
4438 struct page *page;
4439 struct hstate *h = hstate_vma(vma);
4440 unsigned long sz = huge_page_size(h);
4441 struct mmu_notifier_range range;
4442 bool force_flush = false;
4443
4444 WARN_ON(!is_vm_hugetlb_page(vma));
4445 BUG_ON(start & ~huge_page_mask(h));
4446 BUG_ON(end & ~huge_page_mask(h));
4447
4448 /*
4449 * This is a hugetlb vma, all the pte entries should point
4450 * to huge page.
4451 */
4452 tlb_change_page_size(tlb, sz);
4453 tlb_start_vma(tlb, vma);
4454
4455 /*
4456 * If sharing possible, alert mmu notifiers of worst case.
4457 */
4458 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4459 end);
4460 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4461 mmu_notifier_invalidate_range_start(&range);
4462 address = start;
4463 for (; address < end; address += sz) {
4464 ptep = huge_pte_offset(mm, address, sz);
4465 if (!ptep)
4466 continue;
4467
4468 ptl = huge_pte_lock(h, mm, ptep);
4469 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4470 spin_unlock(ptl);
4471 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4472 force_flush = true;
4473 continue;
4474 }
4475
4476 pte = huge_ptep_get(ptep);
4477 if (huge_pte_none(pte)) {
4478 spin_unlock(ptl);
4479 continue;
4480 }
4481
4482 /*
4483 * Migrating hugepage or HWPoisoned hugepage is already
4484 * unmapped and its refcount is dropped, so just clear pte here.
4485 */
4486 if (unlikely(!pte_present(pte))) {
4487 huge_pte_clear(mm, address, ptep, sz);
4488 spin_unlock(ptl);
4489 continue;
4490 }
4491
4492 page = pte_page(pte);
4493 /*
4494 * If a reference page is supplied, it is because a specific
4495 * page is being unmapped, not a range. Ensure the page we
4496 * are about to unmap is the actual page of interest.
4497 */
4498 if (ref_page) {
4499 if (page != ref_page) {
4500 spin_unlock(ptl);
4501 continue;
4502 }
4503 /*
4504 * Mark the VMA as having unmapped its page so that
4505 * future faults in this VMA will fail rather than
4506 * looking like data was lost
4507 */
4508 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4509 }
4510
4511 pte = huge_ptep_get_and_clear(mm, address, ptep);
4512 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4513 if (huge_pte_dirty(pte))
4514 set_page_dirty(page);
4515
4516 hugetlb_count_sub(pages_per_huge_page(h), mm);
4517 page_remove_rmap(page, true);
4518
4519 spin_unlock(ptl);
4520 tlb_remove_page_size(tlb, page, huge_page_size(h));
4521 /*
4522 * Bail out after unmapping reference page if supplied
4523 */
4524 if (ref_page)
4525 break;
4526 }
4527 mmu_notifier_invalidate_range_end(&range);
4528 tlb_end_vma(tlb, vma);
4529
4530 /*
4531 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4532 * could defer the flush until now, since by holding i_mmap_rwsem we
4533 * guaranteed that the last refernece would not be dropped. But we must
4534 * do the flushing before we return, as otherwise i_mmap_rwsem will be
4535 * dropped and the last reference to the shared PMDs page might be
4536 * dropped as well.
4537 *
4538 * In theory we could defer the freeing of the PMD pages as well, but
4539 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4540 * detect sharing, so we cannot defer the release of the page either.
4541 * Instead, do flush now.
4542 */
4543 if (force_flush)
4544 tlb_flush_mmu_tlbonly(tlb);
4545 }
4546
4547 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4548 struct vm_area_struct *vma, unsigned long start,
4549 unsigned long end, struct page *ref_page)
4550 {
4551 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4552
4553 /*
4554 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4555 * test will fail on a vma being torn down, and not grab a page table
4556 * on its way out. We're lucky that the flag has such an appropriate
4557 * name, and can in fact be safely cleared here. We could clear it
4558 * before the __unmap_hugepage_range above, but all that's necessary
4559 * is to clear it before releasing the i_mmap_rwsem. This works
4560 * because in the context this is called, the VMA is about to be
4561 * destroyed and the i_mmap_rwsem is held.
4562 */
4563 vma->vm_flags &= ~VM_MAYSHARE;
4564 }
4565
4566 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4567 unsigned long end, struct page *ref_page)
4568 {
4569 struct mmu_gather tlb;
4570
4571 tlb_gather_mmu(&tlb, vma->vm_mm);
4572 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4573 tlb_finish_mmu(&tlb);
4574 }
4575
4576 /*
4577 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4578 * mapping it owns the reserve page for. The intention is to unmap the page
4579 * from other VMAs and let the children be SIGKILLed if they are faulting the
4580 * same region.
4581 */
4582 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4583 struct page *page, unsigned long address)
4584 {
4585 struct hstate *h = hstate_vma(vma);
4586 struct vm_area_struct *iter_vma;
4587 struct address_space *mapping;
4588 pgoff_t pgoff;
4589
4590 /*
4591 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4592 * from page cache lookup which is in HPAGE_SIZE units.
4593 */
4594 address = address & huge_page_mask(h);
4595 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4596 vma->vm_pgoff;
4597 mapping = vma->vm_file->f_mapping;
4598
4599 /*
4600 * Take the mapping lock for the duration of the table walk. As
4601 * this mapping should be shared between all the VMAs,
4602 * __unmap_hugepage_range() is called as the lock is already held
4603 */
4604 i_mmap_lock_write(mapping);
4605 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4606 /* Do not unmap the current VMA */
4607 if (iter_vma == vma)
4608 continue;
4609
4610 /*
4611 * Shared VMAs have their own reserves and do not affect
4612 * MAP_PRIVATE accounting but it is possible that a shared
4613 * VMA is using the same page so check and skip such VMAs.
4614 */
4615 if (iter_vma->vm_flags & VM_MAYSHARE)
4616 continue;
4617
4618 /*
4619 * Unmap the page from other VMAs without their own reserves.
4620 * They get marked to be SIGKILLed if they fault in these
4621 * areas. This is because a future no-page fault on this VMA
4622 * could insert a zeroed page instead of the data existing
4623 * from the time of fork. This would look like data corruption
4624 */
4625 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4626 unmap_hugepage_range(iter_vma, address,
4627 address + huge_page_size(h), page);
4628 }
4629 i_mmap_unlock_write(mapping);
4630 }
4631
4632 /*
4633 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4634 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4635 * cannot race with other handlers or page migration.
4636 * Keep the pte_same checks anyway to make transition from the mutex easier.
4637 */
4638 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4639 unsigned long address, pte_t *ptep,
4640 struct page *pagecache_page, spinlock_t *ptl)
4641 {
4642 pte_t pte;
4643 struct hstate *h = hstate_vma(vma);
4644 struct page *old_page, *new_page;
4645 int outside_reserve = 0;
4646 vm_fault_t ret = 0;
4647 unsigned long haddr = address & huge_page_mask(h);
4648 struct mmu_notifier_range range;
4649
4650 pte = huge_ptep_get(ptep);
4651 old_page = pte_page(pte);
4652
4653 retry_avoidcopy:
4654 /* If no-one else is actually using this page, avoid the copy
4655 * and just make the page writable */
4656 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4657 page_move_anon_rmap(old_page, vma);
4658 set_huge_ptep_writable(vma, haddr, ptep);
4659 return 0;
4660 }
4661
4662 /*
4663 * If the process that created a MAP_PRIVATE mapping is about to
4664 * perform a COW due to a shared page count, attempt to satisfy
4665 * the allocation without using the existing reserves. The pagecache
4666 * page is used to determine if the reserve at this address was
4667 * consumed or not. If reserves were used, a partial faulted mapping
4668 * at the time of fork() could consume its reserves on COW instead
4669 * of the full address range.
4670 */
4671 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4672 old_page != pagecache_page)
4673 outside_reserve = 1;
4674
4675 get_page(old_page);
4676
4677 /*
4678 * Drop page table lock as buddy allocator may be called. It will
4679 * be acquired again before returning to the caller, as expected.
4680 */
4681 spin_unlock(ptl);
4682 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4683
4684 if (IS_ERR(new_page)) {
4685 /*
4686 * If a process owning a MAP_PRIVATE mapping fails to COW,
4687 * it is due to references held by a child and an insufficient
4688 * huge page pool. To guarantee the original mappers
4689 * reliability, unmap the page from child processes. The child
4690 * may get SIGKILLed if it later faults.
4691 */
4692 if (outside_reserve) {
4693 struct address_space *mapping = vma->vm_file->f_mapping;
4694 pgoff_t idx;
4695 u32 hash;
4696
4697 put_page(old_page);
4698 BUG_ON(huge_pte_none(pte));
4699 /*
4700 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4701 * unmapping. unmapping needs to hold i_mmap_rwsem
4702 * in write mode. Dropping i_mmap_rwsem in read mode
4703 * here is OK as COW mappings do not interact with
4704 * PMD sharing.
4705 *
4706 * Reacquire both after unmap operation.
4707 */
4708 idx = vma_hugecache_offset(h, vma, haddr);
4709 hash = hugetlb_fault_mutex_hash(mapping, idx);
4710 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4711 i_mmap_unlock_read(mapping);
4712
4713 unmap_ref_private(mm, vma, old_page, haddr);
4714
4715 i_mmap_lock_read(mapping);
4716 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4717 spin_lock(ptl);
4718 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4719 if (likely(ptep &&
4720 pte_same(huge_ptep_get(ptep), pte)))
4721 goto retry_avoidcopy;
4722 /*
4723 * race occurs while re-acquiring page table
4724 * lock, and our job is done.
4725 */
4726 return 0;
4727 }
4728
4729 ret = vmf_error(PTR_ERR(new_page));
4730 goto out_release_old;
4731 }
4732
4733 /*
4734 * When the original hugepage is shared one, it does not have
4735 * anon_vma prepared.
4736 */
4737 if (unlikely(anon_vma_prepare(vma))) {
4738 ret = VM_FAULT_OOM;
4739 goto out_release_all;
4740 }
4741
4742 copy_user_huge_page(new_page, old_page, address, vma,
4743 pages_per_huge_page(h));
4744 __SetPageUptodate(new_page);
4745
4746 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4747 haddr + huge_page_size(h));
4748 mmu_notifier_invalidate_range_start(&range);
4749
4750 /*
4751 * Retake the page table lock to check for racing updates
4752 * before the page tables are altered
4753 */
4754 spin_lock(ptl);
4755 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4756 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4757 ClearHPageRestoreReserve(new_page);
4758
4759 /* Break COW */
4760 huge_ptep_clear_flush(vma, haddr, ptep);
4761 mmu_notifier_invalidate_range(mm, range.start, range.end);
4762 set_huge_pte_at(mm, haddr, ptep,
4763 make_huge_pte(vma, new_page, 1));
4764 page_remove_rmap(old_page, true);
4765 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4766 SetHPageMigratable(new_page);
4767 /* Make the old page be freed below */
4768 new_page = old_page;
4769 }
4770 spin_unlock(ptl);
4771 mmu_notifier_invalidate_range_end(&range);
4772 out_release_all:
4773 /* No restore in case of successful pagetable update (Break COW) */
4774 if (new_page != old_page)
4775 restore_reserve_on_error(h, vma, haddr, new_page);
4776 put_page(new_page);
4777 out_release_old:
4778 put_page(old_page);
4779
4780 spin_lock(ptl); /* Caller expects lock to be held */
4781 return ret;
4782 }
4783
4784 /* Return the pagecache page at a given address within a VMA */
4785 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4786 struct vm_area_struct *vma, unsigned long address)
4787 {
4788 struct address_space *mapping;
4789 pgoff_t idx;
4790
4791 mapping = vma->vm_file->f_mapping;
4792 idx = vma_hugecache_offset(h, vma, address);
4793
4794 return find_lock_page(mapping, idx);
4795 }
4796
4797 /*
4798 * Return whether there is a pagecache page to back given address within VMA.
4799 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4800 */
4801 static bool hugetlbfs_pagecache_present(struct hstate *h,
4802 struct vm_area_struct *vma, unsigned long address)
4803 {
4804 struct address_space *mapping;
4805 pgoff_t idx;
4806 struct page *page;
4807
4808 mapping = vma->vm_file->f_mapping;
4809 idx = vma_hugecache_offset(h, vma, address);
4810
4811 page = find_get_page(mapping, idx);
4812 if (page)
4813 put_page(page);
4814 return page != NULL;
4815 }
4816
4817 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4818 pgoff_t idx)
4819 {
4820 struct inode *inode = mapping->host;
4821 struct hstate *h = hstate_inode(inode);
4822 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4823
4824 if (err)
4825 return err;
4826 ClearHPageRestoreReserve(page);
4827
4828 /*
4829 * set page dirty so that it will not be removed from cache/file
4830 * by non-hugetlbfs specific code paths.
4831 */
4832 set_page_dirty(page);
4833
4834 spin_lock(&inode->i_lock);
4835 inode->i_blocks += blocks_per_huge_page(h);
4836 spin_unlock(&inode->i_lock);
4837 return 0;
4838 }
4839
4840 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4841 struct address_space *mapping,
4842 pgoff_t idx,
4843 unsigned int flags,
4844 unsigned long haddr,
4845 unsigned long reason)
4846 {
4847 vm_fault_t ret;
4848 u32 hash;
4849 struct vm_fault vmf = {
4850 .vma = vma,
4851 .address = haddr,
4852 .flags = flags,
4853
4854 /*
4855 * Hard to debug if it ends up being
4856 * used by a callee that assumes
4857 * something about the other
4858 * uninitialized fields... same as in
4859 * memory.c
4860 */
4861 };
4862
4863 /*
4864 * hugetlb_fault_mutex and i_mmap_rwsem must be
4865 * dropped before handling userfault. Reacquire
4866 * after handling fault to make calling code simpler.
4867 */
4868 hash = hugetlb_fault_mutex_hash(mapping, idx);
4869 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4870 i_mmap_unlock_read(mapping);
4871 ret = handle_userfault(&vmf, reason);
4872 i_mmap_lock_read(mapping);
4873 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4874
4875 return ret;
4876 }
4877
4878 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4879 struct vm_area_struct *vma,
4880 struct address_space *mapping, pgoff_t idx,
4881 unsigned long address, pte_t *ptep, unsigned int flags)
4882 {
4883 struct hstate *h = hstate_vma(vma);
4884 vm_fault_t ret = VM_FAULT_SIGBUS;
4885 int anon_rmap = 0;
4886 unsigned long size;
4887 struct page *page;
4888 pte_t new_pte;
4889 spinlock_t *ptl;
4890 unsigned long haddr = address & huge_page_mask(h);
4891 bool new_page, new_pagecache_page = false;
4892
4893 /*
4894 * Currently, we are forced to kill the process in the event the
4895 * original mapper has unmapped pages from the child due to a failed
4896 * COW. Warn that such a situation has occurred as it may not be obvious
4897 */
4898 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4899 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4900 current->pid);
4901 return ret;
4902 }
4903
4904 /*
4905 * We can not race with truncation due to holding i_mmap_rwsem.
4906 * i_size is modified when holding i_mmap_rwsem, so check here
4907 * once for faults beyond end of file.
4908 */
4909 size = i_size_read(mapping->host) >> huge_page_shift(h);
4910 if (idx >= size)
4911 goto out;
4912
4913 retry:
4914 new_page = false;
4915 page = find_lock_page(mapping, idx);
4916 if (!page) {
4917 /* Check for page in userfault range */
4918 if (userfaultfd_missing(vma)) {
4919 ret = hugetlb_handle_userfault(vma, mapping, idx,
4920 flags, haddr,
4921 VM_UFFD_MISSING);
4922 goto out;
4923 }
4924
4925 page = alloc_huge_page(vma, haddr, 0);
4926 if (IS_ERR(page)) {
4927 /*
4928 * Returning error will result in faulting task being
4929 * sent SIGBUS. The hugetlb fault mutex prevents two
4930 * tasks from racing to fault in the same page which
4931 * could result in false unable to allocate errors.
4932 * Page migration does not take the fault mutex, but
4933 * does a clear then write of pte's under page table
4934 * lock. Page fault code could race with migration,
4935 * notice the clear pte and try to allocate a page
4936 * here. Before returning error, get ptl and make
4937 * sure there really is no pte entry.
4938 */
4939 ptl = huge_pte_lock(h, mm, ptep);
4940 ret = 0;
4941 if (huge_pte_none(huge_ptep_get(ptep)))
4942 ret = vmf_error(PTR_ERR(page));
4943 spin_unlock(ptl);
4944 goto out;
4945 }
4946 clear_huge_page(page, address, pages_per_huge_page(h));
4947 __SetPageUptodate(page);
4948 new_page = true;
4949
4950 if (vma->vm_flags & VM_MAYSHARE) {
4951 int err = huge_add_to_page_cache(page, mapping, idx);
4952 if (err) {
4953 put_page(page);
4954 if (err == -EEXIST)
4955 goto retry;
4956 goto out;
4957 }
4958 new_pagecache_page = true;
4959 } else {
4960 lock_page(page);
4961 if (unlikely(anon_vma_prepare(vma))) {
4962 ret = VM_FAULT_OOM;
4963 goto backout_unlocked;
4964 }
4965 anon_rmap = 1;
4966 }
4967 } else {
4968 /*
4969 * If memory error occurs between mmap() and fault, some process
4970 * don't have hwpoisoned swap entry for errored virtual address.
4971 * So we need to block hugepage fault by PG_hwpoison bit check.
4972 */
4973 if (unlikely(PageHWPoison(page))) {
4974 ret = VM_FAULT_HWPOISON_LARGE |
4975 VM_FAULT_SET_HINDEX(hstate_index(h));
4976 goto backout_unlocked;
4977 }
4978
4979 /* Check for page in userfault range. */
4980 if (userfaultfd_minor(vma)) {
4981 unlock_page(page);
4982 put_page(page);
4983 ret = hugetlb_handle_userfault(vma, mapping, idx,
4984 flags, haddr,
4985 VM_UFFD_MINOR);
4986 goto out;
4987 }
4988 }
4989
4990 /*
4991 * If we are going to COW a private mapping later, we examine the
4992 * pending reservations for this page now. This will ensure that
4993 * any allocations necessary to record that reservation occur outside
4994 * the spinlock.
4995 */
4996 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4997 if (vma_needs_reservation(h, vma, haddr) < 0) {
4998 ret = VM_FAULT_OOM;
4999 goto backout_unlocked;
5000 }
5001 /* Just decrements count, does not deallocate */
5002 vma_end_reservation(h, vma, haddr);
5003 }
5004
5005 ptl = huge_pte_lock(h, mm, ptep);
5006 ret = 0;
5007 if (!huge_pte_none(huge_ptep_get(ptep)))
5008 goto backout;
5009
5010 if (anon_rmap) {
5011 ClearHPageRestoreReserve(page);
5012 hugepage_add_new_anon_rmap(page, vma, haddr);
5013 } else
5014 page_dup_rmap(page, true);
5015 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5016 && (vma->vm_flags & VM_SHARED)));
5017 set_huge_pte_at(mm, haddr, ptep, new_pte);
5018
5019 hugetlb_count_add(pages_per_huge_page(h), mm);
5020 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5021 /* Optimization, do the COW without a second fault */
5022 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5023 }
5024
5025 spin_unlock(ptl);
5026
5027 /*
5028 * Only set HPageMigratable in newly allocated pages. Existing pages
5029 * found in the pagecache may not have HPageMigratableset if they have
5030 * been isolated for migration.
5031 */
5032 if (new_page)
5033 SetHPageMigratable(page);
5034
5035 unlock_page(page);
5036 out:
5037 return ret;
5038
5039 backout:
5040 spin_unlock(ptl);
5041 backout_unlocked:
5042 unlock_page(page);
5043 /* restore reserve for newly allocated pages not in page cache */
5044 if (new_page && !new_pagecache_page)
5045 restore_reserve_on_error(h, vma, haddr, page);
5046 put_page(page);
5047 goto out;
5048 }
5049
5050 #ifdef CONFIG_SMP
5051 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5052 {
5053 unsigned long key[2];
5054 u32 hash;
5055
5056 key[0] = (unsigned long) mapping;
5057 key[1] = idx;
5058
5059 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5060
5061 return hash & (num_fault_mutexes - 1);
5062 }
5063 #else
5064 /*
5065 * For uniprocessor systems we always use a single mutex, so just
5066 * return 0 and avoid the hashing overhead.
5067 */
5068 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5069 {
5070 return 0;
5071 }
5072 #endif
5073
5074 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5075 unsigned long address, unsigned int flags)
5076 {
5077 pte_t *ptep, entry;
5078 spinlock_t *ptl;
5079 vm_fault_t ret;
5080 u32 hash;
5081 pgoff_t idx;
5082 struct page *page = NULL;
5083 struct page *pagecache_page = NULL;
5084 struct hstate *h = hstate_vma(vma);
5085 struct address_space *mapping;
5086 int need_wait_lock = 0;
5087 unsigned long haddr = address & huge_page_mask(h);
5088
5089 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5090 if (ptep) {
5091 /*
5092 * Since we hold no locks, ptep could be stale. That is
5093 * OK as we are only making decisions based on content and
5094 * not actually modifying content here.
5095 */
5096 entry = huge_ptep_get(ptep);
5097 if (unlikely(is_hugetlb_entry_migration(entry))) {
5098 migration_entry_wait_huge(vma, mm, ptep);
5099 return 0;
5100 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5101 return VM_FAULT_HWPOISON_LARGE |
5102 VM_FAULT_SET_HINDEX(hstate_index(h));
5103 }
5104
5105 /*
5106 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5107 * until finished with ptep. This serves two purposes:
5108 * 1) It prevents huge_pmd_unshare from being called elsewhere
5109 * and making the ptep no longer valid.
5110 * 2) It synchronizes us with i_size modifications during truncation.
5111 *
5112 * ptep could have already be assigned via huge_pte_offset. That
5113 * is OK, as huge_pte_alloc will return the same value unless
5114 * something has changed.
5115 */
5116 mapping = vma->vm_file->f_mapping;
5117 i_mmap_lock_read(mapping);
5118 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5119 if (!ptep) {
5120 i_mmap_unlock_read(mapping);
5121 return VM_FAULT_OOM;
5122 }
5123
5124 /*
5125 * Serialize hugepage allocation and instantiation, so that we don't
5126 * get spurious allocation failures if two CPUs race to instantiate
5127 * the same page in the page cache.
5128 */
5129 idx = vma_hugecache_offset(h, vma, haddr);
5130 hash = hugetlb_fault_mutex_hash(mapping, idx);
5131 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5132
5133 entry = huge_ptep_get(ptep);
5134 if (huge_pte_none(entry)) {
5135 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5136 goto out_mutex;
5137 }
5138
5139 ret = 0;
5140
5141 /*
5142 * entry could be a migration/hwpoison entry at this point, so this
5143 * check prevents the kernel from going below assuming that we have
5144 * an active hugepage in pagecache. This goto expects the 2nd page
5145 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5146 * properly handle it.
5147 */
5148 if (!pte_present(entry))
5149 goto out_mutex;
5150
5151 /*
5152 * If we are going to COW the mapping later, we examine the pending
5153 * reservations for this page now. This will ensure that any
5154 * allocations necessary to record that reservation occur outside the
5155 * spinlock. For private mappings, we also lookup the pagecache
5156 * page now as it is used to determine if a reservation has been
5157 * consumed.
5158 */
5159 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5160 if (vma_needs_reservation(h, vma, haddr) < 0) {
5161 ret = VM_FAULT_OOM;
5162 goto out_mutex;
5163 }
5164 /* Just decrements count, does not deallocate */
5165 vma_end_reservation(h, vma, haddr);
5166
5167 if (!(vma->vm_flags & VM_MAYSHARE))
5168 pagecache_page = hugetlbfs_pagecache_page(h,
5169 vma, haddr);
5170 }
5171
5172 ptl = huge_pte_lock(h, mm, ptep);
5173
5174 /* Check for a racing update before calling hugetlb_cow */
5175 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5176 goto out_ptl;
5177
5178 /*
5179 * hugetlb_cow() requires page locks of pte_page(entry) and
5180 * pagecache_page, so here we need take the former one
5181 * when page != pagecache_page or !pagecache_page.
5182 */
5183 page = pte_page(entry);
5184 if (page != pagecache_page)
5185 if (!trylock_page(page)) {
5186 need_wait_lock = 1;
5187 goto out_ptl;
5188 }
5189
5190 get_page(page);
5191
5192 if (flags & FAULT_FLAG_WRITE) {
5193 if (!huge_pte_write(entry)) {
5194 ret = hugetlb_cow(mm, vma, address, ptep,
5195 pagecache_page, ptl);
5196 goto out_put_page;
5197 }
5198 entry = huge_pte_mkdirty(entry);
5199 }
5200 entry = pte_mkyoung(entry);
5201 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5202 flags & FAULT_FLAG_WRITE))
5203 update_mmu_cache(vma, haddr, ptep);
5204 out_put_page:
5205 if (page != pagecache_page)
5206 unlock_page(page);
5207 put_page(page);
5208 out_ptl:
5209 spin_unlock(ptl);
5210
5211 if (pagecache_page) {
5212 unlock_page(pagecache_page);
5213 put_page(pagecache_page);
5214 }
5215 out_mutex:
5216 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5217 i_mmap_unlock_read(mapping);
5218 /*
5219 * Generally it's safe to hold refcount during waiting page lock. But
5220 * here we just wait to defer the next page fault to avoid busy loop and
5221 * the page is not used after unlocked before returning from the current
5222 * page fault. So we are safe from accessing freed page, even if we wait
5223 * here without taking refcount.
5224 */
5225 if (need_wait_lock)
5226 wait_on_page_locked(page);
5227 return ret;
5228 }
5229
5230 #ifdef CONFIG_USERFAULTFD
5231 /*
5232 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5233 * modifications for huge pages.
5234 */
5235 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5236 pte_t *dst_pte,
5237 struct vm_area_struct *dst_vma,
5238 unsigned long dst_addr,
5239 unsigned long src_addr,
5240 enum mcopy_atomic_mode mode,
5241 struct page **pagep)
5242 {
5243 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5244 struct hstate *h = hstate_vma(dst_vma);
5245 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5246 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5247 unsigned long size;
5248 int vm_shared = dst_vma->vm_flags & VM_SHARED;
5249 pte_t _dst_pte;
5250 spinlock_t *ptl;
5251 int ret = -ENOMEM;
5252 struct page *page;
5253 int writable;
5254 bool page_in_pagecache = false;
5255
5256 if (is_continue) {
5257 ret = -EFAULT;
5258 page = find_lock_page(mapping, idx);
5259 if (!page)
5260 goto out;
5261 page_in_pagecache = true;
5262 } else if (!*pagep) {
5263 /* If a page already exists, then it's UFFDIO_COPY for
5264 * a non-missing case. Return -EEXIST.
5265 */
5266 if (vm_shared &&
5267 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5268 ret = -EEXIST;
5269 goto out;
5270 }
5271
5272 page = alloc_huge_page(dst_vma, dst_addr, 0);
5273 if (IS_ERR(page)) {
5274 ret = -ENOMEM;
5275 goto out;
5276 }
5277
5278 ret = copy_huge_page_from_user(page,
5279 (const void __user *) src_addr,
5280 pages_per_huge_page(h), false);
5281
5282 /* fallback to copy_from_user outside mmap_lock */
5283 if (unlikely(ret)) {
5284 ret = -ENOENT;
5285 /* Free the allocated page which may have
5286 * consumed a reservation.
5287 */
5288 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5289 put_page(page);
5290
5291 /* Allocate a temporary page to hold the copied
5292 * contents.
5293 */
5294 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5295 if (!page) {
5296 ret = -ENOMEM;
5297 goto out;
5298 }
5299 *pagep = page;
5300 /* Set the outparam pagep and return to the caller to
5301 * copy the contents outside the lock. Don't free the
5302 * page.
5303 */
5304 goto out;
5305 }
5306 } else {
5307 if (vm_shared &&
5308 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5309 put_page(*pagep);
5310 ret = -EEXIST;
5311 *pagep = NULL;
5312 goto out;
5313 }
5314
5315 page = alloc_huge_page(dst_vma, dst_addr, 0);
5316 if (IS_ERR(page)) {
5317 ret = -ENOMEM;
5318 *pagep = NULL;
5319 goto out;
5320 }
5321 copy_huge_page(page, *pagep);
5322 put_page(*pagep);
5323 *pagep = NULL;
5324 }
5325
5326 /*
5327 * The memory barrier inside __SetPageUptodate makes sure that
5328 * preceding stores to the page contents become visible before
5329 * the set_pte_at() write.
5330 */
5331 __SetPageUptodate(page);
5332
5333 /* Add shared, newly allocated pages to the page cache. */
5334 if (vm_shared && !is_continue) {
5335 size = i_size_read(mapping->host) >> huge_page_shift(h);
5336 ret = -EFAULT;
5337 if (idx >= size)
5338 goto out_release_nounlock;
5339
5340 /*
5341 * Serialization between remove_inode_hugepages() and
5342 * huge_add_to_page_cache() below happens through the
5343 * hugetlb_fault_mutex_table that here must be hold by
5344 * the caller.
5345 */
5346 ret = huge_add_to_page_cache(page, mapping, idx);
5347 if (ret)
5348 goto out_release_nounlock;
5349 page_in_pagecache = true;
5350 }
5351
5352 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5353 spin_lock(ptl);
5354
5355 /*
5356 * Recheck the i_size after holding PT lock to make sure not
5357 * to leave any page mapped (as page_mapped()) beyond the end
5358 * of the i_size (remove_inode_hugepages() is strict about
5359 * enforcing that). If we bail out here, we'll also leave a
5360 * page in the radix tree in the vm_shared case beyond the end
5361 * of the i_size, but remove_inode_hugepages() will take care
5362 * of it as soon as we drop the hugetlb_fault_mutex_table.
5363 */
5364 size = i_size_read(mapping->host) >> huge_page_shift(h);
5365 ret = -EFAULT;
5366 if (idx >= size)
5367 goto out_release_unlock;
5368
5369 ret = -EEXIST;
5370 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5371 goto out_release_unlock;
5372
5373 if (vm_shared) {
5374 page_dup_rmap(page, true);
5375 } else {
5376 ClearHPageRestoreReserve(page);
5377 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5378 }
5379
5380 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5381 if (is_continue && !vm_shared)
5382 writable = 0;
5383 else
5384 writable = dst_vma->vm_flags & VM_WRITE;
5385
5386 _dst_pte = make_huge_pte(dst_vma, page, writable);
5387 if (writable)
5388 _dst_pte = huge_pte_mkdirty(_dst_pte);
5389 _dst_pte = pte_mkyoung(_dst_pte);
5390
5391 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5392
5393 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5394 dst_vma->vm_flags & VM_WRITE);
5395 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5396
5397 /* No need to invalidate - it was non-present before */
5398 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5399
5400 spin_unlock(ptl);
5401 if (!is_continue)
5402 SetHPageMigratable(page);
5403 if (vm_shared || is_continue)
5404 unlock_page(page);
5405 ret = 0;
5406 out:
5407 return ret;
5408 out_release_unlock:
5409 spin_unlock(ptl);
5410 if (vm_shared || is_continue)
5411 unlock_page(page);
5412 out_release_nounlock:
5413 if (!page_in_pagecache)
5414 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5415 put_page(page);
5416 goto out;
5417 }
5418 #endif /* CONFIG_USERFAULTFD */
5419
5420 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5421 int refs, struct page **pages,
5422 struct vm_area_struct **vmas)
5423 {
5424 int nr;
5425
5426 for (nr = 0; nr < refs; nr++) {
5427 if (likely(pages))
5428 pages[nr] = mem_map_offset(page, nr);
5429 if (vmas)
5430 vmas[nr] = vma;
5431 }
5432 }
5433
5434 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5435 struct page **pages, struct vm_area_struct **vmas,
5436 unsigned long *position, unsigned long *nr_pages,
5437 long i, unsigned int flags, int *locked)
5438 {
5439 unsigned long pfn_offset;
5440 unsigned long vaddr = *position;
5441 unsigned long remainder = *nr_pages;
5442 struct hstate *h = hstate_vma(vma);
5443 int err = -EFAULT, refs;
5444
5445 while (vaddr < vma->vm_end && remainder) {
5446 pte_t *pte;
5447 spinlock_t *ptl = NULL;
5448 int absent;
5449 struct page *page;
5450
5451 /*
5452 * If we have a pending SIGKILL, don't keep faulting pages and
5453 * potentially allocating memory.
5454 */
5455 if (fatal_signal_pending(current)) {
5456 remainder = 0;
5457 break;
5458 }
5459
5460 /*
5461 * Some archs (sparc64, sh*) have multiple pte_ts to
5462 * each hugepage. We have to make sure we get the
5463 * first, for the page indexing below to work.
5464 *
5465 * Note that page table lock is not held when pte is null.
5466 */
5467 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5468 huge_page_size(h));
5469 if (pte)
5470 ptl = huge_pte_lock(h, mm, pte);
5471 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5472
5473 /*
5474 * When coredumping, it suits get_dump_page if we just return
5475 * an error where there's an empty slot with no huge pagecache
5476 * to back it. This way, we avoid allocating a hugepage, and
5477 * the sparse dumpfile avoids allocating disk blocks, but its
5478 * huge holes still show up with zeroes where they need to be.
5479 */
5480 if (absent && (flags & FOLL_DUMP) &&
5481 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5482 if (pte)
5483 spin_unlock(ptl);
5484 remainder = 0;
5485 break;
5486 }
5487
5488 /*
5489 * We need call hugetlb_fault for both hugepages under migration
5490 * (in which case hugetlb_fault waits for the migration,) and
5491 * hwpoisoned hugepages (in which case we need to prevent the
5492 * caller from accessing to them.) In order to do this, we use
5493 * here is_swap_pte instead of is_hugetlb_entry_migration and
5494 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5495 * both cases, and because we can't follow correct pages
5496 * directly from any kind of swap entries.
5497 */
5498 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5499 ((flags & FOLL_WRITE) &&
5500 !huge_pte_write(huge_ptep_get(pte)))) {
5501 vm_fault_t ret;
5502 unsigned int fault_flags = 0;
5503
5504 if (pte)
5505 spin_unlock(ptl);
5506 if (flags & FOLL_WRITE)
5507 fault_flags |= FAULT_FLAG_WRITE;
5508 if (locked)
5509 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5510 FAULT_FLAG_KILLABLE;
5511 if (flags & FOLL_NOWAIT)
5512 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5513 FAULT_FLAG_RETRY_NOWAIT;
5514 if (flags & FOLL_TRIED) {
5515 /*
5516 * Note: FAULT_FLAG_ALLOW_RETRY and
5517 * FAULT_FLAG_TRIED can co-exist
5518 */
5519 fault_flags |= FAULT_FLAG_TRIED;
5520 }
5521 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5522 if (ret & VM_FAULT_ERROR) {
5523 err = vm_fault_to_errno(ret, flags);
5524 remainder = 0;
5525 break;
5526 }
5527 if (ret & VM_FAULT_RETRY) {
5528 if (locked &&
5529 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5530 *locked = 0;
5531 *nr_pages = 0;
5532 /*
5533 * VM_FAULT_RETRY must not return an
5534 * error, it will return zero
5535 * instead.
5536 *
5537 * No need to update "position" as the
5538 * caller will not check it after
5539 * *nr_pages is set to 0.
5540 */
5541 return i;
5542 }
5543 continue;
5544 }
5545
5546 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5547 page = pte_page(huge_ptep_get(pte));
5548
5549 /*
5550 * If subpage information not requested, update counters
5551 * and skip the same_page loop below.
5552 */
5553 if (!pages && !vmas && !pfn_offset &&
5554 (vaddr + huge_page_size(h) < vma->vm_end) &&
5555 (remainder >= pages_per_huge_page(h))) {
5556 vaddr += huge_page_size(h);
5557 remainder -= pages_per_huge_page(h);
5558 i += pages_per_huge_page(h);
5559 spin_unlock(ptl);
5560 continue;
5561 }
5562
5563 /* vaddr may not be aligned to PAGE_SIZE */
5564 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5565 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5566
5567 if (pages || vmas)
5568 record_subpages_vmas(mem_map_offset(page, pfn_offset),
5569 vma, refs,
5570 likely(pages) ? pages + i : NULL,
5571 vmas ? vmas + i : NULL);
5572
5573 if (pages) {
5574 /*
5575 * try_grab_compound_head() should always succeed here,
5576 * because: a) we hold the ptl lock, and b) we've just
5577 * checked that the huge page is present in the page
5578 * tables. If the huge page is present, then the tail
5579 * pages must also be present. The ptl prevents the
5580 * head page and tail pages from being rearranged in
5581 * any way. So this page must be available at this
5582 * point, unless the page refcount overflowed:
5583 */
5584 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5585 refs,
5586 flags))) {
5587 spin_unlock(ptl);
5588 remainder = 0;
5589 err = -ENOMEM;
5590 break;
5591 }
5592 }
5593
5594 vaddr += (refs << PAGE_SHIFT);
5595 remainder -= refs;
5596 i += refs;
5597
5598 spin_unlock(ptl);
5599 }
5600 *nr_pages = remainder;
5601 /*
5602 * setting position is actually required only if remainder is
5603 * not zero but it's faster not to add a "if (remainder)"
5604 * branch.
5605 */
5606 *position = vaddr;
5607
5608 return i ? i : err;
5609 }
5610
5611 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5612 unsigned long address, unsigned long end, pgprot_t newprot)
5613 {
5614 struct mm_struct *mm = vma->vm_mm;
5615 unsigned long start = address;
5616 pte_t *ptep;
5617 pte_t pte;
5618 struct hstate *h = hstate_vma(vma);
5619 unsigned long pages = 0;
5620 bool shared_pmd = false;
5621 struct mmu_notifier_range range;
5622
5623 /*
5624 * In the case of shared PMDs, the area to flush could be beyond
5625 * start/end. Set range.start/range.end to cover the maximum possible
5626 * range if PMD sharing is possible.
5627 */
5628 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5629 0, vma, mm, start, end);
5630 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5631
5632 BUG_ON(address >= end);
5633 flush_cache_range(vma, range.start, range.end);
5634
5635 mmu_notifier_invalidate_range_start(&range);
5636 i_mmap_lock_write(vma->vm_file->f_mapping);
5637 for (; address < end; address += huge_page_size(h)) {
5638 spinlock_t *ptl;
5639 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5640 if (!ptep)
5641 continue;
5642 ptl = huge_pte_lock(h, mm, ptep);
5643 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5644 pages++;
5645 spin_unlock(ptl);
5646 shared_pmd = true;
5647 continue;
5648 }
5649 pte = huge_ptep_get(ptep);
5650 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5651 spin_unlock(ptl);
5652 continue;
5653 }
5654 if (unlikely(is_hugetlb_entry_migration(pte))) {
5655 swp_entry_t entry = pte_to_swp_entry(pte);
5656
5657 if (is_writable_migration_entry(entry)) {
5658 pte_t newpte;
5659
5660 entry = make_readable_migration_entry(
5661 swp_offset(entry));
5662 newpte = swp_entry_to_pte(entry);
5663 set_huge_swap_pte_at(mm, address, ptep,
5664 newpte, huge_page_size(h));
5665 pages++;
5666 }
5667 spin_unlock(ptl);
5668 continue;
5669 }
5670 if (!huge_pte_none(pte)) {
5671 pte_t old_pte;
5672 unsigned int shift = huge_page_shift(hstate_vma(vma));
5673
5674 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5675 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5676 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5677 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5678 pages++;
5679 }
5680 spin_unlock(ptl);
5681 }
5682 /*
5683 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5684 * may have cleared our pud entry and done put_page on the page table:
5685 * once we release i_mmap_rwsem, another task can do the final put_page
5686 * and that page table be reused and filled with junk. If we actually
5687 * did unshare a page of pmds, flush the range corresponding to the pud.
5688 */
5689 if (shared_pmd)
5690 flush_hugetlb_tlb_range(vma, range.start, range.end);
5691 else
5692 flush_hugetlb_tlb_range(vma, start, end);
5693 /*
5694 * No need to call mmu_notifier_invalidate_range() we are downgrading
5695 * page table protection not changing it to point to a new page.
5696 *
5697 * See Documentation/vm/mmu_notifier.rst
5698 */
5699 i_mmap_unlock_write(vma->vm_file->f_mapping);
5700 mmu_notifier_invalidate_range_end(&range);
5701
5702 return pages << h->order;
5703 }
5704
5705 /* Return true if reservation was successful, false otherwise. */
5706 bool hugetlb_reserve_pages(struct inode *inode,
5707 long from, long to,
5708 struct vm_area_struct *vma,
5709 vm_flags_t vm_flags)
5710 {
5711 long chg, add = -1;
5712 struct hstate *h = hstate_inode(inode);
5713 struct hugepage_subpool *spool = subpool_inode(inode);
5714 struct resv_map *resv_map;
5715 struct hugetlb_cgroup *h_cg = NULL;
5716 long gbl_reserve, regions_needed = 0;
5717
5718 /* This should never happen */
5719 if (from > to) {
5720 VM_WARN(1, "%s called with a negative range\n", __func__);
5721 return false;
5722 }
5723
5724 /*
5725 * Only apply hugepage reservation if asked. At fault time, an
5726 * attempt will be made for VM_NORESERVE to allocate a page
5727 * without using reserves
5728 */
5729 if (vm_flags & VM_NORESERVE)
5730 return true;
5731
5732 /*
5733 * Shared mappings base their reservation on the number of pages that
5734 * are already allocated on behalf of the file. Private mappings need
5735 * to reserve the full area even if read-only as mprotect() may be
5736 * called to make the mapping read-write. Assume !vma is a shm mapping
5737 */
5738 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5739 /*
5740 * resv_map can not be NULL as hugetlb_reserve_pages is only
5741 * called for inodes for which resv_maps were created (see
5742 * hugetlbfs_get_inode).
5743 */
5744 resv_map = inode_resv_map(inode);
5745
5746 chg = region_chg(resv_map, from, to, &regions_needed);
5747
5748 } else {
5749 /* Private mapping. */
5750 resv_map = resv_map_alloc();
5751 if (!resv_map)
5752 return false;
5753
5754 chg = to - from;
5755
5756 set_vma_resv_map(vma, resv_map);
5757 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5758 }
5759
5760 if (chg < 0)
5761 goto out_err;
5762
5763 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5764 chg * pages_per_huge_page(h), &h_cg) < 0)
5765 goto out_err;
5766
5767 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5768 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5769 * of the resv_map.
5770 */
5771 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5772 }
5773
5774 /*
5775 * There must be enough pages in the subpool for the mapping. If
5776 * the subpool has a minimum size, there may be some global
5777 * reservations already in place (gbl_reserve).
5778 */
5779 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5780 if (gbl_reserve < 0)
5781 goto out_uncharge_cgroup;
5782
5783 /*
5784 * Check enough hugepages are available for the reservation.
5785 * Hand the pages back to the subpool if there are not
5786 */
5787 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5788 goto out_put_pages;
5789
5790 /*
5791 * Account for the reservations made. Shared mappings record regions
5792 * that have reservations as they are shared by multiple VMAs.
5793 * When the last VMA disappears, the region map says how much
5794 * the reservation was and the page cache tells how much of
5795 * the reservation was consumed. Private mappings are per-VMA and
5796 * only the consumed reservations are tracked. When the VMA
5797 * disappears, the original reservation is the VMA size and the
5798 * consumed reservations are stored in the map. Hence, nothing
5799 * else has to be done for private mappings here
5800 */
5801 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5802 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5803
5804 if (unlikely(add < 0)) {
5805 hugetlb_acct_memory(h, -gbl_reserve);
5806 goto out_put_pages;
5807 } else if (unlikely(chg > add)) {
5808 /*
5809 * pages in this range were added to the reserve
5810 * map between region_chg and region_add. This
5811 * indicates a race with alloc_huge_page. Adjust
5812 * the subpool and reserve counts modified above
5813 * based on the difference.
5814 */
5815 long rsv_adjust;
5816
5817 /*
5818 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5819 * reference to h_cg->css. See comment below for detail.
5820 */
5821 hugetlb_cgroup_uncharge_cgroup_rsvd(
5822 hstate_index(h),
5823 (chg - add) * pages_per_huge_page(h), h_cg);
5824
5825 rsv_adjust = hugepage_subpool_put_pages(spool,
5826 chg - add);
5827 hugetlb_acct_memory(h, -rsv_adjust);
5828 } else if (h_cg) {
5829 /*
5830 * The file_regions will hold their own reference to
5831 * h_cg->css. So we should release the reference held
5832 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5833 * done.
5834 */
5835 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5836 }
5837 }
5838 return true;
5839
5840 out_put_pages:
5841 /* put back original number of pages, chg */
5842 (void)hugepage_subpool_put_pages(spool, chg);
5843 out_uncharge_cgroup:
5844 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5845 chg * pages_per_huge_page(h), h_cg);
5846 out_err:
5847 if (!vma || vma->vm_flags & VM_MAYSHARE)
5848 /* Only call region_abort if the region_chg succeeded but the
5849 * region_add failed or didn't run.
5850 */
5851 if (chg >= 0 && add < 0)
5852 region_abort(resv_map, from, to, regions_needed);
5853 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5854 kref_put(&resv_map->refs, resv_map_release);
5855 return false;
5856 }
5857
5858 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5859 long freed)
5860 {
5861 struct hstate *h = hstate_inode(inode);
5862 struct resv_map *resv_map = inode_resv_map(inode);
5863 long chg = 0;
5864 struct hugepage_subpool *spool = subpool_inode(inode);
5865 long gbl_reserve;
5866
5867 /*
5868 * Since this routine can be called in the evict inode path for all
5869 * hugetlbfs inodes, resv_map could be NULL.
5870 */
5871 if (resv_map) {
5872 chg = region_del(resv_map, start, end);
5873 /*
5874 * region_del() can fail in the rare case where a region
5875 * must be split and another region descriptor can not be
5876 * allocated. If end == LONG_MAX, it will not fail.
5877 */
5878 if (chg < 0)
5879 return chg;
5880 }
5881
5882 spin_lock(&inode->i_lock);
5883 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5884 spin_unlock(&inode->i_lock);
5885
5886 /*
5887 * If the subpool has a minimum size, the number of global
5888 * reservations to be released may be adjusted.
5889 *
5890 * Note that !resv_map implies freed == 0. So (chg - freed)
5891 * won't go negative.
5892 */
5893 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5894 hugetlb_acct_memory(h, -gbl_reserve);
5895
5896 return 0;
5897 }
5898
5899 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5900 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5901 struct vm_area_struct *vma,
5902 unsigned long addr, pgoff_t idx)
5903 {
5904 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5905 svma->vm_start;
5906 unsigned long sbase = saddr & PUD_MASK;
5907 unsigned long s_end = sbase + PUD_SIZE;
5908
5909 /* Allow segments to share if only one is marked locked */
5910 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5911 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5912
5913 /*
5914 * match the virtual addresses, permission and the alignment of the
5915 * page table page.
5916 */
5917 if (pmd_index(addr) != pmd_index(saddr) ||
5918 vm_flags != svm_flags ||
5919 !range_in_vma(svma, sbase, s_end))
5920 return 0;
5921
5922 return saddr;
5923 }
5924
5925 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5926 {
5927 unsigned long base = addr & PUD_MASK;
5928 unsigned long end = base + PUD_SIZE;
5929
5930 /*
5931 * check on proper vm_flags and page table alignment
5932 */
5933 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5934 return true;
5935 return false;
5936 }
5937
5938 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5939 {
5940 #ifdef CONFIG_USERFAULTFD
5941 if (uffd_disable_huge_pmd_share(vma))
5942 return false;
5943 #endif
5944 return vma_shareable(vma, addr);
5945 }
5946
5947 /*
5948 * Determine if start,end range within vma could be mapped by shared pmd.
5949 * If yes, adjust start and end to cover range associated with possible
5950 * shared pmd mappings.
5951 */
5952 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5953 unsigned long *start, unsigned long *end)
5954 {
5955 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5956 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5957
5958 /*
5959 * vma needs to span at least one aligned PUD size, and the range
5960 * must be at least partially within in.
5961 */
5962 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5963 (*end <= v_start) || (*start >= v_end))
5964 return;
5965
5966 /* Extend the range to be PUD aligned for a worst case scenario */
5967 if (*start > v_start)
5968 *start = ALIGN_DOWN(*start, PUD_SIZE);
5969
5970 if (*end < v_end)
5971 *end = ALIGN(*end, PUD_SIZE);
5972 }
5973
5974 /*
5975 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5976 * and returns the corresponding pte. While this is not necessary for the
5977 * !shared pmd case because we can allocate the pmd later as well, it makes the
5978 * code much cleaner.
5979 *
5980 * This routine must be called with i_mmap_rwsem held in at least read mode if
5981 * sharing is possible. For hugetlbfs, this prevents removal of any page
5982 * table entries associated with the address space. This is important as we
5983 * are setting up sharing based on existing page table entries (mappings).
5984 *
5985 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5986 * huge_pte_alloc know that sharing is not possible and do not take
5987 * i_mmap_rwsem as a performance optimization. This is handled by the
5988 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5989 * only required for subsequent processing.
5990 */
5991 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5992 unsigned long addr, pud_t *pud)
5993 {
5994 struct address_space *mapping = vma->vm_file->f_mapping;
5995 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5996 vma->vm_pgoff;
5997 struct vm_area_struct *svma;
5998 unsigned long saddr;
5999 pte_t *spte = NULL;
6000 pte_t *pte;
6001 spinlock_t *ptl;
6002
6003 i_mmap_assert_locked(mapping);
6004 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6005 if (svma == vma)
6006 continue;
6007
6008 saddr = page_table_shareable(svma, vma, addr, idx);
6009 if (saddr) {
6010 spte = huge_pte_offset(svma->vm_mm, saddr,
6011 vma_mmu_pagesize(svma));
6012 if (spte) {
6013 get_page(virt_to_page(spte));
6014 break;
6015 }
6016 }
6017 }
6018
6019 if (!spte)
6020 goto out;
6021
6022 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6023 if (pud_none(*pud)) {
6024 pud_populate(mm, pud,
6025 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6026 mm_inc_nr_pmds(mm);
6027 } else {
6028 put_page(virt_to_page(spte));
6029 }
6030 spin_unlock(ptl);
6031 out:
6032 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6033 return pte;
6034 }
6035
6036 /*
6037 * unmap huge page backed by shared pte.
6038 *
6039 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6040 * indicated by page_count > 1, unmap is achieved by clearing pud and
6041 * decrementing the ref count. If count == 1, the pte page is not shared.
6042 *
6043 * Called with page table lock held and i_mmap_rwsem held in write mode.
6044 *
6045 * returns: 1 successfully unmapped a shared pte page
6046 * 0 the underlying pte page is not shared, or it is the last user
6047 */
6048 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6049 unsigned long *addr, pte_t *ptep)
6050 {
6051 pgd_t *pgd = pgd_offset(mm, *addr);
6052 p4d_t *p4d = p4d_offset(pgd, *addr);
6053 pud_t *pud = pud_offset(p4d, *addr);
6054
6055 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6056 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6057 if (page_count(virt_to_page(ptep)) == 1)
6058 return 0;
6059
6060 pud_clear(pud);
6061 put_page(virt_to_page(ptep));
6062 mm_dec_nr_pmds(mm);
6063 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6064 return 1;
6065 }
6066
6067 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6068 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6069 unsigned long addr, pud_t *pud)
6070 {
6071 return NULL;
6072 }
6073
6074 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6075 unsigned long *addr, pte_t *ptep)
6076 {
6077 return 0;
6078 }
6079
6080 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6081 unsigned long *start, unsigned long *end)
6082 {
6083 }
6084
6085 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6086 {
6087 return false;
6088 }
6089 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6090
6091 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6092 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6093 unsigned long addr, unsigned long sz)
6094 {
6095 pgd_t *pgd;
6096 p4d_t *p4d;
6097 pud_t *pud;
6098 pte_t *pte = NULL;
6099
6100 pgd = pgd_offset(mm, addr);
6101 p4d = p4d_alloc(mm, pgd, addr);
6102 if (!p4d)
6103 return NULL;
6104 pud = pud_alloc(mm, p4d, addr);
6105 if (pud) {
6106 if (sz == PUD_SIZE) {
6107 pte = (pte_t *)pud;
6108 } else {
6109 BUG_ON(sz != PMD_SIZE);
6110 if (want_pmd_share(vma, addr) && pud_none(*pud))
6111 pte = huge_pmd_share(mm, vma, addr, pud);
6112 else
6113 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6114 }
6115 }
6116 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6117
6118 return pte;
6119 }
6120
6121 /*
6122 * huge_pte_offset() - Walk the page table to resolve the hugepage
6123 * entry at address @addr
6124 *
6125 * Return: Pointer to page table entry (PUD or PMD) for
6126 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6127 * size @sz doesn't match the hugepage size at this level of the page
6128 * table.
6129 */
6130 pte_t *huge_pte_offset(struct mm_struct *mm,
6131 unsigned long addr, unsigned long sz)
6132 {
6133 pgd_t *pgd;
6134 p4d_t *p4d;
6135 pud_t *pud;
6136 pmd_t *pmd;
6137
6138 pgd = pgd_offset(mm, addr);
6139 if (!pgd_present(*pgd))
6140 return NULL;
6141 p4d = p4d_offset(pgd, addr);
6142 if (!p4d_present(*p4d))
6143 return NULL;
6144
6145 pud = pud_offset(p4d, addr);
6146 if (sz == PUD_SIZE)
6147 /* must be pud huge, non-present or none */
6148 return (pte_t *)pud;
6149 if (!pud_present(*pud))
6150 return NULL;
6151 /* must have a valid entry and size to go further */
6152
6153 pmd = pmd_offset(pud, addr);
6154 /* must be pmd huge, non-present or none */
6155 return (pte_t *)pmd;
6156 }
6157
6158 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6159
6160 /*
6161 * These functions are overwritable if your architecture needs its own
6162 * behavior.
6163 */
6164 struct page * __weak
6165 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6166 int write)
6167 {
6168 return ERR_PTR(-EINVAL);
6169 }
6170
6171 struct page * __weak
6172 follow_huge_pd(struct vm_area_struct *vma,
6173 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6174 {
6175 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6176 return NULL;
6177 }
6178
6179 struct page * __weak
6180 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6181 pmd_t *pmd, int flags)
6182 {
6183 struct page *page = NULL;
6184 spinlock_t *ptl;
6185 pte_t pte;
6186
6187 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6188 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6189 (FOLL_PIN | FOLL_GET)))
6190 return NULL;
6191
6192 retry:
6193 ptl = pmd_lockptr(mm, pmd);
6194 spin_lock(ptl);
6195 /*
6196 * make sure that the address range covered by this pmd is not
6197 * unmapped from other threads.
6198 */
6199 if (!pmd_huge(*pmd))
6200 goto out;
6201 pte = huge_ptep_get((pte_t *)pmd);
6202 if (pte_present(pte)) {
6203 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6204 /*
6205 * try_grab_page() should always succeed here, because: a) we
6206 * hold the pmd (ptl) lock, and b) we've just checked that the
6207 * huge pmd (head) page is present in the page tables. The ptl
6208 * prevents the head page and tail pages from being rearranged
6209 * in any way. So this page must be available at this point,
6210 * unless the page refcount overflowed:
6211 */
6212 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6213 page = NULL;
6214 goto out;
6215 }
6216 } else {
6217 if (is_hugetlb_entry_migration(pte)) {
6218 spin_unlock(ptl);
6219 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6220 goto retry;
6221 }
6222 /*
6223 * hwpoisoned entry is treated as no_page_table in
6224 * follow_page_mask().
6225 */
6226 }
6227 out:
6228 spin_unlock(ptl);
6229 return page;
6230 }
6231
6232 struct page * __weak
6233 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6234 pud_t *pud, int flags)
6235 {
6236 if (flags & (FOLL_GET | FOLL_PIN))
6237 return NULL;
6238
6239 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6240 }
6241
6242 struct page * __weak
6243 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6244 {
6245 if (flags & (FOLL_GET | FOLL_PIN))
6246 return NULL;
6247
6248 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6249 }
6250
6251 bool isolate_huge_page(struct page *page, struct list_head *list)
6252 {
6253 bool ret = true;
6254
6255 spin_lock_irq(&hugetlb_lock);
6256 if (!PageHeadHuge(page) ||
6257 !HPageMigratable(page) ||
6258 !get_page_unless_zero(page)) {
6259 ret = false;
6260 goto unlock;
6261 }
6262 ClearHPageMigratable(page);
6263 list_move_tail(&page->lru, list);
6264 unlock:
6265 spin_unlock_irq(&hugetlb_lock);
6266 return ret;
6267 }
6268
6269 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6270 {
6271 int ret = 0;
6272
6273 *hugetlb = false;
6274 spin_lock_irq(&hugetlb_lock);
6275 if (PageHeadHuge(page)) {
6276 *hugetlb = true;
6277 if (HPageFreed(page) || HPageMigratable(page))
6278 ret = get_page_unless_zero(page);
6279 else
6280 ret = -EBUSY;
6281 }
6282 spin_unlock_irq(&hugetlb_lock);
6283 return ret;
6284 }
6285
6286 void putback_active_hugepage(struct page *page)
6287 {
6288 spin_lock_irq(&hugetlb_lock);
6289 SetHPageMigratable(page);
6290 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6291 spin_unlock_irq(&hugetlb_lock);
6292 put_page(page);
6293 }
6294
6295 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6296 {
6297 struct hstate *h = page_hstate(oldpage);
6298
6299 hugetlb_cgroup_migrate(oldpage, newpage);
6300 set_page_owner_migrate_reason(newpage, reason);
6301
6302 /*
6303 * transfer temporary state of the new huge page. This is
6304 * reverse to other transitions because the newpage is going to
6305 * be final while the old one will be freed so it takes over
6306 * the temporary status.
6307 *
6308 * Also note that we have to transfer the per-node surplus state
6309 * here as well otherwise the global surplus count will not match
6310 * the per-node's.
6311 */
6312 if (HPageTemporary(newpage)) {
6313 int old_nid = page_to_nid(oldpage);
6314 int new_nid = page_to_nid(newpage);
6315
6316 SetHPageTemporary(oldpage);
6317 ClearHPageTemporary(newpage);
6318
6319 /*
6320 * There is no need to transfer the per-node surplus state
6321 * when we do not cross the node.
6322 */
6323 if (new_nid == old_nid)
6324 return;
6325 spin_lock_irq(&hugetlb_lock);
6326 if (h->surplus_huge_pages_node[old_nid]) {
6327 h->surplus_huge_pages_node[old_nid]--;
6328 h->surplus_huge_pages_node[new_nid]++;
6329 }
6330 spin_unlock_irq(&hugetlb_lock);
6331 }
6332 }
6333
6334 /*
6335 * This function will unconditionally remove all the shared pmd pgtable entries
6336 * within the specific vma for a hugetlbfs memory range.
6337 */
6338 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6339 {
6340 struct hstate *h = hstate_vma(vma);
6341 unsigned long sz = huge_page_size(h);
6342 struct mm_struct *mm = vma->vm_mm;
6343 struct mmu_notifier_range range;
6344 unsigned long address, start, end;
6345 spinlock_t *ptl;
6346 pte_t *ptep;
6347
6348 if (!(vma->vm_flags & VM_MAYSHARE))
6349 return;
6350
6351 start = ALIGN(vma->vm_start, PUD_SIZE);
6352 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6353
6354 if (start >= end)
6355 return;
6356
6357 /*
6358 * No need to call adjust_range_if_pmd_sharing_possible(), because
6359 * we have already done the PUD_SIZE alignment.
6360 */
6361 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6362 start, end);
6363 mmu_notifier_invalidate_range_start(&range);
6364 i_mmap_lock_write(vma->vm_file->f_mapping);
6365 for (address = start; address < end; address += PUD_SIZE) {
6366 unsigned long tmp = address;
6367
6368 ptep = huge_pte_offset(mm, address, sz);
6369 if (!ptep)
6370 continue;
6371 ptl = huge_pte_lock(h, mm, ptep);
6372 /* We don't want 'address' to be changed */
6373 huge_pmd_unshare(mm, vma, &tmp, ptep);
6374 spin_unlock(ptl);
6375 }
6376 flush_hugetlb_tlb_range(vma, start, end);
6377 i_mmap_unlock_write(vma->vm_file->f_mapping);
6378 /*
6379 * No need to call mmu_notifier_invalidate_range(), see
6380 * Documentation/vm/mmu_notifier.rst.
6381 */
6382 mmu_notifier_invalidate_range_end(&range);
6383 }
6384
6385 #ifdef CONFIG_CMA
6386 static bool cma_reserve_called __initdata;
6387
6388 static int __init cmdline_parse_hugetlb_cma(char *p)
6389 {
6390 hugetlb_cma_size = memparse(p, &p);
6391 return 0;
6392 }
6393
6394 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6395
6396 void __init hugetlb_cma_reserve(int order)
6397 {
6398 unsigned long size, reserved, per_node;
6399 int nid;
6400
6401 cma_reserve_called = true;
6402
6403 if (!hugetlb_cma_size)
6404 return;
6405
6406 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6407 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6408 (PAGE_SIZE << order) / SZ_1M);
6409 return;
6410 }
6411
6412 /*
6413 * If 3 GB area is requested on a machine with 4 numa nodes,
6414 * let's allocate 1 GB on first three nodes and ignore the last one.
6415 */
6416 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6417 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6418 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6419
6420 reserved = 0;
6421 for_each_node_state(nid, N_ONLINE) {
6422 int res;
6423 char name[CMA_MAX_NAME];
6424
6425 size = min(per_node, hugetlb_cma_size - reserved);
6426 size = round_up(size, PAGE_SIZE << order);
6427
6428 snprintf(name, sizeof(name), "hugetlb%d", nid);
6429 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6430 0, false, name,
6431 &hugetlb_cma[nid], nid);
6432 if (res) {
6433 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6434 res, nid);
6435 continue;
6436 }
6437
6438 reserved += size;
6439 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6440 size / SZ_1M, nid);
6441
6442 if (reserved >= hugetlb_cma_size)
6443 break;
6444 }
6445 }
6446
6447 void __init hugetlb_cma_check(void)
6448 {
6449 if (!hugetlb_cma_size || cma_reserve_called)
6450 return;
6451
6452 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6453 }
6454
6455 #endif /* CONFIG_CMA */