]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/hugetlb.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include "internal.h"
38
39 int hugepages_treat_as_movable;
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44 /*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48 static unsigned int minimum_order __read_mostly = UINT_MAX;
49
50 __initdata LIST_HEAD(huge_boot_pages);
51
52 /* for command line parsing */
53 static struct hstate * __initdata parsed_hstate;
54 static unsigned long __initdata default_hstate_max_huge_pages;
55 static unsigned long __initdata default_hstate_size;
56 static bool __initdata parsed_valid_hugepagesz = true;
57
58 /*
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
61 */
62 DEFINE_SPINLOCK(hugetlb_lock);
63
64 /*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68 static int num_fault_mutexes;
69 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate *h, long delta);
73
74 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75 {
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
87 kfree(spool);
88 }
89 }
90
91 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
93 {
94 struct hugepage_subpool *spool;
95
96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
111
112 return spool;
113 }
114
115 void hugepage_put_subpool(struct hugepage_subpool *spool)
116 {
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121 }
122
123 /*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 long delta)
133 {
134 long ret = delta;
135
136 if (!spool)
137 return ret;
138
139 spin_lock(&spool->lock);
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
148 }
149
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165 unlock_ret:
166 spin_unlock(&spool->lock);
167 return ret;
168 }
169
170 /*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 long delta)
178 {
179 long ret = delta;
180
181 if (!spool)
182 return delta;
183
184 spin_lock(&spool->lock);
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
205 unlock_or_release_subpool(spool);
206
207 return ret;
208 }
209
210 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211 {
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213 }
214
215 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216 {
217 return subpool_inode(file_inode(vma->vm_file));
218 }
219
220 /*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
223 *
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
238 */
239 struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243 };
244
245 /*
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
258 */
259 static long region_add(struct resv_map *resv, long f, long t)
260 {
261 struct list_head *head = &resv->regions;
262 struct file_region *rg, *nrg, *trg;
263 long add = 0;
264
265 spin_lock(&resv->lock);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
320
321 add += (nrg->from - f); /* Added to beginning of region */
322 nrg->from = f;
323 add += t - nrg->to; /* Added to end of region */
324 nrg->to = t;
325
326 out_locked:
327 resv->adds_in_progress--;
328 spin_unlock(&resv->lock);
329 VM_BUG_ON(add < 0);
330 return add;
331 }
332
333 /*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
354 */
355 static long region_chg(struct resv_map *resv, long f, long t)
356 {
357 struct list_head *head = &resv->regions;
358 struct file_region *rg, *nrg = NULL;
359 long chg = 0;
360
361 retry:
362 spin_lock(&resv->lock);
363 retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 if (!trg) {
380 kfree(nrg);
381 return -ENOMEM;
382 }
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
399 if (!nrg) {
400 resv->adds_in_progress--;
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
411
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
427 goto out;
428
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
438
439 out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444 out_nrg:
445 spin_unlock(&resv->lock);
446 return chg;
447 }
448
449 /*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460 static void region_abort(struct resv_map *resv, long f, long t)
461 {
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466 }
467
468 /*
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
481 */
482 static long region_del(struct resv_map *resv, long f, long t)
483 {
484 struct list_head *head = &resv->regions;
485 struct file_region *rg, *trg;
486 struct file_region *nrg = NULL;
487 long del = 0;
488
489 retry:
490 spin_lock(&resv->lock);
491 list_for_each_entry_safe(rg, trg, head, link) {
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500 continue;
501
502 if (rg->from >= t)
503 break;
504
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
518
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
539 break;
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
556 }
557
558 spin_unlock(&resv->lock);
559 kfree(nrg);
560 return del;
561 }
562
563 /*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
572 void hugetlb_fix_reserve_counts(struct inode *inode)
573 {
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578 if (rsv_adjust) {
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583 }
584
585 /*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
589 static long region_count(struct resv_map *resv, long f, long t)
590 {
591 struct list_head *head = &resv->regions;
592 struct file_region *rg;
593 long chg = 0;
594
595 spin_lock(&resv->lock);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
598 long seg_from;
599 long seg_to;
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
611 spin_unlock(&resv->lock);
612
613 return chg;
614 }
615
616 /*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
620 static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
622 {
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
625 }
626
627 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629 {
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631 }
632 EXPORT_SYMBOL_GPL(linear_hugepage_index);
633
634 /*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639 {
640 struct hstate *hstate;
641
642 if (!is_vm_hugetlb_page(vma))
643 return PAGE_SIZE;
644
645 hstate = hstate_vma(vma);
646
647 return 1UL << huge_page_shift(hstate);
648 }
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650
651 /*
652 * Return the page size being used by the MMU to back a VMA. In the majority
653 * of cases, the page size used by the kernel matches the MMU size. On
654 * architectures where it differs, an architecture-specific version of this
655 * function is required.
656 */
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659 {
660 return vma_kernel_pagesize(vma);
661 }
662 #endif
663
664 /*
665 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
666 * bits of the reservation map pointer, which are always clear due to
667 * alignment.
668 */
669 #define HPAGE_RESV_OWNER (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672
673 /*
674 * These helpers are used to track how many pages are reserved for
675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676 * is guaranteed to have their future faults succeed.
677 *
678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679 * the reserve counters are updated with the hugetlb_lock held. It is safe
680 * to reset the VMA at fork() time as it is not in use yet and there is no
681 * chance of the global counters getting corrupted as a result of the values.
682 *
683 * The private mapping reservation is represented in a subtly different
684 * manner to a shared mapping. A shared mapping has a region map associated
685 * with the underlying file, this region map represents the backing file
686 * pages which have ever had a reservation assigned which this persists even
687 * after the page is instantiated. A private mapping has a region map
688 * associated with the original mmap which is attached to all VMAs which
689 * reference it, this region map represents those offsets which have consumed
690 * reservation ie. where pages have been instantiated.
691 */
692 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693 {
694 return (unsigned long)vma->vm_private_data;
695 }
696
697 static void set_vma_private_data(struct vm_area_struct *vma,
698 unsigned long value)
699 {
700 vma->vm_private_data = (void *)value;
701 }
702
703 struct resv_map *resv_map_alloc(void)
704 {
705 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707
708 if (!resv_map || !rg) {
709 kfree(resv_map);
710 kfree(rg);
711 return NULL;
712 }
713
714 kref_init(&resv_map->refs);
715 spin_lock_init(&resv_map->lock);
716 INIT_LIST_HEAD(&resv_map->regions);
717
718 resv_map->adds_in_progress = 0;
719
720 INIT_LIST_HEAD(&resv_map->region_cache);
721 list_add(&rg->link, &resv_map->region_cache);
722 resv_map->region_cache_count = 1;
723
724 return resv_map;
725 }
726
727 void resv_map_release(struct kref *ref)
728 {
729 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730 struct list_head *head = &resv_map->region_cache;
731 struct file_region *rg, *trg;
732
733 /* Clear out any active regions before we release the map. */
734 region_del(resv_map, 0, LONG_MAX);
735
736 /* ... and any entries left in the cache */
737 list_for_each_entry_safe(rg, trg, head, link) {
738 list_del(&rg->link);
739 kfree(rg);
740 }
741
742 VM_BUG_ON(resv_map->adds_in_progress);
743
744 kfree(resv_map);
745 }
746
747 static inline struct resv_map *inode_resv_map(struct inode *inode)
748 {
749 return inode->i_mapping->private_data;
750 }
751
752 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753 {
754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 if (vma->vm_flags & VM_MAYSHARE) {
756 struct address_space *mapping = vma->vm_file->f_mapping;
757 struct inode *inode = mapping->host;
758
759 return inode_resv_map(inode);
760
761 } else {
762 return (struct resv_map *)(get_vma_private_data(vma) &
763 ~HPAGE_RESV_MASK);
764 }
765 }
766
767 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768 {
769 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771
772 set_vma_private_data(vma, (get_vma_private_data(vma) &
773 HPAGE_RESV_MASK) | (unsigned long)map);
774 }
775
776 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777 {
778 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780
781 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 }
783
784 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785 {
786 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787
788 return (get_vma_private_data(vma) & flag) != 0;
789 }
790
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793 {
794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795 if (!(vma->vm_flags & VM_MAYSHARE))
796 vma->vm_private_data = (void *)0;
797 }
798
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801 {
802 if (vma->vm_flags & VM_NORESERVE) {
803 /*
804 * This address is already reserved by other process(chg == 0),
805 * so, we should decrement reserved count. Without decrementing,
806 * reserve count remains after releasing inode, because this
807 * allocated page will go into page cache and is regarded as
808 * coming from reserved pool in releasing step. Currently, we
809 * don't have any other solution to deal with this situation
810 * properly, so add work-around here.
811 */
812 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813 return true;
814 else
815 return false;
816 }
817
818 /* Shared mappings always use reserves */
819 if (vma->vm_flags & VM_MAYSHARE) {
820 /*
821 * We know VM_NORESERVE is not set. Therefore, there SHOULD
822 * be a region map for all pages. The only situation where
823 * there is no region map is if a hole was punched via
824 * fallocate. In this case, there really are no reverves to
825 * use. This situation is indicated if chg != 0.
826 */
827 if (chg)
828 return false;
829 else
830 return true;
831 }
832
833 /*
834 * Only the process that called mmap() has reserves for
835 * private mappings.
836 */
837 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 /*
839 * Like the shared case above, a hole punch or truncate
840 * could have been performed on the private mapping.
841 * Examine the value of chg to determine if reserves
842 * actually exist or were previously consumed.
843 * Very Subtle - The value of chg comes from a previous
844 * call to vma_needs_reserves(). The reserve map for
845 * private mappings has different (opposite) semantics
846 * than that of shared mappings. vma_needs_reserves()
847 * has already taken this difference in semantics into
848 * account. Therefore, the meaning of chg is the same
849 * as in the shared case above. Code could easily be
850 * combined, but keeping it separate draws attention to
851 * subtle differences.
852 */
853 if (chg)
854 return false;
855 else
856 return true;
857 }
858
859 return false;
860 }
861
862 static void enqueue_huge_page(struct hstate *h, struct page *page)
863 {
864 int nid = page_to_nid(page);
865 list_move(&page->lru, &h->hugepage_freelists[nid]);
866 h->free_huge_pages++;
867 h->free_huge_pages_node[nid]++;
868 }
869
870 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
871 {
872 struct page *page;
873
874 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
875 if (!is_migrate_isolate_page(page))
876 break;
877 /*
878 * if 'non-isolated free hugepage' not found on the list,
879 * the allocation fails.
880 */
881 if (&h->hugepage_freelists[nid] == &page->lru)
882 return NULL;
883 list_move(&page->lru, &h->hugepage_activelist);
884 set_page_refcounted(page);
885 h->free_huge_pages--;
886 h->free_huge_pages_node[nid]--;
887 return page;
888 }
889
890 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
891 {
892 struct page *page;
893 int node;
894
895 if (nid != NUMA_NO_NODE)
896 return dequeue_huge_page_node_exact(h, nid);
897
898 for_each_online_node(node) {
899 page = dequeue_huge_page_node_exact(h, node);
900 if (page)
901 return page;
902 }
903 return NULL;
904 }
905
906 /* Movability of hugepages depends on migration support. */
907 static inline gfp_t htlb_alloc_mask(struct hstate *h)
908 {
909 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
910 return GFP_HIGHUSER_MOVABLE;
911 else
912 return GFP_HIGHUSER;
913 }
914
915 static struct page *dequeue_huge_page_vma(struct hstate *h,
916 struct vm_area_struct *vma,
917 unsigned long address, int avoid_reserve,
918 long chg)
919 {
920 struct page *page = NULL;
921 struct mempolicy *mpol;
922 nodemask_t *nodemask;
923 gfp_t gfp_mask;
924 int nid;
925 struct zonelist *zonelist;
926 struct zone *zone;
927 struct zoneref *z;
928 unsigned int cpuset_mems_cookie;
929
930 /*
931 * A child process with MAP_PRIVATE mappings created by their parent
932 * have no page reserves. This check ensures that reservations are
933 * not "stolen". The child may still get SIGKILLed
934 */
935 if (!vma_has_reserves(vma, chg) &&
936 h->free_huge_pages - h->resv_huge_pages == 0)
937 goto err;
938
939 /* If reserves cannot be used, ensure enough pages are in the pool */
940 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
941 goto err;
942
943 retry_cpuset:
944 cpuset_mems_cookie = read_mems_allowed_begin();
945 gfp_mask = htlb_alloc_mask(h);
946 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
947 zonelist = node_zonelist(nid, gfp_mask);
948
949 for_each_zone_zonelist_nodemask(zone, z, zonelist,
950 MAX_NR_ZONES - 1, nodemask) {
951 if (cpuset_zone_allowed(zone, gfp_mask)) {
952 page = dequeue_huge_page_node(h, zone_to_nid(zone));
953 if (page) {
954 if (avoid_reserve)
955 break;
956 if (!vma_has_reserves(vma, chg))
957 break;
958
959 SetPagePrivate(page);
960 h->resv_huge_pages--;
961 break;
962 }
963 }
964 }
965
966 mpol_cond_put(mpol);
967 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
968 goto retry_cpuset;
969 return page;
970
971 err:
972 return NULL;
973 }
974
975 /*
976 * common helper functions for hstate_next_node_to_{alloc|free}.
977 * We may have allocated or freed a huge page based on a different
978 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
979 * be outside of *nodes_allowed. Ensure that we use an allowed
980 * node for alloc or free.
981 */
982 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
983 {
984 nid = next_node_in(nid, *nodes_allowed);
985 VM_BUG_ON(nid >= MAX_NUMNODES);
986
987 return nid;
988 }
989
990 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
991 {
992 if (!node_isset(nid, *nodes_allowed))
993 nid = next_node_allowed(nid, nodes_allowed);
994 return nid;
995 }
996
997 /*
998 * returns the previously saved node ["this node"] from which to
999 * allocate a persistent huge page for the pool and advance the
1000 * next node from which to allocate, handling wrap at end of node
1001 * mask.
1002 */
1003 static int hstate_next_node_to_alloc(struct hstate *h,
1004 nodemask_t *nodes_allowed)
1005 {
1006 int nid;
1007
1008 VM_BUG_ON(!nodes_allowed);
1009
1010 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1011 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1012
1013 return nid;
1014 }
1015
1016 /*
1017 * helper for free_pool_huge_page() - return the previously saved
1018 * node ["this node"] from which to free a huge page. Advance the
1019 * next node id whether or not we find a free huge page to free so
1020 * that the next attempt to free addresses the next node.
1021 */
1022 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1023 {
1024 int nid;
1025
1026 VM_BUG_ON(!nodes_allowed);
1027
1028 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1029 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1030
1031 return nid;
1032 }
1033
1034 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1035 for (nr_nodes = nodes_weight(*mask); \
1036 nr_nodes > 0 && \
1037 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1038 nr_nodes--)
1039
1040 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1041 for (nr_nodes = nodes_weight(*mask); \
1042 nr_nodes > 0 && \
1043 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1044 nr_nodes--)
1045
1046 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1047 static void destroy_compound_gigantic_page(struct page *page,
1048 unsigned int order)
1049 {
1050 int i;
1051 int nr_pages = 1 << order;
1052 struct page *p = page + 1;
1053
1054 atomic_set(compound_mapcount_ptr(page), 0);
1055 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1056 clear_compound_head(p);
1057 set_page_refcounted(p);
1058 }
1059
1060 set_compound_order(page, 0);
1061 __ClearPageHead(page);
1062 }
1063
1064 static void free_gigantic_page(struct page *page, unsigned int order)
1065 {
1066 free_contig_range(page_to_pfn(page), 1 << order);
1067 }
1068
1069 static int __alloc_gigantic_page(unsigned long start_pfn,
1070 unsigned long nr_pages)
1071 {
1072 unsigned long end_pfn = start_pfn + nr_pages;
1073 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1074 GFP_KERNEL);
1075 }
1076
1077 static bool pfn_range_valid_gigantic(struct zone *z,
1078 unsigned long start_pfn, unsigned long nr_pages)
1079 {
1080 unsigned long i, end_pfn = start_pfn + nr_pages;
1081 struct page *page;
1082
1083 for (i = start_pfn; i < end_pfn; i++) {
1084 if (!pfn_valid(i))
1085 return false;
1086
1087 page = pfn_to_page(i);
1088
1089 if (page_zone(page) != z)
1090 return false;
1091
1092 if (PageReserved(page))
1093 return false;
1094
1095 if (page_count(page) > 0)
1096 return false;
1097
1098 if (PageHuge(page))
1099 return false;
1100 }
1101
1102 return true;
1103 }
1104
1105 static bool zone_spans_last_pfn(const struct zone *zone,
1106 unsigned long start_pfn, unsigned long nr_pages)
1107 {
1108 unsigned long last_pfn = start_pfn + nr_pages - 1;
1109 return zone_spans_pfn(zone, last_pfn);
1110 }
1111
1112 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1113 {
1114 unsigned long nr_pages = 1 << order;
1115 unsigned long ret, pfn, flags;
1116 struct zone *z;
1117
1118 z = NODE_DATA(nid)->node_zones;
1119 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1120 spin_lock_irqsave(&z->lock, flags);
1121
1122 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1123 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1124 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1125 /*
1126 * We release the zone lock here because
1127 * alloc_contig_range() will also lock the zone
1128 * at some point. If there's an allocation
1129 * spinning on this lock, it may win the race
1130 * and cause alloc_contig_range() to fail...
1131 */
1132 spin_unlock_irqrestore(&z->lock, flags);
1133 ret = __alloc_gigantic_page(pfn, nr_pages);
1134 if (!ret)
1135 return pfn_to_page(pfn);
1136 spin_lock_irqsave(&z->lock, flags);
1137 }
1138 pfn += nr_pages;
1139 }
1140
1141 spin_unlock_irqrestore(&z->lock, flags);
1142 }
1143
1144 return NULL;
1145 }
1146
1147 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1148 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1149
1150 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1151 {
1152 struct page *page;
1153
1154 page = alloc_gigantic_page(nid, huge_page_order(h));
1155 if (page) {
1156 prep_compound_gigantic_page(page, huge_page_order(h));
1157 prep_new_huge_page(h, page, nid);
1158 }
1159
1160 return page;
1161 }
1162
1163 static int alloc_fresh_gigantic_page(struct hstate *h,
1164 nodemask_t *nodes_allowed)
1165 {
1166 struct page *page = NULL;
1167 int nr_nodes, node;
1168
1169 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1170 page = alloc_fresh_gigantic_page_node(h, node);
1171 if (page)
1172 return 1;
1173 }
1174
1175 return 0;
1176 }
1177
1178 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1179 static inline bool gigantic_page_supported(void) { return false; }
1180 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1181 static inline void destroy_compound_gigantic_page(struct page *page,
1182 unsigned int order) { }
1183 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1184 nodemask_t *nodes_allowed) { return 0; }
1185 #endif
1186
1187 static void update_and_free_page(struct hstate *h, struct page *page)
1188 {
1189 int i;
1190
1191 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1192 return;
1193
1194 h->nr_huge_pages--;
1195 h->nr_huge_pages_node[page_to_nid(page)]--;
1196 for (i = 0; i < pages_per_huge_page(h); i++) {
1197 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1198 1 << PG_referenced | 1 << PG_dirty |
1199 1 << PG_active | 1 << PG_private |
1200 1 << PG_writeback);
1201 }
1202 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1203 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1204 set_page_refcounted(page);
1205 if (hstate_is_gigantic(h)) {
1206 destroy_compound_gigantic_page(page, huge_page_order(h));
1207 free_gigantic_page(page, huge_page_order(h));
1208 } else {
1209 __free_pages(page, huge_page_order(h));
1210 }
1211 }
1212
1213 struct hstate *size_to_hstate(unsigned long size)
1214 {
1215 struct hstate *h;
1216
1217 for_each_hstate(h) {
1218 if (huge_page_size(h) == size)
1219 return h;
1220 }
1221 return NULL;
1222 }
1223
1224 /*
1225 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1226 * to hstate->hugepage_activelist.)
1227 *
1228 * This function can be called for tail pages, but never returns true for them.
1229 */
1230 bool page_huge_active(struct page *page)
1231 {
1232 VM_BUG_ON_PAGE(!PageHuge(page), page);
1233 return PageHead(page) && PagePrivate(&page[1]);
1234 }
1235
1236 /* never called for tail page */
1237 static void set_page_huge_active(struct page *page)
1238 {
1239 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1240 SetPagePrivate(&page[1]);
1241 }
1242
1243 static void clear_page_huge_active(struct page *page)
1244 {
1245 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1246 ClearPagePrivate(&page[1]);
1247 }
1248
1249 void free_huge_page(struct page *page)
1250 {
1251 /*
1252 * Can't pass hstate in here because it is called from the
1253 * compound page destructor.
1254 */
1255 struct hstate *h = page_hstate(page);
1256 int nid = page_to_nid(page);
1257 struct hugepage_subpool *spool =
1258 (struct hugepage_subpool *)page_private(page);
1259 bool restore_reserve;
1260
1261 set_page_private(page, 0);
1262 page->mapping = NULL;
1263 VM_BUG_ON_PAGE(page_count(page), page);
1264 VM_BUG_ON_PAGE(page_mapcount(page), page);
1265 restore_reserve = PagePrivate(page);
1266 ClearPagePrivate(page);
1267
1268 /*
1269 * A return code of zero implies that the subpool will be under its
1270 * minimum size if the reservation is not restored after page is free.
1271 * Therefore, force restore_reserve operation.
1272 */
1273 if (hugepage_subpool_put_pages(spool, 1) == 0)
1274 restore_reserve = true;
1275
1276 spin_lock(&hugetlb_lock);
1277 clear_page_huge_active(page);
1278 hugetlb_cgroup_uncharge_page(hstate_index(h),
1279 pages_per_huge_page(h), page);
1280 if (restore_reserve)
1281 h->resv_huge_pages++;
1282
1283 if (h->surplus_huge_pages_node[nid]) {
1284 /* remove the page from active list */
1285 list_del(&page->lru);
1286 update_and_free_page(h, page);
1287 h->surplus_huge_pages--;
1288 h->surplus_huge_pages_node[nid]--;
1289 } else {
1290 arch_clear_hugepage_flags(page);
1291 enqueue_huge_page(h, page);
1292 }
1293 spin_unlock(&hugetlb_lock);
1294 }
1295
1296 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1297 {
1298 INIT_LIST_HEAD(&page->lru);
1299 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1300 spin_lock(&hugetlb_lock);
1301 set_hugetlb_cgroup(page, NULL);
1302 h->nr_huge_pages++;
1303 h->nr_huge_pages_node[nid]++;
1304 spin_unlock(&hugetlb_lock);
1305 put_page(page); /* free it into the hugepage allocator */
1306 }
1307
1308 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1309 {
1310 int i;
1311 int nr_pages = 1 << order;
1312 struct page *p = page + 1;
1313
1314 /* we rely on prep_new_huge_page to set the destructor */
1315 set_compound_order(page, order);
1316 __ClearPageReserved(page);
1317 __SetPageHead(page);
1318 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1319 /*
1320 * For gigantic hugepages allocated through bootmem at
1321 * boot, it's safer to be consistent with the not-gigantic
1322 * hugepages and clear the PG_reserved bit from all tail pages
1323 * too. Otherwse drivers using get_user_pages() to access tail
1324 * pages may get the reference counting wrong if they see
1325 * PG_reserved set on a tail page (despite the head page not
1326 * having PG_reserved set). Enforcing this consistency between
1327 * head and tail pages allows drivers to optimize away a check
1328 * on the head page when they need know if put_page() is needed
1329 * after get_user_pages().
1330 */
1331 __ClearPageReserved(p);
1332 set_page_count(p, 0);
1333 set_compound_head(p, page);
1334 }
1335 atomic_set(compound_mapcount_ptr(page), -1);
1336 }
1337
1338 /*
1339 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1340 * transparent huge pages. See the PageTransHuge() documentation for more
1341 * details.
1342 */
1343 int PageHuge(struct page *page)
1344 {
1345 if (!PageCompound(page))
1346 return 0;
1347
1348 page = compound_head(page);
1349 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1350 }
1351 EXPORT_SYMBOL_GPL(PageHuge);
1352
1353 /*
1354 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1355 * normal or transparent huge pages.
1356 */
1357 int PageHeadHuge(struct page *page_head)
1358 {
1359 if (!PageHead(page_head))
1360 return 0;
1361
1362 return get_compound_page_dtor(page_head) == free_huge_page;
1363 }
1364
1365 pgoff_t __basepage_index(struct page *page)
1366 {
1367 struct page *page_head = compound_head(page);
1368 pgoff_t index = page_index(page_head);
1369 unsigned long compound_idx;
1370
1371 if (!PageHuge(page_head))
1372 return page_index(page);
1373
1374 if (compound_order(page_head) >= MAX_ORDER)
1375 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1376 else
1377 compound_idx = page - page_head;
1378
1379 return (index << compound_order(page_head)) + compound_idx;
1380 }
1381
1382 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1383 {
1384 struct page *page;
1385
1386 page = __alloc_pages_node(nid,
1387 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1388 __GFP_REPEAT|__GFP_NOWARN,
1389 huge_page_order(h));
1390 if (page) {
1391 prep_new_huge_page(h, page, nid);
1392 }
1393
1394 return page;
1395 }
1396
1397 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1398 {
1399 struct page *page;
1400 int nr_nodes, node;
1401 int ret = 0;
1402
1403 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1404 page = alloc_fresh_huge_page_node(h, node);
1405 if (page) {
1406 ret = 1;
1407 break;
1408 }
1409 }
1410
1411 if (ret)
1412 count_vm_event(HTLB_BUDDY_PGALLOC);
1413 else
1414 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1415
1416 return ret;
1417 }
1418
1419 /*
1420 * Free huge page from pool from next node to free.
1421 * Attempt to keep persistent huge pages more or less
1422 * balanced over allowed nodes.
1423 * Called with hugetlb_lock locked.
1424 */
1425 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1426 bool acct_surplus)
1427 {
1428 int nr_nodes, node;
1429 int ret = 0;
1430
1431 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1432 /*
1433 * If we're returning unused surplus pages, only examine
1434 * nodes with surplus pages.
1435 */
1436 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1437 !list_empty(&h->hugepage_freelists[node])) {
1438 struct page *page =
1439 list_entry(h->hugepage_freelists[node].next,
1440 struct page, lru);
1441 list_del(&page->lru);
1442 h->free_huge_pages--;
1443 h->free_huge_pages_node[node]--;
1444 if (acct_surplus) {
1445 h->surplus_huge_pages--;
1446 h->surplus_huge_pages_node[node]--;
1447 }
1448 update_and_free_page(h, page);
1449 ret = 1;
1450 break;
1451 }
1452 }
1453
1454 return ret;
1455 }
1456
1457 /*
1458 * Dissolve a given free hugepage into free buddy pages. This function does
1459 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1460 * number of free hugepages would be reduced below the number of reserved
1461 * hugepages.
1462 */
1463 static int dissolve_free_huge_page(struct page *page)
1464 {
1465 int rc = 0;
1466
1467 spin_lock(&hugetlb_lock);
1468 if (PageHuge(page) && !page_count(page)) {
1469 struct page *head = compound_head(page);
1470 struct hstate *h = page_hstate(head);
1471 int nid = page_to_nid(head);
1472 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1473 rc = -EBUSY;
1474 goto out;
1475 }
1476 list_del(&head->lru);
1477 h->free_huge_pages--;
1478 h->free_huge_pages_node[nid]--;
1479 h->max_huge_pages--;
1480 update_and_free_page(h, head);
1481 }
1482 out:
1483 spin_unlock(&hugetlb_lock);
1484 return rc;
1485 }
1486
1487 /*
1488 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1489 * make specified memory blocks removable from the system.
1490 * Note that this will dissolve a free gigantic hugepage completely, if any
1491 * part of it lies within the given range.
1492 * Also note that if dissolve_free_huge_page() returns with an error, all
1493 * free hugepages that were dissolved before that error are lost.
1494 */
1495 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1496 {
1497 unsigned long pfn;
1498 struct page *page;
1499 int rc = 0;
1500
1501 if (!hugepages_supported())
1502 return rc;
1503
1504 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1505 page = pfn_to_page(pfn);
1506 if (PageHuge(page) && !page_count(page)) {
1507 rc = dissolve_free_huge_page(page);
1508 if (rc)
1509 break;
1510 }
1511 }
1512
1513 return rc;
1514 }
1515
1516 /*
1517 * There are 3 ways this can get called:
1518 * 1. With vma+addr: we use the VMA's memory policy
1519 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1520 * page from any node, and let the buddy allocator itself figure
1521 * it out.
1522 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1523 * strictly from 'nid'
1524 */
1525 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1526 struct vm_area_struct *vma, unsigned long addr, int nid)
1527 {
1528 int order = huge_page_order(h);
1529 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1530 unsigned int cpuset_mems_cookie;
1531
1532 /*
1533 * We need a VMA to get a memory policy. If we do not
1534 * have one, we use the 'nid' argument.
1535 *
1536 * The mempolicy stuff below has some non-inlined bits
1537 * and calls ->vm_ops. That makes it hard to optimize at
1538 * compile-time, even when NUMA is off and it does
1539 * nothing. This helps the compiler optimize it out.
1540 */
1541 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1542 /*
1543 * If a specific node is requested, make sure to
1544 * get memory from there, but only when a node
1545 * is explicitly specified.
1546 */
1547 if (nid != NUMA_NO_NODE)
1548 gfp |= __GFP_THISNODE;
1549 /*
1550 * Make sure to call something that can handle
1551 * nid=NUMA_NO_NODE
1552 */
1553 return alloc_pages_node(nid, gfp, order);
1554 }
1555
1556 /*
1557 * OK, so we have a VMA. Fetch the mempolicy and try to
1558 * allocate a huge page with it. We will only reach this
1559 * when CONFIG_NUMA=y.
1560 */
1561 do {
1562 struct page *page;
1563 struct mempolicy *mpol;
1564 int nid;
1565 nodemask_t *nodemask;
1566
1567 cpuset_mems_cookie = read_mems_allowed_begin();
1568 nid = huge_node(vma, addr, gfp, &mpol, &nodemask);
1569 mpol_cond_put(mpol);
1570 page = __alloc_pages_nodemask(gfp, order, nid, nodemask);
1571 if (page)
1572 return page;
1573 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1574
1575 return NULL;
1576 }
1577
1578 /*
1579 * There are two ways to allocate a huge page:
1580 * 1. When you have a VMA and an address (like a fault)
1581 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1582 *
1583 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1584 * this case which signifies that the allocation should be done with
1585 * respect for the VMA's memory policy.
1586 *
1587 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1588 * implies that memory policies will not be taken in to account.
1589 */
1590 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1591 struct vm_area_struct *vma, unsigned long addr, int nid)
1592 {
1593 struct page *page;
1594 unsigned int r_nid;
1595
1596 if (hstate_is_gigantic(h))
1597 return NULL;
1598
1599 /*
1600 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1601 * This makes sure the caller is picking _one_ of the modes with which
1602 * we can call this function, not both.
1603 */
1604 if (vma || (addr != -1)) {
1605 VM_WARN_ON_ONCE(addr == -1);
1606 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1607 }
1608 /*
1609 * Assume we will successfully allocate the surplus page to
1610 * prevent racing processes from causing the surplus to exceed
1611 * overcommit
1612 *
1613 * This however introduces a different race, where a process B
1614 * tries to grow the static hugepage pool while alloc_pages() is
1615 * called by process A. B will only examine the per-node
1616 * counters in determining if surplus huge pages can be
1617 * converted to normal huge pages in adjust_pool_surplus(). A
1618 * won't be able to increment the per-node counter, until the
1619 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1620 * no more huge pages can be converted from surplus to normal
1621 * state (and doesn't try to convert again). Thus, we have a
1622 * case where a surplus huge page exists, the pool is grown, and
1623 * the surplus huge page still exists after, even though it
1624 * should just have been converted to a normal huge page. This
1625 * does not leak memory, though, as the hugepage will be freed
1626 * once it is out of use. It also does not allow the counters to
1627 * go out of whack in adjust_pool_surplus() as we don't modify
1628 * the node values until we've gotten the hugepage and only the
1629 * per-node value is checked there.
1630 */
1631 spin_lock(&hugetlb_lock);
1632 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1633 spin_unlock(&hugetlb_lock);
1634 return NULL;
1635 } else {
1636 h->nr_huge_pages++;
1637 h->surplus_huge_pages++;
1638 }
1639 spin_unlock(&hugetlb_lock);
1640
1641 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1642
1643 spin_lock(&hugetlb_lock);
1644 if (page) {
1645 INIT_LIST_HEAD(&page->lru);
1646 r_nid = page_to_nid(page);
1647 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1648 set_hugetlb_cgroup(page, NULL);
1649 /*
1650 * We incremented the global counters already
1651 */
1652 h->nr_huge_pages_node[r_nid]++;
1653 h->surplus_huge_pages_node[r_nid]++;
1654 __count_vm_event(HTLB_BUDDY_PGALLOC);
1655 } else {
1656 h->nr_huge_pages--;
1657 h->surplus_huge_pages--;
1658 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1659 }
1660 spin_unlock(&hugetlb_lock);
1661
1662 return page;
1663 }
1664
1665 /*
1666 * Allocate a huge page from 'nid'. Note, 'nid' may be
1667 * NUMA_NO_NODE, which means that it may be allocated
1668 * anywhere.
1669 */
1670 static
1671 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1672 {
1673 unsigned long addr = -1;
1674
1675 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1676 }
1677
1678 /*
1679 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1680 */
1681 static
1682 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1683 struct vm_area_struct *vma, unsigned long addr)
1684 {
1685 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1686 }
1687
1688 /*
1689 * This allocation function is useful in the context where vma is irrelevant.
1690 * E.g. soft-offlining uses this function because it only cares physical
1691 * address of error page.
1692 */
1693 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1694 {
1695 struct page *page = NULL;
1696
1697 spin_lock(&hugetlb_lock);
1698 if (h->free_huge_pages - h->resv_huge_pages > 0)
1699 page = dequeue_huge_page_node(h, nid);
1700 spin_unlock(&hugetlb_lock);
1701
1702 if (!page)
1703 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1704
1705 return page;
1706 }
1707
1708 /*
1709 * Increase the hugetlb pool such that it can accommodate a reservation
1710 * of size 'delta'.
1711 */
1712 static int gather_surplus_pages(struct hstate *h, int delta)
1713 {
1714 struct list_head surplus_list;
1715 struct page *page, *tmp;
1716 int ret, i;
1717 int needed, allocated;
1718 bool alloc_ok = true;
1719
1720 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1721 if (needed <= 0) {
1722 h->resv_huge_pages += delta;
1723 return 0;
1724 }
1725
1726 allocated = 0;
1727 INIT_LIST_HEAD(&surplus_list);
1728
1729 ret = -ENOMEM;
1730 retry:
1731 spin_unlock(&hugetlb_lock);
1732 for (i = 0; i < needed; i++) {
1733 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1734 if (!page) {
1735 alloc_ok = false;
1736 break;
1737 }
1738 list_add(&page->lru, &surplus_list);
1739 }
1740 allocated += i;
1741
1742 /*
1743 * After retaking hugetlb_lock, we need to recalculate 'needed'
1744 * because either resv_huge_pages or free_huge_pages may have changed.
1745 */
1746 spin_lock(&hugetlb_lock);
1747 needed = (h->resv_huge_pages + delta) -
1748 (h->free_huge_pages + allocated);
1749 if (needed > 0) {
1750 if (alloc_ok)
1751 goto retry;
1752 /*
1753 * We were not able to allocate enough pages to
1754 * satisfy the entire reservation so we free what
1755 * we've allocated so far.
1756 */
1757 goto free;
1758 }
1759 /*
1760 * The surplus_list now contains _at_least_ the number of extra pages
1761 * needed to accommodate the reservation. Add the appropriate number
1762 * of pages to the hugetlb pool and free the extras back to the buddy
1763 * allocator. Commit the entire reservation here to prevent another
1764 * process from stealing the pages as they are added to the pool but
1765 * before they are reserved.
1766 */
1767 needed += allocated;
1768 h->resv_huge_pages += delta;
1769 ret = 0;
1770
1771 /* Free the needed pages to the hugetlb pool */
1772 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1773 if ((--needed) < 0)
1774 break;
1775 /*
1776 * This page is now managed by the hugetlb allocator and has
1777 * no users -- drop the buddy allocator's reference.
1778 */
1779 put_page_testzero(page);
1780 VM_BUG_ON_PAGE(page_count(page), page);
1781 enqueue_huge_page(h, page);
1782 }
1783 free:
1784 spin_unlock(&hugetlb_lock);
1785
1786 /* Free unnecessary surplus pages to the buddy allocator */
1787 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1788 put_page(page);
1789 spin_lock(&hugetlb_lock);
1790
1791 return ret;
1792 }
1793
1794 /*
1795 * This routine has two main purposes:
1796 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1797 * in unused_resv_pages. This corresponds to the prior adjustments made
1798 * to the associated reservation map.
1799 * 2) Free any unused surplus pages that may have been allocated to satisfy
1800 * the reservation. As many as unused_resv_pages may be freed.
1801 *
1802 * Called with hugetlb_lock held. However, the lock could be dropped (and
1803 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1804 * we must make sure nobody else can claim pages we are in the process of
1805 * freeing. Do this by ensuring resv_huge_page always is greater than the
1806 * number of huge pages we plan to free when dropping the lock.
1807 */
1808 static void return_unused_surplus_pages(struct hstate *h,
1809 unsigned long unused_resv_pages)
1810 {
1811 unsigned long nr_pages;
1812
1813 /* Cannot return gigantic pages currently */
1814 if (hstate_is_gigantic(h))
1815 goto out;
1816
1817 /*
1818 * Part (or even all) of the reservation could have been backed
1819 * by pre-allocated pages. Only free surplus pages.
1820 */
1821 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1822
1823 /*
1824 * We want to release as many surplus pages as possible, spread
1825 * evenly across all nodes with memory. Iterate across these nodes
1826 * until we can no longer free unreserved surplus pages. This occurs
1827 * when the nodes with surplus pages have no free pages.
1828 * free_pool_huge_page() will balance the the freed pages across the
1829 * on-line nodes with memory and will handle the hstate accounting.
1830 *
1831 * Note that we decrement resv_huge_pages as we free the pages. If
1832 * we drop the lock, resv_huge_pages will still be sufficiently large
1833 * to cover subsequent pages we may free.
1834 */
1835 while (nr_pages--) {
1836 h->resv_huge_pages--;
1837 unused_resv_pages--;
1838 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1839 goto out;
1840 cond_resched_lock(&hugetlb_lock);
1841 }
1842
1843 out:
1844 /* Fully uncommit the reservation */
1845 h->resv_huge_pages -= unused_resv_pages;
1846 }
1847
1848
1849 /*
1850 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1851 * are used by the huge page allocation routines to manage reservations.
1852 *
1853 * vma_needs_reservation is called to determine if the huge page at addr
1854 * within the vma has an associated reservation. If a reservation is
1855 * needed, the value 1 is returned. The caller is then responsible for
1856 * managing the global reservation and subpool usage counts. After
1857 * the huge page has been allocated, vma_commit_reservation is called
1858 * to add the page to the reservation map. If the page allocation fails,
1859 * the reservation must be ended instead of committed. vma_end_reservation
1860 * is called in such cases.
1861 *
1862 * In the normal case, vma_commit_reservation returns the same value
1863 * as the preceding vma_needs_reservation call. The only time this
1864 * is not the case is if a reserve map was changed between calls. It
1865 * is the responsibility of the caller to notice the difference and
1866 * take appropriate action.
1867 *
1868 * vma_add_reservation is used in error paths where a reservation must
1869 * be restored when a newly allocated huge page must be freed. It is
1870 * to be called after calling vma_needs_reservation to determine if a
1871 * reservation exists.
1872 */
1873 enum vma_resv_mode {
1874 VMA_NEEDS_RESV,
1875 VMA_COMMIT_RESV,
1876 VMA_END_RESV,
1877 VMA_ADD_RESV,
1878 };
1879 static long __vma_reservation_common(struct hstate *h,
1880 struct vm_area_struct *vma, unsigned long addr,
1881 enum vma_resv_mode mode)
1882 {
1883 struct resv_map *resv;
1884 pgoff_t idx;
1885 long ret;
1886
1887 resv = vma_resv_map(vma);
1888 if (!resv)
1889 return 1;
1890
1891 idx = vma_hugecache_offset(h, vma, addr);
1892 switch (mode) {
1893 case VMA_NEEDS_RESV:
1894 ret = region_chg(resv, idx, idx + 1);
1895 break;
1896 case VMA_COMMIT_RESV:
1897 ret = region_add(resv, idx, idx + 1);
1898 break;
1899 case VMA_END_RESV:
1900 region_abort(resv, idx, idx + 1);
1901 ret = 0;
1902 break;
1903 case VMA_ADD_RESV:
1904 if (vma->vm_flags & VM_MAYSHARE)
1905 ret = region_add(resv, idx, idx + 1);
1906 else {
1907 region_abort(resv, idx, idx + 1);
1908 ret = region_del(resv, idx, idx + 1);
1909 }
1910 break;
1911 default:
1912 BUG();
1913 }
1914
1915 if (vma->vm_flags & VM_MAYSHARE)
1916 return ret;
1917 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1918 /*
1919 * In most cases, reserves always exist for private mappings.
1920 * However, a file associated with mapping could have been
1921 * hole punched or truncated after reserves were consumed.
1922 * As subsequent fault on such a range will not use reserves.
1923 * Subtle - The reserve map for private mappings has the
1924 * opposite meaning than that of shared mappings. If NO
1925 * entry is in the reserve map, it means a reservation exists.
1926 * If an entry exists in the reserve map, it means the
1927 * reservation has already been consumed. As a result, the
1928 * return value of this routine is the opposite of the
1929 * value returned from reserve map manipulation routines above.
1930 */
1931 if (ret)
1932 return 0;
1933 else
1934 return 1;
1935 }
1936 else
1937 return ret < 0 ? ret : 0;
1938 }
1939
1940 static long vma_needs_reservation(struct hstate *h,
1941 struct vm_area_struct *vma, unsigned long addr)
1942 {
1943 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1944 }
1945
1946 static long vma_commit_reservation(struct hstate *h,
1947 struct vm_area_struct *vma, unsigned long addr)
1948 {
1949 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1950 }
1951
1952 static void vma_end_reservation(struct hstate *h,
1953 struct vm_area_struct *vma, unsigned long addr)
1954 {
1955 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1956 }
1957
1958 static long vma_add_reservation(struct hstate *h,
1959 struct vm_area_struct *vma, unsigned long addr)
1960 {
1961 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1962 }
1963
1964 /*
1965 * This routine is called to restore a reservation on error paths. In the
1966 * specific error paths, a huge page was allocated (via alloc_huge_page)
1967 * and is about to be freed. If a reservation for the page existed,
1968 * alloc_huge_page would have consumed the reservation and set PagePrivate
1969 * in the newly allocated page. When the page is freed via free_huge_page,
1970 * the global reservation count will be incremented if PagePrivate is set.
1971 * However, free_huge_page can not adjust the reserve map. Adjust the
1972 * reserve map here to be consistent with global reserve count adjustments
1973 * to be made by free_huge_page.
1974 */
1975 static void restore_reserve_on_error(struct hstate *h,
1976 struct vm_area_struct *vma, unsigned long address,
1977 struct page *page)
1978 {
1979 if (unlikely(PagePrivate(page))) {
1980 long rc = vma_needs_reservation(h, vma, address);
1981
1982 if (unlikely(rc < 0)) {
1983 /*
1984 * Rare out of memory condition in reserve map
1985 * manipulation. Clear PagePrivate so that
1986 * global reserve count will not be incremented
1987 * by free_huge_page. This will make it appear
1988 * as though the reservation for this page was
1989 * consumed. This may prevent the task from
1990 * faulting in the page at a later time. This
1991 * is better than inconsistent global huge page
1992 * accounting of reserve counts.
1993 */
1994 ClearPagePrivate(page);
1995 } else if (rc) {
1996 rc = vma_add_reservation(h, vma, address);
1997 if (unlikely(rc < 0))
1998 /*
1999 * See above comment about rare out of
2000 * memory condition.
2001 */
2002 ClearPagePrivate(page);
2003 } else
2004 vma_end_reservation(h, vma, address);
2005 }
2006 }
2007
2008 struct page *alloc_huge_page(struct vm_area_struct *vma,
2009 unsigned long addr, int avoid_reserve)
2010 {
2011 struct hugepage_subpool *spool = subpool_vma(vma);
2012 struct hstate *h = hstate_vma(vma);
2013 struct page *page;
2014 long map_chg, map_commit;
2015 long gbl_chg;
2016 int ret, idx;
2017 struct hugetlb_cgroup *h_cg;
2018
2019 idx = hstate_index(h);
2020 /*
2021 * Examine the region/reserve map to determine if the process
2022 * has a reservation for the page to be allocated. A return
2023 * code of zero indicates a reservation exists (no change).
2024 */
2025 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2026 if (map_chg < 0)
2027 return ERR_PTR(-ENOMEM);
2028
2029 /*
2030 * Processes that did not create the mapping will have no
2031 * reserves as indicated by the region/reserve map. Check
2032 * that the allocation will not exceed the subpool limit.
2033 * Allocations for MAP_NORESERVE mappings also need to be
2034 * checked against any subpool limit.
2035 */
2036 if (map_chg || avoid_reserve) {
2037 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2038 if (gbl_chg < 0) {
2039 vma_end_reservation(h, vma, addr);
2040 return ERR_PTR(-ENOSPC);
2041 }
2042
2043 /*
2044 * Even though there was no reservation in the region/reserve
2045 * map, there could be reservations associated with the
2046 * subpool that can be used. This would be indicated if the
2047 * return value of hugepage_subpool_get_pages() is zero.
2048 * However, if avoid_reserve is specified we still avoid even
2049 * the subpool reservations.
2050 */
2051 if (avoid_reserve)
2052 gbl_chg = 1;
2053 }
2054
2055 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2056 if (ret)
2057 goto out_subpool_put;
2058
2059 spin_lock(&hugetlb_lock);
2060 /*
2061 * glb_chg is passed to indicate whether or not a page must be taken
2062 * from the global free pool (global change). gbl_chg == 0 indicates
2063 * a reservation exists for the allocation.
2064 */
2065 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2066 if (!page) {
2067 spin_unlock(&hugetlb_lock);
2068 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2069 if (!page)
2070 goto out_uncharge_cgroup;
2071 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2072 SetPagePrivate(page);
2073 h->resv_huge_pages--;
2074 }
2075 spin_lock(&hugetlb_lock);
2076 list_move(&page->lru, &h->hugepage_activelist);
2077 /* Fall through */
2078 }
2079 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2080 spin_unlock(&hugetlb_lock);
2081
2082 set_page_private(page, (unsigned long)spool);
2083
2084 map_commit = vma_commit_reservation(h, vma, addr);
2085 if (unlikely(map_chg > map_commit)) {
2086 /*
2087 * The page was added to the reservation map between
2088 * vma_needs_reservation and vma_commit_reservation.
2089 * This indicates a race with hugetlb_reserve_pages.
2090 * Adjust for the subpool count incremented above AND
2091 * in hugetlb_reserve_pages for the same page. Also,
2092 * the reservation count added in hugetlb_reserve_pages
2093 * no longer applies.
2094 */
2095 long rsv_adjust;
2096
2097 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2098 hugetlb_acct_memory(h, -rsv_adjust);
2099 }
2100 return page;
2101
2102 out_uncharge_cgroup:
2103 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2104 out_subpool_put:
2105 if (map_chg || avoid_reserve)
2106 hugepage_subpool_put_pages(spool, 1);
2107 vma_end_reservation(h, vma, addr);
2108 return ERR_PTR(-ENOSPC);
2109 }
2110
2111 /*
2112 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2113 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2114 * where no ERR_VALUE is expected to be returned.
2115 */
2116 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2117 unsigned long addr, int avoid_reserve)
2118 {
2119 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2120 if (IS_ERR(page))
2121 page = NULL;
2122 return page;
2123 }
2124
2125 int __weak alloc_bootmem_huge_page(struct hstate *h)
2126 {
2127 struct huge_bootmem_page *m;
2128 int nr_nodes, node;
2129
2130 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2131 void *addr;
2132
2133 addr = memblock_virt_alloc_try_nid_nopanic(
2134 huge_page_size(h), huge_page_size(h),
2135 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2136 if (addr) {
2137 /*
2138 * Use the beginning of the huge page to store the
2139 * huge_bootmem_page struct (until gather_bootmem
2140 * puts them into the mem_map).
2141 */
2142 m = addr;
2143 goto found;
2144 }
2145 }
2146 return 0;
2147
2148 found:
2149 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2150 /* Put them into a private list first because mem_map is not up yet */
2151 list_add(&m->list, &huge_boot_pages);
2152 m->hstate = h;
2153 return 1;
2154 }
2155
2156 static void __init prep_compound_huge_page(struct page *page,
2157 unsigned int order)
2158 {
2159 if (unlikely(order > (MAX_ORDER - 1)))
2160 prep_compound_gigantic_page(page, order);
2161 else
2162 prep_compound_page(page, order);
2163 }
2164
2165 /* Put bootmem huge pages into the standard lists after mem_map is up */
2166 static void __init gather_bootmem_prealloc(void)
2167 {
2168 struct huge_bootmem_page *m;
2169
2170 list_for_each_entry(m, &huge_boot_pages, list) {
2171 struct hstate *h = m->hstate;
2172 struct page *page;
2173
2174 #ifdef CONFIG_HIGHMEM
2175 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2176 memblock_free_late(__pa(m),
2177 sizeof(struct huge_bootmem_page));
2178 #else
2179 page = virt_to_page(m);
2180 #endif
2181 WARN_ON(page_count(page) != 1);
2182 prep_compound_huge_page(page, h->order);
2183 WARN_ON(PageReserved(page));
2184 prep_new_huge_page(h, page, page_to_nid(page));
2185 /*
2186 * If we had gigantic hugepages allocated at boot time, we need
2187 * to restore the 'stolen' pages to totalram_pages in order to
2188 * fix confusing memory reports from free(1) and another
2189 * side-effects, like CommitLimit going negative.
2190 */
2191 if (hstate_is_gigantic(h))
2192 adjust_managed_page_count(page, 1 << h->order);
2193 }
2194 }
2195
2196 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2197 {
2198 unsigned long i;
2199
2200 for (i = 0; i < h->max_huge_pages; ++i) {
2201 if (hstate_is_gigantic(h)) {
2202 if (!alloc_bootmem_huge_page(h))
2203 break;
2204 } else if (!alloc_fresh_huge_page(h,
2205 &node_states[N_MEMORY]))
2206 break;
2207 }
2208 h->max_huge_pages = i;
2209 }
2210
2211 static void __init hugetlb_init_hstates(void)
2212 {
2213 struct hstate *h;
2214
2215 for_each_hstate(h) {
2216 if (minimum_order > huge_page_order(h))
2217 minimum_order = huge_page_order(h);
2218
2219 /* oversize hugepages were init'ed in early boot */
2220 if (!hstate_is_gigantic(h))
2221 hugetlb_hstate_alloc_pages(h);
2222 }
2223 VM_BUG_ON(minimum_order == UINT_MAX);
2224 }
2225
2226 static char * __init memfmt(char *buf, unsigned long n)
2227 {
2228 if (n >= (1UL << 30))
2229 sprintf(buf, "%lu GB", n >> 30);
2230 else if (n >= (1UL << 20))
2231 sprintf(buf, "%lu MB", n >> 20);
2232 else
2233 sprintf(buf, "%lu KB", n >> 10);
2234 return buf;
2235 }
2236
2237 static void __init report_hugepages(void)
2238 {
2239 struct hstate *h;
2240
2241 for_each_hstate(h) {
2242 char buf[32];
2243 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2244 memfmt(buf, huge_page_size(h)),
2245 h->free_huge_pages);
2246 }
2247 }
2248
2249 #ifdef CONFIG_HIGHMEM
2250 static void try_to_free_low(struct hstate *h, unsigned long count,
2251 nodemask_t *nodes_allowed)
2252 {
2253 int i;
2254
2255 if (hstate_is_gigantic(h))
2256 return;
2257
2258 for_each_node_mask(i, *nodes_allowed) {
2259 struct page *page, *next;
2260 struct list_head *freel = &h->hugepage_freelists[i];
2261 list_for_each_entry_safe(page, next, freel, lru) {
2262 if (count >= h->nr_huge_pages)
2263 return;
2264 if (PageHighMem(page))
2265 continue;
2266 list_del(&page->lru);
2267 update_and_free_page(h, page);
2268 h->free_huge_pages--;
2269 h->free_huge_pages_node[page_to_nid(page)]--;
2270 }
2271 }
2272 }
2273 #else
2274 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2275 nodemask_t *nodes_allowed)
2276 {
2277 }
2278 #endif
2279
2280 /*
2281 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2282 * balanced by operating on them in a round-robin fashion.
2283 * Returns 1 if an adjustment was made.
2284 */
2285 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2286 int delta)
2287 {
2288 int nr_nodes, node;
2289
2290 VM_BUG_ON(delta != -1 && delta != 1);
2291
2292 if (delta < 0) {
2293 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2294 if (h->surplus_huge_pages_node[node])
2295 goto found;
2296 }
2297 } else {
2298 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2299 if (h->surplus_huge_pages_node[node] <
2300 h->nr_huge_pages_node[node])
2301 goto found;
2302 }
2303 }
2304 return 0;
2305
2306 found:
2307 h->surplus_huge_pages += delta;
2308 h->surplus_huge_pages_node[node] += delta;
2309 return 1;
2310 }
2311
2312 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2313 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2314 nodemask_t *nodes_allowed)
2315 {
2316 unsigned long min_count, ret;
2317
2318 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2319 return h->max_huge_pages;
2320
2321 /*
2322 * Increase the pool size
2323 * First take pages out of surplus state. Then make up the
2324 * remaining difference by allocating fresh huge pages.
2325 *
2326 * We might race with __alloc_buddy_huge_page() here and be unable
2327 * to convert a surplus huge page to a normal huge page. That is
2328 * not critical, though, it just means the overall size of the
2329 * pool might be one hugepage larger than it needs to be, but
2330 * within all the constraints specified by the sysctls.
2331 */
2332 spin_lock(&hugetlb_lock);
2333 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2334 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2335 break;
2336 }
2337
2338 while (count > persistent_huge_pages(h)) {
2339 /*
2340 * If this allocation races such that we no longer need the
2341 * page, free_huge_page will handle it by freeing the page
2342 * and reducing the surplus.
2343 */
2344 spin_unlock(&hugetlb_lock);
2345
2346 /* yield cpu to avoid soft lockup */
2347 cond_resched();
2348
2349 if (hstate_is_gigantic(h))
2350 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2351 else
2352 ret = alloc_fresh_huge_page(h, nodes_allowed);
2353 spin_lock(&hugetlb_lock);
2354 if (!ret)
2355 goto out;
2356
2357 /* Bail for signals. Probably ctrl-c from user */
2358 if (signal_pending(current))
2359 goto out;
2360 }
2361
2362 /*
2363 * Decrease the pool size
2364 * First return free pages to the buddy allocator (being careful
2365 * to keep enough around to satisfy reservations). Then place
2366 * pages into surplus state as needed so the pool will shrink
2367 * to the desired size as pages become free.
2368 *
2369 * By placing pages into the surplus state independent of the
2370 * overcommit value, we are allowing the surplus pool size to
2371 * exceed overcommit. There are few sane options here. Since
2372 * __alloc_buddy_huge_page() is checking the global counter,
2373 * though, we'll note that we're not allowed to exceed surplus
2374 * and won't grow the pool anywhere else. Not until one of the
2375 * sysctls are changed, or the surplus pages go out of use.
2376 */
2377 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2378 min_count = max(count, min_count);
2379 try_to_free_low(h, min_count, nodes_allowed);
2380 while (min_count < persistent_huge_pages(h)) {
2381 if (!free_pool_huge_page(h, nodes_allowed, 0))
2382 break;
2383 cond_resched_lock(&hugetlb_lock);
2384 }
2385 while (count < persistent_huge_pages(h)) {
2386 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2387 break;
2388 }
2389 out:
2390 ret = persistent_huge_pages(h);
2391 spin_unlock(&hugetlb_lock);
2392 return ret;
2393 }
2394
2395 #define HSTATE_ATTR_RO(_name) \
2396 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2397
2398 #define HSTATE_ATTR(_name) \
2399 static struct kobj_attribute _name##_attr = \
2400 __ATTR(_name, 0644, _name##_show, _name##_store)
2401
2402 static struct kobject *hugepages_kobj;
2403 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2404
2405 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2406
2407 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2408 {
2409 int i;
2410
2411 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2412 if (hstate_kobjs[i] == kobj) {
2413 if (nidp)
2414 *nidp = NUMA_NO_NODE;
2415 return &hstates[i];
2416 }
2417
2418 return kobj_to_node_hstate(kobj, nidp);
2419 }
2420
2421 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2422 struct kobj_attribute *attr, char *buf)
2423 {
2424 struct hstate *h;
2425 unsigned long nr_huge_pages;
2426 int nid;
2427
2428 h = kobj_to_hstate(kobj, &nid);
2429 if (nid == NUMA_NO_NODE)
2430 nr_huge_pages = h->nr_huge_pages;
2431 else
2432 nr_huge_pages = h->nr_huge_pages_node[nid];
2433
2434 return sprintf(buf, "%lu\n", nr_huge_pages);
2435 }
2436
2437 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2438 struct hstate *h, int nid,
2439 unsigned long count, size_t len)
2440 {
2441 int err;
2442 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2443
2444 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2445 err = -EINVAL;
2446 goto out;
2447 }
2448
2449 if (nid == NUMA_NO_NODE) {
2450 /*
2451 * global hstate attribute
2452 */
2453 if (!(obey_mempolicy &&
2454 init_nodemask_of_mempolicy(nodes_allowed))) {
2455 NODEMASK_FREE(nodes_allowed);
2456 nodes_allowed = &node_states[N_MEMORY];
2457 }
2458 } else if (nodes_allowed) {
2459 /*
2460 * per node hstate attribute: adjust count to global,
2461 * but restrict alloc/free to the specified node.
2462 */
2463 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2464 init_nodemask_of_node(nodes_allowed, nid);
2465 } else
2466 nodes_allowed = &node_states[N_MEMORY];
2467
2468 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2469
2470 if (nodes_allowed != &node_states[N_MEMORY])
2471 NODEMASK_FREE(nodes_allowed);
2472
2473 return len;
2474 out:
2475 NODEMASK_FREE(nodes_allowed);
2476 return err;
2477 }
2478
2479 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2480 struct kobject *kobj, const char *buf,
2481 size_t len)
2482 {
2483 struct hstate *h;
2484 unsigned long count;
2485 int nid;
2486 int err;
2487
2488 err = kstrtoul(buf, 10, &count);
2489 if (err)
2490 return err;
2491
2492 h = kobj_to_hstate(kobj, &nid);
2493 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2494 }
2495
2496 static ssize_t nr_hugepages_show(struct kobject *kobj,
2497 struct kobj_attribute *attr, char *buf)
2498 {
2499 return nr_hugepages_show_common(kobj, attr, buf);
2500 }
2501
2502 static ssize_t nr_hugepages_store(struct kobject *kobj,
2503 struct kobj_attribute *attr, const char *buf, size_t len)
2504 {
2505 return nr_hugepages_store_common(false, kobj, buf, len);
2506 }
2507 HSTATE_ATTR(nr_hugepages);
2508
2509 #ifdef CONFIG_NUMA
2510
2511 /*
2512 * hstate attribute for optionally mempolicy-based constraint on persistent
2513 * huge page alloc/free.
2514 */
2515 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2516 struct kobj_attribute *attr, char *buf)
2517 {
2518 return nr_hugepages_show_common(kobj, attr, buf);
2519 }
2520
2521 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2522 struct kobj_attribute *attr, const char *buf, size_t len)
2523 {
2524 return nr_hugepages_store_common(true, kobj, buf, len);
2525 }
2526 HSTATE_ATTR(nr_hugepages_mempolicy);
2527 #endif
2528
2529
2530 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2531 struct kobj_attribute *attr, char *buf)
2532 {
2533 struct hstate *h = kobj_to_hstate(kobj, NULL);
2534 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2535 }
2536
2537 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2538 struct kobj_attribute *attr, const char *buf, size_t count)
2539 {
2540 int err;
2541 unsigned long input;
2542 struct hstate *h = kobj_to_hstate(kobj, NULL);
2543
2544 if (hstate_is_gigantic(h))
2545 return -EINVAL;
2546
2547 err = kstrtoul(buf, 10, &input);
2548 if (err)
2549 return err;
2550
2551 spin_lock(&hugetlb_lock);
2552 h->nr_overcommit_huge_pages = input;
2553 spin_unlock(&hugetlb_lock);
2554
2555 return count;
2556 }
2557 HSTATE_ATTR(nr_overcommit_hugepages);
2558
2559 static ssize_t free_hugepages_show(struct kobject *kobj,
2560 struct kobj_attribute *attr, char *buf)
2561 {
2562 struct hstate *h;
2563 unsigned long free_huge_pages;
2564 int nid;
2565
2566 h = kobj_to_hstate(kobj, &nid);
2567 if (nid == NUMA_NO_NODE)
2568 free_huge_pages = h->free_huge_pages;
2569 else
2570 free_huge_pages = h->free_huge_pages_node[nid];
2571
2572 return sprintf(buf, "%lu\n", free_huge_pages);
2573 }
2574 HSTATE_ATTR_RO(free_hugepages);
2575
2576 static ssize_t resv_hugepages_show(struct kobject *kobj,
2577 struct kobj_attribute *attr, char *buf)
2578 {
2579 struct hstate *h = kobj_to_hstate(kobj, NULL);
2580 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2581 }
2582 HSTATE_ATTR_RO(resv_hugepages);
2583
2584 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2585 struct kobj_attribute *attr, char *buf)
2586 {
2587 struct hstate *h;
2588 unsigned long surplus_huge_pages;
2589 int nid;
2590
2591 h = kobj_to_hstate(kobj, &nid);
2592 if (nid == NUMA_NO_NODE)
2593 surplus_huge_pages = h->surplus_huge_pages;
2594 else
2595 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2596
2597 return sprintf(buf, "%lu\n", surplus_huge_pages);
2598 }
2599 HSTATE_ATTR_RO(surplus_hugepages);
2600
2601 static struct attribute *hstate_attrs[] = {
2602 &nr_hugepages_attr.attr,
2603 &nr_overcommit_hugepages_attr.attr,
2604 &free_hugepages_attr.attr,
2605 &resv_hugepages_attr.attr,
2606 &surplus_hugepages_attr.attr,
2607 #ifdef CONFIG_NUMA
2608 &nr_hugepages_mempolicy_attr.attr,
2609 #endif
2610 NULL,
2611 };
2612
2613 static struct attribute_group hstate_attr_group = {
2614 .attrs = hstate_attrs,
2615 };
2616
2617 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2618 struct kobject **hstate_kobjs,
2619 struct attribute_group *hstate_attr_group)
2620 {
2621 int retval;
2622 int hi = hstate_index(h);
2623
2624 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2625 if (!hstate_kobjs[hi])
2626 return -ENOMEM;
2627
2628 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2629 if (retval)
2630 kobject_put(hstate_kobjs[hi]);
2631
2632 return retval;
2633 }
2634
2635 static void __init hugetlb_sysfs_init(void)
2636 {
2637 struct hstate *h;
2638 int err;
2639
2640 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2641 if (!hugepages_kobj)
2642 return;
2643
2644 for_each_hstate(h) {
2645 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2646 hstate_kobjs, &hstate_attr_group);
2647 if (err)
2648 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2649 }
2650 }
2651
2652 #ifdef CONFIG_NUMA
2653
2654 /*
2655 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2656 * with node devices in node_devices[] using a parallel array. The array
2657 * index of a node device or _hstate == node id.
2658 * This is here to avoid any static dependency of the node device driver, in
2659 * the base kernel, on the hugetlb module.
2660 */
2661 struct node_hstate {
2662 struct kobject *hugepages_kobj;
2663 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2664 };
2665 static struct node_hstate node_hstates[MAX_NUMNODES];
2666
2667 /*
2668 * A subset of global hstate attributes for node devices
2669 */
2670 static struct attribute *per_node_hstate_attrs[] = {
2671 &nr_hugepages_attr.attr,
2672 &free_hugepages_attr.attr,
2673 &surplus_hugepages_attr.attr,
2674 NULL,
2675 };
2676
2677 static struct attribute_group per_node_hstate_attr_group = {
2678 .attrs = per_node_hstate_attrs,
2679 };
2680
2681 /*
2682 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2683 * Returns node id via non-NULL nidp.
2684 */
2685 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2686 {
2687 int nid;
2688
2689 for (nid = 0; nid < nr_node_ids; nid++) {
2690 struct node_hstate *nhs = &node_hstates[nid];
2691 int i;
2692 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2693 if (nhs->hstate_kobjs[i] == kobj) {
2694 if (nidp)
2695 *nidp = nid;
2696 return &hstates[i];
2697 }
2698 }
2699
2700 BUG();
2701 return NULL;
2702 }
2703
2704 /*
2705 * Unregister hstate attributes from a single node device.
2706 * No-op if no hstate attributes attached.
2707 */
2708 static void hugetlb_unregister_node(struct node *node)
2709 {
2710 struct hstate *h;
2711 struct node_hstate *nhs = &node_hstates[node->dev.id];
2712
2713 if (!nhs->hugepages_kobj)
2714 return; /* no hstate attributes */
2715
2716 for_each_hstate(h) {
2717 int idx = hstate_index(h);
2718 if (nhs->hstate_kobjs[idx]) {
2719 kobject_put(nhs->hstate_kobjs[idx]);
2720 nhs->hstate_kobjs[idx] = NULL;
2721 }
2722 }
2723
2724 kobject_put(nhs->hugepages_kobj);
2725 nhs->hugepages_kobj = NULL;
2726 }
2727
2728
2729 /*
2730 * Register hstate attributes for a single node device.
2731 * No-op if attributes already registered.
2732 */
2733 static void hugetlb_register_node(struct node *node)
2734 {
2735 struct hstate *h;
2736 struct node_hstate *nhs = &node_hstates[node->dev.id];
2737 int err;
2738
2739 if (nhs->hugepages_kobj)
2740 return; /* already allocated */
2741
2742 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2743 &node->dev.kobj);
2744 if (!nhs->hugepages_kobj)
2745 return;
2746
2747 for_each_hstate(h) {
2748 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2749 nhs->hstate_kobjs,
2750 &per_node_hstate_attr_group);
2751 if (err) {
2752 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2753 h->name, node->dev.id);
2754 hugetlb_unregister_node(node);
2755 break;
2756 }
2757 }
2758 }
2759
2760 /*
2761 * hugetlb init time: register hstate attributes for all registered node
2762 * devices of nodes that have memory. All on-line nodes should have
2763 * registered their associated device by this time.
2764 */
2765 static void __init hugetlb_register_all_nodes(void)
2766 {
2767 int nid;
2768
2769 for_each_node_state(nid, N_MEMORY) {
2770 struct node *node = node_devices[nid];
2771 if (node->dev.id == nid)
2772 hugetlb_register_node(node);
2773 }
2774
2775 /*
2776 * Let the node device driver know we're here so it can
2777 * [un]register hstate attributes on node hotplug.
2778 */
2779 register_hugetlbfs_with_node(hugetlb_register_node,
2780 hugetlb_unregister_node);
2781 }
2782 #else /* !CONFIG_NUMA */
2783
2784 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2785 {
2786 BUG();
2787 if (nidp)
2788 *nidp = -1;
2789 return NULL;
2790 }
2791
2792 static void hugetlb_register_all_nodes(void) { }
2793
2794 #endif
2795
2796 static int __init hugetlb_init(void)
2797 {
2798 int i;
2799
2800 if (!hugepages_supported())
2801 return 0;
2802
2803 if (!size_to_hstate(default_hstate_size)) {
2804 default_hstate_size = HPAGE_SIZE;
2805 if (!size_to_hstate(default_hstate_size))
2806 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2807 }
2808 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2809 if (default_hstate_max_huge_pages) {
2810 if (!default_hstate.max_huge_pages)
2811 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2812 }
2813
2814 hugetlb_init_hstates();
2815 gather_bootmem_prealloc();
2816 report_hugepages();
2817
2818 hugetlb_sysfs_init();
2819 hugetlb_register_all_nodes();
2820 hugetlb_cgroup_file_init();
2821
2822 #ifdef CONFIG_SMP
2823 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2824 #else
2825 num_fault_mutexes = 1;
2826 #endif
2827 hugetlb_fault_mutex_table =
2828 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2829 BUG_ON(!hugetlb_fault_mutex_table);
2830
2831 for (i = 0; i < num_fault_mutexes; i++)
2832 mutex_init(&hugetlb_fault_mutex_table[i]);
2833 return 0;
2834 }
2835 subsys_initcall(hugetlb_init);
2836
2837 /* Should be called on processing a hugepagesz=... option */
2838 void __init hugetlb_bad_size(void)
2839 {
2840 parsed_valid_hugepagesz = false;
2841 }
2842
2843 void __init hugetlb_add_hstate(unsigned int order)
2844 {
2845 struct hstate *h;
2846 unsigned long i;
2847
2848 if (size_to_hstate(PAGE_SIZE << order)) {
2849 pr_warn("hugepagesz= specified twice, ignoring\n");
2850 return;
2851 }
2852 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2853 BUG_ON(order == 0);
2854 h = &hstates[hugetlb_max_hstate++];
2855 h->order = order;
2856 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2857 h->nr_huge_pages = 0;
2858 h->free_huge_pages = 0;
2859 for (i = 0; i < MAX_NUMNODES; ++i)
2860 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2861 INIT_LIST_HEAD(&h->hugepage_activelist);
2862 h->next_nid_to_alloc = first_memory_node;
2863 h->next_nid_to_free = first_memory_node;
2864 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2865 huge_page_size(h)/1024);
2866
2867 parsed_hstate = h;
2868 }
2869
2870 static int __init hugetlb_nrpages_setup(char *s)
2871 {
2872 unsigned long *mhp;
2873 static unsigned long *last_mhp;
2874
2875 if (!parsed_valid_hugepagesz) {
2876 pr_warn("hugepages = %s preceded by "
2877 "an unsupported hugepagesz, ignoring\n", s);
2878 parsed_valid_hugepagesz = true;
2879 return 1;
2880 }
2881 /*
2882 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2883 * so this hugepages= parameter goes to the "default hstate".
2884 */
2885 else if (!hugetlb_max_hstate)
2886 mhp = &default_hstate_max_huge_pages;
2887 else
2888 mhp = &parsed_hstate->max_huge_pages;
2889
2890 if (mhp == last_mhp) {
2891 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2892 return 1;
2893 }
2894
2895 if (sscanf(s, "%lu", mhp) <= 0)
2896 *mhp = 0;
2897
2898 /*
2899 * Global state is always initialized later in hugetlb_init.
2900 * But we need to allocate >= MAX_ORDER hstates here early to still
2901 * use the bootmem allocator.
2902 */
2903 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2904 hugetlb_hstate_alloc_pages(parsed_hstate);
2905
2906 last_mhp = mhp;
2907
2908 return 1;
2909 }
2910 __setup("hugepages=", hugetlb_nrpages_setup);
2911
2912 static int __init hugetlb_default_setup(char *s)
2913 {
2914 default_hstate_size = memparse(s, &s);
2915 return 1;
2916 }
2917 __setup("default_hugepagesz=", hugetlb_default_setup);
2918
2919 static unsigned int cpuset_mems_nr(unsigned int *array)
2920 {
2921 int node;
2922 unsigned int nr = 0;
2923
2924 for_each_node_mask(node, cpuset_current_mems_allowed)
2925 nr += array[node];
2926
2927 return nr;
2928 }
2929
2930 #ifdef CONFIG_SYSCTL
2931 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2932 struct ctl_table *table, int write,
2933 void __user *buffer, size_t *length, loff_t *ppos)
2934 {
2935 struct hstate *h = &default_hstate;
2936 unsigned long tmp = h->max_huge_pages;
2937 int ret;
2938
2939 if (!hugepages_supported())
2940 return -EOPNOTSUPP;
2941
2942 table->data = &tmp;
2943 table->maxlen = sizeof(unsigned long);
2944 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2945 if (ret)
2946 goto out;
2947
2948 if (write)
2949 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2950 NUMA_NO_NODE, tmp, *length);
2951 out:
2952 return ret;
2953 }
2954
2955 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2956 void __user *buffer, size_t *length, loff_t *ppos)
2957 {
2958
2959 return hugetlb_sysctl_handler_common(false, table, write,
2960 buffer, length, ppos);
2961 }
2962
2963 #ifdef CONFIG_NUMA
2964 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2965 void __user *buffer, size_t *length, loff_t *ppos)
2966 {
2967 return hugetlb_sysctl_handler_common(true, table, write,
2968 buffer, length, ppos);
2969 }
2970 #endif /* CONFIG_NUMA */
2971
2972 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2973 void __user *buffer,
2974 size_t *length, loff_t *ppos)
2975 {
2976 struct hstate *h = &default_hstate;
2977 unsigned long tmp;
2978 int ret;
2979
2980 if (!hugepages_supported())
2981 return -EOPNOTSUPP;
2982
2983 tmp = h->nr_overcommit_huge_pages;
2984
2985 if (write && hstate_is_gigantic(h))
2986 return -EINVAL;
2987
2988 table->data = &tmp;
2989 table->maxlen = sizeof(unsigned long);
2990 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2991 if (ret)
2992 goto out;
2993
2994 if (write) {
2995 spin_lock(&hugetlb_lock);
2996 h->nr_overcommit_huge_pages = tmp;
2997 spin_unlock(&hugetlb_lock);
2998 }
2999 out:
3000 return ret;
3001 }
3002
3003 #endif /* CONFIG_SYSCTL */
3004
3005 void hugetlb_report_meminfo(struct seq_file *m)
3006 {
3007 struct hstate *h = &default_hstate;
3008 if (!hugepages_supported())
3009 return;
3010 seq_printf(m,
3011 "HugePages_Total: %5lu\n"
3012 "HugePages_Free: %5lu\n"
3013 "HugePages_Rsvd: %5lu\n"
3014 "HugePages_Surp: %5lu\n"
3015 "Hugepagesize: %8lu kB\n",
3016 h->nr_huge_pages,
3017 h->free_huge_pages,
3018 h->resv_huge_pages,
3019 h->surplus_huge_pages,
3020 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3021 }
3022
3023 int hugetlb_report_node_meminfo(int nid, char *buf)
3024 {
3025 struct hstate *h = &default_hstate;
3026 if (!hugepages_supported())
3027 return 0;
3028 return sprintf(buf,
3029 "Node %d HugePages_Total: %5u\n"
3030 "Node %d HugePages_Free: %5u\n"
3031 "Node %d HugePages_Surp: %5u\n",
3032 nid, h->nr_huge_pages_node[nid],
3033 nid, h->free_huge_pages_node[nid],
3034 nid, h->surplus_huge_pages_node[nid]);
3035 }
3036
3037 void hugetlb_show_meminfo(void)
3038 {
3039 struct hstate *h;
3040 int nid;
3041
3042 if (!hugepages_supported())
3043 return;
3044
3045 for_each_node_state(nid, N_MEMORY)
3046 for_each_hstate(h)
3047 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3048 nid,
3049 h->nr_huge_pages_node[nid],
3050 h->free_huge_pages_node[nid],
3051 h->surplus_huge_pages_node[nid],
3052 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3053 }
3054
3055 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3056 {
3057 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3058 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3059 }
3060
3061 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3062 unsigned long hugetlb_total_pages(void)
3063 {
3064 struct hstate *h;
3065 unsigned long nr_total_pages = 0;
3066
3067 for_each_hstate(h)
3068 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3069 return nr_total_pages;
3070 }
3071
3072 static int hugetlb_acct_memory(struct hstate *h, long delta)
3073 {
3074 int ret = -ENOMEM;
3075
3076 spin_lock(&hugetlb_lock);
3077 /*
3078 * When cpuset is configured, it breaks the strict hugetlb page
3079 * reservation as the accounting is done on a global variable. Such
3080 * reservation is completely rubbish in the presence of cpuset because
3081 * the reservation is not checked against page availability for the
3082 * current cpuset. Application can still potentially OOM'ed by kernel
3083 * with lack of free htlb page in cpuset that the task is in.
3084 * Attempt to enforce strict accounting with cpuset is almost
3085 * impossible (or too ugly) because cpuset is too fluid that
3086 * task or memory node can be dynamically moved between cpusets.
3087 *
3088 * The change of semantics for shared hugetlb mapping with cpuset is
3089 * undesirable. However, in order to preserve some of the semantics,
3090 * we fall back to check against current free page availability as
3091 * a best attempt and hopefully to minimize the impact of changing
3092 * semantics that cpuset has.
3093 */
3094 if (delta > 0) {
3095 if (gather_surplus_pages(h, delta) < 0)
3096 goto out;
3097
3098 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3099 return_unused_surplus_pages(h, delta);
3100 goto out;
3101 }
3102 }
3103
3104 ret = 0;
3105 if (delta < 0)
3106 return_unused_surplus_pages(h, (unsigned long) -delta);
3107
3108 out:
3109 spin_unlock(&hugetlb_lock);
3110 return ret;
3111 }
3112
3113 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3114 {
3115 struct resv_map *resv = vma_resv_map(vma);
3116
3117 /*
3118 * This new VMA should share its siblings reservation map if present.
3119 * The VMA will only ever have a valid reservation map pointer where
3120 * it is being copied for another still existing VMA. As that VMA
3121 * has a reference to the reservation map it cannot disappear until
3122 * after this open call completes. It is therefore safe to take a
3123 * new reference here without additional locking.
3124 */
3125 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3126 kref_get(&resv->refs);
3127 }
3128
3129 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3130 {
3131 struct hstate *h = hstate_vma(vma);
3132 struct resv_map *resv = vma_resv_map(vma);
3133 struct hugepage_subpool *spool = subpool_vma(vma);
3134 unsigned long reserve, start, end;
3135 long gbl_reserve;
3136
3137 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3138 return;
3139
3140 start = vma_hugecache_offset(h, vma, vma->vm_start);
3141 end = vma_hugecache_offset(h, vma, vma->vm_end);
3142
3143 reserve = (end - start) - region_count(resv, start, end);
3144
3145 kref_put(&resv->refs, resv_map_release);
3146
3147 if (reserve) {
3148 /*
3149 * Decrement reserve counts. The global reserve count may be
3150 * adjusted if the subpool has a minimum size.
3151 */
3152 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3153 hugetlb_acct_memory(h, -gbl_reserve);
3154 }
3155 }
3156
3157 /*
3158 * We cannot handle pagefaults against hugetlb pages at all. They cause
3159 * handle_mm_fault() to try to instantiate regular-sized pages in the
3160 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3161 * this far.
3162 */
3163 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3164 {
3165 BUG();
3166 return 0;
3167 }
3168
3169 const struct vm_operations_struct hugetlb_vm_ops = {
3170 .fault = hugetlb_vm_op_fault,
3171 .open = hugetlb_vm_op_open,
3172 .close = hugetlb_vm_op_close,
3173 };
3174
3175 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3176 int writable)
3177 {
3178 pte_t entry;
3179
3180 if (writable) {
3181 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3182 vma->vm_page_prot)));
3183 } else {
3184 entry = huge_pte_wrprotect(mk_huge_pte(page,
3185 vma->vm_page_prot));
3186 }
3187 entry = pte_mkyoung(entry);
3188 entry = pte_mkhuge(entry);
3189 entry = arch_make_huge_pte(entry, vma, page, writable);
3190
3191 return entry;
3192 }
3193
3194 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3195 unsigned long address, pte_t *ptep)
3196 {
3197 pte_t entry;
3198
3199 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3200 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3201 update_mmu_cache(vma, address, ptep);
3202 }
3203
3204 bool is_hugetlb_entry_migration(pte_t pte)
3205 {
3206 swp_entry_t swp;
3207
3208 if (huge_pte_none(pte) || pte_present(pte))
3209 return false;
3210 swp = pte_to_swp_entry(pte);
3211 if (non_swap_entry(swp) && is_migration_entry(swp))
3212 return true;
3213 else
3214 return false;
3215 }
3216
3217 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3218 {
3219 swp_entry_t swp;
3220
3221 if (huge_pte_none(pte) || pte_present(pte))
3222 return 0;
3223 swp = pte_to_swp_entry(pte);
3224 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3225 return 1;
3226 else
3227 return 0;
3228 }
3229
3230 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3231 struct vm_area_struct *vma)
3232 {
3233 pte_t *src_pte, *dst_pte, entry;
3234 struct page *ptepage;
3235 unsigned long addr;
3236 int cow;
3237 struct hstate *h = hstate_vma(vma);
3238 unsigned long sz = huge_page_size(h);
3239 unsigned long mmun_start; /* For mmu_notifiers */
3240 unsigned long mmun_end; /* For mmu_notifiers */
3241 int ret = 0;
3242
3243 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3244
3245 mmun_start = vma->vm_start;
3246 mmun_end = vma->vm_end;
3247 if (cow)
3248 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3249
3250 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3251 spinlock_t *src_ptl, *dst_ptl;
3252 src_pte = huge_pte_offset(src, addr, sz);
3253 if (!src_pte)
3254 continue;
3255 dst_pte = huge_pte_alloc(dst, addr, sz);
3256 if (!dst_pte) {
3257 ret = -ENOMEM;
3258 break;
3259 }
3260
3261 /* If the pagetables are shared don't copy or take references */
3262 if (dst_pte == src_pte)
3263 continue;
3264
3265 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3266 src_ptl = huge_pte_lockptr(h, src, src_pte);
3267 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3268 entry = huge_ptep_get(src_pte);
3269 if (huge_pte_none(entry)) { /* skip none entry */
3270 ;
3271 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3272 is_hugetlb_entry_hwpoisoned(entry))) {
3273 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3274
3275 if (is_write_migration_entry(swp_entry) && cow) {
3276 /*
3277 * COW mappings require pages in both
3278 * parent and child to be set to read.
3279 */
3280 make_migration_entry_read(&swp_entry);
3281 entry = swp_entry_to_pte(swp_entry);
3282 set_huge_swap_pte_at(src, addr, src_pte,
3283 entry, sz);
3284 }
3285 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3286 } else {
3287 if (cow) {
3288 huge_ptep_set_wrprotect(src, addr, src_pte);
3289 mmu_notifier_invalidate_range(src, mmun_start,
3290 mmun_end);
3291 }
3292 entry = huge_ptep_get(src_pte);
3293 ptepage = pte_page(entry);
3294 get_page(ptepage);
3295 page_dup_rmap(ptepage, true);
3296 set_huge_pte_at(dst, addr, dst_pte, entry);
3297 hugetlb_count_add(pages_per_huge_page(h), dst);
3298 }
3299 spin_unlock(src_ptl);
3300 spin_unlock(dst_ptl);
3301 }
3302
3303 if (cow)
3304 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3305
3306 return ret;
3307 }
3308
3309 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3310 unsigned long start, unsigned long end,
3311 struct page *ref_page)
3312 {
3313 struct mm_struct *mm = vma->vm_mm;
3314 unsigned long address;
3315 pte_t *ptep;
3316 pte_t pte;
3317 spinlock_t *ptl;
3318 struct page *page;
3319 struct hstate *h = hstate_vma(vma);
3320 unsigned long sz = huge_page_size(h);
3321 const unsigned long mmun_start = start; /* For mmu_notifiers */
3322 const unsigned long mmun_end = end; /* For mmu_notifiers */
3323
3324 WARN_ON(!is_vm_hugetlb_page(vma));
3325 BUG_ON(start & ~huge_page_mask(h));
3326 BUG_ON(end & ~huge_page_mask(h));
3327
3328 /*
3329 * This is a hugetlb vma, all the pte entries should point
3330 * to huge page.
3331 */
3332 tlb_remove_check_page_size_change(tlb, sz);
3333 tlb_start_vma(tlb, vma);
3334 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3335 address = start;
3336 for (; address < end; address += sz) {
3337 ptep = huge_pte_offset(mm, address, sz);
3338 if (!ptep)
3339 continue;
3340
3341 ptl = huge_pte_lock(h, mm, ptep);
3342 if (huge_pmd_unshare(mm, &address, ptep)) {
3343 spin_unlock(ptl);
3344 continue;
3345 }
3346
3347 pte = huge_ptep_get(ptep);
3348 if (huge_pte_none(pte)) {
3349 spin_unlock(ptl);
3350 continue;
3351 }
3352
3353 /*
3354 * Migrating hugepage or HWPoisoned hugepage is already
3355 * unmapped and its refcount is dropped, so just clear pte here.
3356 */
3357 if (unlikely(!pte_present(pte))) {
3358 huge_pte_clear(mm, address, ptep, sz);
3359 spin_unlock(ptl);
3360 continue;
3361 }
3362
3363 page = pte_page(pte);
3364 /*
3365 * If a reference page is supplied, it is because a specific
3366 * page is being unmapped, not a range. Ensure the page we
3367 * are about to unmap is the actual page of interest.
3368 */
3369 if (ref_page) {
3370 if (page != ref_page) {
3371 spin_unlock(ptl);
3372 continue;
3373 }
3374 /*
3375 * Mark the VMA as having unmapped its page so that
3376 * future faults in this VMA will fail rather than
3377 * looking like data was lost
3378 */
3379 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3380 }
3381
3382 pte = huge_ptep_get_and_clear(mm, address, ptep);
3383 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3384 if (huge_pte_dirty(pte))
3385 set_page_dirty(page);
3386
3387 hugetlb_count_sub(pages_per_huge_page(h), mm);
3388 page_remove_rmap(page, true);
3389
3390 spin_unlock(ptl);
3391 tlb_remove_page_size(tlb, page, huge_page_size(h));
3392 /*
3393 * Bail out after unmapping reference page if supplied
3394 */
3395 if (ref_page)
3396 break;
3397 }
3398 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3399 tlb_end_vma(tlb, vma);
3400 }
3401
3402 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3403 struct vm_area_struct *vma, unsigned long start,
3404 unsigned long end, struct page *ref_page)
3405 {
3406 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3407
3408 /*
3409 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3410 * test will fail on a vma being torn down, and not grab a page table
3411 * on its way out. We're lucky that the flag has such an appropriate
3412 * name, and can in fact be safely cleared here. We could clear it
3413 * before the __unmap_hugepage_range above, but all that's necessary
3414 * is to clear it before releasing the i_mmap_rwsem. This works
3415 * because in the context this is called, the VMA is about to be
3416 * destroyed and the i_mmap_rwsem is held.
3417 */
3418 vma->vm_flags &= ~VM_MAYSHARE;
3419 }
3420
3421 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3422 unsigned long end, struct page *ref_page)
3423 {
3424 struct mm_struct *mm;
3425 struct mmu_gather tlb;
3426
3427 mm = vma->vm_mm;
3428
3429 tlb_gather_mmu(&tlb, mm, start, end);
3430 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3431 tlb_finish_mmu(&tlb, start, end);
3432 }
3433
3434 /*
3435 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3436 * mappping it owns the reserve page for. The intention is to unmap the page
3437 * from other VMAs and let the children be SIGKILLed if they are faulting the
3438 * same region.
3439 */
3440 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3441 struct page *page, unsigned long address)
3442 {
3443 struct hstate *h = hstate_vma(vma);
3444 struct vm_area_struct *iter_vma;
3445 struct address_space *mapping;
3446 pgoff_t pgoff;
3447
3448 /*
3449 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3450 * from page cache lookup which is in HPAGE_SIZE units.
3451 */
3452 address = address & huge_page_mask(h);
3453 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3454 vma->vm_pgoff;
3455 mapping = vma->vm_file->f_mapping;
3456
3457 /*
3458 * Take the mapping lock for the duration of the table walk. As
3459 * this mapping should be shared between all the VMAs,
3460 * __unmap_hugepage_range() is called as the lock is already held
3461 */
3462 i_mmap_lock_write(mapping);
3463 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3464 /* Do not unmap the current VMA */
3465 if (iter_vma == vma)
3466 continue;
3467
3468 /*
3469 * Shared VMAs have their own reserves and do not affect
3470 * MAP_PRIVATE accounting but it is possible that a shared
3471 * VMA is using the same page so check and skip such VMAs.
3472 */
3473 if (iter_vma->vm_flags & VM_MAYSHARE)
3474 continue;
3475
3476 /*
3477 * Unmap the page from other VMAs without their own reserves.
3478 * They get marked to be SIGKILLed if they fault in these
3479 * areas. This is because a future no-page fault on this VMA
3480 * could insert a zeroed page instead of the data existing
3481 * from the time of fork. This would look like data corruption
3482 */
3483 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3484 unmap_hugepage_range(iter_vma, address,
3485 address + huge_page_size(h), page);
3486 }
3487 i_mmap_unlock_write(mapping);
3488 }
3489
3490 /*
3491 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3492 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3493 * cannot race with other handlers or page migration.
3494 * Keep the pte_same checks anyway to make transition from the mutex easier.
3495 */
3496 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3497 unsigned long address, pte_t *ptep,
3498 struct page *pagecache_page, spinlock_t *ptl)
3499 {
3500 pte_t pte;
3501 struct hstate *h = hstate_vma(vma);
3502 struct page *old_page, *new_page;
3503 int ret = 0, outside_reserve = 0;
3504 unsigned long mmun_start; /* For mmu_notifiers */
3505 unsigned long mmun_end; /* For mmu_notifiers */
3506
3507 pte = huge_ptep_get(ptep);
3508 old_page = pte_page(pte);
3509
3510 retry_avoidcopy:
3511 /* If no-one else is actually using this page, avoid the copy
3512 * and just make the page writable */
3513 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3514 page_move_anon_rmap(old_page, vma);
3515 set_huge_ptep_writable(vma, address, ptep);
3516 return 0;
3517 }
3518
3519 /*
3520 * If the process that created a MAP_PRIVATE mapping is about to
3521 * perform a COW due to a shared page count, attempt to satisfy
3522 * the allocation without using the existing reserves. The pagecache
3523 * page is used to determine if the reserve at this address was
3524 * consumed or not. If reserves were used, a partial faulted mapping
3525 * at the time of fork() could consume its reserves on COW instead
3526 * of the full address range.
3527 */
3528 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3529 old_page != pagecache_page)
3530 outside_reserve = 1;
3531
3532 get_page(old_page);
3533
3534 /*
3535 * Drop page table lock as buddy allocator may be called. It will
3536 * be acquired again before returning to the caller, as expected.
3537 */
3538 spin_unlock(ptl);
3539 new_page = alloc_huge_page(vma, address, outside_reserve);
3540
3541 if (IS_ERR(new_page)) {
3542 /*
3543 * If a process owning a MAP_PRIVATE mapping fails to COW,
3544 * it is due to references held by a child and an insufficient
3545 * huge page pool. To guarantee the original mappers
3546 * reliability, unmap the page from child processes. The child
3547 * may get SIGKILLed if it later faults.
3548 */
3549 if (outside_reserve) {
3550 put_page(old_page);
3551 BUG_ON(huge_pte_none(pte));
3552 unmap_ref_private(mm, vma, old_page, address);
3553 BUG_ON(huge_pte_none(pte));
3554 spin_lock(ptl);
3555 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3556 huge_page_size(h));
3557 if (likely(ptep &&
3558 pte_same(huge_ptep_get(ptep), pte)))
3559 goto retry_avoidcopy;
3560 /*
3561 * race occurs while re-acquiring page table
3562 * lock, and our job is done.
3563 */
3564 return 0;
3565 }
3566
3567 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3568 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3569 goto out_release_old;
3570 }
3571
3572 /*
3573 * When the original hugepage is shared one, it does not have
3574 * anon_vma prepared.
3575 */
3576 if (unlikely(anon_vma_prepare(vma))) {
3577 ret = VM_FAULT_OOM;
3578 goto out_release_all;
3579 }
3580
3581 copy_user_huge_page(new_page, old_page, address, vma,
3582 pages_per_huge_page(h));
3583 __SetPageUptodate(new_page);
3584 set_page_huge_active(new_page);
3585
3586 mmun_start = address & huge_page_mask(h);
3587 mmun_end = mmun_start + huge_page_size(h);
3588 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3589
3590 /*
3591 * Retake the page table lock to check for racing updates
3592 * before the page tables are altered
3593 */
3594 spin_lock(ptl);
3595 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3596 huge_page_size(h));
3597 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3598 ClearPagePrivate(new_page);
3599
3600 /* Break COW */
3601 huge_ptep_clear_flush(vma, address, ptep);
3602 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3603 set_huge_pte_at(mm, address, ptep,
3604 make_huge_pte(vma, new_page, 1));
3605 page_remove_rmap(old_page, true);
3606 hugepage_add_new_anon_rmap(new_page, vma, address);
3607 /* Make the old page be freed below */
3608 new_page = old_page;
3609 }
3610 spin_unlock(ptl);
3611 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3612 out_release_all:
3613 restore_reserve_on_error(h, vma, address, new_page);
3614 put_page(new_page);
3615 out_release_old:
3616 put_page(old_page);
3617
3618 spin_lock(ptl); /* Caller expects lock to be held */
3619 return ret;
3620 }
3621
3622 /* Return the pagecache page at a given address within a VMA */
3623 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3624 struct vm_area_struct *vma, unsigned long address)
3625 {
3626 struct address_space *mapping;
3627 pgoff_t idx;
3628
3629 mapping = vma->vm_file->f_mapping;
3630 idx = vma_hugecache_offset(h, vma, address);
3631
3632 return find_lock_page(mapping, idx);
3633 }
3634
3635 /*
3636 * Return whether there is a pagecache page to back given address within VMA.
3637 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3638 */
3639 static bool hugetlbfs_pagecache_present(struct hstate *h,
3640 struct vm_area_struct *vma, unsigned long address)
3641 {
3642 struct address_space *mapping;
3643 pgoff_t idx;
3644 struct page *page;
3645
3646 mapping = vma->vm_file->f_mapping;
3647 idx = vma_hugecache_offset(h, vma, address);
3648
3649 page = find_get_page(mapping, idx);
3650 if (page)
3651 put_page(page);
3652 return page != NULL;
3653 }
3654
3655 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3656 pgoff_t idx)
3657 {
3658 struct inode *inode = mapping->host;
3659 struct hstate *h = hstate_inode(inode);
3660 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3661
3662 if (err)
3663 return err;
3664 ClearPagePrivate(page);
3665
3666 spin_lock(&inode->i_lock);
3667 inode->i_blocks += blocks_per_huge_page(h);
3668 spin_unlock(&inode->i_lock);
3669 return 0;
3670 }
3671
3672 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3673 struct address_space *mapping, pgoff_t idx,
3674 unsigned long address, pte_t *ptep, unsigned int flags)
3675 {
3676 struct hstate *h = hstate_vma(vma);
3677 int ret = VM_FAULT_SIGBUS;
3678 int anon_rmap = 0;
3679 unsigned long size;
3680 struct page *page;
3681 pte_t new_pte;
3682 spinlock_t *ptl;
3683
3684 /*
3685 * Currently, we are forced to kill the process in the event the
3686 * original mapper has unmapped pages from the child due to a failed
3687 * COW. Warn that such a situation has occurred as it may not be obvious
3688 */
3689 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3690 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3691 current->pid);
3692 return ret;
3693 }
3694
3695 /*
3696 * Use page lock to guard against racing truncation
3697 * before we get page_table_lock.
3698 */
3699 retry:
3700 page = find_lock_page(mapping, idx);
3701 if (!page) {
3702 size = i_size_read(mapping->host) >> huge_page_shift(h);
3703 if (idx >= size)
3704 goto out;
3705
3706 /*
3707 * Check for page in userfault range
3708 */
3709 if (userfaultfd_missing(vma)) {
3710 u32 hash;
3711 struct vm_fault vmf = {
3712 .vma = vma,
3713 .address = address,
3714 .flags = flags,
3715 /*
3716 * Hard to debug if it ends up being
3717 * used by a callee that assumes
3718 * something about the other
3719 * uninitialized fields... same as in
3720 * memory.c
3721 */
3722 };
3723
3724 /*
3725 * hugetlb_fault_mutex must be dropped before
3726 * handling userfault. Reacquire after handling
3727 * fault to make calling code simpler.
3728 */
3729 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3730 idx, address);
3731 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3732 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3733 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3734 goto out;
3735 }
3736
3737 page = alloc_huge_page(vma, address, 0);
3738 if (IS_ERR(page)) {
3739 ret = PTR_ERR(page);
3740 if (ret == -ENOMEM)
3741 ret = VM_FAULT_OOM;
3742 else
3743 ret = VM_FAULT_SIGBUS;
3744 goto out;
3745 }
3746 clear_huge_page(page, address, pages_per_huge_page(h));
3747 __SetPageUptodate(page);
3748 set_page_huge_active(page);
3749
3750 if (vma->vm_flags & VM_MAYSHARE) {
3751 int err = huge_add_to_page_cache(page, mapping, idx);
3752 if (err) {
3753 put_page(page);
3754 if (err == -EEXIST)
3755 goto retry;
3756 goto out;
3757 }
3758 } else {
3759 lock_page(page);
3760 if (unlikely(anon_vma_prepare(vma))) {
3761 ret = VM_FAULT_OOM;
3762 goto backout_unlocked;
3763 }
3764 anon_rmap = 1;
3765 }
3766 } else {
3767 /*
3768 * If memory error occurs between mmap() and fault, some process
3769 * don't have hwpoisoned swap entry for errored virtual address.
3770 * So we need to block hugepage fault by PG_hwpoison bit check.
3771 */
3772 if (unlikely(PageHWPoison(page))) {
3773 ret = VM_FAULT_HWPOISON |
3774 VM_FAULT_SET_HINDEX(hstate_index(h));
3775 goto backout_unlocked;
3776 }
3777 }
3778
3779 /*
3780 * If we are going to COW a private mapping later, we examine the
3781 * pending reservations for this page now. This will ensure that
3782 * any allocations necessary to record that reservation occur outside
3783 * the spinlock.
3784 */
3785 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3786 if (vma_needs_reservation(h, vma, address) < 0) {
3787 ret = VM_FAULT_OOM;
3788 goto backout_unlocked;
3789 }
3790 /* Just decrements count, does not deallocate */
3791 vma_end_reservation(h, vma, address);
3792 }
3793
3794 ptl = huge_pte_lock(h, mm, ptep);
3795 size = i_size_read(mapping->host) >> huge_page_shift(h);
3796 if (idx >= size)
3797 goto backout;
3798
3799 ret = 0;
3800 if (!huge_pte_none(huge_ptep_get(ptep)))
3801 goto backout;
3802
3803 if (anon_rmap) {
3804 ClearPagePrivate(page);
3805 hugepage_add_new_anon_rmap(page, vma, address);
3806 } else
3807 page_dup_rmap(page, true);
3808 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3809 && (vma->vm_flags & VM_SHARED)));
3810 set_huge_pte_at(mm, address, ptep, new_pte);
3811
3812 hugetlb_count_add(pages_per_huge_page(h), mm);
3813 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3814 /* Optimization, do the COW without a second fault */
3815 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3816 }
3817
3818 spin_unlock(ptl);
3819 unlock_page(page);
3820 out:
3821 return ret;
3822
3823 backout:
3824 spin_unlock(ptl);
3825 backout_unlocked:
3826 unlock_page(page);
3827 restore_reserve_on_error(h, vma, address, page);
3828 put_page(page);
3829 goto out;
3830 }
3831
3832 #ifdef CONFIG_SMP
3833 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3834 struct vm_area_struct *vma,
3835 struct address_space *mapping,
3836 pgoff_t idx, unsigned long address)
3837 {
3838 unsigned long key[2];
3839 u32 hash;
3840
3841 if (vma->vm_flags & VM_SHARED) {
3842 key[0] = (unsigned long) mapping;
3843 key[1] = idx;
3844 } else {
3845 key[0] = (unsigned long) mm;
3846 key[1] = address >> huge_page_shift(h);
3847 }
3848
3849 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3850
3851 return hash & (num_fault_mutexes - 1);
3852 }
3853 #else
3854 /*
3855 * For uniprocesor systems we always use a single mutex, so just
3856 * return 0 and avoid the hashing overhead.
3857 */
3858 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3859 struct vm_area_struct *vma,
3860 struct address_space *mapping,
3861 pgoff_t idx, unsigned long address)
3862 {
3863 return 0;
3864 }
3865 #endif
3866
3867 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3868 unsigned long address, unsigned int flags)
3869 {
3870 pte_t *ptep, entry;
3871 spinlock_t *ptl;
3872 int ret;
3873 u32 hash;
3874 pgoff_t idx;
3875 struct page *page = NULL;
3876 struct page *pagecache_page = NULL;
3877 struct hstate *h = hstate_vma(vma);
3878 struct address_space *mapping;
3879 int need_wait_lock = 0;
3880
3881 address &= huge_page_mask(h);
3882
3883 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3884 if (ptep) {
3885 entry = huge_ptep_get(ptep);
3886 if (unlikely(is_hugetlb_entry_migration(entry))) {
3887 migration_entry_wait_huge(vma, mm, ptep);
3888 return 0;
3889 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3890 return VM_FAULT_HWPOISON_LARGE |
3891 VM_FAULT_SET_HINDEX(hstate_index(h));
3892 } else {
3893 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3894 if (!ptep)
3895 return VM_FAULT_OOM;
3896 }
3897
3898 mapping = vma->vm_file->f_mapping;
3899 idx = vma_hugecache_offset(h, vma, address);
3900
3901 /*
3902 * Serialize hugepage allocation and instantiation, so that we don't
3903 * get spurious allocation failures if two CPUs race to instantiate
3904 * the same page in the page cache.
3905 */
3906 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3907 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3908
3909 entry = huge_ptep_get(ptep);
3910 if (huge_pte_none(entry)) {
3911 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3912 goto out_mutex;
3913 }
3914
3915 ret = 0;
3916
3917 /*
3918 * entry could be a migration/hwpoison entry at this point, so this
3919 * check prevents the kernel from going below assuming that we have
3920 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3921 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3922 * handle it.
3923 */
3924 if (!pte_present(entry))
3925 goto out_mutex;
3926
3927 /*
3928 * If we are going to COW the mapping later, we examine the pending
3929 * reservations for this page now. This will ensure that any
3930 * allocations necessary to record that reservation occur outside the
3931 * spinlock. For private mappings, we also lookup the pagecache
3932 * page now as it is used to determine if a reservation has been
3933 * consumed.
3934 */
3935 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3936 if (vma_needs_reservation(h, vma, address) < 0) {
3937 ret = VM_FAULT_OOM;
3938 goto out_mutex;
3939 }
3940 /* Just decrements count, does not deallocate */
3941 vma_end_reservation(h, vma, address);
3942
3943 if (!(vma->vm_flags & VM_MAYSHARE))
3944 pagecache_page = hugetlbfs_pagecache_page(h,
3945 vma, address);
3946 }
3947
3948 ptl = huge_pte_lock(h, mm, ptep);
3949
3950 /* Check for a racing update before calling hugetlb_cow */
3951 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3952 goto out_ptl;
3953
3954 /*
3955 * hugetlb_cow() requires page locks of pte_page(entry) and
3956 * pagecache_page, so here we need take the former one
3957 * when page != pagecache_page or !pagecache_page.
3958 */
3959 page = pte_page(entry);
3960 if (page != pagecache_page)
3961 if (!trylock_page(page)) {
3962 need_wait_lock = 1;
3963 goto out_ptl;
3964 }
3965
3966 get_page(page);
3967
3968 if (flags & FAULT_FLAG_WRITE) {
3969 if (!huge_pte_write(entry)) {
3970 ret = hugetlb_cow(mm, vma, address, ptep,
3971 pagecache_page, ptl);
3972 goto out_put_page;
3973 }
3974 entry = huge_pte_mkdirty(entry);
3975 }
3976 entry = pte_mkyoung(entry);
3977 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3978 flags & FAULT_FLAG_WRITE))
3979 update_mmu_cache(vma, address, ptep);
3980 out_put_page:
3981 if (page != pagecache_page)
3982 unlock_page(page);
3983 put_page(page);
3984 out_ptl:
3985 spin_unlock(ptl);
3986
3987 if (pagecache_page) {
3988 unlock_page(pagecache_page);
3989 put_page(pagecache_page);
3990 }
3991 out_mutex:
3992 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3993 /*
3994 * Generally it's safe to hold refcount during waiting page lock. But
3995 * here we just wait to defer the next page fault to avoid busy loop and
3996 * the page is not used after unlocked before returning from the current
3997 * page fault. So we are safe from accessing freed page, even if we wait
3998 * here without taking refcount.
3999 */
4000 if (need_wait_lock)
4001 wait_on_page_locked(page);
4002 return ret;
4003 }
4004
4005 /*
4006 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4007 * modifications for huge pages.
4008 */
4009 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4010 pte_t *dst_pte,
4011 struct vm_area_struct *dst_vma,
4012 unsigned long dst_addr,
4013 unsigned long src_addr,
4014 struct page **pagep)
4015 {
4016 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4017 struct hstate *h = hstate_vma(dst_vma);
4018 pte_t _dst_pte;
4019 spinlock_t *ptl;
4020 int ret;
4021 struct page *page;
4022
4023 if (!*pagep) {
4024 ret = -ENOMEM;
4025 page = alloc_huge_page(dst_vma, dst_addr, 0);
4026 if (IS_ERR(page))
4027 goto out;
4028
4029 ret = copy_huge_page_from_user(page,
4030 (const void __user *) src_addr,
4031 pages_per_huge_page(h), false);
4032
4033 /* fallback to copy_from_user outside mmap_sem */
4034 if (unlikely(ret)) {
4035 ret = -EFAULT;
4036 *pagep = page;
4037 /* don't free the page */
4038 goto out;
4039 }
4040 } else {
4041 page = *pagep;
4042 *pagep = NULL;
4043 }
4044
4045 /*
4046 * The memory barrier inside __SetPageUptodate makes sure that
4047 * preceding stores to the page contents become visible before
4048 * the set_pte_at() write.
4049 */
4050 __SetPageUptodate(page);
4051 set_page_huge_active(page);
4052
4053 /*
4054 * If shared, add to page cache
4055 */
4056 if (vm_shared) {
4057 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4058 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4059
4060 ret = huge_add_to_page_cache(page, mapping, idx);
4061 if (ret)
4062 goto out_release_nounlock;
4063 }
4064
4065 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4066 spin_lock(ptl);
4067
4068 ret = -EEXIST;
4069 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4070 goto out_release_unlock;
4071
4072 if (vm_shared) {
4073 page_dup_rmap(page, true);
4074 } else {
4075 ClearPagePrivate(page);
4076 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4077 }
4078
4079 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4080 if (dst_vma->vm_flags & VM_WRITE)
4081 _dst_pte = huge_pte_mkdirty(_dst_pte);
4082 _dst_pte = pte_mkyoung(_dst_pte);
4083
4084 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4085
4086 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4087 dst_vma->vm_flags & VM_WRITE);
4088 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4089
4090 /* No need to invalidate - it was non-present before */
4091 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4092
4093 spin_unlock(ptl);
4094 if (vm_shared)
4095 unlock_page(page);
4096 ret = 0;
4097 out:
4098 return ret;
4099 out_release_unlock:
4100 spin_unlock(ptl);
4101 out_release_nounlock:
4102 if (vm_shared)
4103 unlock_page(page);
4104 put_page(page);
4105 goto out;
4106 }
4107
4108 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4109 struct page **pages, struct vm_area_struct **vmas,
4110 unsigned long *position, unsigned long *nr_pages,
4111 long i, unsigned int flags, int *nonblocking)
4112 {
4113 unsigned long pfn_offset;
4114 unsigned long vaddr = *position;
4115 unsigned long remainder = *nr_pages;
4116 struct hstate *h = hstate_vma(vma);
4117
4118 while (vaddr < vma->vm_end && remainder) {
4119 pte_t *pte;
4120 spinlock_t *ptl = NULL;
4121 int absent;
4122 struct page *page;
4123
4124 /*
4125 * If we have a pending SIGKILL, don't keep faulting pages and
4126 * potentially allocating memory.
4127 */
4128 if (unlikely(fatal_signal_pending(current))) {
4129 remainder = 0;
4130 break;
4131 }
4132
4133 /*
4134 * Some archs (sparc64, sh*) have multiple pte_ts to
4135 * each hugepage. We have to make sure we get the
4136 * first, for the page indexing below to work.
4137 *
4138 * Note that page table lock is not held when pte is null.
4139 */
4140 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4141 huge_page_size(h));
4142 if (pte)
4143 ptl = huge_pte_lock(h, mm, pte);
4144 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4145
4146 /*
4147 * When coredumping, it suits get_dump_page if we just return
4148 * an error where there's an empty slot with no huge pagecache
4149 * to back it. This way, we avoid allocating a hugepage, and
4150 * the sparse dumpfile avoids allocating disk blocks, but its
4151 * huge holes still show up with zeroes where they need to be.
4152 */
4153 if (absent && (flags & FOLL_DUMP) &&
4154 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4155 if (pte)
4156 spin_unlock(ptl);
4157 remainder = 0;
4158 break;
4159 }
4160
4161 /*
4162 * We need call hugetlb_fault for both hugepages under migration
4163 * (in which case hugetlb_fault waits for the migration,) and
4164 * hwpoisoned hugepages (in which case we need to prevent the
4165 * caller from accessing to them.) In order to do this, we use
4166 * here is_swap_pte instead of is_hugetlb_entry_migration and
4167 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4168 * both cases, and because we can't follow correct pages
4169 * directly from any kind of swap entries.
4170 */
4171 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4172 ((flags & FOLL_WRITE) &&
4173 !huge_pte_write(huge_ptep_get(pte)))) {
4174 int ret;
4175 unsigned int fault_flags = 0;
4176
4177 if (pte)
4178 spin_unlock(ptl);
4179 if (flags & FOLL_WRITE)
4180 fault_flags |= FAULT_FLAG_WRITE;
4181 if (nonblocking)
4182 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4183 if (flags & FOLL_NOWAIT)
4184 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4185 FAULT_FLAG_RETRY_NOWAIT;
4186 if (flags & FOLL_TRIED) {
4187 VM_WARN_ON_ONCE(fault_flags &
4188 FAULT_FLAG_ALLOW_RETRY);
4189 fault_flags |= FAULT_FLAG_TRIED;
4190 }
4191 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4192 if (ret & VM_FAULT_ERROR) {
4193 int err = vm_fault_to_errno(ret, flags);
4194
4195 if (err)
4196 return err;
4197
4198 remainder = 0;
4199 break;
4200 }
4201 if (ret & VM_FAULT_RETRY) {
4202 if (nonblocking)
4203 *nonblocking = 0;
4204 *nr_pages = 0;
4205 /*
4206 * VM_FAULT_RETRY must not return an
4207 * error, it will return zero
4208 * instead.
4209 *
4210 * No need to update "position" as the
4211 * caller will not check it after
4212 * *nr_pages is set to 0.
4213 */
4214 return i;
4215 }
4216 continue;
4217 }
4218
4219 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4220 page = pte_page(huge_ptep_get(pte));
4221 same_page:
4222 if (pages) {
4223 pages[i] = mem_map_offset(page, pfn_offset);
4224 get_page(pages[i]);
4225 }
4226
4227 if (vmas)
4228 vmas[i] = vma;
4229
4230 vaddr += PAGE_SIZE;
4231 ++pfn_offset;
4232 --remainder;
4233 ++i;
4234 if (vaddr < vma->vm_end && remainder &&
4235 pfn_offset < pages_per_huge_page(h)) {
4236 /*
4237 * We use pfn_offset to avoid touching the pageframes
4238 * of this compound page.
4239 */
4240 goto same_page;
4241 }
4242 spin_unlock(ptl);
4243 }
4244 *nr_pages = remainder;
4245 /*
4246 * setting position is actually required only if remainder is
4247 * not zero but it's faster not to add a "if (remainder)"
4248 * branch.
4249 */
4250 *position = vaddr;
4251
4252 return i ? i : -EFAULT;
4253 }
4254
4255 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4256 /*
4257 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4258 * implement this.
4259 */
4260 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4261 #endif
4262
4263 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4264 unsigned long address, unsigned long end, pgprot_t newprot)
4265 {
4266 struct mm_struct *mm = vma->vm_mm;
4267 unsigned long start = address;
4268 pte_t *ptep;
4269 pte_t pte;
4270 struct hstate *h = hstate_vma(vma);
4271 unsigned long pages = 0;
4272
4273 BUG_ON(address >= end);
4274 flush_cache_range(vma, address, end);
4275
4276 mmu_notifier_invalidate_range_start(mm, start, end);
4277 i_mmap_lock_write(vma->vm_file->f_mapping);
4278 for (; address < end; address += huge_page_size(h)) {
4279 spinlock_t *ptl;
4280 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4281 if (!ptep)
4282 continue;
4283 ptl = huge_pte_lock(h, mm, ptep);
4284 if (huge_pmd_unshare(mm, &address, ptep)) {
4285 pages++;
4286 spin_unlock(ptl);
4287 continue;
4288 }
4289 pte = huge_ptep_get(ptep);
4290 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4291 spin_unlock(ptl);
4292 continue;
4293 }
4294 if (unlikely(is_hugetlb_entry_migration(pte))) {
4295 swp_entry_t entry = pte_to_swp_entry(pte);
4296
4297 if (is_write_migration_entry(entry)) {
4298 pte_t newpte;
4299
4300 make_migration_entry_read(&entry);
4301 newpte = swp_entry_to_pte(entry);
4302 set_huge_swap_pte_at(mm, address, ptep,
4303 newpte, huge_page_size(h));
4304 pages++;
4305 }
4306 spin_unlock(ptl);
4307 continue;
4308 }
4309 if (!huge_pte_none(pte)) {
4310 pte = huge_ptep_get_and_clear(mm, address, ptep);
4311 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4312 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4313 set_huge_pte_at(mm, address, ptep, pte);
4314 pages++;
4315 }
4316 spin_unlock(ptl);
4317 }
4318 /*
4319 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4320 * may have cleared our pud entry and done put_page on the page table:
4321 * once we release i_mmap_rwsem, another task can do the final put_page
4322 * and that page table be reused and filled with junk.
4323 */
4324 flush_hugetlb_tlb_range(vma, start, end);
4325 mmu_notifier_invalidate_range(mm, start, end);
4326 i_mmap_unlock_write(vma->vm_file->f_mapping);
4327 mmu_notifier_invalidate_range_end(mm, start, end);
4328
4329 return pages << h->order;
4330 }
4331
4332 int hugetlb_reserve_pages(struct inode *inode,
4333 long from, long to,
4334 struct vm_area_struct *vma,
4335 vm_flags_t vm_flags)
4336 {
4337 long ret, chg;
4338 struct hstate *h = hstate_inode(inode);
4339 struct hugepage_subpool *spool = subpool_inode(inode);
4340 struct resv_map *resv_map;
4341 long gbl_reserve;
4342
4343 /*
4344 * Only apply hugepage reservation if asked. At fault time, an
4345 * attempt will be made for VM_NORESERVE to allocate a page
4346 * without using reserves
4347 */
4348 if (vm_flags & VM_NORESERVE)
4349 return 0;
4350
4351 /*
4352 * Shared mappings base their reservation on the number of pages that
4353 * are already allocated on behalf of the file. Private mappings need
4354 * to reserve the full area even if read-only as mprotect() may be
4355 * called to make the mapping read-write. Assume !vma is a shm mapping
4356 */
4357 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4358 resv_map = inode_resv_map(inode);
4359
4360 chg = region_chg(resv_map, from, to);
4361
4362 } else {
4363 resv_map = resv_map_alloc();
4364 if (!resv_map)
4365 return -ENOMEM;
4366
4367 chg = to - from;
4368
4369 set_vma_resv_map(vma, resv_map);
4370 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4371 }
4372
4373 if (chg < 0) {
4374 ret = chg;
4375 goto out_err;
4376 }
4377
4378 /*
4379 * There must be enough pages in the subpool for the mapping. If
4380 * the subpool has a minimum size, there may be some global
4381 * reservations already in place (gbl_reserve).
4382 */
4383 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4384 if (gbl_reserve < 0) {
4385 ret = -ENOSPC;
4386 goto out_err;
4387 }
4388
4389 /*
4390 * Check enough hugepages are available for the reservation.
4391 * Hand the pages back to the subpool if there are not
4392 */
4393 ret = hugetlb_acct_memory(h, gbl_reserve);
4394 if (ret < 0) {
4395 /* put back original number of pages, chg */
4396 (void)hugepage_subpool_put_pages(spool, chg);
4397 goto out_err;
4398 }
4399
4400 /*
4401 * Account for the reservations made. Shared mappings record regions
4402 * that have reservations as they are shared by multiple VMAs.
4403 * When the last VMA disappears, the region map says how much
4404 * the reservation was and the page cache tells how much of
4405 * the reservation was consumed. Private mappings are per-VMA and
4406 * only the consumed reservations are tracked. When the VMA
4407 * disappears, the original reservation is the VMA size and the
4408 * consumed reservations are stored in the map. Hence, nothing
4409 * else has to be done for private mappings here
4410 */
4411 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4412 long add = region_add(resv_map, from, to);
4413
4414 if (unlikely(chg > add)) {
4415 /*
4416 * pages in this range were added to the reserve
4417 * map between region_chg and region_add. This
4418 * indicates a race with alloc_huge_page. Adjust
4419 * the subpool and reserve counts modified above
4420 * based on the difference.
4421 */
4422 long rsv_adjust;
4423
4424 rsv_adjust = hugepage_subpool_put_pages(spool,
4425 chg - add);
4426 hugetlb_acct_memory(h, -rsv_adjust);
4427 }
4428 }
4429 return 0;
4430 out_err:
4431 if (!vma || vma->vm_flags & VM_MAYSHARE)
4432 /* Don't call region_abort if region_chg failed */
4433 if (chg >= 0)
4434 region_abort(resv_map, from, to);
4435 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4436 kref_put(&resv_map->refs, resv_map_release);
4437 return ret;
4438 }
4439
4440 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4441 long freed)
4442 {
4443 struct hstate *h = hstate_inode(inode);
4444 struct resv_map *resv_map = inode_resv_map(inode);
4445 long chg = 0;
4446 struct hugepage_subpool *spool = subpool_inode(inode);
4447 long gbl_reserve;
4448
4449 if (resv_map) {
4450 chg = region_del(resv_map, start, end);
4451 /*
4452 * region_del() can fail in the rare case where a region
4453 * must be split and another region descriptor can not be
4454 * allocated. If end == LONG_MAX, it will not fail.
4455 */
4456 if (chg < 0)
4457 return chg;
4458 }
4459
4460 spin_lock(&inode->i_lock);
4461 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4462 spin_unlock(&inode->i_lock);
4463
4464 /*
4465 * If the subpool has a minimum size, the number of global
4466 * reservations to be released may be adjusted.
4467 */
4468 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4469 hugetlb_acct_memory(h, -gbl_reserve);
4470
4471 return 0;
4472 }
4473
4474 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4475 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4476 struct vm_area_struct *vma,
4477 unsigned long addr, pgoff_t idx)
4478 {
4479 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4480 svma->vm_start;
4481 unsigned long sbase = saddr & PUD_MASK;
4482 unsigned long s_end = sbase + PUD_SIZE;
4483
4484 /* Allow segments to share if only one is marked locked */
4485 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4486 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4487
4488 /*
4489 * match the virtual addresses, permission and the alignment of the
4490 * page table page.
4491 */
4492 if (pmd_index(addr) != pmd_index(saddr) ||
4493 vm_flags != svm_flags ||
4494 sbase < svma->vm_start || svma->vm_end < s_end)
4495 return 0;
4496
4497 return saddr;
4498 }
4499
4500 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4501 {
4502 unsigned long base = addr & PUD_MASK;
4503 unsigned long end = base + PUD_SIZE;
4504
4505 /*
4506 * check on proper vm_flags and page table alignment
4507 */
4508 if (vma->vm_flags & VM_MAYSHARE &&
4509 vma->vm_start <= base && end <= vma->vm_end)
4510 return true;
4511 return false;
4512 }
4513
4514 /*
4515 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4516 * and returns the corresponding pte. While this is not necessary for the
4517 * !shared pmd case because we can allocate the pmd later as well, it makes the
4518 * code much cleaner. pmd allocation is essential for the shared case because
4519 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4520 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4521 * bad pmd for sharing.
4522 */
4523 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4524 {
4525 struct vm_area_struct *vma = find_vma(mm, addr);
4526 struct address_space *mapping = vma->vm_file->f_mapping;
4527 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4528 vma->vm_pgoff;
4529 struct vm_area_struct *svma;
4530 unsigned long saddr;
4531 pte_t *spte = NULL;
4532 pte_t *pte;
4533 spinlock_t *ptl;
4534
4535 if (!vma_shareable(vma, addr))
4536 return (pte_t *)pmd_alloc(mm, pud, addr);
4537
4538 i_mmap_lock_write(mapping);
4539 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4540 if (svma == vma)
4541 continue;
4542
4543 saddr = page_table_shareable(svma, vma, addr, idx);
4544 if (saddr) {
4545 spte = huge_pte_offset(svma->vm_mm, saddr,
4546 vma_mmu_pagesize(svma));
4547 if (spte) {
4548 get_page(virt_to_page(spte));
4549 break;
4550 }
4551 }
4552 }
4553
4554 if (!spte)
4555 goto out;
4556
4557 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4558 if (pud_none(*pud)) {
4559 pud_populate(mm, pud,
4560 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4561 mm_inc_nr_pmds(mm);
4562 } else {
4563 put_page(virt_to_page(spte));
4564 }
4565 spin_unlock(ptl);
4566 out:
4567 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4568 i_mmap_unlock_write(mapping);
4569 return pte;
4570 }
4571
4572 /*
4573 * unmap huge page backed by shared pte.
4574 *
4575 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4576 * indicated by page_count > 1, unmap is achieved by clearing pud and
4577 * decrementing the ref count. If count == 1, the pte page is not shared.
4578 *
4579 * called with page table lock held.
4580 *
4581 * returns: 1 successfully unmapped a shared pte page
4582 * 0 the underlying pte page is not shared, or it is the last user
4583 */
4584 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4585 {
4586 pgd_t *pgd = pgd_offset(mm, *addr);
4587 p4d_t *p4d = p4d_offset(pgd, *addr);
4588 pud_t *pud = pud_offset(p4d, *addr);
4589
4590 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4591 if (page_count(virt_to_page(ptep)) == 1)
4592 return 0;
4593
4594 pud_clear(pud);
4595 put_page(virt_to_page(ptep));
4596 mm_dec_nr_pmds(mm);
4597 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4598 return 1;
4599 }
4600 #define want_pmd_share() (1)
4601 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4602 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4603 {
4604 return NULL;
4605 }
4606
4607 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4608 {
4609 return 0;
4610 }
4611 #define want_pmd_share() (0)
4612 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4613
4614 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4615 pte_t *huge_pte_alloc(struct mm_struct *mm,
4616 unsigned long addr, unsigned long sz)
4617 {
4618 pgd_t *pgd;
4619 p4d_t *p4d;
4620 pud_t *pud;
4621 pte_t *pte = NULL;
4622
4623 pgd = pgd_offset(mm, addr);
4624 p4d = p4d_offset(pgd, addr);
4625 pud = pud_alloc(mm, p4d, addr);
4626 if (pud) {
4627 if (sz == PUD_SIZE) {
4628 pte = (pte_t *)pud;
4629 } else {
4630 BUG_ON(sz != PMD_SIZE);
4631 if (want_pmd_share() && pud_none(*pud))
4632 pte = huge_pmd_share(mm, addr, pud);
4633 else
4634 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4635 }
4636 }
4637 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4638
4639 return pte;
4640 }
4641
4642 pte_t *huge_pte_offset(struct mm_struct *mm,
4643 unsigned long addr, unsigned long sz)
4644 {
4645 pgd_t *pgd;
4646 p4d_t *p4d;
4647 pud_t *pud;
4648 pmd_t *pmd;
4649
4650 pgd = pgd_offset(mm, addr);
4651 if (!pgd_present(*pgd))
4652 return NULL;
4653 p4d = p4d_offset(pgd, addr);
4654 if (!p4d_present(*p4d))
4655 return NULL;
4656 pud = pud_offset(p4d, addr);
4657 if (!pud_present(*pud))
4658 return NULL;
4659 if (pud_huge(*pud))
4660 return (pte_t *)pud;
4661 pmd = pmd_offset(pud, addr);
4662 return (pte_t *) pmd;
4663 }
4664
4665 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4666
4667 /*
4668 * These functions are overwritable if your architecture needs its own
4669 * behavior.
4670 */
4671 struct page * __weak
4672 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4673 int write)
4674 {
4675 return ERR_PTR(-EINVAL);
4676 }
4677
4678 struct page * __weak
4679 follow_huge_pd(struct vm_area_struct *vma,
4680 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4681 {
4682 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4683 return NULL;
4684 }
4685
4686 struct page * __weak
4687 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4688 pmd_t *pmd, int flags)
4689 {
4690 struct page *page = NULL;
4691 spinlock_t *ptl;
4692 pte_t pte;
4693 retry:
4694 ptl = pmd_lockptr(mm, pmd);
4695 spin_lock(ptl);
4696 /*
4697 * make sure that the address range covered by this pmd is not
4698 * unmapped from other threads.
4699 */
4700 if (!pmd_huge(*pmd))
4701 goto out;
4702 pte = huge_ptep_get((pte_t *)pmd);
4703 if (pte_present(pte)) {
4704 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4705 if (flags & FOLL_GET)
4706 get_page(page);
4707 } else {
4708 if (is_hugetlb_entry_migration(pte)) {
4709 spin_unlock(ptl);
4710 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4711 goto retry;
4712 }
4713 /*
4714 * hwpoisoned entry is treated as no_page_table in
4715 * follow_page_mask().
4716 */
4717 }
4718 out:
4719 spin_unlock(ptl);
4720 return page;
4721 }
4722
4723 struct page * __weak
4724 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4725 pud_t *pud, int flags)
4726 {
4727 if (flags & FOLL_GET)
4728 return NULL;
4729
4730 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4731 }
4732
4733 struct page * __weak
4734 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4735 {
4736 if (flags & FOLL_GET)
4737 return NULL;
4738
4739 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4740 }
4741
4742 #ifdef CONFIG_MEMORY_FAILURE
4743
4744 /*
4745 * This function is called from memory failure code.
4746 */
4747 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4748 {
4749 struct hstate *h = page_hstate(hpage);
4750 int nid = page_to_nid(hpage);
4751 int ret = -EBUSY;
4752
4753 spin_lock(&hugetlb_lock);
4754 /*
4755 * Just checking !page_huge_active is not enough, because that could be
4756 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4757 */
4758 if (!page_huge_active(hpage) && !page_count(hpage)) {
4759 /*
4760 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4761 * but dangling hpage->lru can trigger list-debug warnings
4762 * (this happens when we call unpoison_memory() on it),
4763 * so let it point to itself with list_del_init().
4764 */
4765 list_del_init(&hpage->lru);
4766 set_page_refcounted(hpage);
4767 h->free_huge_pages--;
4768 h->free_huge_pages_node[nid]--;
4769 ret = 0;
4770 }
4771 spin_unlock(&hugetlb_lock);
4772 return ret;
4773 }
4774 #endif
4775
4776 bool isolate_huge_page(struct page *page, struct list_head *list)
4777 {
4778 bool ret = true;
4779
4780 VM_BUG_ON_PAGE(!PageHead(page), page);
4781 spin_lock(&hugetlb_lock);
4782 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4783 ret = false;
4784 goto unlock;
4785 }
4786 clear_page_huge_active(page);
4787 list_move_tail(&page->lru, list);
4788 unlock:
4789 spin_unlock(&hugetlb_lock);
4790 return ret;
4791 }
4792
4793 void putback_active_hugepage(struct page *page)
4794 {
4795 VM_BUG_ON_PAGE(!PageHead(page), page);
4796 spin_lock(&hugetlb_lock);
4797 set_page_huge_active(page);
4798 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4799 spin_unlock(&hugetlb_lock);
4800 put_page(page);
4801 }