]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/hugetlb.c
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[mirror_ubuntu-eoan-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include <linux/page_owner.h>
38 #include "internal.h"
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56
57 /*
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
60 */
61 DEFINE_SPINLOCK(hugetlb_lock);
62
63 /*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 {
75 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77 spin_unlock(&spool->lock);
78
79 /* If no pages are used, and no other handles to the subpool
80 * remain, give up any reservations mased on minimum size and
81 * free the subpool */
82 if (free) {
83 if (spool->min_hpages != -1)
84 hugetlb_acct_memory(spool->hstate,
85 -spool->min_hpages);
86 kfree(spool);
87 }
88 }
89
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91 long min_hpages)
92 {
93 struct hugepage_subpool *spool;
94
95 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96 if (!spool)
97 return NULL;
98
99 spin_lock_init(&spool->lock);
100 spool->count = 1;
101 spool->max_hpages = max_hpages;
102 spool->hstate = h;
103 spool->min_hpages = min_hpages;
104
105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106 kfree(spool);
107 return NULL;
108 }
109 spool->rsv_hpages = min_hpages;
110
111 return spool;
112 }
113
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 {
116 spin_lock(&spool->lock);
117 BUG_ON(!spool->count);
118 spool->count--;
119 unlock_or_release_subpool(spool);
120 }
121
122 /*
123 * Subpool accounting for allocating and reserving pages.
124 * Return -ENOMEM if there are not enough resources to satisfy the
125 * the request. Otherwise, return the number of pages by which the
126 * global pools must be adjusted (upward). The returned value may
127 * only be different than the passed value (delta) in the case where
128 * a subpool minimum size must be manitained.
129 */
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131 long delta)
132 {
133 long ret = delta;
134
135 if (!spool)
136 return ret;
137
138 spin_lock(&spool->lock);
139
140 if (spool->max_hpages != -1) { /* maximum size accounting */
141 if ((spool->used_hpages + delta) <= spool->max_hpages)
142 spool->used_hpages += delta;
143 else {
144 ret = -ENOMEM;
145 goto unlock_ret;
146 }
147 }
148
149 /* minimum size accounting */
150 if (spool->min_hpages != -1 && spool->rsv_hpages) {
151 if (delta > spool->rsv_hpages) {
152 /*
153 * Asking for more reserves than those already taken on
154 * behalf of subpool. Return difference.
155 */
156 ret = delta - spool->rsv_hpages;
157 spool->rsv_hpages = 0;
158 } else {
159 ret = 0; /* reserves already accounted for */
160 spool->rsv_hpages -= delta;
161 }
162 }
163
164 unlock_ret:
165 spin_unlock(&spool->lock);
166 return ret;
167 }
168
169 /*
170 * Subpool accounting for freeing and unreserving pages.
171 * Return the number of global page reservations that must be dropped.
172 * The return value may only be different than the passed value (delta)
173 * in the case where a subpool minimum size must be maintained.
174 */
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176 long delta)
177 {
178 long ret = delta;
179
180 if (!spool)
181 return delta;
182
183 spin_lock(&spool->lock);
184
185 if (spool->max_hpages != -1) /* maximum size accounting */
186 spool->used_hpages -= delta;
187
188 /* minimum size accounting */
189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190 if (spool->rsv_hpages + delta <= spool->min_hpages)
191 ret = 0;
192 else
193 ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195 spool->rsv_hpages += delta;
196 if (spool->rsv_hpages > spool->min_hpages)
197 spool->rsv_hpages = spool->min_hpages;
198 }
199
200 /*
201 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 * quota reference, free it now.
203 */
204 unlock_or_release_subpool(spool);
205
206 return ret;
207 }
208
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 {
211 return HUGETLBFS_SB(inode->i_sb)->spool;
212 }
213
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 {
216 return subpool_inode(file_inode(vma->vm_file));
217 }
218
219 /*
220 * Region tracking -- allows tracking of reservations and instantiated pages
221 * across the pages in a mapping.
222 *
223 * The region data structures are embedded into a resv_map and protected
224 * by a resv_map's lock. The set of regions within the resv_map represent
225 * reservations for huge pages, or huge pages that have already been
226 * instantiated within the map. The from and to elements are huge page
227 * indicies into the associated mapping. from indicates the starting index
228 * of the region. to represents the first index past the end of the region.
229 *
230 * For example, a file region structure with from == 0 and to == 4 represents
231 * four huge pages in a mapping. It is important to note that the to element
232 * represents the first element past the end of the region. This is used in
233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 *
235 * Interval notation of the form [from, to) will be used to indicate that
236 * the endpoint from is inclusive and to is exclusive.
237 */
238 struct file_region {
239 struct list_head link;
240 long from;
241 long to;
242 };
243
244 /*
245 * Add the huge page range represented by [f, t) to the reserve
246 * map. In the normal case, existing regions will be expanded
247 * to accommodate the specified range. Sufficient regions should
248 * exist for expansion due to the previous call to region_chg
249 * with the same range. However, it is possible that region_del
250 * could have been called after region_chg and modifed the map
251 * in such a way that no region exists to be expanded. In this
252 * case, pull a region descriptor from the cache associated with
253 * the map and use that for the new range.
254 *
255 * Return the number of new huge pages added to the map. This
256 * number is greater than or equal to zero.
257 */
258 static long region_add(struct resv_map *resv, long f, long t)
259 {
260 struct list_head *head = &resv->regions;
261 struct file_region *rg, *nrg, *trg;
262 long add = 0;
263
264 spin_lock(&resv->lock);
265 /* Locate the region we are either in or before. */
266 list_for_each_entry(rg, head, link)
267 if (f <= rg->to)
268 break;
269
270 /*
271 * If no region exists which can be expanded to include the
272 * specified range, the list must have been modified by an
273 * interleving call to region_del(). Pull a region descriptor
274 * from the cache and use it for this range.
275 */
276 if (&rg->link == head || t < rg->from) {
277 VM_BUG_ON(resv->region_cache_count <= 0);
278
279 resv->region_cache_count--;
280 nrg = list_first_entry(&resv->region_cache, struct file_region,
281 link);
282 list_del(&nrg->link);
283
284 nrg->from = f;
285 nrg->to = t;
286 list_add(&nrg->link, rg->link.prev);
287
288 add += t - f;
289 goto out_locked;
290 }
291
292 /* Round our left edge to the current segment if it encloses us. */
293 if (f > rg->from)
294 f = rg->from;
295
296 /* Check for and consume any regions we now overlap with. */
297 nrg = rg;
298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 if (&rg->link == head)
300 break;
301 if (rg->from > t)
302 break;
303
304 /* If this area reaches higher then extend our area to
305 * include it completely. If this is not the first area
306 * which we intend to reuse, free it. */
307 if (rg->to > t)
308 t = rg->to;
309 if (rg != nrg) {
310 /* Decrement return value by the deleted range.
311 * Another range will span this area so that by
312 * end of routine add will be >= zero
313 */
314 add -= (rg->to - rg->from);
315 list_del(&rg->link);
316 kfree(rg);
317 }
318 }
319
320 add += (nrg->from - f); /* Added to beginning of region */
321 nrg->from = f;
322 add += t - nrg->to; /* Added to end of region */
323 nrg->to = t;
324
325 out_locked:
326 resv->adds_in_progress--;
327 spin_unlock(&resv->lock);
328 VM_BUG_ON(add < 0);
329 return add;
330 }
331
332 /*
333 * Examine the existing reserve map and determine how many
334 * huge pages in the specified range [f, t) are NOT currently
335 * represented. This routine is called before a subsequent
336 * call to region_add that will actually modify the reserve
337 * map to add the specified range [f, t). region_chg does
338 * not change the number of huge pages represented by the
339 * map. However, if the existing regions in the map can not
340 * be expanded to represent the new range, a new file_region
341 * structure is added to the map as a placeholder. This is
342 * so that the subsequent region_add call will have all the
343 * regions it needs and will not fail.
344 *
345 * Upon entry, region_chg will also examine the cache of region descriptors
346 * associated with the map. If there are not enough descriptors cached, one
347 * will be allocated for the in progress add operation.
348 *
349 * Returns the number of huge pages that need to be added to the existing
350 * reservation map for the range [f, t). This number is greater or equal to
351 * zero. -ENOMEM is returned if a new file_region structure or cache entry
352 * is needed and can not be allocated.
353 */
354 static long region_chg(struct resv_map *resv, long f, long t)
355 {
356 struct list_head *head = &resv->regions;
357 struct file_region *rg, *nrg = NULL;
358 long chg = 0;
359
360 retry:
361 spin_lock(&resv->lock);
362 retry_locked:
363 resv->adds_in_progress++;
364
365 /*
366 * Check for sufficient descriptors in the cache to accommodate
367 * the number of in progress add operations.
368 */
369 if (resv->adds_in_progress > resv->region_cache_count) {
370 struct file_region *trg;
371
372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 /* Must drop lock to allocate a new descriptor. */
374 resv->adds_in_progress--;
375 spin_unlock(&resv->lock);
376
377 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378 if (!trg) {
379 kfree(nrg);
380 return -ENOMEM;
381 }
382
383 spin_lock(&resv->lock);
384 list_add(&trg->link, &resv->region_cache);
385 resv->region_cache_count++;
386 goto retry_locked;
387 }
388
389 /* Locate the region we are before or in. */
390 list_for_each_entry(rg, head, link)
391 if (f <= rg->to)
392 break;
393
394 /* If we are below the current region then a new region is required.
395 * Subtle, allocate a new region at the position but make it zero
396 * size such that we can guarantee to record the reservation. */
397 if (&rg->link == head || t < rg->from) {
398 if (!nrg) {
399 resv->adds_in_progress--;
400 spin_unlock(&resv->lock);
401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402 if (!nrg)
403 return -ENOMEM;
404
405 nrg->from = f;
406 nrg->to = f;
407 INIT_LIST_HEAD(&nrg->link);
408 goto retry;
409 }
410
411 list_add(&nrg->link, rg->link.prev);
412 chg = t - f;
413 goto out_nrg;
414 }
415
416 /* Round our left edge to the current segment if it encloses us. */
417 if (f > rg->from)
418 f = rg->from;
419 chg = t - f;
420
421 /* Check for and consume any regions we now overlap with. */
422 list_for_each_entry(rg, rg->link.prev, link) {
423 if (&rg->link == head)
424 break;
425 if (rg->from > t)
426 goto out;
427
428 /* We overlap with this area, if it extends further than
429 * us then we must extend ourselves. Account for its
430 * existing reservation. */
431 if (rg->to > t) {
432 chg += rg->to - t;
433 t = rg->to;
434 }
435 chg -= rg->to - rg->from;
436 }
437
438 out:
439 spin_unlock(&resv->lock);
440 /* We already know we raced and no longer need the new region */
441 kfree(nrg);
442 return chg;
443 out_nrg:
444 spin_unlock(&resv->lock);
445 return chg;
446 }
447
448 /*
449 * Abort the in progress add operation. The adds_in_progress field
450 * of the resv_map keeps track of the operations in progress between
451 * calls to region_chg and region_add. Operations are sometimes
452 * aborted after the call to region_chg. In such cases, region_abort
453 * is called to decrement the adds_in_progress counter.
454 *
455 * NOTE: The range arguments [f, t) are not needed or used in this
456 * routine. They are kept to make reading the calling code easier as
457 * arguments will match the associated region_chg call.
458 */
459 static void region_abort(struct resv_map *resv, long f, long t)
460 {
461 spin_lock(&resv->lock);
462 VM_BUG_ON(!resv->region_cache_count);
463 resv->adds_in_progress--;
464 spin_unlock(&resv->lock);
465 }
466
467 /*
468 * Delete the specified range [f, t) from the reserve map. If the
469 * t parameter is LONG_MAX, this indicates that ALL regions after f
470 * should be deleted. Locate the regions which intersect [f, t)
471 * and either trim, delete or split the existing regions.
472 *
473 * Returns the number of huge pages deleted from the reserve map.
474 * In the normal case, the return value is zero or more. In the
475 * case where a region must be split, a new region descriptor must
476 * be allocated. If the allocation fails, -ENOMEM will be returned.
477 * NOTE: If the parameter t == LONG_MAX, then we will never split
478 * a region and possibly return -ENOMEM. Callers specifying
479 * t == LONG_MAX do not need to check for -ENOMEM error.
480 */
481 static long region_del(struct resv_map *resv, long f, long t)
482 {
483 struct list_head *head = &resv->regions;
484 struct file_region *rg, *trg;
485 struct file_region *nrg = NULL;
486 long del = 0;
487
488 retry:
489 spin_lock(&resv->lock);
490 list_for_each_entry_safe(rg, trg, head, link) {
491 /*
492 * Skip regions before the range to be deleted. file_region
493 * ranges are normally of the form [from, to). However, there
494 * may be a "placeholder" entry in the map which is of the form
495 * (from, to) with from == to. Check for placeholder entries
496 * at the beginning of the range to be deleted.
497 */
498 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499 continue;
500
501 if (rg->from >= t)
502 break;
503
504 if (f > rg->from && t < rg->to) { /* Must split region */
505 /*
506 * Check for an entry in the cache before dropping
507 * lock and attempting allocation.
508 */
509 if (!nrg &&
510 resv->region_cache_count > resv->adds_in_progress) {
511 nrg = list_first_entry(&resv->region_cache,
512 struct file_region,
513 link);
514 list_del(&nrg->link);
515 resv->region_cache_count--;
516 }
517
518 if (!nrg) {
519 spin_unlock(&resv->lock);
520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521 if (!nrg)
522 return -ENOMEM;
523 goto retry;
524 }
525
526 del += t - f;
527
528 /* New entry for end of split region */
529 nrg->from = t;
530 nrg->to = rg->to;
531 INIT_LIST_HEAD(&nrg->link);
532
533 /* Original entry is trimmed */
534 rg->to = f;
535
536 list_add(&nrg->link, &rg->link);
537 nrg = NULL;
538 break;
539 }
540
541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 del += rg->to - rg->from;
543 list_del(&rg->link);
544 kfree(rg);
545 continue;
546 }
547
548 if (f <= rg->from) { /* Trim beginning of region */
549 del += t - rg->from;
550 rg->from = t;
551 } else { /* Trim end of region */
552 del += rg->to - f;
553 rg->to = f;
554 }
555 }
556
557 spin_unlock(&resv->lock);
558 kfree(nrg);
559 return del;
560 }
561
562 /*
563 * A rare out of memory error was encountered which prevented removal of
564 * the reserve map region for a page. The huge page itself was free'ed
565 * and removed from the page cache. This routine will adjust the subpool
566 * usage count, and the global reserve count if needed. By incrementing
567 * these counts, the reserve map entry which could not be deleted will
568 * appear as a "reserved" entry instead of simply dangling with incorrect
569 * counts.
570 */
571 void hugetlb_fix_reserve_counts(struct inode *inode)
572 {
573 struct hugepage_subpool *spool = subpool_inode(inode);
574 long rsv_adjust;
575
576 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577 if (rsv_adjust) {
578 struct hstate *h = hstate_inode(inode);
579
580 hugetlb_acct_memory(h, 1);
581 }
582 }
583
584 /*
585 * Count and return the number of huge pages in the reserve map
586 * that intersect with the range [f, t).
587 */
588 static long region_count(struct resv_map *resv, long f, long t)
589 {
590 struct list_head *head = &resv->regions;
591 struct file_region *rg;
592 long chg = 0;
593
594 spin_lock(&resv->lock);
595 /* Locate each segment we overlap with, and count that overlap. */
596 list_for_each_entry(rg, head, link) {
597 long seg_from;
598 long seg_to;
599
600 if (rg->to <= f)
601 continue;
602 if (rg->from >= t)
603 break;
604
605 seg_from = max(rg->from, f);
606 seg_to = min(rg->to, t);
607
608 chg += seg_to - seg_from;
609 }
610 spin_unlock(&resv->lock);
611
612 return chg;
613 }
614
615 /*
616 * Convert the address within this vma to the page offset within
617 * the mapping, in pagecache page units; huge pages here.
618 */
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620 struct vm_area_struct *vma, unsigned long address)
621 {
622 return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 (vma->vm_pgoff >> huge_page_order(h));
624 }
625
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 unsigned long address)
628 {
629 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 }
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
632
633 /*
634 * Return the size of the pages allocated when backing a VMA. In the majority
635 * cases this will be same size as used by the page table entries.
636 */
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 {
639 struct hstate *hstate;
640
641 if (!is_vm_hugetlb_page(vma))
642 return PAGE_SIZE;
643
644 hstate = hstate_vma(vma);
645
646 return 1UL << huge_page_shift(hstate);
647 }
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649
650 /*
651 * Return the page size being used by the MMU to back a VMA. In the majority
652 * of cases, the page size used by the kernel matches the MMU size. On
653 * architectures where it differs, an architecture-specific version of this
654 * function is required.
655 */
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 {
659 return vma_kernel_pagesize(vma);
660 }
661 #endif
662
663 /*
664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
665 * bits of the reservation map pointer, which are always clear due to
666 * alignment.
667 */
668 #define HPAGE_RESV_OWNER (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671
672 /*
673 * These helpers are used to track how many pages are reserved for
674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675 * is guaranteed to have their future faults succeed.
676 *
677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678 * the reserve counters are updated with the hugetlb_lock held. It is safe
679 * to reset the VMA at fork() time as it is not in use yet and there is no
680 * chance of the global counters getting corrupted as a result of the values.
681 *
682 * The private mapping reservation is represented in a subtly different
683 * manner to a shared mapping. A shared mapping has a region map associated
684 * with the underlying file, this region map represents the backing file
685 * pages which have ever had a reservation assigned which this persists even
686 * after the page is instantiated. A private mapping has a region map
687 * associated with the original mmap which is attached to all VMAs which
688 * reference it, this region map represents those offsets which have consumed
689 * reservation ie. where pages have been instantiated.
690 */
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 {
693 return (unsigned long)vma->vm_private_data;
694 }
695
696 static void set_vma_private_data(struct vm_area_struct *vma,
697 unsigned long value)
698 {
699 vma->vm_private_data = (void *)value;
700 }
701
702 struct resv_map *resv_map_alloc(void)
703 {
704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707 if (!resv_map || !rg) {
708 kfree(resv_map);
709 kfree(rg);
710 return NULL;
711 }
712
713 kref_init(&resv_map->refs);
714 spin_lock_init(&resv_map->lock);
715 INIT_LIST_HEAD(&resv_map->regions);
716
717 resv_map->adds_in_progress = 0;
718
719 INIT_LIST_HEAD(&resv_map->region_cache);
720 list_add(&rg->link, &resv_map->region_cache);
721 resv_map->region_cache_count = 1;
722
723 return resv_map;
724 }
725
726 void resv_map_release(struct kref *ref)
727 {
728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729 struct list_head *head = &resv_map->region_cache;
730 struct file_region *rg, *trg;
731
732 /* Clear out any active regions before we release the map. */
733 region_del(resv_map, 0, LONG_MAX);
734
735 /* ... and any entries left in the cache */
736 list_for_each_entry_safe(rg, trg, head, link) {
737 list_del(&rg->link);
738 kfree(rg);
739 }
740
741 VM_BUG_ON(resv_map->adds_in_progress);
742
743 kfree(resv_map);
744 }
745
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 {
748 return inode->i_mapping->private_data;
749 }
750
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 {
753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754 if (vma->vm_flags & VM_MAYSHARE) {
755 struct address_space *mapping = vma->vm_file->f_mapping;
756 struct inode *inode = mapping->host;
757
758 return inode_resv_map(inode);
759
760 } else {
761 return (struct resv_map *)(get_vma_private_data(vma) &
762 ~HPAGE_RESV_MASK);
763 }
764 }
765
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 {
768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770
771 set_vma_private_data(vma, (get_vma_private_data(vma) &
772 HPAGE_RESV_MASK) | (unsigned long)map);
773 }
774
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 {
777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779
780 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 }
782
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 {
785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786
787 return (get_vma_private_data(vma) & flag) != 0;
788 }
789
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 {
793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794 if (!(vma->vm_flags & VM_MAYSHARE))
795 vma->vm_private_data = (void *)0;
796 }
797
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 {
801 if (vma->vm_flags & VM_NORESERVE) {
802 /*
803 * This address is already reserved by other process(chg == 0),
804 * so, we should decrement reserved count. Without decrementing,
805 * reserve count remains after releasing inode, because this
806 * allocated page will go into page cache and is regarded as
807 * coming from reserved pool in releasing step. Currently, we
808 * don't have any other solution to deal with this situation
809 * properly, so add work-around here.
810 */
811 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812 return true;
813 else
814 return false;
815 }
816
817 /* Shared mappings always use reserves */
818 if (vma->vm_flags & VM_MAYSHARE) {
819 /*
820 * We know VM_NORESERVE is not set. Therefore, there SHOULD
821 * be a region map for all pages. The only situation where
822 * there is no region map is if a hole was punched via
823 * fallocate. In this case, there really are no reverves to
824 * use. This situation is indicated if chg != 0.
825 */
826 if (chg)
827 return false;
828 else
829 return true;
830 }
831
832 /*
833 * Only the process that called mmap() has reserves for
834 * private mappings.
835 */
836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 /*
838 * Like the shared case above, a hole punch or truncate
839 * could have been performed on the private mapping.
840 * Examine the value of chg to determine if reserves
841 * actually exist or were previously consumed.
842 * Very Subtle - The value of chg comes from a previous
843 * call to vma_needs_reserves(). The reserve map for
844 * private mappings has different (opposite) semantics
845 * than that of shared mappings. vma_needs_reserves()
846 * has already taken this difference in semantics into
847 * account. Therefore, the meaning of chg is the same
848 * as in the shared case above. Code could easily be
849 * combined, but keeping it separate draws attention to
850 * subtle differences.
851 */
852 if (chg)
853 return false;
854 else
855 return true;
856 }
857
858 return false;
859 }
860
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 {
863 int nid = page_to_nid(page);
864 list_move(&page->lru, &h->hugepage_freelists[nid]);
865 h->free_huge_pages++;
866 h->free_huge_pages_node[nid]++;
867 }
868
869 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
870 {
871 struct page *page;
872
873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874 if (!PageHWPoison(page))
875 break;
876 /*
877 * if 'non-isolated free hugepage' not found on the list,
878 * the allocation fails.
879 */
880 if (&h->hugepage_freelists[nid] == &page->lru)
881 return NULL;
882 list_move(&page->lru, &h->hugepage_activelist);
883 set_page_refcounted(page);
884 h->free_huge_pages--;
885 h->free_huge_pages_node[nid]--;
886 return page;
887 }
888
889 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
890 nodemask_t *nmask)
891 {
892 unsigned int cpuset_mems_cookie;
893 struct zonelist *zonelist;
894 struct zone *zone;
895 struct zoneref *z;
896 int node = -1;
897
898 zonelist = node_zonelist(nid, gfp_mask);
899
900 retry_cpuset:
901 cpuset_mems_cookie = read_mems_allowed_begin();
902 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
903 struct page *page;
904
905 if (!cpuset_zone_allowed(zone, gfp_mask))
906 continue;
907 /*
908 * no need to ask again on the same node. Pool is node rather than
909 * zone aware
910 */
911 if (zone_to_nid(zone) == node)
912 continue;
913 node = zone_to_nid(zone);
914
915 page = dequeue_huge_page_node_exact(h, node);
916 if (page)
917 return page;
918 }
919 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
920 goto retry_cpuset;
921
922 return NULL;
923 }
924
925 /* Movability of hugepages depends on migration support. */
926 static inline gfp_t htlb_alloc_mask(struct hstate *h)
927 {
928 if (hugepage_migration_supported(h))
929 return GFP_HIGHUSER_MOVABLE;
930 else
931 return GFP_HIGHUSER;
932 }
933
934 static struct page *dequeue_huge_page_vma(struct hstate *h,
935 struct vm_area_struct *vma,
936 unsigned long address, int avoid_reserve,
937 long chg)
938 {
939 struct page *page;
940 struct mempolicy *mpol;
941 gfp_t gfp_mask;
942 nodemask_t *nodemask;
943 int nid;
944
945 /*
946 * A child process with MAP_PRIVATE mappings created by their parent
947 * have no page reserves. This check ensures that reservations are
948 * not "stolen". The child may still get SIGKILLed
949 */
950 if (!vma_has_reserves(vma, chg) &&
951 h->free_huge_pages - h->resv_huge_pages == 0)
952 goto err;
953
954 /* If reserves cannot be used, ensure enough pages are in the pool */
955 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
956 goto err;
957
958 gfp_mask = htlb_alloc_mask(h);
959 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
960 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
961 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
962 SetPagePrivate(page);
963 h->resv_huge_pages--;
964 }
965
966 mpol_cond_put(mpol);
967 return page;
968
969 err:
970 return NULL;
971 }
972
973 /*
974 * common helper functions for hstate_next_node_to_{alloc|free}.
975 * We may have allocated or freed a huge page based on a different
976 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
977 * be outside of *nodes_allowed. Ensure that we use an allowed
978 * node for alloc or free.
979 */
980 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
981 {
982 nid = next_node_in(nid, *nodes_allowed);
983 VM_BUG_ON(nid >= MAX_NUMNODES);
984
985 return nid;
986 }
987
988 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
989 {
990 if (!node_isset(nid, *nodes_allowed))
991 nid = next_node_allowed(nid, nodes_allowed);
992 return nid;
993 }
994
995 /*
996 * returns the previously saved node ["this node"] from which to
997 * allocate a persistent huge page for the pool and advance the
998 * next node from which to allocate, handling wrap at end of node
999 * mask.
1000 */
1001 static int hstate_next_node_to_alloc(struct hstate *h,
1002 nodemask_t *nodes_allowed)
1003 {
1004 int nid;
1005
1006 VM_BUG_ON(!nodes_allowed);
1007
1008 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1009 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1010
1011 return nid;
1012 }
1013
1014 /*
1015 * helper for free_pool_huge_page() - return the previously saved
1016 * node ["this node"] from which to free a huge page. Advance the
1017 * next node id whether or not we find a free huge page to free so
1018 * that the next attempt to free addresses the next node.
1019 */
1020 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1021 {
1022 int nid;
1023
1024 VM_BUG_ON(!nodes_allowed);
1025
1026 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1027 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1028
1029 return nid;
1030 }
1031
1032 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1034 nr_nodes > 0 && \
1035 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1036 nr_nodes--)
1037
1038 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1039 for (nr_nodes = nodes_weight(*mask); \
1040 nr_nodes > 0 && \
1041 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1042 nr_nodes--)
1043
1044 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1045 static void destroy_compound_gigantic_page(struct page *page,
1046 unsigned int order)
1047 {
1048 int i;
1049 int nr_pages = 1 << order;
1050 struct page *p = page + 1;
1051
1052 atomic_set(compound_mapcount_ptr(page), 0);
1053 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1054 clear_compound_head(p);
1055 set_page_refcounted(p);
1056 }
1057
1058 set_compound_order(page, 0);
1059 __ClearPageHead(page);
1060 }
1061
1062 static void free_gigantic_page(struct page *page, unsigned int order)
1063 {
1064 free_contig_range(page_to_pfn(page), 1 << order);
1065 }
1066
1067 static int __alloc_gigantic_page(unsigned long start_pfn,
1068 unsigned long nr_pages, gfp_t gfp_mask)
1069 {
1070 unsigned long end_pfn = start_pfn + nr_pages;
1071 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1072 gfp_mask);
1073 }
1074
1075 static bool pfn_range_valid_gigantic(struct zone *z,
1076 unsigned long start_pfn, unsigned long nr_pages)
1077 {
1078 unsigned long i, end_pfn = start_pfn + nr_pages;
1079 struct page *page;
1080
1081 for (i = start_pfn; i < end_pfn; i++) {
1082 if (!pfn_valid(i))
1083 return false;
1084
1085 page = pfn_to_page(i);
1086
1087 if (page_zone(page) != z)
1088 return false;
1089
1090 if (PageReserved(page))
1091 return false;
1092
1093 if (page_count(page) > 0)
1094 return false;
1095
1096 if (PageHuge(page))
1097 return false;
1098 }
1099
1100 return true;
1101 }
1102
1103 static bool zone_spans_last_pfn(const struct zone *zone,
1104 unsigned long start_pfn, unsigned long nr_pages)
1105 {
1106 unsigned long last_pfn = start_pfn + nr_pages - 1;
1107 return zone_spans_pfn(zone, last_pfn);
1108 }
1109
1110 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1111 int nid, nodemask_t *nodemask)
1112 {
1113 unsigned int order = huge_page_order(h);
1114 unsigned long nr_pages = 1 << order;
1115 unsigned long ret, pfn, flags;
1116 struct zonelist *zonelist;
1117 struct zone *zone;
1118 struct zoneref *z;
1119
1120 zonelist = node_zonelist(nid, gfp_mask);
1121 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1122 spin_lock_irqsave(&zone->lock, flags);
1123
1124 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1125 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1126 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1127 /*
1128 * We release the zone lock here because
1129 * alloc_contig_range() will also lock the zone
1130 * at some point. If there's an allocation
1131 * spinning on this lock, it may win the race
1132 * and cause alloc_contig_range() to fail...
1133 */
1134 spin_unlock_irqrestore(&zone->lock, flags);
1135 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1136 if (!ret)
1137 return pfn_to_page(pfn);
1138 spin_lock_irqsave(&zone->lock, flags);
1139 }
1140 pfn += nr_pages;
1141 }
1142
1143 spin_unlock_irqrestore(&zone->lock, flags);
1144 }
1145
1146 return NULL;
1147 }
1148
1149 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1150 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1151
1152 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1153 static inline bool gigantic_page_supported(void) { return false; }
1154 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1155 int nid, nodemask_t *nodemask) { return NULL; }
1156 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1157 static inline void destroy_compound_gigantic_page(struct page *page,
1158 unsigned int order) { }
1159 #endif
1160
1161 static void update_and_free_page(struct hstate *h, struct page *page)
1162 {
1163 int i;
1164
1165 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1166 return;
1167
1168 h->nr_huge_pages--;
1169 h->nr_huge_pages_node[page_to_nid(page)]--;
1170 for (i = 0; i < pages_per_huge_page(h); i++) {
1171 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1172 1 << PG_referenced | 1 << PG_dirty |
1173 1 << PG_active | 1 << PG_private |
1174 1 << PG_writeback);
1175 }
1176 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1177 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1178 set_page_refcounted(page);
1179 if (hstate_is_gigantic(h)) {
1180 destroy_compound_gigantic_page(page, huge_page_order(h));
1181 free_gigantic_page(page, huge_page_order(h));
1182 } else {
1183 __free_pages(page, huge_page_order(h));
1184 }
1185 }
1186
1187 struct hstate *size_to_hstate(unsigned long size)
1188 {
1189 struct hstate *h;
1190
1191 for_each_hstate(h) {
1192 if (huge_page_size(h) == size)
1193 return h;
1194 }
1195 return NULL;
1196 }
1197
1198 /*
1199 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1200 * to hstate->hugepage_activelist.)
1201 *
1202 * This function can be called for tail pages, but never returns true for them.
1203 */
1204 bool page_huge_active(struct page *page)
1205 {
1206 VM_BUG_ON_PAGE(!PageHuge(page), page);
1207 return PageHead(page) && PagePrivate(&page[1]);
1208 }
1209
1210 /* never called for tail page */
1211 static void set_page_huge_active(struct page *page)
1212 {
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 SetPagePrivate(&page[1]);
1215 }
1216
1217 static void clear_page_huge_active(struct page *page)
1218 {
1219 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1220 ClearPagePrivate(&page[1]);
1221 }
1222
1223 /*
1224 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1225 * code
1226 */
1227 static inline bool PageHugeTemporary(struct page *page)
1228 {
1229 if (!PageHuge(page))
1230 return false;
1231
1232 return (unsigned long)page[2].mapping == -1U;
1233 }
1234
1235 static inline void SetPageHugeTemporary(struct page *page)
1236 {
1237 page[2].mapping = (void *)-1U;
1238 }
1239
1240 static inline void ClearPageHugeTemporary(struct page *page)
1241 {
1242 page[2].mapping = NULL;
1243 }
1244
1245 void free_huge_page(struct page *page)
1246 {
1247 /*
1248 * Can't pass hstate in here because it is called from the
1249 * compound page destructor.
1250 */
1251 struct hstate *h = page_hstate(page);
1252 int nid = page_to_nid(page);
1253 struct hugepage_subpool *spool =
1254 (struct hugepage_subpool *)page_private(page);
1255 bool restore_reserve;
1256
1257 set_page_private(page, 0);
1258 page->mapping = NULL;
1259 VM_BUG_ON_PAGE(page_count(page), page);
1260 VM_BUG_ON_PAGE(page_mapcount(page), page);
1261 restore_reserve = PagePrivate(page);
1262 ClearPagePrivate(page);
1263
1264 /*
1265 * A return code of zero implies that the subpool will be under its
1266 * minimum size if the reservation is not restored after page is free.
1267 * Therefore, force restore_reserve operation.
1268 */
1269 if (hugepage_subpool_put_pages(spool, 1) == 0)
1270 restore_reserve = true;
1271
1272 spin_lock(&hugetlb_lock);
1273 clear_page_huge_active(page);
1274 hugetlb_cgroup_uncharge_page(hstate_index(h),
1275 pages_per_huge_page(h), page);
1276 if (restore_reserve)
1277 h->resv_huge_pages++;
1278
1279 if (PageHugeTemporary(page)) {
1280 list_del(&page->lru);
1281 ClearPageHugeTemporary(page);
1282 update_and_free_page(h, page);
1283 } else if (h->surplus_huge_pages_node[nid]) {
1284 /* remove the page from active list */
1285 list_del(&page->lru);
1286 update_and_free_page(h, page);
1287 h->surplus_huge_pages--;
1288 h->surplus_huge_pages_node[nid]--;
1289 } else {
1290 arch_clear_hugepage_flags(page);
1291 enqueue_huge_page(h, page);
1292 }
1293 spin_unlock(&hugetlb_lock);
1294 }
1295
1296 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1297 {
1298 INIT_LIST_HEAD(&page->lru);
1299 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1300 spin_lock(&hugetlb_lock);
1301 set_hugetlb_cgroup(page, NULL);
1302 h->nr_huge_pages++;
1303 h->nr_huge_pages_node[nid]++;
1304 spin_unlock(&hugetlb_lock);
1305 }
1306
1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 {
1309 int i;
1310 int nr_pages = 1 << order;
1311 struct page *p = page + 1;
1312
1313 /* we rely on prep_new_huge_page to set the destructor */
1314 set_compound_order(page, order);
1315 __ClearPageReserved(page);
1316 __SetPageHead(page);
1317 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318 /*
1319 * For gigantic hugepages allocated through bootmem at
1320 * boot, it's safer to be consistent with the not-gigantic
1321 * hugepages and clear the PG_reserved bit from all tail pages
1322 * too. Otherwse drivers using get_user_pages() to access tail
1323 * pages may get the reference counting wrong if they see
1324 * PG_reserved set on a tail page (despite the head page not
1325 * having PG_reserved set). Enforcing this consistency between
1326 * head and tail pages allows drivers to optimize away a check
1327 * on the head page when they need know if put_page() is needed
1328 * after get_user_pages().
1329 */
1330 __ClearPageReserved(p);
1331 set_page_count(p, 0);
1332 set_compound_head(p, page);
1333 }
1334 atomic_set(compound_mapcount_ptr(page), -1);
1335 }
1336
1337 /*
1338 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339 * transparent huge pages. See the PageTransHuge() documentation for more
1340 * details.
1341 */
1342 int PageHuge(struct page *page)
1343 {
1344 if (!PageCompound(page))
1345 return 0;
1346
1347 page = compound_head(page);
1348 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349 }
1350 EXPORT_SYMBOL_GPL(PageHuge);
1351
1352 /*
1353 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354 * normal or transparent huge pages.
1355 */
1356 int PageHeadHuge(struct page *page_head)
1357 {
1358 if (!PageHead(page_head))
1359 return 0;
1360
1361 return get_compound_page_dtor(page_head) == free_huge_page;
1362 }
1363
1364 pgoff_t __basepage_index(struct page *page)
1365 {
1366 struct page *page_head = compound_head(page);
1367 pgoff_t index = page_index(page_head);
1368 unsigned long compound_idx;
1369
1370 if (!PageHuge(page_head))
1371 return page_index(page);
1372
1373 if (compound_order(page_head) >= MAX_ORDER)
1374 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375 else
1376 compound_idx = page - page_head;
1377
1378 return (index << compound_order(page_head)) + compound_idx;
1379 }
1380
1381 static struct page *alloc_buddy_huge_page(struct hstate *h,
1382 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1383 {
1384 int order = huge_page_order(h);
1385 struct page *page;
1386
1387 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1388 if (nid == NUMA_NO_NODE)
1389 nid = numa_mem_id();
1390 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1391 if (page)
1392 __count_vm_event(HTLB_BUDDY_PGALLOC);
1393 else
1394 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1395
1396 return page;
1397 }
1398
1399 /*
1400 * Common helper to allocate a fresh hugetlb page. All specific allocators
1401 * should use this function to get new hugetlb pages
1402 */
1403 static struct page *alloc_fresh_huge_page(struct hstate *h,
1404 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1405 {
1406 struct page *page;
1407
1408 if (hstate_is_gigantic(h))
1409 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1410 else
1411 page = alloc_buddy_huge_page(h, gfp_mask,
1412 nid, nmask);
1413 if (!page)
1414 return NULL;
1415
1416 if (hstate_is_gigantic(h))
1417 prep_compound_gigantic_page(page, huge_page_order(h));
1418 prep_new_huge_page(h, page, page_to_nid(page));
1419
1420 return page;
1421 }
1422
1423 /*
1424 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1425 * manner.
1426 */
1427 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1428 {
1429 struct page *page;
1430 int nr_nodes, node;
1431 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1432
1433 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1434 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1435 if (page)
1436 break;
1437 }
1438
1439 if (!page)
1440 return 0;
1441
1442 put_page(page); /* free it into the hugepage allocator */
1443
1444 return 1;
1445 }
1446
1447 /*
1448 * Free huge page from pool from next node to free.
1449 * Attempt to keep persistent huge pages more or less
1450 * balanced over allowed nodes.
1451 * Called with hugetlb_lock locked.
1452 */
1453 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1454 bool acct_surplus)
1455 {
1456 int nr_nodes, node;
1457 int ret = 0;
1458
1459 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1460 /*
1461 * If we're returning unused surplus pages, only examine
1462 * nodes with surplus pages.
1463 */
1464 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1465 !list_empty(&h->hugepage_freelists[node])) {
1466 struct page *page =
1467 list_entry(h->hugepage_freelists[node].next,
1468 struct page, lru);
1469 list_del(&page->lru);
1470 h->free_huge_pages--;
1471 h->free_huge_pages_node[node]--;
1472 if (acct_surplus) {
1473 h->surplus_huge_pages--;
1474 h->surplus_huge_pages_node[node]--;
1475 }
1476 update_and_free_page(h, page);
1477 ret = 1;
1478 break;
1479 }
1480 }
1481
1482 return ret;
1483 }
1484
1485 /*
1486 * Dissolve a given free hugepage into free buddy pages. This function does
1487 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1488 * number of free hugepages would be reduced below the number of reserved
1489 * hugepages.
1490 */
1491 int dissolve_free_huge_page(struct page *page)
1492 {
1493 int rc = 0;
1494
1495 spin_lock(&hugetlb_lock);
1496 if (PageHuge(page) && !page_count(page)) {
1497 struct page *head = compound_head(page);
1498 struct hstate *h = page_hstate(head);
1499 int nid = page_to_nid(head);
1500 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1501 rc = -EBUSY;
1502 goto out;
1503 }
1504 /*
1505 * Move PageHWPoison flag from head page to the raw error page,
1506 * which makes any subpages rather than the error page reusable.
1507 */
1508 if (PageHWPoison(head) && page != head) {
1509 SetPageHWPoison(page);
1510 ClearPageHWPoison(head);
1511 }
1512 list_del(&head->lru);
1513 h->free_huge_pages--;
1514 h->free_huge_pages_node[nid]--;
1515 h->max_huge_pages--;
1516 update_and_free_page(h, head);
1517 }
1518 out:
1519 spin_unlock(&hugetlb_lock);
1520 return rc;
1521 }
1522
1523 /*
1524 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1525 * make specified memory blocks removable from the system.
1526 * Note that this will dissolve a free gigantic hugepage completely, if any
1527 * part of it lies within the given range.
1528 * Also note that if dissolve_free_huge_page() returns with an error, all
1529 * free hugepages that were dissolved before that error are lost.
1530 */
1531 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1532 {
1533 unsigned long pfn;
1534 struct page *page;
1535 int rc = 0;
1536
1537 if (!hugepages_supported())
1538 return rc;
1539
1540 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1541 page = pfn_to_page(pfn);
1542 if (PageHuge(page) && !page_count(page)) {
1543 rc = dissolve_free_huge_page(page);
1544 if (rc)
1545 break;
1546 }
1547 }
1548
1549 return rc;
1550 }
1551
1552 /*
1553 * Allocates a fresh surplus page from the page allocator.
1554 */
1555 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1556 int nid, nodemask_t *nmask)
1557 {
1558 struct page *page = NULL;
1559
1560 if (hstate_is_gigantic(h))
1561 return NULL;
1562
1563 spin_lock(&hugetlb_lock);
1564 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1565 goto out_unlock;
1566 spin_unlock(&hugetlb_lock);
1567
1568 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1569 if (!page)
1570 return NULL;
1571
1572 spin_lock(&hugetlb_lock);
1573 /*
1574 * We could have raced with the pool size change.
1575 * Double check that and simply deallocate the new page
1576 * if we would end up overcommiting the surpluses. Abuse
1577 * temporary page to workaround the nasty free_huge_page
1578 * codeflow
1579 */
1580 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1581 SetPageHugeTemporary(page);
1582 put_page(page);
1583 page = NULL;
1584 } else {
1585 h->surplus_huge_pages++;
1586 h->nr_huge_pages_node[page_to_nid(page)]++;
1587 }
1588
1589 out_unlock:
1590 spin_unlock(&hugetlb_lock);
1591
1592 return page;
1593 }
1594
1595 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1596 int nid, nodemask_t *nmask)
1597 {
1598 struct page *page;
1599
1600 if (hstate_is_gigantic(h))
1601 return NULL;
1602
1603 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1604 if (!page)
1605 return NULL;
1606
1607 /*
1608 * We do not account these pages as surplus because they are only
1609 * temporary and will be released properly on the last reference
1610 */
1611 SetPageHugeTemporary(page);
1612
1613 return page;
1614 }
1615
1616 /*
1617 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1618 */
1619 static
1620 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1621 struct vm_area_struct *vma, unsigned long addr)
1622 {
1623 struct page *page;
1624 struct mempolicy *mpol;
1625 gfp_t gfp_mask = htlb_alloc_mask(h);
1626 int nid;
1627 nodemask_t *nodemask;
1628
1629 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1630 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1631 mpol_cond_put(mpol);
1632
1633 return page;
1634 }
1635
1636 /* page migration callback function */
1637 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1638 {
1639 gfp_t gfp_mask = htlb_alloc_mask(h);
1640 struct page *page = NULL;
1641
1642 if (nid != NUMA_NO_NODE)
1643 gfp_mask |= __GFP_THISNODE;
1644
1645 spin_lock(&hugetlb_lock);
1646 if (h->free_huge_pages - h->resv_huge_pages > 0)
1647 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1648 spin_unlock(&hugetlb_lock);
1649
1650 if (!page)
1651 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1652
1653 return page;
1654 }
1655
1656 /* page migration callback function */
1657 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1658 nodemask_t *nmask)
1659 {
1660 gfp_t gfp_mask = htlb_alloc_mask(h);
1661
1662 spin_lock(&hugetlb_lock);
1663 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1664 struct page *page;
1665
1666 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1667 if (page) {
1668 spin_unlock(&hugetlb_lock);
1669 return page;
1670 }
1671 }
1672 spin_unlock(&hugetlb_lock);
1673
1674 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1675 }
1676
1677 /* mempolicy aware migration callback */
1678 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1679 unsigned long address)
1680 {
1681 struct mempolicy *mpol;
1682 nodemask_t *nodemask;
1683 struct page *page;
1684 gfp_t gfp_mask;
1685 int node;
1686
1687 gfp_mask = htlb_alloc_mask(h);
1688 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1689 page = alloc_huge_page_nodemask(h, node, nodemask);
1690 mpol_cond_put(mpol);
1691
1692 return page;
1693 }
1694
1695 /*
1696 * Increase the hugetlb pool such that it can accommodate a reservation
1697 * of size 'delta'.
1698 */
1699 static int gather_surplus_pages(struct hstate *h, int delta)
1700 {
1701 struct list_head surplus_list;
1702 struct page *page, *tmp;
1703 int ret, i;
1704 int needed, allocated;
1705 bool alloc_ok = true;
1706
1707 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1708 if (needed <= 0) {
1709 h->resv_huge_pages += delta;
1710 return 0;
1711 }
1712
1713 allocated = 0;
1714 INIT_LIST_HEAD(&surplus_list);
1715
1716 ret = -ENOMEM;
1717 retry:
1718 spin_unlock(&hugetlb_lock);
1719 for (i = 0; i < needed; i++) {
1720 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1721 NUMA_NO_NODE, NULL);
1722 if (!page) {
1723 alloc_ok = false;
1724 break;
1725 }
1726 list_add(&page->lru, &surplus_list);
1727 cond_resched();
1728 }
1729 allocated += i;
1730
1731 /*
1732 * After retaking hugetlb_lock, we need to recalculate 'needed'
1733 * because either resv_huge_pages or free_huge_pages may have changed.
1734 */
1735 spin_lock(&hugetlb_lock);
1736 needed = (h->resv_huge_pages + delta) -
1737 (h->free_huge_pages + allocated);
1738 if (needed > 0) {
1739 if (alloc_ok)
1740 goto retry;
1741 /*
1742 * We were not able to allocate enough pages to
1743 * satisfy the entire reservation so we free what
1744 * we've allocated so far.
1745 */
1746 goto free;
1747 }
1748 /*
1749 * The surplus_list now contains _at_least_ the number of extra pages
1750 * needed to accommodate the reservation. Add the appropriate number
1751 * of pages to the hugetlb pool and free the extras back to the buddy
1752 * allocator. Commit the entire reservation here to prevent another
1753 * process from stealing the pages as they are added to the pool but
1754 * before they are reserved.
1755 */
1756 needed += allocated;
1757 h->resv_huge_pages += delta;
1758 ret = 0;
1759
1760 /* Free the needed pages to the hugetlb pool */
1761 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1762 if ((--needed) < 0)
1763 break;
1764 /*
1765 * This page is now managed by the hugetlb allocator and has
1766 * no users -- drop the buddy allocator's reference.
1767 */
1768 put_page_testzero(page);
1769 VM_BUG_ON_PAGE(page_count(page), page);
1770 enqueue_huge_page(h, page);
1771 }
1772 free:
1773 spin_unlock(&hugetlb_lock);
1774
1775 /* Free unnecessary surplus pages to the buddy allocator */
1776 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1777 put_page(page);
1778 spin_lock(&hugetlb_lock);
1779
1780 return ret;
1781 }
1782
1783 /*
1784 * This routine has two main purposes:
1785 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1786 * in unused_resv_pages. This corresponds to the prior adjustments made
1787 * to the associated reservation map.
1788 * 2) Free any unused surplus pages that may have been allocated to satisfy
1789 * the reservation. As many as unused_resv_pages may be freed.
1790 *
1791 * Called with hugetlb_lock held. However, the lock could be dropped (and
1792 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1793 * we must make sure nobody else can claim pages we are in the process of
1794 * freeing. Do this by ensuring resv_huge_page always is greater than the
1795 * number of huge pages we plan to free when dropping the lock.
1796 */
1797 static void return_unused_surplus_pages(struct hstate *h,
1798 unsigned long unused_resv_pages)
1799 {
1800 unsigned long nr_pages;
1801
1802 /* Cannot return gigantic pages currently */
1803 if (hstate_is_gigantic(h))
1804 goto out;
1805
1806 /*
1807 * Part (or even all) of the reservation could have been backed
1808 * by pre-allocated pages. Only free surplus pages.
1809 */
1810 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1811
1812 /*
1813 * We want to release as many surplus pages as possible, spread
1814 * evenly across all nodes with memory. Iterate across these nodes
1815 * until we can no longer free unreserved surplus pages. This occurs
1816 * when the nodes with surplus pages have no free pages.
1817 * free_pool_huge_page() will balance the the freed pages across the
1818 * on-line nodes with memory and will handle the hstate accounting.
1819 *
1820 * Note that we decrement resv_huge_pages as we free the pages. If
1821 * we drop the lock, resv_huge_pages will still be sufficiently large
1822 * to cover subsequent pages we may free.
1823 */
1824 while (nr_pages--) {
1825 h->resv_huge_pages--;
1826 unused_resv_pages--;
1827 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1828 goto out;
1829 cond_resched_lock(&hugetlb_lock);
1830 }
1831
1832 out:
1833 /* Fully uncommit the reservation */
1834 h->resv_huge_pages -= unused_resv_pages;
1835 }
1836
1837
1838 /*
1839 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1840 * are used by the huge page allocation routines to manage reservations.
1841 *
1842 * vma_needs_reservation is called to determine if the huge page at addr
1843 * within the vma has an associated reservation. If a reservation is
1844 * needed, the value 1 is returned. The caller is then responsible for
1845 * managing the global reservation and subpool usage counts. After
1846 * the huge page has been allocated, vma_commit_reservation is called
1847 * to add the page to the reservation map. If the page allocation fails,
1848 * the reservation must be ended instead of committed. vma_end_reservation
1849 * is called in such cases.
1850 *
1851 * In the normal case, vma_commit_reservation returns the same value
1852 * as the preceding vma_needs_reservation call. The only time this
1853 * is not the case is if a reserve map was changed between calls. It
1854 * is the responsibility of the caller to notice the difference and
1855 * take appropriate action.
1856 *
1857 * vma_add_reservation is used in error paths where a reservation must
1858 * be restored when a newly allocated huge page must be freed. It is
1859 * to be called after calling vma_needs_reservation to determine if a
1860 * reservation exists.
1861 */
1862 enum vma_resv_mode {
1863 VMA_NEEDS_RESV,
1864 VMA_COMMIT_RESV,
1865 VMA_END_RESV,
1866 VMA_ADD_RESV,
1867 };
1868 static long __vma_reservation_common(struct hstate *h,
1869 struct vm_area_struct *vma, unsigned long addr,
1870 enum vma_resv_mode mode)
1871 {
1872 struct resv_map *resv;
1873 pgoff_t idx;
1874 long ret;
1875
1876 resv = vma_resv_map(vma);
1877 if (!resv)
1878 return 1;
1879
1880 idx = vma_hugecache_offset(h, vma, addr);
1881 switch (mode) {
1882 case VMA_NEEDS_RESV:
1883 ret = region_chg(resv, idx, idx + 1);
1884 break;
1885 case VMA_COMMIT_RESV:
1886 ret = region_add(resv, idx, idx + 1);
1887 break;
1888 case VMA_END_RESV:
1889 region_abort(resv, idx, idx + 1);
1890 ret = 0;
1891 break;
1892 case VMA_ADD_RESV:
1893 if (vma->vm_flags & VM_MAYSHARE)
1894 ret = region_add(resv, idx, idx + 1);
1895 else {
1896 region_abort(resv, idx, idx + 1);
1897 ret = region_del(resv, idx, idx + 1);
1898 }
1899 break;
1900 default:
1901 BUG();
1902 }
1903
1904 if (vma->vm_flags & VM_MAYSHARE)
1905 return ret;
1906 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1907 /*
1908 * In most cases, reserves always exist for private mappings.
1909 * However, a file associated with mapping could have been
1910 * hole punched or truncated after reserves were consumed.
1911 * As subsequent fault on such a range will not use reserves.
1912 * Subtle - The reserve map for private mappings has the
1913 * opposite meaning than that of shared mappings. If NO
1914 * entry is in the reserve map, it means a reservation exists.
1915 * If an entry exists in the reserve map, it means the
1916 * reservation has already been consumed. As a result, the
1917 * return value of this routine is the opposite of the
1918 * value returned from reserve map manipulation routines above.
1919 */
1920 if (ret)
1921 return 0;
1922 else
1923 return 1;
1924 }
1925 else
1926 return ret < 0 ? ret : 0;
1927 }
1928
1929 static long vma_needs_reservation(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1931 {
1932 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1933 }
1934
1935 static long vma_commit_reservation(struct hstate *h,
1936 struct vm_area_struct *vma, unsigned long addr)
1937 {
1938 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1939 }
1940
1941 static void vma_end_reservation(struct hstate *h,
1942 struct vm_area_struct *vma, unsigned long addr)
1943 {
1944 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1945 }
1946
1947 static long vma_add_reservation(struct hstate *h,
1948 struct vm_area_struct *vma, unsigned long addr)
1949 {
1950 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1951 }
1952
1953 /*
1954 * This routine is called to restore a reservation on error paths. In the
1955 * specific error paths, a huge page was allocated (via alloc_huge_page)
1956 * and is about to be freed. If a reservation for the page existed,
1957 * alloc_huge_page would have consumed the reservation and set PagePrivate
1958 * in the newly allocated page. When the page is freed via free_huge_page,
1959 * the global reservation count will be incremented if PagePrivate is set.
1960 * However, free_huge_page can not adjust the reserve map. Adjust the
1961 * reserve map here to be consistent with global reserve count adjustments
1962 * to be made by free_huge_page.
1963 */
1964 static void restore_reserve_on_error(struct hstate *h,
1965 struct vm_area_struct *vma, unsigned long address,
1966 struct page *page)
1967 {
1968 if (unlikely(PagePrivate(page))) {
1969 long rc = vma_needs_reservation(h, vma, address);
1970
1971 if (unlikely(rc < 0)) {
1972 /*
1973 * Rare out of memory condition in reserve map
1974 * manipulation. Clear PagePrivate so that
1975 * global reserve count will not be incremented
1976 * by free_huge_page. This will make it appear
1977 * as though the reservation for this page was
1978 * consumed. This may prevent the task from
1979 * faulting in the page at a later time. This
1980 * is better than inconsistent global huge page
1981 * accounting of reserve counts.
1982 */
1983 ClearPagePrivate(page);
1984 } else if (rc) {
1985 rc = vma_add_reservation(h, vma, address);
1986 if (unlikely(rc < 0))
1987 /*
1988 * See above comment about rare out of
1989 * memory condition.
1990 */
1991 ClearPagePrivate(page);
1992 } else
1993 vma_end_reservation(h, vma, address);
1994 }
1995 }
1996
1997 struct page *alloc_huge_page(struct vm_area_struct *vma,
1998 unsigned long addr, int avoid_reserve)
1999 {
2000 struct hugepage_subpool *spool = subpool_vma(vma);
2001 struct hstate *h = hstate_vma(vma);
2002 struct page *page;
2003 long map_chg, map_commit;
2004 long gbl_chg;
2005 int ret, idx;
2006 struct hugetlb_cgroup *h_cg;
2007
2008 idx = hstate_index(h);
2009 /*
2010 * Examine the region/reserve map to determine if the process
2011 * has a reservation for the page to be allocated. A return
2012 * code of zero indicates a reservation exists (no change).
2013 */
2014 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2015 if (map_chg < 0)
2016 return ERR_PTR(-ENOMEM);
2017
2018 /*
2019 * Processes that did not create the mapping will have no
2020 * reserves as indicated by the region/reserve map. Check
2021 * that the allocation will not exceed the subpool limit.
2022 * Allocations for MAP_NORESERVE mappings also need to be
2023 * checked against any subpool limit.
2024 */
2025 if (map_chg || avoid_reserve) {
2026 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2027 if (gbl_chg < 0) {
2028 vma_end_reservation(h, vma, addr);
2029 return ERR_PTR(-ENOSPC);
2030 }
2031
2032 /*
2033 * Even though there was no reservation in the region/reserve
2034 * map, there could be reservations associated with the
2035 * subpool that can be used. This would be indicated if the
2036 * return value of hugepage_subpool_get_pages() is zero.
2037 * However, if avoid_reserve is specified we still avoid even
2038 * the subpool reservations.
2039 */
2040 if (avoid_reserve)
2041 gbl_chg = 1;
2042 }
2043
2044 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2045 if (ret)
2046 goto out_subpool_put;
2047
2048 spin_lock(&hugetlb_lock);
2049 /*
2050 * glb_chg is passed to indicate whether or not a page must be taken
2051 * from the global free pool (global change). gbl_chg == 0 indicates
2052 * a reservation exists for the allocation.
2053 */
2054 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2055 if (!page) {
2056 spin_unlock(&hugetlb_lock);
2057 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2058 if (!page)
2059 goto out_uncharge_cgroup;
2060 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2061 SetPagePrivate(page);
2062 h->resv_huge_pages--;
2063 }
2064 spin_lock(&hugetlb_lock);
2065 list_move(&page->lru, &h->hugepage_activelist);
2066 /* Fall through */
2067 }
2068 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2069 spin_unlock(&hugetlb_lock);
2070
2071 set_page_private(page, (unsigned long)spool);
2072
2073 map_commit = vma_commit_reservation(h, vma, addr);
2074 if (unlikely(map_chg > map_commit)) {
2075 /*
2076 * The page was added to the reservation map between
2077 * vma_needs_reservation and vma_commit_reservation.
2078 * This indicates a race with hugetlb_reserve_pages.
2079 * Adjust for the subpool count incremented above AND
2080 * in hugetlb_reserve_pages for the same page. Also,
2081 * the reservation count added in hugetlb_reserve_pages
2082 * no longer applies.
2083 */
2084 long rsv_adjust;
2085
2086 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2087 hugetlb_acct_memory(h, -rsv_adjust);
2088 }
2089 return page;
2090
2091 out_uncharge_cgroup:
2092 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2093 out_subpool_put:
2094 if (map_chg || avoid_reserve)
2095 hugepage_subpool_put_pages(spool, 1);
2096 vma_end_reservation(h, vma, addr);
2097 return ERR_PTR(-ENOSPC);
2098 }
2099
2100 int alloc_bootmem_huge_page(struct hstate *h)
2101 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2102 int __alloc_bootmem_huge_page(struct hstate *h)
2103 {
2104 struct huge_bootmem_page *m;
2105 int nr_nodes, node;
2106
2107 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2108 void *addr;
2109
2110 addr = memblock_virt_alloc_try_nid_nopanic(
2111 huge_page_size(h), huge_page_size(h),
2112 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2113 if (addr) {
2114 /*
2115 * Use the beginning of the huge page to store the
2116 * huge_bootmem_page struct (until gather_bootmem
2117 * puts them into the mem_map).
2118 */
2119 m = addr;
2120 goto found;
2121 }
2122 }
2123 return 0;
2124
2125 found:
2126 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2127 /* Put them into a private list first because mem_map is not up yet */
2128 list_add(&m->list, &huge_boot_pages);
2129 m->hstate = h;
2130 return 1;
2131 }
2132
2133 static void __init prep_compound_huge_page(struct page *page,
2134 unsigned int order)
2135 {
2136 if (unlikely(order > (MAX_ORDER - 1)))
2137 prep_compound_gigantic_page(page, order);
2138 else
2139 prep_compound_page(page, order);
2140 }
2141
2142 /* Put bootmem huge pages into the standard lists after mem_map is up */
2143 static void __init gather_bootmem_prealloc(void)
2144 {
2145 struct huge_bootmem_page *m;
2146
2147 list_for_each_entry(m, &huge_boot_pages, list) {
2148 struct hstate *h = m->hstate;
2149 struct page *page;
2150
2151 #ifdef CONFIG_HIGHMEM
2152 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2153 memblock_free_late(__pa(m),
2154 sizeof(struct huge_bootmem_page));
2155 #else
2156 page = virt_to_page(m);
2157 #endif
2158 WARN_ON(page_count(page) != 1);
2159 prep_compound_huge_page(page, h->order);
2160 WARN_ON(PageReserved(page));
2161 prep_new_huge_page(h, page, page_to_nid(page));
2162 put_page(page); /* free it into the hugepage allocator */
2163
2164 /*
2165 * If we had gigantic hugepages allocated at boot time, we need
2166 * to restore the 'stolen' pages to totalram_pages in order to
2167 * fix confusing memory reports from free(1) and another
2168 * side-effects, like CommitLimit going negative.
2169 */
2170 if (hstate_is_gigantic(h))
2171 adjust_managed_page_count(page, 1 << h->order);
2172 }
2173 }
2174
2175 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2176 {
2177 unsigned long i;
2178
2179 for (i = 0; i < h->max_huge_pages; ++i) {
2180 if (hstate_is_gigantic(h)) {
2181 if (!alloc_bootmem_huge_page(h))
2182 break;
2183 } else if (!alloc_pool_huge_page(h,
2184 &node_states[N_MEMORY]))
2185 break;
2186 cond_resched();
2187 }
2188 if (i < h->max_huge_pages) {
2189 char buf[32];
2190
2191 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2192 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2193 h->max_huge_pages, buf, i);
2194 h->max_huge_pages = i;
2195 }
2196 }
2197
2198 static void __init hugetlb_init_hstates(void)
2199 {
2200 struct hstate *h;
2201
2202 for_each_hstate(h) {
2203 if (minimum_order > huge_page_order(h))
2204 minimum_order = huge_page_order(h);
2205
2206 /* oversize hugepages were init'ed in early boot */
2207 if (!hstate_is_gigantic(h))
2208 hugetlb_hstate_alloc_pages(h);
2209 }
2210 VM_BUG_ON(minimum_order == UINT_MAX);
2211 }
2212
2213 static void __init report_hugepages(void)
2214 {
2215 struct hstate *h;
2216
2217 for_each_hstate(h) {
2218 char buf[32];
2219
2220 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2221 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2222 buf, h->free_huge_pages);
2223 }
2224 }
2225
2226 #ifdef CONFIG_HIGHMEM
2227 static void try_to_free_low(struct hstate *h, unsigned long count,
2228 nodemask_t *nodes_allowed)
2229 {
2230 int i;
2231
2232 if (hstate_is_gigantic(h))
2233 return;
2234
2235 for_each_node_mask(i, *nodes_allowed) {
2236 struct page *page, *next;
2237 struct list_head *freel = &h->hugepage_freelists[i];
2238 list_for_each_entry_safe(page, next, freel, lru) {
2239 if (count >= h->nr_huge_pages)
2240 return;
2241 if (PageHighMem(page))
2242 continue;
2243 list_del(&page->lru);
2244 update_and_free_page(h, page);
2245 h->free_huge_pages--;
2246 h->free_huge_pages_node[page_to_nid(page)]--;
2247 }
2248 }
2249 }
2250 #else
2251 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2252 nodemask_t *nodes_allowed)
2253 {
2254 }
2255 #endif
2256
2257 /*
2258 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2259 * balanced by operating on them in a round-robin fashion.
2260 * Returns 1 if an adjustment was made.
2261 */
2262 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2263 int delta)
2264 {
2265 int nr_nodes, node;
2266
2267 VM_BUG_ON(delta != -1 && delta != 1);
2268
2269 if (delta < 0) {
2270 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2271 if (h->surplus_huge_pages_node[node])
2272 goto found;
2273 }
2274 } else {
2275 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2276 if (h->surplus_huge_pages_node[node] <
2277 h->nr_huge_pages_node[node])
2278 goto found;
2279 }
2280 }
2281 return 0;
2282
2283 found:
2284 h->surplus_huge_pages += delta;
2285 h->surplus_huge_pages_node[node] += delta;
2286 return 1;
2287 }
2288
2289 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2290 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2291 nodemask_t *nodes_allowed)
2292 {
2293 unsigned long min_count, ret;
2294
2295 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2296 return h->max_huge_pages;
2297
2298 /*
2299 * Increase the pool size
2300 * First take pages out of surplus state. Then make up the
2301 * remaining difference by allocating fresh huge pages.
2302 *
2303 * We might race with alloc_surplus_huge_page() here and be unable
2304 * to convert a surplus huge page to a normal huge page. That is
2305 * not critical, though, it just means the overall size of the
2306 * pool might be one hugepage larger than it needs to be, but
2307 * within all the constraints specified by the sysctls.
2308 */
2309 spin_lock(&hugetlb_lock);
2310 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2311 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2312 break;
2313 }
2314
2315 while (count > persistent_huge_pages(h)) {
2316 /*
2317 * If this allocation races such that we no longer need the
2318 * page, free_huge_page will handle it by freeing the page
2319 * and reducing the surplus.
2320 */
2321 spin_unlock(&hugetlb_lock);
2322
2323 /* yield cpu to avoid soft lockup */
2324 cond_resched();
2325
2326 ret = alloc_pool_huge_page(h, nodes_allowed);
2327 spin_lock(&hugetlb_lock);
2328 if (!ret)
2329 goto out;
2330
2331 /* Bail for signals. Probably ctrl-c from user */
2332 if (signal_pending(current))
2333 goto out;
2334 }
2335
2336 /*
2337 * Decrease the pool size
2338 * First return free pages to the buddy allocator (being careful
2339 * to keep enough around to satisfy reservations). Then place
2340 * pages into surplus state as needed so the pool will shrink
2341 * to the desired size as pages become free.
2342 *
2343 * By placing pages into the surplus state independent of the
2344 * overcommit value, we are allowing the surplus pool size to
2345 * exceed overcommit. There are few sane options here. Since
2346 * alloc_surplus_huge_page() is checking the global counter,
2347 * though, we'll note that we're not allowed to exceed surplus
2348 * and won't grow the pool anywhere else. Not until one of the
2349 * sysctls are changed, or the surplus pages go out of use.
2350 */
2351 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2352 min_count = max(count, min_count);
2353 try_to_free_low(h, min_count, nodes_allowed);
2354 while (min_count < persistent_huge_pages(h)) {
2355 if (!free_pool_huge_page(h, nodes_allowed, 0))
2356 break;
2357 cond_resched_lock(&hugetlb_lock);
2358 }
2359 while (count < persistent_huge_pages(h)) {
2360 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2361 break;
2362 }
2363 out:
2364 ret = persistent_huge_pages(h);
2365 spin_unlock(&hugetlb_lock);
2366 return ret;
2367 }
2368
2369 #define HSTATE_ATTR_RO(_name) \
2370 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2371
2372 #define HSTATE_ATTR(_name) \
2373 static struct kobj_attribute _name##_attr = \
2374 __ATTR(_name, 0644, _name##_show, _name##_store)
2375
2376 static struct kobject *hugepages_kobj;
2377 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2378
2379 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2380
2381 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2382 {
2383 int i;
2384
2385 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2386 if (hstate_kobjs[i] == kobj) {
2387 if (nidp)
2388 *nidp = NUMA_NO_NODE;
2389 return &hstates[i];
2390 }
2391
2392 return kobj_to_node_hstate(kobj, nidp);
2393 }
2394
2395 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2396 struct kobj_attribute *attr, char *buf)
2397 {
2398 struct hstate *h;
2399 unsigned long nr_huge_pages;
2400 int nid;
2401
2402 h = kobj_to_hstate(kobj, &nid);
2403 if (nid == NUMA_NO_NODE)
2404 nr_huge_pages = h->nr_huge_pages;
2405 else
2406 nr_huge_pages = h->nr_huge_pages_node[nid];
2407
2408 return sprintf(buf, "%lu\n", nr_huge_pages);
2409 }
2410
2411 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2412 struct hstate *h, int nid,
2413 unsigned long count, size_t len)
2414 {
2415 int err;
2416 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2417
2418 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2419 err = -EINVAL;
2420 goto out;
2421 }
2422
2423 if (nid == NUMA_NO_NODE) {
2424 /*
2425 * global hstate attribute
2426 */
2427 if (!(obey_mempolicy &&
2428 init_nodemask_of_mempolicy(nodes_allowed))) {
2429 NODEMASK_FREE(nodes_allowed);
2430 nodes_allowed = &node_states[N_MEMORY];
2431 }
2432 } else if (nodes_allowed) {
2433 /*
2434 * per node hstate attribute: adjust count to global,
2435 * but restrict alloc/free to the specified node.
2436 */
2437 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2438 init_nodemask_of_node(nodes_allowed, nid);
2439 } else
2440 nodes_allowed = &node_states[N_MEMORY];
2441
2442 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2443
2444 if (nodes_allowed != &node_states[N_MEMORY])
2445 NODEMASK_FREE(nodes_allowed);
2446
2447 return len;
2448 out:
2449 NODEMASK_FREE(nodes_allowed);
2450 return err;
2451 }
2452
2453 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2454 struct kobject *kobj, const char *buf,
2455 size_t len)
2456 {
2457 struct hstate *h;
2458 unsigned long count;
2459 int nid;
2460 int err;
2461
2462 err = kstrtoul(buf, 10, &count);
2463 if (err)
2464 return err;
2465
2466 h = kobj_to_hstate(kobj, &nid);
2467 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2468 }
2469
2470 static ssize_t nr_hugepages_show(struct kobject *kobj,
2471 struct kobj_attribute *attr, char *buf)
2472 {
2473 return nr_hugepages_show_common(kobj, attr, buf);
2474 }
2475
2476 static ssize_t nr_hugepages_store(struct kobject *kobj,
2477 struct kobj_attribute *attr, const char *buf, size_t len)
2478 {
2479 return nr_hugepages_store_common(false, kobj, buf, len);
2480 }
2481 HSTATE_ATTR(nr_hugepages);
2482
2483 #ifdef CONFIG_NUMA
2484
2485 /*
2486 * hstate attribute for optionally mempolicy-based constraint on persistent
2487 * huge page alloc/free.
2488 */
2489 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2490 struct kobj_attribute *attr, char *buf)
2491 {
2492 return nr_hugepages_show_common(kobj, attr, buf);
2493 }
2494
2495 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2496 struct kobj_attribute *attr, const char *buf, size_t len)
2497 {
2498 return nr_hugepages_store_common(true, kobj, buf, len);
2499 }
2500 HSTATE_ATTR(nr_hugepages_mempolicy);
2501 #endif
2502
2503
2504 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2505 struct kobj_attribute *attr, char *buf)
2506 {
2507 struct hstate *h = kobj_to_hstate(kobj, NULL);
2508 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2509 }
2510
2511 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2512 struct kobj_attribute *attr, const char *buf, size_t count)
2513 {
2514 int err;
2515 unsigned long input;
2516 struct hstate *h = kobj_to_hstate(kobj, NULL);
2517
2518 if (hstate_is_gigantic(h))
2519 return -EINVAL;
2520
2521 err = kstrtoul(buf, 10, &input);
2522 if (err)
2523 return err;
2524
2525 spin_lock(&hugetlb_lock);
2526 h->nr_overcommit_huge_pages = input;
2527 spin_unlock(&hugetlb_lock);
2528
2529 return count;
2530 }
2531 HSTATE_ATTR(nr_overcommit_hugepages);
2532
2533 static ssize_t free_hugepages_show(struct kobject *kobj,
2534 struct kobj_attribute *attr, char *buf)
2535 {
2536 struct hstate *h;
2537 unsigned long free_huge_pages;
2538 int nid;
2539
2540 h = kobj_to_hstate(kobj, &nid);
2541 if (nid == NUMA_NO_NODE)
2542 free_huge_pages = h->free_huge_pages;
2543 else
2544 free_huge_pages = h->free_huge_pages_node[nid];
2545
2546 return sprintf(buf, "%lu\n", free_huge_pages);
2547 }
2548 HSTATE_ATTR_RO(free_hugepages);
2549
2550 static ssize_t resv_hugepages_show(struct kobject *kobj,
2551 struct kobj_attribute *attr, char *buf)
2552 {
2553 struct hstate *h = kobj_to_hstate(kobj, NULL);
2554 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2555 }
2556 HSTATE_ATTR_RO(resv_hugepages);
2557
2558 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2559 struct kobj_attribute *attr, char *buf)
2560 {
2561 struct hstate *h;
2562 unsigned long surplus_huge_pages;
2563 int nid;
2564
2565 h = kobj_to_hstate(kobj, &nid);
2566 if (nid == NUMA_NO_NODE)
2567 surplus_huge_pages = h->surplus_huge_pages;
2568 else
2569 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2570
2571 return sprintf(buf, "%lu\n", surplus_huge_pages);
2572 }
2573 HSTATE_ATTR_RO(surplus_hugepages);
2574
2575 static struct attribute *hstate_attrs[] = {
2576 &nr_hugepages_attr.attr,
2577 &nr_overcommit_hugepages_attr.attr,
2578 &free_hugepages_attr.attr,
2579 &resv_hugepages_attr.attr,
2580 &surplus_hugepages_attr.attr,
2581 #ifdef CONFIG_NUMA
2582 &nr_hugepages_mempolicy_attr.attr,
2583 #endif
2584 NULL,
2585 };
2586
2587 static const struct attribute_group hstate_attr_group = {
2588 .attrs = hstate_attrs,
2589 };
2590
2591 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2592 struct kobject **hstate_kobjs,
2593 const struct attribute_group *hstate_attr_group)
2594 {
2595 int retval;
2596 int hi = hstate_index(h);
2597
2598 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2599 if (!hstate_kobjs[hi])
2600 return -ENOMEM;
2601
2602 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2603 if (retval)
2604 kobject_put(hstate_kobjs[hi]);
2605
2606 return retval;
2607 }
2608
2609 static void __init hugetlb_sysfs_init(void)
2610 {
2611 struct hstate *h;
2612 int err;
2613
2614 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2615 if (!hugepages_kobj)
2616 return;
2617
2618 for_each_hstate(h) {
2619 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2620 hstate_kobjs, &hstate_attr_group);
2621 if (err)
2622 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2623 }
2624 }
2625
2626 #ifdef CONFIG_NUMA
2627
2628 /*
2629 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2630 * with node devices in node_devices[] using a parallel array. The array
2631 * index of a node device or _hstate == node id.
2632 * This is here to avoid any static dependency of the node device driver, in
2633 * the base kernel, on the hugetlb module.
2634 */
2635 struct node_hstate {
2636 struct kobject *hugepages_kobj;
2637 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2638 };
2639 static struct node_hstate node_hstates[MAX_NUMNODES];
2640
2641 /*
2642 * A subset of global hstate attributes for node devices
2643 */
2644 static struct attribute *per_node_hstate_attrs[] = {
2645 &nr_hugepages_attr.attr,
2646 &free_hugepages_attr.attr,
2647 &surplus_hugepages_attr.attr,
2648 NULL,
2649 };
2650
2651 static const struct attribute_group per_node_hstate_attr_group = {
2652 .attrs = per_node_hstate_attrs,
2653 };
2654
2655 /*
2656 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2657 * Returns node id via non-NULL nidp.
2658 */
2659 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2660 {
2661 int nid;
2662
2663 for (nid = 0; nid < nr_node_ids; nid++) {
2664 struct node_hstate *nhs = &node_hstates[nid];
2665 int i;
2666 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2667 if (nhs->hstate_kobjs[i] == kobj) {
2668 if (nidp)
2669 *nidp = nid;
2670 return &hstates[i];
2671 }
2672 }
2673
2674 BUG();
2675 return NULL;
2676 }
2677
2678 /*
2679 * Unregister hstate attributes from a single node device.
2680 * No-op if no hstate attributes attached.
2681 */
2682 static void hugetlb_unregister_node(struct node *node)
2683 {
2684 struct hstate *h;
2685 struct node_hstate *nhs = &node_hstates[node->dev.id];
2686
2687 if (!nhs->hugepages_kobj)
2688 return; /* no hstate attributes */
2689
2690 for_each_hstate(h) {
2691 int idx = hstate_index(h);
2692 if (nhs->hstate_kobjs[idx]) {
2693 kobject_put(nhs->hstate_kobjs[idx]);
2694 nhs->hstate_kobjs[idx] = NULL;
2695 }
2696 }
2697
2698 kobject_put(nhs->hugepages_kobj);
2699 nhs->hugepages_kobj = NULL;
2700 }
2701
2702
2703 /*
2704 * Register hstate attributes for a single node device.
2705 * No-op if attributes already registered.
2706 */
2707 static void hugetlb_register_node(struct node *node)
2708 {
2709 struct hstate *h;
2710 struct node_hstate *nhs = &node_hstates[node->dev.id];
2711 int err;
2712
2713 if (nhs->hugepages_kobj)
2714 return; /* already allocated */
2715
2716 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2717 &node->dev.kobj);
2718 if (!nhs->hugepages_kobj)
2719 return;
2720
2721 for_each_hstate(h) {
2722 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2723 nhs->hstate_kobjs,
2724 &per_node_hstate_attr_group);
2725 if (err) {
2726 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2727 h->name, node->dev.id);
2728 hugetlb_unregister_node(node);
2729 break;
2730 }
2731 }
2732 }
2733
2734 /*
2735 * hugetlb init time: register hstate attributes for all registered node
2736 * devices of nodes that have memory. All on-line nodes should have
2737 * registered their associated device by this time.
2738 */
2739 static void __init hugetlb_register_all_nodes(void)
2740 {
2741 int nid;
2742
2743 for_each_node_state(nid, N_MEMORY) {
2744 struct node *node = node_devices[nid];
2745 if (node->dev.id == nid)
2746 hugetlb_register_node(node);
2747 }
2748
2749 /*
2750 * Let the node device driver know we're here so it can
2751 * [un]register hstate attributes on node hotplug.
2752 */
2753 register_hugetlbfs_with_node(hugetlb_register_node,
2754 hugetlb_unregister_node);
2755 }
2756 #else /* !CONFIG_NUMA */
2757
2758 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2759 {
2760 BUG();
2761 if (nidp)
2762 *nidp = -1;
2763 return NULL;
2764 }
2765
2766 static void hugetlb_register_all_nodes(void) { }
2767
2768 #endif
2769
2770 static int __init hugetlb_init(void)
2771 {
2772 int i;
2773
2774 if (!hugepages_supported())
2775 return 0;
2776
2777 if (!size_to_hstate(default_hstate_size)) {
2778 if (default_hstate_size != 0) {
2779 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2780 default_hstate_size, HPAGE_SIZE);
2781 }
2782
2783 default_hstate_size = HPAGE_SIZE;
2784 if (!size_to_hstate(default_hstate_size))
2785 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2786 }
2787 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2788 if (default_hstate_max_huge_pages) {
2789 if (!default_hstate.max_huge_pages)
2790 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2791 }
2792
2793 hugetlb_init_hstates();
2794 gather_bootmem_prealloc();
2795 report_hugepages();
2796
2797 hugetlb_sysfs_init();
2798 hugetlb_register_all_nodes();
2799 hugetlb_cgroup_file_init();
2800
2801 #ifdef CONFIG_SMP
2802 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2803 #else
2804 num_fault_mutexes = 1;
2805 #endif
2806 hugetlb_fault_mutex_table =
2807 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2808 BUG_ON(!hugetlb_fault_mutex_table);
2809
2810 for (i = 0; i < num_fault_mutexes; i++)
2811 mutex_init(&hugetlb_fault_mutex_table[i]);
2812 return 0;
2813 }
2814 subsys_initcall(hugetlb_init);
2815
2816 /* Should be called on processing a hugepagesz=... option */
2817 void __init hugetlb_bad_size(void)
2818 {
2819 parsed_valid_hugepagesz = false;
2820 }
2821
2822 void __init hugetlb_add_hstate(unsigned int order)
2823 {
2824 struct hstate *h;
2825 unsigned long i;
2826
2827 if (size_to_hstate(PAGE_SIZE << order)) {
2828 pr_warn("hugepagesz= specified twice, ignoring\n");
2829 return;
2830 }
2831 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2832 BUG_ON(order == 0);
2833 h = &hstates[hugetlb_max_hstate++];
2834 h->order = order;
2835 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2836 h->nr_huge_pages = 0;
2837 h->free_huge_pages = 0;
2838 for (i = 0; i < MAX_NUMNODES; ++i)
2839 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2840 INIT_LIST_HEAD(&h->hugepage_activelist);
2841 h->next_nid_to_alloc = first_memory_node;
2842 h->next_nid_to_free = first_memory_node;
2843 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2844 huge_page_size(h)/1024);
2845
2846 parsed_hstate = h;
2847 }
2848
2849 static int __init hugetlb_nrpages_setup(char *s)
2850 {
2851 unsigned long *mhp;
2852 static unsigned long *last_mhp;
2853
2854 if (!parsed_valid_hugepagesz) {
2855 pr_warn("hugepages = %s preceded by "
2856 "an unsupported hugepagesz, ignoring\n", s);
2857 parsed_valid_hugepagesz = true;
2858 return 1;
2859 }
2860 /*
2861 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2862 * so this hugepages= parameter goes to the "default hstate".
2863 */
2864 else if (!hugetlb_max_hstate)
2865 mhp = &default_hstate_max_huge_pages;
2866 else
2867 mhp = &parsed_hstate->max_huge_pages;
2868
2869 if (mhp == last_mhp) {
2870 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2871 return 1;
2872 }
2873
2874 if (sscanf(s, "%lu", mhp) <= 0)
2875 *mhp = 0;
2876
2877 /*
2878 * Global state is always initialized later in hugetlb_init.
2879 * But we need to allocate >= MAX_ORDER hstates here early to still
2880 * use the bootmem allocator.
2881 */
2882 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2883 hugetlb_hstate_alloc_pages(parsed_hstate);
2884
2885 last_mhp = mhp;
2886
2887 return 1;
2888 }
2889 __setup("hugepages=", hugetlb_nrpages_setup);
2890
2891 static int __init hugetlb_default_setup(char *s)
2892 {
2893 default_hstate_size = memparse(s, &s);
2894 return 1;
2895 }
2896 __setup("default_hugepagesz=", hugetlb_default_setup);
2897
2898 static unsigned int cpuset_mems_nr(unsigned int *array)
2899 {
2900 int node;
2901 unsigned int nr = 0;
2902
2903 for_each_node_mask(node, cpuset_current_mems_allowed)
2904 nr += array[node];
2905
2906 return nr;
2907 }
2908
2909 #ifdef CONFIG_SYSCTL
2910 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2911 struct ctl_table *table, int write,
2912 void __user *buffer, size_t *length, loff_t *ppos)
2913 {
2914 struct hstate *h = &default_hstate;
2915 unsigned long tmp = h->max_huge_pages;
2916 int ret;
2917
2918 if (!hugepages_supported())
2919 return -EOPNOTSUPP;
2920
2921 table->data = &tmp;
2922 table->maxlen = sizeof(unsigned long);
2923 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2924 if (ret)
2925 goto out;
2926
2927 if (write)
2928 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2929 NUMA_NO_NODE, tmp, *length);
2930 out:
2931 return ret;
2932 }
2933
2934 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2935 void __user *buffer, size_t *length, loff_t *ppos)
2936 {
2937
2938 return hugetlb_sysctl_handler_common(false, table, write,
2939 buffer, length, ppos);
2940 }
2941
2942 #ifdef CONFIG_NUMA
2943 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2944 void __user *buffer, size_t *length, loff_t *ppos)
2945 {
2946 return hugetlb_sysctl_handler_common(true, table, write,
2947 buffer, length, ppos);
2948 }
2949 #endif /* CONFIG_NUMA */
2950
2951 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2952 void __user *buffer,
2953 size_t *length, loff_t *ppos)
2954 {
2955 struct hstate *h = &default_hstate;
2956 unsigned long tmp;
2957 int ret;
2958
2959 if (!hugepages_supported())
2960 return -EOPNOTSUPP;
2961
2962 tmp = h->nr_overcommit_huge_pages;
2963
2964 if (write && hstate_is_gigantic(h))
2965 return -EINVAL;
2966
2967 table->data = &tmp;
2968 table->maxlen = sizeof(unsigned long);
2969 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2970 if (ret)
2971 goto out;
2972
2973 if (write) {
2974 spin_lock(&hugetlb_lock);
2975 h->nr_overcommit_huge_pages = tmp;
2976 spin_unlock(&hugetlb_lock);
2977 }
2978 out:
2979 return ret;
2980 }
2981
2982 #endif /* CONFIG_SYSCTL */
2983
2984 void hugetlb_report_meminfo(struct seq_file *m)
2985 {
2986 struct hstate *h;
2987 unsigned long total = 0;
2988
2989 if (!hugepages_supported())
2990 return;
2991
2992 for_each_hstate(h) {
2993 unsigned long count = h->nr_huge_pages;
2994
2995 total += (PAGE_SIZE << huge_page_order(h)) * count;
2996
2997 if (h == &default_hstate)
2998 seq_printf(m,
2999 "HugePages_Total: %5lu\n"
3000 "HugePages_Free: %5lu\n"
3001 "HugePages_Rsvd: %5lu\n"
3002 "HugePages_Surp: %5lu\n"
3003 "Hugepagesize: %8lu kB\n",
3004 count,
3005 h->free_huge_pages,
3006 h->resv_huge_pages,
3007 h->surplus_huge_pages,
3008 (PAGE_SIZE << huge_page_order(h)) / 1024);
3009 }
3010
3011 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3012 }
3013
3014 int hugetlb_report_node_meminfo(int nid, char *buf)
3015 {
3016 struct hstate *h = &default_hstate;
3017 if (!hugepages_supported())
3018 return 0;
3019 return sprintf(buf,
3020 "Node %d HugePages_Total: %5u\n"
3021 "Node %d HugePages_Free: %5u\n"
3022 "Node %d HugePages_Surp: %5u\n",
3023 nid, h->nr_huge_pages_node[nid],
3024 nid, h->free_huge_pages_node[nid],
3025 nid, h->surplus_huge_pages_node[nid]);
3026 }
3027
3028 void hugetlb_show_meminfo(void)
3029 {
3030 struct hstate *h;
3031 int nid;
3032
3033 if (!hugepages_supported())
3034 return;
3035
3036 for_each_node_state(nid, N_MEMORY)
3037 for_each_hstate(h)
3038 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3039 nid,
3040 h->nr_huge_pages_node[nid],
3041 h->free_huge_pages_node[nid],
3042 h->surplus_huge_pages_node[nid],
3043 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3044 }
3045
3046 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3047 {
3048 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3049 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3050 }
3051
3052 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3053 unsigned long hugetlb_total_pages(void)
3054 {
3055 struct hstate *h;
3056 unsigned long nr_total_pages = 0;
3057
3058 for_each_hstate(h)
3059 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3060 return nr_total_pages;
3061 }
3062
3063 static int hugetlb_acct_memory(struct hstate *h, long delta)
3064 {
3065 int ret = -ENOMEM;
3066
3067 spin_lock(&hugetlb_lock);
3068 /*
3069 * When cpuset is configured, it breaks the strict hugetlb page
3070 * reservation as the accounting is done on a global variable. Such
3071 * reservation is completely rubbish in the presence of cpuset because
3072 * the reservation is not checked against page availability for the
3073 * current cpuset. Application can still potentially OOM'ed by kernel
3074 * with lack of free htlb page in cpuset that the task is in.
3075 * Attempt to enforce strict accounting with cpuset is almost
3076 * impossible (or too ugly) because cpuset is too fluid that
3077 * task or memory node can be dynamically moved between cpusets.
3078 *
3079 * The change of semantics for shared hugetlb mapping with cpuset is
3080 * undesirable. However, in order to preserve some of the semantics,
3081 * we fall back to check against current free page availability as
3082 * a best attempt and hopefully to minimize the impact of changing
3083 * semantics that cpuset has.
3084 */
3085 if (delta > 0) {
3086 if (gather_surplus_pages(h, delta) < 0)
3087 goto out;
3088
3089 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3090 return_unused_surplus_pages(h, delta);
3091 goto out;
3092 }
3093 }
3094
3095 ret = 0;
3096 if (delta < 0)
3097 return_unused_surplus_pages(h, (unsigned long) -delta);
3098
3099 out:
3100 spin_unlock(&hugetlb_lock);
3101 return ret;
3102 }
3103
3104 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3105 {
3106 struct resv_map *resv = vma_resv_map(vma);
3107
3108 /*
3109 * This new VMA should share its siblings reservation map if present.
3110 * The VMA will only ever have a valid reservation map pointer where
3111 * it is being copied for another still existing VMA. As that VMA
3112 * has a reference to the reservation map it cannot disappear until
3113 * after this open call completes. It is therefore safe to take a
3114 * new reference here without additional locking.
3115 */
3116 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3117 kref_get(&resv->refs);
3118 }
3119
3120 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3121 {
3122 struct hstate *h = hstate_vma(vma);
3123 struct resv_map *resv = vma_resv_map(vma);
3124 struct hugepage_subpool *spool = subpool_vma(vma);
3125 unsigned long reserve, start, end;
3126 long gbl_reserve;
3127
3128 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3129 return;
3130
3131 start = vma_hugecache_offset(h, vma, vma->vm_start);
3132 end = vma_hugecache_offset(h, vma, vma->vm_end);
3133
3134 reserve = (end - start) - region_count(resv, start, end);
3135
3136 kref_put(&resv->refs, resv_map_release);
3137
3138 if (reserve) {
3139 /*
3140 * Decrement reserve counts. The global reserve count may be
3141 * adjusted if the subpool has a minimum size.
3142 */
3143 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3144 hugetlb_acct_memory(h, -gbl_reserve);
3145 }
3146 }
3147
3148 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3149 {
3150 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3151 return -EINVAL;
3152 return 0;
3153 }
3154
3155 /*
3156 * We cannot handle pagefaults against hugetlb pages at all. They cause
3157 * handle_mm_fault() to try to instantiate regular-sized pages in the
3158 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3159 * this far.
3160 */
3161 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3162 {
3163 BUG();
3164 return 0;
3165 }
3166
3167 const struct vm_operations_struct hugetlb_vm_ops = {
3168 .fault = hugetlb_vm_op_fault,
3169 .open = hugetlb_vm_op_open,
3170 .close = hugetlb_vm_op_close,
3171 .split = hugetlb_vm_op_split,
3172 };
3173
3174 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3175 int writable)
3176 {
3177 pte_t entry;
3178
3179 if (writable) {
3180 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3181 vma->vm_page_prot)));
3182 } else {
3183 entry = huge_pte_wrprotect(mk_huge_pte(page,
3184 vma->vm_page_prot));
3185 }
3186 entry = pte_mkyoung(entry);
3187 entry = pte_mkhuge(entry);
3188 entry = arch_make_huge_pte(entry, vma, page, writable);
3189
3190 return entry;
3191 }
3192
3193 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3194 unsigned long address, pte_t *ptep)
3195 {
3196 pte_t entry;
3197
3198 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3199 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3200 update_mmu_cache(vma, address, ptep);
3201 }
3202
3203 bool is_hugetlb_entry_migration(pte_t pte)
3204 {
3205 swp_entry_t swp;
3206
3207 if (huge_pte_none(pte) || pte_present(pte))
3208 return false;
3209 swp = pte_to_swp_entry(pte);
3210 if (non_swap_entry(swp) && is_migration_entry(swp))
3211 return true;
3212 else
3213 return false;
3214 }
3215
3216 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3217 {
3218 swp_entry_t swp;
3219
3220 if (huge_pte_none(pte) || pte_present(pte))
3221 return 0;
3222 swp = pte_to_swp_entry(pte);
3223 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3224 return 1;
3225 else
3226 return 0;
3227 }
3228
3229 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3230 struct vm_area_struct *vma)
3231 {
3232 pte_t *src_pte, *dst_pte, entry;
3233 struct page *ptepage;
3234 unsigned long addr;
3235 int cow;
3236 struct hstate *h = hstate_vma(vma);
3237 unsigned long sz = huge_page_size(h);
3238 unsigned long mmun_start; /* For mmu_notifiers */
3239 unsigned long mmun_end; /* For mmu_notifiers */
3240 int ret = 0;
3241
3242 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3243
3244 mmun_start = vma->vm_start;
3245 mmun_end = vma->vm_end;
3246 if (cow)
3247 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3248
3249 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3250 spinlock_t *src_ptl, *dst_ptl;
3251 src_pte = huge_pte_offset(src, addr, sz);
3252 if (!src_pte)
3253 continue;
3254 dst_pte = huge_pte_alloc(dst, addr, sz);
3255 if (!dst_pte) {
3256 ret = -ENOMEM;
3257 break;
3258 }
3259
3260 /* If the pagetables are shared don't copy or take references */
3261 if (dst_pte == src_pte)
3262 continue;
3263
3264 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3265 src_ptl = huge_pte_lockptr(h, src, src_pte);
3266 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3267 entry = huge_ptep_get(src_pte);
3268 if (huge_pte_none(entry)) { /* skip none entry */
3269 ;
3270 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3271 is_hugetlb_entry_hwpoisoned(entry))) {
3272 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3273
3274 if (is_write_migration_entry(swp_entry) && cow) {
3275 /*
3276 * COW mappings require pages in both
3277 * parent and child to be set to read.
3278 */
3279 make_migration_entry_read(&swp_entry);
3280 entry = swp_entry_to_pte(swp_entry);
3281 set_huge_swap_pte_at(src, addr, src_pte,
3282 entry, sz);
3283 }
3284 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3285 } else {
3286 if (cow) {
3287 /*
3288 * No need to notify as we are downgrading page
3289 * table protection not changing it to point
3290 * to a new page.
3291 *
3292 * See Documentation/vm/mmu_notifier.txt
3293 */
3294 huge_ptep_set_wrprotect(src, addr, src_pte);
3295 }
3296 entry = huge_ptep_get(src_pte);
3297 ptepage = pte_page(entry);
3298 get_page(ptepage);
3299 page_dup_rmap(ptepage, true);
3300 set_huge_pte_at(dst, addr, dst_pte, entry);
3301 hugetlb_count_add(pages_per_huge_page(h), dst);
3302 }
3303 spin_unlock(src_ptl);
3304 spin_unlock(dst_ptl);
3305 }
3306
3307 if (cow)
3308 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3309
3310 return ret;
3311 }
3312
3313 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3314 unsigned long start, unsigned long end,
3315 struct page *ref_page)
3316 {
3317 struct mm_struct *mm = vma->vm_mm;
3318 unsigned long address;
3319 pte_t *ptep;
3320 pte_t pte;
3321 spinlock_t *ptl;
3322 struct page *page;
3323 struct hstate *h = hstate_vma(vma);
3324 unsigned long sz = huge_page_size(h);
3325 const unsigned long mmun_start = start; /* For mmu_notifiers */
3326 const unsigned long mmun_end = end; /* For mmu_notifiers */
3327
3328 WARN_ON(!is_vm_hugetlb_page(vma));
3329 BUG_ON(start & ~huge_page_mask(h));
3330 BUG_ON(end & ~huge_page_mask(h));
3331
3332 /*
3333 * This is a hugetlb vma, all the pte entries should point
3334 * to huge page.
3335 */
3336 tlb_remove_check_page_size_change(tlb, sz);
3337 tlb_start_vma(tlb, vma);
3338 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3339 address = start;
3340 for (; address < end; address += sz) {
3341 ptep = huge_pte_offset(mm, address, sz);
3342 if (!ptep)
3343 continue;
3344
3345 ptl = huge_pte_lock(h, mm, ptep);
3346 if (huge_pmd_unshare(mm, &address, ptep)) {
3347 spin_unlock(ptl);
3348 continue;
3349 }
3350
3351 pte = huge_ptep_get(ptep);
3352 if (huge_pte_none(pte)) {
3353 spin_unlock(ptl);
3354 continue;
3355 }
3356
3357 /*
3358 * Migrating hugepage or HWPoisoned hugepage is already
3359 * unmapped and its refcount is dropped, so just clear pte here.
3360 */
3361 if (unlikely(!pte_present(pte))) {
3362 huge_pte_clear(mm, address, ptep, sz);
3363 spin_unlock(ptl);
3364 continue;
3365 }
3366
3367 page = pte_page(pte);
3368 /*
3369 * If a reference page is supplied, it is because a specific
3370 * page is being unmapped, not a range. Ensure the page we
3371 * are about to unmap is the actual page of interest.
3372 */
3373 if (ref_page) {
3374 if (page != ref_page) {
3375 spin_unlock(ptl);
3376 continue;
3377 }
3378 /*
3379 * Mark the VMA as having unmapped its page so that
3380 * future faults in this VMA will fail rather than
3381 * looking like data was lost
3382 */
3383 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3384 }
3385
3386 pte = huge_ptep_get_and_clear(mm, address, ptep);
3387 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3388 if (huge_pte_dirty(pte))
3389 set_page_dirty(page);
3390
3391 hugetlb_count_sub(pages_per_huge_page(h), mm);
3392 page_remove_rmap(page, true);
3393
3394 spin_unlock(ptl);
3395 tlb_remove_page_size(tlb, page, huge_page_size(h));
3396 /*
3397 * Bail out after unmapping reference page if supplied
3398 */
3399 if (ref_page)
3400 break;
3401 }
3402 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3403 tlb_end_vma(tlb, vma);
3404 }
3405
3406 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3407 struct vm_area_struct *vma, unsigned long start,
3408 unsigned long end, struct page *ref_page)
3409 {
3410 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3411
3412 /*
3413 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3414 * test will fail on a vma being torn down, and not grab a page table
3415 * on its way out. We're lucky that the flag has such an appropriate
3416 * name, and can in fact be safely cleared here. We could clear it
3417 * before the __unmap_hugepage_range above, but all that's necessary
3418 * is to clear it before releasing the i_mmap_rwsem. This works
3419 * because in the context this is called, the VMA is about to be
3420 * destroyed and the i_mmap_rwsem is held.
3421 */
3422 vma->vm_flags &= ~VM_MAYSHARE;
3423 }
3424
3425 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3426 unsigned long end, struct page *ref_page)
3427 {
3428 struct mm_struct *mm;
3429 struct mmu_gather tlb;
3430
3431 mm = vma->vm_mm;
3432
3433 tlb_gather_mmu(&tlb, mm, start, end);
3434 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3435 tlb_finish_mmu(&tlb, start, end);
3436 }
3437
3438 /*
3439 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3440 * mappping it owns the reserve page for. The intention is to unmap the page
3441 * from other VMAs and let the children be SIGKILLed if they are faulting the
3442 * same region.
3443 */
3444 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3445 struct page *page, unsigned long address)
3446 {
3447 struct hstate *h = hstate_vma(vma);
3448 struct vm_area_struct *iter_vma;
3449 struct address_space *mapping;
3450 pgoff_t pgoff;
3451
3452 /*
3453 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3454 * from page cache lookup which is in HPAGE_SIZE units.
3455 */
3456 address = address & huge_page_mask(h);
3457 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3458 vma->vm_pgoff;
3459 mapping = vma->vm_file->f_mapping;
3460
3461 /*
3462 * Take the mapping lock for the duration of the table walk. As
3463 * this mapping should be shared between all the VMAs,
3464 * __unmap_hugepage_range() is called as the lock is already held
3465 */
3466 i_mmap_lock_write(mapping);
3467 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3468 /* Do not unmap the current VMA */
3469 if (iter_vma == vma)
3470 continue;
3471
3472 /*
3473 * Shared VMAs have their own reserves and do not affect
3474 * MAP_PRIVATE accounting but it is possible that a shared
3475 * VMA is using the same page so check and skip such VMAs.
3476 */
3477 if (iter_vma->vm_flags & VM_MAYSHARE)
3478 continue;
3479
3480 /*
3481 * Unmap the page from other VMAs without their own reserves.
3482 * They get marked to be SIGKILLed if they fault in these
3483 * areas. This is because a future no-page fault on this VMA
3484 * could insert a zeroed page instead of the data existing
3485 * from the time of fork. This would look like data corruption
3486 */
3487 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3488 unmap_hugepage_range(iter_vma, address,
3489 address + huge_page_size(h), page);
3490 }
3491 i_mmap_unlock_write(mapping);
3492 }
3493
3494 /*
3495 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3496 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3497 * cannot race with other handlers or page migration.
3498 * Keep the pte_same checks anyway to make transition from the mutex easier.
3499 */
3500 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3501 unsigned long address, pte_t *ptep,
3502 struct page *pagecache_page, spinlock_t *ptl)
3503 {
3504 pte_t pte;
3505 struct hstate *h = hstate_vma(vma);
3506 struct page *old_page, *new_page;
3507 int ret = 0, outside_reserve = 0;
3508 unsigned long mmun_start; /* For mmu_notifiers */
3509 unsigned long mmun_end; /* For mmu_notifiers */
3510
3511 pte = huge_ptep_get(ptep);
3512 old_page = pte_page(pte);
3513
3514 retry_avoidcopy:
3515 /* If no-one else is actually using this page, avoid the copy
3516 * and just make the page writable */
3517 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3518 page_move_anon_rmap(old_page, vma);
3519 set_huge_ptep_writable(vma, address, ptep);
3520 return 0;
3521 }
3522
3523 /*
3524 * If the process that created a MAP_PRIVATE mapping is about to
3525 * perform a COW due to a shared page count, attempt to satisfy
3526 * the allocation without using the existing reserves. The pagecache
3527 * page is used to determine if the reserve at this address was
3528 * consumed or not. If reserves were used, a partial faulted mapping
3529 * at the time of fork() could consume its reserves on COW instead
3530 * of the full address range.
3531 */
3532 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3533 old_page != pagecache_page)
3534 outside_reserve = 1;
3535
3536 get_page(old_page);
3537
3538 /*
3539 * Drop page table lock as buddy allocator may be called. It will
3540 * be acquired again before returning to the caller, as expected.
3541 */
3542 spin_unlock(ptl);
3543 new_page = alloc_huge_page(vma, address, outside_reserve);
3544
3545 if (IS_ERR(new_page)) {
3546 /*
3547 * If a process owning a MAP_PRIVATE mapping fails to COW,
3548 * it is due to references held by a child and an insufficient
3549 * huge page pool. To guarantee the original mappers
3550 * reliability, unmap the page from child processes. The child
3551 * may get SIGKILLed if it later faults.
3552 */
3553 if (outside_reserve) {
3554 put_page(old_page);
3555 BUG_ON(huge_pte_none(pte));
3556 unmap_ref_private(mm, vma, old_page, address);
3557 BUG_ON(huge_pte_none(pte));
3558 spin_lock(ptl);
3559 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3560 huge_page_size(h));
3561 if (likely(ptep &&
3562 pte_same(huge_ptep_get(ptep), pte)))
3563 goto retry_avoidcopy;
3564 /*
3565 * race occurs while re-acquiring page table
3566 * lock, and our job is done.
3567 */
3568 return 0;
3569 }
3570
3571 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3572 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3573 goto out_release_old;
3574 }
3575
3576 /*
3577 * When the original hugepage is shared one, it does not have
3578 * anon_vma prepared.
3579 */
3580 if (unlikely(anon_vma_prepare(vma))) {
3581 ret = VM_FAULT_OOM;
3582 goto out_release_all;
3583 }
3584
3585 copy_user_huge_page(new_page, old_page, address, vma,
3586 pages_per_huge_page(h));
3587 __SetPageUptodate(new_page);
3588 set_page_huge_active(new_page);
3589
3590 mmun_start = address & huge_page_mask(h);
3591 mmun_end = mmun_start + huge_page_size(h);
3592 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3593
3594 /*
3595 * Retake the page table lock to check for racing updates
3596 * before the page tables are altered
3597 */
3598 spin_lock(ptl);
3599 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3600 huge_page_size(h));
3601 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3602 ClearPagePrivate(new_page);
3603
3604 /* Break COW */
3605 huge_ptep_clear_flush(vma, address, ptep);
3606 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3607 set_huge_pte_at(mm, address, ptep,
3608 make_huge_pte(vma, new_page, 1));
3609 page_remove_rmap(old_page, true);
3610 hugepage_add_new_anon_rmap(new_page, vma, address);
3611 /* Make the old page be freed below */
3612 new_page = old_page;
3613 }
3614 spin_unlock(ptl);
3615 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3616 out_release_all:
3617 restore_reserve_on_error(h, vma, address, new_page);
3618 put_page(new_page);
3619 out_release_old:
3620 put_page(old_page);
3621
3622 spin_lock(ptl); /* Caller expects lock to be held */
3623 return ret;
3624 }
3625
3626 /* Return the pagecache page at a given address within a VMA */
3627 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3628 struct vm_area_struct *vma, unsigned long address)
3629 {
3630 struct address_space *mapping;
3631 pgoff_t idx;
3632
3633 mapping = vma->vm_file->f_mapping;
3634 idx = vma_hugecache_offset(h, vma, address);
3635
3636 return find_lock_page(mapping, idx);
3637 }
3638
3639 /*
3640 * Return whether there is a pagecache page to back given address within VMA.
3641 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3642 */
3643 static bool hugetlbfs_pagecache_present(struct hstate *h,
3644 struct vm_area_struct *vma, unsigned long address)
3645 {
3646 struct address_space *mapping;
3647 pgoff_t idx;
3648 struct page *page;
3649
3650 mapping = vma->vm_file->f_mapping;
3651 idx = vma_hugecache_offset(h, vma, address);
3652
3653 page = find_get_page(mapping, idx);
3654 if (page)
3655 put_page(page);
3656 return page != NULL;
3657 }
3658
3659 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3660 pgoff_t idx)
3661 {
3662 struct inode *inode = mapping->host;
3663 struct hstate *h = hstate_inode(inode);
3664 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3665
3666 if (err)
3667 return err;
3668 ClearPagePrivate(page);
3669
3670 spin_lock(&inode->i_lock);
3671 inode->i_blocks += blocks_per_huge_page(h);
3672 spin_unlock(&inode->i_lock);
3673 return 0;
3674 }
3675
3676 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3677 struct address_space *mapping, pgoff_t idx,
3678 unsigned long address, pte_t *ptep, unsigned int flags)
3679 {
3680 struct hstate *h = hstate_vma(vma);
3681 int ret = VM_FAULT_SIGBUS;
3682 int anon_rmap = 0;
3683 unsigned long size;
3684 struct page *page;
3685 pte_t new_pte;
3686 spinlock_t *ptl;
3687
3688 /*
3689 * Currently, we are forced to kill the process in the event the
3690 * original mapper has unmapped pages from the child due to a failed
3691 * COW. Warn that such a situation has occurred as it may not be obvious
3692 */
3693 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3694 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3695 current->pid);
3696 return ret;
3697 }
3698
3699 /*
3700 * Use page lock to guard against racing truncation
3701 * before we get page_table_lock.
3702 */
3703 retry:
3704 page = find_lock_page(mapping, idx);
3705 if (!page) {
3706 size = i_size_read(mapping->host) >> huge_page_shift(h);
3707 if (idx >= size)
3708 goto out;
3709
3710 /*
3711 * Check for page in userfault range
3712 */
3713 if (userfaultfd_missing(vma)) {
3714 u32 hash;
3715 struct vm_fault vmf = {
3716 .vma = vma,
3717 .address = address,
3718 .flags = flags,
3719 /*
3720 * Hard to debug if it ends up being
3721 * used by a callee that assumes
3722 * something about the other
3723 * uninitialized fields... same as in
3724 * memory.c
3725 */
3726 };
3727
3728 /*
3729 * hugetlb_fault_mutex must be dropped before
3730 * handling userfault. Reacquire after handling
3731 * fault to make calling code simpler.
3732 */
3733 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3734 idx, address);
3735 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3736 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3737 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3738 goto out;
3739 }
3740
3741 page = alloc_huge_page(vma, address, 0);
3742 if (IS_ERR(page)) {
3743 ret = PTR_ERR(page);
3744 if (ret == -ENOMEM)
3745 ret = VM_FAULT_OOM;
3746 else
3747 ret = VM_FAULT_SIGBUS;
3748 goto out;
3749 }
3750 clear_huge_page(page, address, pages_per_huge_page(h));
3751 __SetPageUptodate(page);
3752 set_page_huge_active(page);
3753
3754 if (vma->vm_flags & VM_MAYSHARE) {
3755 int err = huge_add_to_page_cache(page, mapping, idx);
3756 if (err) {
3757 put_page(page);
3758 if (err == -EEXIST)
3759 goto retry;
3760 goto out;
3761 }
3762 } else {
3763 lock_page(page);
3764 if (unlikely(anon_vma_prepare(vma))) {
3765 ret = VM_FAULT_OOM;
3766 goto backout_unlocked;
3767 }
3768 anon_rmap = 1;
3769 }
3770 } else {
3771 /*
3772 * If memory error occurs between mmap() and fault, some process
3773 * don't have hwpoisoned swap entry for errored virtual address.
3774 * So we need to block hugepage fault by PG_hwpoison bit check.
3775 */
3776 if (unlikely(PageHWPoison(page))) {
3777 ret = VM_FAULT_HWPOISON |
3778 VM_FAULT_SET_HINDEX(hstate_index(h));
3779 goto backout_unlocked;
3780 }
3781 }
3782
3783 /*
3784 * If we are going to COW a private mapping later, we examine the
3785 * pending reservations for this page now. This will ensure that
3786 * any allocations necessary to record that reservation occur outside
3787 * the spinlock.
3788 */
3789 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3790 if (vma_needs_reservation(h, vma, address) < 0) {
3791 ret = VM_FAULT_OOM;
3792 goto backout_unlocked;
3793 }
3794 /* Just decrements count, does not deallocate */
3795 vma_end_reservation(h, vma, address);
3796 }
3797
3798 ptl = huge_pte_lock(h, mm, ptep);
3799 size = i_size_read(mapping->host) >> huge_page_shift(h);
3800 if (idx >= size)
3801 goto backout;
3802
3803 ret = 0;
3804 if (!huge_pte_none(huge_ptep_get(ptep)))
3805 goto backout;
3806
3807 if (anon_rmap) {
3808 ClearPagePrivate(page);
3809 hugepage_add_new_anon_rmap(page, vma, address);
3810 } else
3811 page_dup_rmap(page, true);
3812 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3813 && (vma->vm_flags & VM_SHARED)));
3814 set_huge_pte_at(mm, address, ptep, new_pte);
3815
3816 hugetlb_count_add(pages_per_huge_page(h), mm);
3817 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3818 /* Optimization, do the COW without a second fault */
3819 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3820 }
3821
3822 spin_unlock(ptl);
3823 unlock_page(page);
3824 out:
3825 return ret;
3826
3827 backout:
3828 spin_unlock(ptl);
3829 backout_unlocked:
3830 unlock_page(page);
3831 restore_reserve_on_error(h, vma, address, page);
3832 put_page(page);
3833 goto out;
3834 }
3835
3836 #ifdef CONFIG_SMP
3837 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3838 struct vm_area_struct *vma,
3839 struct address_space *mapping,
3840 pgoff_t idx, unsigned long address)
3841 {
3842 unsigned long key[2];
3843 u32 hash;
3844
3845 if (vma->vm_flags & VM_SHARED) {
3846 key[0] = (unsigned long) mapping;
3847 key[1] = idx;
3848 } else {
3849 key[0] = (unsigned long) mm;
3850 key[1] = address >> huge_page_shift(h);
3851 }
3852
3853 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3854
3855 return hash & (num_fault_mutexes - 1);
3856 }
3857 #else
3858 /*
3859 * For uniprocesor systems we always use a single mutex, so just
3860 * return 0 and avoid the hashing overhead.
3861 */
3862 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3863 struct vm_area_struct *vma,
3864 struct address_space *mapping,
3865 pgoff_t idx, unsigned long address)
3866 {
3867 return 0;
3868 }
3869 #endif
3870
3871 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3872 unsigned long address, unsigned int flags)
3873 {
3874 pte_t *ptep, entry;
3875 spinlock_t *ptl;
3876 int ret;
3877 u32 hash;
3878 pgoff_t idx;
3879 struct page *page = NULL;
3880 struct page *pagecache_page = NULL;
3881 struct hstate *h = hstate_vma(vma);
3882 struct address_space *mapping;
3883 int need_wait_lock = 0;
3884
3885 address &= huge_page_mask(h);
3886
3887 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3888 if (ptep) {
3889 entry = huge_ptep_get(ptep);
3890 if (unlikely(is_hugetlb_entry_migration(entry))) {
3891 migration_entry_wait_huge(vma, mm, ptep);
3892 return 0;
3893 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3894 return VM_FAULT_HWPOISON_LARGE |
3895 VM_FAULT_SET_HINDEX(hstate_index(h));
3896 } else {
3897 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3898 if (!ptep)
3899 return VM_FAULT_OOM;
3900 }
3901
3902 mapping = vma->vm_file->f_mapping;
3903 idx = vma_hugecache_offset(h, vma, address);
3904
3905 /*
3906 * Serialize hugepage allocation and instantiation, so that we don't
3907 * get spurious allocation failures if two CPUs race to instantiate
3908 * the same page in the page cache.
3909 */
3910 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3911 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3912
3913 entry = huge_ptep_get(ptep);
3914 if (huge_pte_none(entry)) {
3915 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3916 goto out_mutex;
3917 }
3918
3919 ret = 0;
3920
3921 /*
3922 * entry could be a migration/hwpoison entry at this point, so this
3923 * check prevents the kernel from going below assuming that we have
3924 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3925 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3926 * handle it.
3927 */
3928 if (!pte_present(entry))
3929 goto out_mutex;
3930
3931 /*
3932 * If we are going to COW the mapping later, we examine the pending
3933 * reservations for this page now. This will ensure that any
3934 * allocations necessary to record that reservation occur outside the
3935 * spinlock. For private mappings, we also lookup the pagecache
3936 * page now as it is used to determine if a reservation has been
3937 * consumed.
3938 */
3939 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3940 if (vma_needs_reservation(h, vma, address) < 0) {
3941 ret = VM_FAULT_OOM;
3942 goto out_mutex;
3943 }
3944 /* Just decrements count, does not deallocate */
3945 vma_end_reservation(h, vma, address);
3946
3947 if (!(vma->vm_flags & VM_MAYSHARE))
3948 pagecache_page = hugetlbfs_pagecache_page(h,
3949 vma, address);
3950 }
3951
3952 ptl = huge_pte_lock(h, mm, ptep);
3953
3954 /* Check for a racing update before calling hugetlb_cow */
3955 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3956 goto out_ptl;
3957
3958 /*
3959 * hugetlb_cow() requires page locks of pte_page(entry) and
3960 * pagecache_page, so here we need take the former one
3961 * when page != pagecache_page or !pagecache_page.
3962 */
3963 page = pte_page(entry);
3964 if (page != pagecache_page)
3965 if (!trylock_page(page)) {
3966 need_wait_lock = 1;
3967 goto out_ptl;
3968 }
3969
3970 get_page(page);
3971
3972 if (flags & FAULT_FLAG_WRITE) {
3973 if (!huge_pte_write(entry)) {
3974 ret = hugetlb_cow(mm, vma, address, ptep,
3975 pagecache_page, ptl);
3976 goto out_put_page;
3977 }
3978 entry = huge_pte_mkdirty(entry);
3979 }
3980 entry = pte_mkyoung(entry);
3981 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3982 flags & FAULT_FLAG_WRITE))
3983 update_mmu_cache(vma, address, ptep);
3984 out_put_page:
3985 if (page != pagecache_page)
3986 unlock_page(page);
3987 put_page(page);
3988 out_ptl:
3989 spin_unlock(ptl);
3990
3991 if (pagecache_page) {
3992 unlock_page(pagecache_page);
3993 put_page(pagecache_page);
3994 }
3995 out_mutex:
3996 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3997 /*
3998 * Generally it's safe to hold refcount during waiting page lock. But
3999 * here we just wait to defer the next page fault to avoid busy loop and
4000 * the page is not used after unlocked before returning from the current
4001 * page fault. So we are safe from accessing freed page, even if we wait
4002 * here without taking refcount.
4003 */
4004 if (need_wait_lock)
4005 wait_on_page_locked(page);
4006 return ret;
4007 }
4008
4009 /*
4010 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4011 * modifications for huge pages.
4012 */
4013 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4014 pte_t *dst_pte,
4015 struct vm_area_struct *dst_vma,
4016 unsigned long dst_addr,
4017 unsigned long src_addr,
4018 struct page **pagep)
4019 {
4020 struct address_space *mapping;
4021 pgoff_t idx;
4022 unsigned long size;
4023 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4024 struct hstate *h = hstate_vma(dst_vma);
4025 pte_t _dst_pte;
4026 spinlock_t *ptl;
4027 int ret;
4028 struct page *page;
4029
4030 if (!*pagep) {
4031 ret = -ENOMEM;
4032 page = alloc_huge_page(dst_vma, dst_addr, 0);
4033 if (IS_ERR(page))
4034 goto out;
4035
4036 ret = copy_huge_page_from_user(page,
4037 (const void __user *) src_addr,
4038 pages_per_huge_page(h), false);
4039
4040 /* fallback to copy_from_user outside mmap_sem */
4041 if (unlikely(ret)) {
4042 ret = -EFAULT;
4043 *pagep = page;
4044 /* don't free the page */
4045 goto out;
4046 }
4047 } else {
4048 page = *pagep;
4049 *pagep = NULL;
4050 }
4051
4052 /*
4053 * The memory barrier inside __SetPageUptodate makes sure that
4054 * preceding stores to the page contents become visible before
4055 * the set_pte_at() write.
4056 */
4057 __SetPageUptodate(page);
4058 set_page_huge_active(page);
4059
4060 mapping = dst_vma->vm_file->f_mapping;
4061 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4062
4063 /*
4064 * If shared, add to page cache
4065 */
4066 if (vm_shared) {
4067 size = i_size_read(mapping->host) >> huge_page_shift(h);
4068 ret = -EFAULT;
4069 if (idx >= size)
4070 goto out_release_nounlock;
4071
4072 /*
4073 * Serialization between remove_inode_hugepages() and
4074 * huge_add_to_page_cache() below happens through the
4075 * hugetlb_fault_mutex_table that here must be hold by
4076 * the caller.
4077 */
4078 ret = huge_add_to_page_cache(page, mapping, idx);
4079 if (ret)
4080 goto out_release_nounlock;
4081 }
4082
4083 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4084 spin_lock(ptl);
4085
4086 /*
4087 * Recheck the i_size after holding PT lock to make sure not
4088 * to leave any page mapped (as page_mapped()) beyond the end
4089 * of the i_size (remove_inode_hugepages() is strict about
4090 * enforcing that). If we bail out here, we'll also leave a
4091 * page in the radix tree in the vm_shared case beyond the end
4092 * of the i_size, but remove_inode_hugepages() will take care
4093 * of it as soon as we drop the hugetlb_fault_mutex_table.
4094 */
4095 size = i_size_read(mapping->host) >> huge_page_shift(h);
4096 ret = -EFAULT;
4097 if (idx >= size)
4098 goto out_release_unlock;
4099
4100 ret = -EEXIST;
4101 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4102 goto out_release_unlock;
4103
4104 if (vm_shared) {
4105 page_dup_rmap(page, true);
4106 } else {
4107 ClearPagePrivate(page);
4108 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4109 }
4110
4111 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4112 if (dst_vma->vm_flags & VM_WRITE)
4113 _dst_pte = huge_pte_mkdirty(_dst_pte);
4114 _dst_pte = pte_mkyoung(_dst_pte);
4115
4116 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4117
4118 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4119 dst_vma->vm_flags & VM_WRITE);
4120 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4121
4122 /* No need to invalidate - it was non-present before */
4123 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4124
4125 spin_unlock(ptl);
4126 if (vm_shared)
4127 unlock_page(page);
4128 ret = 0;
4129 out:
4130 return ret;
4131 out_release_unlock:
4132 spin_unlock(ptl);
4133 if (vm_shared)
4134 unlock_page(page);
4135 out_release_nounlock:
4136 put_page(page);
4137 goto out;
4138 }
4139
4140 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4141 struct page **pages, struct vm_area_struct **vmas,
4142 unsigned long *position, unsigned long *nr_pages,
4143 long i, unsigned int flags, int *nonblocking)
4144 {
4145 unsigned long pfn_offset;
4146 unsigned long vaddr = *position;
4147 unsigned long remainder = *nr_pages;
4148 struct hstate *h = hstate_vma(vma);
4149 int err = -EFAULT;
4150
4151 while (vaddr < vma->vm_end && remainder) {
4152 pte_t *pte;
4153 spinlock_t *ptl = NULL;
4154 int absent;
4155 struct page *page;
4156
4157 /*
4158 * If we have a pending SIGKILL, don't keep faulting pages and
4159 * potentially allocating memory.
4160 */
4161 if (unlikely(fatal_signal_pending(current))) {
4162 remainder = 0;
4163 break;
4164 }
4165
4166 /*
4167 * Some archs (sparc64, sh*) have multiple pte_ts to
4168 * each hugepage. We have to make sure we get the
4169 * first, for the page indexing below to work.
4170 *
4171 * Note that page table lock is not held when pte is null.
4172 */
4173 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4174 huge_page_size(h));
4175 if (pte)
4176 ptl = huge_pte_lock(h, mm, pte);
4177 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4178
4179 /*
4180 * When coredumping, it suits get_dump_page if we just return
4181 * an error where there's an empty slot with no huge pagecache
4182 * to back it. This way, we avoid allocating a hugepage, and
4183 * the sparse dumpfile avoids allocating disk blocks, but its
4184 * huge holes still show up with zeroes where they need to be.
4185 */
4186 if (absent && (flags & FOLL_DUMP) &&
4187 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4188 if (pte)
4189 spin_unlock(ptl);
4190 remainder = 0;
4191 break;
4192 }
4193
4194 /*
4195 * We need call hugetlb_fault for both hugepages under migration
4196 * (in which case hugetlb_fault waits for the migration,) and
4197 * hwpoisoned hugepages (in which case we need to prevent the
4198 * caller from accessing to them.) In order to do this, we use
4199 * here is_swap_pte instead of is_hugetlb_entry_migration and
4200 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4201 * both cases, and because we can't follow correct pages
4202 * directly from any kind of swap entries.
4203 */
4204 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4205 ((flags & FOLL_WRITE) &&
4206 !huge_pte_write(huge_ptep_get(pte)))) {
4207 int ret;
4208 unsigned int fault_flags = 0;
4209
4210 if (pte)
4211 spin_unlock(ptl);
4212 if (flags & FOLL_WRITE)
4213 fault_flags |= FAULT_FLAG_WRITE;
4214 if (nonblocking)
4215 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4216 if (flags & FOLL_NOWAIT)
4217 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4218 FAULT_FLAG_RETRY_NOWAIT;
4219 if (flags & FOLL_TRIED) {
4220 VM_WARN_ON_ONCE(fault_flags &
4221 FAULT_FLAG_ALLOW_RETRY);
4222 fault_flags |= FAULT_FLAG_TRIED;
4223 }
4224 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4225 if (ret & VM_FAULT_ERROR) {
4226 err = vm_fault_to_errno(ret, flags);
4227 remainder = 0;
4228 break;
4229 }
4230 if (ret & VM_FAULT_RETRY) {
4231 if (nonblocking)
4232 *nonblocking = 0;
4233 *nr_pages = 0;
4234 /*
4235 * VM_FAULT_RETRY must not return an
4236 * error, it will return zero
4237 * instead.
4238 *
4239 * No need to update "position" as the
4240 * caller will not check it after
4241 * *nr_pages is set to 0.
4242 */
4243 return i;
4244 }
4245 continue;
4246 }
4247
4248 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4249 page = pte_page(huge_ptep_get(pte));
4250 same_page:
4251 if (pages) {
4252 pages[i] = mem_map_offset(page, pfn_offset);
4253 get_page(pages[i]);
4254 }
4255
4256 if (vmas)
4257 vmas[i] = vma;
4258
4259 vaddr += PAGE_SIZE;
4260 ++pfn_offset;
4261 --remainder;
4262 ++i;
4263 if (vaddr < vma->vm_end && remainder &&
4264 pfn_offset < pages_per_huge_page(h)) {
4265 /*
4266 * We use pfn_offset to avoid touching the pageframes
4267 * of this compound page.
4268 */
4269 goto same_page;
4270 }
4271 spin_unlock(ptl);
4272 }
4273 *nr_pages = remainder;
4274 /*
4275 * setting position is actually required only if remainder is
4276 * not zero but it's faster not to add a "if (remainder)"
4277 * branch.
4278 */
4279 *position = vaddr;
4280
4281 return i ? i : err;
4282 }
4283
4284 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4285 /*
4286 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4287 * implement this.
4288 */
4289 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4290 #endif
4291
4292 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4293 unsigned long address, unsigned long end, pgprot_t newprot)
4294 {
4295 struct mm_struct *mm = vma->vm_mm;
4296 unsigned long start = address;
4297 pte_t *ptep;
4298 pte_t pte;
4299 struct hstate *h = hstate_vma(vma);
4300 unsigned long pages = 0;
4301
4302 BUG_ON(address >= end);
4303 flush_cache_range(vma, address, end);
4304
4305 mmu_notifier_invalidate_range_start(mm, start, end);
4306 i_mmap_lock_write(vma->vm_file->f_mapping);
4307 for (; address < end; address += huge_page_size(h)) {
4308 spinlock_t *ptl;
4309 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4310 if (!ptep)
4311 continue;
4312 ptl = huge_pte_lock(h, mm, ptep);
4313 if (huge_pmd_unshare(mm, &address, ptep)) {
4314 pages++;
4315 spin_unlock(ptl);
4316 continue;
4317 }
4318 pte = huge_ptep_get(ptep);
4319 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4320 spin_unlock(ptl);
4321 continue;
4322 }
4323 if (unlikely(is_hugetlb_entry_migration(pte))) {
4324 swp_entry_t entry = pte_to_swp_entry(pte);
4325
4326 if (is_write_migration_entry(entry)) {
4327 pte_t newpte;
4328
4329 make_migration_entry_read(&entry);
4330 newpte = swp_entry_to_pte(entry);
4331 set_huge_swap_pte_at(mm, address, ptep,
4332 newpte, huge_page_size(h));
4333 pages++;
4334 }
4335 spin_unlock(ptl);
4336 continue;
4337 }
4338 if (!huge_pte_none(pte)) {
4339 pte = huge_ptep_get_and_clear(mm, address, ptep);
4340 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4341 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4342 set_huge_pte_at(mm, address, ptep, pte);
4343 pages++;
4344 }
4345 spin_unlock(ptl);
4346 }
4347 /*
4348 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4349 * may have cleared our pud entry and done put_page on the page table:
4350 * once we release i_mmap_rwsem, another task can do the final put_page
4351 * and that page table be reused and filled with junk.
4352 */
4353 flush_hugetlb_tlb_range(vma, start, end);
4354 /*
4355 * No need to call mmu_notifier_invalidate_range() we are downgrading
4356 * page table protection not changing it to point to a new page.
4357 *
4358 * See Documentation/vm/mmu_notifier.txt
4359 */
4360 i_mmap_unlock_write(vma->vm_file->f_mapping);
4361 mmu_notifier_invalidate_range_end(mm, start, end);
4362
4363 return pages << h->order;
4364 }
4365
4366 int hugetlb_reserve_pages(struct inode *inode,
4367 long from, long to,
4368 struct vm_area_struct *vma,
4369 vm_flags_t vm_flags)
4370 {
4371 long ret, chg;
4372 struct hstate *h = hstate_inode(inode);
4373 struct hugepage_subpool *spool = subpool_inode(inode);
4374 struct resv_map *resv_map;
4375 long gbl_reserve;
4376
4377 /*
4378 * Only apply hugepage reservation if asked. At fault time, an
4379 * attempt will be made for VM_NORESERVE to allocate a page
4380 * without using reserves
4381 */
4382 if (vm_flags & VM_NORESERVE)
4383 return 0;
4384
4385 /*
4386 * Shared mappings base their reservation on the number of pages that
4387 * are already allocated on behalf of the file. Private mappings need
4388 * to reserve the full area even if read-only as mprotect() may be
4389 * called to make the mapping read-write. Assume !vma is a shm mapping
4390 */
4391 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4392 resv_map = inode_resv_map(inode);
4393
4394 chg = region_chg(resv_map, from, to);
4395
4396 } else {
4397 resv_map = resv_map_alloc();
4398 if (!resv_map)
4399 return -ENOMEM;
4400
4401 chg = to - from;
4402
4403 set_vma_resv_map(vma, resv_map);
4404 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4405 }
4406
4407 if (chg < 0) {
4408 ret = chg;
4409 goto out_err;
4410 }
4411
4412 /*
4413 * There must be enough pages in the subpool for the mapping. If
4414 * the subpool has a minimum size, there may be some global
4415 * reservations already in place (gbl_reserve).
4416 */
4417 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4418 if (gbl_reserve < 0) {
4419 ret = -ENOSPC;
4420 goto out_err;
4421 }
4422
4423 /*
4424 * Check enough hugepages are available for the reservation.
4425 * Hand the pages back to the subpool if there are not
4426 */
4427 ret = hugetlb_acct_memory(h, gbl_reserve);
4428 if (ret < 0) {
4429 /* put back original number of pages, chg */
4430 (void)hugepage_subpool_put_pages(spool, chg);
4431 goto out_err;
4432 }
4433
4434 /*
4435 * Account for the reservations made. Shared mappings record regions
4436 * that have reservations as they are shared by multiple VMAs.
4437 * When the last VMA disappears, the region map says how much
4438 * the reservation was and the page cache tells how much of
4439 * the reservation was consumed. Private mappings are per-VMA and
4440 * only the consumed reservations are tracked. When the VMA
4441 * disappears, the original reservation is the VMA size and the
4442 * consumed reservations are stored in the map. Hence, nothing
4443 * else has to be done for private mappings here
4444 */
4445 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4446 long add = region_add(resv_map, from, to);
4447
4448 if (unlikely(chg > add)) {
4449 /*
4450 * pages in this range were added to the reserve
4451 * map between region_chg and region_add. This
4452 * indicates a race with alloc_huge_page. Adjust
4453 * the subpool and reserve counts modified above
4454 * based on the difference.
4455 */
4456 long rsv_adjust;
4457
4458 rsv_adjust = hugepage_subpool_put_pages(spool,
4459 chg - add);
4460 hugetlb_acct_memory(h, -rsv_adjust);
4461 }
4462 }
4463 return 0;
4464 out_err:
4465 if (!vma || vma->vm_flags & VM_MAYSHARE)
4466 /* Don't call region_abort if region_chg failed */
4467 if (chg >= 0)
4468 region_abort(resv_map, from, to);
4469 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4470 kref_put(&resv_map->refs, resv_map_release);
4471 return ret;
4472 }
4473
4474 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4475 long freed)
4476 {
4477 struct hstate *h = hstate_inode(inode);
4478 struct resv_map *resv_map = inode_resv_map(inode);
4479 long chg = 0;
4480 struct hugepage_subpool *spool = subpool_inode(inode);
4481 long gbl_reserve;
4482
4483 if (resv_map) {
4484 chg = region_del(resv_map, start, end);
4485 /*
4486 * region_del() can fail in the rare case where a region
4487 * must be split and another region descriptor can not be
4488 * allocated. If end == LONG_MAX, it will not fail.
4489 */
4490 if (chg < 0)
4491 return chg;
4492 }
4493
4494 spin_lock(&inode->i_lock);
4495 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4496 spin_unlock(&inode->i_lock);
4497
4498 /*
4499 * If the subpool has a minimum size, the number of global
4500 * reservations to be released may be adjusted.
4501 */
4502 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4503 hugetlb_acct_memory(h, -gbl_reserve);
4504
4505 return 0;
4506 }
4507
4508 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4509 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4510 struct vm_area_struct *vma,
4511 unsigned long addr, pgoff_t idx)
4512 {
4513 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4514 svma->vm_start;
4515 unsigned long sbase = saddr & PUD_MASK;
4516 unsigned long s_end = sbase + PUD_SIZE;
4517
4518 /* Allow segments to share if only one is marked locked */
4519 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4520 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4521
4522 /*
4523 * match the virtual addresses, permission and the alignment of the
4524 * page table page.
4525 */
4526 if (pmd_index(addr) != pmd_index(saddr) ||
4527 vm_flags != svm_flags ||
4528 sbase < svma->vm_start || svma->vm_end < s_end)
4529 return 0;
4530
4531 return saddr;
4532 }
4533
4534 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4535 {
4536 unsigned long base = addr & PUD_MASK;
4537 unsigned long end = base + PUD_SIZE;
4538
4539 /*
4540 * check on proper vm_flags and page table alignment
4541 */
4542 if (vma->vm_flags & VM_MAYSHARE &&
4543 vma->vm_start <= base && end <= vma->vm_end)
4544 return true;
4545 return false;
4546 }
4547
4548 /*
4549 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4550 * and returns the corresponding pte. While this is not necessary for the
4551 * !shared pmd case because we can allocate the pmd later as well, it makes the
4552 * code much cleaner. pmd allocation is essential for the shared case because
4553 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4554 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4555 * bad pmd for sharing.
4556 */
4557 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4558 {
4559 struct vm_area_struct *vma = find_vma(mm, addr);
4560 struct address_space *mapping = vma->vm_file->f_mapping;
4561 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4562 vma->vm_pgoff;
4563 struct vm_area_struct *svma;
4564 unsigned long saddr;
4565 pte_t *spte = NULL;
4566 pte_t *pte;
4567 spinlock_t *ptl;
4568
4569 if (!vma_shareable(vma, addr))
4570 return (pte_t *)pmd_alloc(mm, pud, addr);
4571
4572 i_mmap_lock_write(mapping);
4573 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4574 if (svma == vma)
4575 continue;
4576
4577 saddr = page_table_shareable(svma, vma, addr, idx);
4578 if (saddr) {
4579 spte = huge_pte_offset(svma->vm_mm, saddr,
4580 vma_mmu_pagesize(svma));
4581 if (spte) {
4582 get_page(virt_to_page(spte));
4583 break;
4584 }
4585 }
4586 }
4587
4588 if (!spte)
4589 goto out;
4590
4591 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4592 if (pud_none(*pud)) {
4593 pud_populate(mm, pud,
4594 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4595 mm_inc_nr_pmds(mm);
4596 } else {
4597 put_page(virt_to_page(spte));
4598 }
4599 spin_unlock(ptl);
4600 out:
4601 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4602 i_mmap_unlock_write(mapping);
4603 return pte;
4604 }
4605
4606 /*
4607 * unmap huge page backed by shared pte.
4608 *
4609 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4610 * indicated by page_count > 1, unmap is achieved by clearing pud and
4611 * decrementing the ref count. If count == 1, the pte page is not shared.
4612 *
4613 * called with page table lock held.
4614 *
4615 * returns: 1 successfully unmapped a shared pte page
4616 * 0 the underlying pte page is not shared, or it is the last user
4617 */
4618 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4619 {
4620 pgd_t *pgd = pgd_offset(mm, *addr);
4621 p4d_t *p4d = p4d_offset(pgd, *addr);
4622 pud_t *pud = pud_offset(p4d, *addr);
4623
4624 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4625 if (page_count(virt_to_page(ptep)) == 1)
4626 return 0;
4627
4628 pud_clear(pud);
4629 put_page(virt_to_page(ptep));
4630 mm_dec_nr_pmds(mm);
4631 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4632 return 1;
4633 }
4634 #define want_pmd_share() (1)
4635 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4636 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4637 {
4638 return NULL;
4639 }
4640
4641 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4642 {
4643 return 0;
4644 }
4645 #define want_pmd_share() (0)
4646 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4647
4648 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4649 pte_t *huge_pte_alloc(struct mm_struct *mm,
4650 unsigned long addr, unsigned long sz)
4651 {
4652 pgd_t *pgd;
4653 p4d_t *p4d;
4654 pud_t *pud;
4655 pte_t *pte = NULL;
4656
4657 pgd = pgd_offset(mm, addr);
4658 p4d = p4d_alloc(mm, pgd, addr);
4659 if (!p4d)
4660 return NULL;
4661 pud = pud_alloc(mm, p4d, addr);
4662 if (pud) {
4663 if (sz == PUD_SIZE) {
4664 pte = (pte_t *)pud;
4665 } else {
4666 BUG_ON(sz != PMD_SIZE);
4667 if (want_pmd_share() && pud_none(*pud))
4668 pte = huge_pmd_share(mm, addr, pud);
4669 else
4670 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4671 }
4672 }
4673 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4674
4675 return pte;
4676 }
4677
4678 /*
4679 * huge_pte_offset() - Walk the page table to resolve the hugepage
4680 * entry at address @addr
4681 *
4682 * Return: Pointer to page table or swap entry (PUD or PMD) for
4683 * address @addr, or NULL if a p*d_none() entry is encountered and the
4684 * size @sz doesn't match the hugepage size at this level of the page
4685 * table.
4686 */
4687 pte_t *huge_pte_offset(struct mm_struct *mm,
4688 unsigned long addr, unsigned long sz)
4689 {
4690 pgd_t *pgd;
4691 p4d_t *p4d;
4692 pud_t *pud;
4693 pmd_t *pmd;
4694
4695 pgd = pgd_offset(mm, addr);
4696 if (!pgd_present(*pgd))
4697 return NULL;
4698 p4d = p4d_offset(pgd, addr);
4699 if (!p4d_present(*p4d))
4700 return NULL;
4701
4702 pud = pud_offset(p4d, addr);
4703 if (sz != PUD_SIZE && pud_none(*pud))
4704 return NULL;
4705 /* hugepage or swap? */
4706 if (pud_huge(*pud) || !pud_present(*pud))
4707 return (pte_t *)pud;
4708
4709 pmd = pmd_offset(pud, addr);
4710 if (sz != PMD_SIZE && pmd_none(*pmd))
4711 return NULL;
4712 /* hugepage or swap? */
4713 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4714 return (pte_t *)pmd;
4715
4716 return NULL;
4717 }
4718
4719 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4720
4721 /*
4722 * These functions are overwritable if your architecture needs its own
4723 * behavior.
4724 */
4725 struct page * __weak
4726 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4727 int write)
4728 {
4729 return ERR_PTR(-EINVAL);
4730 }
4731
4732 struct page * __weak
4733 follow_huge_pd(struct vm_area_struct *vma,
4734 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4735 {
4736 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4737 return NULL;
4738 }
4739
4740 struct page * __weak
4741 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4742 pmd_t *pmd, int flags)
4743 {
4744 struct page *page = NULL;
4745 spinlock_t *ptl;
4746 pte_t pte;
4747 retry:
4748 ptl = pmd_lockptr(mm, pmd);
4749 spin_lock(ptl);
4750 /*
4751 * make sure that the address range covered by this pmd is not
4752 * unmapped from other threads.
4753 */
4754 if (!pmd_huge(*pmd))
4755 goto out;
4756 pte = huge_ptep_get((pte_t *)pmd);
4757 if (pte_present(pte)) {
4758 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4759 if (flags & FOLL_GET)
4760 get_page(page);
4761 } else {
4762 if (is_hugetlb_entry_migration(pte)) {
4763 spin_unlock(ptl);
4764 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4765 goto retry;
4766 }
4767 /*
4768 * hwpoisoned entry is treated as no_page_table in
4769 * follow_page_mask().
4770 */
4771 }
4772 out:
4773 spin_unlock(ptl);
4774 return page;
4775 }
4776
4777 struct page * __weak
4778 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4779 pud_t *pud, int flags)
4780 {
4781 if (flags & FOLL_GET)
4782 return NULL;
4783
4784 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4785 }
4786
4787 struct page * __weak
4788 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4789 {
4790 if (flags & FOLL_GET)
4791 return NULL;
4792
4793 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4794 }
4795
4796 bool isolate_huge_page(struct page *page, struct list_head *list)
4797 {
4798 bool ret = true;
4799
4800 VM_BUG_ON_PAGE(!PageHead(page), page);
4801 spin_lock(&hugetlb_lock);
4802 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4803 ret = false;
4804 goto unlock;
4805 }
4806 clear_page_huge_active(page);
4807 list_move_tail(&page->lru, list);
4808 unlock:
4809 spin_unlock(&hugetlb_lock);
4810 return ret;
4811 }
4812
4813 void putback_active_hugepage(struct page *page)
4814 {
4815 VM_BUG_ON_PAGE(!PageHead(page), page);
4816 spin_lock(&hugetlb_lock);
4817 set_page_huge_active(page);
4818 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4819 spin_unlock(&hugetlb_lock);
4820 put_page(page);
4821 }
4822
4823 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4824 {
4825 struct hstate *h = page_hstate(oldpage);
4826
4827 hugetlb_cgroup_migrate(oldpage, newpage);
4828 set_page_owner_migrate_reason(newpage, reason);
4829
4830 /*
4831 * transfer temporary state of the new huge page. This is
4832 * reverse to other transitions because the newpage is going to
4833 * be final while the old one will be freed so it takes over
4834 * the temporary status.
4835 *
4836 * Also note that we have to transfer the per-node surplus state
4837 * here as well otherwise the global surplus count will not match
4838 * the per-node's.
4839 */
4840 if (PageHugeTemporary(newpage)) {
4841 int old_nid = page_to_nid(oldpage);
4842 int new_nid = page_to_nid(newpage);
4843
4844 SetPageHugeTemporary(oldpage);
4845 ClearPageHugeTemporary(newpage);
4846
4847 spin_lock(&hugetlb_lock);
4848 if (h->surplus_huge_pages_node[old_nid]) {
4849 h->surplus_huge_pages_node[old_nid]--;
4850 h->surplus_huge_pages_node[new_nid]++;
4851 }
4852 spin_unlock(&hugetlb_lock);
4853 }
4854 }