]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hugetlb.c
[PATCH] hugepage: serialize hugepage allocation and instantiation
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
30 /*
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
32 */
33 static DEFINE_SPINLOCK(hugetlb_lock);
34
35 static void clear_huge_page(struct page *page, unsigned long addr)
36 {
37 int i;
38
39 might_sleep();
40 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41 cond_resched();
42 clear_user_highpage(page + i, addr);
43 }
44 }
45
46 static void copy_huge_page(struct page *dst, struct page *src,
47 unsigned long addr)
48 {
49 int i;
50
51 might_sleep();
52 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53 cond_resched();
54 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE);
55 }
56 }
57
58 static void enqueue_huge_page(struct page *page)
59 {
60 int nid = page_to_nid(page);
61 list_add(&page->lru, &hugepage_freelists[nid]);
62 free_huge_pages++;
63 free_huge_pages_node[nid]++;
64 }
65
66 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67 unsigned long address)
68 {
69 int nid = numa_node_id();
70 struct page *page = NULL;
71 struct zonelist *zonelist = huge_zonelist(vma, address);
72 struct zone **z;
73
74 for (z = zonelist->zones; *z; z++) {
75 nid = (*z)->zone_pgdat->node_id;
76 if (cpuset_zone_allowed(*z, GFP_HIGHUSER) &&
77 !list_empty(&hugepage_freelists[nid]))
78 break;
79 }
80
81 if (*z) {
82 page = list_entry(hugepage_freelists[nid].next,
83 struct page, lru);
84 list_del(&page->lru);
85 free_huge_pages--;
86 free_huge_pages_node[nid]--;
87 }
88 return page;
89 }
90
91 static int alloc_fresh_huge_page(void)
92 {
93 static int nid = 0;
94 struct page *page;
95 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
96 HUGETLB_PAGE_ORDER);
97 nid = (nid + 1) % num_online_nodes();
98 if (page) {
99 page[1].lru.next = (void *)free_huge_page; /* dtor */
100 spin_lock(&hugetlb_lock);
101 nr_huge_pages++;
102 nr_huge_pages_node[page_to_nid(page)]++;
103 spin_unlock(&hugetlb_lock);
104 put_page(page); /* free it into the hugepage allocator */
105 return 1;
106 }
107 return 0;
108 }
109
110 void free_huge_page(struct page *page)
111 {
112 BUG_ON(page_count(page));
113
114 INIT_LIST_HEAD(&page->lru);
115
116 spin_lock(&hugetlb_lock);
117 enqueue_huge_page(page);
118 spin_unlock(&hugetlb_lock);
119 }
120
121 struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
122 {
123 struct page *page;
124
125 spin_lock(&hugetlb_lock);
126 page = dequeue_huge_page(vma, addr);
127 if (!page) {
128 spin_unlock(&hugetlb_lock);
129 return NULL;
130 }
131 spin_unlock(&hugetlb_lock);
132 set_page_refcounted(page);
133 return page;
134 }
135
136 static int __init hugetlb_init(void)
137 {
138 unsigned long i;
139
140 if (HPAGE_SHIFT == 0)
141 return 0;
142
143 for (i = 0; i < MAX_NUMNODES; ++i)
144 INIT_LIST_HEAD(&hugepage_freelists[i]);
145
146 for (i = 0; i < max_huge_pages; ++i) {
147 if (!alloc_fresh_huge_page())
148 break;
149 }
150 max_huge_pages = free_huge_pages = nr_huge_pages = i;
151 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
152 return 0;
153 }
154 module_init(hugetlb_init);
155
156 static int __init hugetlb_setup(char *s)
157 {
158 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
159 max_huge_pages = 0;
160 return 1;
161 }
162 __setup("hugepages=", hugetlb_setup);
163
164 #ifdef CONFIG_SYSCTL
165 static void update_and_free_page(struct page *page)
166 {
167 int i;
168 nr_huge_pages--;
169 nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
170 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
171 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
172 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
173 1 << PG_private | 1<< PG_writeback);
174 }
175 page[1].lru.next = NULL;
176 set_page_refcounted(page);
177 __free_pages(page, HUGETLB_PAGE_ORDER);
178 }
179
180 #ifdef CONFIG_HIGHMEM
181 static void try_to_free_low(unsigned long count)
182 {
183 int i, nid;
184 for (i = 0; i < MAX_NUMNODES; ++i) {
185 struct page *page, *next;
186 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
187 if (PageHighMem(page))
188 continue;
189 list_del(&page->lru);
190 update_and_free_page(page);
191 nid = page_zone(page)->zone_pgdat->node_id;
192 free_huge_pages--;
193 free_huge_pages_node[nid]--;
194 if (count >= nr_huge_pages)
195 return;
196 }
197 }
198 }
199 #else
200 static inline void try_to_free_low(unsigned long count)
201 {
202 }
203 #endif
204
205 static unsigned long set_max_huge_pages(unsigned long count)
206 {
207 while (count > nr_huge_pages) {
208 if (!alloc_fresh_huge_page())
209 return nr_huge_pages;
210 }
211 if (count >= nr_huge_pages)
212 return nr_huge_pages;
213
214 spin_lock(&hugetlb_lock);
215 try_to_free_low(count);
216 while (count < nr_huge_pages) {
217 struct page *page = dequeue_huge_page(NULL, 0);
218 if (!page)
219 break;
220 update_and_free_page(page);
221 }
222 spin_unlock(&hugetlb_lock);
223 return nr_huge_pages;
224 }
225
226 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
227 struct file *file, void __user *buffer,
228 size_t *length, loff_t *ppos)
229 {
230 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
231 max_huge_pages = set_max_huge_pages(max_huge_pages);
232 return 0;
233 }
234 #endif /* CONFIG_SYSCTL */
235
236 int hugetlb_report_meminfo(char *buf)
237 {
238 return sprintf(buf,
239 "HugePages_Total: %5lu\n"
240 "HugePages_Free: %5lu\n"
241 "Hugepagesize: %5lu kB\n",
242 nr_huge_pages,
243 free_huge_pages,
244 HPAGE_SIZE/1024);
245 }
246
247 int hugetlb_report_node_meminfo(int nid, char *buf)
248 {
249 return sprintf(buf,
250 "Node %d HugePages_Total: %5u\n"
251 "Node %d HugePages_Free: %5u\n",
252 nid, nr_huge_pages_node[nid],
253 nid, free_huge_pages_node[nid]);
254 }
255
256 int is_hugepage_mem_enough(size_t size)
257 {
258 return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
259 }
260
261 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
262 unsigned long hugetlb_total_pages(void)
263 {
264 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
265 }
266
267 /*
268 * We cannot handle pagefaults against hugetlb pages at all. They cause
269 * handle_mm_fault() to try to instantiate regular-sized pages in the
270 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
271 * this far.
272 */
273 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
274 unsigned long address, int *unused)
275 {
276 BUG();
277 return NULL;
278 }
279
280 struct vm_operations_struct hugetlb_vm_ops = {
281 .nopage = hugetlb_nopage,
282 };
283
284 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
285 int writable)
286 {
287 pte_t entry;
288
289 if (writable) {
290 entry =
291 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
292 } else {
293 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
294 }
295 entry = pte_mkyoung(entry);
296 entry = pte_mkhuge(entry);
297
298 return entry;
299 }
300
301 static void set_huge_ptep_writable(struct vm_area_struct *vma,
302 unsigned long address, pte_t *ptep)
303 {
304 pte_t entry;
305
306 entry = pte_mkwrite(pte_mkdirty(*ptep));
307 ptep_set_access_flags(vma, address, ptep, entry, 1);
308 update_mmu_cache(vma, address, entry);
309 lazy_mmu_prot_update(entry);
310 }
311
312
313 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
314 struct vm_area_struct *vma)
315 {
316 pte_t *src_pte, *dst_pte, entry;
317 struct page *ptepage;
318 unsigned long addr;
319 int cow;
320
321 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
322
323 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
324 src_pte = huge_pte_offset(src, addr);
325 if (!src_pte)
326 continue;
327 dst_pte = huge_pte_alloc(dst, addr);
328 if (!dst_pte)
329 goto nomem;
330 spin_lock(&dst->page_table_lock);
331 spin_lock(&src->page_table_lock);
332 if (!pte_none(*src_pte)) {
333 if (cow)
334 ptep_set_wrprotect(src, addr, src_pte);
335 entry = *src_pte;
336 ptepage = pte_page(entry);
337 get_page(ptepage);
338 add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
339 set_huge_pte_at(dst, addr, dst_pte, entry);
340 }
341 spin_unlock(&src->page_table_lock);
342 spin_unlock(&dst->page_table_lock);
343 }
344 return 0;
345
346 nomem:
347 return -ENOMEM;
348 }
349
350 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
351 unsigned long end)
352 {
353 struct mm_struct *mm = vma->vm_mm;
354 unsigned long address;
355 pte_t *ptep;
356 pte_t pte;
357 struct page *page;
358
359 WARN_ON(!is_vm_hugetlb_page(vma));
360 BUG_ON(start & ~HPAGE_MASK);
361 BUG_ON(end & ~HPAGE_MASK);
362
363 spin_lock(&mm->page_table_lock);
364
365 /* Update high watermark before we lower rss */
366 update_hiwater_rss(mm);
367
368 for (address = start; address < end; address += HPAGE_SIZE) {
369 ptep = huge_pte_offset(mm, address);
370 if (!ptep)
371 continue;
372
373 pte = huge_ptep_get_and_clear(mm, address, ptep);
374 if (pte_none(pte))
375 continue;
376
377 page = pte_page(pte);
378 put_page(page);
379 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
380 }
381
382 spin_unlock(&mm->page_table_lock);
383 flush_tlb_range(vma, start, end);
384 }
385
386 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
387 unsigned long address, pte_t *ptep, pte_t pte)
388 {
389 struct page *old_page, *new_page;
390 int avoidcopy;
391
392 old_page = pte_page(pte);
393
394 /* If no-one else is actually using this page, avoid the copy
395 * and just make the page writable */
396 avoidcopy = (page_count(old_page) == 1);
397 if (avoidcopy) {
398 set_huge_ptep_writable(vma, address, ptep);
399 return VM_FAULT_MINOR;
400 }
401
402 page_cache_get(old_page);
403 new_page = alloc_huge_page(vma, address);
404
405 if (!new_page) {
406 page_cache_release(old_page);
407 return VM_FAULT_OOM;
408 }
409
410 spin_unlock(&mm->page_table_lock);
411 copy_huge_page(new_page, old_page, address);
412 spin_lock(&mm->page_table_lock);
413
414 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
415 if (likely(pte_same(*ptep, pte))) {
416 /* Break COW */
417 set_huge_pte_at(mm, address, ptep,
418 make_huge_pte(vma, new_page, 1));
419 /* Make the old page be freed below */
420 new_page = old_page;
421 }
422 page_cache_release(new_page);
423 page_cache_release(old_page);
424 return VM_FAULT_MINOR;
425 }
426
427 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
428 unsigned long address, pte_t *ptep, int write_access)
429 {
430 int ret = VM_FAULT_SIGBUS;
431 unsigned long idx;
432 unsigned long size;
433 struct page *page;
434 struct address_space *mapping;
435 pte_t new_pte;
436
437 mapping = vma->vm_file->f_mapping;
438 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
439 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
440
441 /*
442 * Use page lock to guard against racing truncation
443 * before we get page_table_lock.
444 */
445 retry:
446 page = find_lock_page(mapping, idx);
447 if (!page) {
448 if (hugetlb_get_quota(mapping))
449 goto out;
450 page = alloc_huge_page(vma, address);
451 if (!page) {
452 hugetlb_put_quota(mapping);
453 ret = VM_FAULT_OOM;
454 goto out;
455 }
456 clear_huge_page(page, address);
457
458 if (vma->vm_flags & VM_SHARED) {
459 int err;
460
461 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
462 if (err) {
463 put_page(page);
464 hugetlb_put_quota(mapping);
465 if (err == -EEXIST)
466 goto retry;
467 goto out;
468 }
469 } else
470 lock_page(page);
471 }
472
473 spin_lock(&mm->page_table_lock);
474 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
475 if (idx >= size)
476 goto backout;
477
478 ret = VM_FAULT_MINOR;
479 if (!pte_none(*ptep))
480 goto backout;
481
482 add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
483 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
484 && (vma->vm_flags & VM_SHARED)));
485 set_huge_pte_at(mm, address, ptep, new_pte);
486
487 if (write_access && !(vma->vm_flags & VM_SHARED)) {
488 /* Optimization, do the COW without a second fault */
489 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
490 }
491
492 spin_unlock(&mm->page_table_lock);
493 unlock_page(page);
494 out:
495 return ret;
496
497 backout:
498 spin_unlock(&mm->page_table_lock);
499 hugetlb_put_quota(mapping);
500 unlock_page(page);
501 put_page(page);
502 goto out;
503 }
504
505 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
506 unsigned long address, int write_access)
507 {
508 pte_t *ptep;
509 pte_t entry;
510 int ret;
511 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
512
513 ptep = huge_pte_alloc(mm, address);
514 if (!ptep)
515 return VM_FAULT_OOM;
516
517 /*
518 * Serialize hugepage allocation and instantiation, so that we don't
519 * get spurious allocation failures if two CPUs race to instantiate
520 * the same page in the page cache.
521 */
522 mutex_lock(&hugetlb_instantiation_mutex);
523 entry = *ptep;
524 if (pte_none(entry)) {
525 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
526 mutex_unlock(&hugetlb_instantiation_mutex);
527 return ret;
528 }
529
530 ret = VM_FAULT_MINOR;
531
532 spin_lock(&mm->page_table_lock);
533 /* Check for a racing update before calling hugetlb_cow */
534 if (likely(pte_same(entry, *ptep)))
535 if (write_access && !pte_write(entry))
536 ret = hugetlb_cow(mm, vma, address, ptep, entry);
537 spin_unlock(&mm->page_table_lock);
538 mutex_unlock(&hugetlb_instantiation_mutex);
539
540 return ret;
541 }
542
543 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
544 struct page **pages, struct vm_area_struct **vmas,
545 unsigned long *position, int *length, int i)
546 {
547 unsigned long vpfn, vaddr = *position;
548 int remainder = *length;
549
550 vpfn = vaddr/PAGE_SIZE;
551 spin_lock(&mm->page_table_lock);
552 while (vaddr < vma->vm_end && remainder) {
553 pte_t *pte;
554 struct page *page;
555
556 /*
557 * Some archs (sparc64, sh*) have multiple pte_ts to
558 * each hugepage. We have to make * sure we get the
559 * first, for the page indexing below to work.
560 */
561 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
562
563 if (!pte || pte_none(*pte)) {
564 int ret;
565
566 spin_unlock(&mm->page_table_lock);
567 ret = hugetlb_fault(mm, vma, vaddr, 0);
568 spin_lock(&mm->page_table_lock);
569 if (ret == VM_FAULT_MINOR)
570 continue;
571
572 remainder = 0;
573 if (!i)
574 i = -EFAULT;
575 break;
576 }
577
578 if (pages) {
579 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
580 get_page(page);
581 pages[i] = page;
582 }
583
584 if (vmas)
585 vmas[i] = vma;
586
587 vaddr += PAGE_SIZE;
588 ++vpfn;
589 --remainder;
590 ++i;
591 }
592 spin_unlock(&mm->page_table_lock);
593 *length = remainder;
594 *position = vaddr;
595
596 return i;
597 }
598
599 void hugetlb_change_protection(struct vm_area_struct *vma,
600 unsigned long address, unsigned long end, pgprot_t newprot)
601 {
602 struct mm_struct *mm = vma->vm_mm;
603 unsigned long start = address;
604 pte_t *ptep;
605 pte_t pte;
606
607 BUG_ON(address >= end);
608 flush_cache_range(vma, address, end);
609
610 spin_lock(&mm->page_table_lock);
611 for (; address < end; address += HPAGE_SIZE) {
612 ptep = huge_pte_offset(mm, address);
613 if (!ptep)
614 continue;
615 if (!pte_none(*ptep)) {
616 pte = huge_ptep_get_and_clear(mm, address, ptep);
617 pte = pte_mkhuge(pte_modify(pte, newprot));
618 set_huge_pte_at(mm, address, ptep, pte);
619 lazy_mmu_prot_update(pte);
620 }
621 }
622 spin_unlock(&mm->page_table_lock);
623
624 flush_tlb_range(vma, start, end);
625 }
626