]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hugetlb.c
[PATCH] cpusets: swap migration interface
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15
16 #include <asm/page.h>
17 #include <asm/pgtable.h>
18
19 #include <linux/hugetlb.h>
20
21 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
22 static unsigned long nr_huge_pages, free_huge_pages;
23 unsigned long max_huge_pages;
24 static struct list_head hugepage_freelists[MAX_NUMNODES];
25 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
26 static unsigned int free_huge_pages_node[MAX_NUMNODES];
27
28 /*
29 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
30 */
31 static DEFINE_SPINLOCK(hugetlb_lock);
32
33 static void enqueue_huge_page(struct page *page)
34 {
35 int nid = page_to_nid(page);
36 list_add(&page->lru, &hugepage_freelists[nid]);
37 free_huge_pages++;
38 free_huge_pages_node[nid]++;
39 }
40
41 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
42 unsigned long address)
43 {
44 int nid = numa_node_id();
45 struct page *page = NULL;
46 struct zonelist *zonelist = huge_zonelist(vma, address);
47 struct zone **z;
48
49 for (z = zonelist->zones; *z; z++) {
50 nid = (*z)->zone_pgdat->node_id;
51 if (!list_empty(&hugepage_freelists[nid]))
52 break;
53 }
54
55 if (*z) {
56 page = list_entry(hugepage_freelists[nid].next,
57 struct page, lru);
58 list_del(&page->lru);
59 free_huge_pages--;
60 free_huge_pages_node[nid]--;
61 }
62 return page;
63 }
64
65 static struct page *alloc_fresh_huge_page(void)
66 {
67 static int nid = 0;
68 struct page *page;
69 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
70 HUGETLB_PAGE_ORDER);
71 nid = (nid + 1) % num_online_nodes();
72 if (page) {
73 spin_lock(&hugetlb_lock);
74 nr_huge_pages++;
75 nr_huge_pages_node[page_to_nid(page)]++;
76 spin_unlock(&hugetlb_lock);
77 }
78 return page;
79 }
80
81 void free_huge_page(struct page *page)
82 {
83 BUG_ON(page_count(page));
84
85 INIT_LIST_HEAD(&page->lru);
86 page[1].mapping = NULL;
87
88 spin_lock(&hugetlb_lock);
89 enqueue_huge_page(page);
90 spin_unlock(&hugetlb_lock);
91 }
92
93 struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr)
94 {
95 struct page *page;
96 int i;
97
98 spin_lock(&hugetlb_lock);
99 page = dequeue_huge_page(vma, addr);
100 if (!page) {
101 spin_unlock(&hugetlb_lock);
102 return NULL;
103 }
104 spin_unlock(&hugetlb_lock);
105 set_page_count(page, 1);
106 page[1].mapping = (void *)free_huge_page;
107 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
108 clear_highpage(&page[i]);
109 return page;
110 }
111
112 static int __init hugetlb_init(void)
113 {
114 unsigned long i;
115 struct page *page;
116
117 if (HPAGE_SHIFT == 0)
118 return 0;
119
120 for (i = 0; i < MAX_NUMNODES; ++i)
121 INIT_LIST_HEAD(&hugepage_freelists[i]);
122
123 for (i = 0; i < max_huge_pages; ++i) {
124 page = alloc_fresh_huge_page();
125 if (!page)
126 break;
127 spin_lock(&hugetlb_lock);
128 enqueue_huge_page(page);
129 spin_unlock(&hugetlb_lock);
130 }
131 max_huge_pages = free_huge_pages = nr_huge_pages = i;
132 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
133 return 0;
134 }
135 module_init(hugetlb_init);
136
137 static int __init hugetlb_setup(char *s)
138 {
139 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
140 max_huge_pages = 0;
141 return 1;
142 }
143 __setup("hugepages=", hugetlb_setup);
144
145 #ifdef CONFIG_SYSCTL
146 static void update_and_free_page(struct page *page)
147 {
148 int i;
149 nr_huge_pages--;
150 nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
151 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
152 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
153 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
154 1 << PG_private | 1<< PG_writeback);
155 set_page_count(&page[i], 0);
156 }
157 set_page_count(page, 1);
158 __free_pages(page, HUGETLB_PAGE_ORDER);
159 }
160
161 #ifdef CONFIG_HIGHMEM
162 static void try_to_free_low(unsigned long count)
163 {
164 int i, nid;
165 for (i = 0; i < MAX_NUMNODES; ++i) {
166 struct page *page, *next;
167 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
168 if (PageHighMem(page))
169 continue;
170 list_del(&page->lru);
171 update_and_free_page(page);
172 nid = page_zone(page)->zone_pgdat->node_id;
173 free_huge_pages--;
174 free_huge_pages_node[nid]--;
175 if (count >= nr_huge_pages)
176 return;
177 }
178 }
179 }
180 #else
181 static inline void try_to_free_low(unsigned long count)
182 {
183 }
184 #endif
185
186 static unsigned long set_max_huge_pages(unsigned long count)
187 {
188 while (count > nr_huge_pages) {
189 struct page *page = alloc_fresh_huge_page();
190 if (!page)
191 return nr_huge_pages;
192 spin_lock(&hugetlb_lock);
193 enqueue_huge_page(page);
194 spin_unlock(&hugetlb_lock);
195 }
196 if (count >= nr_huge_pages)
197 return nr_huge_pages;
198
199 spin_lock(&hugetlb_lock);
200 try_to_free_low(count);
201 while (count < nr_huge_pages) {
202 struct page *page = dequeue_huge_page(NULL, 0);
203 if (!page)
204 break;
205 update_and_free_page(page);
206 }
207 spin_unlock(&hugetlb_lock);
208 return nr_huge_pages;
209 }
210
211 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
212 struct file *file, void __user *buffer,
213 size_t *length, loff_t *ppos)
214 {
215 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
216 max_huge_pages = set_max_huge_pages(max_huge_pages);
217 return 0;
218 }
219 #endif /* CONFIG_SYSCTL */
220
221 int hugetlb_report_meminfo(char *buf)
222 {
223 return sprintf(buf,
224 "HugePages_Total: %5lu\n"
225 "HugePages_Free: %5lu\n"
226 "Hugepagesize: %5lu kB\n",
227 nr_huge_pages,
228 free_huge_pages,
229 HPAGE_SIZE/1024);
230 }
231
232 int hugetlb_report_node_meminfo(int nid, char *buf)
233 {
234 return sprintf(buf,
235 "Node %d HugePages_Total: %5u\n"
236 "Node %d HugePages_Free: %5u\n",
237 nid, nr_huge_pages_node[nid],
238 nid, free_huge_pages_node[nid]);
239 }
240
241 int is_hugepage_mem_enough(size_t size)
242 {
243 return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
244 }
245
246 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
247 unsigned long hugetlb_total_pages(void)
248 {
249 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
250 }
251
252 /*
253 * We cannot handle pagefaults against hugetlb pages at all. They cause
254 * handle_mm_fault() to try to instantiate regular-sized pages in the
255 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
256 * this far.
257 */
258 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
259 unsigned long address, int *unused)
260 {
261 BUG();
262 return NULL;
263 }
264
265 struct vm_operations_struct hugetlb_vm_ops = {
266 .nopage = hugetlb_nopage,
267 };
268
269 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
270 int writable)
271 {
272 pte_t entry;
273
274 if (writable) {
275 entry =
276 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
277 } else {
278 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
279 }
280 entry = pte_mkyoung(entry);
281 entry = pte_mkhuge(entry);
282
283 return entry;
284 }
285
286 static void set_huge_ptep_writable(struct vm_area_struct *vma,
287 unsigned long address, pte_t *ptep)
288 {
289 pte_t entry;
290
291 entry = pte_mkwrite(pte_mkdirty(*ptep));
292 ptep_set_access_flags(vma, address, ptep, entry, 1);
293 update_mmu_cache(vma, address, entry);
294 lazy_mmu_prot_update(entry);
295 }
296
297
298 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
299 struct vm_area_struct *vma)
300 {
301 pte_t *src_pte, *dst_pte, entry;
302 struct page *ptepage;
303 unsigned long addr;
304 int cow;
305
306 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
307
308 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
309 src_pte = huge_pte_offset(src, addr);
310 if (!src_pte)
311 continue;
312 dst_pte = huge_pte_alloc(dst, addr);
313 if (!dst_pte)
314 goto nomem;
315 spin_lock(&dst->page_table_lock);
316 spin_lock(&src->page_table_lock);
317 if (!pte_none(*src_pte)) {
318 if (cow)
319 ptep_set_wrprotect(src, addr, src_pte);
320 entry = *src_pte;
321 ptepage = pte_page(entry);
322 get_page(ptepage);
323 add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
324 set_huge_pte_at(dst, addr, dst_pte, entry);
325 }
326 spin_unlock(&src->page_table_lock);
327 spin_unlock(&dst->page_table_lock);
328 }
329 return 0;
330
331 nomem:
332 return -ENOMEM;
333 }
334
335 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
336 unsigned long end)
337 {
338 struct mm_struct *mm = vma->vm_mm;
339 unsigned long address;
340 pte_t *ptep;
341 pte_t pte;
342 struct page *page;
343
344 WARN_ON(!is_vm_hugetlb_page(vma));
345 BUG_ON(start & ~HPAGE_MASK);
346 BUG_ON(end & ~HPAGE_MASK);
347
348 spin_lock(&mm->page_table_lock);
349
350 /* Update high watermark before we lower rss */
351 update_hiwater_rss(mm);
352
353 for (address = start; address < end; address += HPAGE_SIZE) {
354 ptep = huge_pte_offset(mm, address);
355 if (!ptep)
356 continue;
357
358 pte = huge_ptep_get_and_clear(mm, address, ptep);
359 if (pte_none(pte))
360 continue;
361
362 page = pte_page(pte);
363 put_page(page);
364 add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
365 }
366
367 spin_unlock(&mm->page_table_lock);
368 flush_tlb_range(vma, start, end);
369 }
370
371 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
372 unsigned long address, pte_t *ptep, pte_t pte)
373 {
374 struct page *old_page, *new_page;
375 int i, avoidcopy;
376
377 old_page = pte_page(pte);
378
379 /* If no-one else is actually using this page, avoid the copy
380 * and just make the page writable */
381 avoidcopy = (page_count(old_page) == 1);
382 if (avoidcopy) {
383 set_huge_ptep_writable(vma, address, ptep);
384 return VM_FAULT_MINOR;
385 }
386
387 page_cache_get(old_page);
388 new_page = alloc_huge_page(vma, address);
389
390 if (!new_page) {
391 page_cache_release(old_page);
392
393 /* Logically this is OOM, not a SIGBUS, but an OOM
394 * could cause the kernel to go killing other
395 * processes which won't help the hugepage situation
396 * at all (?) */
397 return VM_FAULT_SIGBUS;
398 }
399
400 spin_unlock(&mm->page_table_lock);
401 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
402 copy_user_highpage(new_page + i, old_page + i,
403 address + i*PAGE_SIZE);
404 spin_lock(&mm->page_table_lock);
405
406 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
407 if (likely(pte_same(*ptep, pte))) {
408 /* Break COW */
409 set_huge_pte_at(mm, address, ptep,
410 make_huge_pte(vma, new_page, 1));
411 /* Make the old page be freed below */
412 new_page = old_page;
413 }
414 page_cache_release(new_page);
415 page_cache_release(old_page);
416 return VM_FAULT_MINOR;
417 }
418
419 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
420 unsigned long address, pte_t *ptep, int write_access)
421 {
422 int ret = VM_FAULT_SIGBUS;
423 unsigned long idx;
424 unsigned long size;
425 struct page *page;
426 struct address_space *mapping;
427 pte_t new_pte;
428
429 mapping = vma->vm_file->f_mapping;
430 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
431 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
432
433 /*
434 * Use page lock to guard against racing truncation
435 * before we get page_table_lock.
436 */
437 retry:
438 page = find_lock_page(mapping, idx);
439 if (!page) {
440 if (hugetlb_get_quota(mapping))
441 goto out;
442 page = alloc_huge_page(vma, address);
443 if (!page) {
444 hugetlb_put_quota(mapping);
445 goto out;
446 }
447
448 if (vma->vm_flags & VM_SHARED) {
449 int err;
450
451 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
452 if (err) {
453 put_page(page);
454 hugetlb_put_quota(mapping);
455 if (err == -EEXIST)
456 goto retry;
457 goto out;
458 }
459 } else
460 lock_page(page);
461 }
462
463 spin_lock(&mm->page_table_lock);
464 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
465 if (idx >= size)
466 goto backout;
467
468 ret = VM_FAULT_MINOR;
469 if (!pte_none(*ptep))
470 goto backout;
471
472 add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
473 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
474 && (vma->vm_flags & VM_SHARED)));
475 set_huge_pte_at(mm, address, ptep, new_pte);
476
477 if (write_access && !(vma->vm_flags & VM_SHARED)) {
478 /* Optimization, do the COW without a second fault */
479 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
480 }
481
482 spin_unlock(&mm->page_table_lock);
483 unlock_page(page);
484 out:
485 return ret;
486
487 backout:
488 spin_unlock(&mm->page_table_lock);
489 hugetlb_put_quota(mapping);
490 unlock_page(page);
491 put_page(page);
492 goto out;
493 }
494
495 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
496 unsigned long address, int write_access)
497 {
498 pte_t *ptep;
499 pte_t entry;
500 int ret;
501
502 ptep = huge_pte_alloc(mm, address);
503 if (!ptep)
504 return VM_FAULT_OOM;
505
506 entry = *ptep;
507 if (pte_none(entry))
508 return hugetlb_no_page(mm, vma, address, ptep, write_access);
509
510 ret = VM_FAULT_MINOR;
511
512 spin_lock(&mm->page_table_lock);
513 /* Check for a racing update before calling hugetlb_cow */
514 if (likely(pte_same(entry, *ptep)))
515 if (write_access && !pte_write(entry))
516 ret = hugetlb_cow(mm, vma, address, ptep, entry);
517 spin_unlock(&mm->page_table_lock);
518
519 return ret;
520 }
521
522 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
523 struct page **pages, struct vm_area_struct **vmas,
524 unsigned long *position, int *length, int i)
525 {
526 unsigned long vpfn, vaddr = *position;
527 int remainder = *length;
528
529 vpfn = vaddr/PAGE_SIZE;
530 spin_lock(&mm->page_table_lock);
531 while (vaddr < vma->vm_end && remainder) {
532 pte_t *pte;
533 struct page *page;
534
535 /*
536 * Some archs (sparc64, sh*) have multiple pte_ts to
537 * each hugepage. We have to make * sure we get the
538 * first, for the page indexing below to work.
539 */
540 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
541
542 if (!pte || pte_none(*pte)) {
543 int ret;
544
545 spin_unlock(&mm->page_table_lock);
546 ret = hugetlb_fault(mm, vma, vaddr, 0);
547 spin_lock(&mm->page_table_lock);
548 if (ret == VM_FAULT_MINOR)
549 continue;
550
551 remainder = 0;
552 if (!i)
553 i = -EFAULT;
554 break;
555 }
556
557 if (pages) {
558 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
559 get_page(page);
560 pages[i] = page;
561 }
562
563 if (vmas)
564 vmas[i] = vma;
565
566 vaddr += PAGE_SIZE;
567 ++vpfn;
568 --remainder;
569 ++i;
570 }
571 spin_unlock(&mm->page_table_lock);
572 *length = remainder;
573 *position = vaddr;
574
575 return i;
576 }