]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/hugetlb.c
Merge branch 'for-5.4/apple' into for-linus
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlb.h>
34
35 #include <linux/io.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
41 #include "internal.h"
42
43 int hugetlb_max_hstate __read_mostly;
44 unsigned int default_hstate_idx;
45 struct hstate hstates[HUGE_MAX_HSTATE];
46 /*
47 * Minimum page order among possible hugepage sizes, set to a proper value
48 * at boot time.
49 */
50 static unsigned int minimum_order __read_mostly = UINT_MAX;
51
52 __initdata LIST_HEAD(huge_boot_pages);
53
54 /* for command line parsing */
55 static struct hstate * __initdata parsed_hstate;
56 static unsigned long __initdata default_hstate_max_huge_pages;
57 static unsigned long __initdata default_hstate_size;
58 static bool __initdata parsed_valid_hugepagesz = true;
59
60 /*
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
63 */
64 DEFINE_SPINLOCK(hugetlb_lock);
65
66 /*
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 */
70 static int num_fault_mutexes;
71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
72
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate *h, long delta);
75
76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77 {
78 bool free = (spool->count == 0) && (spool->used_hpages == 0);
79
80 spin_unlock(&spool->lock);
81
82 /* If no pages are used, and no other handles to the subpool
83 * remain, give up any reservations mased on minimum size and
84 * free the subpool */
85 if (free) {
86 if (spool->min_hpages != -1)
87 hugetlb_acct_memory(spool->hstate,
88 -spool->min_hpages);
89 kfree(spool);
90 }
91 }
92
93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 long min_hpages)
95 {
96 struct hugepage_subpool *spool;
97
98 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 if (!spool)
100 return NULL;
101
102 spin_lock_init(&spool->lock);
103 spool->count = 1;
104 spool->max_hpages = max_hpages;
105 spool->hstate = h;
106 spool->min_hpages = min_hpages;
107
108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 kfree(spool);
110 return NULL;
111 }
112 spool->rsv_hpages = min_hpages;
113
114 return spool;
115 }
116
117 void hugepage_put_subpool(struct hugepage_subpool *spool)
118 {
119 spin_lock(&spool->lock);
120 BUG_ON(!spool->count);
121 spool->count--;
122 unlock_or_release_subpool(spool);
123 }
124
125 /*
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
132 */
133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134 long delta)
135 {
136 long ret = delta;
137
138 if (!spool)
139 return ret;
140
141 spin_lock(&spool->lock);
142
143 if (spool->max_hpages != -1) { /* maximum size accounting */
144 if ((spool->used_hpages + delta) <= spool->max_hpages)
145 spool->used_hpages += delta;
146 else {
147 ret = -ENOMEM;
148 goto unlock_ret;
149 }
150 }
151
152 /* minimum size accounting */
153 if (spool->min_hpages != -1 && spool->rsv_hpages) {
154 if (delta > spool->rsv_hpages) {
155 /*
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
158 */
159 ret = delta - spool->rsv_hpages;
160 spool->rsv_hpages = 0;
161 } else {
162 ret = 0; /* reserves already accounted for */
163 spool->rsv_hpages -= delta;
164 }
165 }
166
167 unlock_ret:
168 spin_unlock(&spool->lock);
169 return ret;
170 }
171
172 /*
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
177 */
178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179 long delta)
180 {
181 long ret = delta;
182
183 if (!spool)
184 return delta;
185
186 spin_lock(&spool->lock);
187
188 if (spool->max_hpages != -1) /* maximum size accounting */
189 spool->used_hpages -= delta;
190
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = 0;
195 else
196 ret = spool->rsv_hpages + delta - spool->min_hpages;
197
198 spool->rsv_hpages += delta;
199 if (spool->rsv_hpages > spool->min_hpages)
200 spool->rsv_hpages = spool->min_hpages;
201 }
202
203 /*
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
206 */
207 unlock_or_release_subpool(spool);
208
209 return ret;
210 }
211
212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213 {
214 return HUGETLBFS_SB(inode->i_sb)->spool;
215 }
216
217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218 {
219 return subpool_inode(file_inode(vma->vm_file));
220 }
221
222 /*
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
225 *
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
232 *
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237 *
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
240 */
241 struct file_region {
242 struct list_head link;
243 long from;
244 long to;
245 };
246
247 /*
248 * Add the huge page range represented by [f, t) to the reserve
249 * map. In the normal case, existing regions will be expanded
250 * to accommodate the specified range. Sufficient regions should
251 * exist for expansion due to the previous call to region_chg
252 * with the same range. However, it is possible that region_del
253 * could have been called after region_chg and modifed the map
254 * in such a way that no region exists to be expanded. In this
255 * case, pull a region descriptor from the cache associated with
256 * the map and use that for the new range.
257 *
258 * Return the number of new huge pages added to the map. This
259 * number is greater than or equal to zero.
260 */
261 static long region_add(struct resv_map *resv, long f, long t)
262 {
263 struct list_head *head = &resv->regions;
264 struct file_region *rg, *nrg, *trg;
265 long add = 0;
266
267 spin_lock(&resv->lock);
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (f <= rg->to)
271 break;
272
273 /*
274 * If no region exists which can be expanded to include the
275 * specified range, the list must have been modified by an
276 * interleving call to region_del(). Pull a region descriptor
277 * from the cache and use it for this range.
278 */
279 if (&rg->link == head || t < rg->from) {
280 VM_BUG_ON(resv->region_cache_count <= 0);
281
282 resv->region_cache_count--;
283 nrg = list_first_entry(&resv->region_cache, struct file_region,
284 link);
285 list_del(&nrg->link);
286
287 nrg->from = f;
288 nrg->to = t;
289 list_add(&nrg->link, rg->link.prev);
290
291 add += t - f;
292 goto out_locked;
293 }
294
295 /* Round our left edge to the current segment if it encloses us. */
296 if (f > rg->from)
297 f = rg->from;
298
299 /* Check for and consume any regions we now overlap with. */
300 nrg = rg;
301 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 if (&rg->link == head)
303 break;
304 if (rg->from > t)
305 break;
306
307 /* If this area reaches higher then extend our area to
308 * include it completely. If this is not the first area
309 * which we intend to reuse, free it. */
310 if (rg->to > t)
311 t = rg->to;
312 if (rg != nrg) {
313 /* Decrement return value by the deleted range.
314 * Another range will span this area so that by
315 * end of routine add will be >= zero
316 */
317 add -= (rg->to - rg->from);
318 list_del(&rg->link);
319 kfree(rg);
320 }
321 }
322
323 add += (nrg->from - f); /* Added to beginning of region */
324 nrg->from = f;
325 add += t - nrg->to; /* Added to end of region */
326 nrg->to = t;
327
328 out_locked:
329 resv->adds_in_progress--;
330 spin_unlock(&resv->lock);
331 VM_BUG_ON(add < 0);
332 return add;
333 }
334
335 /*
336 * Examine the existing reserve map and determine how many
337 * huge pages in the specified range [f, t) are NOT currently
338 * represented. This routine is called before a subsequent
339 * call to region_add that will actually modify the reserve
340 * map to add the specified range [f, t). region_chg does
341 * not change the number of huge pages represented by the
342 * map. However, if the existing regions in the map can not
343 * be expanded to represent the new range, a new file_region
344 * structure is added to the map as a placeholder. This is
345 * so that the subsequent region_add call will have all the
346 * regions it needs and will not fail.
347 *
348 * Upon entry, region_chg will also examine the cache of region descriptors
349 * associated with the map. If there are not enough descriptors cached, one
350 * will be allocated for the in progress add operation.
351 *
352 * Returns the number of huge pages that need to be added to the existing
353 * reservation map for the range [f, t). This number is greater or equal to
354 * zero. -ENOMEM is returned if a new file_region structure or cache entry
355 * is needed and can not be allocated.
356 */
357 static long region_chg(struct resv_map *resv, long f, long t)
358 {
359 struct list_head *head = &resv->regions;
360 struct file_region *rg, *nrg = NULL;
361 long chg = 0;
362
363 retry:
364 spin_lock(&resv->lock);
365 retry_locked:
366 resv->adds_in_progress++;
367
368 /*
369 * Check for sufficient descriptors in the cache to accommodate
370 * the number of in progress add operations.
371 */
372 if (resv->adds_in_progress > resv->region_cache_count) {
373 struct file_region *trg;
374
375 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 /* Must drop lock to allocate a new descriptor. */
377 resv->adds_in_progress--;
378 spin_unlock(&resv->lock);
379
380 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
381 if (!trg) {
382 kfree(nrg);
383 return -ENOMEM;
384 }
385
386 spin_lock(&resv->lock);
387 list_add(&trg->link, &resv->region_cache);
388 resv->region_cache_count++;
389 goto retry_locked;
390 }
391
392 /* Locate the region we are before or in. */
393 list_for_each_entry(rg, head, link)
394 if (f <= rg->to)
395 break;
396
397 /* If we are below the current region then a new region is required.
398 * Subtle, allocate a new region at the position but make it zero
399 * size such that we can guarantee to record the reservation. */
400 if (&rg->link == head || t < rg->from) {
401 if (!nrg) {
402 resv->adds_in_progress--;
403 spin_unlock(&resv->lock);
404 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 if (!nrg)
406 return -ENOMEM;
407
408 nrg->from = f;
409 nrg->to = f;
410 INIT_LIST_HEAD(&nrg->link);
411 goto retry;
412 }
413
414 list_add(&nrg->link, rg->link.prev);
415 chg = t - f;
416 goto out_nrg;
417 }
418
419 /* Round our left edge to the current segment if it encloses us. */
420 if (f > rg->from)
421 f = rg->from;
422 chg = t - f;
423
424 /* Check for and consume any regions we now overlap with. */
425 list_for_each_entry(rg, rg->link.prev, link) {
426 if (&rg->link == head)
427 break;
428 if (rg->from > t)
429 goto out;
430
431 /* We overlap with this area, if it extends further than
432 * us then we must extend ourselves. Account for its
433 * existing reservation. */
434 if (rg->to > t) {
435 chg += rg->to - t;
436 t = rg->to;
437 }
438 chg -= rg->to - rg->from;
439 }
440
441 out:
442 spin_unlock(&resv->lock);
443 /* We already know we raced and no longer need the new region */
444 kfree(nrg);
445 return chg;
446 out_nrg:
447 spin_unlock(&resv->lock);
448 return chg;
449 }
450
451 /*
452 * Abort the in progress add operation. The adds_in_progress field
453 * of the resv_map keeps track of the operations in progress between
454 * calls to region_chg and region_add. Operations are sometimes
455 * aborted after the call to region_chg. In such cases, region_abort
456 * is called to decrement the adds_in_progress counter.
457 *
458 * NOTE: The range arguments [f, t) are not needed or used in this
459 * routine. They are kept to make reading the calling code easier as
460 * arguments will match the associated region_chg call.
461 */
462 static void region_abort(struct resv_map *resv, long f, long t)
463 {
464 spin_lock(&resv->lock);
465 VM_BUG_ON(!resv->region_cache_count);
466 resv->adds_in_progress--;
467 spin_unlock(&resv->lock);
468 }
469
470 /*
471 * Delete the specified range [f, t) from the reserve map. If the
472 * t parameter is LONG_MAX, this indicates that ALL regions after f
473 * should be deleted. Locate the regions which intersect [f, t)
474 * and either trim, delete or split the existing regions.
475 *
476 * Returns the number of huge pages deleted from the reserve map.
477 * In the normal case, the return value is zero or more. In the
478 * case where a region must be split, a new region descriptor must
479 * be allocated. If the allocation fails, -ENOMEM will be returned.
480 * NOTE: If the parameter t == LONG_MAX, then we will never split
481 * a region and possibly return -ENOMEM. Callers specifying
482 * t == LONG_MAX do not need to check for -ENOMEM error.
483 */
484 static long region_del(struct resv_map *resv, long f, long t)
485 {
486 struct list_head *head = &resv->regions;
487 struct file_region *rg, *trg;
488 struct file_region *nrg = NULL;
489 long del = 0;
490
491 retry:
492 spin_lock(&resv->lock);
493 list_for_each_entry_safe(rg, trg, head, link) {
494 /*
495 * Skip regions before the range to be deleted. file_region
496 * ranges are normally of the form [from, to). However, there
497 * may be a "placeholder" entry in the map which is of the form
498 * (from, to) with from == to. Check for placeholder entries
499 * at the beginning of the range to be deleted.
500 */
501 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
502 continue;
503
504 if (rg->from >= t)
505 break;
506
507 if (f > rg->from && t < rg->to) { /* Must split region */
508 /*
509 * Check for an entry in the cache before dropping
510 * lock and attempting allocation.
511 */
512 if (!nrg &&
513 resv->region_cache_count > resv->adds_in_progress) {
514 nrg = list_first_entry(&resv->region_cache,
515 struct file_region,
516 link);
517 list_del(&nrg->link);
518 resv->region_cache_count--;
519 }
520
521 if (!nrg) {
522 spin_unlock(&resv->lock);
523 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 if (!nrg)
525 return -ENOMEM;
526 goto retry;
527 }
528
529 del += t - f;
530
531 /* New entry for end of split region */
532 nrg->from = t;
533 nrg->to = rg->to;
534 INIT_LIST_HEAD(&nrg->link);
535
536 /* Original entry is trimmed */
537 rg->to = f;
538
539 list_add(&nrg->link, &rg->link);
540 nrg = NULL;
541 break;
542 }
543
544 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 del += rg->to - rg->from;
546 list_del(&rg->link);
547 kfree(rg);
548 continue;
549 }
550
551 if (f <= rg->from) { /* Trim beginning of region */
552 del += t - rg->from;
553 rg->from = t;
554 } else { /* Trim end of region */
555 del += rg->to - f;
556 rg->to = f;
557 }
558 }
559
560 spin_unlock(&resv->lock);
561 kfree(nrg);
562 return del;
563 }
564
565 /*
566 * A rare out of memory error was encountered which prevented removal of
567 * the reserve map region for a page. The huge page itself was free'ed
568 * and removed from the page cache. This routine will adjust the subpool
569 * usage count, and the global reserve count if needed. By incrementing
570 * these counts, the reserve map entry which could not be deleted will
571 * appear as a "reserved" entry instead of simply dangling with incorrect
572 * counts.
573 */
574 void hugetlb_fix_reserve_counts(struct inode *inode)
575 {
576 struct hugepage_subpool *spool = subpool_inode(inode);
577 long rsv_adjust;
578
579 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
580 if (rsv_adjust) {
581 struct hstate *h = hstate_inode(inode);
582
583 hugetlb_acct_memory(h, 1);
584 }
585 }
586
587 /*
588 * Count and return the number of huge pages in the reserve map
589 * that intersect with the range [f, t).
590 */
591 static long region_count(struct resv_map *resv, long f, long t)
592 {
593 struct list_head *head = &resv->regions;
594 struct file_region *rg;
595 long chg = 0;
596
597 spin_lock(&resv->lock);
598 /* Locate each segment we overlap with, and count that overlap. */
599 list_for_each_entry(rg, head, link) {
600 long seg_from;
601 long seg_to;
602
603 if (rg->to <= f)
604 continue;
605 if (rg->from >= t)
606 break;
607
608 seg_from = max(rg->from, f);
609 seg_to = min(rg->to, t);
610
611 chg += seg_to - seg_from;
612 }
613 spin_unlock(&resv->lock);
614
615 return chg;
616 }
617
618 /*
619 * Convert the address within this vma to the page offset within
620 * the mapping, in pagecache page units; huge pages here.
621 */
622 static pgoff_t vma_hugecache_offset(struct hstate *h,
623 struct vm_area_struct *vma, unsigned long address)
624 {
625 return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 (vma->vm_pgoff >> huge_page_order(h));
627 }
628
629 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 unsigned long address)
631 {
632 return vma_hugecache_offset(hstate_vma(vma), vma, address);
633 }
634 EXPORT_SYMBOL_GPL(linear_hugepage_index);
635
636 /*
637 * Return the size of the pages allocated when backing a VMA. In the majority
638 * cases this will be same size as used by the page table entries.
639 */
640 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641 {
642 if (vma->vm_ops && vma->vm_ops->pagesize)
643 return vma->vm_ops->pagesize(vma);
644 return PAGE_SIZE;
645 }
646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
647
648 /*
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
651 * architectures where it differs, an architecture-specific 'strong'
652 * version of this symbol is required.
653 */
654 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
655 {
656 return vma_kernel_pagesize(vma);
657 }
658
659 /*
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
662 * alignment.
663 */
664 #define HPAGE_RESV_OWNER (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667
668 /*
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
672 *
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
677 *
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
686 */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689 return (unsigned long)vma->vm_private_data;
690 }
691
692 static void set_vma_private_data(struct vm_area_struct *vma,
693 unsigned long value)
694 {
695 vma->vm_private_data = (void *)value;
696 }
697
698 struct resv_map *resv_map_alloc(void)
699 {
700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703 if (!resv_map || !rg) {
704 kfree(resv_map);
705 kfree(rg);
706 return NULL;
707 }
708
709 kref_init(&resv_map->refs);
710 spin_lock_init(&resv_map->lock);
711 INIT_LIST_HEAD(&resv_map->regions);
712
713 resv_map->adds_in_progress = 0;
714
715 INIT_LIST_HEAD(&resv_map->region_cache);
716 list_add(&rg->link, &resv_map->region_cache);
717 resv_map->region_cache_count = 1;
718
719 return resv_map;
720 }
721
722 void resv_map_release(struct kref *ref)
723 {
724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 struct list_head *head = &resv_map->region_cache;
726 struct file_region *rg, *trg;
727
728 /* Clear out any active regions before we release the map. */
729 region_del(resv_map, 0, LONG_MAX);
730
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg, trg, head, link) {
733 list_del(&rg->link);
734 kfree(rg);
735 }
736
737 VM_BUG_ON(resv_map->adds_in_progress);
738
739 kfree(resv_map);
740 }
741
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744 /*
745 * At inode evict time, i_mapping may not point to the original
746 * address space within the inode. This original address space
747 * contains the pointer to the resv_map. So, always use the
748 * address space embedded within the inode.
749 * The VERY common case is inode->mapping == &inode->i_data but,
750 * this may not be true for device special inodes.
751 */
752 return (struct resv_map *)(&inode->i_data)->private_data;
753 }
754
755 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
756 {
757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
758 if (vma->vm_flags & VM_MAYSHARE) {
759 struct address_space *mapping = vma->vm_file->f_mapping;
760 struct inode *inode = mapping->host;
761
762 return inode_resv_map(inode);
763
764 } else {
765 return (struct resv_map *)(get_vma_private_data(vma) &
766 ~HPAGE_RESV_MASK);
767 }
768 }
769
770 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
771 {
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775 set_vma_private_data(vma, (get_vma_private_data(vma) &
776 HPAGE_RESV_MASK) | (unsigned long)map);
777 }
778
779 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780 {
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
783
784 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
785 }
786
787 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788 {
789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790
791 return (get_vma_private_data(vma) & flag) != 0;
792 }
793
794 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
795 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796 {
797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
798 if (!(vma->vm_flags & VM_MAYSHARE))
799 vma->vm_private_data = (void *)0;
800 }
801
802 /* Returns true if the VMA has associated reserve pages */
803 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
804 {
805 if (vma->vm_flags & VM_NORESERVE) {
806 /*
807 * This address is already reserved by other process(chg == 0),
808 * so, we should decrement reserved count. Without decrementing,
809 * reserve count remains after releasing inode, because this
810 * allocated page will go into page cache and is regarded as
811 * coming from reserved pool in releasing step. Currently, we
812 * don't have any other solution to deal with this situation
813 * properly, so add work-around here.
814 */
815 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816 return true;
817 else
818 return false;
819 }
820
821 /* Shared mappings always use reserves */
822 if (vma->vm_flags & VM_MAYSHARE) {
823 /*
824 * We know VM_NORESERVE is not set. Therefore, there SHOULD
825 * be a region map for all pages. The only situation where
826 * there is no region map is if a hole was punched via
827 * fallocate. In this case, there really are no reverves to
828 * use. This situation is indicated if chg != 0.
829 */
830 if (chg)
831 return false;
832 else
833 return true;
834 }
835
836 /*
837 * Only the process that called mmap() has reserves for
838 * private mappings.
839 */
840 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 /*
842 * Like the shared case above, a hole punch or truncate
843 * could have been performed on the private mapping.
844 * Examine the value of chg to determine if reserves
845 * actually exist or were previously consumed.
846 * Very Subtle - The value of chg comes from a previous
847 * call to vma_needs_reserves(). The reserve map for
848 * private mappings has different (opposite) semantics
849 * than that of shared mappings. vma_needs_reserves()
850 * has already taken this difference in semantics into
851 * account. Therefore, the meaning of chg is the same
852 * as in the shared case above. Code could easily be
853 * combined, but keeping it separate draws attention to
854 * subtle differences.
855 */
856 if (chg)
857 return false;
858 else
859 return true;
860 }
861
862 return false;
863 }
864
865 static void enqueue_huge_page(struct hstate *h, struct page *page)
866 {
867 int nid = page_to_nid(page);
868 list_move(&page->lru, &h->hugepage_freelists[nid]);
869 h->free_huge_pages++;
870 h->free_huge_pages_node[nid]++;
871 }
872
873 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
874 {
875 struct page *page;
876
877 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
878 if (!PageHWPoison(page))
879 break;
880 /*
881 * if 'non-isolated free hugepage' not found on the list,
882 * the allocation fails.
883 */
884 if (&h->hugepage_freelists[nid] == &page->lru)
885 return NULL;
886 list_move(&page->lru, &h->hugepage_activelist);
887 set_page_refcounted(page);
888 h->free_huge_pages--;
889 h->free_huge_pages_node[nid]--;
890 return page;
891 }
892
893 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 nodemask_t *nmask)
895 {
896 unsigned int cpuset_mems_cookie;
897 struct zonelist *zonelist;
898 struct zone *zone;
899 struct zoneref *z;
900 int node = NUMA_NO_NODE;
901
902 zonelist = node_zonelist(nid, gfp_mask);
903
904 retry_cpuset:
905 cpuset_mems_cookie = read_mems_allowed_begin();
906 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 struct page *page;
908
909 if (!cpuset_zone_allowed(zone, gfp_mask))
910 continue;
911 /*
912 * no need to ask again on the same node. Pool is node rather than
913 * zone aware
914 */
915 if (zone_to_nid(zone) == node)
916 continue;
917 node = zone_to_nid(zone);
918
919 page = dequeue_huge_page_node_exact(h, node);
920 if (page)
921 return page;
922 }
923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 goto retry_cpuset;
925
926 return NULL;
927 }
928
929 /* Movability of hugepages depends on migration support. */
930 static inline gfp_t htlb_alloc_mask(struct hstate *h)
931 {
932 if (hugepage_movable_supported(h))
933 return GFP_HIGHUSER_MOVABLE;
934 else
935 return GFP_HIGHUSER;
936 }
937
938 static struct page *dequeue_huge_page_vma(struct hstate *h,
939 struct vm_area_struct *vma,
940 unsigned long address, int avoid_reserve,
941 long chg)
942 {
943 struct page *page;
944 struct mempolicy *mpol;
945 gfp_t gfp_mask;
946 nodemask_t *nodemask;
947 int nid;
948
949 /*
950 * A child process with MAP_PRIVATE mappings created by their parent
951 * have no page reserves. This check ensures that reservations are
952 * not "stolen". The child may still get SIGKILLed
953 */
954 if (!vma_has_reserves(vma, chg) &&
955 h->free_huge_pages - h->resv_huge_pages == 0)
956 goto err;
957
958 /* If reserves cannot be used, ensure enough pages are in the pool */
959 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
960 goto err;
961
962 gfp_mask = htlb_alloc_mask(h);
963 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
964 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 SetPagePrivate(page);
967 h->resv_huge_pages--;
968 }
969
970 mpol_cond_put(mpol);
971 return page;
972
973 err:
974 return NULL;
975 }
976
977 /*
978 * common helper functions for hstate_next_node_to_{alloc|free}.
979 * We may have allocated or freed a huge page based on a different
980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981 * be outside of *nodes_allowed. Ensure that we use an allowed
982 * node for alloc or free.
983 */
984 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985 {
986 nid = next_node_in(nid, *nodes_allowed);
987 VM_BUG_ON(nid >= MAX_NUMNODES);
988
989 return nid;
990 }
991
992 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993 {
994 if (!node_isset(nid, *nodes_allowed))
995 nid = next_node_allowed(nid, nodes_allowed);
996 return nid;
997 }
998
999 /*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005 static int hstate_next_node_to_alloc(struct hstate *h,
1006 nodemask_t *nodes_allowed)
1007 {
1008 int nid;
1009
1010 VM_BUG_ON(!nodes_allowed);
1011
1012 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015 return nid;
1016 }
1017
1018 /*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page. Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025 {
1026 int nid;
1027
1028 VM_BUG_ON(!nodes_allowed);
1029
1030 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033 return nid;
1034 }
1035
1036 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1037 for (nr_nodes = nodes_weight(*mask); \
1038 nr_nodes > 0 && \
1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1040 nr_nodes--)
1041
1042 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1043 for (nr_nodes = nodes_weight(*mask); \
1044 nr_nodes > 0 && \
1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1046 nr_nodes--)
1047
1048 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049 static void destroy_compound_gigantic_page(struct page *page,
1050 unsigned int order)
1051 {
1052 int i;
1053 int nr_pages = 1 << order;
1054 struct page *p = page + 1;
1055
1056 atomic_set(compound_mapcount_ptr(page), 0);
1057 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058 clear_compound_head(p);
1059 set_page_refcounted(p);
1060 }
1061
1062 set_compound_order(page, 0);
1063 __ClearPageHead(page);
1064 }
1065
1066 static void free_gigantic_page(struct page *page, unsigned int order)
1067 {
1068 free_contig_range(page_to_pfn(page), 1 << order);
1069 }
1070
1071 #ifdef CONFIG_CONTIG_ALLOC
1072 static int __alloc_gigantic_page(unsigned long start_pfn,
1073 unsigned long nr_pages, gfp_t gfp_mask)
1074 {
1075 unsigned long end_pfn = start_pfn + nr_pages;
1076 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077 gfp_mask);
1078 }
1079
1080 static bool pfn_range_valid_gigantic(struct zone *z,
1081 unsigned long start_pfn, unsigned long nr_pages)
1082 {
1083 unsigned long i, end_pfn = start_pfn + nr_pages;
1084 struct page *page;
1085
1086 for (i = start_pfn; i < end_pfn; i++) {
1087 if (!pfn_valid(i))
1088 return false;
1089
1090 page = pfn_to_page(i);
1091
1092 if (page_zone(page) != z)
1093 return false;
1094
1095 if (PageReserved(page))
1096 return false;
1097
1098 if (page_count(page) > 0)
1099 return false;
1100
1101 if (PageHuge(page))
1102 return false;
1103 }
1104
1105 return true;
1106 }
1107
1108 static bool zone_spans_last_pfn(const struct zone *zone,
1109 unsigned long start_pfn, unsigned long nr_pages)
1110 {
1111 unsigned long last_pfn = start_pfn + nr_pages - 1;
1112 return zone_spans_pfn(zone, last_pfn);
1113 }
1114
1115 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1116 int nid, nodemask_t *nodemask)
1117 {
1118 unsigned int order = huge_page_order(h);
1119 unsigned long nr_pages = 1 << order;
1120 unsigned long ret, pfn, flags;
1121 struct zonelist *zonelist;
1122 struct zone *zone;
1123 struct zoneref *z;
1124
1125 zonelist = node_zonelist(nid, gfp_mask);
1126 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1127 spin_lock_irqsave(&zone->lock, flags);
1128
1129 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1130 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1131 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1132 /*
1133 * We release the zone lock here because
1134 * alloc_contig_range() will also lock the zone
1135 * at some point. If there's an allocation
1136 * spinning on this lock, it may win the race
1137 * and cause alloc_contig_range() to fail...
1138 */
1139 spin_unlock_irqrestore(&zone->lock, flags);
1140 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1141 if (!ret)
1142 return pfn_to_page(pfn);
1143 spin_lock_irqsave(&zone->lock, flags);
1144 }
1145 pfn += nr_pages;
1146 }
1147
1148 spin_unlock_irqrestore(&zone->lock, flags);
1149 }
1150
1151 return NULL;
1152 }
1153
1154 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1155 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1156 #else /* !CONFIG_CONTIG_ALLOC */
1157 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1158 int nid, nodemask_t *nodemask)
1159 {
1160 return NULL;
1161 }
1162 #endif /* CONFIG_CONTIG_ALLOC */
1163
1164 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1165 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1166 int nid, nodemask_t *nodemask)
1167 {
1168 return NULL;
1169 }
1170 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1171 static inline void destroy_compound_gigantic_page(struct page *page,
1172 unsigned int order) { }
1173 #endif
1174
1175 static void update_and_free_page(struct hstate *h, struct page *page)
1176 {
1177 int i;
1178
1179 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1180 return;
1181
1182 h->nr_huge_pages--;
1183 h->nr_huge_pages_node[page_to_nid(page)]--;
1184 for (i = 0; i < pages_per_huge_page(h); i++) {
1185 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1186 1 << PG_referenced | 1 << PG_dirty |
1187 1 << PG_active | 1 << PG_private |
1188 1 << PG_writeback);
1189 }
1190 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1191 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1192 set_page_refcounted(page);
1193 if (hstate_is_gigantic(h)) {
1194 destroy_compound_gigantic_page(page, huge_page_order(h));
1195 free_gigantic_page(page, huge_page_order(h));
1196 } else {
1197 __free_pages(page, huge_page_order(h));
1198 }
1199 }
1200
1201 struct hstate *size_to_hstate(unsigned long size)
1202 {
1203 struct hstate *h;
1204
1205 for_each_hstate(h) {
1206 if (huge_page_size(h) == size)
1207 return h;
1208 }
1209 return NULL;
1210 }
1211
1212 /*
1213 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214 * to hstate->hugepage_activelist.)
1215 *
1216 * This function can be called for tail pages, but never returns true for them.
1217 */
1218 bool page_huge_active(struct page *page)
1219 {
1220 VM_BUG_ON_PAGE(!PageHuge(page), page);
1221 return PageHead(page) && PagePrivate(&page[1]);
1222 }
1223
1224 /* never called for tail page */
1225 static void set_page_huge_active(struct page *page)
1226 {
1227 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228 SetPagePrivate(&page[1]);
1229 }
1230
1231 static void clear_page_huge_active(struct page *page)
1232 {
1233 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1234 ClearPagePrivate(&page[1]);
1235 }
1236
1237 /*
1238 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1239 * code
1240 */
1241 static inline bool PageHugeTemporary(struct page *page)
1242 {
1243 if (!PageHuge(page))
1244 return false;
1245
1246 return (unsigned long)page[2].mapping == -1U;
1247 }
1248
1249 static inline void SetPageHugeTemporary(struct page *page)
1250 {
1251 page[2].mapping = (void *)-1U;
1252 }
1253
1254 static inline void ClearPageHugeTemporary(struct page *page)
1255 {
1256 page[2].mapping = NULL;
1257 }
1258
1259 void free_huge_page(struct page *page)
1260 {
1261 /*
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1264 */
1265 struct hstate *h = page_hstate(page);
1266 int nid = page_to_nid(page);
1267 struct hugepage_subpool *spool =
1268 (struct hugepage_subpool *)page_private(page);
1269 bool restore_reserve;
1270
1271 VM_BUG_ON_PAGE(page_count(page), page);
1272 VM_BUG_ON_PAGE(page_mapcount(page), page);
1273
1274 set_page_private(page, 0);
1275 page->mapping = NULL;
1276 restore_reserve = PagePrivate(page);
1277 ClearPagePrivate(page);
1278
1279 /*
1280 * If PagePrivate() was set on page, page allocation consumed a
1281 * reservation. If the page was associated with a subpool, there
1282 * would have been a page reserved in the subpool before allocation
1283 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1284 * reservtion, do not call hugepage_subpool_put_pages() as this will
1285 * remove the reserved page from the subpool.
1286 */
1287 if (!restore_reserve) {
1288 /*
1289 * A return code of zero implies that the subpool will be
1290 * under its minimum size if the reservation is not restored
1291 * after page is free. Therefore, force restore_reserve
1292 * operation.
1293 */
1294 if (hugepage_subpool_put_pages(spool, 1) == 0)
1295 restore_reserve = true;
1296 }
1297
1298 spin_lock(&hugetlb_lock);
1299 clear_page_huge_active(page);
1300 hugetlb_cgroup_uncharge_page(hstate_index(h),
1301 pages_per_huge_page(h), page);
1302 if (restore_reserve)
1303 h->resv_huge_pages++;
1304
1305 if (PageHugeTemporary(page)) {
1306 list_del(&page->lru);
1307 ClearPageHugeTemporary(page);
1308 update_and_free_page(h, page);
1309 } else if (h->surplus_huge_pages_node[nid]) {
1310 /* remove the page from active list */
1311 list_del(&page->lru);
1312 update_and_free_page(h, page);
1313 h->surplus_huge_pages--;
1314 h->surplus_huge_pages_node[nid]--;
1315 } else {
1316 arch_clear_hugepage_flags(page);
1317 enqueue_huge_page(h, page);
1318 }
1319 spin_unlock(&hugetlb_lock);
1320 }
1321
1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1323 {
1324 INIT_LIST_HEAD(&page->lru);
1325 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1326 spin_lock(&hugetlb_lock);
1327 set_hugetlb_cgroup(page, NULL);
1328 h->nr_huge_pages++;
1329 h->nr_huge_pages_node[nid]++;
1330 spin_unlock(&hugetlb_lock);
1331 }
1332
1333 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1334 {
1335 int i;
1336 int nr_pages = 1 << order;
1337 struct page *p = page + 1;
1338
1339 /* we rely on prep_new_huge_page to set the destructor */
1340 set_compound_order(page, order);
1341 __ClearPageReserved(page);
1342 __SetPageHead(page);
1343 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1344 /*
1345 * For gigantic hugepages allocated through bootmem at
1346 * boot, it's safer to be consistent with the not-gigantic
1347 * hugepages and clear the PG_reserved bit from all tail pages
1348 * too. Otherwse drivers using get_user_pages() to access tail
1349 * pages may get the reference counting wrong if they see
1350 * PG_reserved set on a tail page (despite the head page not
1351 * having PG_reserved set). Enforcing this consistency between
1352 * head and tail pages allows drivers to optimize away a check
1353 * on the head page when they need know if put_page() is needed
1354 * after get_user_pages().
1355 */
1356 __ClearPageReserved(p);
1357 set_page_count(p, 0);
1358 set_compound_head(p, page);
1359 }
1360 atomic_set(compound_mapcount_ptr(page), -1);
1361 }
1362
1363 /*
1364 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1365 * transparent huge pages. See the PageTransHuge() documentation for more
1366 * details.
1367 */
1368 int PageHuge(struct page *page)
1369 {
1370 if (!PageCompound(page))
1371 return 0;
1372
1373 page = compound_head(page);
1374 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1375 }
1376 EXPORT_SYMBOL_GPL(PageHuge);
1377
1378 /*
1379 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1380 * normal or transparent huge pages.
1381 */
1382 int PageHeadHuge(struct page *page_head)
1383 {
1384 if (!PageHead(page_head))
1385 return 0;
1386
1387 return get_compound_page_dtor(page_head) == free_huge_page;
1388 }
1389
1390 pgoff_t __basepage_index(struct page *page)
1391 {
1392 struct page *page_head = compound_head(page);
1393 pgoff_t index = page_index(page_head);
1394 unsigned long compound_idx;
1395
1396 if (!PageHuge(page_head))
1397 return page_index(page);
1398
1399 if (compound_order(page_head) >= MAX_ORDER)
1400 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1401 else
1402 compound_idx = page - page_head;
1403
1404 return (index << compound_order(page_head)) + compound_idx;
1405 }
1406
1407 static struct page *alloc_buddy_huge_page(struct hstate *h,
1408 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1409 {
1410 int order = huge_page_order(h);
1411 struct page *page;
1412
1413 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1414 if (nid == NUMA_NO_NODE)
1415 nid = numa_mem_id();
1416 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1417 if (page)
1418 __count_vm_event(HTLB_BUDDY_PGALLOC);
1419 else
1420 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1421
1422 return page;
1423 }
1424
1425 /*
1426 * Common helper to allocate a fresh hugetlb page. All specific allocators
1427 * should use this function to get new hugetlb pages
1428 */
1429 static struct page *alloc_fresh_huge_page(struct hstate *h,
1430 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1431 {
1432 struct page *page;
1433
1434 if (hstate_is_gigantic(h))
1435 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1436 else
1437 page = alloc_buddy_huge_page(h, gfp_mask,
1438 nid, nmask);
1439 if (!page)
1440 return NULL;
1441
1442 if (hstate_is_gigantic(h))
1443 prep_compound_gigantic_page(page, huge_page_order(h));
1444 prep_new_huge_page(h, page, page_to_nid(page));
1445
1446 return page;
1447 }
1448
1449 /*
1450 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1451 * manner.
1452 */
1453 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1454 {
1455 struct page *page;
1456 int nr_nodes, node;
1457 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1458
1459 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1460 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1461 if (page)
1462 break;
1463 }
1464
1465 if (!page)
1466 return 0;
1467
1468 put_page(page); /* free it into the hugepage allocator */
1469
1470 return 1;
1471 }
1472
1473 /*
1474 * Free huge page from pool from next node to free.
1475 * Attempt to keep persistent huge pages more or less
1476 * balanced over allowed nodes.
1477 * Called with hugetlb_lock locked.
1478 */
1479 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1480 bool acct_surplus)
1481 {
1482 int nr_nodes, node;
1483 int ret = 0;
1484
1485 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1486 /*
1487 * If we're returning unused surplus pages, only examine
1488 * nodes with surplus pages.
1489 */
1490 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1491 !list_empty(&h->hugepage_freelists[node])) {
1492 struct page *page =
1493 list_entry(h->hugepage_freelists[node].next,
1494 struct page, lru);
1495 list_del(&page->lru);
1496 h->free_huge_pages--;
1497 h->free_huge_pages_node[node]--;
1498 if (acct_surplus) {
1499 h->surplus_huge_pages--;
1500 h->surplus_huge_pages_node[node]--;
1501 }
1502 update_and_free_page(h, page);
1503 ret = 1;
1504 break;
1505 }
1506 }
1507
1508 return ret;
1509 }
1510
1511 /*
1512 * Dissolve a given free hugepage into free buddy pages. This function does
1513 * nothing for in-use hugepages and non-hugepages.
1514 * This function returns values like below:
1515 *
1516 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1517 * (allocated or reserved.)
1518 * 0: successfully dissolved free hugepages or the page is not a
1519 * hugepage (considered as already dissolved)
1520 */
1521 int dissolve_free_huge_page(struct page *page)
1522 {
1523 int rc = -EBUSY;
1524
1525 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1526 if (!PageHuge(page))
1527 return 0;
1528
1529 spin_lock(&hugetlb_lock);
1530 if (!PageHuge(page)) {
1531 rc = 0;
1532 goto out;
1533 }
1534
1535 if (!page_count(page)) {
1536 struct page *head = compound_head(page);
1537 struct hstate *h = page_hstate(head);
1538 int nid = page_to_nid(head);
1539 if (h->free_huge_pages - h->resv_huge_pages == 0)
1540 goto out;
1541 /*
1542 * Move PageHWPoison flag from head page to the raw error page,
1543 * which makes any subpages rather than the error page reusable.
1544 */
1545 if (PageHWPoison(head) && page != head) {
1546 SetPageHWPoison(page);
1547 ClearPageHWPoison(head);
1548 }
1549 list_del(&head->lru);
1550 h->free_huge_pages--;
1551 h->free_huge_pages_node[nid]--;
1552 h->max_huge_pages--;
1553 update_and_free_page(h, head);
1554 rc = 0;
1555 }
1556 out:
1557 spin_unlock(&hugetlb_lock);
1558 return rc;
1559 }
1560
1561 /*
1562 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1563 * make specified memory blocks removable from the system.
1564 * Note that this will dissolve a free gigantic hugepage completely, if any
1565 * part of it lies within the given range.
1566 * Also note that if dissolve_free_huge_page() returns with an error, all
1567 * free hugepages that were dissolved before that error are lost.
1568 */
1569 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1570 {
1571 unsigned long pfn;
1572 struct page *page;
1573 int rc = 0;
1574
1575 if (!hugepages_supported())
1576 return rc;
1577
1578 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1579 page = pfn_to_page(pfn);
1580 rc = dissolve_free_huge_page(page);
1581 if (rc)
1582 break;
1583 }
1584
1585 return rc;
1586 }
1587
1588 /*
1589 * Allocates a fresh surplus page from the page allocator.
1590 */
1591 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1592 int nid, nodemask_t *nmask)
1593 {
1594 struct page *page = NULL;
1595
1596 if (hstate_is_gigantic(h))
1597 return NULL;
1598
1599 spin_lock(&hugetlb_lock);
1600 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1601 goto out_unlock;
1602 spin_unlock(&hugetlb_lock);
1603
1604 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1605 if (!page)
1606 return NULL;
1607
1608 spin_lock(&hugetlb_lock);
1609 /*
1610 * We could have raced with the pool size change.
1611 * Double check that and simply deallocate the new page
1612 * if we would end up overcommiting the surpluses. Abuse
1613 * temporary page to workaround the nasty free_huge_page
1614 * codeflow
1615 */
1616 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1617 SetPageHugeTemporary(page);
1618 spin_unlock(&hugetlb_lock);
1619 put_page(page);
1620 return NULL;
1621 } else {
1622 h->surplus_huge_pages++;
1623 h->surplus_huge_pages_node[page_to_nid(page)]++;
1624 }
1625
1626 out_unlock:
1627 spin_unlock(&hugetlb_lock);
1628
1629 return page;
1630 }
1631
1632 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1633 int nid, nodemask_t *nmask)
1634 {
1635 struct page *page;
1636
1637 if (hstate_is_gigantic(h))
1638 return NULL;
1639
1640 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1641 if (!page)
1642 return NULL;
1643
1644 /*
1645 * We do not account these pages as surplus because they are only
1646 * temporary and will be released properly on the last reference
1647 */
1648 SetPageHugeTemporary(page);
1649
1650 return page;
1651 }
1652
1653 /*
1654 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1655 */
1656 static
1657 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1658 struct vm_area_struct *vma, unsigned long addr)
1659 {
1660 struct page *page;
1661 struct mempolicy *mpol;
1662 gfp_t gfp_mask = htlb_alloc_mask(h);
1663 int nid;
1664 nodemask_t *nodemask;
1665
1666 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1667 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1668 mpol_cond_put(mpol);
1669
1670 return page;
1671 }
1672
1673 /* page migration callback function */
1674 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1675 {
1676 gfp_t gfp_mask = htlb_alloc_mask(h);
1677 struct page *page = NULL;
1678
1679 if (nid != NUMA_NO_NODE)
1680 gfp_mask |= __GFP_THISNODE;
1681
1682 spin_lock(&hugetlb_lock);
1683 if (h->free_huge_pages - h->resv_huge_pages > 0)
1684 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1685 spin_unlock(&hugetlb_lock);
1686
1687 if (!page)
1688 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1689
1690 return page;
1691 }
1692
1693 /* page migration callback function */
1694 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1695 nodemask_t *nmask)
1696 {
1697 gfp_t gfp_mask = htlb_alloc_mask(h);
1698
1699 spin_lock(&hugetlb_lock);
1700 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1701 struct page *page;
1702
1703 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1704 if (page) {
1705 spin_unlock(&hugetlb_lock);
1706 return page;
1707 }
1708 }
1709 spin_unlock(&hugetlb_lock);
1710
1711 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1712 }
1713
1714 /* mempolicy aware migration callback */
1715 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1716 unsigned long address)
1717 {
1718 struct mempolicy *mpol;
1719 nodemask_t *nodemask;
1720 struct page *page;
1721 gfp_t gfp_mask;
1722 int node;
1723
1724 gfp_mask = htlb_alloc_mask(h);
1725 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1726 page = alloc_huge_page_nodemask(h, node, nodemask);
1727 mpol_cond_put(mpol);
1728
1729 return page;
1730 }
1731
1732 /*
1733 * Increase the hugetlb pool such that it can accommodate a reservation
1734 * of size 'delta'.
1735 */
1736 static int gather_surplus_pages(struct hstate *h, int delta)
1737 {
1738 struct list_head surplus_list;
1739 struct page *page, *tmp;
1740 int ret, i;
1741 int needed, allocated;
1742 bool alloc_ok = true;
1743
1744 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1745 if (needed <= 0) {
1746 h->resv_huge_pages += delta;
1747 return 0;
1748 }
1749
1750 allocated = 0;
1751 INIT_LIST_HEAD(&surplus_list);
1752
1753 ret = -ENOMEM;
1754 retry:
1755 spin_unlock(&hugetlb_lock);
1756 for (i = 0; i < needed; i++) {
1757 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1758 NUMA_NO_NODE, NULL);
1759 if (!page) {
1760 alloc_ok = false;
1761 break;
1762 }
1763 list_add(&page->lru, &surplus_list);
1764 cond_resched();
1765 }
1766 allocated += i;
1767
1768 /*
1769 * After retaking hugetlb_lock, we need to recalculate 'needed'
1770 * because either resv_huge_pages or free_huge_pages may have changed.
1771 */
1772 spin_lock(&hugetlb_lock);
1773 needed = (h->resv_huge_pages + delta) -
1774 (h->free_huge_pages + allocated);
1775 if (needed > 0) {
1776 if (alloc_ok)
1777 goto retry;
1778 /*
1779 * We were not able to allocate enough pages to
1780 * satisfy the entire reservation so we free what
1781 * we've allocated so far.
1782 */
1783 goto free;
1784 }
1785 /*
1786 * The surplus_list now contains _at_least_ the number of extra pages
1787 * needed to accommodate the reservation. Add the appropriate number
1788 * of pages to the hugetlb pool and free the extras back to the buddy
1789 * allocator. Commit the entire reservation here to prevent another
1790 * process from stealing the pages as they are added to the pool but
1791 * before they are reserved.
1792 */
1793 needed += allocated;
1794 h->resv_huge_pages += delta;
1795 ret = 0;
1796
1797 /* Free the needed pages to the hugetlb pool */
1798 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1799 if ((--needed) < 0)
1800 break;
1801 /*
1802 * This page is now managed by the hugetlb allocator and has
1803 * no users -- drop the buddy allocator's reference.
1804 */
1805 put_page_testzero(page);
1806 VM_BUG_ON_PAGE(page_count(page), page);
1807 enqueue_huge_page(h, page);
1808 }
1809 free:
1810 spin_unlock(&hugetlb_lock);
1811
1812 /* Free unnecessary surplus pages to the buddy allocator */
1813 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1814 put_page(page);
1815 spin_lock(&hugetlb_lock);
1816
1817 return ret;
1818 }
1819
1820 /*
1821 * This routine has two main purposes:
1822 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1823 * in unused_resv_pages. This corresponds to the prior adjustments made
1824 * to the associated reservation map.
1825 * 2) Free any unused surplus pages that may have been allocated to satisfy
1826 * the reservation. As many as unused_resv_pages may be freed.
1827 *
1828 * Called with hugetlb_lock held. However, the lock could be dropped (and
1829 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1830 * we must make sure nobody else can claim pages we are in the process of
1831 * freeing. Do this by ensuring resv_huge_page always is greater than the
1832 * number of huge pages we plan to free when dropping the lock.
1833 */
1834 static void return_unused_surplus_pages(struct hstate *h,
1835 unsigned long unused_resv_pages)
1836 {
1837 unsigned long nr_pages;
1838
1839 /* Cannot return gigantic pages currently */
1840 if (hstate_is_gigantic(h))
1841 goto out;
1842
1843 /*
1844 * Part (or even all) of the reservation could have been backed
1845 * by pre-allocated pages. Only free surplus pages.
1846 */
1847 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1848
1849 /*
1850 * We want to release as many surplus pages as possible, spread
1851 * evenly across all nodes with memory. Iterate across these nodes
1852 * until we can no longer free unreserved surplus pages. This occurs
1853 * when the nodes with surplus pages have no free pages.
1854 * free_pool_huge_page() will balance the the freed pages across the
1855 * on-line nodes with memory and will handle the hstate accounting.
1856 *
1857 * Note that we decrement resv_huge_pages as we free the pages. If
1858 * we drop the lock, resv_huge_pages will still be sufficiently large
1859 * to cover subsequent pages we may free.
1860 */
1861 while (nr_pages--) {
1862 h->resv_huge_pages--;
1863 unused_resv_pages--;
1864 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1865 goto out;
1866 cond_resched_lock(&hugetlb_lock);
1867 }
1868
1869 out:
1870 /* Fully uncommit the reservation */
1871 h->resv_huge_pages -= unused_resv_pages;
1872 }
1873
1874
1875 /*
1876 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1877 * are used by the huge page allocation routines to manage reservations.
1878 *
1879 * vma_needs_reservation is called to determine if the huge page at addr
1880 * within the vma has an associated reservation. If a reservation is
1881 * needed, the value 1 is returned. The caller is then responsible for
1882 * managing the global reservation and subpool usage counts. After
1883 * the huge page has been allocated, vma_commit_reservation is called
1884 * to add the page to the reservation map. If the page allocation fails,
1885 * the reservation must be ended instead of committed. vma_end_reservation
1886 * is called in such cases.
1887 *
1888 * In the normal case, vma_commit_reservation returns the same value
1889 * as the preceding vma_needs_reservation call. The only time this
1890 * is not the case is if a reserve map was changed between calls. It
1891 * is the responsibility of the caller to notice the difference and
1892 * take appropriate action.
1893 *
1894 * vma_add_reservation is used in error paths where a reservation must
1895 * be restored when a newly allocated huge page must be freed. It is
1896 * to be called after calling vma_needs_reservation to determine if a
1897 * reservation exists.
1898 */
1899 enum vma_resv_mode {
1900 VMA_NEEDS_RESV,
1901 VMA_COMMIT_RESV,
1902 VMA_END_RESV,
1903 VMA_ADD_RESV,
1904 };
1905 static long __vma_reservation_common(struct hstate *h,
1906 struct vm_area_struct *vma, unsigned long addr,
1907 enum vma_resv_mode mode)
1908 {
1909 struct resv_map *resv;
1910 pgoff_t idx;
1911 long ret;
1912
1913 resv = vma_resv_map(vma);
1914 if (!resv)
1915 return 1;
1916
1917 idx = vma_hugecache_offset(h, vma, addr);
1918 switch (mode) {
1919 case VMA_NEEDS_RESV:
1920 ret = region_chg(resv, idx, idx + 1);
1921 break;
1922 case VMA_COMMIT_RESV:
1923 ret = region_add(resv, idx, idx + 1);
1924 break;
1925 case VMA_END_RESV:
1926 region_abort(resv, idx, idx + 1);
1927 ret = 0;
1928 break;
1929 case VMA_ADD_RESV:
1930 if (vma->vm_flags & VM_MAYSHARE)
1931 ret = region_add(resv, idx, idx + 1);
1932 else {
1933 region_abort(resv, idx, idx + 1);
1934 ret = region_del(resv, idx, idx + 1);
1935 }
1936 break;
1937 default:
1938 BUG();
1939 }
1940
1941 if (vma->vm_flags & VM_MAYSHARE)
1942 return ret;
1943 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1944 /*
1945 * In most cases, reserves always exist for private mappings.
1946 * However, a file associated with mapping could have been
1947 * hole punched or truncated after reserves were consumed.
1948 * As subsequent fault on such a range will not use reserves.
1949 * Subtle - The reserve map for private mappings has the
1950 * opposite meaning than that of shared mappings. If NO
1951 * entry is in the reserve map, it means a reservation exists.
1952 * If an entry exists in the reserve map, it means the
1953 * reservation has already been consumed. As a result, the
1954 * return value of this routine is the opposite of the
1955 * value returned from reserve map manipulation routines above.
1956 */
1957 if (ret)
1958 return 0;
1959 else
1960 return 1;
1961 }
1962 else
1963 return ret < 0 ? ret : 0;
1964 }
1965
1966 static long vma_needs_reservation(struct hstate *h,
1967 struct vm_area_struct *vma, unsigned long addr)
1968 {
1969 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1970 }
1971
1972 static long vma_commit_reservation(struct hstate *h,
1973 struct vm_area_struct *vma, unsigned long addr)
1974 {
1975 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1976 }
1977
1978 static void vma_end_reservation(struct hstate *h,
1979 struct vm_area_struct *vma, unsigned long addr)
1980 {
1981 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1982 }
1983
1984 static long vma_add_reservation(struct hstate *h,
1985 struct vm_area_struct *vma, unsigned long addr)
1986 {
1987 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1988 }
1989
1990 /*
1991 * This routine is called to restore a reservation on error paths. In the
1992 * specific error paths, a huge page was allocated (via alloc_huge_page)
1993 * and is about to be freed. If a reservation for the page existed,
1994 * alloc_huge_page would have consumed the reservation and set PagePrivate
1995 * in the newly allocated page. When the page is freed via free_huge_page,
1996 * the global reservation count will be incremented if PagePrivate is set.
1997 * However, free_huge_page can not adjust the reserve map. Adjust the
1998 * reserve map here to be consistent with global reserve count adjustments
1999 * to be made by free_huge_page.
2000 */
2001 static void restore_reserve_on_error(struct hstate *h,
2002 struct vm_area_struct *vma, unsigned long address,
2003 struct page *page)
2004 {
2005 if (unlikely(PagePrivate(page))) {
2006 long rc = vma_needs_reservation(h, vma, address);
2007
2008 if (unlikely(rc < 0)) {
2009 /*
2010 * Rare out of memory condition in reserve map
2011 * manipulation. Clear PagePrivate so that
2012 * global reserve count will not be incremented
2013 * by free_huge_page. This will make it appear
2014 * as though the reservation for this page was
2015 * consumed. This may prevent the task from
2016 * faulting in the page at a later time. This
2017 * is better than inconsistent global huge page
2018 * accounting of reserve counts.
2019 */
2020 ClearPagePrivate(page);
2021 } else if (rc) {
2022 rc = vma_add_reservation(h, vma, address);
2023 if (unlikely(rc < 0))
2024 /*
2025 * See above comment about rare out of
2026 * memory condition.
2027 */
2028 ClearPagePrivate(page);
2029 } else
2030 vma_end_reservation(h, vma, address);
2031 }
2032 }
2033
2034 struct page *alloc_huge_page(struct vm_area_struct *vma,
2035 unsigned long addr, int avoid_reserve)
2036 {
2037 struct hugepage_subpool *spool = subpool_vma(vma);
2038 struct hstate *h = hstate_vma(vma);
2039 struct page *page;
2040 long map_chg, map_commit;
2041 long gbl_chg;
2042 int ret, idx;
2043 struct hugetlb_cgroup *h_cg;
2044
2045 idx = hstate_index(h);
2046 /*
2047 * Examine the region/reserve map to determine if the process
2048 * has a reservation for the page to be allocated. A return
2049 * code of zero indicates a reservation exists (no change).
2050 */
2051 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2052 if (map_chg < 0)
2053 return ERR_PTR(-ENOMEM);
2054
2055 /*
2056 * Processes that did not create the mapping will have no
2057 * reserves as indicated by the region/reserve map. Check
2058 * that the allocation will not exceed the subpool limit.
2059 * Allocations for MAP_NORESERVE mappings also need to be
2060 * checked against any subpool limit.
2061 */
2062 if (map_chg || avoid_reserve) {
2063 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2064 if (gbl_chg < 0) {
2065 vma_end_reservation(h, vma, addr);
2066 return ERR_PTR(-ENOSPC);
2067 }
2068
2069 /*
2070 * Even though there was no reservation in the region/reserve
2071 * map, there could be reservations associated with the
2072 * subpool that can be used. This would be indicated if the
2073 * return value of hugepage_subpool_get_pages() is zero.
2074 * However, if avoid_reserve is specified we still avoid even
2075 * the subpool reservations.
2076 */
2077 if (avoid_reserve)
2078 gbl_chg = 1;
2079 }
2080
2081 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2082 if (ret)
2083 goto out_subpool_put;
2084
2085 spin_lock(&hugetlb_lock);
2086 /*
2087 * glb_chg is passed to indicate whether or not a page must be taken
2088 * from the global free pool (global change). gbl_chg == 0 indicates
2089 * a reservation exists for the allocation.
2090 */
2091 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2092 if (!page) {
2093 spin_unlock(&hugetlb_lock);
2094 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2095 if (!page)
2096 goto out_uncharge_cgroup;
2097 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2098 SetPagePrivate(page);
2099 h->resv_huge_pages--;
2100 }
2101 spin_lock(&hugetlb_lock);
2102 list_move(&page->lru, &h->hugepage_activelist);
2103 /* Fall through */
2104 }
2105 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2106 spin_unlock(&hugetlb_lock);
2107
2108 set_page_private(page, (unsigned long)spool);
2109
2110 map_commit = vma_commit_reservation(h, vma, addr);
2111 if (unlikely(map_chg > map_commit)) {
2112 /*
2113 * The page was added to the reservation map between
2114 * vma_needs_reservation and vma_commit_reservation.
2115 * This indicates a race with hugetlb_reserve_pages.
2116 * Adjust for the subpool count incremented above AND
2117 * in hugetlb_reserve_pages for the same page. Also,
2118 * the reservation count added in hugetlb_reserve_pages
2119 * no longer applies.
2120 */
2121 long rsv_adjust;
2122
2123 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2124 hugetlb_acct_memory(h, -rsv_adjust);
2125 }
2126 return page;
2127
2128 out_uncharge_cgroup:
2129 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2130 out_subpool_put:
2131 if (map_chg || avoid_reserve)
2132 hugepage_subpool_put_pages(spool, 1);
2133 vma_end_reservation(h, vma, addr);
2134 return ERR_PTR(-ENOSPC);
2135 }
2136
2137 int alloc_bootmem_huge_page(struct hstate *h)
2138 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2139 int __alloc_bootmem_huge_page(struct hstate *h)
2140 {
2141 struct huge_bootmem_page *m;
2142 int nr_nodes, node;
2143
2144 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2145 void *addr;
2146
2147 addr = memblock_alloc_try_nid_raw(
2148 huge_page_size(h), huge_page_size(h),
2149 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2150 if (addr) {
2151 /*
2152 * Use the beginning of the huge page to store the
2153 * huge_bootmem_page struct (until gather_bootmem
2154 * puts them into the mem_map).
2155 */
2156 m = addr;
2157 goto found;
2158 }
2159 }
2160 return 0;
2161
2162 found:
2163 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2164 /* Put them into a private list first because mem_map is not up yet */
2165 INIT_LIST_HEAD(&m->list);
2166 list_add(&m->list, &huge_boot_pages);
2167 m->hstate = h;
2168 return 1;
2169 }
2170
2171 static void __init prep_compound_huge_page(struct page *page,
2172 unsigned int order)
2173 {
2174 if (unlikely(order > (MAX_ORDER - 1)))
2175 prep_compound_gigantic_page(page, order);
2176 else
2177 prep_compound_page(page, order);
2178 }
2179
2180 /* Put bootmem huge pages into the standard lists after mem_map is up */
2181 static void __init gather_bootmem_prealloc(void)
2182 {
2183 struct huge_bootmem_page *m;
2184
2185 list_for_each_entry(m, &huge_boot_pages, list) {
2186 struct page *page = virt_to_page(m);
2187 struct hstate *h = m->hstate;
2188
2189 WARN_ON(page_count(page) != 1);
2190 prep_compound_huge_page(page, h->order);
2191 WARN_ON(PageReserved(page));
2192 prep_new_huge_page(h, page, page_to_nid(page));
2193 put_page(page); /* free it into the hugepage allocator */
2194
2195 /*
2196 * If we had gigantic hugepages allocated at boot time, we need
2197 * to restore the 'stolen' pages to totalram_pages in order to
2198 * fix confusing memory reports from free(1) and another
2199 * side-effects, like CommitLimit going negative.
2200 */
2201 if (hstate_is_gigantic(h))
2202 adjust_managed_page_count(page, 1 << h->order);
2203 cond_resched();
2204 }
2205 }
2206
2207 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2208 {
2209 unsigned long i;
2210
2211 for (i = 0; i < h->max_huge_pages; ++i) {
2212 if (hstate_is_gigantic(h)) {
2213 if (!alloc_bootmem_huge_page(h))
2214 break;
2215 } else if (!alloc_pool_huge_page(h,
2216 &node_states[N_MEMORY]))
2217 break;
2218 cond_resched();
2219 }
2220 if (i < h->max_huge_pages) {
2221 char buf[32];
2222
2223 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2224 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2225 h->max_huge_pages, buf, i);
2226 h->max_huge_pages = i;
2227 }
2228 }
2229
2230 static void __init hugetlb_init_hstates(void)
2231 {
2232 struct hstate *h;
2233
2234 for_each_hstate(h) {
2235 if (minimum_order > huge_page_order(h))
2236 minimum_order = huge_page_order(h);
2237
2238 /* oversize hugepages were init'ed in early boot */
2239 if (!hstate_is_gigantic(h))
2240 hugetlb_hstate_alloc_pages(h);
2241 }
2242 VM_BUG_ON(minimum_order == UINT_MAX);
2243 }
2244
2245 static void __init report_hugepages(void)
2246 {
2247 struct hstate *h;
2248
2249 for_each_hstate(h) {
2250 char buf[32];
2251
2252 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2253 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2254 buf, h->free_huge_pages);
2255 }
2256 }
2257
2258 #ifdef CONFIG_HIGHMEM
2259 static void try_to_free_low(struct hstate *h, unsigned long count,
2260 nodemask_t *nodes_allowed)
2261 {
2262 int i;
2263
2264 if (hstate_is_gigantic(h))
2265 return;
2266
2267 for_each_node_mask(i, *nodes_allowed) {
2268 struct page *page, *next;
2269 struct list_head *freel = &h->hugepage_freelists[i];
2270 list_for_each_entry_safe(page, next, freel, lru) {
2271 if (count >= h->nr_huge_pages)
2272 return;
2273 if (PageHighMem(page))
2274 continue;
2275 list_del(&page->lru);
2276 update_and_free_page(h, page);
2277 h->free_huge_pages--;
2278 h->free_huge_pages_node[page_to_nid(page)]--;
2279 }
2280 }
2281 }
2282 #else
2283 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2284 nodemask_t *nodes_allowed)
2285 {
2286 }
2287 #endif
2288
2289 /*
2290 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2291 * balanced by operating on them in a round-robin fashion.
2292 * Returns 1 if an adjustment was made.
2293 */
2294 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2295 int delta)
2296 {
2297 int nr_nodes, node;
2298
2299 VM_BUG_ON(delta != -1 && delta != 1);
2300
2301 if (delta < 0) {
2302 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2303 if (h->surplus_huge_pages_node[node])
2304 goto found;
2305 }
2306 } else {
2307 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2308 if (h->surplus_huge_pages_node[node] <
2309 h->nr_huge_pages_node[node])
2310 goto found;
2311 }
2312 }
2313 return 0;
2314
2315 found:
2316 h->surplus_huge_pages += delta;
2317 h->surplus_huge_pages_node[node] += delta;
2318 return 1;
2319 }
2320
2321 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2322 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2323 nodemask_t *nodes_allowed)
2324 {
2325 unsigned long min_count, ret;
2326
2327 spin_lock(&hugetlb_lock);
2328
2329 /*
2330 * Check for a node specific request.
2331 * Changing node specific huge page count may require a corresponding
2332 * change to the global count. In any case, the passed node mask
2333 * (nodes_allowed) will restrict alloc/free to the specified node.
2334 */
2335 if (nid != NUMA_NO_NODE) {
2336 unsigned long old_count = count;
2337
2338 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2339 /*
2340 * User may have specified a large count value which caused the
2341 * above calculation to overflow. In this case, they wanted
2342 * to allocate as many huge pages as possible. Set count to
2343 * largest possible value to align with their intention.
2344 */
2345 if (count < old_count)
2346 count = ULONG_MAX;
2347 }
2348
2349 /*
2350 * Gigantic pages runtime allocation depend on the capability for large
2351 * page range allocation.
2352 * If the system does not provide this feature, return an error when
2353 * the user tries to allocate gigantic pages but let the user free the
2354 * boottime allocated gigantic pages.
2355 */
2356 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2357 if (count > persistent_huge_pages(h)) {
2358 spin_unlock(&hugetlb_lock);
2359 return -EINVAL;
2360 }
2361 /* Fall through to decrease pool */
2362 }
2363
2364 /*
2365 * Increase the pool size
2366 * First take pages out of surplus state. Then make up the
2367 * remaining difference by allocating fresh huge pages.
2368 *
2369 * We might race with alloc_surplus_huge_page() here and be unable
2370 * to convert a surplus huge page to a normal huge page. That is
2371 * not critical, though, it just means the overall size of the
2372 * pool might be one hugepage larger than it needs to be, but
2373 * within all the constraints specified by the sysctls.
2374 */
2375 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2376 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2377 break;
2378 }
2379
2380 while (count > persistent_huge_pages(h)) {
2381 /*
2382 * If this allocation races such that we no longer need the
2383 * page, free_huge_page will handle it by freeing the page
2384 * and reducing the surplus.
2385 */
2386 spin_unlock(&hugetlb_lock);
2387
2388 /* yield cpu to avoid soft lockup */
2389 cond_resched();
2390
2391 ret = alloc_pool_huge_page(h, nodes_allowed);
2392 spin_lock(&hugetlb_lock);
2393 if (!ret)
2394 goto out;
2395
2396 /* Bail for signals. Probably ctrl-c from user */
2397 if (signal_pending(current))
2398 goto out;
2399 }
2400
2401 /*
2402 * Decrease the pool size
2403 * First return free pages to the buddy allocator (being careful
2404 * to keep enough around to satisfy reservations). Then place
2405 * pages into surplus state as needed so the pool will shrink
2406 * to the desired size as pages become free.
2407 *
2408 * By placing pages into the surplus state independent of the
2409 * overcommit value, we are allowing the surplus pool size to
2410 * exceed overcommit. There are few sane options here. Since
2411 * alloc_surplus_huge_page() is checking the global counter,
2412 * though, we'll note that we're not allowed to exceed surplus
2413 * and won't grow the pool anywhere else. Not until one of the
2414 * sysctls are changed, or the surplus pages go out of use.
2415 */
2416 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2417 min_count = max(count, min_count);
2418 try_to_free_low(h, min_count, nodes_allowed);
2419 while (min_count < persistent_huge_pages(h)) {
2420 if (!free_pool_huge_page(h, nodes_allowed, 0))
2421 break;
2422 cond_resched_lock(&hugetlb_lock);
2423 }
2424 while (count < persistent_huge_pages(h)) {
2425 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2426 break;
2427 }
2428 out:
2429 h->max_huge_pages = persistent_huge_pages(h);
2430 spin_unlock(&hugetlb_lock);
2431
2432 return 0;
2433 }
2434
2435 #define HSTATE_ATTR_RO(_name) \
2436 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2437
2438 #define HSTATE_ATTR(_name) \
2439 static struct kobj_attribute _name##_attr = \
2440 __ATTR(_name, 0644, _name##_show, _name##_store)
2441
2442 static struct kobject *hugepages_kobj;
2443 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2444
2445 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2446
2447 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2448 {
2449 int i;
2450
2451 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2452 if (hstate_kobjs[i] == kobj) {
2453 if (nidp)
2454 *nidp = NUMA_NO_NODE;
2455 return &hstates[i];
2456 }
2457
2458 return kobj_to_node_hstate(kobj, nidp);
2459 }
2460
2461 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2462 struct kobj_attribute *attr, char *buf)
2463 {
2464 struct hstate *h;
2465 unsigned long nr_huge_pages;
2466 int nid;
2467
2468 h = kobj_to_hstate(kobj, &nid);
2469 if (nid == NUMA_NO_NODE)
2470 nr_huge_pages = h->nr_huge_pages;
2471 else
2472 nr_huge_pages = h->nr_huge_pages_node[nid];
2473
2474 return sprintf(buf, "%lu\n", nr_huge_pages);
2475 }
2476
2477 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2478 struct hstate *h, int nid,
2479 unsigned long count, size_t len)
2480 {
2481 int err;
2482 nodemask_t nodes_allowed, *n_mask;
2483
2484 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2485 return -EINVAL;
2486
2487 if (nid == NUMA_NO_NODE) {
2488 /*
2489 * global hstate attribute
2490 */
2491 if (!(obey_mempolicy &&
2492 init_nodemask_of_mempolicy(&nodes_allowed)))
2493 n_mask = &node_states[N_MEMORY];
2494 else
2495 n_mask = &nodes_allowed;
2496 } else {
2497 /*
2498 * Node specific request. count adjustment happens in
2499 * set_max_huge_pages() after acquiring hugetlb_lock.
2500 */
2501 init_nodemask_of_node(&nodes_allowed, nid);
2502 n_mask = &nodes_allowed;
2503 }
2504
2505 err = set_max_huge_pages(h, count, nid, n_mask);
2506
2507 return err ? err : len;
2508 }
2509
2510 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2511 struct kobject *kobj, const char *buf,
2512 size_t len)
2513 {
2514 struct hstate *h;
2515 unsigned long count;
2516 int nid;
2517 int err;
2518
2519 err = kstrtoul(buf, 10, &count);
2520 if (err)
2521 return err;
2522
2523 h = kobj_to_hstate(kobj, &nid);
2524 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2525 }
2526
2527 static ssize_t nr_hugepages_show(struct kobject *kobj,
2528 struct kobj_attribute *attr, char *buf)
2529 {
2530 return nr_hugepages_show_common(kobj, attr, buf);
2531 }
2532
2533 static ssize_t nr_hugepages_store(struct kobject *kobj,
2534 struct kobj_attribute *attr, const char *buf, size_t len)
2535 {
2536 return nr_hugepages_store_common(false, kobj, buf, len);
2537 }
2538 HSTATE_ATTR(nr_hugepages);
2539
2540 #ifdef CONFIG_NUMA
2541
2542 /*
2543 * hstate attribute for optionally mempolicy-based constraint on persistent
2544 * huge page alloc/free.
2545 */
2546 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2547 struct kobj_attribute *attr, char *buf)
2548 {
2549 return nr_hugepages_show_common(kobj, attr, buf);
2550 }
2551
2552 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2553 struct kobj_attribute *attr, const char *buf, size_t len)
2554 {
2555 return nr_hugepages_store_common(true, kobj, buf, len);
2556 }
2557 HSTATE_ATTR(nr_hugepages_mempolicy);
2558 #endif
2559
2560
2561 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2562 struct kobj_attribute *attr, char *buf)
2563 {
2564 struct hstate *h = kobj_to_hstate(kobj, NULL);
2565 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2566 }
2567
2568 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2569 struct kobj_attribute *attr, const char *buf, size_t count)
2570 {
2571 int err;
2572 unsigned long input;
2573 struct hstate *h = kobj_to_hstate(kobj, NULL);
2574
2575 if (hstate_is_gigantic(h))
2576 return -EINVAL;
2577
2578 err = kstrtoul(buf, 10, &input);
2579 if (err)
2580 return err;
2581
2582 spin_lock(&hugetlb_lock);
2583 h->nr_overcommit_huge_pages = input;
2584 spin_unlock(&hugetlb_lock);
2585
2586 return count;
2587 }
2588 HSTATE_ATTR(nr_overcommit_hugepages);
2589
2590 static ssize_t free_hugepages_show(struct kobject *kobj,
2591 struct kobj_attribute *attr, char *buf)
2592 {
2593 struct hstate *h;
2594 unsigned long free_huge_pages;
2595 int nid;
2596
2597 h = kobj_to_hstate(kobj, &nid);
2598 if (nid == NUMA_NO_NODE)
2599 free_huge_pages = h->free_huge_pages;
2600 else
2601 free_huge_pages = h->free_huge_pages_node[nid];
2602
2603 return sprintf(buf, "%lu\n", free_huge_pages);
2604 }
2605 HSTATE_ATTR_RO(free_hugepages);
2606
2607 static ssize_t resv_hugepages_show(struct kobject *kobj,
2608 struct kobj_attribute *attr, char *buf)
2609 {
2610 struct hstate *h = kobj_to_hstate(kobj, NULL);
2611 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2612 }
2613 HSTATE_ATTR_RO(resv_hugepages);
2614
2615 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2616 struct kobj_attribute *attr, char *buf)
2617 {
2618 struct hstate *h;
2619 unsigned long surplus_huge_pages;
2620 int nid;
2621
2622 h = kobj_to_hstate(kobj, &nid);
2623 if (nid == NUMA_NO_NODE)
2624 surplus_huge_pages = h->surplus_huge_pages;
2625 else
2626 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2627
2628 return sprintf(buf, "%lu\n", surplus_huge_pages);
2629 }
2630 HSTATE_ATTR_RO(surplus_hugepages);
2631
2632 static struct attribute *hstate_attrs[] = {
2633 &nr_hugepages_attr.attr,
2634 &nr_overcommit_hugepages_attr.attr,
2635 &free_hugepages_attr.attr,
2636 &resv_hugepages_attr.attr,
2637 &surplus_hugepages_attr.attr,
2638 #ifdef CONFIG_NUMA
2639 &nr_hugepages_mempolicy_attr.attr,
2640 #endif
2641 NULL,
2642 };
2643
2644 static const struct attribute_group hstate_attr_group = {
2645 .attrs = hstate_attrs,
2646 };
2647
2648 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2649 struct kobject **hstate_kobjs,
2650 const struct attribute_group *hstate_attr_group)
2651 {
2652 int retval;
2653 int hi = hstate_index(h);
2654
2655 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2656 if (!hstate_kobjs[hi])
2657 return -ENOMEM;
2658
2659 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2660 if (retval)
2661 kobject_put(hstate_kobjs[hi]);
2662
2663 return retval;
2664 }
2665
2666 static void __init hugetlb_sysfs_init(void)
2667 {
2668 struct hstate *h;
2669 int err;
2670
2671 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2672 if (!hugepages_kobj)
2673 return;
2674
2675 for_each_hstate(h) {
2676 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2677 hstate_kobjs, &hstate_attr_group);
2678 if (err)
2679 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2680 }
2681 }
2682
2683 #ifdef CONFIG_NUMA
2684
2685 /*
2686 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2687 * with node devices in node_devices[] using a parallel array. The array
2688 * index of a node device or _hstate == node id.
2689 * This is here to avoid any static dependency of the node device driver, in
2690 * the base kernel, on the hugetlb module.
2691 */
2692 struct node_hstate {
2693 struct kobject *hugepages_kobj;
2694 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2695 };
2696 static struct node_hstate node_hstates[MAX_NUMNODES];
2697
2698 /*
2699 * A subset of global hstate attributes for node devices
2700 */
2701 static struct attribute *per_node_hstate_attrs[] = {
2702 &nr_hugepages_attr.attr,
2703 &free_hugepages_attr.attr,
2704 &surplus_hugepages_attr.attr,
2705 NULL,
2706 };
2707
2708 static const struct attribute_group per_node_hstate_attr_group = {
2709 .attrs = per_node_hstate_attrs,
2710 };
2711
2712 /*
2713 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2714 * Returns node id via non-NULL nidp.
2715 */
2716 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2717 {
2718 int nid;
2719
2720 for (nid = 0; nid < nr_node_ids; nid++) {
2721 struct node_hstate *nhs = &node_hstates[nid];
2722 int i;
2723 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2724 if (nhs->hstate_kobjs[i] == kobj) {
2725 if (nidp)
2726 *nidp = nid;
2727 return &hstates[i];
2728 }
2729 }
2730
2731 BUG();
2732 return NULL;
2733 }
2734
2735 /*
2736 * Unregister hstate attributes from a single node device.
2737 * No-op if no hstate attributes attached.
2738 */
2739 static void hugetlb_unregister_node(struct node *node)
2740 {
2741 struct hstate *h;
2742 struct node_hstate *nhs = &node_hstates[node->dev.id];
2743
2744 if (!nhs->hugepages_kobj)
2745 return; /* no hstate attributes */
2746
2747 for_each_hstate(h) {
2748 int idx = hstate_index(h);
2749 if (nhs->hstate_kobjs[idx]) {
2750 kobject_put(nhs->hstate_kobjs[idx]);
2751 nhs->hstate_kobjs[idx] = NULL;
2752 }
2753 }
2754
2755 kobject_put(nhs->hugepages_kobj);
2756 nhs->hugepages_kobj = NULL;
2757 }
2758
2759
2760 /*
2761 * Register hstate attributes for a single node device.
2762 * No-op if attributes already registered.
2763 */
2764 static void hugetlb_register_node(struct node *node)
2765 {
2766 struct hstate *h;
2767 struct node_hstate *nhs = &node_hstates[node->dev.id];
2768 int err;
2769
2770 if (nhs->hugepages_kobj)
2771 return; /* already allocated */
2772
2773 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2774 &node->dev.kobj);
2775 if (!nhs->hugepages_kobj)
2776 return;
2777
2778 for_each_hstate(h) {
2779 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2780 nhs->hstate_kobjs,
2781 &per_node_hstate_attr_group);
2782 if (err) {
2783 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2784 h->name, node->dev.id);
2785 hugetlb_unregister_node(node);
2786 break;
2787 }
2788 }
2789 }
2790
2791 /*
2792 * hugetlb init time: register hstate attributes for all registered node
2793 * devices of nodes that have memory. All on-line nodes should have
2794 * registered their associated device by this time.
2795 */
2796 static void __init hugetlb_register_all_nodes(void)
2797 {
2798 int nid;
2799
2800 for_each_node_state(nid, N_MEMORY) {
2801 struct node *node = node_devices[nid];
2802 if (node->dev.id == nid)
2803 hugetlb_register_node(node);
2804 }
2805
2806 /*
2807 * Let the node device driver know we're here so it can
2808 * [un]register hstate attributes on node hotplug.
2809 */
2810 register_hugetlbfs_with_node(hugetlb_register_node,
2811 hugetlb_unregister_node);
2812 }
2813 #else /* !CONFIG_NUMA */
2814
2815 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2816 {
2817 BUG();
2818 if (nidp)
2819 *nidp = -1;
2820 return NULL;
2821 }
2822
2823 static void hugetlb_register_all_nodes(void) { }
2824
2825 #endif
2826
2827 static int __init hugetlb_init(void)
2828 {
2829 int i;
2830
2831 if (!hugepages_supported())
2832 return 0;
2833
2834 if (!size_to_hstate(default_hstate_size)) {
2835 if (default_hstate_size != 0) {
2836 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2837 default_hstate_size, HPAGE_SIZE);
2838 }
2839
2840 default_hstate_size = HPAGE_SIZE;
2841 if (!size_to_hstate(default_hstate_size))
2842 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2843 }
2844 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2845 if (default_hstate_max_huge_pages) {
2846 if (!default_hstate.max_huge_pages)
2847 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2848 }
2849
2850 hugetlb_init_hstates();
2851 gather_bootmem_prealloc();
2852 report_hugepages();
2853
2854 hugetlb_sysfs_init();
2855 hugetlb_register_all_nodes();
2856 hugetlb_cgroup_file_init();
2857
2858 #ifdef CONFIG_SMP
2859 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2860 #else
2861 num_fault_mutexes = 1;
2862 #endif
2863 hugetlb_fault_mutex_table =
2864 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2865 GFP_KERNEL);
2866 BUG_ON(!hugetlb_fault_mutex_table);
2867
2868 for (i = 0; i < num_fault_mutexes; i++)
2869 mutex_init(&hugetlb_fault_mutex_table[i]);
2870 return 0;
2871 }
2872 subsys_initcall(hugetlb_init);
2873
2874 /* Should be called on processing a hugepagesz=... option */
2875 void __init hugetlb_bad_size(void)
2876 {
2877 parsed_valid_hugepagesz = false;
2878 }
2879
2880 void __init hugetlb_add_hstate(unsigned int order)
2881 {
2882 struct hstate *h;
2883 unsigned long i;
2884
2885 if (size_to_hstate(PAGE_SIZE << order)) {
2886 pr_warn("hugepagesz= specified twice, ignoring\n");
2887 return;
2888 }
2889 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2890 BUG_ON(order == 0);
2891 h = &hstates[hugetlb_max_hstate++];
2892 h->order = order;
2893 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2894 h->nr_huge_pages = 0;
2895 h->free_huge_pages = 0;
2896 for (i = 0; i < MAX_NUMNODES; ++i)
2897 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2898 INIT_LIST_HEAD(&h->hugepage_activelist);
2899 h->next_nid_to_alloc = first_memory_node;
2900 h->next_nid_to_free = first_memory_node;
2901 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2902 huge_page_size(h)/1024);
2903
2904 parsed_hstate = h;
2905 }
2906
2907 static int __init hugetlb_nrpages_setup(char *s)
2908 {
2909 unsigned long *mhp;
2910 static unsigned long *last_mhp;
2911
2912 if (!parsed_valid_hugepagesz) {
2913 pr_warn("hugepages = %s preceded by "
2914 "an unsupported hugepagesz, ignoring\n", s);
2915 parsed_valid_hugepagesz = true;
2916 return 1;
2917 }
2918 /*
2919 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2920 * so this hugepages= parameter goes to the "default hstate".
2921 */
2922 else if (!hugetlb_max_hstate)
2923 mhp = &default_hstate_max_huge_pages;
2924 else
2925 mhp = &parsed_hstate->max_huge_pages;
2926
2927 if (mhp == last_mhp) {
2928 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2929 return 1;
2930 }
2931
2932 if (sscanf(s, "%lu", mhp) <= 0)
2933 *mhp = 0;
2934
2935 /*
2936 * Global state is always initialized later in hugetlb_init.
2937 * But we need to allocate >= MAX_ORDER hstates here early to still
2938 * use the bootmem allocator.
2939 */
2940 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2941 hugetlb_hstate_alloc_pages(parsed_hstate);
2942
2943 last_mhp = mhp;
2944
2945 return 1;
2946 }
2947 __setup("hugepages=", hugetlb_nrpages_setup);
2948
2949 static int __init hugetlb_default_setup(char *s)
2950 {
2951 default_hstate_size = memparse(s, &s);
2952 return 1;
2953 }
2954 __setup("default_hugepagesz=", hugetlb_default_setup);
2955
2956 static unsigned int cpuset_mems_nr(unsigned int *array)
2957 {
2958 int node;
2959 unsigned int nr = 0;
2960
2961 for_each_node_mask(node, cpuset_current_mems_allowed)
2962 nr += array[node];
2963
2964 return nr;
2965 }
2966
2967 #ifdef CONFIG_SYSCTL
2968 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2969 struct ctl_table *table, int write,
2970 void __user *buffer, size_t *length, loff_t *ppos)
2971 {
2972 struct hstate *h = &default_hstate;
2973 unsigned long tmp = h->max_huge_pages;
2974 int ret;
2975
2976 if (!hugepages_supported())
2977 return -EOPNOTSUPP;
2978
2979 table->data = &tmp;
2980 table->maxlen = sizeof(unsigned long);
2981 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2982 if (ret)
2983 goto out;
2984
2985 if (write)
2986 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2987 NUMA_NO_NODE, tmp, *length);
2988 out:
2989 return ret;
2990 }
2991
2992 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2993 void __user *buffer, size_t *length, loff_t *ppos)
2994 {
2995
2996 return hugetlb_sysctl_handler_common(false, table, write,
2997 buffer, length, ppos);
2998 }
2999
3000 #ifdef CONFIG_NUMA
3001 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3002 void __user *buffer, size_t *length, loff_t *ppos)
3003 {
3004 return hugetlb_sysctl_handler_common(true, table, write,
3005 buffer, length, ppos);
3006 }
3007 #endif /* CONFIG_NUMA */
3008
3009 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3010 void __user *buffer,
3011 size_t *length, loff_t *ppos)
3012 {
3013 struct hstate *h = &default_hstate;
3014 unsigned long tmp;
3015 int ret;
3016
3017 if (!hugepages_supported())
3018 return -EOPNOTSUPP;
3019
3020 tmp = h->nr_overcommit_huge_pages;
3021
3022 if (write && hstate_is_gigantic(h))
3023 return -EINVAL;
3024
3025 table->data = &tmp;
3026 table->maxlen = sizeof(unsigned long);
3027 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3028 if (ret)
3029 goto out;
3030
3031 if (write) {
3032 spin_lock(&hugetlb_lock);
3033 h->nr_overcommit_huge_pages = tmp;
3034 spin_unlock(&hugetlb_lock);
3035 }
3036 out:
3037 return ret;
3038 }
3039
3040 #endif /* CONFIG_SYSCTL */
3041
3042 void hugetlb_report_meminfo(struct seq_file *m)
3043 {
3044 struct hstate *h;
3045 unsigned long total = 0;
3046
3047 if (!hugepages_supported())
3048 return;
3049
3050 for_each_hstate(h) {
3051 unsigned long count = h->nr_huge_pages;
3052
3053 total += (PAGE_SIZE << huge_page_order(h)) * count;
3054
3055 if (h == &default_hstate)
3056 seq_printf(m,
3057 "HugePages_Total: %5lu\n"
3058 "HugePages_Free: %5lu\n"
3059 "HugePages_Rsvd: %5lu\n"
3060 "HugePages_Surp: %5lu\n"
3061 "Hugepagesize: %8lu kB\n",
3062 count,
3063 h->free_huge_pages,
3064 h->resv_huge_pages,
3065 h->surplus_huge_pages,
3066 (PAGE_SIZE << huge_page_order(h)) / 1024);
3067 }
3068
3069 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3070 }
3071
3072 int hugetlb_report_node_meminfo(int nid, char *buf)
3073 {
3074 struct hstate *h = &default_hstate;
3075 if (!hugepages_supported())
3076 return 0;
3077 return sprintf(buf,
3078 "Node %d HugePages_Total: %5u\n"
3079 "Node %d HugePages_Free: %5u\n"
3080 "Node %d HugePages_Surp: %5u\n",
3081 nid, h->nr_huge_pages_node[nid],
3082 nid, h->free_huge_pages_node[nid],
3083 nid, h->surplus_huge_pages_node[nid]);
3084 }
3085
3086 void hugetlb_show_meminfo(void)
3087 {
3088 struct hstate *h;
3089 int nid;
3090
3091 if (!hugepages_supported())
3092 return;
3093
3094 for_each_node_state(nid, N_MEMORY)
3095 for_each_hstate(h)
3096 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3097 nid,
3098 h->nr_huge_pages_node[nid],
3099 h->free_huge_pages_node[nid],
3100 h->surplus_huge_pages_node[nid],
3101 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3102 }
3103
3104 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3105 {
3106 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3107 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3108 }
3109
3110 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3111 unsigned long hugetlb_total_pages(void)
3112 {
3113 struct hstate *h;
3114 unsigned long nr_total_pages = 0;
3115
3116 for_each_hstate(h)
3117 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3118 return nr_total_pages;
3119 }
3120
3121 static int hugetlb_acct_memory(struct hstate *h, long delta)
3122 {
3123 int ret = -ENOMEM;
3124
3125 spin_lock(&hugetlb_lock);
3126 /*
3127 * When cpuset is configured, it breaks the strict hugetlb page
3128 * reservation as the accounting is done on a global variable. Such
3129 * reservation is completely rubbish in the presence of cpuset because
3130 * the reservation is not checked against page availability for the
3131 * current cpuset. Application can still potentially OOM'ed by kernel
3132 * with lack of free htlb page in cpuset that the task is in.
3133 * Attempt to enforce strict accounting with cpuset is almost
3134 * impossible (or too ugly) because cpuset is too fluid that
3135 * task or memory node can be dynamically moved between cpusets.
3136 *
3137 * The change of semantics for shared hugetlb mapping with cpuset is
3138 * undesirable. However, in order to preserve some of the semantics,
3139 * we fall back to check against current free page availability as
3140 * a best attempt and hopefully to minimize the impact of changing
3141 * semantics that cpuset has.
3142 */
3143 if (delta > 0) {
3144 if (gather_surplus_pages(h, delta) < 0)
3145 goto out;
3146
3147 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3148 return_unused_surplus_pages(h, delta);
3149 goto out;
3150 }
3151 }
3152
3153 ret = 0;
3154 if (delta < 0)
3155 return_unused_surplus_pages(h, (unsigned long) -delta);
3156
3157 out:
3158 spin_unlock(&hugetlb_lock);
3159 return ret;
3160 }
3161
3162 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3163 {
3164 struct resv_map *resv = vma_resv_map(vma);
3165
3166 /*
3167 * This new VMA should share its siblings reservation map if present.
3168 * The VMA will only ever have a valid reservation map pointer where
3169 * it is being copied for another still existing VMA. As that VMA
3170 * has a reference to the reservation map it cannot disappear until
3171 * after this open call completes. It is therefore safe to take a
3172 * new reference here without additional locking.
3173 */
3174 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3175 kref_get(&resv->refs);
3176 }
3177
3178 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3179 {
3180 struct hstate *h = hstate_vma(vma);
3181 struct resv_map *resv = vma_resv_map(vma);
3182 struct hugepage_subpool *spool = subpool_vma(vma);
3183 unsigned long reserve, start, end;
3184 long gbl_reserve;
3185
3186 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3187 return;
3188
3189 start = vma_hugecache_offset(h, vma, vma->vm_start);
3190 end = vma_hugecache_offset(h, vma, vma->vm_end);
3191
3192 reserve = (end - start) - region_count(resv, start, end);
3193
3194 kref_put(&resv->refs, resv_map_release);
3195
3196 if (reserve) {
3197 /*
3198 * Decrement reserve counts. The global reserve count may be
3199 * adjusted if the subpool has a minimum size.
3200 */
3201 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3202 hugetlb_acct_memory(h, -gbl_reserve);
3203 }
3204 }
3205
3206 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3207 {
3208 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3209 return -EINVAL;
3210 return 0;
3211 }
3212
3213 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3214 {
3215 struct hstate *hstate = hstate_vma(vma);
3216
3217 return 1UL << huge_page_shift(hstate);
3218 }
3219
3220 /*
3221 * We cannot handle pagefaults against hugetlb pages at all. They cause
3222 * handle_mm_fault() to try to instantiate regular-sized pages in the
3223 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3224 * this far.
3225 */
3226 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3227 {
3228 BUG();
3229 return 0;
3230 }
3231
3232 /*
3233 * When a new function is introduced to vm_operations_struct and added
3234 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3235 * This is because under System V memory model, mappings created via
3236 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3237 * their original vm_ops are overwritten with shm_vm_ops.
3238 */
3239 const struct vm_operations_struct hugetlb_vm_ops = {
3240 .fault = hugetlb_vm_op_fault,
3241 .open = hugetlb_vm_op_open,
3242 .close = hugetlb_vm_op_close,
3243 .split = hugetlb_vm_op_split,
3244 .pagesize = hugetlb_vm_op_pagesize,
3245 };
3246
3247 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3248 int writable)
3249 {
3250 pte_t entry;
3251
3252 if (writable) {
3253 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3254 vma->vm_page_prot)));
3255 } else {
3256 entry = huge_pte_wrprotect(mk_huge_pte(page,
3257 vma->vm_page_prot));
3258 }
3259 entry = pte_mkyoung(entry);
3260 entry = pte_mkhuge(entry);
3261 entry = arch_make_huge_pte(entry, vma, page, writable);
3262
3263 return entry;
3264 }
3265
3266 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3267 unsigned long address, pte_t *ptep)
3268 {
3269 pte_t entry;
3270
3271 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3272 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3273 update_mmu_cache(vma, address, ptep);
3274 }
3275
3276 bool is_hugetlb_entry_migration(pte_t pte)
3277 {
3278 swp_entry_t swp;
3279
3280 if (huge_pte_none(pte) || pte_present(pte))
3281 return false;
3282 swp = pte_to_swp_entry(pte);
3283 if (non_swap_entry(swp) && is_migration_entry(swp))
3284 return true;
3285 else
3286 return false;
3287 }
3288
3289 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3290 {
3291 swp_entry_t swp;
3292
3293 if (huge_pte_none(pte) || pte_present(pte))
3294 return 0;
3295 swp = pte_to_swp_entry(pte);
3296 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3297 return 1;
3298 else
3299 return 0;
3300 }
3301
3302 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3303 struct vm_area_struct *vma)
3304 {
3305 pte_t *src_pte, *dst_pte, entry, dst_entry;
3306 struct page *ptepage;
3307 unsigned long addr;
3308 int cow;
3309 struct hstate *h = hstate_vma(vma);
3310 unsigned long sz = huge_page_size(h);
3311 struct mmu_notifier_range range;
3312 int ret = 0;
3313
3314 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3315
3316 if (cow) {
3317 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3318 vma->vm_start,
3319 vma->vm_end);
3320 mmu_notifier_invalidate_range_start(&range);
3321 }
3322
3323 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3324 spinlock_t *src_ptl, *dst_ptl;
3325 src_pte = huge_pte_offset(src, addr, sz);
3326 if (!src_pte)
3327 continue;
3328 dst_pte = huge_pte_alloc(dst, addr, sz);
3329 if (!dst_pte) {
3330 ret = -ENOMEM;
3331 break;
3332 }
3333
3334 /*
3335 * If the pagetables are shared don't copy or take references.
3336 * dst_pte == src_pte is the common case of src/dest sharing.
3337 *
3338 * However, src could have 'unshared' and dst shares with
3339 * another vma. If dst_pte !none, this implies sharing.
3340 * Check here before taking page table lock, and once again
3341 * after taking the lock below.
3342 */
3343 dst_entry = huge_ptep_get(dst_pte);
3344 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3345 continue;
3346
3347 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3348 src_ptl = huge_pte_lockptr(h, src, src_pte);
3349 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3350 entry = huge_ptep_get(src_pte);
3351 dst_entry = huge_ptep_get(dst_pte);
3352 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3353 /*
3354 * Skip if src entry none. Also, skip in the
3355 * unlikely case dst entry !none as this implies
3356 * sharing with another vma.
3357 */
3358 ;
3359 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3360 is_hugetlb_entry_hwpoisoned(entry))) {
3361 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3362
3363 if (is_write_migration_entry(swp_entry) && cow) {
3364 /*
3365 * COW mappings require pages in both
3366 * parent and child to be set to read.
3367 */
3368 make_migration_entry_read(&swp_entry);
3369 entry = swp_entry_to_pte(swp_entry);
3370 set_huge_swap_pte_at(src, addr, src_pte,
3371 entry, sz);
3372 }
3373 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3374 } else {
3375 if (cow) {
3376 /*
3377 * No need to notify as we are downgrading page
3378 * table protection not changing it to point
3379 * to a new page.
3380 *
3381 * See Documentation/vm/mmu_notifier.rst
3382 */
3383 huge_ptep_set_wrprotect(src, addr, src_pte);
3384 }
3385 entry = huge_ptep_get(src_pte);
3386 ptepage = pte_page(entry);
3387 get_page(ptepage);
3388 page_dup_rmap(ptepage, true);
3389 set_huge_pte_at(dst, addr, dst_pte, entry);
3390 hugetlb_count_add(pages_per_huge_page(h), dst);
3391 }
3392 spin_unlock(src_ptl);
3393 spin_unlock(dst_ptl);
3394 }
3395
3396 if (cow)
3397 mmu_notifier_invalidate_range_end(&range);
3398
3399 return ret;
3400 }
3401
3402 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3403 unsigned long start, unsigned long end,
3404 struct page *ref_page)
3405 {
3406 struct mm_struct *mm = vma->vm_mm;
3407 unsigned long address;
3408 pte_t *ptep;
3409 pte_t pte;
3410 spinlock_t *ptl;
3411 struct page *page;
3412 struct hstate *h = hstate_vma(vma);
3413 unsigned long sz = huge_page_size(h);
3414 struct mmu_notifier_range range;
3415
3416 WARN_ON(!is_vm_hugetlb_page(vma));
3417 BUG_ON(start & ~huge_page_mask(h));
3418 BUG_ON(end & ~huge_page_mask(h));
3419
3420 /*
3421 * This is a hugetlb vma, all the pte entries should point
3422 * to huge page.
3423 */
3424 tlb_change_page_size(tlb, sz);
3425 tlb_start_vma(tlb, vma);
3426
3427 /*
3428 * If sharing possible, alert mmu notifiers of worst case.
3429 */
3430 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3431 end);
3432 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3433 mmu_notifier_invalidate_range_start(&range);
3434 address = start;
3435 for (; address < end; address += sz) {
3436 ptep = huge_pte_offset(mm, address, sz);
3437 if (!ptep)
3438 continue;
3439
3440 ptl = huge_pte_lock(h, mm, ptep);
3441 if (huge_pmd_unshare(mm, &address, ptep)) {
3442 spin_unlock(ptl);
3443 /*
3444 * We just unmapped a page of PMDs by clearing a PUD.
3445 * The caller's TLB flush range should cover this area.
3446 */
3447 continue;
3448 }
3449
3450 pte = huge_ptep_get(ptep);
3451 if (huge_pte_none(pte)) {
3452 spin_unlock(ptl);
3453 continue;
3454 }
3455
3456 /*
3457 * Migrating hugepage or HWPoisoned hugepage is already
3458 * unmapped and its refcount is dropped, so just clear pte here.
3459 */
3460 if (unlikely(!pte_present(pte))) {
3461 huge_pte_clear(mm, address, ptep, sz);
3462 spin_unlock(ptl);
3463 continue;
3464 }
3465
3466 page = pte_page(pte);
3467 /*
3468 * If a reference page is supplied, it is because a specific
3469 * page is being unmapped, not a range. Ensure the page we
3470 * are about to unmap is the actual page of interest.
3471 */
3472 if (ref_page) {
3473 if (page != ref_page) {
3474 spin_unlock(ptl);
3475 continue;
3476 }
3477 /*
3478 * Mark the VMA as having unmapped its page so that
3479 * future faults in this VMA will fail rather than
3480 * looking like data was lost
3481 */
3482 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3483 }
3484
3485 pte = huge_ptep_get_and_clear(mm, address, ptep);
3486 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3487 if (huge_pte_dirty(pte))
3488 set_page_dirty(page);
3489
3490 hugetlb_count_sub(pages_per_huge_page(h), mm);
3491 page_remove_rmap(page, true);
3492
3493 spin_unlock(ptl);
3494 tlb_remove_page_size(tlb, page, huge_page_size(h));
3495 /*
3496 * Bail out after unmapping reference page if supplied
3497 */
3498 if (ref_page)
3499 break;
3500 }
3501 mmu_notifier_invalidate_range_end(&range);
3502 tlb_end_vma(tlb, vma);
3503 }
3504
3505 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3506 struct vm_area_struct *vma, unsigned long start,
3507 unsigned long end, struct page *ref_page)
3508 {
3509 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3510
3511 /*
3512 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3513 * test will fail on a vma being torn down, and not grab a page table
3514 * on its way out. We're lucky that the flag has such an appropriate
3515 * name, and can in fact be safely cleared here. We could clear it
3516 * before the __unmap_hugepage_range above, but all that's necessary
3517 * is to clear it before releasing the i_mmap_rwsem. This works
3518 * because in the context this is called, the VMA is about to be
3519 * destroyed and the i_mmap_rwsem is held.
3520 */
3521 vma->vm_flags &= ~VM_MAYSHARE;
3522 }
3523
3524 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3525 unsigned long end, struct page *ref_page)
3526 {
3527 struct mm_struct *mm;
3528 struct mmu_gather tlb;
3529 unsigned long tlb_start = start;
3530 unsigned long tlb_end = end;
3531
3532 /*
3533 * If shared PMDs were possibly used within this vma range, adjust
3534 * start/end for worst case tlb flushing.
3535 * Note that we can not be sure if PMDs are shared until we try to
3536 * unmap pages. However, we want to make sure TLB flushing covers
3537 * the largest possible range.
3538 */
3539 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3540
3541 mm = vma->vm_mm;
3542
3543 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3544 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3545 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3546 }
3547
3548 /*
3549 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3550 * mappping it owns the reserve page for. The intention is to unmap the page
3551 * from other VMAs and let the children be SIGKILLed if they are faulting the
3552 * same region.
3553 */
3554 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3555 struct page *page, unsigned long address)
3556 {
3557 struct hstate *h = hstate_vma(vma);
3558 struct vm_area_struct *iter_vma;
3559 struct address_space *mapping;
3560 pgoff_t pgoff;
3561
3562 /*
3563 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3564 * from page cache lookup which is in HPAGE_SIZE units.
3565 */
3566 address = address & huge_page_mask(h);
3567 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3568 vma->vm_pgoff;
3569 mapping = vma->vm_file->f_mapping;
3570
3571 /*
3572 * Take the mapping lock for the duration of the table walk. As
3573 * this mapping should be shared between all the VMAs,
3574 * __unmap_hugepage_range() is called as the lock is already held
3575 */
3576 i_mmap_lock_write(mapping);
3577 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3578 /* Do not unmap the current VMA */
3579 if (iter_vma == vma)
3580 continue;
3581
3582 /*
3583 * Shared VMAs have their own reserves and do not affect
3584 * MAP_PRIVATE accounting but it is possible that a shared
3585 * VMA is using the same page so check and skip such VMAs.
3586 */
3587 if (iter_vma->vm_flags & VM_MAYSHARE)
3588 continue;
3589
3590 /*
3591 * Unmap the page from other VMAs without their own reserves.
3592 * They get marked to be SIGKILLed if they fault in these
3593 * areas. This is because a future no-page fault on this VMA
3594 * could insert a zeroed page instead of the data existing
3595 * from the time of fork. This would look like data corruption
3596 */
3597 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3598 unmap_hugepage_range(iter_vma, address,
3599 address + huge_page_size(h), page);
3600 }
3601 i_mmap_unlock_write(mapping);
3602 }
3603
3604 /*
3605 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3606 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3607 * cannot race with other handlers or page migration.
3608 * Keep the pte_same checks anyway to make transition from the mutex easier.
3609 */
3610 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3611 unsigned long address, pte_t *ptep,
3612 struct page *pagecache_page, spinlock_t *ptl)
3613 {
3614 pte_t pte;
3615 struct hstate *h = hstate_vma(vma);
3616 struct page *old_page, *new_page;
3617 int outside_reserve = 0;
3618 vm_fault_t ret = 0;
3619 unsigned long haddr = address & huge_page_mask(h);
3620 struct mmu_notifier_range range;
3621
3622 pte = huge_ptep_get(ptep);
3623 old_page = pte_page(pte);
3624
3625 retry_avoidcopy:
3626 /* If no-one else is actually using this page, avoid the copy
3627 * and just make the page writable */
3628 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3629 page_move_anon_rmap(old_page, vma);
3630 set_huge_ptep_writable(vma, haddr, ptep);
3631 return 0;
3632 }
3633
3634 /*
3635 * If the process that created a MAP_PRIVATE mapping is about to
3636 * perform a COW due to a shared page count, attempt to satisfy
3637 * the allocation without using the existing reserves. The pagecache
3638 * page is used to determine if the reserve at this address was
3639 * consumed or not. If reserves were used, a partial faulted mapping
3640 * at the time of fork() could consume its reserves on COW instead
3641 * of the full address range.
3642 */
3643 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3644 old_page != pagecache_page)
3645 outside_reserve = 1;
3646
3647 get_page(old_page);
3648
3649 /*
3650 * Drop page table lock as buddy allocator may be called. It will
3651 * be acquired again before returning to the caller, as expected.
3652 */
3653 spin_unlock(ptl);
3654 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3655
3656 if (IS_ERR(new_page)) {
3657 /*
3658 * If a process owning a MAP_PRIVATE mapping fails to COW,
3659 * it is due to references held by a child and an insufficient
3660 * huge page pool. To guarantee the original mappers
3661 * reliability, unmap the page from child processes. The child
3662 * may get SIGKILLed if it later faults.
3663 */
3664 if (outside_reserve) {
3665 put_page(old_page);
3666 BUG_ON(huge_pte_none(pte));
3667 unmap_ref_private(mm, vma, old_page, haddr);
3668 BUG_ON(huge_pte_none(pte));
3669 spin_lock(ptl);
3670 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3671 if (likely(ptep &&
3672 pte_same(huge_ptep_get(ptep), pte)))
3673 goto retry_avoidcopy;
3674 /*
3675 * race occurs while re-acquiring page table
3676 * lock, and our job is done.
3677 */
3678 return 0;
3679 }
3680
3681 ret = vmf_error(PTR_ERR(new_page));
3682 goto out_release_old;
3683 }
3684
3685 /*
3686 * When the original hugepage is shared one, it does not have
3687 * anon_vma prepared.
3688 */
3689 if (unlikely(anon_vma_prepare(vma))) {
3690 ret = VM_FAULT_OOM;
3691 goto out_release_all;
3692 }
3693
3694 copy_user_huge_page(new_page, old_page, address, vma,
3695 pages_per_huge_page(h));
3696 __SetPageUptodate(new_page);
3697
3698 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3699 haddr + huge_page_size(h));
3700 mmu_notifier_invalidate_range_start(&range);
3701
3702 /*
3703 * Retake the page table lock to check for racing updates
3704 * before the page tables are altered
3705 */
3706 spin_lock(ptl);
3707 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3708 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3709 ClearPagePrivate(new_page);
3710
3711 /* Break COW */
3712 huge_ptep_clear_flush(vma, haddr, ptep);
3713 mmu_notifier_invalidate_range(mm, range.start, range.end);
3714 set_huge_pte_at(mm, haddr, ptep,
3715 make_huge_pte(vma, new_page, 1));
3716 page_remove_rmap(old_page, true);
3717 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3718 set_page_huge_active(new_page);
3719 /* Make the old page be freed below */
3720 new_page = old_page;
3721 }
3722 spin_unlock(ptl);
3723 mmu_notifier_invalidate_range_end(&range);
3724 out_release_all:
3725 restore_reserve_on_error(h, vma, haddr, new_page);
3726 put_page(new_page);
3727 out_release_old:
3728 put_page(old_page);
3729
3730 spin_lock(ptl); /* Caller expects lock to be held */
3731 return ret;
3732 }
3733
3734 /* Return the pagecache page at a given address within a VMA */
3735 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3736 struct vm_area_struct *vma, unsigned long address)
3737 {
3738 struct address_space *mapping;
3739 pgoff_t idx;
3740
3741 mapping = vma->vm_file->f_mapping;
3742 idx = vma_hugecache_offset(h, vma, address);
3743
3744 return find_lock_page(mapping, idx);
3745 }
3746
3747 /*
3748 * Return whether there is a pagecache page to back given address within VMA.
3749 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3750 */
3751 static bool hugetlbfs_pagecache_present(struct hstate *h,
3752 struct vm_area_struct *vma, unsigned long address)
3753 {
3754 struct address_space *mapping;
3755 pgoff_t idx;
3756 struct page *page;
3757
3758 mapping = vma->vm_file->f_mapping;
3759 idx = vma_hugecache_offset(h, vma, address);
3760
3761 page = find_get_page(mapping, idx);
3762 if (page)
3763 put_page(page);
3764 return page != NULL;
3765 }
3766
3767 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3768 pgoff_t idx)
3769 {
3770 struct inode *inode = mapping->host;
3771 struct hstate *h = hstate_inode(inode);
3772 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3773
3774 if (err)
3775 return err;
3776 ClearPagePrivate(page);
3777
3778 /*
3779 * set page dirty so that it will not be removed from cache/file
3780 * by non-hugetlbfs specific code paths.
3781 */
3782 set_page_dirty(page);
3783
3784 spin_lock(&inode->i_lock);
3785 inode->i_blocks += blocks_per_huge_page(h);
3786 spin_unlock(&inode->i_lock);
3787 return 0;
3788 }
3789
3790 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3791 struct vm_area_struct *vma,
3792 struct address_space *mapping, pgoff_t idx,
3793 unsigned long address, pte_t *ptep, unsigned int flags)
3794 {
3795 struct hstate *h = hstate_vma(vma);
3796 vm_fault_t ret = VM_FAULT_SIGBUS;
3797 int anon_rmap = 0;
3798 unsigned long size;
3799 struct page *page;
3800 pte_t new_pte;
3801 spinlock_t *ptl;
3802 unsigned long haddr = address & huge_page_mask(h);
3803 bool new_page = false;
3804
3805 /*
3806 * Currently, we are forced to kill the process in the event the
3807 * original mapper has unmapped pages from the child due to a failed
3808 * COW. Warn that such a situation has occurred as it may not be obvious
3809 */
3810 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3811 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3812 current->pid);
3813 return ret;
3814 }
3815
3816 /*
3817 * Use page lock to guard against racing truncation
3818 * before we get page_table_lock.
3819 */
3820 retry:
3821 page = find_lock_page(mapping, idx);
3822 if (!page) {
3823 size = i_size_read(mapping->host) >> huge_page_shift(h);
3824 if (idx >= size)
3825 goto out;
3826
3827 /*
3828 * Check for page in userfault range
3829 */
3830 if (userfaultfd_missing(vma)) {
3831 u32 hash;
3832 struct vm_fault vmf = {
3833 .vma = vma,
3834 .address = haddr,
3835 .flags = flags,
3836 /*
3837 * Hard to debug if it ends up being
3838 * used by a callee that assumes
3839 * something about the other
3840 * uninitialized fields... same as in
3841 * memory.c
3842 */
3843 };
3844
3845 /*
3846 * hugetlb_fault_mutex must be dropped before
3847 * handling userfault. Reacquire after handling
3848 * fault to make calling code simpler.
3849 */
3850 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3851 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3852 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3853 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3854 goto out;
3855 }
3856
3857 page = alloc_huge_page(vma, haddr, 0);
3858 if (IS_ERR(page)) {
3859 /*
3860 * Returning error will result in faulting task being
3861 * sent SIGBUS. The hugetlb fault mutex prevents two
3862 * tasks from racing to fault in the same page which
3863 * could result in false unable to allocate errors.
3864 * Page migration does not take the fault mutex, but
3865 * does a clear then write of pte's under page table
3866 * lock. Page fault code could race with migration,
3867 * notice the clear pte and try to allocate a page
3868 * here. Before returning error, get ptl and make
3869 * sure there really is no pte entry.
3870 */
3871 ptl = huge_pte_lock(h, mm, ptep);
3872 if (!huge_pte_none(huge_ptep_get(ptep))) {
3873 ret = 0;
3874 spin_unlock(ptl);
3875 goto out;
3876 }
3877 spin_unlock(ptl);
3878 ret = vmf_error(PTR_ERR(page));
3879 goto out;
3880 }
3881 clear_huge_page(page, address, pages_per_huge_page(h));
3882 __SetPageUptodate(page);
3883 new_page = true;
3884
3885 if (vma->vm_flags & VM_MAYSHARE) {
3886 int err = huge_add_to_page_cache(page, mapping, idx);
3887 if (err) {
3888 put_page(page);
3889 if (err == -EEXIST)
3890 goto retry;
3891 goto out;
3892 }
3893 } else {
3894 lock_page(page);
3895 if (unlikely(anon_vma_prepare(vma))) {
3896 ret = VM_FAULT_OOM;
3897 goto backout_unlocked;
3898 }
3899 anon_rmap = 1;
3900 }
3901 } else {
3902 /*
3903 * If memory error occurs between mmap() and fault, some process
3904 * don't have hwpoisoned swap entry for errored virtual address.
3905 * So we need to block hugepage fault by PG_hwpoison bit check.
3906 */
3907 if (unlikely(PageHWPoison(page))) {
3908 ret = VM_FAULT_HWPOISON |
3909 VM_FAULT_SET_HINDEX(hstate_index(h));
3910 goto backout_unlocked;
3911 }
3912 }
3913
3914 /*
3915 * If we are going to COW a private mapping later, we examine the
3916 * pending reservations for this page now. This will ensure that
3917 * any allocations necessary to record that reservation occur outside
3918 * the spinlock.
3919 */
3920 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3921 if (vma_needs_reservation(h, vma, haddr) < 0) {
3922 ret = VM_FAULT_OOM;
3923 goto backout_unlocked;
3924 }
3925 /* Just decrements count, does not deallocate */
3926 vma_end_reservation(h, vma, haddr);
3927 }
3928
3929 ptl = huge_pte_lock(h, mm, ptep);
3930 size = i_size_read(mapping->host) >> huge_page_shift(h);
3931 if (idx >= size)
3932 goto backout;
3933
3934 ret = 0;
3935 if (!huge_pte_none(huge_ptep_get(ptep)))
3936 goto backout;
3937
3938 if (anon_rmap) {
3939 ClearPagePrivate(page);
3940 hugepage_add_new_anon_rmap(page, vma, haddr);
3941 } else
3942 page_dup_rmap(page, true);
3943 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3944 && (vma->vm_flags & VM_SHARED)));
3945 set_huge_pte_at(mm, haddr, ptep, new_pte);
3946
3947 hugetlb_count_add(pages_per_huge_page(h), mm);
3948 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3949 /* Optimization, do the COW without a second fault */
3950 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3951 }
3952
3953 spin_unlock(ptl);
3954
3955 /*
3956 * Only make newly allocated pages active. Existing pages found
3957 * in the pagecache could be !page_huge_active() if they have been
3958 * isolated for migration.
3959 */
3960 if (new_page)
3961 set_page_huge_active(page);
3962
3963 unlock_page(page);
3964 out:
3965 return ret;
3966
3967 backout:
3968 spin_unlock(ptl);
3969 backout_unlocked:
3970 unlock_page(page);
3971 restore_reserve_on_error(h, vma, haddr, page);
3972 put_page(page);
3973 goto out;
3974 }
3975
3976 #ifdef CONFIG_SMP
3977 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3978 pgoff_t idx, unsigned long address)
3979 {
3980 unsigned long key[2];
3981 u32 hash;
3982
3983 key[0] = (unsigned long) mapping;
3984 key[1] = idx;
3985
3986 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3987
3988 return hash & (num_fault_mutexes - 1);
3989 }
3990 #else
3991 /*
3992 * For uniprocesor systems we always use a single mutex, so just
3993 * return 0 and avoid the hashing overhead.
3994 */
3995 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3996 pgoff_t idx, unsigned long address)
3997 {
3998 return 0;
3999 }
4000 #endif
4001
4002 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4003 unsigned long address, unsigned int flags)
4004 {
4005 pte_t *ptep, entry;
4006 spinlock_t *ptl;
4007 vm_fault_t ret;
4008 u32 hash;
4009 pgoff_t idx;
4010 struct page *page = NULL;
4011 struct page *pagecache_page = NULL;
4012 struct hstate *h = hstate_vma(vma);
4013 struct address_space *mapping;
4014 int need_wait_lock = 0;
4015 unsigned long haddr = address & huge_page_mask(h);
4016
4017 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4018 if (ptep) {
4019 entry = huge_ptep_get(ptep);
4020 if (unlikely(is_hugetlb_entry_migration(entry))) {
4021 migration_entry_wait_huge(vma, mm, ptep);
4022 return 0;
4023 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4024 return VM_FAULT_HWPOISON_LARGE |
4025 VM_FAULT_SET_HINDEX(hstate_index(h));
4026 } else {
4027 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4028 if (!ptep)
4029 return VM_FAULT_OOM;
4030 }
4031
4032 mapping = vma->vm_file->f_mapping;
4033 idx = vma_hugecache_offset(h, vma, haddr);
4034
4035 /*
4036 * Serialize hugepage allocation and instantiation, so that we don't
4037 * get spurious allocation failures if two CPUs race to instantiate
4038 * the same page in the page cache.
4039 */
4040 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4041 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4042
4043 entry = huge_ptep_get(ptep);
4044 if (huge_pte_none(entry)) {
4045 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4046 goto out_mutex;
4047 }
4048
4049 ret = 0;
4050
4051 /*
4052 * entry could be a migration/hwpoison entry at this point, so this
4053 * check prevents the kernel from going below assuming that we have
4054 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4055 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4056 * handle it.
4057 */
4058 if (!pte_present(entry))
4059 goto out_mutex;
4060
4061 /*
4062 * If we are going to COW the mapping later, we examine the pending
4063 * reservations for this page now. This will ensure that any
4064 * allocations necessary to record that reservation occur outside the
4065 * spinlock. For private mappings, we also lookup the pagecache
4066 * page now as it is used to determine if a reservation has been
4067 * consumed.
4068 */
4069 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4070 if (vma_needs_reservation(h, vma, haddr) < 0) {
4071 ret = VM_FAULT_OOM;
4072 goto out_mutex;
4073 }
4074 /* Just decrements count, does not deallocate */
4075 vma_end_reservation(h, vma, haddr);
4076
4077 if (!(vma->vm_flags & VM_MAYSHARE))
4078 pagecache_page = hugetlbfs_pagecache_page(h,
4079 vma, haddr);
4080 }
4081
4082 ptl = huge_pte_lock(h, mm, ptep);
4083
4084 /* Check for a racing update before calling hugetlb_cow */
4085 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4086 goto out_ptl;
4087
4088 /*
4089 * hugetlb_cow() requires page locks of pte_page(entry) and
4090 * pagecache_page, so here we need take the former one
4091 * when page != pagecache_page or !pagecache_page.
4092 */
4093 page = pte_page(entry);
4094 if (page != pagecache_page)
4095 if (!trylock_page(page)) {
4096 need_wait_lock = 1;
4097 goto out_ptl;
4098 }
4099
4100 get_page(page);
4101
4102 if (flags & FAULT_FLAG_WRITE) {
4103 if (!huge_pte_write(entry)) {
4104 ret = hugetlb_cow(mm, vma, address, ptep,
4105 pagecache_page, ptl);
4106 goto out_put_page;
4107 }
4108 entry = huge_pte_mkdirty(entry);
4109 }
4110 entry = pte_mkyoung(entry);
4111 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4112 flags & FAULT_FLAG_WRITE))
4113 update_mmu_cache(vma, haddr, ptep);
4114 out_put_page:
4115 if (page != pagecache_page)
4116 unlock_page(page);
4117 put_page(page);
4118 out_ptl:
4119 spin_unlock(ptl);
4120
4121 if (pagecache_page) {
4122 unlock_page(pagecache_page);
4123 put_page(pagecache_page);
4124 }
4125 out_mutex:
4126 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4127 /*
4128 * Generally it's safe to hold refcount during waiting page lock. But
4129 * here we just wait to defer the next page fault to avoid busy loop and
4130 * the page is not used after unlocked before returning from the current
4131 * page fault. So we are safe from accessing freed page, even if we wait
4132 * here without taking refcount.
4133 */
4134 if (need_wait_lock)
4135 wait_on_page_locked(page);
4136 return ret;
4137 }
4138
4139 /*
4140 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4141 * modifications for huge pages.
4142 */
4143 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4144 pte_t *dst_pte,
4145 struct vm_area_struct *dst_vma,
4146 unsigned long dst_addr,
4147 unsigned long src_addr,
4148 struct page **pagep)
4149 {
4150 struct address_space *mapping;
4151 pgoff_t idx;
4152 unsigned long size;
4153 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4154 struct hstate *h = hstate_vma(dst_vma);
4155 pte_t _dst_pte;
4156 spinlock_t *ptl;
4157 int ret;
4158 struct page *page;
4159
4160 if (!*pagep) {
4161 ret = -ENOMEM;
4162 page = alloc_huge_page(dst_vma, dst_addr, 0);
4163 if (IS_ERR(page))
4164 goto out;
4165
4166 ret = copy_huge_page_from_user(page,
4167 (const void __user *) src_addr,
4168 pages_per_huge_page(h), false);
4169
4170 /* fallback to copy_from_user outside mmap_sem */
4171 if (unlikely(ret)) {
4172 ret = -ENOENT;
4173 *pagep = page;
4174 /* don't free the page */
4175 goto out;
4176 }
4177 } else {
4178 page = *pagep;
4179 *pagep = NULL;
4180 }
4181
4182 /*
4183 * The memory barrier inside __SetPageUptodate makes sure that
4184 * preceding stores to the page contents become visible before
4185 * the set_pte_at() write.
4186 */
4187 __SetPageUptodate(page);
4188
4189 mapping = dst_vma->vm_file->f_mapping;
4190 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4191
4192 /*
4193 * If shared, add to page cache
4194 */
4195 if (vm_shared) {
4196 size = i_size_read(mapping->host) >> huge_page_shift(h);
4197 ret = -EFAULT;
4198 if (idx >= size)
4199 goto out_release_nounlock;
4200
4201 /*
4202 * Serialization between remove_inode_hugepages() and
4203 * huge_add_to_page_cache() below happens through the
4204 * hugetlb_fault_mutex_table that here must be hold by
4205 * the caller.
4206 */
4207 ret = huge_add_to_page_cache(page, mapping, idx);
4208 if (ret)
4209 goto out_release_nounlock;
4210 }
4211
4212 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4213 spin_lock(ptl);
4214
4215 /*
4216 * Recheck the i_size after holding PT lock to make sure not
4217 * to leave any page mapped (as page_mapped()) beyond the end
4218 * of the i_size (remove_inode_hugepages() is strict about
4219 * enforcing that). If we bail out here, we'll also leave a
4220 * page in the radix tree in the vm_shared case beyond the end
4221 * of the i_size, but remove_inode_hugepages() will take care
4222 * of it as soon as we drop the hugetlb_fault_mutex_table.
4223 */
4224 size = i_size_read(mapping->host) >> huge_page_shift(h);
4225 ret = -EFAULT;
4226 if (idx >= size)
4227 goto out_release_unlock;
4228
4229 ret = -EEXIST;
4230 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4231 goto out_release_unlock;
4232
4233 if (vm_shared) {
4234 page_dup_rmap(page, true);
4235 } else {
4236 ClearPagePrivate(page);
4237 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4238 }
4239
4240 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4241 if (dst_vma->vm_flags & VM_WRITE)
4242 _dst_pte = huge_pte_mkdirty(_dst_pte);
4243 _dst_pte = pte_mkyoung(_dst_pte);
4244
4245 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4246
4247 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4248 dst_vma->vm_flags & VM_WRITE);
4249 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4250
4251 /* No need to invalidate - it was non-present before */
4252 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4253
4254 spin_unlock(ptl);
4255 set_page_huge_active(page);
4256 if (vm_shared)
4257 unlock_page(page);
4258 ret = 0;
4259 out:
4260 return ret;
4261 out_release_unlock:
4262 spin_unlock(ptl);
4263 if (vm_shared)
4264 unlock_page(page);
4265 out_release_nounlock:
4266 put_page(page);
4267 goto out;
4268 }
4269
4270 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4271 struct page **pages, struct vm_area_struct **vmas,
4272 unsigned long *position, unsigned long *nr_pages,
4273 long i, unsigned int flags, int *nonblocking)
4274 {
4275 unsigned long pfn_offset;
4276 unsigned long vaddr = *position;
4277 unsigned long remainder = *nr_pages;
4278 struct hstate *h = hstate_vma(vma);
4279 int err = -EFAULT;
4280
4281 while (vaddr < vma->vm_end && remainder) {
4282 pte_t *pte;
4283 spinlock_t *ptl = NULL;
4284 int absent;
4285 struct page *page;
4286
4287 /*
4288 * If we have a pending SIGKILL, don't keep faulting pages and
4289 * potentially allocating memory.
4290 */
4291 if (fatal_signal_pending(current)) {
4292 remainder = 0;
4293 break;
4294 }
4295
4296 /*
4297 * Some archs (sparc64, sh*) have multiple pte_ts to
4298 * each hugepage. We have to make sure we get the
4299 * first, for the page indexing below to work.
4300 *
4301 * Note that page table lock is not held when pte is null.
4302 */
4303 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4304 huge_page_size(h));
4305 if (pte)
4306 ptl = huge_pte_lock(h, mm, pte);
4307 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4308
4309 /*
4310 * When coredumping, it suits get_dump_page if we just return
4311 * an error where there's an empty slot with no huge pagecache
4312 * to back it. This way, we avoid allocating a hugepage, and
4313 * the sparse dumpfile avoids allocating disk blocks, but its
4314 * huge holes still show up with zeroes where they need to be.
4315 */
4316 if (absent && (flags & FOLL_DUMP) &&
4317 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4318 if (pte)
4319 spin_unlock(ptl);
4320 remainder = 0;
4321 break;
4322 }
4323
4324 /*
4325 * We need call hugetlb_fault for both hugepages under migration
4326 * (in which case hugetlb_fault waits for the migration,) and
4327 * hwpoisoned hugepages (in which case we need to prevent the
4328 * caller from accessing to them.) In order to do this, we use
4329 * here is_swap_pte instead of is_hugetlb_entry_migration and
4330 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4331 * both cases, and because we can't follow correct pages
4332 * directly from any kind of swap entries.
4333 */
4334 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4335 ((flags & FOLL_WRITE) &&
4336 !huge_pte_write(huge_ptep_get(pte)))) {
4337 vm_fault_t ret;
4338 unsigned int fault_flags = 0;
4339
4340 if (pte)
4341 spin_unlock(ptl);
4342 if (flags & FOLL_WRITE)
4343 fault_flags |= FAULT_FLAG_WRITE;
4344 if (nonblocking)
4345 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4346 if (flags & FOLL_NOWAIT)
4347 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4348 FAULT_FLAG_RETRY_NOWAIT;
4349 if (flags & FOLL_TRIED) {
4350 VM_WARN_ON_ONCE(fault_flags &
4351 FAULT_FLAG_ALLOW_RETRY);
4352 fault_flags |= FAULT_FLAG_TRIED;
4353 }
4354 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4355 if (ret & VM_FAULT_ERROR) {
4356 err = vm_fault_to_errno(ret, flags);
4357 remainder = 0;
4358 break;
4359 }
4360 if (ret & VM_FAULT_RETRY) {
4361 if (nonblocking &&
4362 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4363 *nonblocking = 0;
4364 *nr_pages = 0;
4365 /*
4366 * VM_FAULT_RETRY must not return an
4367 * error, it will return zero
4368 * instead.
4369 *
4370 * No need to update "position" as the
4371 * caller will not check it after
4372 * *nr_pages is set to 0.
4373 */
4374 return i;
4375 }
4376 continue;
4377 }
4378
4379 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4380 page = pte_page(huge_ptep_get(pte));
4381
4382 /*
4383 * Instead of doing 'try_get_page()' below in the same_page
4384 * loop, just check the count once here.
4385 */
4386 if (unlikely(page_count(page) <= 0)) {
4387 if (pages) {
4388 spin_unlock(ptl);
4389 remainder = 0;
4390 err = -ENOMEM;
4391 break;
4392 }
4393 }
4394 same_page:
4395 if (pages) {
4396 pages[i] = mem_map_offset(page, pfn_offset);
4397 get_page(pages[i]);
4398 }
4399
4400 if (vmas)
4401 vmas[i] = vma;
4402
4403 vaddr += PAGE_SIZE;
4404 ++pfn_offset;
4405 --remainder;
4406 ++i;
4407 if (vaddr < vma->vm_end && remainder &&
4408 pfn_offset < pages_per_huge_page(h)) {
4409 /*
4410 * We use pfn_offset to avoid touching the pageframes
4411 * of this compound page.
4412 */
4413 goto same_page;
4414 }
4415 spin_unlock(ptl);
4416 }
4417 *nr_pages = remainder;
4418 /*
4419 * setting position is actually required only if remainder is
4420 * not zero but it's faster not to add a "if (remainder)"
4421 * branch.
4422 */
4423 *position = vaddr;
4424
4425 return i ? i : err;
4426 }
4427
4428 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4429 /*
4430 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4431 * implement this.
4432 */
4433 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4434 #endif
4435
4436 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4437 unsigned long address, unsigned long end, pgprot_t newprot)
4438 {
4439 struct mm_struct *mm = vma->vm_mm;
4440 unsigned long start = address;
4441 pte_t *ptep;
4442 pte_t pte;
4443 struct hstate *h = hstate_vma(vma);
4444 unsigned long pages = 0;
4445 bool shared_pmd = false;
4446 struct mmu_notifier_range range;
4447
4448 /*
4449 * In the case of shared PMDs, the area to flush could be beyond
4450 * start/end. Set range.start/range.end to cover the maximum possible
4451 * range if PMD sharing is possible.
4452 */
4453 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4454 0, vma, mm, start, end);
4455 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4456
4457 BUG_ON(address >= end);
4458 flush_cache_range(vma, range.start, range.end);
4459
4460 mmu_notifier_invalidate_range_start(&range);
4461 i_mmap_lock_write(vma->vm_file->f_mapping);
4462 for (; address < end; address += huge_page_size(h)) {
4463 spinlock_t *ptl;
4464 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4465 if (!ptep)
4466 continue;
4467 ptl = huge_pte_lock(h, mm, ptep);
4468 if (huge_pmd_unshare(mm, &address, ptep)) {
4469 pages++;
4470 spin_unlock(ptl);
4471 shared_pmd = true;
4472 continue;
4473 }
4474 pte = huge_ptep_get(ptep);
4475 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4476 spin_unlock(ptl);
4477 continue;
4478 }
4479 if (unlikely(is_hugetlb_entry_migration(pte))) {
4480 swp_entry_t entry = pte_to_swp_entry(pte);
4481
4482 if (is_write_migration_entry(entry)) {
4483 pte_t newpte;
4484
4485 make_migration_entry_read(&entry);
4486 newpte = swp_entry_to_pte(entry);
4487 set_huge_swap_pte_at(mm, address, ptep,
4488 newpte, huge_page_size(h));
4489 pages++;
4490 }
4491 spin_unlock(ptl);
4492 continue;
4493 }
4494 if (!huge_pte_none(pte)) {
4495 pte_t old_pte;
4496
4497 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4498 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4499 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4500 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4501 pages++;
4502 }
4503 spin_unlock(ptl);
4504 }
4505 /*
4506 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4507 * may have cleared our pud entry and done put_page on the page table:
4508 * once we release i_mmap_rwsem, another task can do the final put_page
4509 * and that page table be reused and filled with junk. If we actually
4510 * did unshare a page of pmds, flush the range corresponding to the pud.
4511 */
4512 if (shared_pmd)
4513 flush_hugetlb_tlb_range(vma, range.start, range.end);
4514 else
4515 flush_hugetlb_tlb_range(vma, start, end);
4516 /*
4517 * No need to call mmu_notifier_invalidate_range() we are downgrading
4518 * page table protection not changing it to point to a new page.
4519 *
4520 * See Documentation/vm/mmu_notifier.rst
4521 */
4522 i_mmap_unlock_write(vma->vm_file->f_mapping);
4523 mmu_notifier_invalidate_range_end(&range);
4524
4525 return pages << h->order;
4526 }
4527
4528 int hugetlb_reserve_pages(struct inode *inode,
4529 long from, long to,
4530 struct vm_area_struct *vma,
4531 vm_flags_t vm_flags)
4532 {
4533 long ret, chg;
4534 struct hstate *h = hstate_inode(inode);
4535 struct hugepage_subpool *spool = subpool_inode(inode);
4536 struct resv_map *resv_map;
4537 long gbl_reserve;
4538
4539 /* This should never happen */
4540 if (from > to) {
4541 VM_WARN(1, "%s called with a negative range\n", __func__);
4542 return -EINVAL;
4543 }
4544
4545 /*
4546 * Only apply hugepage reservation if asked. At fault time, an
4547 * attempt will be made for VM_NORESERVE to allocate a page
4548 * without using reserves
4549 */
4550 if (vm_flags & VM_NORESERVE)
4551 return 0;
4552
4553 /*
4554 * Shared mappings base their reservation on the number of pages that
4555 * are already allocated on behalf of the file. Private mappings need
4556 * to reserve the full area even if read-only as mprotect() may be
4557 * called to make the mapping read-write. Assume !vma is a shm mapping
4558 */
4559 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4560 /*
4561 * resv_map can not be NULL as hugetlb_reserve_pages is only
4562 * called for inodes for which resv_maps were created (see
4563 * hugetlbfs_get_inode).
4564 */
4565 resv_map = inode_resv_map(inode);
4566
4567 chg = region_chg(resv_map, from, to);
4568
4569 } else {
4570 resv_map = resv_map_alloc();
4571 if (!resv_map)
4572 return -ENOMEM;
4573
4574 chg = to - from;
4575
4576 set_vma_resv_map(vma, resv_map);
4577 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4578 }
4579
4580 if (chg < 0) {
4581 ret = chg;
4582 goto out_err;
4583 }
4584
4585 /*
4586 * There must be enough pages in the subpool for the mapping. If
4587 * the subpool has a minimum size, there may be some global
4588 * reservations already in place (gbl_reserve).
4589 */
4590 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4591 if (gbl_reserve < 0) {
4592 ret = -ENOSPC;
4593 goto out_err;
4594 }
4595
4596 /*
4597 * Check enough hugepages are available for the reservation.
4598 * Hand the pages back to the subpool if there are not
4599 */
4600 ret = hugetlb_acct_memory(h, gbl_reserve);
4601 if (ret < 0) {
4602 /* put back original number of pages, chg */
4603 (void)hugepage_subpool_put_pages(spool, chg);
4604 goto out_err;
4605 }
4606
4607 /*
4608 * Account for the reservations made. Shared mappings record regions
4609 * that have reservations as they are shared by multiple VMAs.
4610 * When the last VMA disappears, the region map says how much
4611 * the reservation was and the page cache tells how much of
4612 * the reservation was consumed. Private mappings are per-VMA and
4613 * only the consumed reservations are tracked. When the VMA
4614 * disappears, the original reservation is the VMA size and the
4615 * consumed reservations are stored in the map. Hence, nothing
4616 * else has to be done for private mappings here
4617 */
4618 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4619 long add = region_add(resv_map, from, to);
4620
4621 if (unlikely(chg > add)) {
4622 /*
4623 * pages in this range were added to the reserve
4624 * map between region_chg and region_add. This
4625 * indicates a race with alloc_huge_page. Adjust
4626 * the subpool and reserve counts modified above
4627 * based on the difference.
4628 */
4629 long rsv_adjust;
4630
4631 rsv_adjust = hugepage_subpool_put_pages(spool,
4632 chg - add);
4633 hugetlb_acct_memory(h, -rsv_adjust);
4634 }
4635 }
4636 return 0;
4637 out_err:
4638 if (!vma || vma->vm_flags & VM_MAYSHARE)
4639 /* Don't call region_abort if region_chg failed */
4640 if (chg >= 0)
4641 region_abort(resv_map, from, to);
4642 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4643 kref_put(&resv_map->refs, resv_map_release);
4644 return ret;
4645 }
4646
4647 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4648 long freed)
4649 {
4650 struct hstate *h = hstate_inode(inode);
4651 struct resv_map *resv_map = inode_resv_map(inode);
4652 long chg = 0;
4653 struct hugepage_subpool *spool = subpool_inode(inode);
4654 long gbl_reserve;
4655
4656 /*
4657 * Since this routine can be called in the evict inode path for all
4658 * hugetlbfs inodes, resv_map could be NULL.
4659 */
4660 if (resv_map) {
4661 chg = region_del(resv_map, start, end);
4662 /*
4663 * region_del() can fail in the rare case where a region
4664 * must be split and another region descriptor can not be
4665 * allocated. If end == LONG_MAX, it will not fail.
4666 */
4667 if (chg < 0)
4668 return chg;
4669 }
4670
4671 spin_lock(&inode->i_lock);
4672 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4673 spin_unlock(&inode->i_lock);
4674
4675 /*
4676 * If the subpool has a minimum size, the number of global
4677 * reservations to be released may be adjusted.
4678 */
4679 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4680 hugetlb_acct_memory(h, -gbl_reserve);
4681
4682 return 0;
4683 }
4684
4685 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4686 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4687 struct vm_area_struct *vma,
4688 unsigned long addr, pgoff_t idx)
4689 {
4690 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4691 svma->vm_start;
4692 unsigned long sbase = saddr & PUD_MASK;
4693 unsigned long s_end = sbase + PUD_SIZE;
4694
4695 /* Allow segments to share if only one is marked locked */
4696 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4697 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4698
4699 /*
4700 * match the virtual addresses, permission and the alignment of the
4701 * page table page.
4702 */
4703 if (pmd_index(addr) != pmd_index(saddr) ||
4704 vm_flags != svm_flags ||
4705 sbase < svma->vm_start || svma->vm_end < s_end)
4706 return 0;
4707
4708 return saddr;
4709 }
4710
4711 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4712 {
4713 unsigned long base = addr & PUD_MASK;
4714 unsigned long end = base + PUD_SIZE;
4715
4716 /*
4717 * check on proper vm_flags and page table alignment
4718 */
4719 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4720 return true;
4721 return false;
4722 }
4723
4724 /*
4725 * Determine if start,end range within vma could be mapped by shared pmd.
4726 * If yes, adjust start and end to cover range associated with possible
4727 * shared pmd mappings.
4728 */
4729 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4730 unsigned long *start, unsigned long *end)
4731 {
4732 unsigned long check_addr = *start;
4733
4734 if (!(vma->vm_flags & VM_MAYSHARE))
4735 return;
4736
4737 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4738 unsigned long a_start = check_addr & PUD_MASK;
4739 unsigned long a_end = a_start + PUD_SIZE;
4740
4741 /*
4742 * If sharing is possible, adjust start/end if necessary.
4743 */
4744 if (range_in_vma(vma, a_start, a_end)) {
4745 if (a_start < *start)
4746 *start = a_start;
4747 if (a_end > *end)
4748 *end = a_end;
4749 }
4750 }
4751 }
4752
4753 /*
4754 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4755 * and returns the corresponding pte. While this is not necessary for the
4756 * !shared pmd case because we can allocate the pmd later as well, it makes the
4757 * code much cleaner. pmd allocation is essential for the shared case because
4758 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4759 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4760 * bad pmd for sharing.
4761 */
4762 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4763 {
4764 struct vm_area_struct *vma = find_vma(mm, addr);
4765 struct address_space *mapping = vma->vm_file->f_mapping;
4766 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4767 vma->vm_pgoff;
4768 struct vm_area_struct *svma;
4769 unsigned long saddr;
4770 pte_t *spte = NULL;
4771 pte_t *pte;
4772 spinlock_t *ptl;
4773
4774 if (!vma_shareable(vma, addr))
4775 return (pte_t *)pmd_alloc(mm, pud, addr);
4776
4777 i_mmap_lock_write(mapping);
4778 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4779 if (svma == vma)
4780 continue;
4781
4782 saddr = page_table_shareable(svma, vma, addr, idx);
4783 if (saddr) {
4784 spte = huge_pte_offset(svma->vm_mm, saddr,
4785 vma_mmu_pagesize(svma));
4786 if (spte) {
4787 get_page(virt_to_page(spte));
4788 break;
4789 }
4790 }
4791 }
4792
4793 if (!spte)
4794 goto out;
4795
4796 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4797 if (pud_none(*pud)) {
4798 pud_populate(mm, pud,
4799 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4800 mm_inc_nr_pmds(mm);
4801 } else {
4802 put_page(virt_to_page(spte));
4803 }
4804 spin_unlock(ptl);
4805 out:
4806 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4807 i_mmap_unlock_write(mapping);
4808 return pte;
4809 }
4810
4811 /*
4812 * unmap huge page backed by shared pte.
4813 *
4814 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4815 * indicated by page_count > 1, unmap is achieved by clearing pud and
4816 * decrementing the ref count. If count == 1, the pte page is not shared.
4817 *
4818 * called with page table lock held.
4819 *
4820 * returns: 1 successfully unmapped a shared pte page
4821 * 0 the underlying pte page is not shared, or it is the last user
4822 */
4823 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4824 {
4825 pgd_t *pgd = pgd_offset(mm, *addr);
4826 p4d_t *p4d = p4d_offset(pgd, *addr);
4827 pud_t *pud = pud_offset(p4d, *addr);
4828
4829 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4830 if (page_count(virt_to_page(ptep)) == 1)
4831 return 0;
4832
4833 pud_clear(pud);
4834 put_page(virt_to_page(ptep));
4835 mm_dec_nr_pmds(mm);
4836 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4837 return 1;
4838 }
4839 #define want_pmd_share() (1)
4840 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4841 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4842 {
4843 return NULL;
4844 }
4845
4846 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4847 {
4848 return 0;
4849 }
4850
4851 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4852 unsigned long *start, unsigned long *end)
4853 {
4854 }
4855 #define want_pmd_share() (0)
4856 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4857
4858 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4859 pte_t *huge_pte_alloc(struct mm_struct *mm,
4860 unsigned long addr, unsigned long sz)
4861 {
4862 pgd_t *pgd;
4863 p4d_t *p4d;
4864 pud_t *pud;
4865 pte_t *pte = NULL;
4866
4867 pgd = pgd_offset(mm, addr);
4868 p4d = p4d_alloc(mm, pgd, addr);
4869 if (!p4d)
4870 return NULL;
4871 pud = pud_alloc(mm, p4d, addr);
4872 if (pud) {
4873 if (sz == PUD_SIZE) {
4874 pte = (pte_t *)pud;
4875 } else {
4876 BUG_ON(sz != PMD_SIZE);
4877 if (want_pmd_share() && pud_none(*pud))
4878 pte = huge_pmd_share(mm, addr, pud);
4879 else
4880 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4881 }
4882 }
4883 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4884
4885 return pte;
4886 }
4887
4888 /*
4889 * huge_pte_offset() - Walk the page table to resolve the hugepage
4890 * entry at address @addr
4891 *
4892 * Return: Pointer to page table or swap entry (PUD or PMD) for
4893 * address @addr, or NULL if a p*d_none() entry is encountered and the
4894 * size @sz doesn't match the hugepage size at this level of the page
4895 * table.
4896 */
4897 pte_t *huge_pte_offset(struct mm_struct *mm,
4898 unsigned long addr, unsigned long sz)
4899 {
4900 pgd_t *pgd;
4901 p4d_t *p4d;
4902 pud_t *pud;
4903 pmd_t *pmd;
4904
4905 pgd = pgd_offset(mm, addr);
4906 if (!pgd_present(*pgd))
4907 return NULL;
4908 p4d = p4d_offset(pgd, addr);
4909 if (!p4d_present(*p4d))
4910 return NULL;
4911
4912 pud = pud_offset(p4d, addr);
4913 if (sz != PUD_SIZE && pud_none(*pud))
4914 return NULL;
4915 /* hugepage or swap? */
4916 if (pud_huge(*pud) || !pud_present(*pud))
4917 return (pte_t *)pud;
4918
4919 pmd = pmd_offset(pud, addr);
4920 if (sz != PMD_SIZE && pmd_none(*pmd))
4921 return NULL;
4922 /* hugepage or swap? */
4923 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4924 return (pte_t *)pmd;
4925
4926 return NULL;
4927 }
4928
4929 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4930
4931 /*
4932 * These functions are overwritable if your architecture needs its own
4933 * behavior.
4934 */
4935 struct page * __weak
4936 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4937 int write)
4938 {
4939 return ERR_PTR(-EINVAL);
4940 }
4941
4942 struct page * __weak
4943 follow_huge_pd(struct vm_area_struct *vma,
4944 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4945 {
4946 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4947 return NULL;
4948 }
4949
4950 struct page * __weak
4951 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4952 pmd_t *pmd, int flags)
4953 {
4954 struct page *page = NULL;
4955 spinlock_t *ptl;
4956 pte_t pte;
4957 retry:
4958 ptl = pmd_lockptr(mm, pmd);
4959 spin_lock(ptl);
4960 /*
4961 * make sure that the address range covered by this pmd is not
4962 * unmapped from other threads.
4963 */
4964 if (!pmd_huge(*pmd))
4965 goto out;
4966 pte = huge_ptep_get((pte_t *)pmd);
4967 if (pte_present(pte)) {
4968 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4969 if (flags & FOLL_GET)
4970 get_page(page);
4971 } else {
4972 if (is_hugetlb_entry_migration(pte)) {
4973 spin_unlock(ptl);
4974 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4975 goto retry;
4976 }
4977 /*
4978 * hwpoisoned entry is treated as no_page_table in
4979 * follow_page_mask().
4980 */
4981 }
4982 out:
4983 spin_unlock(ptl);
4984 return page;
4985 }
4986
4987 struct page * __weak
4988 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4989 pud_t *pud, int flags)
4990 {
4991 if (flags & FOLL_GET)
4992 return NULL;
4993
4994 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4995 }
4996
4997 struct page * __weak
4998 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4999 {
5000 if (flags & FOLL_GET)
5001 return NULL;
5002
5003 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5004 }
5005
5006 bool isolate_huge_page(struct page *page, struct list_head *list)
5007 {
5008 bool ret = true;
5009
5010 VM_BUG_ON_PAGE(!PageHead(page), page);
5011 spin_lock(&hugetlb_lock);
5012 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5013 ret = false;
5014 goto unlock;
5015 }
5016 clear_page_huge_active(page);
5017 list_move_tail(&page->lru, list);
5018 unlock:
5019 spin_unlock(&hugetlb_lock);
5020 return ret;
5021 }
5022
5023 void putback_active_hugepage(struct page *page)
5024 {
5025 VM_BUG_ON_PAGE(!PageHead(page), page);
5026 spin_lock(&hugetlb_lock);
5027 set_page_huge_active(page);
5028 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5029 spin_unlock(&hugetlb_lock);
5030 put_page(page);
5031 }
5032
5033 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5034 {
5035 struct hstate *h = page_hstate(oldpage);
5036
5037 hugetlb_cgroup_migrate(oldpage, newpage);
5038 set_page_owner_migrate_reason(newpage, reason);
5039
5040 /*
5041 * transfer temporary state of the new huge page. This is
5042 * reverse to other transitions because the newpage is going to
5043 * be final while the old one will be freed so it takes over
5044 * the temporary status.
5045 *
5046 * Also note that we have to transfer the per-node surplus state
5047 * here as well otherwise the global surplus count will not match
5048 * the per-node's.
5049 */
5050 if (PageHugeTemporary(newpage)) {
5051 int old_nid = page_to_nid(oldpage);
5052 int new_nid = page_to_nid(newpage);
5053
5054 SetPageHugeTemporary(oldpage);
5055 ClearPageHugeTemporary(newpage);
5056
5057 spin_lock(&hugetlb_lock);
5058 if (h->surplus_huge_pages_node[old_nid]) {
5059 h->surplus_huge_pages_node[old_nid]--;
5060 h->surplus_huge_pages_node[new_nid]++;
5061 }
5062 spin_unlock(&hugetlb_lock);
5063 }
5064 }