]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/hugetlb.c
mm, hugetlb: unify region structure handling
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
53 */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60 spin_unlock(&spool->lock);
61
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70 struct hugepage_subpool *spool;
71
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
75
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
80
81 return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
94 {
95 int ret = 0;
96
97 if (!spool)
98 return 0;
99
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
105 }
106 spin_unlock(&spool->lock);
107
108 return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
113 {
114 if (!spool)
115 return;
116
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126 return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131 return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156 struct file_region *rg, *nrg, *trg;
157
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
162
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
166
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
174
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
183 }
184 }
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192 struct file_region *rg, *nrg;
193 long chg = 0;
194
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
199
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
211
212 return t - f;
213 }
214
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
219
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
226
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
233 }
234 chg -= rg->to - rg->from;
235 }
236 return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241 struct file_region *rg, *trg;
242 long chg = 0;
243
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
250
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
256 }
257
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
265 }
266 return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271 struct file_region *rg;
272 long chg = 0;
273
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
278
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
283
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
286
287 chg += seg_to - seg_from;
288 }
289
290 return chg;
291 }
292
293 /*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
299 {
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
306 {
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316 struct hstate *hstate;
317
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
320
321 hstate = hstate_vma(vma);
322
323 return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336 return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370 return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
375 {
376 vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map *resv_map_alloc(void)
380 {
381 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
382 if (!resv_map)
383 return NULL;
384
385 kref_init(&resv_map->refs);
386 INIT_LIST_HEAD(&resv_map->regions);
387
388 return resv_map;
389 }
390
391 void resv_map_release(struct kref *ref)
392 {
393 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
394
395 /* Clear out any active regions before we release the map. */
396 region_truncate(&resv_map->regions, 0);
397 kfree(resv_map);
398 }
399
400 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
401 {
402 VM_BUG_ON(!is_vm_hugetlb_page(vma));
403 if (!(vma->vm_flags & VM_MAYSHARE))
404 return (struct resv_map *)(get_vma_private_data(vma) &
405 ~HPAGE_RESV_MASK);
406 return NULL;
407 }
408
409 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
410 {
411 VM_BUG_ON(!is_vm_hugetlb_page(vma));
412 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
413
414 set_vma_private_data(vma, (get_vma_private_data(vma) &
415 HPAGE_RESV_MASK) | (unsigned long)map);
416 }
417
418 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
419 {
420 VM_BUG_ON(!is_vm_hugetlb_page(vma));
421 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
422
423 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
424 }
425
426 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
427 {
428 VM_BUG_ON(!is_vm_hugetlb_page(vma));
429
430 return (get_vma_private_data(vma) & flag) != 0;
431 }
432
433 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
434 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
435 {
436 VM_BUG_ON(!is_vm_hugetlb_page(vma));
437 if (!(vma->vm_flags & VM_MAYSHARE))
438 vma->vm_private_data = (void *)0;
439 }
440
441 /* Returns true if the VMA has associated reserve pages */
442 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
443 {
444 if (vma->vm_flags & VM_NORESERVE) {
445 /*
446 * This address is already reserved by other process(chg == 0),
447 * so, we should decrement reserved count. Without decrementing,
448 * reserve count remains after releasing inode, because this
449 * allocated page will go into page cache and is regarded as
450 * coming from reserved pool in releasing step. Currently, we
451 * don't have any other solution to deal with this situation
452 * properly, so add work-around here.
453 */
454 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
455 return 1;
456 else
457 return 0;
458 }
459
460 /* Shared mappings always use reserves */
461 if (vma->vm_flags & VM_MAYSHARE)
462 return 1;
463
464 /*
465 * Only the process that called mmap() has reserves for
466 * private mappings.
467 */
468 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
469 return 1;
470
471 return 0;
472 }
473
474 static void enqueue_huge_page(struct hstate *h, struct page *page)
475 {
476 int nid = page_to_nid(page);
477 list_move(&page->lru, &h->hugepage_freelists[nid]);
478 h->free_huge_pages++;
479 h->free_huge_pages_node[nid]++;
480 }
481
482 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
483 {
484 struct page *page;
485
486 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
487 if (!is_migrate_isolate_page(page))
488 break;
489 /*
490 * if 'non-isolated free hugepage' not found on the list,
491 * the allocation fails.
492 */
493 if (&h->hugepage_freelists[nid] == &page->lru)
494 return NULL;
495 list_move(&page->lru, &h->hugepage_activelist);
496 set_page_refcounted(page);
497 h->free_huge_pages--;
498 h->free_huge_pages_node[nid]--;
499 return page;
500 }
501
502 /* Movability of hugepages depends on migration support. */
503 static inline gfp_t htlb_alloc_mask(struct hstate *h)
504 {
505 if (hugepages_treat_as_movable || hugepage_migration_support(h))
506 return GFP_HIGHUSER_MOVABLE;
507 else
508 return GFP_HIGHUSER;
509 }
510
511 static struct page *dequeue_huge_page_vma(struct hstate *h,
512 struct vm_area_struct *vma,
513 unsigned long address, int avoid_reserve,
514 long chg)
515 {
516 struct page *page = NULL;
517 struct mempolicy *mpol;
518 nodemask_t *nodemask;
519 struct zonelist *zonelist;
520 struct zone *zone;
521 struct zoneref *z;
522 unsigned int cpuset_mems_cookie;
523
524 /*
525 * A child process with MAP_PRIVATE mappings created by their parent
526 * have no page reserves. This check ensures that reservations are
527 * not "stolen". The child may still get SIGKILLed
528 */
529 if (!vma_has_reserves(vma, chg) &&
530 h->free_huge_pages - h->resv_huge_pages == 0)
531 goto err;
532
533 /* If reserves cannot be used, ensure enough pages are in the pool */
534 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
535 goto err;
536
537 retry_cpuset:
538 cpuset_mems_cookie = read_mems_allowed_begin();
539 zonelist = huge_zonelist(vma, address,
540 htlb_alloc_mask(h), &mpol, &nodemask);
541
542 for_each_zone_zonelist_nodemask(zone, z, zonelist,
543 MAX_NR_ZONES - 1, nodemask) {
544 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
545 page = dequeue_huge_page_node(h, zone_to_nid(zone));
546 if (page) {
547 if (avoid_reserve)
548 break;
549 if (!vma_has_reserves(vma, chg))
550 break;
551
552 SetPagePrivate(page);
553 h->resv_huge_pages--;
554 break;
555 }
556 }
557 }
558
559 mpol_cond_put(mpol);
560 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
561 goto retry_cpuset;
562 return page;
563
564 err:
565 return NULL;
566 }
567
568 static void update_and_free_page(struct hstate *h, struct page *page)
569 {
570 int i;
571
572 VM_BUG_ON(h->order >= MAX_ORDER);
573
574 h->nr_huge_pages--;
575 h->nr_huge_pages_node[page_to_nid(page)]--;
576 for (i = 0; i < pages_per_huge_page(h); i++) {
577 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
578 1 << PG_referenced | 1 << PG_dirty |
579 1 << PG_active | 1 << PG_reserved |
580 1 << PG_private | 1 << PG_writeback);
581 }
582 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
583 set_compound_page_dtor(page, NULL);
584 set_page_refcounted(page);
585 arch_release_hugepage(page);
586 __free_pages(page, huge_page_order(h));
587 }
588
589 struct hstate *size_to_hstate(unsigned long size)
590 {
591 struct hstate *h;
592
593 for_each_hstate(h) {
594 if (huge_page_size(h) == size)
595 return h;
596 }
597 return NULL;
598 }
599
600 static void free_huge_page(struct page *page)
601 {
602 /*
603 * Can't pass hstate in here because it is called from the
604 * compound page destructor.
605 */
606 struct hstate *h = page_hstate(page);
607 int nid = page_to_nid(page);
608 struct hugepage_subpool *spool =
609 (struct hugepage_subpool *)page_private(page);
610 bool restore_reserve;
611
612 set_page_private(page, 0);
613 page->mapping = NULL;
614 BUG_ON(page_count(page));
615 BUG_ON(page_mapcount(page));
616 restore_reserve = PagePrivate(page);
617 ClearPagePrivate(page);
618
619 spin_lock(&hugetlb_lock);
620 hugetlb_cgroup_uncharge_page(hstate_index(h),
621 pages_per_huge_page(h), page);
622 if (restore_reserve)
623 h->resv_huge_pages++;
624
625 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
626 /* remove the page from active list */
627 list_del(&page->lru);
628 update_and_free_page(h, page);
629 h->surplus_huge_pages--;
630 h->surplus_huge_pages_node[nid]--;
631 } else {
632 arch_clear_hugepage_flags(page);
633 enqueue_huge_page(h, page);
634 }
635 spin_unlock(&hugetlb_lock);
636 hugepage_subpool_put_pages(spool, 1);
637 }
638
639 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
640 {
641 INIT_LIST_HEAD(&page->lru);
642 set_compound_page_dtor(page, free_huge_page);
643 spin_lock(&hugetlb_lock);
644 set_hugetlb_cgroup(page, NULL);
645 h->nr_huge_pages++;
646 h->nr_huge_pages_node[nid]++;
647 spin_unlock(&hugetlb_lock);
648 put_page(page); /* free it into the hugepage allocator */
649 }
650
651 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
652 {
653 int i;
654 int nr_pages = 1 << order;
655 struct page *p = page + 1;
656
657 /* we rely on prep_new_huge_page to set the destructor */
658 set_compound_order(page, order);
659 __SetPageHead(page);
660 __ClearPageReserved(page);
661 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
662 __SetPageTail(p);
663 /*
664 * For gigantic hugepages allocated through bootmem at
665 * boot, it's safer to be consistent with the not-gigantic
666 * hugepages and clear the PG_reserved bit from all tail pages
667 * too. Otherwse drivers using get_user_pages() to access tail
668 * pages may get the reference counting wrong if they see
669 * PG_reserved set on a tail page (despite the head page not
670 * having PG_reserved set). Enforcing this consistency between
671 * head and tail pages allows drivers to optimize away a check
672 * on the head page when they need know if put_page() is needed
673 * after get_user_pages().
674 */
675 __ClearPageReserved(p);
676 set_page_count(p, 0);
677 p->first_page = page;
678 }
679 }
680
681 /*
682 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
683 * transparent huge pages. See the PageTransHuge() documentation for more
684 * details.
685 */
686 int PageHuge(struct page *page)
687 {
688 if (!PageCompound(page))
689 return 0;
690
691 page = compound_head(page);
692 return get_compound_page_dtor(page) == free_huge_page;
693 }
694 EXPORT_SYMBOL_GPL(PageHuge);
695
696 /*
697 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
698 * normal or transparent huge pages.
699 */
700 int PageHeadHuge(struct page *page_head)
701 {
702 if (!PageHead(page_head))
703 return 0;
704
705 return get_compound_page_dtor(page_head) == free_huge_page;
706 }
707
708 pgoff_t __basepage_index(struct page *page)
709 {
710 struct page *page_head = compound_head(page);
711 pgoff_t index = page_index(page_head);
712 unsigned long compound_idx;
713
714 if (!PageHuge(page_head))
715 return page_index(page);
716
717 if (compound_order(page_head) >= MAX_ORDER)
718 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
719 else
720 compound_idx = page - page_head;
721
722 return (index << compound_order(page_head)) + compound_idx;
723 }
724
725 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
726 {
727 struct page *page;
728
729 if (h->order >= MAX_ORDER)
730 return NULL;
731
732 page = alloc_pages_exact_node(nid,
733 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
734 __GFP_REPEAT|__GFP_NOWARN,
735 huge_page_order(h));
736 if (page) {
737 if (arch_prepare_hugepage(page)) {
738 __free_pages(page, huge_page_order(h));
739 return NULL;
740 }
741 prep_new_huge_page(h, page, nid);
742 }
743
744 return page;
745 }
746
747 /*
748 * common helper functions for hstate_next_node_to_{alloc|free}.
749 * We may have allocated or freed a huge page based on a different
750 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
751 * be outside of *nodes_allowed. Ensure that we use an allowed
752 * node for alloc or free.
753 */
754 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
755 {
756 nid = next_node(nid, *nodes_allowed);
757 if (nid == MAX_NUMNODES)
758 nid = first_node(*nodes_allowed);
759 VM_BUG_ON(nid >= MAX_NUMNODES);
760
761 return nid;
762 }
763
764 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
765 {
766 if (!node_isset(nid, *nodes_allowed))
767 nid = next_node_allowed(nid, nodes_allowed);
768 return nid;
769 }
770
771 /*
772 * returns the previously saved node ["this node"] from which to
773 * allocate a persistent huge page for the pool and advance the
774 * next node from which to allocate, handling wrap at end of node
775 * mask.
776 */
777 static int hstate_next_node_to_alloc(struct hstate *h,
778 nodemask_t *nodes_allowed)
779 {
780 int nid;
781
782 VM_BUG_ON(!nodes_allowed);
783
784 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
785 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
786
787 return nid;
788 }
789
790 /*
791 * helper for free_pool_huge_page() - return the previously saved
792 * node ["this node"] from which to free a huge page. Advance the
793 * next node id whether or not we find a free huge page to free so
794 * that the next attempt to free addresses the next node.
795 */
796 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
797 {
798 int nid;
799
800 VM_BUG_ON(!nodes_allowed);
801
802 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
803 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
804
805 return nid;
806 }
807
808 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
809 for (nr_nodes = nodes_weight(*mask); \
810 nr_nodes > 0 && \
811 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
812 nr_nodes--)
813
814 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
815 for (nr_nodes = nodes_weight(*mask); \
816 nr_nodes > 0 && \
817 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
818 nr_nodes--)
819
820 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
821 {
822 struct page *page;
823 int nr_nodes, node;
824 int ret = 0;
825
826 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
827 page = alloc_fresh_huge_page_node(h, node);
828 if (page) {
829 ret = 1;
830 break;
831 }
832 }
833
834 if (ret)
835 count_vm_event(HTLB_BUDDY_PGALLOC);
836 else
837 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
838
839 return ret;
840 }
841
842 /*
843 * Free huge page from pool from next node to free.
844 * Attempt to keep persistent huge pages more or less
845 * balanced over allowed nodes.
846 * Called with hugetlb_lock locked.
847 */
848 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
849 bool acct_surplus)
850 {
851 int nr_nodes, node;
852 int ret = 0;
853
854 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
855 /*
856 * If we're returning unused surplus pages, only examine
857 * nodes with surplus pages.
858 */
859 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
860 !list_empty(&h->hugepage_freelists[node])) {
861 struct page *page =
862 list_entry(h->hugepage_freelists[node].next,
863 struct page, lru);
864 list_del(&page->lru);
865 h->free_huge_pages--;
866 h->free_huge_pages_node[node]--;
867 if (acct_surplus) {
868 h->surplus_huge_pages--;
869 h->surplus_huge_pages_node[node]--;
870 }
871 update_and_free_page(h, page);
872 ret = 1;
873 break;
874 }
875 }
876
877 return ret;
878 }
879
880 /*
881 * Dissolve a given free hugepage into free buddy pages. This function does
882 * nothing for in-use (including surplus) hugepages.
883 */
884 static void dissolve_free_huge_page(struct page *page)
885 {
886 spin_lock(&hugetlb_lock);
887 if (PageHuge(page) && !page_count(page)) {
888 struct hstate *h = page_hstate(page);
889 int nid = page_to_nid(page);
890 list_del(&page->lru);
891 h->free_huge_pages--;
892 h->free_huge_pages_node[nid]--;
893 update_and_free_page(h, page);
894 }
895 spin_unlock(&hugetlb_lock);
896 }
897
898 /*
899 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
900 * make specified memory blocks removable from the system.
901 * Note that start_pfn should aligned with (minimum) hugepage size.
902 */
903 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
904 {
905 unsigned int order = 8 * sizeof(void *);
906 unsigned long pfn;
907 struct hstate *h;
908
909 /* Set scan step to minimum hugepage size */
910 for_each_hstate(h)
911 if (order > huge_page_order(h))
912 order = huge_page_order(h);
913 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
914 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
915 dissolve_free_huge_page(pfn_to_page(pfn));
916 }
917
918 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
919 {
920 struct page *page;
921 unsigned int r_nid;
922
923 if (h->order >= MAX_ORDER)
924 return NULL;
925
926 /*
927 * Assume we will successfully allocate the surplus page to
928 * prevent racing processes from causing the surplus to exceed
929 * overcommit
930 *
931 * This however introduces a different race, where a process B
932 * tries to grow the static hugepage pool while alloc_pages() is
933 * called by process A. B will only examine the per-node
934 * counters in determining if surplus huge pages can be
935 * converted to normal huge pages in adjust_pool_surplus(). A
936 * won't be able to increment the per-node counter, until the
937 * lock is dropped by B, but B doesn't drop hugetlb_lock until
938 * no more huge pages can be converted from surplus to normal
939 * state (and doesn't try to convert again). Thus, we have a
940 * case where a surplus huge page exists, the pool is grown, and
941 * the surplus huge page still exists after, even though it
942 * should just have been converted to a normal huge page. This
943 * does not leak memory, though, as the hugepage will be freed
944 * once it is out of use. It also does not allow the counters to
945 * go out of whack in adjust_pool_surplus() as we don't modify
946 * the node values until we've gotten the hugepage and only the
947 * per-node value is checked there.
948 */
949 spin_lock(&hugetlb_lock);
950 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
951 spin_unlock(&hugetlb_lock);
952 return NULL;
953 } else {
954 h->nr_huge_pages++;
955 h->surplus_huge_pages++;
956 }
957 spin_unlock(&hugetlb_lock);
958
959 if (nid == NUMA_NO_NODE)
960 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
961 __GFP_REPEAT|__GFP_NOWARN,
962 huge_page_order(h));
963 else
964 page = alloc_pages_exact_node(nid,
965 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
966 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
967
968 if (page && arch_prepare_hugepage(page)) {
969 __free_pages(page, huge_page_order(h));
970 page = NULL;
971 }
972
973 spin_lock(&hugetlb_lock);
974 if (page) {
975 INIT_LIST_HEAD(&page->lru);
976 r_nid = page_to_nid(page);
977 set_compound_page_dtor(page, free_huge_page);
978 set_hugetlb_cgroup(page, NULL);
979 /*
980 * We incremented the global counters already
981 */
982 h->nr_huge_pages_node[r_nid]++;
983 h->surplus_huge_pages_node[r_nid]++;
984 __count_vm_event(HTLB_BUDDY_PGALLOC);
985 } else {
986 h->nr_huge_pages--;
987 h->surplus_huge_pages--;
988 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
989 }
990 spin_unlock(&hugetlb_lock);
991
992 return page;
993 }
994
995 /*
996 * This allocation function is useful in the context where vma is irrelevant.
997 * E.g. soft-offlining uses this function because it only cares physical
998 * address of error page.
999 */
1000 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1001 {
1002 struct page *page = NULL;
1003
1004 spin_lock(&hugetlb_lock);
1005 if (h->free_huge_pages - h->resv_huge_pages > 0)
1006 page = dequeue_huge_page_node(h, nid);
1007 spin_unlock(&hugetlb_lock);
1008
1009 if (!page)
1010 page = alloc_buddy_huge_page(h, nid);
1011
1012 return page;
1013 }
1014
1015 /*
1016 * Increase the hugetlb pool such that it can accommodate a reservation
1017 * of size 'delta'.
1018 */
1019 static int gather_surplus_pages(struct hstate *h, int delta)
1020 {
1021 struct list_head surplus_list;
1022 struct page *page, *tmp;
1023 int ret, i;
1024 int needed, allocated;
1025 bool alloc_ok = true;
1026
1027 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1028 if (needed <= 0) {
1029 h->resv_huge_pages += delta;
1030 return 0;
1031 }
1032
1033 allocated = 0;
1034 INIT_LIST_HEAD(&surplus_list);
1035
1036 ret = -ENOMEM;
1037 retry:
1038 spin_unlock(&hugetlb_lock);
1039 for (i = 0; i < needed; i++) {
1040 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1041 if (!page) {
1042 alloc_ok = false;
1043 break;
1044 }
1045 list_add(&page->lru, &surplus_list);
1046 }
1047 allocated += i;
1048
1049 /*
1050 * After retaking hugetlb_lock, we need to recalculate 'needed'
1051 * because either resv_huge_pages or free_huge_pages may have changed.
1052 */
1053 spin_lock(&hugetlb_lock);
1054 needed = (h->resv_huge_pages + delta) -
1055 (h->free_huge_pages + allocated);
1056 if (needed > 0) {
1057 if (alloc_ok)
1058 goto retry;
1059 /*
1060 * We were not able to allocate enough pages to
1061 * satisfy the entire reservation so we free what
1062 * we've allocated so far.
1063 */
1064 goto free;
1065 }
1066 /*
1067 * The surplus_list now contains _at_least_ the number of extra pages
1068 * needed to accommodate the reservation. Add the appropriate number
1069 * of pages to the hugetlb pool and free the extras back to the buddy
1070 * allocator. Commit the entire reservation here to prevent another
1071 * process from stealing the pages as they are added to the pool but
1072 * before they are reserved.
1073 */
1074 needed += allocated;
1075 h->resv_huge_pages += delta;
1076 ret = 0;
1077
1078 /* Free the needed pages to the hugetlb pool */
1079 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1080 if ((--needed) < 0)
1081 break;
1082 /*
1083 * This page is now managed by the hugetlb allocator and has
1084 * no users -- drop the buddy allocator's reference.
1085 */
1086 put_page_testzero(page);
1087 VM_BUG_ON_PAGE(page_count(page), page);
1088 enqueue_huge_page(h, page);
1089 }
1090 free:
1091 spin_unlock(&hugetlb_lock);
1092
1093 /* Free unnecessary surplus pages to the buddy allocator */
1094 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1095 put_page(page);
1096 spin_lock(&hugetlb_lock);
1097
1098 return ret;
1099 }
1100
1101 /*
1102 * When releasing a hugetlb pool reservation, any surplus pages that were
1103 * allocated to satisfy the reservation must be explicitly freed if they were
1104 * never used.
1105 * Called with hugetlb_lock held.
1106 */
1107 static void return_unused_surplus_pages(struct hstate *h,
1108 unsigned long unused_resv_pages)
1109 {
1110 unsigned long nr_pages;
1111
1112 /* Uncommit the reservation */
1113 h->resv_huge_pages -= unused_resv_pages;
1114
1115 /* Cannot return gigantic pages currently */
1116 if (h->order >= MAX_ORDER)
1117 return;
1118
1119 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1120
1121 /*
1122 * We want to release as many surplus pages as possible, spread
1123 * evenly across all nodes with memory. Iterate across these nodes
1124 * until we can no longer free unreserved surplus pages. This occurs
1125 * when the nodes with surplus pages have no free pages.
1126 * free_pool_huge_page() will balance the the freed pages across the
1127 * on-line nodes with memory and will handle the hstate accounting.
1128 */
1129 while (nr_pages--) {
1130 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1131 break;
1132 }
1133 }
1134
1135 /*
1136 * Determine if the huge page at addr within the vma has an associated
1137 * reservation. Where it does not we will need to logically increase
1138 * reservation and actually increase subpool usage before an allocation
1139 * can occur. Where any new reservation would be required the
1140 * reservation change is prepared, but not committed. Once the page
1141 * has been allocated from the subpool and instantiated the change should
1142 * be committed via vma_commit_reservation. No action is required on
1143 * failure.
1144 */
1145 static long vma_needs_reservation(struct hstate *h,
1146 struct vm_area_struct *vma, unsigned long addr)
1147 {
1148 struct address_space *mapping = vma->vm_file->f_mapping;
1149 struct inode *inode = mapping->host;
1150
1151 if (vma->vm_flags & VM_MAYSHARE) {
1152 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1153 struct resv_map *resv = inode->i_mapping->private_data;
1154
1155 return region_chg(&resv->regions, idx, idx + 1);
1156
1157 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1158 return 1;
1159
1160 } else {
1161 long err;
1162 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1163 struct resv_map *resv = vma_resv_map(vma);
1164
1165 err = region_chg(&resv->regions, idx, idx + 1);
1166 if (err < 0)
1167 return err;
1168 return 0;
1169 }
1170 }
1171 static void vma_commit_reservation(struct hstate *h,
1172 struct vm_area_struct *vma, unsigned long addr)
1173 {
1174 struct address_space *mapping = vma->vm_file->f_mapping;
1175 struct inode *inode = mapping->host;
1176
1177 if (vma->vm_flags & VM_MAYSHARE) {
1178 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1179 struct resv_map *resv = inode->i_mapping->private_data;
1180
1181 region_add(&resv->regions, idx, idx + 1);
1182
1183 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1184 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1185 struct resv_map *resv = vma_resv_map(vma);
1186
1187 /* Mark this page used in the map. */
1188 region_add(&resv->regions, idx, idx + 1);
1189 }
1190 }
1191
1192 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1193 unsigned long addr, int avoid_reserve)
1194 {
1195 struct hugepage_subpool *spool = subpool_vma(vma);
1196 struct hstate *h = hstate_vma(vma);
1197 struct page *page;
1198 long chg;
1199 int ret, idx;
1200 struct hugetlb_cgroup *h_cg;
1201
1202 idx = hstate_index(h);
1203 /*
1204 * Processes that did not create the mapping will have no
1205 * reserves and will not have accounted against subpool
1206 * limit. Check that the subpool limit can be made before
1207 * satisfying the allocation MAP_NORESERVE mappings may also
1208 * need pages and subpool limit allocated allocated if no reserve
1209 * mapping overlaps.
1210 */
1211 chg = vma_needs_reservation(h, vma, addr);
1212 if (chg < 0)
1213 return ERR_PTR(-ENOMEM);
1214 if (chg || avoid_reserve)
1215 if (hugepage_subpool_get_pages(spool, 1))
1216 return ERR_PTR(-ENOSPC);
1217
1218 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1219 if (ret) {
1220 if (chg || avoid_reserve)
1221 hugepage_subpool_put_pages(spool, 1);
1222 return ERR_PTR(-ENOSPC);
1223 }
1224 spin_lock(&hugetlb_lock);
1225 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1226 if (!page) {
1227 spin_unlock(&hugetlb_lock);
1228 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1229 if (!page) {
1230 hugetlb_cgroup_uncharge_cgroup(idx,
1231 pages_per_huge_page(h),
1232 h_cg);
1233 if (chg || avoid_reserve)
1234 hugepage_subpool_put_pages(spool, 1);
1235 return ERR_PTR(-ENOSPC);
1236 }
1237 spin_lock(&hugetlb_lock);
1238 list_move(&page->lru, &h->hugepage_activelist);
1239 /* Fall through */
1240 }
1241 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1242 spin_unlock(&hugetlb_lock);
1243
1244 set_page_private(page, (unsigned long)spool);
1245
1246 vma_commit_reservation(h, vma, addr);
1247 return page;
1248 }
1249
1250 /*
1251 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1252 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1253 * where no ERR_VALUE is expected to be returned.
1254 */
1255 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1256 unsigned long addr, int avoid_reserve)
1257 {
1258 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1259 if (IS_ERR(page))
1260 page = NULL;
1261 return page;
1262 }
1263
1264 int __weak alloc_bootmem_huge_page(struct hstate *h)
1265 {
1266 struct huge_bootmem_page *m;
1267 int nr_nodes, node;
1268
1269 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1270 void *addr;
1271
1272 addr = memblock_virt_alloc_try_nid_nopanic(
1273 huge_page_size(h), huge_page_size(h),
1274 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1275 if (addr) {
1276 /*
1277 * Use the beginning of the huge page to store the
1278 * huge_bootmem_page struct (until gather_bootmem
1279 * puts them into the mem_map).
1280 */
1281 m = addr;
1282 goto found;
1283 }
1284 }
1285 return 0;
1286
1287 found:
1288 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1289 /* Put them into a private list first because mem_map is not up yet */
1290 list_add(&m->list, &huge_boot_pages);
1291 m->hstate = h;
1292 return 1;
1293 }
1294
1295 static void prep_compound_huge_page(struct page *page, int order)
1296 {
1297 if (unlikely(order > (MAX_ORDER - 1)))
1298 prep_compound_gigantic_page(page, order);
1299 else
1300 prep_compound_page(page, order);
1301 }
1302
1303 /* Put bootmem huge pages into the standard lists after mem_map is up */
1304 static void __init gather_bootmem_prealloc(void)
1305 {
1306 struct huge_bootmem_page *m;
1307
1308 list_for_each_entry(m, &huge_boot_pages, list) {
1309 struct hstate *h = m->hstate;
1310 struct page *page;
1311
1312 #ifdef CONFIG_HIGHMEM
1313 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1314 memblock_free_late(__pa(m),
1315 sizeof(struct huge_bootmem_page));
1316 #else
1317 page = virt_to_page(m);
1318 #endif
1319 WARN_ON(page_count(page) != 1);
1320 prep_compound_huge_page(page, h->order);
1321 WARN_ON(PageReserved(page));
1322 prep_new_huge_page(h, page, page_to_nid(page));
1323 /*
1324 * If we had gigantic hugepages allocated at boot time, we need
1325 * to restore the 'stolen' pages to totalram_pages in order to
1326 * fix confusing memory reports from free(1) and another
1327 * side-effects, like CommitLimit going negative.
1328 */
1329 if (h->order > (MAX_ORDER - 1))
1330 adjust_managed_page_count(page, 1 << h->order);
1331 }
1332 }
1333
1334 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1335 {
1336 unsigned long i;
1337
1338 for (i = 0; i < h->max_huge_pages; ++i) {
1339 if (h->order >= MAX_ORDER) {
1340 if (!alloc_bootmem_huge_page(h))
1341 break;
1342 } else if (!alloc_fresh_huge_page(h,
1343 &node_states[N_MEMORY]))
1344 break;
1345 }
1346 h->max_huge_pages = i;
1347 }
1348
1349 static void __init hugetlb_init_hstates(void)
1350 {
1351 struct hstate *h;
1352
1353 for_each_hstate(h) {
1354 /* oversize hugepages were init'ed in early boot */
1355 if (h->order < MAX_ORDER)
1356 hugetlb_hstate_alloc_pages(h);
1357 }
1358 }
1359
1360 static char * __init memfmt(char *buf, unsigned long n)
1361 {
1362 if (n >= (1UL << 30))
1363 sprintf(buf, "%lu GB", n >> 30);
1364 else if (n >= (1UL << 20))
1365 sprintf(buf, "%lu MB", n >> 20);
1366 else
1367 sprintf(buf, "%lu KB", n >> 10);
1368 return buf;
1369 }
1370
1371 static void __init report_hugepages(void)
1372 {
1373 struct hstate *h;
1374
1375 for_each_hstate(h) {
1376 char buf[32];
1377 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1378 memfmt(buf, huge_page_size(h)),
1379 h->free_huge_pages);
1380 }
1381 }
1382
1383 #ifdef CONFIG_HIGHMEM
1384 static void try_to_free_low(struct hstate *h, unsigned long count,
1385 nodemask_t *nodes_allowed)
1386 {
1387 int i;
1388
1389 if (h->order >= MAX_ORDER)
1390 return;
1391
1392 for_each_node_mask(i, *nodes_allowed) {
1393 struct page *page, *next;
1394 struct list_head *freel = &h->hugepage_freelists[i];
1395 list_for_each_entry_safe(page, next, freel, lru) {
1396 if (count >= h->nr_huge_pages)
1397 return;
1398 if (PageHighMem(page))
1399 continue;
1400 list_del(&page->lru);
1401 update_and_free_page(h, page);
1402 h->free_huge_pages--;
1403 h->free_huge_pages_node[page_to_nid(page)]--;
1404 }
1405 }
1406 }
1407 #else
1408 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1409 nodemask_t *nodes_allowed)
1410 {
1411 }
1412 #endif
1413
1414 /*
1415 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1416 * balanced by operating on them in a round-robin fashion.
1417 * Returns 1 if an adjustment was made.
1418 */
1419 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1420 int delta)
1421 {
1422 int nr_nodes, node;
1423
1424 VM_BUG_ON(delta != -1 && delta != 1);
1425
1426 if (delta < 0) {
1427 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1428 if (h->surplus_huge_pages_node[node])
1429 goto found;
1430 }
1431 } else {
1432 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1433 if (h->surplus_huge_pages_node[node] <
1434 h->nr_huge_pages_node[node])
1435 goto found;
1436 }
1437 }
1438 return 0;
1439
1440 found:
1441 h->surplus_huge_pages += delta;
1442 h->surplus_huge_pages_node[node] += delta;
1443 return 1;
1444 }
1445
1446 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1447 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1448 nodemask_t *nodes_allowed)
1449 {
1450 unsigned long min_count, ret;
1451
1452 if (h->order >= MAX_ORDER)
1453 return h->max_huge_pages;
1454
1455 /*
1456 * Increase the pool size
1457 * First take pages out of surplus state. Then make up the
1458 * remaining difference by allocating fresh huge pages.
1459 *
1460 * We might race with alloc_buddy_huge_page() here and be unable
1461 * to convert a surplus huge page to a normal huge page. That is
1462 * not critical, though, it just means the overall size of the
1463 * pool might be one hugepage larger than it needs to be, but
1464 * within all the constraints specified by the sysctls.
1465 */
1466 spin_lock(&hugetlb_lock);
1467 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1468 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1469 break;
1470 }
1471
1472 while (count > persistent_huge_pages(h)) {
1473 /*
1474 * If this allocation races such that we no longer need the
1475 * page, free_huge_page will handle it by freeing the page
1476 * and reducing the surplus.
1477 */
1478 spin_unlock(&hugetlb_lock);
1479 ret = alloc_fresh_huge_page(h, nodes_allowed);
1480 spin_lock(&hugetlb_lock);
1481 if (!ret)
1482 goto out;
1483
1484 /* Bail for signals. Probably ctrl-c from user */
1485 if (signal_pending(current))
1486 goto out;
1487 }
1488
1489 /*
1490 * Decrease the pool size
1491 * First return free pages to the buddy allocator (being careful
1492 * to keep enough around to satisfy reservations). Then place
1493 * pages into surplus state as needed so the pool will shrink
1494 * to the desired size as pages become free.
1495 *
1496 * By placing pages into the surplus state independent of the
1497 * overcommit value, we are allowing the surplus pool size to
1498 * exceed overcommit. There are few sane options here. Since
1499 * alloc_buddy_huge_page() is checking the global counter,
1500 * though, we'll note that we're not allowed to exceed surplus
1501 * and won't grow the pool anywhere else. Not until one of the
1502 * sysctls are changed, or the surplus pages go out of use.
1503 */
1504 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1505 min_count = max(count, min_count);
1506 try_to_free_low(h, min_count, nodes_allowed);
1507 while (min_count < persistent_huge_pages(h)) {
1508 if (!free_pool_huge_page(h, nodes_allowed, 0))
1509 break;
1510 }
1511 while (count < persistent_huge_pages(h)) {
1512 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1513 break;
1514 }
1515 out:
1516 ret = persistent_huge_pages(h);
1517 spin_unlock(&hugetlb_lock);
1518 return ret;
1519 }
1520
1521 #define HSTATE_ATTR_RO(_name) \
1522 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1523
1524 #define HSTATE_ATTR(_name) \
1525 static struct kobj_attribute _name##_attr = \
1526 __ATTR(_name, 0644, _name##_show, _name##_store)
1527
1528 static struct kobject *hugepages_kobj;
1529 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1530
1531 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1532
1533 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1534 {
1535 int i;
1536
1537 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1538 if (hstate_kobjs[i] == kobj) {
1539 if (nidp)
1540 *nidp = NUMA_NO_NODE;
1541 return &hstates[i];
1542 }
1543
1544 return kobj_to_node_hstate(kobj, nidp);
1545 }
1546
1547 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1548 struct kobj_attribute *attr, char *buf)
1549 {
1550 struct hstate *h;
1551 unsigned long nr_huge_pages;
1552 int nid;
1553
1554 h = kobj_to_hstate(kobj, &nid);
1555 if (nid == NUMA_NO_NODE)
1556 nr_huge_pages = h->nr_huge_pages;
1557 else
1558 nr_huge_pages = h->nr_huge_pages_node[nid];
1559
1560 return sprintf(buf, "%lu\n", nr_huge_pages);
1561 }
1562
1563 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1564 struct kobject *kobj, struct kobj_attribute *attr,
1565 const char *buf, size_t len)
1566 {
1567 int err;
1568 int nid;
1569 unsigned long count;
1570 struct hstate *h;
1571 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1572
1573 err = kstrtoul(buf, 10, &count);
1574 if (err)
1575 goto out;
1576
1577 h = kobj_to_hstate(kobj, &nid);
1578 if (h->order >= MAX_ORDER) {
1579 err = -EINVAL;
1580 goto out;
1581 }
1582
1583 if (nid == NUMA_NO_NODE) {
1584 /*
1585 * global hstate attribute
1586 */
1587 if (!(obey_mempolicy &&
1588 init_nodemask_of_mempolicy(nodes_allowed))) {
1589 NODEMASK_FREE(nodes_allowed);
1590 nodes_allowed = &node_states[N_MEMORY];
1591 }
1592 } else if (nodes_allowed) {
1593 /*
1594 * per node hstate attribute: adjust count to global,
1595 * but restrict alloc/free to the specified node.
1596 */
1597 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1598 init_nodemask_of_node(nodes_allowed, nid);
1599 } else
1600 nodes_allowed = &node_states[N_MEMORY];
1601
1602 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1603
1604 if (nodes_allowed != &node_states[N_MEMORY])
1605 NODEMASK_FREE(nodes_allowed);
1606
1607 return len;
1608 out:
1609 NODEMASK_FREE(nodes_allowed);
1610 return err;
1611 }
1612
1613 static ssize_t nr_hugepages_show(struct kobject *kobj,
1614 struct kobj_attribute *attr, char *buf)
1615 {
1616 return nr_hugepages_show_common(kobj, attr, buf);
1617 }
1618
1619 static ssize_t nr_hugepages_store(struct kobject *kobj,
1620 struct kobj_attribute *attr, const char *buf, size_t len)
1621 {
1622 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1623 }
1624 HSTATE_ATTR(nr_hugepages);
1625
1626 #ifdef CONFIG_NUMA
1627
1628 /*
1629 * hstate attribute for optionally mempolicy-based constraint on persistent
1630 * huge page alloc/free.
1631 */
1632 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1633 struct kobj_attribute *attr, char *buf)
1634 {
1635 return nr_hugepages_show_common(kobj, attr, buf);
1636 }
1637
1638 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1639 struct kobj_attribute *attr, const char *buf, size_t len)
1640 {
1641 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1642 }
1643 HSTATE_ATTR(nr_hugepages_mempolicy);
1644 #endif
1645
1646
1647 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1648 struct kobj_attribute *attr, char *buf)
1649 {
1650 struct hstate *h = kobj_to_hstate(kobj, NULL);
1651 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1652 }
1653
1654 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1655 struct kobj_attribute *attr, const char *buf, size_t count)
1656 {
1657 int err;
1658 unsigned long input;
1659 struct hstate *h = kobj_to_hstate(kobj, NULL);
1660
1661 if (h->order >= MAX_ORDER)
1662 return -EINVAL;
1663
1664 err = kstrtoul(buf, 10, &input);
1665 if (err)
1666 return err;
1667
1668 spin_lock(&hugetlb_lock);
1669 h->nr_overcommit_huge_pages = input;
1670 spin_unlock(&hugetlb_lock);
1671
1672 return count;
1673 }
1674 HSTATE_ATTR(nr_overcommit_hugepages);
1675
1676 static ssize_t free_hugepages_show(struct kobject *kobj,
1677 struct kobj_attribute *attr, char *buf)
1678 {
1679 struct hstate *h;
1680 unsigned long free_huge_pages;
1681 int nid;
1682
1683 h = kobj_to_hstate(kobj, &nid);
1684 if (nid == NUMA_NO_NODE)
1685 free_huge_pages = h->free_huge_pages;
1686 else
1687 free_huge_pages = h->free_huge_pages_node[nid];
1688
1689 return sprintf(buf, "%lu\n", free_huge_pages);
1690 }
1691 HSTATE_ATTR_RO(free_hugepages);
1692
1693 static ssize_t resv_hugepages_show(struct kobject *kobj,
1694 struct kobj_attribute *attr, char *buf)
1695 {
1696 struct hstate *h = kobj_to_hstate(kobj, NULL);
1697 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1698 }
1699 HSTATE_ATTR_RO(resv_hugepages);
1700
1701 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1702 struct kobj_attribute *attr, char *buf)
1703 {
1704 struct hstate *h;
1705 unsigned long surplus_huge_pages;
1706 int nid;
1707
1708 h = kobj_to_hstate(kobj, &nid);
1709 if (nid == NUMA_NO_NODE)
1710 surplus_huge_pages = h->surplus_huge_pages;
1711 else
1712 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1713
1714 return sprintf(buf, "%lu\n", surplus_huge_pages);
1715 }
1716 HSTATE_ATTR_RO(surplus_hugepages);
1717
1718 static struct attribute *hstate_attrs[] = {
1719 &nr_hugepages_attr.attr,
1720 &nr_overcommit_hugepages_attr.attr,
1721 &free_hugepages_attr.attr,
1722 &resv_hugepages_attr.attr,
1723 &surplus_hugepages_attr.attr,
1724 #ifdef CONFIG_NUMA
1725 &nr_hugepages_mempolicy_attr.attr,
1726 #endif
1727 NULL,
1728 };
1729
1730 static struct attribute_group hstate_attr_group = {
1731 .attrs = hstate_attrs,
1732 };
1733
1734 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1735 struct kobject **hstate_kobjs,
1736 struct attribute_group *hstate_attr_group)
1737 {
1738 int retval;
1739 int hi = hstate_index(h);
1740
1741 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1742 if (!hstate_kobjs[hi])
1743 return -ENOMEM;
1744
1745 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1746 if (retval)
1747 kobject_put(hstate_kobjs[hi]);
1748
1749 return retval;
1750 }
1751
1752 static void __init hugetlb_sysfs_init(void)
1753 {
1754 struct hstate *h;
1755 int err;
1756
1757 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1758 if (!hugepages_kobj)
1759 return;
1760
1761 for_each_hstate(h) {
1762 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1763 hstate_kobjs, &hstate_attr_group);
1764 if (err)
1765 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1766 }
1767 }
1768
1769 #ifdef CONFIG_NUMA
1770
1771 /*
1772 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1773 * with node devices in node_devices[] using a parallel array. The array
1774 * index of a node device or _hstate == node id.
1775 * This is here to avoid any static dependency of the node device driver, in
1776 * the base kernel, on the hugetlb module.
1777 */
1778 struct node_hstate {
1779 struct kobject *hugepages_kobj;
1780 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1781 };
1782 struct node_hstate node_hstates[MAX_NUMNODES];
1783
1784 /*
1785 * A subset of global hstate attributes for node devices
1786 */
1787 static struct attribute *per_node_hstate_attrs[] = {
1788 &nr_hugepages_attr.attr,
1789 &free_hugepages_attr.attr,
1790 &surplus_hugepages_attr.attr,
1791 NULL,
1792 };
1793
1794 static struct attribute_group per_node_hstate_attr_group = {
1795 .attrs = per_node_hstate_attrs,
1796 };
1797
1798 /*
1799 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1800 * Returns node id via non-NULL nidp.
1801 */
1802 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1803 {
1804 int nid;
1805
1806 for (nid = 0; nid < nr_node_ids; nid++) {
1807 struct node_hstate *nhs = &node_hstates[nid];
1808 int i;
1809 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1810 if (nhs->hstate_kobjs[i] == kobj) {
1811 if (nidp)
1812 *nidp = nid;
1813 return &hstates[i];
1814 }
1815 }
1816
1817 BUG();
1818 return NULL;
1819 }
1820
1821 /*
1822 * Unregister hstate attributes from a single node device.
1823 * No-op if no hstate attributes attached.
1824 */
1825 static void hugetlb_unregister_node(struct node *node)
1826 {
1827 struct hstate *h;
1828 struct node_hstate *nhs = &node_hstates[node->dev.id];
1829
1830 if (!nhs->hugepages_kobj)
1831 return; /* no hstate attributes */
1832
1833 for_each_hstate(h) {
1834 int idx = hstate_index(h);
1835 if (nhs->hstate_kobjs[idx]) {
1836 kobject_put(nhs->hstate_kobjs[idx]);
1837 nhs->hstate_kobjs[idx] = NULL;
1838 }
1839 }
1840
1841 kobject_put(nhs->hugepages_kobj);
1842 nhs->hugepages_kobj = NULL;
1843 }
1844
1845 /*
1846 * hugetlb module exit: unregister hstate attributes from node devices
1847 * that have them.
1848 */
1849 static void hugetlb_unregister_all_nodes(void)
1850 {
1851 int nid;
1852
1853 /*
1854 * disable node device registrations.
1855 */
1856 register_hugetlbfs_with_node(NULL, NULL);
1857
1858 /*
1859 * remove hstate attributes from any nodes that have them.
1860 */
1861 for (nid = 0; nid < nr_node_ids; nid++)
1862 hugetlb_unregister_node(node_devices[nid]);
1863 }
1864
1865 /*
1866 * Register hstate attributes for a single node device.
1867 * No-op if attributes already registered.
1868 */
1869 static void hugetlb_register_node(struct node *node)
1870 {
1871 struct hstate *h;
1872 struct node_hstate *nhs = &node_hstates[node->dev.id];
1873 int err;
1874
1875 if (nhs->hugepages_kobj)
1876 return; /* already allocated */
1877
1878 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1879 &node->dev.kobj);
1880 if (!nhs->hugepages_kobj)
1881 return;
1882
1883 for_each_hstate(h) {
1884 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1885 nhs->hstate_kobjs,
1886 &per_node_hstate_attr_group);
1887 if (err) {
1888 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1889 h->name, node->dev.id);
1890 hugetlb_unregister_node(node);
1891 break;
1892 }
1893 }
1894 }
1895
1896 /*
1897 * hugetlb init time: register hstate attributes for all registered node
1898 * devices of nodes that have memory. All on-line nodes should have
1899 * registered their associated device by this time.
1900 */
1901 static void hugetlb_register_all_nodes(void)
1902 {
1903 int nid;
1904
1905 for_each_node_state(nid, N_MEMORY) {
1906 struct node *node = node_devices[nid];
1907 if (node->dev.id == nid)
1908 hugetlb_register_node(node);
1909 }
1910
1911 /*
1912 * Let the node device driver know we're here so it can
1913 * [un]register hstate attributes on node hotplug.
1914 */
1915 register_hugetlbfs_with_node(hugetlb_register_node,
1916 hugetlb_unregister_node);
1917 }
1918 #else /* !CONFIG_NUMA */
1919
1920 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1921 {
1922 BUG();
1923 if (nidp)
1924 *nidp = -1;
1925 return NULL;
1926 }
1927
1928 static void hugetlb_unregister_all_nodes(void) { }
1929
1930 static void hugetlb_register_all_nodes(void) { }
1931
1932 #endif
1933
1934 static void __exit hugetlb_exit(void)
1935 {
1936 struct hstate *h;
1937
1938 hugetlb_unregister_all_nodes();
1939
1940 for_each_hstate(h) {
1941 kobject_put(hstate_kobjs[hstate_index(h)]);
1942 }
1943
1944 kobject_put(hugepages_kobj);
1945 }
1946 module_exit(hugetlb_exit);
1947
1948 static int __init hugetlb_init(void)
1949 {
1950 /* Some platform decide whether they support huge pages at boot
1951 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1952 * there is no such support
1953 */
1954 if (HPAGE_SHIFT == 0)
1955 return 0;
1956
1957 if (!size_to_hstate(default_hstate_size)) {
1958 default_hstate_size = HPAGE_SIZE;
1959 if (!size_to_hstate(default_hstate_size))
1960 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1961 }
1962 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1963 if (default_hstate_max_huge_pages)
1964 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1965
1966 hugetlb_init_hstates();
1967 gather_bootmem_prealloc();
1968 report_hugepages();
1969
1970 hugetlb_sysfs_init();
1971 hugetlb_register_all_nodes();
1972 hugetlb_cgroup_file_init();
1973
1974 return 0;
1975 }
1976 module_init(hugetlb_init);
1977
1978 /* Should be called on processing a hugepagesz=... option */
1979 void __init hugetlb_add_hstate(unsigned order)
1980 {
1981 struct hstate *h;
1982 unsigned long i;
1983
1984 if (size_to_hstate(PAGE_SIZE << order)) {
1985 pr_warning("hugepagesz= specified twice, ignoring\n");
1986 return;
1987 }
1988 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1989 BUG_ON(order == 0);
1990 h = &hstates[hugetlb_max_hstate++];
1991 h->order = order;
1992 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1993 h->nr_huge_pages = 0;
1994 h->free_huge_pages = 0;
1995 for (i = 0; i < MAX_NUMNODES; ++i)
1996 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1997 INIT_LIST_HEAD(&h->hugepage_activelist);
1998 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1999 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2000 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2001 huge_page_size(h)/1024);
2002
2003 parsed_hstate = h;
2004 }
2005
2006 static int __init hugetlb_nrpages_setup(char *s)
2007 {
2008 unsigned long *mhp;
2009 static unsigned long *last_mhp;
2010
2011 /*
2012 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2013 * so this hugepages= parameter goes to the "default hstate".
2014 */
2015 if (!hugetlb_max_hstate)
2016 mhp = &default_hstate_max_huge_pages;
2017 else
2018 mhp = &parsed_hstate->max_huge_pages;
2019
2020 if (mhp == last_mhp) {
2021 pr_warning("hugepages= specified twice without "
2022 "interleaving hugepagesz=, ignoring\n");
2023 return 1;
2024 }
2025
2026 if (sscanf(s, "%lu", mhp) <= 0)
2027 *mhp = 0;
2028
2029 /*
2030 * Global state is always initialized later in hugetlb_init.
2031 * But we need to allocate >= MAX_ORDER hstates here early to still
2032 * use the bootmem allocator.
2033 */
2034 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2035 hugetlb_hstate_alloc_pages(parsed_hstate);
2036
2037 last_mhp = mhp;
2038
2039 return 1;
2040 }
2041 __setup("hugepages=", hugetlb_nrpages_setup);
2042
2043 static int __init hugetlb_default_setup(char *s)
2044 {
2045 default_hstate_size = memparse(s, &s);
2046 return 1;
2047 }
2048 __setup("default_hugepagesz=", hugetlb_default_setup);
2049
2050 static unsigned int cpuset_mems_nr(unsigned int *array)
2051 {
2052 int node;
2053 unsigned int nr = 0;
2054
2055 for_each_node_mask(node, cpuset_current_mems_allowed)
2056 nr += array[node];
2057
2058 return nr;
2059 }
2060
2061 #ifdef CONFIG_SYSCTL
2062 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2063 struct ctl_table *table, int write,
2064 void __user *buffer, size_t *length, loff_t *ppos)
2065 {
2066 struct hstate *h = &default_hstate;
2067 unsigned long tmp;
2068 int ret;
2069
2070 tmp = h->max_huge_pages;
2071
2072 if (write && h->order >= MAX_ORDER)
2073 return -EINVAL;
2074
2075 table->data = &tmp;
2076 table->maxlen = sizeof(unsigned long);
2077 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2078 if (ret)
2079 goto out;
2080
2081 if (write) {
2082 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2083 GFP_KERNEL | __GFP_NORETRY);
2084 if (!(obey_mempolicy &&
2085 init_nodemask_of_mempolicy(nodes_allowed))) {
2086 NODEMASK_FREE(nodes_allowed);
2087 nodes_allowed = &node_states[N_MEMORY];
2088 }
2089 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2090
2091 if (nodes_allowed != &node_states[N_MEMORY])
2092 NODEMASK_FREE(nodes_allowed);
2093 }
2094 out:
2095 return ret;
2096 }
2097
2098 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2099 void __user *buffer, size_t *length, loff_t *ppos)
2100 {
2101
2102 return hugetlb_sysctl_handler_common(false, table, write,
2103 buffer, length, ppos);
2104 }
2105
2106 #ifdef CONFIG_NUMA
2107 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2108 void __user *buffer, size_t *length, loff_t *ppos)
2109 {
2110 return hugetlb_sysctl_handler_common(true, table, write,
2111 buffer, length, ppos);
2112 }
2113 #endif /* CONFIG_NUMA */
2114
2115 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2116 void __user *buffer,
2117 size_t *length, loff_t *ppos)
2118 {
2119 struct hstate *h = &default_hstate;
2120 unsigned long tmp;
2121 int ret;
2122
2123 tmp = h->nr_overcommit_huge_pages;
2124
2125 if (write && h->order >= MAX_ORDER)
2126 return -EINVAL;
2127
2128 table->data = &tmp;
2129 table->maxlen = sizeof(unsigned long);
2130 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2131 if (ret)
2132 goto out;
2133
2134 if (write) {
2135 spin_lock(&hugetlb_lock);
2136 h->nr_overcommit_huge_pages = tmp;
2137 spin_unlock(&hugetlb_lock);
2138 }
2139 out:
2140 return ret;
2141 }
2142
2143 #endif /* CONFIG_SYSCTL */
2144
2145 void hugetlb_report_meminfo(struct seq_file *m)
2146 {
2147 struct hstate *h = &default_hstate;
2148 seq_printf(m,
2149 "HugePages_Total: %5lu\n"
2150 "HugePages_Free: %5lu\n"
2151 "HugePages_Rsvd: %5lu\n"
2152 "HugePages_Surp: %5lu\n"
2153 "Hugepagesize: %8lu kB\n",
2154 h->nr_huge_pages,
2155 h->free_huge_pages,
2156 h->resv_huge_pages,
2157 h->surplus_huge_pages,
2158 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2159 }
2160
2161 int hugetlb_report_node_meminfo(int nid, char *buf)
2162 {
2163 struct hstate *h = &default_hstate;
2164 return sprintf(buf,
2165 "Node %d HugePages_Total: %5u\n"
2166 "Node %d HugePages_Free: %5u\n"
2167 "Node %d HugePages_Surp: %5u\n",
2168 nid, h->nr_huge_pages_node[nid],
2169 nid, h->free_huge_pages_node[nid],
2170 nid, h->surplus_huge_pages_node[nid]);
2171 }
2172
2173 void hugetlb_show_meminfo(void)
2174 {
2175 struct hstate *h;
2176 int nid;
2177
2178 for_each_node_state(nid, N_MEMORY)
2179 for_each_hstate(h)
2180 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2181 nid,
2182 h->nr_huge_pages_node[nid],
2183 h->free_huge_pages_node[nid],
2184 h->surplus_huge_pages_node[nid],
2185 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2186 }
2187
2188 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2189 unsigned long hugetlb_total_pages(void)
2190 {
2191 struct hstate *h;
2192 unsigned long nr_total_pages = 0;
2193
2194 for_each_hstate(h)
2195 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2196 return nr_total_pages;
2197 }
2198
2199 static int hugetlb_acct_memory(struct hstate *h, long delta)
2200 {
2201 int ret = -ENOMEM;
2202
2203 spin_lock(&hugetlb_lock);
2204 /*
2205 * When cpuset is configured, it breaks the strict hugetlb page
2206 * reservation as the accounting is done on a global variable. Such
2207 * reservation is completely rubbish in the presence of cpuset because
2208 * the reservation is not checked against page availability for the
2209 * current cpuset. Application can still potentially OOM'ed by kernel
2210 * with lack of free htlb page in cpuset that the task is in.
2211 * Attempt to enforce strict accounting with cpuset is almost
2212 * impossible (or too ugly) because cpuset is too fluid that
2213 * task or memory node can be dynamically moved between cpusets.
2214 *
2215 * The change of semantics for shared hugetlb mapping with cpuset is
2216 * undesirable. However, in order to preserve some of the semantics,
2217 * we fall back to check against current free page availability as
2218 * a best attempt and hopefully to minimize the impact of changing
2219 * semantics that cpuset has.
2220 */
2221 if (delta > 0) {
2222 if (gather_surplus_pages(h, delta) < 0)
2223 goto out;
2224
2225 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2226 return_unused_surplus_pages(h, delta);
2227 goto out;
2228 }
2229 }
2230
2231 ret = 0;
2232 if (delta < 0)
2233 return_unused_surplus_pages(h, (unsigned long) -delta);
2234
2235 out:
2236 spin_unlock(&hugetlb_lock);
2237 return ret;
2238 }
2239
2240 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2241 {
2242 struct resv_map *resv = vma_resv_map(vma);
2243
2244 /*
2245 * This new VMA should share its siblings reservation map if present.
2246 * The VMA will only ever have a valid reservation map pointer where
2247 * it is being copied for another still existing VMA. As that VMA
2248 * has a reference to the reservation map it cannot disappear until
2249 * after this open call completes. It is therefore safe to take a
2250 * new reference here without additional locking.
2251 */
2252 if (resv)
2253 kref_get(&resv->refs);
2254 }
2255
2256 static void resv_map_put(struct vm_area_struct *vma)
2257 {
2258 struct resv_map *resv = vma_resv_map(vma);
2259
2260 if (!resv)
2261 return;
2262 kref_put(&resv->refs, resv_map_release);
2263 }
2264
2265 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2266 {
2267 struct hstate *h = hstate_vma(vma);
2268 struct resv_map *resv = vma_resv_map(vma);
2269 struct hugepage_subpool *spool = subpool_vma(vma);
2270 unsigned long reserve;
2271 unsigned long start;
2272 unsigned long end;
2273
2274 if (resv) {
2275 start = vma_hugecache_offset(h, vma, vma->vm_start);
2276 end = vma_hugecache_offset(h, vma, vma->vm_end);
2277
2278 reserve = (end - start) -
2279 region_count(&resv->regions, start, end);
2280
2281 resv_map_put(vma);
2282
2283 if (reserve) {
2284 hugetlb_acct_memory(h, -reserve);
2285 hugepage_subpool_put_pages(spool, reserve);
2286 }
2287 }
2288 }
2289
2290 /*
2291 * We cannot handle pagefaults against hugetlb pages at all. They cause
2292 * handle_mm_fault() to try to instantiate regular-sized pages in the
2293 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2294 * this far.
2295 */
2296 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2297 {
2298 BUG();
2299 return 0;
2300 }
2301
2302 const struct vm_operations_struct hugetlb_vm_ops = {
2303 .fault = hugetlb_vm_op_fault,
2304 .open = hugetlb_vm_op_open,
2305 .close = hugetlb_vm_op_close,
2306 };
2307
2308 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2309 int writable)
2310 {
2311 pte_t entry;
2312
2313 if (writable) {
2314 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2315 vma->vm_page_prot)));
2316 } else {
2317 entry = huge_pte_wrprotect(mk_huge_pte(page,
2318 vma->vm_page_prot));
2319 }
2320 entry = pte_mkyoung(entry);
2321 entry = pte_mkhuge(entry);
2322 entry = arch_make_huge_pte(entry, vma, page, writable);
2323
2324 return entry;
2325 }
2326
2327 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2328 unsigned long address, pte_t *ptep)
2329 {
2330 pte_t entry;
2331
2332 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2333 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2334 update_mmu_cache(vma, address, ptep);
2335 }
2336
2337
2338 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2339 struct vm_area_struct *vma)
2340 {
2341 pte_t *src_pte, *dst_pte, entry;
2342 struct page *ptepage;
2343 unsigned long addr;
2344 int cow;
2345 struct hstate *h = hstate_vma(vma);
2346 unsigned long sz = huge_page_size(h);
2347 unsigned long mmun_start; /* For mmu_notifiers */
2348 unsigned long mmun_end; /* For mmu_notifiers */
2349 int ret = 0;
2350
2351 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2352
2353 mmun_start = vma->vm_start;
2354 mmun_end = vma->vm_end;
2355 if (cow)
2356 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2357
2358 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2359 spinlock_t *src_ptl, *dst_ptl;
2360 src_pte = huge_pte_offset(src, addr);
2361 if (!src_pte)
2362 continue;
2363 dst_pte = huge_pte_alloc(dst, addr, sz);
2364 if (!dst_pte) {
2365 ret = -ENOMEM;
2366 break;
2367 }
2368
2369 /* If the pagetables are shared don't copy or take references */
2370 if (dst_pte == src_pte)
2371 continue;
2372
2373 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2374 src_ptl = huge_pte_lockptr(h, src, src_pte);
2375 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2376 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2377 if (cow)
2378 huge_ptep_set_wrprotect(src, addr, src_pte);
2379 entry = huge_ptep_get(src_pte);
2380 ptepage = pte_page(entry);
2381 get_page(ptepage);
2382 page_dup_rmap(ptepage);
2383 set_huge_pte_at(dst, addr, dst_pte, entry);
2384 }
2385 spin_unlock(src_ptl);
2386 spin_unlock(dst_ptl);
2387 }
2388
2389 if (cow)
2390 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2391
2392 return ret;
2393 }
2394
2395 static int is_hugetlb_entry_migration(pte_t pte)
2396 {
2397 swp_entry_t swp;
2398
2399 if (huge_pte_none(pte) || pte_present(pte))
2400 return 0;
2401 swp = pte_to_swp_entry(pte);
2402 if (non_swap_entry(swp) && is_migration_entry(swp))
2403 return 1;
2404 else
2405 return 0;
2406 }
2407
2408 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2409 {
2410 swp_entry_t swp;
2411
2412 if (huge_pte_none(pte) || pte_present(pte))
2413 return 0;
2414 swp = pte_to_swp_entry(pte);
2415 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2416 return 1;
2417 else
2418 return 0;
2419 }
2420
2421 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2422 unsigned long start, unsigned long end,
2423 struct page *ref_page)
2424 {
2425 int force_flush = 0;
2426 struct mm_struct *mm = vma->vm_mm;
2427 unsigned long address;
2428 pte_t *ptep;
2429 pte_t pte;
2430 spinlock_t *ptl;
2431 struct page *page;
2432 struct hstate *h = hstate_vma(vma);
2433 unsigned long sz = huge_page_size(h);
2434 const unsigned long mmun_start = start; /* For mmu_notifiers */
2435 const unsigned long mmun_end = end; /* For mmu_notifiers */
2436
2437 WARN_ON(!is_vm_hugetlb_page(vma));
2438 BUG_ON(start & ~huge_page_mask(h));
2439 BUG_ON(end & ~huge_page_mask(h));
2440
2441 tlb_start_vma(tlb, vma);
2442 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2443 again:
2444 for (address = start; address < end; address += sz) {
2445 ptep = huge_pte_offset(mm, address);
2446 if (!ptep)
2447 continue;
2448
2449 ptl = huge_pte_lock(h, mm, ptep);
2450 if (huge_pmd_unshare(mm, &address, ptep))
2451 goto unlock;
2452
2453 pte = huge_ptep_get(ptep);
2454 if (huge_pte_none(pte))
2455 goto unlock;
2456
2457 /*
2458 * HWPoisoned hugepage is already unmapped and dropped reference
2459 */
2460 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2461 huge_pte_clear(mm, address, ptep);
2462 goto unlock;
2463 }
2464
2465 page = pte_page(pte);
2466 /*
2467 * If a reference page is supplied, it is because a specific
2468 * page is being unmapped, not a range. Ensure the page we
2469 * are about to unmap is the actual page of interest.
2470 */
2471 if (ref_page) {
2472 if (page != ref_page)
2473 goto unlock;
2474
2475 /*
2476 * Mark the VMA as having unmapped its page so that
2477 * future faults in this VMA will fail rather than
2478 * looking like data was lost
2479 */
2480 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2481 }
2482
2483 pte = huge_ptep_get_and_clear(mm, address, ptep);
2484 tlb_remove_tlb_entry(tlb, ptep, address);
2485 if (huge_pte_dirty(pte))
2486 set_page_dirty(page);
2487
2488 page_remove_rmap(page);
2489 force_flush = !__tlb_remove_page(tlb, page);
2490 if (force_flush) {
2491 spin_unlock(ptl);
2492 break;
2493 }
2494 /* Bail out after unmapping reference page if supplied */
2495 if (ref_page) {
2496 spin_unlock(ptl);
2497 break;
2498 }
2499 unlock:
2500 spin_unlock(ptl);
2501 }
2502 /*
2503 * mmu_gather ran out of room to batch pages, we break out of
2504 * the PTE lock to avoid doing the potential expensive TLB invalidate
2505 * and page-free while holding it.
2506 */
2507 if (force_flush) {
2508 force_flush = 0;
2509 tlb_flush_mmu(tlb);
2510 if (address < end && !ref_page)
2511 goto again;
2512 }
2513 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2514 tlb_end_vma(tlb, vma);
2515 }
2516
2517 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2518 struct vm_area_struct *vma, unsigned long start,
2519 unsigned long end, struct page *ref_page)
2520 {
2521 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2522
2523 /*
2524 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2525 * test will fail on a vma being torn down, and not grab a page table
2526 * on its way out. We're lucky that the flag has such an appropriate
2527 * name, and can in fact be safely cleared here. We could clear it
2528 * before the __unmap_hugepage_range above, but all that's necessary
2529 * is to clear it before releasing the i_mmap_mutex. This works
2530 * because in the context this is called, the VMA is about to be
2531 * destroyed and the i_mmap_mutex is held.
2532 */
2533 vma->vm_flags &= ~VM_MAYSHARE;
2534 }
2535
2536 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2537 unsigned long end, struct page *ref_page)
2538 {
2539 struct mm_struct *mm;
2540 struct mmu_gather tlb;
2541
2542 mm = vma->vm_mm;
2543
2544 tlb_gather_mmu(&tlb, mm, start, end);
2545 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2546 tlb_finish_mmu(&tlb, start, end);
2547 }
2548
2549 /*
2550 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2551 * mappping it owns the reserve page for. The intention is to unmap the page
2552 * from other VMAs and let the children be SIGKILLed if they are faulting the
2553 * same region.
2554 */
2555 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2556 struct page *page, unsigned long address)
2557 {
2558 struct hstate *h = hstate_vma(vma);
2559 struct vm_area_struct *iter_vma;
2560 struct address_space *mapping;
2561 pgoff_t pgoff;
2562
2563 /*
2564 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2565 * from page cache lookup which is in HPAGE_SIZE units.
2566 */
2567 address = address & huge_page_mask(h);
2568 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2569 vma->vm_pgoff;
2570 mapping = file_inode(vma->vm_file)->i_mapping;
2571
2572 /*
2573 * Take the mapping lock for the duration of the table walk. As
2574 * this mapping should be shared between all the VMAs,
2575 * __unmap_hugepage_range() is called as the lock is already held
2576 */
2577 mutex_lock(&mapping->i_mmap_mutex);
2578 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2579 /* Do not unmap the current VMA */
2580 if (iter_vma == vma)
2581 continue;
2582
2583 /*
2584 * Unmap the page from other VMAs without their own reserves.
2585 * They get marked to be SIGKILLed if they fault in these
2586 * areas. This is because a future no-page fault on this VMA
2587 * could insert a zeroed page instead of the data existing
2588 * from the time of fork. This would look like data corruption
2589 */
2590 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2591 unmap_hugepage_range(iter_vma, address,
2592 address + huge_page_size(h), page);
2593 }
2594 mutex_unlock(&mapping->i_mmap_mutex);
2595
2596 return 1;
2597 }
2598
2599 /*
2600 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2601 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2602 * cannot race with other handlers or page migration.
2603 * Keep the pte_same checks anyway to make transition from the mutex easier.
2604 */
2605 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2606 unsigned long address, pte_t *ptep, pte_t pte,
2607 struct page *pagecache_page, spinlock_t *ptl)
2608 {
2609 struct hstate *h = hstate_vma(vma);
2610 struct page *old_page, *new_page;
2611 int outside_reserve = 0;
2612 unsigned long mmun_start; /* For mmu_notifiers */
2613 unsigned long mmun_end; /* For mmu_notifiers */
2614
2615 old_page = pte_page(pte);
2616
2617 retry_avoidcopy:
2618 /* If no-one else is actually using this page, avoid the copy
2619 * and just make the page writable */
2620 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2621 page_move_anon_rmap(old_page, vma, address);
2622 set_huge_ptep_writable(vma, address, ptep);
2623 return 0;
2624 }
2625
2626 /*
2627 * If the process that created a MAP_PRIVATE mapping is about to
2628 * perform a COW due to a shared page count, attempt to satisfy
2629 * the allocation without using the existing reserves. The pagecache
2630 * page is used to determine if the reserve at this address was
2631 * consumed or not. If reserves were used, a partial faulted mapping
2632 * at the time of fork() could consume its reserves on COW instead
2633 * of the full address range.
2634 */
2635 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2636 old_page != pagecache_page)
2637 outside_reserve = 1;
2638
2639 page_cache_get(old_page);
2640
2641 /* Drop page table lock as buddy allocator may be called */
2642 spin_unlock(ptl);
2643 new_page = alloc_huge_page(vma, address, outside_reserve);
2644
2645 if (IS_ERR(new_page)) {
2646 long err = PTR_ERR(new_page);
2647 page_cache_release(old_page);
2648
2649 /*
2650 * If a process owning a MAP_PRIVATE mapping fails to COW,
2651 * it is due to references held by a child and an insufficient
2652 * huge page pool. To guarantee the original mappers
2653 * reliability, unmap the page from child processes. The child
2654 * may get SIGKILLed if it later faults.
2655 */
2656 if (outside_reserve) {
2657 BUG_ON(huge_pte_none(pte));
2658 if (unmap_ref_private(mm, vma, old_page, address)) {
2659 BUG_ON(huge_pte_none(pte));
2660 spin_lock(ptl);
2661 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2662 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2663 goto retry_avoidcopy;
2664 /*
2665 * race occurs while re-acquiring page table
2666 * lock, and our job is done.
2667 */
2668 return 0;
2669 }
2670 WARN_ON_ONCE(1);
2671 }
2672
2673 /* Caller expects lock to be held */
2674 spin_lock(ptl);
2675 if (err == -ENOMEM)
2676 return VM_FAULT_OOM;
2677 else
2678 return VM_FAULT_SIGBUS;
2679 }
2680
2681 /*
2682 * When the original hugepage is shared one, it does not have
2683 * anon_vma prepared.
2684 */
2685 if (unlikely(anon_vma_prepare(vma))) {
2686 page_cache_release(new_page);
2687 page_cache_release(old_page);
2688 /* Caller expects lock to be held */
2689 spin_lock(ptl);
2690 return VM_FAULT_OOM;
2691 }
2692
2693 copy_user_huge_page(new_page, old_page, address, vma,
2694 pages_per_huge_page(h));
2695 __SetPageUptodate(new_page);
2696
2697 mmun_start = address & huge_page_mask(h);
2698 mmun_end = mmun_start + huge_page_size(h);
2699 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2700 /*
2701 * Retake the page table lock to check for racing updates
2702 * before the page tables are altered
2703 */
2704 spin_lock(ptl);
2705 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2706 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2707 ClearPagePrivate(new_page);
2708
2709 /* Break COW */
2710 huge_ptep_clear_flush(vma, address, ptep);
2711 set_huge_pte_at(mm, address, ptep,
2712 make_huge_pte(vma, new_page, 1));
2713 page_remove_rmap(old_page);
2714 hugepage_add_new_anon_rmap(new_page, vma, address);
2715 /* Make the old page be freed below */
2716 new_page = old_page;
2717 }
2718 spin_unlock(ptl);
2719 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2720 page_cache_release(new_page);
2721 page_cache_release(old_page);
2722
2723 /* Caller expects lock to be held */
2724 spin_lock(ptl);
2725 return 0;
2726 }
2727
2728 /* Return the pagecache page at a given address within a VMA */
2729 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2730 struct vm_area_struct *vma, unsigned long address)
2731 {
2732 struct address_space *mapping;
2733 pgoff_t idx;
2734
2735 mapping = vma->vm_file->f_mapping;
2736 idx = vma_hugecache_offset(h, vma, address);
2737
2738 return find_lock_page(mapping, idx);
2739 }
2740
2741 /*
2742 * Return whether there is a pagecache page to back given address within VMA.
2743 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2744 */
2745 static bool hugetlbfs_pagecache_present(struct hstate *h,
2746 struct vm_area_struct *vma, unsigned long address)
2747 {
2748 struct address_space *mapping;
2749 pgoff_t idx;
2750 struct page *page;
2751
2752 mapping = vma->vm_file->f_mapping;
2753 idx = vma_hugecache_offset(h, vma, address);
2754
2755 page = find_get_page(mapping, idx);
2756 if (page)
2757 put_page(page);
2758 return page != NULL;
2759 }
2760
2761 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2762 unsigned long address, pte_t *ptep, unsigned int flags)
2763 {
2764 struct hstate *h = hstate_vma(vma);
2765 int ret = VM_FAULT_SIGBUS;
2766 int anon_rmap = 0;
2767 pgoff_t idx;
2768 unsigned long size;
2769 struct page *page;
2770 struct address_space *mapping;
2771 pte_t new_pte;
2772 spinlock_t *ptl;
2773
2774 /*
2775 * Currently, we are forced to kill the process in the event the
2776 * original mapper has unmapped pages from the child due to a failed
2777 * COW. Warn that such a situation has occurred as it may not be obvious
2778 */
2779 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2780 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2781 current->pid);
2782 return ret;
2783 }
2784
2785 mapping = vma->vm_file->f_mapping;
2786 idx = vma_hugecache_offset(h, vma, address);
2787
2788 /*
2789 * Use page lock to guard against racing truncation
2790 * before we get page_table_lock.
2791 */
2792 retry:
2793 page = find_lock_page(mapping, idx);
2794 if (!page) {
2795 size = i_size_read(mapping->host) >> huge_page_shift(h);
2796 if (idx >= size)
2797 goto out;
2798 page = alloc_huge_page(vma, address, 0);
2799 if (IS_ERR(page)) {
2800 ret = PTR_ERR(page);
2801 if (ret == -ENOMEM)
2802 ret = VM_FAULT_OOM;
2803 else
2804 ret = VM_FAULT_SIGBUS;
2805 goto out;
2806 }
2807 clear_huge_page(page, address, pages_per_huge_page(h));
2808 __SetPageUptodate(page);
2809
2810 if (vma->vm_flags & VM_MAYSHARE) {
2811 int err;
2812 struct inode *inode = mapping->host;
2813
2814 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2815 if (err) {
2816 put_page(page);
2817 if (err == -EEXIST)
2818 goto retry;
2819 goto out;
2820 }
2821 ClearPagePrivate(page);
2822
2823 spin_lock(&inode->i_lock);
2824 inode->i_blocks += blocks_per_huge_page(h);
2825 spin_unlock(&inode->i_lock);
2826 } else {
2827 lock_page(page);
2828 if (unlikely(anon_vma_prepare(vma))) {
2829 ret = VM_FAULT_OOM;
2830 goto backout_unlocked;
2831 }
2832 anon_rmap = 1;
2833 }
2834 } else {
2835 /*
2836 * If memory error occurs between mmap() and fault, some process
2837 * don't have hwpoisoned swap entry for errored virtual address.
2838 * So we need to block hugepage fault by PG_hwpoison bit check.
2839 */
2840 if (unlikely(PageHWPoison(page))) {
2841 ret = VM_FAULT_HWPOISON |
2842 VM_FAULT_SET_HINDEX(hstate_index(h));
2843 goto backout_unlocked;
2844 }
2845 }
2846
2847 /*
2848 * If we are going to COW a private mapping later, we examine the
2849 * pending reservations for this page now. This will ensure that
2850 * any allocations necessary to record that reservation occur outside
2851 * the spinlock.
2852 */
2853 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2854 if (vma_needs_reservation(h, vma, address) < 0) {
2855 ret = VM_FAULT_OOM;
2856 goto backout_unlocked;
2857 }
2858
2859 ptl = huge_pte_lockptr(h, mm, ptep);
2860 spin_lock(ptl);
2861 size = i_size_read(mapping->host) >> huge_page_shift(h);
2862 if (idx >= size)
2863 goto backout;
2864
2865 ret = 0;
2866 if (!huge_pte_none(huge_ptep_get(ptep)))
2867 goto backout;
2868
2869 if (anon_rmap) {
2870 ClearPagePrivate(page);
2871 hugepage_add_new_anon_rmap(page, vma, address);
2872 }
2873 else
2874 page_dup_rmap(page);
2875 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2876 && (vma->vm_flags & VM_SHARED)));
2877 set_huge_pte_at(mm, address, ptep, new_pte);
2878
2879 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2880 /* Optimization, do the COW without a second fault */
2881 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2882 }
2883
2884 spin_unlock(ptl);
2885 unlock_page(page);
2886 out:
2887 return ret;
2888
2889 backout:
2890 spin_unlock(ptl);
2891 backout_unlocked:
2892 unlock_page(page);
2893 put_page(page);
2894 goto out;
2895 }
2896
2897 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2898 unsigned long address, unsigned int flags)
2899 {
2900 pte_t *ptep;
2901 pte_t entry;
2902 spinlock_t *ptl;
2903 int ret;
2904 struct page *page = NULL;
2905 struct page *pagecache_page = NULL;
2906 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2907 struct hstate *h = hstate_vma(vma);
2908
2909 address &= huge_page_mask(h);
2910
2911 ptep = huge_pte_offset(mm, address);
2912 if (ptep) {
2913 entry = huge_ptep_get(ptep);
2914 if (unlikely(is_hugetlb_entry_migration(entry))) {
2915 migration_entry_wait_huge(vma, mm, ptep);
2916 return 0;
2917 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2918 return VM_FAULT_HWPOISON_LARGE |
2919 VM_FAULT_SET_HINDEX(hstate_index(h));
2920 }
2921
2922 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2923 if (!ptep)
2924 return VM_FAULT_OOM;
2925
2926 /*
2927 * Serialize hugepage allocation and instantiation, so that we don't
2928 * get spurious allocation failures if two CPUs race to instantiate
2929 * the same page in the page cache.
2930 */
2931 mutex_lock(&hugetlb_instantiation_mutex);
2932 entry = huge_ptep_get(ptep);
2933 if (huge_pte_none(entry)) {
2934 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2935 goto out_mutex;
2936 }
2937
2938 ret = 0;
2939
2940 /*
2941 * If we are going to COW the mapping later, we examine the pending
2942 * reservations for this page now. This will ensure that any
2943 * allocations necessary to record that reservation occur outside the
2944 * spinlock. For private mappings, we also lookup the pagecache
2945 * page now as it is used to determine if a reservation has been
2946 * consumed.
2947 */
2948 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2949 if (vma_needs_reservation(h, vma, address) < 0) {
2950 ret = VM_FAULT_OOM;
2951 goto out_mutex;
2952 }
2953
2954 if (!(vma->vm_flags & VM_MAYSHARE))
2955 pagecache_page = hugetlbfs_pagecache_page(h,
2956 vma, address);
2957 }
2958
2959 /*
2960 * hugetlb_cow() requires page locks of pte_page(entry) and
2961 * pagecache_page, so here we need take the former one
2962 * when page != pagecache_page or !pagecache_page.
2963 * Note that locking order is always pagecache_page -> page,
2964 * so no worry about deadlock.
2965 */
2966 page = pte_page(entry);
2967 get_page(page);
2968 if (page != pagecache_page)
2969 lock_page(page);
2970
2971 ptl = huge_pte_lockptr(h, mm, ptep);
2972 spin_lock(ptl);
2973 /* Check for a racing update before calling hugetlb_cow */
2974 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2975 goto out_ptl;
2976
2977
2978 if (flags & FAULT_FLAG_WRITE) {
2979 if (!huge_pte_write(entry)) {
2980 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2981 pagecache_page, ptl);
2982 goto out_ptl;
2983 }
2984 entry = huge_pte_mkdirty(entry);
2985 }
2986 entry = pte_mkyoung(entry);
2987 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2988 flags & FAULT_FLAG_WRITE))
2989 update_mmu_cache(vma, address, ptep);
2990
2991 out_ptl:
2992 spin_unlock(ptl);
2993
2994 if (pagecache_page) {
2995 unlock_page(pagecache_page);
2996 put_page(pagecache_page);
2997 }
2998 if (page != pagecache_page)
2999 unlock_page(page);
3000 put_page(page);
3001
3002 out_mutex:
3003 mutex_unlock(&hugetlb_instantiation_mutex);
3004
3005 return ret;
3006 }
3007
3008 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3009 struct page **pages, struct vm_area_struct **vmas,
3010 unsigned long *position, unsigned long *nr_pages,
3011 long i, unsigned int flags)
3012 {
3013 unsigned long pfn_offset;
3014 unsigned long vaddr = *position;
3015 unsigned long remainder = *nr_pages;
3016 struct hstate *h = hstate_vma(vma);
3017
3018 while (vaddr < vma->vm_end && remainder) {
3019 pte_t *pte;
3020 spinlock_t *ptl = NULL;
3021 int absent;
3022 struct page *page;
3023
3024 /*
3025 * Some archs (sparc64, sh*) have multiple pte_ts to
3026 * each hugepage. We have to make sure we get the
3027 * first, for the page indexing below to work.
3028 *
3029 * Note that page table lock is not held when pte is null.
3030 */
3031 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3032 if (pte)
3033 ptl = huge_pte_lock(h, mm, pte);
3034 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3035
3036 /*
3037 * When coredumping, it suits get_dump_page if we just return
3038 * an error where there's an empty slot with no huge pagecache
3039 * to back it. This way, we avoid allocating a hugepage, and
3040 * the sparse dumpfile avoids allocating disk blocks, but its
3041 * huge holes still show up with zeroes where they need to be.
3042 */
3043 if (absent && (flags & FOLL_DUMP) &&
3044 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3045 if (pte)
3046 spin_unlock(ptl);
3047 remainder = 0;
3048 break;
3049 }
3050
3051 /*
3052 * We need call hugetlb_fault for both hugepages under migration
3053 * (in which case hugetlb_fault waits for the migration,) and
3054 * hwpoisoned hugepages (in which case we need to prevent the
3055 * caller from accessing to them.) In order to do this, we use
3056 * here is_swap_pte instead of is_hugetlb_entry_migration and
3057 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3058 * both cases, and because we can't follow correct pages
3059 * directly from any kind of swap entries.
3060 */
3061 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3062 ((flags & FOLL_WRITE) &&
3063 !huge_pte_write(huge_ptep_get(pte)))) {
3064 int ret;
3065
3066 if (pte)
3067 spin_unlock(ptl);
3068 ret = hugetlb_fault(mm, vma, vaddr,
3069 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3070 if (!(ret & VM_FAULT_ERROR))
3071 continue;
3072
3073 remainder = 0;
3074 break;
3075 }
3076
3077 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3078 page = pte_page(huge_ptep_get(pte));
3079 same_page:
3080 if (pages) {
3081 pages[i] = mem_map_offset(page, pfn_offset);
3082 get_page_foll(pages[i]);
3083 }
3084
3085 if (vmas)
3086 vmas[i] = vma;
3087
3088 vaddr += PAGE_SIZE;
3089 ++pfn_offset;
3090 --remainder;
3091 ++i;
3092 if (vaddr < vma->vm_end && remainder &&
3093 pfn_offset < pages_per_huge_page(h)) {
3094 /*
3095 * We use pfn_offset to avoid touching the pageframes
3096 * of this compound page.
3097 */
3098 goto same_page;
3099 }
3100 spin_unlock(ptl);
3101 }
3102 *nr_pages = remainder;
3103 *position = vaddr;
3104
3105 return i ? i : -EFAULT;
3106 }
3107
3108 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3109 unsigned long address, unsigned long end, pgprot_t newprot)
3110 {
3111 struct mm_struct *mm = vma->vm_mm;
3112 unsigned long start = address;
3113 pte_t *ptep;
3114 pte_t pte;
3115 struct hstate *h = hstate_vma(vma);
3116 unsigned long pages = 0;
3117
3118 BUG_ON(address >= end);
3119 flush_cache_range(vma, address, end);
3120
3121 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3122 for (; address < end; address += huge_page_size(h)) {
3123 spinlock_t *ptl;
3124 ptep = huge_pte_offset(mm, address);
3125 if (!ptep)
3126 continue;
3127 ptl = huge_pte_lock(h, mm, ptep);
3128 if (huge_pmd_unshare(mm, &address, ptep)) {
3129 pages++;
3130 spin_unlock(ptl);
3131 continue;
3132 }
3133 if (!huge_pte_none(huge_ptep_get(ptep))) {
3134 pte = huge_ptep_get_and_clear(mm, address, ptep);
3135 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3136 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3137 set_huge_pte_at(mm, address, ptep, pte);
3138 pages++;
3139 }
3140 spin_unlock(ptl);
3141 }
3142 /*
3143 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3144 * may have cleared our pud entry and done put_page on the page table:
3145 * once we release i_mmap_mutex, another task can do the final put_page
3146 * and that page table be reused and filled with junk.
3147 */
3148 flush_tlb_range(vma, start, end);
3149 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3150
3151 return pages << h->order;
3152 }
3153
3154 int hugetlb_reserve_pages(struct inode *inode,
3155 long from, long to,
3156 struct vm_area_struct *vma,
3157 vm_flags_t vm_flags)
3158 {
3159 long ret, chg;
3160 struct hstate *h = hstate_inode(inode);
3161 struct hugepage_subpool *spool = subpool_inode(inode);
3162 struct resv_map *resv_map;
3163
3164 /*
3165 * Only apply hugepage reservation if asked. At fault time, an
3166 * attempt will be made for VM_NORESERVE to allocate a page
3167 * without using reserves
3168 */
3169 if (vm_flags & VM_NORESERVE)
3170 return 0;
3171
3172 /*
3173 * Shared mappings base their reservation on the number of pages that
3174 * are already allocated on behalf of the file. Private mappings need
3175 * to reserve the full area even if read-only as mprotect() may be
3176 * called to make the mapping read-write. Assume !vma is a shm mapping
3177 */
3178 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3179 resv_map = inode->i_mapping->private_data;
3180
3181 chg = region_chg(&resv_map->regions, from, to);
3182
3183 } else {
3184 resv_map = resv_map_alloc();
3185 if (!resv_map)
3186 return -ENOMEM;
3187
3188 chg = to - from;
3189
3190 set_vma_resv_map(vma, resv_map);
3191 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3192 }
3193
3194 if (chg < 0) {
3195 ret = chg;
3196 goto out_err;
3197 }
3198
3199 /* There must be enough pages in the subpool for the mapping */
3200 if (hugepage_subpool_get_pages(spool, chg)) {
3201 ret = -ENOSPC;
3202 goto out_err;
3203 }
3204
3205 /*
3206 * Check enough hugepages are available for the reservation.
3207 * Hand the pages back to the subpool if there are not
3208 */
3209 ret = hugetlb_acct_memory(h, chg);
3210 if (ret < 0) {
3211 hugepage_subpool_put_pages(spool, chg);
3212 goto out_err;
3213 }
3214
3215 /*
3216 * Account for the reservations made. Shared mappings record regions
3217 * that have reservations as they are shared by multiple VMAs.
3218 * When the last VMA disappears, the region map says how much
3219 * the reservation was and the page cache tells how much of
3220 * the reservation was consumed. Private mappings are per-VMA and
3221 * only the consumed reservations are tracked. When the VMA
3222 * disappears, the original reservation is the VMA size and the
3223 * consumed reservations are stored in the map. Hence, nothing
3224 * else has to be done for private mappings here
3225 */
3226 if (!vma || vma->vm_flags & VM_MAYSHARE)
3227 region_add(&resv_map->regions, from, to);
3228 return 0;
3229 out_err:
3230 if (vma)
3231 resv_map_put(vma);
3232 return ret;
3233 }
3234
3235 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3236 {
3237 struct hstate *h = hstate_inode(inode);
3238 struct resv_map *resv_map = inode->i_mapping->private_data;
3239 long chg = 0;
3240 struct hugepage_subpool *spool = subpool_inode(inode);
3241
3242 if (resv_map)
3243 chg = region_truncate(&resv_map->regions, offset);
3244 spin_lock(&inode->i_lock);
3245 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3246 spin_unlock(&inode->i_lock);
3247
3248 hugepage_subpool_put_pages(spool, (chg - freed));
3249 hugetlb_acct_memory(h, -(chg - freed));
3250 }
3251
3252 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3253 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3254 struct vm_area_struct *vma,
3255 unsigned long addr, pgoff_t idx)
3256 {
3257 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3258 svma->vm_start;
3259 unsigned long sbase = saddr & PUD_MASK;
3260 unsigned long s_end = sbase + PUD_SIZE;
3261
3262 /* Allow segments to share if only one is marked locked */
3263 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3264 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3265
3266 /*
3267 * match the virtual addresses, permission and the alignment of the
3268 * page table page.
3269 */
3270 if (pmd_index(addr) != pmd_index(saddr) ||
3271 vm_flags != svm_flags ||
3272 sbase < svma->vm_start || svma->vm_end < s_end)
3273 return 0;
3274
3275 return saddr;
3276 }
3277
3278 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3279 {
3280 unsigned long base = addr & PUD_MASK;
3281 unsigned long end = base + PUD_SIZE;
3282
3283 /*
3284 * check on proper vm_flags and page table alignment
3285 */
3286 if (vma->vm_flags & VM_MAYSHARE &&
3287 vma->vm_start <= base && end <= vma->vm_end)
3288 return 1;
3289 return 0;
3290 }
3291
3292 /*
3293 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3294 * and returns the corresponding pte. While this is not necessary for the
3295 * !shared pmd case because we can allocate the pmd later as well, it makes the
3296 * code much cleaner. pmd allocation is essential for the shared case because
3297 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3298 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3299 * bad pmd for sharing.
3300 */
3301 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3302 {
3303 struct vm_area_struct *vma = find_vma(mm, addr);
3304 struct address_space *mapping = vma->vm_file->f_mapping;
3305 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3306 vma->vm_pgoff;
3307 struct vm_area_struct *svma;
3308 unsigned long saddr;
3309 pte_t *spte = NULL;
3310 pte_t *pte;
3311 spinlock_t *ptl;
3312
3313 if (!vma_shareable(vma, addr))
3314 return (pte_t *)pmd_alloc(mm, pud, addr);
3315
3316 mutex_lock(&mapping->i_mmap_mutex);
3317 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3318 if (svma == vma)
3319 continue;
3320
3321 saddr = page_table_shareable(svma, vma, addr, idx);
3322 if (saddr) {
3323 spte = huge_pte_offset(svma->vm_mm, saddr);
3324 if (spte) {
3325 get_page(virt_to_page(spte));
3326 break;
3327 }
3328 }
3329 }
3330
3331 if (!spte)
3332 goto out;
3333
3334 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3335 spin_lock(ptl);
3336 if (pud_none(*pud))
3337 pud_populate(mm, pud,
3338 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3339 else
3340 put_page(virt_to_page(spte));
3341 spin_unlock(ptl);
3342 out:
3343 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3344 mutex_unlock(&mapping->i_mmap_mutex);
3345 return pte;
3346 }
3347
3348 /*
3349 * unmap huge page backed by shared pte.
3350 *
3351 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3352 * indicated by page_count > 1, unmap is achieved by clearing pud and
3353 * decrementing the ref count. If count == 1, the pte page is not shared.
3354 *
3355 * called with page table lock held.
3356 *
3357 * returns: 1 successfully unmapped a shared pte page
3358 * 0 the underlying pte page is not shared, or it is the last user
3359 */
3360 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3361 {
3362 pgd_t *pgd = pgd_offset(mm, *addr);
3363 pud_t *pud = pud_offset(pgd, *addr);
3364
3365 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3366 if (page_count(virt_to_page(ptep)) == 1)
3367 return 0;
3368
3369 pud_clear(pud);
3370 put_page(virt_to_page(ptep));
3371 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3372 return 1;
3373 }
3374 #define want_pmd_share() (1)
3375 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3376 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3377 {
3378 return NULL;
3379 }
3380 #define want_pmd_share() (0)
3381 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3382
3383 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3384 pte_t *huge_pte_alloc(struct mm_struct *mm,
3385 unsigned long addr, unsigned long sz)
3386 {
3387 pgd_t *pgd;
3388 pud_t *pud;
3389 pte_t *pte = NULL;
3390
3391 pgd = pgd_offset(mm, addr);
3392 pud = pud_alloc(mm, pgd, addr);
3393 if (pud) {
3394 if (sz == PUD_SIZE) {
3395 pte = (pte_t *)pud;
3396 } else {
3397 BUG_ON(sz != PMD_SIZE);
3398 if (want_pmd_share() && pud_none(*pud))
3399 pte = huge_pmd_share(mm, addr, pud);
3400 else
3401 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3402 }
3403 }
3404 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3405
3406 return pte;
3407 }
3408
3409 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3410 {
3411 pgd_t *pgd;
3412 pud_t *pud;
3413 pmd_t *pmd = NULL;
3414
3415 pgd = pgd_offset(mm, addr);
3416 if (pgd_present(*pgd)) {
3417 pud = pud_offset(pgd, addr);
3418 if (pud_present(*pud)) {
3419 if (pud_huge(*pud))
3420 return (pte_t *)pud;
3421 pmd = pmd_offset(pud, addr);
3422 }
3423 }
3424 return (pte_t *) pmd;
3425 }
3426
3427 struct page *
3428 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3429 pmd_t *pmd, int write)
3430 {
3431 struct page *page;
3432
3433 page = pte_page(*(pte_t *)pmd);
3434 if (page)
3435 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3436 return page;
3437 }
3438
3439 struct page *
3440 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3441 pud_t *pud, int write)
3442 {
3443 struct page *page;
3444
3445 page = pte_page(*(pte_t *)pud);
3446 if (page)
3447 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3448 return page;
3449 }
3450
3451 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3452
3453 /* Can be overriden by architectures */
3454 __attribute__((weak)) struct page *
3455 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3456 pud_t *pud, int write)
3457 {
3458 BUG();
3459 return NULL;
3460 }
3461
3462 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3463
3464 #ifdef CONFIG_MEMORY_FAILURE
3465
3466 /* Should be called in hugetlb_lock */
3467 static int is_hugepage_on_freelist(struct page *hpage)
3468 {
3469 struct page *page;
3470 struct page *tmp;
3471 struct hstate *h = page_hstate(hpage);
3472 int nid = page_to_nid(hpage);
3473
3474 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3475 if (page == hpage)
3476 return 1;
3477 return 0;
3478 }
3479
3480 /*
3481 * This function is called from memory failure code.
3482 * Assume the caller holds page lock of the head page.
3483 */
3484 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3485 {
3486 struct hstate *h = page_hstate(hpage);
3487 int nid = page_to_nid(hpage);
3488 int ret = -EBUSY;
3489
3490 spin_lock(&hugetlb_lock);
3491 if (is_hugepage_on_freelist(hpage)) {
3492 /*
3493 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3494 * but dangling hpage->lru can trigger list-debug warnings
3495 * (this happens when we call unpoison_memory() on it),
3496 * so let it point to itself with list_del_init().
3497 */
3498 list_del_init(&hpage->lru);
3499 set_page_refcounted(hpage);
3500 h->free_huge_pages--;
3501 h->free_huge_pages_node[nid]--;
3502 ret = 0;
3503 }
3504 spin_unlock(&hugetlb_lock);
3505 return ret;
3506 }
3507 #endif
3508
3509 bool isolate_huge_page(struct page *page, struct list_head *list)
3510 {
3511 VM_BUG_ON_PAGE(!PageHead(page), page);
3512 if (!get_page_unless_zero(page))
3513 return false;
3514 spin_lock(&hugetlb_lock);
3515 list_move_tail(&page->lru, list);
3516 spin_unlock(&hugetlb_lock);
3517 return true;
3518 }
3519
3520 void putback_active_hugepage(struct page *page)
3521 {
3522 VM_BUG_ON_PAGE(!PageHead(page), page);
3523 spin_lock(&hugetlb_lock);
3524 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3525 spin_unlock(&hugetlb_lock);
3526 put_page(page);
3527 }
3528
3529 bool is_hugepage_active(struct page *page)
3530 {
3531 VM_BUG_ON_PAGE(!PageHuge(page), page);
3532 /*
3533 * This function can be called for a tail page because the caller,
3534 * scan_movable_pages, scans through a given pfn-range which typically
3535 * covers one memory block. In systems using gigantic hugepage (1GB
3536 * for x86_64,) a hugepage is larger than a memory block, and we don't
3537 * support migrating such large hugepages for now, so return false
3538 * when called for tail pages.
3539 */
3540 if (PageTail(page))
3541 return false;
3542 /*
3543 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3544 * so we should return false for them.
3545 */
3546 if (unlikely(PageHWPoison(page)))
3547 return false;
3548 return page_count(page) > 0;
3549 }