]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hugetlb.c
hugetlb: allow bulk updating in hugetlb_*_quota()
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 unsigned long max_huge_pages;
28 static struct list_head hugepage_freelists[MAX_NUMNODES];
29 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33 unsigned long hugepages_treat_as_movable;
34 int hugetlb_dynamic_pool;
35 static int hugetlb_next_nid;
36
37 /*
38 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
39 */
40 static DEFINE_SPINLOCK(hugetlb_lock);
41
42 static void clear_huge_page(struct page *page, unsigned long addr)
43 {
44 int i;
45
46 might_sleep();
47 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
48 cond_resched();
49 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
50 }
51 }
52
53 static void copy_huge_page(struct page *dst, struct page *src,
54 unsigned long addr, struct vm_area_struct *vma)
55 {
56 int i;
57
58 might_sleep();
59 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
60 cond_resched();
61 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
62 }
63 }
64
65 static void enqueue_huge_page(struct page *page)
66 {
67 int nid = page_to_nid(page);
68 list_add(&page->lru, &hugepage_freelists[nid]);
69 free_huge_pages++;
70 free_huge_pages_node[nid]++;
71 }
72
73 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
74 unsigned long address)
75 {
76 int nid;
77 struct page *page = NULL;
78 struct mempolicy *mpol;
79 struct zonelist *zonelist = huge_zonelist(vma, address,
80 htlb_alloc_mask, &mpol);
81 struct zone **z;
82
83 for (z = zonelist->zones; *z; z++) {
84 nid = zone_to_nid(*z);
85 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
86 !list_empty(&hugepage_freelists[nid])) {
87 page = list_entry(hugepage_freelists[nid].next,
88 struct page, lru);
89 list_del(&page->lru);
90 free_huge_pages--;
91 free_huge_pages_node[nid]--;
92 if (vma && vma->vm_flags & VM_MAYSHARE)
93 resv_huge_pages--;
94 break;
95 }
96 }
97 mpol_free(mpol); /* unref if mpol !NULL */
98 return page;
99 }
100
101 static void update_and_free_page(struct page *page)
102 {
103 int i;
104 nr_huge_pages--;
105 nr_huge_pages_node[page_to_nid(page)]--;
106 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
107 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
108 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
109 1 << PG_private | 1<< PG_writeback);
110 }
111 set_compound_page_dtor(page, NULL);
112 set_page_refcounted(page);
113 __free_pages(page, HUGETLB_PAGE_ORDER);
114 }
115
116 static void free_huge_page(struct page *page)
117 {
118 int nid = page_to_nid(page);
119 struct address_space *mapping;
120
121 mapping = (struct address_space *) page_private(page);
122 BUG_ON(page_count(page));
123 INIT_LIST_HEAD(&page->lru);
124
125 spin_lock(&hugetlb_lock);
126 if (surplus_huge_pages_node[nid]) {
127 update_and_free_page(page);
128 surplus_huge_pages--;
129 surplus_huge_pages_node[nid]--;
130 } else {
131 enqueue_huge_page(page);
132 }
133 spin_unlock(&hugetlb_lock);
134 if (mapping)
135 hugetlb_put_quota(mapping, 1);
136 set_page_private(page, 0);
137 }
138
139 /*
140 * Increment or decrement surplus_huge_pages. Keep node-specific counters
141 * balanced by operating on them in a round-robin fashion.
142 * Returns 1 if an adjustment was made.
143 */
144 static int adjust_pool_surplus(int delta)
145 {
146 static int prev_nid;
147 int nid = prev_nid;
148 int ret = 0;
149
150 VM_BUG_ON(delta != -1 && delta != 1);
151 do {
152 nid = next_node(nid, node_online_map);
153 if (nid == MAX_NUMNODES)
154 nid = first_node(node_online_map);
155
156 /* To shrink on this node, there must be a surplus page */
157 if (delta < 0 && !surplus_huge_pages_node[nid])
158 continue;
159 /* Surplus cannot exceed the total number of pages */
160 if (delta > 0 && surplus_huge_pages_node[nid] >=
161 nr_huge_pages_node[nid])
162 continue;
163
164 surplus_huge_pages += delta;
165 surplus_huge_pages_node[nid] += delta;
166 ret = 1;
167 break;
168 } while (nid != prev_nid);
169
170 prev_nid = nid;
171 return ret;
172 }
173
174 static struct page *alloc_fresh_huge_page_node(int nid)
175 {
176 struct page *page;
177
178 page = alloc_pages_node(nid,
179 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
180 HUGETLB_PAGE_ORDER);
181 if (page) {
182 set_compound_page_dtor(page, free_huge_page);
183 spin_lock(&hugetlb_lock);
184 nr_huge_pages++;
185 nr_huge_pages_node[nid]++;
186 spin_unlock(&hugetlb_lock);
187 put_page(page); /* free it into the hugepage allocator */
188 }
189
190 return page;
191 }
192
193 static int alloc_fresh_huge_page(void)
194 {
195 struct page *page;
196 int start_nid;
197 int next_nid;
198 int ret = 0;
199
200 start_nid = hugetlb_next_nid;
201
202 do {
203 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
204 if (page)
205 ret = 1;
206 /*
207 * Use a helper variable to find the next node and then
208 * copy it back to hugetlb_next_nid afterwards:
209 * otherwise there's a window in which a racer might
210 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
211 * But we don't need to use a spin_lock here: it really
212 * doesn't matter if occasionally a racer chooses the
213 * same nid as we do. Move nid forward in the mask even
214 * if we just successfully allocated a hugepage so that
215 * the next caller gets hugepages on the next node.
216 */
217 next_nid = next_node(hugetlb_next_nid, node_online_map);
218 if (next_nid == MAX_NUMNODES)
219 next_nid = first_node(node_online_map);
220 hugetlb_next_nid = next_nid;
221 } while (!page && hugetlb_next_nid != start_nid);
222
223 return ret;
224 }
225
226 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
227 unsigned long address)
228 {
229 struct page *page;
230
231 /* Check if the dynamic pool is enabled */
232 if (!hugetlb_dynamic_pool)
233 return NULL;
234
235 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
236 HUGETLB_PAGE_ORDER);
237 if (page) {
238 set_compound_page_dtor(page, free_huge_page);
239 spin_lock(&hugetlb_lock);
240 nr_huge_pages++;
241 nr_huge_pages_node[page_to_nid(page)]++;
242 surplus_huge_pages++;
243 surplus_huge_pages_node[page_to_nid(page)]++;
244 spin_unlock(&hugetlb_lock);
245 }
246
247 return page;
248 }
249
250 /*
251 * Increase the hugetlb pool such that it can accomodate a reservation
252 * of size 'delta'.
253 */
254 static int gather_surplus_pages(int delta)
255 {
256 struct list_head surplus_list;
257 struct page *page, *tmp;
258 int ret, i;
259 int needed, allocated;
260
261 needed = (resv_huge_pages + delta) - free_huge_pages;
262 if (needed <= 0)
263 return 0;
264
265 allocated = 0;
266 INIT_LIST_HEAD(&surplus_list);
267
268 ret = -ENOMEM;
269 retry:
270 spin_unlock(&hugetlb_lock);
271 for (i = 0; i < needed; i++) {
272 page = alloc_buddy_huge_page(NULL, 0);
273 if (!page) {
274 /*
275 * We were not able to allocate enough pages to
276 * satisfy the entire reservation so we free what
277 * we've allocated so far.
278 */
279 spin_lock(&hugetlb_lock);
280 needed = 0;
281 goto free;
282 }
283
284 list_add(&page->lru, &surplus_list);
285 }
286 allocated += needed;
287
288 /*
289 * After retaking hugetlb_lock, we need to recalculate 'needed'
290 * because either resv_huge_pages or free_huge_pages may have changed.
291 */
292 spin_lock(&hugetlb_lock);
293 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
294 if (needed > 0)
295 goto retry;
296
297 /*
298 * The surplus_list now contains _at_least_ the number of extra pages
299 * needed to accomodate the reservation. Add the appropriate number
300 * of pages to the hugetlb pool and free the extras back to the buddy
301 * allocator.
302 */
303 needed += allocated;
304 ret = 0;
305 free:
306 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
307 list_del(&page->lru);
308 if ((--needed) >= 0)
309 enqueue_huge_page(page);
310 else {
311 /*
312 * Decrement the refcount and free the page using its
313 * destructor. This must be done with hugetlb_lock
314 * unlocked which is safe because free_huge_page takes
315 * hugetlb_lock before deciding how to free the page.
316 */
317 spin_unlock(&hugetlb_lock);
318 put_page(page);
319 spin_lock(&hugetlb_lock);
320 }
321 }
322
323 return ret;
324 }
325
326 /*
327 * When releasing a hugetlb pool reservation, any surplus pages that were
328 * allocated to satisfy the reservation must be explicitly freed if they were
329 * never used.
330 */
331 void return_unused_surplus_pages(unsigned long unused_resv_pages)
332 {
333 static int nid = -1;
334 struct page *page;
335 unsigned long nr_pages;
336
337 nr_pages = min(unused_resv_pages, surplus_huge_pages);
338
339 while (nr_pages) {
340 nid = next_node(nid, node_online_map);
341 if (nid == MAX_NUMNODES)
342 nid = first_node(node_online_map);
343
344 if (!surplus_huge_pages_node[nid])
345 continue;
346
347 if (!list_empty(&hugepage_freelists[nid])) {
348 page = list_entry(hugepage_freelists[nid].next,
349 struct page, lru);
350 list_del(&page->lru);
351 update_and_free_page(page);
352 free_huge_pages--;
353 free_huge_pages_node[nid]--;
354 surplus_huge_pages--;
355 surplus_huge_pages_node[nid]--;
356 nr_pages--;
357 }
358 }
359 }
360
361
362 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
363 unsigned long addr)
364 {
365 struct page *page;
366
367 spin_lock(&hugetlb_lock);
368 page = dequeue_huge_page(vma, addr);
369 spin_unlock(&hugetlb_lock);
370 return page;
371 }
372
373 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
374 unsigned long addr)
375 {
376 struct page *page = NULL;
377
378 spin_lock(&hugetlb_lock);
379 if (free_huge_pages > resv_huge_pages)
380 page = dequeue_huge_page(vma, addr);
381 spin_unlock(&hugetlb_lock);
382 if (!page)
383 page = alloc_buddy_huge_page(vma, addr);
384 return page;
385 }
386
387 static struct page *alloc_huge_page(struct vm_area_struct *vma,
388 unsigned long addr)
389 {
390 struct page *page;
391 struct address_space *mapping = vma->vm_file->f_mapping;
392
393 if (hugetlb_get_quota(mapping, 1))
394 return ERR_PTR(-VM_FAULT_SIGBUS);
395
396 if (vma->vm_flags & VM_MAYSHARE)
397 page = alloc_huge_page_shared(vma, addr);
398 else
399 page = alloc_huge_page_private(vma, addr);
400 if (page) {
401 set_page_refcounted(page);
402 set_page_private(page, (unsigned long) mapping);
403 return page;
404 } else
405 return ERR_PTR(-VM_FAULT_OOM);
406 }
407
408 static int __init hugetlb_init(void)
409 {
410 unsigned long i;
411
412 if (HPAGE_SHIFT == 0)
413 return 0;
414
415 for (i = 0; i < MAX_NUMNODES; ++i)
416 INIT_LIST_HEAD(&hugepage_freelists[i]);
417
418 hugetlb_next_nid = first_node(node_online_map);
419
420 for (i = 0; i < max_huge_pages; ++i) {
421 if (!alloc_fresh_huge_page())
422 break;
423 }
424 max_huge_pages = free_huge_pages = nr_huge_pages = i;
425 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
426 return 0;
427 }
428 module_init(hugetlb_init);
429
430 static int __init hugetlb_setup(char *s)
431 {
432 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
433 max_huge_pages = 0;
434 return 1;
435 }
436 __setup("hugepages=", hugetlb_setup);
437
438 static unsigned int cpuset_mems_nr(unsigned int *array)
439 {
440 int node;
441 unsigned int nr = 0;
442
443 for_each_node_mask(node, cpuset_current_mems_allowed)
444 nr += array[node];
445
446 return nr;
447 }
448
449 #ifdef CONFIG_SYSCTL
450 #ifdef CONFIG_HIGHMEM
451 static void try_to_free_low(unsigned long count)
452 {
453 int i;
454
455 for (i = 0; i < MAX_NUMNODES; ++i) {
456 struct page *page, *next;
457 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
458 if (count >= nr_huge_pages)
459 return;
460 if (PageHighMem(page))
461 continue;
462 list_del(&page->lru);
463 update_and_free_page(page);
464 free_huge_pages--;
465 free_huge_pages_node[page_to_nid(page)]--;
466 }
467 }
468 }
469 #else
470 static inline void try_to_free_low(unsigned long count)
471 {
472 }
473 #endif
474
475 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
476 static unsigned long set_max_huge_pages(unsigned long count)
477 {
478 unsigned long min_count, ret;
479
480 /*
481 * Increase the pool size
482 * First take pages out of surplus state. Then make up the
483 * remaining difference by allocating fresh huge pages.
484 */
485 spin_lock(&hugetlb_lock);
486 while (surplus_huge_pages && count > persistent_huge_pages) {
487 if (!adjust_pool_surplus(-1))
488 break;
489 }
490
491 while (count > persistent_huge_pages) {
492 int ret;
493 /*
494 * If this allocation races such that we no longer need the
495 * page, free_huge_page will handle it by freeing the page
496 * and reducing the surplus.
497 */
498 spin_unlock(&hugetlb_lock);
499 ret = alloc_fresh_huge_page();
500 spin_lock(&hugetlb_lock);
501 if (!ret)
502 goto out;
503
504 }
505
506 /*
507 * Decrease the pool size
508 * First return free pages to the buddy allocator (being careful
509 * to keep enough around to satisfy reservations). Then place
510 * pages into surplus state as needed so the pool will shrink
511 * to the desired size as pages become free.
512 */
513 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
514 min_count = max(count, min_count);
515 try_to_free_low(min_count);
516 while (min_count < persistent_huge_pages) {
517 struct page *page = dequeue_huge_page(NULL, 0);
518 if (!page)
519 break;
520 update_and_free_page(page);
521 }
522 while (count < persistent_huge_pages) {
523 if (!adjust_pool_surplus(1))
524 break;
525 }
526 out:
527 ret = persistent_huge_pages;
528 spin_unlock(&hugetlb_lock);
529 return ret;
530 }
531
532 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
533 struct file *file, void __user *buffer,
534 size_t *length, loff_t *ppos)
535 {
536 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
537 max_huge_pages = set_max_huge_pages(max_huge_pages);
538 return 0;
539 }
540
541 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
542 struct file *file, void __user *buffer,
543 size_t *length, loff_t *ppos)
544 {
545 proc_dointvec(table, write, file, buffer, length, ppos);
546 if (hugepages_treat_as_movable)
547 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
548 else
549 htlb_alloc_mask = GFP_HIGHUSER;
550 return 0;
551 }
552
553 #endif /* CONFIG_SYSCTL */
554
555 int hugetlb_report_meminfo(char *buf)
556 {
557 return sprintf(buf,
558 "HugePages_Total: %5lu\n"
559 "HugePages_Free: %5lu\n"
560 "HugePages_Rsvd: %5lu\n"
561 "HugePages_Surp: %5lu\n"
562 "Hugepagesize: %5lu kB\n",
563 nr_huge_pages,
564 free_huge_pages,
565 resv_huge_pages,
566 surplus_huge_pages,
567 HPAGE_SIZE/1024);
568 }
569
570 int hugetlb_report_node_meminfo(int nid, char *buf)
571 {
572 return sprintf(buf,
573 "Node %d HugePages_Total: %5u\n"
574 "Node %d HugePages_Free: %5u\n",
575 nid, nr_huge_pages_node[nid],
576 nid, free_huge_pages_node[nid]);
577 }
578
579 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
580 unsigned long hugetlb_total_pages(void)
581 {
582 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
583 }
584
585 /*
586 * We cannot handle pagefaults against hugetlb pages at all. They cause
587 * handle_mm_fault() to try to instantiate regular-sized pages in the
588 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
589 * this far.
590 */
591 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
592 {
593 BUG();
594 return 0;
595 }
596
597 struct vm_operations_struct hugetlb_vm_ops = {
598 .fault = hugetlb_vm_op_fault,
599 };
600
601 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
602 int writable)
603 {
604 pte_t entry;
605
606 if (writable) {
607 entry =
608 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
609 } else {
610 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
611 }
612 entry = pte_mkyoung(entry);
613 entry = pte_mkhuge(entry);
614
615 return entry;
616 }
617
618 static void set_huge_ptep_writable(struct vm_area_struct *vma,
619 unsigned long address, pte_t *ptep)
620 {
621 pte_t entry;
622
623 entry = pte_mkwrite(pte_mkdirty(*ptep));
624 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
625 update_mmu_cache(vma, address, entry);
626 }
627 }
628
629
630 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
631 struct vm_area_struct *vma)
632 {
633 pte_t *src_pte, *dst_pte, entry;
634 struct page *ptepage;
635 unsigned long addr;
636 int cow;
637
638 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
639
640 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
641 src_pte = huge_pte_offset(src, addr);
642 if (!src_pte)
643 continue;
644 dst_pte = huge_pte_alloc(dst, addr);
645 if (!dst_pte)
646 goto nomem;
647 spin_lock(&dst->page_table_lock);
648 spin_lock(&src->page_table_lock);
649 if (!pte_none(*src_pte)) {
650 if (cow)
651 ptep_set_wrprotect(src, addr, src_pte);
652 entry = *src_pte;
653 ptepage = pte_page(entry);
654 get_page(ptepage);
655 set_huge_pte_at(dst, addr, dst_pte, entry);
656 }
657 spin_unlock(&src->page_table_lock);
658 spin_unlock(&dst->page_table_lock);
659 }
660 return 0;
661
662 nomem:
663 return -ENOMEM;
664 }
665
666 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
667 unsigned long end)
668 {
669 struct mm_struct *mm = vma->vm_mm;
670 unsigned long address;
671 pte_t *ptep;
672 pte_t pte;
673 struct page *page;
674 struct page *tmp;
675 /*
676 * A page gathering list, protected by per file i_mmap_lock. The
677 * lock is used to avoid list corruption from multiple unmapping
678 * of the same page since we are using page->lru.
679 */
680 LIST_HEAD(page_list);
681
682 WARN_ON(!is_vm_hugetlb_page(vma));
683 BUG_ON(start & ~HPAGE_MASK);
684 BUG_ON(end & ~HPAGE_MASK);
685
686 spin_lock(&mm->page_table_lock);
687 for (address = start; address < end; address += HPAGE_SIZE) {
688 ptep = huge_pte_offset(mm, address);
689 if (!ptep)
690 continue;
691
692 if (huge_pmd_unshare(mm, &address, ptep))
693 continue;
694
695 pte = huge_ptep_get_and_clear(mm, address, ptep);
696 if (pte_none(pte))
697 continue;
698
699 page = pte_page(pte);
700 if (pte_dirty(pte))
701 set_page_dirty(page);
702 list_add(&page->lru, &page_list);
703 }
704 spin_unlock(&mm->page_table_lock);
705 flush_tlb_range(vma, start, end);
706 list_for_each_entry_safe(page, tmp, &page_list, lru) {
707 list_del(&page->lru);
708 put_page(page);
709 }
710 }
711
712 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
713 unsigned long end)
714 {
715 /*
716 * It is undesirable to test vma->vm_file as it should be non-null
717 * for valid hugetlb area. However, vm_file will be NULL in the error
718 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
719 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
720 * to clean up. Since no pte has actually been setup, it is safe to
721 * do nothing in this case.
722 */
723 if (vma->vm_file) {
724 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
725 __unmap_hugepage_range(vma, start, end);
726 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
727 }
728 }
729
730 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
731 unsigned long address, pte_t *ptep, pte_t pte)
732 {
733 struct page *old_page, *new_page;
734 int avoidcopy;
735
736 old_page = pte_page(pte);
737
738 /* If no-one else is actually using this page, avoid the copy
739 * and just make the page writable */
740 avoidcopy = (page_count(old_page) == 1);
741 if (avoidcopy) {
742 set_huge_ptep_writable(vma, address, ptep);
743 return 0;
744 }
745
746 page_cache_get(old_page);
747 new_page = alloc_huge_page(vma, address);
748
749 if (IS_ERR(new_page)) {
750 page_cache_release(old_page);
751 return -PTR_ERR(new_page);
752 }
753
754 spin_unlock(&mm->page_table_lock);
755 copy_huge_page(new_page, old_page, address, vma);
756 spin_lock(&mm->page_table_lock);
757
758 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
759 if (likely(pte_same(*ptep, pte))) {
760 /* Break COW */
761 set_huge_pte_at(mm, address, ptep,
762 make_huge_pte(vma, new_page, 1));
763 /* Make the old page be freed below */
764 new_page = old_page;
765 }
766 page_cache_release(new_page);
767 page_cache_release(old_page);
768 return 0;
769 }
770
771 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
772 unsigned long address, pte_t *ptep, int write_access)
773 {
774 int ret = VM_FAULT_SIGBUS;
775 unsigned long idx;
776 unsigned long size;
777 struct page *page;
778 struct address_space *mapping;
779 pte_t new_pte;
780
781 mapping = vma->vm_file->f_mapping;
782 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
783 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
784
785 /*
786 * Use page lock to guard against racing truncation
787 * before we get page_table_lock.
788 */
789 retry:
790 page = find_lock_page(mapping, idx);
791 if (!page) {
792 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
793 if (idx >= size)
794 goto out;
795 page = alloc_huge_page(vma, address);
796 if (IS_ERR(page)) {
797 ret = -PTR_ERR(page);
798 goto out;
799 }
800 clear_huge_page(page, address);
801
802 if (vma->vm_flags & VM_SHARED) {
803 int err;
804
805 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
806 if (err) {
807 put_page(page);
808 if (err == -EEXIST)
809 goto retry;
810 goto out;
811 }
812 } else
813 lock_page(page);
814 }
815
816 spin_lock(&mm->page_table_lock);
817 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
818 if (idx >= size)
819 goto backout;
820
821 ret = 0;
822 if (!pte_none(*ptep))
823 goto backout;
824
825 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
826 && (vma->vm_flags & VM_SHARED)));
827 set_huge_pte_at(mm, address, ptep, new_pte);
828
829 if (write_access && !(vma->vm_flags & VM_SHARED)) {
830 /* Optimization, do the COW without a second fault */
831 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
832 }
833
834 spin_unlock(&mm->page_table_lock);
835 unlock_page(page);
836 out:
837 return ret;
838
839 backout:
840 spin_unlock(&mm->page_table_lock);
841 unlock_page(page);
842 put_page(page);
843 goto out;
844 }
845
846 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
847 unsigned long address, int write_access)
848 {
849 pte_t *ptep;
850 pte_t entry;
851 int ret;
852 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
853
854 ptep = huge_pte_alloc(mm, address);
855 if (!ptep)
856 return VM_FAULT_OOM;
857
858 /*
859 * Serialize hugepage allocation and instantiation, so that we don't
860 * get spurious allocation failures if two CPUs race to instantiate
861 * the same page in the page cache.
862 */
863 mutex_lock(&hugetlb_instantiation_mutex);
864 entry = *ptep;
865 if (pte_none(entry)) {
866 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
867 mutex_unlock(&hugetlb_instantiation_mutex);
868 return ret;
869 }
870
871 ret = 0;
872
873 spin_lock(&mm->page_table_lock);
874 /* Check for a racing update before calling hugetlb_cow */
875 if (likely(pte_same(entry, *ptep)))
876 if (write_access && !pte_write(entry))
877 ret = hugetlb_cow(mm, vma, address, ptep, entry);
878 spin_unlock(&mm->page_table_lock);
879 mutex_unlock(&hugetlb_instantiation_mutex);
880
881 return ret;
882 }
883
884 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
885 struct page **pages, struct vm_area_struct **vmas,
886 unsigned long *position, int *length, int i,
887 int write)
888 {
889 unsigned long pfn_offset;
890 unsigned long vaddr = *position;
891 int remainder = *length;
892
893 spin_lock(&mm->page_table_lock);
894 while (vaddr < vma->vm_end && remainder) {
895 pte_t *pte;
896 struct page *page;
897
898 /*
899 * Some archs (sparc64, sh*) have multiple pte_ts to
900 * each hugepage. We have to make * sure we get the
901 * first, for the page indexing below to work.
902 */
903 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
904
905 if (!pte || pte_none(*pte)) {
906 int ret;
907
908 spin_unlock(&mm->page_table_lock);
909 ret = hugetlb_fault(mm, vma, vaddr, write);
910 spin_lock(&mm->page_table_lock);
911 if (!(ret & VM_FAULT_ERROR))
912 continue;
913
914 remainder = 0;
915 if (!i)
916 i = -EFAULT;
917 break;
918 }
919
920 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
921 page = pte_page(*pte);
922 same_page:
923 if (pages) {
924 get_page(page);
925 pages[i] = page + pfn_offset;
926 }
927
928 if (vmas)
929 vmas[i] = vma;
930
931 vaddr += PAGE_SIZE;
932 ++pfn_offset;
933 --remainder;
934 ++i;
935 if (vaddr < vma->vm_end && remainder &&
936 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
937 /*
938 * We use pfn_offset to avoid touching the pageframes
939 * of this compound page.
940 */
941 goto same_page;
942 }
943 }
944 spin_unlock(&mm->page_table_lock);
945 *length = remainder;
946 *position = vaddr;
947
948 return i;
949 }
950
951 void hugetlb_change_protection(struct vm_area_struct *vma,
952 unsigned long address, unsigned long end, pgprot_t newprot)
953 {
954 struct mm_struct *mm = vma->vm_mm;
955 unsigned long start = address;
956 pte_t *ptep;
957 pte_t pte;
958
959 BUG_ON(address >= end);
960 flush_cache_range(vma, address, end);
961
962 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
963 spin_lock(&mm->page_table_lock);
964 for (; address < end; address += HPAGE_SIZE) {
965 ptep = huge_pte_offset(mm, address);
966 if (!ptep)
967 continue;
968 if (huge_pmd_unshare(mm, &address, ptep))
969 continue;
970 if (!pte_none(*ptep)) {
971 pte = huge_ptep_get_and_clear(mm, address, ptep);
972 pte = pte_mkhuge(pte_modify(pte, newprot));
973 set_huge_pte_at(mm, address, ptep, pte);
974 }
975 }
976 spin_unlock(&mm->page_table_lock);
977 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
978
979 flush_tlb_range(vma, start, end);
980 }
981
982 struct file_region {
983 struct list_head link;
984 long from;
985 long to;
986 };
987
988 static long region_add(struct list_head *head, long f, long t)
989 {
990 struct file_region *rg, *nrg, *trg;
991
992 /* Locate the region we are either in or before. */
993 list_for_each_entry(rg, head, link)
994 if (f <= rg->to)
995 break;
996
997 /* Round our left edge to the current segment if it encloses us. */
998 if (f > rg->from)
999 f = rg->from;
1000
1001 /* Check for and consume any regions we now overlap with. */
1002 nrg = rg;
1003 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1004 if (&rg->link == head)
1005 break;
1006 if (rg->from > t)
1007 break;
1008
1009 /* If this area reaches higher then extend our area to
1010 * include it completely. If this is not the first area
1011 * which we intend to reuse, free it. */
1012 if (rg->to > t)
1013 t = rg->to;
1014 if (rg != nrg) {
1015 list_del(&rg->link);
1016 kfree(rg);
1017 }
1018 }
1019 nrg->from = f;
1020 nrg->to = t;
1021 return 0;
1022 }
1023
1024 static long region_chg(struct list_head *head, long f, long t)
1025 {
1026 struct file_region *rg, *nrg;
1027 long chg = 0;
1028
1029 /* Locate the region we are before or in. */
1030 list_for_each_entry(rg, head, link)
1031 if (f <= rg->to)
1032 break;
1033
1034 /* If we are below the current region then a new region is required.
1035 * Subtle, allocate a new region at the position but make it zero
1036 * size such that we can guarantee to record the reservation. */
1037 if (&rg->link == head || t < rg->from) {
1038 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1039 if (!nrg)
1040 return -ENOMEM;
1041 nrg->from = f;
1042 nrg->to = f;
1043 INIT_LIST_HEAD(&nrg->link);
1044 list_add(&nrg->link, rg->link.prev);
1045
1046 return t - f;
1047 }
1048
1049 /* Round our left edge to the current segment if it encloses us. */
1050 if (f > rg->from)
1051 f = rg->from;
1052 chg = t - f;
1053
1054 /* Check for and consume any regions we now overlap with. */
1055 list_for_each_entry(rg, rg->link.prev, link) {
1056 if (&rg->link == head)
1057 break;
1058 if (rg->from > t)
1059 return chg;
1060
1061 /* We overlap with this area, if it extends futher than
1062 * us then we must extend ourselves. Account for its
1063 * existing reservation. */
1064 if (rg->to > t) {
1065 chg += rg->to - t;
1066 t = rg->to;
1067 }
1068 chg -= rg->to - rg->from;
1069 }
1070 return chg;
1071 }
1072
1073 static long region_truncate(struct list_head *head, long end)
1074 {
1075 struct file_region *rg, *trg;
1076 long chg = 0;
1077
1078 /* Locate the region we are either in or before. */
1079 list_for_each_entry(rg, head, link)
1080 if (end <= rg->to)
1081 break;
1082 if (&rg->link == head)
1083 return 0;
1084
1085 /* If we are in the middle of a region then adjust it. */
1086 if (end > rg->from) {
1087 chg = rg->to - end;
1088 rg->to = end;
1089 rg = list_entry(rg->link.next, typeof(*rg), link);
1090 }
1091
1092 /* Drop any remaining regions. */
1093 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1094 if (&rg->link == head)
1095 break;
1096 chg += rg->to - rg->from;
1097 list_del(&rg->link);
1098 kfree(rg);
1099 }
1100 return chg;
1101 }
1102
1103 static int hugetlb_acct_memory(long delta)
1104 {
1105 int ret = -ENOMEM;
1106
1107 spin_lock(&hugetlb_lock);
1108 /*
1109 * When cpuset is configured, it breaks the strict hugetlb page
1110 * reservation as the accounting is done on a global variable. Such
1111 * reservation is completely rubbish in the presence of cpuset because
1112 * the reservation is not checked against page availability for the
1113 * current cpuset. Application can still potentially OOM'ed by kernel
1114 * with lack of free htlb page in cpuset that the task is in.
1115 * Attempt to enforce strict accounting with cpuset is almost
1116 * impossible (or too ugly) because cpuset is too fluid that
1117 * task or memory node can be dynamically moved between cpusets.
1118 *
1119 * The change of semantics for shared hugetlb mapping with cpuset is
1120 * undesirable. However, in order to preserve some of the semantics,
1121 * we fall back to check against current free page availability as
1122 * a best attempt and hopefully to minimize the impact of changing
1123 * semantics that cpuset has.
1124 */
1125 if (delta > 0) {
1126 if (gather_surplus_pages(delta) < 0)
1127 goto out;
1128
1129 if (delta > cpuset_mems_nr(free_huge_pages_node))
1130 goto out;
1131 }
1132
1133 ret = 0;
1134 resv_huge_pages += delta;
1135 if (delta < 0)
1136 return_unused_surplus_pages((unsigned long) -delta);
1137
1138 out:
1139 spin_unlock(&hugetlb_lock);
1140 return ret;
1141 }
1142
1143 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1144 {
1145 long ret, chg;
1146
1147 chg = region_chg(&inode->i_mapping->private_list, from, to);
1148 if (chg < 0)
1149 return chg;
1150
1151 ret = hugetlb_acct_memory(chg);
1152 if (ret < 0)
1153 return ret;
1154 region_add(&inode->i_mapping->private_list, from, to);
1155 return 0;
1156 }
1157
1158 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1159 {
1160 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1161 hugetlb_acct_memory(freed - chg);
1162 }