2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
29 #include <asm/pgtable.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
38 int hugepages_treat_as_movable
;
40 int hugetlb_max_hstate __read_mostly
;
41 unsigned int default_hstate_idx
;
42 struct hstate hstates
[HUGE_MAX_HSTATE
];
44 * Minimum page order among possible hugepage sizes, set to a proper value
47 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
49 __initdata
LIST_HEAD(huge_boot_pages
);
51 /* for command line parsing */
52 static struct hstate
* __initdata parsed_hstate
;
53 static unsigned long __initdata default_hstate_max_huge_pages
;
54 static unsigned long __initdata default_hstate_size
;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock
);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes
;
67 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
74 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
76 spin_unlock(&spool
->lock
);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
82 if (spool
->min_hpages
!= -1)
83 hugetlb_acct_memory(spool
->hstate
,
89 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
92 struct hugepage_subpool
*spool
;
94 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
98 spin_lock_init(&spool
->lock
);
100 spool
->max_hpages
= max_hpages
;
102 spool
->min_hpages
= min_hpages
;
104 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
108 spool
->rsv_hpages
= min_hpages
;
113 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
115 spin_lock(&spool
->lock
);
116 BUG_ON(!spool
->count
);
118 unlock_or_release_subpool(spool
);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
137 spin_lock(&spool
->lock
);
139 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
140 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
141 spool
->used_hpages
+= delta
;
148 if (spool
->min_hpages
!= -1) { /* minimum size accounting */
149 if (delta
> spool
->rsv_hpages
) {
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
154 ret
= delta
- spool
->rsv_hpages
;
155 spool
->rsv_hpages
= 0;
157 ret
= 0; /* reserves already accounted for */
158 spool
->rsv_hpages
-= delta
;
163 spin_unlock(&spool
->lock
);
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
173 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
181 spin_lock(&spool
->lock
);
183 if (spool
->max_hpages
!= -1) /* maximum size accounting */
184 spool
->used_hpages
-= delta
;
186 if (spool
->min_hpages
!= -1) { /* minimum size accounting */
187 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
190 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
192 spool
->rsv_hpages
+= delta
;
193 if (spool
->rsv_hpages
> spool
->min_hpages
)
194 spool
->rsv_hpages
= spool
->min_hpages
;
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
201 unlock_or_release_subpool(spool
);
206 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
208 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
211 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
213 return subpool_inode(file_inode(vma
->vm_file
));
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
236 struct list_head link
;
242 * Add the huge page range represented by [f, t) to the reserve
243 * map. In the normal case, existing regions will be expanded
244 * to accommodate the specified range. Sufficient regions should
245 * exist for expansion due to the previous call to region_chg
246 * with the same range. However, it is possible that region_del
247 * could have been called after region_chg and modifed the map
248 * in such a way that no region exists to be expanded. In this
249 * case, pull a region descriptor from the cache associated with
250 * the map and use that for the new range.
252 * Return the number of new huge pages added to the map. This
253 * number is greater than or equal to zero.
255 static long region_add(struct resv_map
*resv
, long f
, long t
)
257 struct list_head
*head
= &resv
->regions
;
258 struct file_region
*rg
, *nrg
, *trg
;
261 spin_lock(&resv
->lock
);
262 /* Locate the region we are either in or before. */
263 list_for_each_entry(rg
, head
, link
)
268 * If no region exists which can be expanded to include the
269 * specified range, the list must have been modified by an
270 * interleving call to region_del(). Pull a region descriptor
271 * from the cache and use it for this range.
273 if (&rg
->link
== head
|| t
< rg
->from
) {
274 VM_BUG_ON(resv
->region_cache_count
<= 0);
276 resv
->region_cache_count
--;
277 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
279 list_del(&nrg
->link
);
283 list_add(&nrg
->link
, rg
->link
.prev
);
289 /* Round our left edge to the current segment if it encloses us. */
293 /* Check for and consume any regions we now overlap with. */
295 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
296 if (&rg
->link
== head
)
301 /* If this area reaches higher then extend our area to
302 * include it completely. If this is not the first area
303 * which we intend to reuse, free it. */
307 /* Decrement return value by the deleted range.
308 * Another range will span this area so that by
309 * end of routine add will be >= zero
311 add
-= (rg
->to
- rg
->from
);
317 add
+= (nrg
->from
- f
); /* Added to beginning of region */
319 add
+= t
- nrg
->to
; /* Added to end of region */
323 resv
->adds_in_progress
--;
324 spin_unlock(&resv
->lock
);
330 * Examine the existing reserve map and determine how many
331 * huge pages in the specified range [f, t) are NOT currently
332 * represented. This routine is called before a subsequent
333 * call to region_add that will actually modify the reserve
334 * map to add the specified range [f, t). region_chg does
335 * not change the number of huge pages represented by the
336 * map. However, if the existing regions in the map can not
337 * be expanded to represent the new range, a new file_region
338 * structure is added to the map as a placeholder. This is
339 * so that the subsequent region_add call will have all the
340 * regions it needs and will not fail.
342 * Upon entry, region_chg will also examine the cache of region descriptors
343 * associated with the map. If there are not enough descriptors cached, one
344 * will be allocated for the in progress add operation.
346 * Returns the number of huge pages that need to be added to the existing
347 * reservation map for the range [f, t). This number is greater or equal to
348 * zero. -ENOMEM is returned if a new file_region structure or cache entry
349 * is needed and can not be allocated.
351 static long region_chg(struct resv_map
*resv
, long f
, long t
)
353 struct list_head
*head
= &resv
->regions
;
354 struct file_region
*rg
, *nrg
= NULL
;
358 spin_lock(&resv
->lock
);
360 resv
->adds_in_progress
++;
363 * Check for sufficient descriptors in the cache to accommodate
364 * the number of in progress add operations.
366 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
367 struct file_region
*trg
;
369 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
370 /* Must drop lock to allocate a new descriptor. */
371 resv
->adds_in_progress
--;
372 spin_unlock(&resv
->lock
);
374 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
380 spin_lock(&resv
->lock
);
381 list_add(&trg
->link
, &resv
->region_cache
);
382 resv
->region_cache_count
++;
386 /* Locate the region we are before or in. */
387 list_for_each_entry(rg
, head
, link
)
391 /* If we are below the current region then a new region is required.
392 * Subtle, allocate a new region at the position but make it zero
393 * size such that we can guarantee to record the reservation. */
394 if (&rg
->link
== head
|| t
< rg
->from
) {
396 resv
->adds_in_progress
--;
397 spin_unlock(&resv
->lock
);
398 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
404 INIT_LIST_HEAD(&nrg
->link
);
408 list_add(&nrg
->link
, rg
->link
.prev
);
413 /* Round our left edge to the current segment if it encloses us. */
418 /* Check for and consume any regions we now overlap with. */
419 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
420 if (&rg
->link
== head
)
425 /* We overlap with this area, if it extends further than
426 * us then we must extend ourselves. Account for its
427 * existing reservation. */
432 chg
-= rg
->to
- rg
->from
;
436 spin_unlock(&resv
->lock
);
437 /* We already know we raced and no longer need the new region */
441 spin_unlock(&resv
->lock
);
446 * Abort the in progress add operation. The adds_in_progress field
447 * of the resv_map keeps track of the operations in progress between
448 * calls to region_chg and region_add. Operations are sometimes
449 * aborted after the call to region_chg. In such cases, region_abort
450 * is called to decrement the adds_in_progress counter.
452 * NOTE: The range arguments [f, t) are not needed or used in this
453 * routine. They are kept to make reading the calling code easier as
454 * arguments will match the associated region_chg call.
456 static void region_abort(struct resv_map
*resv
, long f
, long t
)
458 spin_lock(&resv
->lock
);
459 VM_BUG_ON(!resv
->region_cache_count
);
460 resv
->adds_in_progress
--;
461 spin_unlock(&resv
->lock
);
465 * Delete the specified range [f, t) from the reserve map. If the
466 * t parameter is LONG_MAX, this indicates that ALL regions after f
467 * should be deleted. Locate the regions which intersect [f, t)
468 * and either trim, delete or split the existing regions.
470 * Returns the number of huge pages deleted from the reserve map.
471 * In the normal case, the return value is zero or more. In the
472 * case where a region must be split, a new region descriptor must
473 * be allocated. If the allocation fails, -ENOMEM will be returned.
474 * NOTE: If the parameter t == LONG_MAX, then we will never split
475 * a region and possibly return -ENOMEM. Callers specifying
476 * t == LONG_MAX do not need to check for -ENOMEM error.
478 static long region_del(struct resv_map
*resv
, long f
, long t
)
480 struct list_head
*head
= &resv
->regions
;
481 struct file_region
*rg
, *trg
;
482 struct file_region
*nrg
= NULL
;
486 spin_lock(&resv
->lock
);
487 list_for_each_entry_safe(rg
, trg
, head
, link
) {
489 * Skip regions before the range to be deleted. file_region
490 * ranges are normally of the form [from, to). However, there
491 * may be a "placeholder" entry in the map which is of the form
492 * (from, to) with from == to. Check for placeholder entries
493 * at the beginning of the range to be deleted.
495 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
501 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
503 * Check for an entry in the cache before dropping
504 * lock and attempting allocation.
507 resv
->region_cache_count
> resv
->adds_in_progress
) {
508 nrg
= list_first_entry(&resv
->region_cache
,
511 list_del(&nrg
->link
);
512 resv
->region_cache_count
--;
516 spin_unlock(&resv
->lock
);
517 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
525 /* New entry for end of split region */
528 INIT_LIST_HEAD(&nrg
->link
);
530 /* Original entry is trimmed */
533 list_add(&nrg
->link
, &rg
->link
);
538 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
539 del
+= rg
->to
- rg
->from
;
545 if (f
<= rg
->from
) { /* Trim beginning of region */
548 } else { /* Trim end of region */
554 spin_unlock(&resv
->lock
);
560 * A rare out of memory error was encountered which prevented removal of
561 * the reserve map region for a page. The huge page itself was free'ed
562 * and removed from the page cache. This routine will adjust the subpool
563 * usage count, and the global reserve count if needed. By incrementing
564 * these counts, the reserve map entry which could not be deleted will
565 * appear as a "reserved" entry instead of simply dangling with incorrect
568 void hugetlb_fix_reserve_counts(struct inode
*inode
, bool restore_reserve
)
570 struct hugepage_subpool
*spool
= subpool_inode(inode
);
573 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
574 if (restore_reserve
&& rsv_adjust
) {
575 struct hstate
*h
= hstate_inode(inode
);
577 hugetlb_acct_memory(h
, 1);
582 * Count and return the number of huge pages in the reserve map
583 * that intersect with the range [f, t).
585 static long region_count(struct resv_map
*resv
, long f
, long t
)
587 struct list_head
*head
= &resv
->regions
;
588 struct file_region
*rg
;
591 spin_lock(&resv
->lock
);
592 /* Locate each segment we overlap with, and count that overlap. */
593 list_for_each_entry(rg
, head
, link
) {
602 seg_from
= max(rg
->from
, f
);
603 seg_to
= min(rg
->to
, t
);
605 chg
+= seg_to
- seg_from
;
607 spin_unlock(&resv
->lock
);
613 * Convert the address within this vma to the page offset within
614 * the mapping, in pagecache page units; huge pages here.
616 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
617 struct vm_area_struct
*vma
, unsigned long address
)
619 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
620 (vma
->vm_pgoff
>> huge_page_order(h
));
623 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
624 unsigned long address
)
626 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
630 * Return the size of the pages allocated when backing a VMA. In the majority
631 * cases this will be same size as used by the page table entries.
633 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
635 struct hstate
*hstate
;
637 if (!is_vm_hugetlb_page(vma
))
640 hstate
= hstate_vma(vma
);
642 return 1UL << huge_page_shift(hstate
);
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific version of this
650 * function is required.
652 #ifndef vma_mmu_pagesize
653 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
655 return vma_kernel_pagesize(vma
);
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
664 #define HPAGE_RESV_OWNER (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
687 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
689 return (unsigned long)vma
->vm_private_data
;
692 static void set_vma_private_data(struct vm_area_struct
*vma
,
695 vma
->vm_private_data
= (void *)value
;
698 struct resv_map
*resv_map_alloc(void)
700 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
701 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
703 if (!resv_map
|| !rg
) {
709 kref_init(&resv_map
->refs
);
710 spin_lock_init(&resv_map
->lock
);
711 INIT_LIST_HEAD(&resv_map
->regions
);
713 resv_map
->adds_in_progress
= 0;
715 INIT_LIST_HEAD(&resv_map
->region_cache
);
716 list_add(&rg
->link
, &resv_map
->region_cache
);
717 resv_map
->region_cache_count
= 1;
722 void resv_map_release(struct kref
*ref
)
724 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
725 struct list_head
*head
= &resv_map
->region_cache
;
726 struct file_region
*rg
, *trg
;
728 /* Clear out any active regions before we release the map. */
729 region_del(resv_map
, 0, LONG_MAX
);
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg
, trg
, head
, link
) {
737 VM_BUG_ON(resv_map
->adds_in_progress
);
742 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
744 return inode
->i_mapping
->private_data
;
747 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
749 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
750 if (vma
->vm_flags
& VM_MAYSHARE
) {
751 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
752 struct inode
*inode
= mapping
->host
;
754 return inode_resv_map(inode
);
757 return (struct resv_map
*)(get_vma_private_data(vma
) &
762 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
764 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
765 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
767 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
768 HPAGE_RESV_MASK
) | (unsigned long)map
);
771 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
773 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
774 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
776 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
779 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
783 return (get_vma_private_data(vma
) & flag
) != 0;
786 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
787 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
790 if (!(vma
->vm_flags
& VM_MAYSHARE
))
791 vma
->vm_private_data
= (void *)0;
794 /* Returns true if the VMA has associated reserve pages */
795 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
797 if (vma
->vm_flags
& VM_NORESERVE
) {
799 * This address is already reserved by other process(chg == 0),
800 * so, we should decrement reserved count. Without decrementing,
801 * reserve count remains after releasing inode, because this
802 * allocated page will go into page cache and is regarded as
803 * coming from reserved pool in releasing step. Currently, we
804 * don't have any other solution to deal with this situation
805 * properly, so add work-around here.
807 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
813 /* Shared mappings always use reserves */
814 if (vma
->vm_flags
& VM_MAYSHARE
) {
816 * We know VM_NORESERVE is not set. Therefore, there SHOULD
817 * be a region map for all pages. The only situation where
818 * there is no region map is if a hole was punched via
819 * fallocate. In this case, there really are no reverves to
820 * use. This situation is indicated if chg != 0.
829 * Only the process that called mmap() has reserves for
832 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
838 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
840 int nid
= page_to_nid(page
);
841 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
842 h
->free_huge_pages
++;
843 h
->free_huge_pages_node
[nid
]++;
846 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
850 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
851 if (!is_migrate_isolate_page(page
))
854 * if 'non-isolated free hugepage' not found on the list,
855 * the allocation fails.
857 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
859 list_move(&page
->lru
, &h
->hugepage_activelist
);
860 set_page_refcounted(page
);
861 h
->free_huge_pages
--;
862 h
->free_huge_pages_node
[nid
]--;
866 /* Movability of hugepages depends on migration support. */
867 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
869 if (hugepages_treat_as_movable
|| hugepage_migration_supported(h
))
870 return GFP_HIGHUSER_MOVABLE
;
875 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
876 struct vm_area_struct
*vma
,
877 unsigned long address
, int avoid_reserve
,
880 struct page
*page
= NULL
;
881 struct mempolicy
*mpol
;
882 nodemask_t
*nodemask
;
883 struct zonelist
*zonelist
;
886 unsigned int cpuset_mems_cookie
;
889 * A child process with MAP_PRIVATE mappings created by their parent
890 * have no page reserves. This check ensures that reservations are
891 * not "stolen". The child may still get SIGKILLed
893 if (!vma_has_reserves(vma
, chg
) &&
894 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
897 /* If reserves cannot be used, ensure enough pages are in the pool */
898 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
902 cpuset_mems_cookie
= read_mems_allowed_begin();
903 zonelist
= huge_zonelist(vma
, address
,
904 htlb_alloc_mask(h
), &mpol
, &nodemask
);
906 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
907 MAX_NR_ZONES
- 1, nodemask
) {
908 if (cpuset_zone_allowed(zone
, htlb_alloc_mask(h
))) {
909 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
913 if (!vma_has_reserves(vma
, chg
))
916 SetPagePrivate(page
);
917 h
->resv_huge_pages
--;
924 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
933 * common helper functions for hstate_next_node_to_{alloc|free}.
934 * We may have allocated or freed a huge page based on a different
935 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936 * be outside of *nodes_allowed. Ensure that we use an allowed
937 * node for alloc or free.
939 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
941 nid
= next_node(nid
, *nodes_allowed
);
942 if (nid
== MAX_NUMNODES
)
943 nid
= first_node(*nodes_allowed
);
944 VM_BUG_ON(nid
>= MAX_NUMNODES
);
949 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
951 if (!node_isset(nid
, *nodes_allowed
))
952 nid
= next_node_allowed(nid
, nodes_allowed
);
957 * returns the previously saved node ["this node"] from which to
958 * allocate a persistent huge page for the pool and advance the
959 * next node from which to allocate, handling wrap at end of node
962 static int hstate_next_node_to_alloc(struct hstate
*h
,
963 nodemask_t
*nodes_allowed
)
967 VM_BUG_ON(!nodes_allowed
);
969 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
970 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
976 * helper for free_pool_huge_page() - return the previously saved
977 * node ["this node"] from which to free a huge page. Advance the
978 * next node id whether or not we find a free huge page to free so
979 * that the next attempt to free addresses the next node.
981 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
985 VM_BUG_ON(!nodes_allowed
);
987 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
988 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
994 for (nr_nodes = nodes_weight(*mask); \
996 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1000 for (nr_nodes = nodes_weight(*mask); \
1002 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1005 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
1006 static void destroy_compound_gigantic_page(struct page
*page
,
1010 int nr_pages
= 1 << order
;
1011 struct page
*p
= page
+ 1;
1013 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1014 clear_compound_head(p
);
1015 set_page_refcounted(p
);
1018 set_compound_order(page
, 0);
1019 __ClearPageHead(page
);
1022 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1024 free_contig_range(page_to_pfn(page
), 1 << order
);
1027 static int __alloc_gigantic_page(unsigned long start_pfn
,
1028 unsigned long nr_pages
)
1030 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1031 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1034 static bool pfn_range_valid_gigantic(unsigned long start_pfn
,
1035 unsigned long nr_pages
)
1037 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1040 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1044 page
= pfn_to_page(i
);
1046 if (PageReserved(page
))
1049 if (page_count(page
) > 0)
1059 static bool zone_spans_last_pfn(const struct zone
*zone
,
1060 unsigned long start_pfn
, unsigned long nr_pages
)
1062 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1063 return zone_spans_pfn(zone
, last_pfn
);
1066 static struct page
*alloc_gigantic_page(int nid
, unsigned int order
)
1068 unsigned long nr_pages
= 1 << order
;
1069 unsigned long ret
, pfn
, flags
;
1072 z
= NODE_DATA(nid
)->node_zones
;
1073 for (; z
- NODE_DATA(nid
)->node_zones
< MAX_NR_ZONES
; z
++) {
1074 spin_lock_irqsave(&z
->lock
, flags
);
1076 pfn
= ALIGN(z
->zone_start_pfn
, nr_pages
);
1077 while (zone_spans_last_pfn(z
, pfn
, nr_pages
)) {
1078 if (pfn_range_valid_gigantic(pfn
, nr_pages
)) {
1080 * We release the zone lock here because
1081 * alloc_contig_range() will also lock the zone
1082 * at some point. If there's an allocation
1083 * spinning on this lock, it may win the race
1084 * and cause alloc_contig_range() to fail...
1086 spin_unlock_irqrestore(&z
->lock
, flags
);
1087 ret
= __alloc_gigantic_page(pfn
, nr_pages
);
1089 return pfn_to_page(pfn
);
1090 spin_lock_irqsave(&z
->lock
, flags
);
1095 spin_unlock_irqrestore(&z
->lock
, flags
);
1101 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1102 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1104 static struct page
*alloc_fresh_gigantic_page_node(struct hstate
*h
, int nid
)
1108 page
= alloc_gigantic_page(nid
, huge_page_order(h
));
1110 prep_compound_gigantic_page(page
, huge_page_order(h
));
1111 prep_new_huge_page(h
, page
, nid
);
1117 static int alloc_fresh_gigantic_page(struct hstate
*h
,
1118 nodemask_t
*nodes_allowed
)
1120 struct page
*page
= NULL
;
1123 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1124 page
= alloc_fresh_gigantic_page_node(h
, node
);
1132 static inline bool gigantic_page_supported(void) { return true; }
1134 static inline bool gigantic_page_supported(void) { return false; }
1135 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1136 static inline void destroy_compound_gigantic_page(struct page
*page
,
1137 unsigned int order
) { }
1138 static inline int alloc_fresh_gigantic_page(struct hstate
*h
,
1139 nodemask_t
*nodes_allowed
) { return 0; }
1142 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1146 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1150 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1151 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1152 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1153 1 << PG_referenced
| 1 << PG_dirty
|
1154 1 << PG_active
| 1 << PG_private
|
1157 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1158 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1159 set_page_refcounted(page
);
1160 if (hstate_is_gigantic(h
)) {
1161 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1162 free_gigantic_page(page
, huge_page_order(h
));
1164 __free_pages(page
, huge_page_order(h
));
1168 struct hstate
*size_to_hstate(unsigned long size
)
1172 for_each_hstate(h
) {
1173 if (huge_page_size(h
) == size
)
1180 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1181 * to hstate->hugepage_activelist.)
1183 * This function can be called for tail pages, but never returns true for them.
1185 bool page_huge_active(struct page
*page
)
1187 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1188 return PageHead(page
) && PagePrivate(&page
[1]);
1191 /* never called for tail page */
1192 static void set_page_huge_active(struct page
*page
)
1194 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1195 SetPagePrivate(&page
[1]);
1198 static void clear_page_huge_active(struct page
*page
)
1200 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1201 ClearPagePrivate(&page
[1]);
1204 void free_huge_page(struct page
*page
)
1207 * Can't pass hstate in here because it is called from the
1208 * compound page destructor.
1210 struct hstate
*h
= page_hstate(page
);
1211 int nid
= page_to_nid(page
);
1212 struct hugepage_subpool
*spool
=
1213 (struct hugepage_subpool
*)page_private(page
);
1214 bool restore_reserve
;
1216 set_page_private(page
, 0);
1217 page
->mapping
= NULL
;
1218 BUG_ON(page_count(page
));
1219 BUG_ON(page_mapcount(page
));
1220 restore_reserve
= PagePrivate(page
);
1221 ClearPagePrivate(page
);
1224 * A return code of zero implies that the subpool will be under its
1225 * minimum size if the reservation is not restored after page is free.
1226 * Therefore, force restore_reserve operation.
1228 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1229 restore_reserve
= true;
1231 spin_lock(&hugetlb_lock
);
1232 clear_page_huge_active(page
);
1233 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1234 pages_per_huge_page(h
), page
);
1235 if (restore_reserve
)
1236 h
->resv_huge_pages
++;
1238 if (h
->surplus_huge_pages_node
[nid
]) {
1239 /* remove the page from active list */
1240 list_del(&page
->lru
);
1241 update_and_free_page(h
, page
);
1242 h
->surplus_huge_pages
--;
1243 h
->surplus_huge_pages_node
[nid
]--;
1245 arch_clear_hugepage_flags(page
);
1246 enqueue_huge_page(h
, page
);
1248 spin_unlock(&hugetlb_lock
);
1251 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1253 INIT_LIST_HEAD(&page
->lru
);
1254 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1255 spin_lock(&hugetlb_lock
);
1256 set_hugetlb_cgroup(page
, NULL
);
1258 h
->nr_huge_pages_node
[nid
]++;
1259 spin_unlock(&hugetlb_lock
);
1260 put_page(page
); /* free it into the hugepage allocator */
1263 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1266 int nr_pages
= 1 << order
;
1267 struct page
*p
= page
+ 1;
1269 /* we rely on prep_new_huge_page to set the destructor */
1270 set_compound_order(page
, order
);
1271 __SetPageHead(page
);
1272 __ClearPageReserved(page
);
1273 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1275 * For gigantic hugepages allocated through bootmem at
1276 * boot, it's safer to be consistent with the not-gigantic
1277 * hugepages and clear the PG_reserved bit from all tail pages
1278 * too. Otherwse drivers using get_user_pages() to access tail
1279 * pages may get the reference counting wrong if they see
1280 * PG_reserved set on a tail page (despite the head page not
1281 * having PG_reserved set). Enforcing this consistency between
1282 * head and tail pages allows drivers to optimize away a check
1283 * on the head page when they need know if put_page() is needed
1284 * after get_user_pages().
1286 __ClearPageReserved(p
);
1287 set_page_count(p
, 0);
1288 set_compound_head(p
, page
);
1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294 * transparent huge pages. See the PageTransHuge() documentation for more
1297 int PageHuge(struct page
*page
)
1299 if (!PageCompound(page
))
1302 page
= compound_head(page
);
1303 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1305 EXPORT_SYMBOL_GPL(PageHuge
);
1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309 * normal or transparent huge pages.
1311 int PageHeadHuge(struct page
*page_head
)
1313 if (!PageHead(page_head
))
1316 return get_compound_page_dtor(page_head
) == free_huge_page
;
1319 pgoff_t
__basepage_index(struct page
*page
)
1321 struct page
*page_head
= compound_head(page
);
1322 pgoff_t index
= page_index(page_head
);
1323 unsigned long compound_idx
;
1325 if (!PageHuge(page_head
))
1326 return page_index(page
);
1328 if (compound_order(page_head
) >= MAX_ORDER
)
1329 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1331 compound_idx
= page
- page_head
;
1333 return (index
<< compound_order(page_head
)) + compound_idx
;
1336 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
1340 page
= __alloc_pages_node(nid
,
1341 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1342 __GFP_REPEAT
|__GFP_NOWARN
,
1343 huge_page_order(h
));
1345 prep_new_huge_page(h
, page
, nid
);
1351 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1357 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1358 page
= alloc_fresh_huge_page_node(h
, node
);
1366 count_vm_event(HTLB_BUDDY_PGALLOC
);
1368 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1374 * Free huge page from pool from next node to free.
1375 * Attempt to keep persistent huge pages more or less
1376 * balanced over allowed nodes.
1377 * Called with hugetlb_lock locked.
1379 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1385 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1387 * If we're returning unused surplus pages, only examine
1388 * nodes with surplus pages.
1390 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1391 !list_empty(&h
->hugepage_freelists
[node
])) {
1393 list_entry(h
->hugepage_freelists
[node
].next
,
1395 list_del(&page
->lru
);
1396 h
->free_huge_pages
--;
1397 h
->free_huge_pages_node
[node
]--;
1399 h
->surplus_huge_pages
--;
1400 h
->surplus_huge_pages_node
[node
]--;
1402 update_and_free_page(h
, page
);
1412 * Dissolve a given free hugepage into free buddy pages. This function does
1413 * nothing for in-use (including surplus) hugepages.
1415 static void dissolve_free_huge_page(struct page
*page
)
1417 spin_lock(&hugetlb_lock
);
1418 if (PageHuge(page
) && !page_count(page
)) {
1419 struct hstate
*h
= page_hstate(page
);
1420 int nid
= page_to_nid(page
);
1421 list_del(&page
->lru
);
1422 h
->free_huge_pages
--;
1423 h
->free_huge_pages_node
[nid
]--;
1424 update_and_free_page(h
, page
);
1426 spin_unlock(&hugetlb_lock
);
1430 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431 * make specified memory blocks removable from the system.
1432 * Note that start_pfn should aligned with (minimum) hugepage size.
1434 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1438 if (!hugepages_supported())
1441 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << minimum_order
));
1442 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
)
1443 dissolve_free_huge_page(pfn_to_page(pfn
));
1447 * There are 3 ways this can get called:
1448 * 1. With vma+addr: we use the VMA's memory policy
1449 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1450 * page from any node, and let the buddy allocator itself figure
1452 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1453 * strictly from 'nid'
1455 static struct page
*__hugetlb_alloc_buddy_huge_page(struct hstate
*h
,
1456 struct vm_area_struct
*vma
, unsigned long addr
, int nid
)
1458 int order
= huge_page_order(h
);
1459 gfp_t gfp
= htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_REPEAT
|__GFP_NOWARN
;
1460 unsigned int cpuset_mems_cookie
;
1463 * We need a VMA to get a memory policy. If we do not
1464 * have one, we use the 'nid' argument.
1466 * The mempolicy stuff below has some non-inlined bits
1467 * and calls ->vm_ops. That makes it hard to optimize at
1468 * compile-time, even when NUMA is off and it does
1469 * nothing. This helps the compiler optimize it out.
1471 if (!IS_ENABLED(CONFIG_NUMA
) || !vma
) {
1473 * If a specific node is requested, make sure to
1474 * get memory from there, but only when a node
1475 * is explicitly specified.
1477 if (nid
!= NUMA_NO_NODE
)
1478 gfp
|= __GFP_THISNODE
;
1480 * Make sure to call something that can handle
1483 return alloc_pages_node(nid
, gfp
, order
);
1487 * OK, so we have a VMA. Fetch the mempolicy and try to
1488 * allocate a huge page with it. We will only reach this
1489 * when CONFIG_NUMA=y.
1493 struct mempolicy
*mpol
;
1494 struct zonelist
*zl
;
1495 nodemask_t
*nodemask
;
1497 cpuset_mems_cookie
= read_mems_allowed_begin();
1498 zl
= huge_zonelist(vma
, addr
, gfp
, &mpol
, &nodemask
);
1499 mpol_cond_put(mpol
);
1500 page
= __alloc_pages_nodemask(gfp
, order
, zl
, nodemask
);
1503 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1509 * There are two ways to allocate a huge page:
1510 * 1. When you have a VMA and an address (like a fault)
1511 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1513 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1514 * this case which signifies that the allocation should be done with
1515 * respect for the VMA's memory policy.
1517 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518 * implies that memory policies will not be taken in to account.
1520 static struct page
*__alloc_buddy_huge_page(struct hstate
*h
,
1521 struct vm_area_struct
*vma
, unsigned long addr
, int nid
)
1526 if (hstate_is_gigantic(h
))
1530 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531 * This makes sure the caller is picking _one_ of the modes with which
1532 * we can call this function, not both.
1534 if (vma
|| (addr
!= -1)) {
1535 VM_WARN_ON_ONCE(addr
== -1);
1536 VM_WARN_ON_ONCE(nid
!= NUMA_NO_NODE
);
1539 * Assume we will successfully allocate the surplus page to
1540 * prevent racing processes from causing the surplus to exceed
1543 * This however introduces a different race, where a process B
1544 * tries to grow the static hugepage pool while alloc_pages() is
1545 * called by process A. B will only examine the per-node
1546 * counters in determining if surplus huge pages can be
1547 * converted to normal huge pages in adjust_pool_surplus(). A
1548 * won't be able to increment the per-node counter, until the
1549 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550 * no more huge pages can be converted from surplus to normal
1551 * state (and doesn't try to convert again). Thus, we have a
1552 * case where a surplus huge page exists, the pool is grown, and
1553 * the surplus huge page still exists after, even though it
1554 * should just have been converted to a normal huge page. This
1555 * does not leak memory, though, as the hugepage will be freed
1556 * once it is out of use. It also does not allow the counters to
1557 * go out of whack in adjust_pool_surplus() as we don't modify
1558 * the node values until we've gotten the hugepage and only the
1559 * per-node value is checked there.
1561 spin_lock(&hugetlb_lock
);
1562 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1563 spin_unlock(&hugetlb_lock
);
1567 h
->surplus_huge_pages
++;
1569 spin_unlock(&hugetlb_lock
);
1571 page
= __hugetlb_alloc_buddy_huge_page(h
, vma
, addr
, nid
);
1573 spin_lock(&hugetlb_lock
);
1575 INIT_LIST_HEAD(&page
->lru
);
1576 r_nid
= page_to_nid(page
);
1577 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1578 set_hugetlb_cgroup(page
, NULL
);
1580 * We incremented the global counters already
1582 h
->nr_huge_pages_node
[r_nid
]++;
1583 h
->surplus_huge_pages_node
[r_nid
]++;
1584 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1587 h
->surplus_huge_pages
--;
1588 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1590 spin_unlock(&hugetlb_lock
);
1596 * Allocate a huge page from 'nid'. Note, 'nid' may be
1597 * NUMA_NO_NODE, which means that it may be allocated
1601 struct page
*__alloc_buddy_huge_page_no_mpol(struct hstate
*h
, int nid
)
1603 unsigned long addr
= -1;
1605 return __alloc_buddy_huge_page(h
, NULL
, addr
, nid
);
1609 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1612 struct page
*__alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1613 struct vm_area_struct
*vma
, unsigned long addr
)
1615 return __alloc_buddy_huge_page(h
, vma
, addr
, NUMA_NO_NODE
);
1619 * This allocation function is useful in the context where vma is irrelevant.
1620 * E.g. soft-offlining uses this function because it only cares physical
1621 * address of error page.
1623 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1625 struct page
*page
= NULL
;
1627 spin_lock(&hugetlb_lock
);
1628 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1629 page
= dequeue_huge_page_node(h
, nid
);
1630 spin_unlock(&hugetlb_lock
);
1633 page
= __alloc_buddy_huge_page_no_mpol(h
, nid
);
1639 * Increase the hugetlb pool such that it can accommodate a reservation
1642 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1644 struct list_head surplus_list
;
1645 struct page
*page
, *tmp
;
1647 int needed
, allocated
;
1648 bool alloc_ok
= true;
1650 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1652 h
->resv_huge_pages
+= delta
;
1657 INIT_LIST_HEAD(&surplus_list
);
1661 spin_unlock(&hugetlb_lock
);
1662 for (i
= 0; i
< needed
; i
++) {
1663 page
= __alloc_buddy_huge_page_no_mpol(h
, NUMA_NO_NODE
);
1668 list_add(&page
->lru
, &surplus_list
);
1673 * After retaking hugetlb_lock, we need to recalculate 'needed'
1674 * because either resv_huge_pages or free_huge_pages may have changed.
1676 spin_lock(&hugetlb_lock
);
1677 needed
= (h
->resv_huge_pages
+ delta
) -
1678 (h
->free_huge_pages
+ allocated
);
1683 * We were not able to allocate enough pages to
1684 * satisfy the entire reservation so we free what
1685 * we've allocated so far.
1690 * The surplus_list now contains _at_least_ the number of extra pages
1691 * needed to accommodate the reservation. Add the appropriate number
1692 * of pages to the hugetlb pool and free the extras back to the buddy
1693 * allocator. Commit the entire reservation here to prevent another
1694 * process from stealing the pages as they are added to the pool but
1695 * before they are reserved.
1697 needed
+= allocated
;
1698 h
->resv_huge_pages
+= delta
;
1701 /* Free the needed pages to the hugetlb pool */
1702 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1706 * This page is now managed by the hugetlb allocator and has
1707 * no users -- drop the buddy allocator's reference.
1709 put_page_testzero(page
);
1710 VM_BUG_ON_PAGE(page_count(page
), page
);
1711 enqueue_huge_page(h
, page
);
1714 spin_unlock(&hugetlb_lock
);
1716 /* Free unnecessary surplus pages to the buddy allocator */
1717 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1719 spin_lock(&hugetlb_lock
);
1725 * When releasing a hugetlb pool reservation, any surplus pages that were
1726 * allocated to satisfy the reservation must be explicitly freed if they were
1728 * Called with hugetlb_lock held.
1730 static void return_unused_surplus_pages(struct hstate
*h
,
1731 unsigned long unused_resv_pages
)
1733 unsigned long nr_pages
;
1735 /* Uncommit the reservation */
1736 h
->resv_huge_pages
-= unused_resv_pages
;
1738 /* Cannot return gigantic pages currently */
1739 if (hstate_is_gigantic(h
))
1742 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1745 * We want to release as many surplus pages as possible, spread
1746 * evenly across all nodes with memory. Iterate across these nodes
1747 * until we can no longer free unreserved surplus pages. This occurs
1748 * when the nodes with surplus pages have no free pages.
1749 * free_pool_huge_page() will balance the the freed pages across the
1750 * on-line nodes with memory and will handle the hstate accounting.
1752 while (nr_pages
--) {
1753 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1755 cond_resched_lock(&hugetlb_lock
);
1761 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762 * are used by the huge page allocation routines to manage reservations.
1764 * vma_needs_reservation is called to determine if the huge page at addr
1765 * within the vma has an associated reservation. If a reservation is
1766 * needed, the value 1 is returned. The caller is then responsible for
1767 * managing the global reservation and subpool usage counts. After
1768 * the huge page has been allocated, vma_commit_reservation is called
1769 * to add the page to the reservation map. If the page allocation fails,
1770 * the reservation must be ended instead of committed. vma_end_reservation
1771 * is called in such cases.
1773 * In the normal case, vma_commit_reservation returns the same value
1774 * as the preceding vma_needs_reservation call. The only time this
1775 * is not the case is if a reserve map was changed between calls. It
1776 * is the responsibility of the caller to notice the difference and
1777 * take appropriate action.
1779 enum vma_resv_mode
{
1784 static long __vma_reservation_common(struct hstate
*h
,
1785 struct vm_area_struct
*vma
, unsigned long addr
,
1786 enum vma_resv_mode mode
)
1788 struct resv_map
*resv
;
1792 resv
= vma_resv_map(vma
);
1796 idx
= vma_hugecache_offset(h
, vma
, addr
);
1798 case VMA_NEEDS_RESV
:
1799 ret
= region_chg(resv
, idx
, idx
+ 1);
1801 case VMA_COMMIT_RESV
:
1802 ret
= region_add(resv
, idx
, idx
+ 1);
1805 region_abort(resv
, idx
, idx
+ 1);
1812 if (vma
->vm_flags
& VM_MAYSHARE
)
1815 return ret
< 0 ? ret
: 0;
1818 static long vma_needs_reservation(struct hstate
*h
,
1819 struct vm_area_struct
*vma
, unsigned long addr
)
1821 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1824 static long vma_commit_reservation(struct hstate
*h
,
1825 struct vm_area_struct
*vma
, unsigned long addr
)
1827 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1830 static void vma_end_reservation(struct hstate
*h
,
1831 struct vm_area_struct
*vma
, unsigned long addr
)
1833 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1836 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1837 unsigned long addr
, int avoid_reserve
)
1839 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1840 struct hstate
*h
= hstate_vma(vma
);
1842 long map_chg
, map_commit
;
1845 struct hugetlb_cgroup
*h_cg
;
1847 idx
= hstate_index(h
);
1849 * Examine the region/reserve map to determine if the process
1850 * has a reservation for the page to be allocated. A return
1851 * code of zero indicates a reservation exists (no change).
1853 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
1855 return ERR_PTR(-ENOMEM
);
1858 * Processes that did not create the mapping will have no
1859 * reserves as indicated by the region/reserve map. Check
1860 * that the allocation will not exceed the subpool limit.
1861 * Allocations for MAP_NORESERVE mappings also need to be
1862 * checked against any subpool limit.
1864 if (map_chg
|| avoid_reserve
) {
1865 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
1867 vma_end_reservation(h
, vma
, addr
);
1868 return ERR_PTR(-ENOSPC
);
1872 * Even though there was no reservation in the region/reserve
1873 * map, there could be reservations associated with the
1874 * subpool that can be used. This would be indicated if the
1875 * return value of hugepage_subpool_get_pages() is zero.
1876 * However, if avoid_reserve is specified we still avoid even
1877 * the subpool reservations.
1883 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1885 goto out_subpool_put
;
1887 spin_lock(&hugetlb_lock
);
1889 * glb_chg is passed to indicate whether or not a page must be taken
1890 * from the global free pool (global change). gbl_chg == 0 indicates
1891 * a reservation exists for the allocation.
1893 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
1895 spin_unlock(&hugetlb_lock
);
1896 page
= __alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
1898 goto out_uncharge_cgroup
;
1899 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
1900 SetPagePrivate(page
);
1901 h
->resv_huge_pages
--;
1903 spin_lock(&hugetlb_lock
);
1904 list_move(&page
->lru
, &h
->hugepage_activelist
);
1907 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1908 spin_unlock(&hugetlb_lock
);
1910 set_page_private(page
, (unsigned long)spool
);
1912 map_commit
= vma_commit_reservation(h
, vma
, addr
);
1913 if (unlikely(map_chg
> map_commit
)) {
1915 * The page was added to the reservation map between
1916 * vma_needs_reservation and vma_commit_reservation.
1917 * This indicates a race with hugetlb_reserve_pages.
1918 * Adjust for the subpool count incremented above AND
1919 * in hugetlb_reserve_pages for the same page. Also,
1920 * the reservation count added in hugetlb_reserve_pages
1921 * no longer applies.
1925 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
1926 hugetlb_acct_memory(h
, -rsv_adjust
);
1930 out_uncharge_cgroup
:
1931 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
1933 if (map_chg
|| avoid_reserve
)
1934 hugepage_subpool_put_pages(spool
, 1);
1935 vma_end_reservation(h
, vma
, addr
);
1936 return ERR_PTR(-ENOSPC
);
1940 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942 * where no ERR_VALUE is expected to be returned.
1944 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1945 unsigned long addr
, int avoid_reserve
)
1947 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1953 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1955 struct huge_bootmem_page
*m
;
1958 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1961 addr
= memblock_virt_alloc_try_nid_nopanic(
1962 huge_page_size(h
), huge_page_size(h
),
1963 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
1966 * Use the beginning of the huge page to store the
1967 * huge_bootmem_page struct (until gather_bootmem
1968 * puts them into the mem_map).
1977 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
1978 /* Put them into a private list first because mem_map is not up yet */
1979 list_add(&m
->list
, &huge_boot_pages
);
1984 static void __init
prep_compound_huge_page(struct page
*page
,
1987 if (unlikely(order
> (MAX_ORDER
- 1)))
1988 prep_compound_gigantic_page(page
, order
);
1990 prep_compound_page(page
, order
);
1993 /* Put bootmem huge pages into the standard lists after mem_map is up */
1994 static void __init
gather_bootmem_prealloc(void)
1996 struct huge_bootmem_page
*m
;
1998 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1999 struct hstate
*h
= m
->hstate
;
2002 #ifdef CONFIG_HIGHMEM
2003 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
2004 memblock_free_late(__pa(m
),
2005 sizeof(struct huge_bootmem_page
));
2007 page
= virt_to_page(m
);
2009 WARN_ON(page_count(page
) != 1);
2010 prep_compound_huge_page(page
, h
->order
);
2011 WARN_ON(PageReserved(page
));
2012 prep_new_huge_page(h
, page
, page_to_nid(page
));
2014 * If we had gigantic hugepages allocated at boot time, we need
2015 * to restore the 'stolen' pages to totalram_pages in order to
2016 * fix confusing memory reports from free(1) and another
2017 * side-effects, like CommitLimit going negative.
2019 if (hstate_is_gigantic(h
))
2020 adjust_managed_page_count(page
, 1 << h
->order
);
2024 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2028 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2029 if (hstate_is_gigantic(h
)) {
2030 if (!alloc_bootmem_huge_page(h
))
2032 } else if (!alloc_fresh_huge_page(h
,
2033 &node_states
[N_MEMORY
]))
2036 h
->max_huge_pages
= i
;
2039 static void __init
hugetlb_init_hstates(void)
2043 for_each_hstate(h
) {
2044 if (minimum_order
> huge_page_order(h
))
2045 minimum_order
= huge_page_order(h
);
2047 /* oversize hugepages were init'ed in early boot */
2048 if (!hstate_is_gigantic(h
))
2049 hugetlb_hstate_alloc_pages(h
);
2051 VM_BUG_ON(minimum_order
== UINT_MAX
);
2054 static char * __init
memfmt(char *buf
, unsigned long n
)
2056 if (n
>= (1UL << 30))
2057 sprintf(buf
, "%lu GB", n
>> 30);
2058 else if (n
>= (1UL << 20))
2059 sprintf(buf
, "%lu MB", n
>> 20);
2061 sprintf(buf
, "%lu KB", n
>> 10);
2065 static void __init
report_hugepages(void)
2069 for_each_hstate(h
) {
2071 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2072 memfmt(buf
, huge_page_size(h
)),
2073 h
->free_huge_pages
);
2077 #ifdef CONFIG_HIGHMEM
2078 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2079 nodemask_t
*nodes_allowed
)
2083 if (hstate_is_gigantic(h
))
2086 for_each_node_mask(i
, *nodes_allowed
) {
2087 struct page
*page
, *next
;
2088 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2089 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2090 if (count
>= h
->nr_huge_pages
)
2092 if (PageHighMem(page
))
2094 list_del(&page
->lru
);
2095 update_and_free_page(h
, page
);
2096 h
->free_huge_pages
--;
2097 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2102 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2103 nodemask_t
*nodes_allowed
)
2109 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2110 * balanced by operating on them in a round-robin fashion.
2111 * Returns 1 if an adjustment was made.
2113 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2118 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2121 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2122 if (h
->surplus_huge_pages_node
[node
])
2126 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2127 if (h
->surplus_huge_pages_node
[node
] <
2128 h
->nr_huge_pages_node
[node
])
2135 h
->surplus_huge_pages
+= delta
;
2136 h
->surplus_huge_pages_node
[node
] += delta
;
2140 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
2142 nodemask_t
*nodes_allowed
)
2144 unsigned long min_count
, ret
;
2146 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
2147 return h
->max_huge_pages
;
2150 * Increase the pool size
2151 * First take pages out of surplus state. Then make up the
2152 * remaining difference by allocating fresh huge pages.
2154 * We might race with __alloc_buddy_huge_page() here and be unable
2155 * to convert a surplus huge page to a normal huge page. That is
2156 * not critical, though, it just means the overall size of the
2157 * pool might be one hugepage larger than it needs to be, but
2158 * within all the constraints specified by the sysctls.
2160 spin_lock(&hugetlb_lock
);
2161 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2162 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2166 while (count
> persistent_huge_pages(h
)) {
2168 * If this allocation races such that we no longer need the
2169 * page, free_huge_page will handle it by freeing the page
2170 * and reducing the surplus.
2172 spin_unlock(&hugetlb_lock
);
2173 if (hstate_is_gigantic(h
))
2174 ret
= alloc_fresh_gigantic_page(h
, nodes_allowed
);
2176 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
2177 spin_lock(&hugetlb_lock
);
2181 /* Bail for signals. Probably ctrl-c from user */
2182 if (signal_pending(current
))
2187 * Decrease the pool size
2188 * First return free pages to the buddy allocator (being careful
2189 * to keep enough around to satisfy reservations). Then place
2190 * pages into surplus state as needed so the pool will shrink
2191 * to the desired size as pages become free.
2193 * By placing pages into the surplus state independent of the
2194 * overcommit value, we are allowing the surplus pool size to
2195 * exceed overcommit. There are few sane options here. Since
2196 * __alloc_buddy_huge_page() is checking the global counter,
2197 * though, we'll note that we're not allowed to exceed surplus
2198 * and won't grow the pool anywhere else. Not until one of the
2199 * sysctls are changed, or the surplus pages go out of use.
2201 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2202 min_count
= max(count
, min_count
);
2203 try_to_free_low(h
, min_count
, nodes_allowed
);
2204 while (min_count
< persistent_huge_pages(h
)) {
2205 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2207 cond_resched_lock(&hugetlb_lock
);
2209 while (count
< persistent_huge_pages(h
)) {
2210 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2214 ret
= persistent_huge_pages(h
);
2215 spin_unlock(&hugetlb_lock
);
2219 #define HSTATE_ATTR_RO(_name) \
2220 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2222 #define HSTATE_ATTR(_name) \
2223 static struct kobj_attribute _name##_attr = \
2224 __ATTR(_name, 0644, _name##_show, _name##_store)
2226 static struct kobject
*hugepages_kobj
;
2227 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2229 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2231 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2235 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2236 if (hstate_kobjs
[i
] == kobj
) {
2238 *nidp
= NUMA_NO_NODE
;
2242 return kobj_to_node_hstate(kobj
, nidp
);
2245 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2246 struct kobj_attribute
*attr
, char *buf
)
2249 unsigned long nr_huge_pages
;
2252 h
= kobj_to_hstate(kobj
, &nid
);
2253 if (nid
== NUMA_NO_NODE
)
2254 nr_huge_pages
= h
->nr_huge_pages
;
2256 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2258 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2261 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2262 struct hstate
*h
, int nid
,
2263 unsigned long count
, size_t len
)
2266 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
2268 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
2273 if (nid
== NUMA_NO_NODE
) {
2275 * global hstate attribute
2277 if (!(obey_mempolicy
&&
2278 init_nodemask_of_mempolicy(nodes_allowed
))) {
2279 NODEMASK_FREE(nodes_allowed
);
2280 nodes_allowed
= &node_states
[N_MEMORY
];
2282 } else if (nodes_allowed
) {
2284 * per node hstate attribute: adjust count to global,
2285 * but restrict alloc/free to the specified node.
2287 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2288 init_nodemask_of_node(nodes_allowed
, nid
);
2290 nodes_allowed
= &node_states
[N_MEMORY
];
2292 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
2294 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2295 NODEMASK_FREE(nodes_allowed
);
2299 NODEMASK_FREE(nodes_allowed
);
2303 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2304 struct kobject
*kobj
, const char *buf
,
2308 unsigned long count
;
2312 err
= kstrtoul(buf
, 10, &count
);
2316 h
= kobj_to_hstate(kobj
, &nid
);
2317 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2320 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2321 struct kobj_attribute
*attr
, char *buf
)
2323 return nr_hugepages_show_common(kobj
, attr
, buf
);
2326 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2327 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2329 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2331 HSTATE_ATTR(nr_hugepages
);
2336 * hstate attribute for optionally mempolicy-based constraint on persistent
2337 * huge page alloc/free.
2339 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2340 struct kobj_attribute
*attr
, char *buf
)
2342 return nr_hugepages_show_common(kobj
, attr
, buf
);
2345 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2346 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2348 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2350 HSTATE_ATTR(nr_hugepages_mempolicy
);
2354 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2355 struct kobj_attribute
*attr
, char *buf
)
2357 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2358 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2361 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2362 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2365 unsigned long input
;
2366 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2368 if (hstate_is_gigantic(h
))
2371 err
= kstrtoul(buf
, 10, &input
);
2375 spin_lock(&hugetlb_lock
);
2376 h
->nr_overcommit_huge_pages
= input
;
2377 spin_unlock(&hugetlb_lock
);
2381 HSTATE_ATTR(nr_overcommit_hugepages
);
2383 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2384 struct kobj_attribute
*attr
, char *buf
)
2387 unsigned long free_huge_pages
;
2390 h
= kobj_to_hstate(kobj
, &nid
);
2391 if (nid
== NUMA_NO_NODE
)
2392 free_huge_pages
= h
->free_huge_pages
;
2394 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2396 return sprintf(buf
, "%lu\n", free_huge_pages
);
2398 HSTATE_ATTR_RO(free_hugepages
);
2400 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2401 struct kobj_attribute
*attr
, char *buf
)
2403 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2404 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2406 HSTATE_ATTR_RO(resv_hugepages
);
2408 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2409 struct kobj_attribute
*attr
, char *buf
)
2412 unsigned long surplus_huge_pages
;
2415 h
= kobj_to_hstate(kobj
, &nid
);
2416 if (nid
== NUMA_NO_NODE
)
2417 surplus_huge_pages
= h
->surplus_huge_pages
;
2419 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2421 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2423 HSTATE_ATTR_RO(surplus_hugepages
);
2425 static struct attribute
*hstate_attrs
[] = {
2426 &nr_hugepages_attr
.attr
,
2427 &nr_overcommit_hugepages_attr
.attr
,
2428 &free_hugepages_attr
.attr
,
2429 &resv_hugepages_attr
.attr
,
2430 &surplus_hugepages_attr
.attr
,
2432 &nr_hugepages_mempolicy_attr
.attr
,
2437 static struct attribute_group hstate_attr_group
= {
2438 .attrs
= hstate_attrs
,
2441 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2442 struct kobject
**hstate_kobjs
,
2443 struct attribute_group
*hstate_attr_group
)
2446 int hi
= hstate_index(h
);
2448 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2449 if (!hstate_kobjs
[hi
])
2452 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2454 kobject_put(hstate_kobjs
[hi
]);
2459 static void __init
hugetlb_sysfs_init(void)
2464 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2465 if (!hugepages_kobj
)
2468 for_each_hstate(h
) {
2469 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2470 hstate_kobjs
, &hstate_attr_group
);
2472 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2479 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2480 * with node devices in node_devices[] using a parallel array. The array
2481 * index of a node device or _hstate == node id.
2482 * This is here to avoid any static dependency of the node device driver, in
2483 * the base kernel, on the hugetlb module.
2485 struct node_hstate
{
2486 struct kobject
*hugepages_kobj
;
2487 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2489 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2492 * A subset of global hstate attributes for node devices
2494 static struct attribute
*per_node_hstate_attrs
[] = {
2495 &nr_hugepages_attr
.attr
,
2496 &free_hugepages_attr
.attr
,
2497 &surplus_hugepages_attr
.attr
,
2501 static struct attribute_group per_node_hstate_attr_group
= {
2502 .attrs
= per_node_hstate_attrs
,
2506 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2507 * Returns node id via non-NULL nidp.
2509 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2513 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2514 struct node_hstate
*nhs
= &node_hstates
[nid
];
2516 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2517 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2529 * Unregister hstate attributes from a single node device.
2530 * No-op if no hstate attributes attached.
2532 static void hugetlb_unregister_node(struct node
*node
)
2535 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2537 if (!nhs
->hugepages_kobj
)
2538 return; /* no hstate attributes */
2540 for_each_hstate(h
) {
2541 int idx
= hstate_index(h
);
2542 if (nhs
->hstate_kobjs
[idx
]) {
2543 kobject_put(nhs
->hstate_kobjs
[idx
]);
2544 nhs
->hstate_kobjs
[idx
] = NULL
;
2548 kobject_put(nhs
->hugepages_kobj
);
2549 nhs
->hugepages_kobj
= NULL
;
2553 * hugetlb module exit: unregister hstate attributes from node devices
2556 static void hugetlb_unregister_all_nodes(void)
2561 * disable node device registrations.
2563 register_hugetlbfs_with_node(NULL
, NULL
);
2566 * remove hstate attributes from any nodes that have them.
2568 for (nid
= 0; nid
< nr_node_ids
; nid
++)
2569 hugetlb_unregister_node(node_devices
[nid
]);
2573 * Register hstate attributes for a single node device.
2574 * No-op if attributes already registered.
2576 static void hugetlb_register_node(struct node
*node
)
2579 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2582 if (nhs
->hugepages_kobj
)
2583 return; /* already allocated */
2585 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2587 if (!nhs
->hugepages_kobj
)
2590 for_each_hstate(h
) {
2591 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2593 &per_node_hstate_attr_group
);
2595 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2596 h
->name
, node
->dev
.id
);
2597 hugetlb_unregister_node(node
);
2604 * hugetlb init time: register hstate attributes for all registered node
2605 * devices of nodes that have memory. All on-line nodes should have
2606 * registered their associated device by this time.
2608 static void __init
hugetlb_register_all_nodes(void)
2612 for_each_node_state(nid
, N_MEMORY
) {
2613 struct node
*node
= node_devices
[nid
];
2614 if (node
->dev
.id
== nid
)
2615 hugetlb_register_node(node
);
2619 * Let the node device driver know we're here so it can
2620 * [un]register hstate attributes on node hotplug.
2622 register_hugetlbfs_with_node(hugetlb_register_node
,
2623 hugetlb_unregister_node
);
2625 #else /* !CONFIG_NUMA */
2627 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2635 static void hugetlb_unregister_all_nodes(void) { }
2637 static void hugetlb_register_all_nodes(void) { }
2641 static void __exit
hugetlb_exit(void)
2645 hugetlb_unregister_all_nodes();
2647 for_each_hstate(h
) {
2648 kobject_put(hstate_kobjs
[hstate_index(h
)]);
2651 kobject_put(hugepages_kobj
);
2652 kfree(hugetlb_fault_mutex_table
);
2654 module_exit(hugetlb_exit
);
2656 static int __init
hugetlb_init(void)
2660 if (!hugepages_supported())
2663 if (!size_to_hstate(default_hstate_size
)) {
2664 default_hstate_size
= HPAGE_SIZE
;
2665 if (!size_to_hstate(default_hstate_size
))
2666 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2668 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2669 if (default_hstate_max_huge_pages
)
2670 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2672 hugetlb_init_hstates();
2673 gather_bootmem_prealloc();
2676 hugetlb_sysfs_init();
2677 hugetlb_register_all_nodes();
2678 hugetlb_cgroup_file_init();
2681 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2683 num_fault_mutexes
= 1;
2685 hugetlb_fault_mutex_table
=
2686 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2687 BUG_ON(!hugetlb_fault_mutex_table
);
2689 for (i
= 0; i
< num_fault_mutexes
; i
++)
2690 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2693 module_init(hugetlb_init
);
2695 /* Should be called on processing a hugepagesz=... option */
2696 void __init
hugetlb_add_hstate(unsigned int order
)
2701 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2702 pr_warning("hugepagesz= specified twice, ignoring\n");
2705 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2707 h
= &hstates
[hugetlb_max_hstate
++];
2709 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2710 h
->nr_huge_pages
= 0;
2711 h
->free_huge_pages
= 0;
2712 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2713 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2714 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2715 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
2716 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
2717 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2718 huge_page_size(h
)/1024);
2723 static int __init
hugetlb_nrpages_setup(char *s
)
2726 static unsigned long *last_mhp
;
2729 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2730 * so this hugepages= parameter goes to the "default hstate".
2732 if (!hugetlb_max_hstate
)
2733 mhp
= &default_hstate_max_huge_pages
;
2735 mhp
= &parsed_hstate
->max_huge_pages
;
2737 if (mhp
== last_mhp
) {
2738 pr_warning("hugepages= specified twice without "
2739 "interleaving hugepagesz=, ignoring\n");
2743 if (sscanf(s
, "%lu", mhp
) <= 0)
2747 * Global state is always initialized later in hugetlb_init.
2748 * But we need to allocate >= MAX_ORDER hstates here early to still
2749 * use the bootmem allocator.
2751 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2752 hugetlb_hstate_alloc_pages(parsed_hstate
);
2758 __setup("hugepages=", hugetlb_nrpages_setup
);
2760 static int __init
hugetlb_default_setup(char *s
)
2762 default_hstate_size
= memparse(s
, &s
);
2765 __setup("default_hugepagesz=", hugetlb_default_setup
);
2767 static unsigned int cpuset_mems_nr(unsigned int *array
)
2770 unsigned int nr
= 0;
2772 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2778 #ifdef CONFIG_SYSCTL
2779 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2780 struct ctl_table
*table
, int write
,
2781 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2783 struct hstate
*h
= &default_hstate
;
2784 unsigned long tmp
= h
->max_huge_pages
;
2787 if (!hugepages_supported())
2791 table
->maxlen
= sizeof(unsigned long);
2792 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2797 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2798 NUMA_NO_NODE
, tmp
, *length
);
2803 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2804 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2807 return hugetlb_sysctl_handler_common(false, table
, write
,
2808 buffer
, length
, ppos
);
2812 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2813 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2815 return hugetlb_sysctl_handler_common(true, table
, write
,
2816 buffer
, length
, ppos
);
2818 #endif /* CONFIG_NUMA */
2820 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2821 void __user
*buffer
,
2822 size_t *length
, loff_t
*ppos
)
2824 struct hstate
*h
= &default_hstate
;
2828 if (!hugepages_supported())
2831 tmp
= h
->nr_overcommit_huge_pages
;
2833 if (write
&& hstate_is_gigantic(h
))
2837 table
->maxlen
= sizeof(unsigned long);
2838 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2843 spin_lock(&hugetlb_lock
);
2844 h
->nr_overcommit_huge_pages
= tmp
;
2845 spin_unlock(&hugetlb_lock
);
2851 #endif /* CONFIG_SYSCTL */
2853 void hugetlb_report_meminfo(struct seq_file
*m
)
2855 struct hstate
*h
= &default_hstate
;
2856 if (!hugepages_supported())
2859 "HugePages_Total: %5lu\n"
2860 "HugePages_Free: %5lu\n"
2861 "HugePages_Rsvd: %5lu\n"
2862 "HugePages_Surp: %5lu\n"
2863 "Hugepagesize: %8lu kB\n",
2867 h
->surplus_huge_pages
,
2868 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2871 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2873 struct hstate
*h
= &default_hstate
;
2874 if (!hugepages_supported())
2877 "Node %d HugePages_Total: %5u\n"
2878 "Node %d HugePages_Free: %5u\n"
2879 "Node %d HugePages_Surp: %5u\n",
2880 nid
, h
->nr_huge_pages_node
[nid
],
2881 nid
, h
->free_huge_pages_node
[nid
],
2882 nid
, h
->surplus_huge_pages_node
[nid
]);
2885 void hugetlb_show_meminfo(void)
2890 if (!hugepages_supported())
2893 for_each_node_state(nid
, N_MEMORY
)
2895 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2897 h
->nr_huge_pages_node
[nid
],
2898 h
->free_huge_pages_node
[nid
],
2899 h
->surplus_huge_pages_node
[nid
],
2900 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2903 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
2905 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
2906 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
2909 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2910 unsigned long hugetlb_total_pages(void)
2913 unsigned long nr_total_pages
= 0;
2916 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2917 return nr_total_pages
;
2920 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2924 spin_lock(&hugetlb_lock
);
2926 * When cpuset is configured, it breaks the strict hugetlb page
2927 * reservation as the accounting is done on a global variable. Such
2928 * reservation is completely rubbish in the presence of cpuset because
2929 * the reservation is not checked against page availability for the
2930 * current cpuset. Application can still potentially OOM'ed by kernel
2931 * with lack of free htlb page in cpuset that the task is in.
2932 * Attempt to enforce strict accounting with cpuset is almost
2933 * impossible (or too ugly) because cpuset is too fluid that
2934 * task or memory node can be dynamically moved between cpusets.
2936 * The change of semantics for shared hugetlb mapping with cpuset is
2937 * undesirable. However, in order to preserve some of the semantics,
2938 * we fall back to check against current free page availability as
2939 * a best attempt and hopefully to minimize the impact of changing
2940 * semantics that cpuset has.
2943 if (gather_surplus_pages(h
, delta
) < 0)
2946 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2947 return_unused_surplus_pages(h
, delta
);
2954 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2957 spin_unlock(&hugetlb_lock
);
2961 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2963 struct resv_map
*resv
= vma_resv_map(vma
);
2966 * This new VMA should share its siblings reservation map if present.
2967 * The VMA will only ever have a valid reservation map pointer where
2968 * it is being copied for another still existing VMA. As that VMA
2969 * has a reference to the reservation map it cannot disappear until
2970 * after this open call completes. It is therefore safe to take a
2971 * new reference here without additional locking.
2973 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2974 kref_get(&resv
->refs
);
2977 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2979 struct hstate
*h
= hstate_vma(vma
);
2980 struct resv_map
*resv
= vma_resv_map(vma
);
2981 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2982 unsigned long reserve
, start
, end
;
2985 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2988 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2989 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2991 reserve
= (end
- start
) - region_count(resv
, start
, end
);
2993 kref_put(&resv
->refs
, resv_map_release
);
2997 * Decrement reserve counts. The global reserve count may be
2998 * adjusted if the subpool has a minimum size.
3000 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3001 hugetlb_acct_memory(h
, -gbl_reserve
);
3006 * We cannot handle pagefaults against hugetlb pages at all. They cause
3007 * handle_mm_fault() to try to instantiate regular-sized pages in the
3008 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3011 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3017 const struct vm_operations_struct hugetlb_vm_ops
= {
3018 .fault
= hugetlb_vm_op_fault
,
3019 .open
= hugetlb_vm_op_open
,
3020 .close
= hugetlb_vm_op_close
,
3023 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3029 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3030 vma
->vm_page_prot
)));
3032 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3033 vma
->vm_page_prot
));
3035 entry
= pte_mkyoung(entry
);
3036 entry
= pte_mkhuge(entry
);
3037 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3042 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3043 unsigned long address
, pte_t
*ptep
)
3047 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3048 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3049 update_mmu_cache(vma
, address
, ptep
);
3052 static int is_hugetlb_entry_migration(pte_t pte
)
3056 if (huge_pte_none(pte
) || pte_present(pte
))
3058 swp
= pte_to_swp_entry(pte
);
3059 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3065 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3069 if (huge_pte_none(pte
) || pte_present(pte
))
3071 swp
= pte_to_swp_entry(pte
);
3072 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3078 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3079 struct vm_area_struct
*vma
)
3081 pte_t
*src_pte
, *dst_pte
, entry
;
3082 struct page
*ptepage
;
3085 struct hstate
*h
= hstate_vma(vma
);
3086 unsigned long sz
= huge_page_size(h
);
3087 unsigned long mmun_start
; /* For mmu_notifiers */
3088 unsigned long mmun_end
; /* For mmu_notifiers */
3091 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3093 mmun_start
= vma
->vm_start
;
3094 mmun_end
= vma
->vm_end
;
3096 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
3098 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3099 spinlock_t
*src_ptl
, *dst_ptl
;
3100 src_pte
= huge_pte_offset(src
, addr
);
3103 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3109 /* If the pagetables are shared don't copy or take references */
3110 if (dst_pte
== src_pte
)
3113 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3114 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3115 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3116 entry
= huge_ptep_get(src_pte
);
3117 if (huge_pte_none(entry
)) { /* skip none entry */
3119 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3120 is_hugetlb_entry_hwpoisoned(entry
))) {
3121 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3123 if (is_write_migration_entry(swp_entry
) && cow
) {
3125 * COW mappings require pages in both
3126 * parent and child to be set to read.
3128 make_migration_entry_read(&swp_entry
);
3129 entry
= swp_entry_to_pte(swp_entry
);
3130 set_huge_pte_at(src
, addr
, src_pte
, entry
);
3132 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3135 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3136 mmu_notifier_invalidate_range(src
, mmun_start
,
3139 entry
= huge_ptep_get(src_pte
);
3140 ptepage
= pte_page(entry
);
3142 page_dup_rmap(ptepage
);
3143 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3144 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3146 spin_unlock(src_ptl
);
3147 spin_unlock(dst_ptl
);
3151 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
3156 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3157 unsigned long start
, unsigned long end
,
3158 struct page
*ref_page
)
3160 int force_flush
= 0;
3161 struct mm_struct
*mm
= vma
->vm_mm
;
3162 unsigned long address
;
3167 struct hstate
*h
= hstate_vma(vma
);
3168 unsigned long sz
= huge_page_size(h
);
3169 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
3170 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
3172 WARN_ON(!is_vm_hugetlb_page(vma
));
3173 BUG_ON(start
& ~huge_page_mask(h
));
3174 BUG_ON(end
& ~huge_page_mask(h
));
3176 tlb_start_vma(tlb
, vma
);
3177 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3180 for (; address
< end
; address
+= sz
) {
3181 ptep
= huge_pte_offset(mm
, address
);
3185 ptl
= huge_pte_lock(h
, mm
, ptep
);
3186 if (huge_pmd_unshare(mm
, &address
, ptep
))
3189 pte
= huge_ptep_get(ptep
);
3190 if (huge_pte_none(pte
))
3194 * Migrating hugepage or HWPoisoned hugepage is already
3195 * unmapped and its refcount is dropped, so just clear pte here.
3197 if (unlikely(!pte_present(pte
))) {
3198 huge_pte_clear(mm
, address
, ptep
);
3202 page
= pte_page(pte
);
3204 * If a reference page is supplied, it is because a specific
3205 * page is being unmapped, not a range. Ensure the page we
3206 * are about to unmap is the actual page of interest.
3209 if (page
!= ref_page
)
3213 * Mark the VMA as having unmapped its page so that
3214 * future faults in this VMA will fail rather than
3215 * looking like data was lost
3217 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3220 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3221 tlb_remove_tlb_entry(tlb
, ptep
, address
);
3222 if (huge_pte_dirty(pte
))
3223 set_page_dirty(page
);
3225 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3226 page_remove_rmap(page
);
3227 force_flush
= !__tlb_remove_page(tlb
, page
);
3233 /* Bail out after unmapping reference page if supplied */
3242 * mmu_gather ran out of room to batch pages, we break out of
3243 * the PTE lock to avoid doing the potential expensive TLB invalidate
3244 * and page-free while holding it.
3249 if (address
< end
&& !ref_page
)
3252 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3253 tlb_end_vma(tlb
, vma
);
3256 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3257 struct vm_area_struct
*vma
, unsigned long start
,
3258 unsigned long end
, struct page
*ref_page
)
3260 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3263 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3264 * test will fail on a vma being torn down, and not grab a page table
3265 * on its way out. We're lucky that the flag has such an appropriate
3266 * name, and can in fact be safely cleared here. We could clear it
3267 * before the __unmap_hugepage_range above, but all that's necessary
3268 * is to clear it before releasing the i_mmap_rwsem. This works
3269 * because in the context this is called, the VMA is about to be
3270 * destroyed and the i_mmap_rwsem is held.
3272 vma
->vm_flags
&= ~VM_MAYSHARE
;
3275 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3276 unsigned long end
, struct page
*ref_page
)
3278 struct mm_struct
*mm
;
3279 struct mmu_gather tlb
;
3283 tlb_gather_mmu(&tlb
, mm
, start
, end
);
3284 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3285 tlb_finish_mmu(&tlb
, start
, end
);
3289 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3290 * mappping it owns the reserve page for. The intention is to unmap the page
3291 * from other VMAs and let the children be SIGKILLed if they are faulting the
3294 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3295 struct page
*page
, unsigned long address
)
3297 struct hstate
*h
= hstate_vma(vma
);
3298 struct vm_area_struct
*iter_vma
;
3299 struct address_space
*mapping
;
3303 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3304 * from page cache lookup which is in HPAGE_SIZE units.
3306 address
= address
& huge_page_mask(h
);
3307 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3309 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
3312 * Take the mapping lock for the duration of the table walk. As
3313 * this mapping should be shared between all the VMAs,
3314 * __unmap_hugepage_range() is called as the lock is already held
3316 i_mmap_lock_write(mapping
);
3317 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3318 /* Do not unmap the current VMA */
3319 if (iter_vma
== vma
)
3323 * Shared VMAs have their own reserves and do not affect
3324 * MAP_PRIVATE accounting but it is possible that a shared
3325 * VMA is using the same page so check and skip such VMAs.
3327 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3331 * Unmap the page from other VMAs without their own reserves.
3332 * They get marked to be SIGKILLed if they fault in these
3333 * areas. This is because a future no-page fault on this VMA
3334 * could insert a zeroed page instead of the data existing
3335 * from the time of fork. This would look like data corruption
3337 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3338 unmap_hugepage_range(iter_vma
, address
,
3339 address
+ huge_page_size(h
), page
);
3341 i_mmap_unlock_write(mapping
);
3345 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3346 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3347 * cannot race with other handlers or page migration.
3348 * Keep the pte_same checks anyway to make transition from the mutex easier.
3350 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3351 unsigned long address
, pte_t
*ptep
, pte_t pte
,
3352 struct page
*pagecache_page
, spinlock_t
*ptl
)
3354 struct hstate
*h
= hstate_vma(vma
);
3355 struct page
*old_page
, *new_page
;
3356 int ret
= 0, outside_reserve
= 0;
3357 unsigned long mmun_start
; /* For mmu_notifiers */
3358 unsigned long mmun_end
; /* For mmu_notifiers */
3360 old_page
= pte_page(pte
);
3363 /* If no-one else is actually using this page, avoid the copy
3364 * and just make the page writable */
3365 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3366 page_move_anon_rmap(old_page
, vma
, address
);
3367 set_huge_ptep_writable(vma
, address
, ptep
);
3372 * If the process that created a MAP_PRIVATE mapping is about to
3373 * perform a COW due to a shared page count, attempt to satisfy
3374 * the allocation without using the existing reserves. The pagecache
3375 * page is used to determine if the reserve at this address was
3376 * consumed or not. If reserves were used, a partial faulted mapping
3377 * at the time of fork() could consume its reserves on COW instead
3378 * of the full address range.
3380 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3381 old_page
!= pagecache_page
)
3382 outside_reserve
= 1;
3384 page_cache_get(old_page
);
3387 * Drop page table lock as buddy allocator may be called. It will
3388 * be acquired again before returning to the caller, as expected.
3391 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
3393 if (IS_ERR(new_page
)) {
3395 * If a process owning a MAP_PRIVATE mapping fails to COW,
3396 * it is due to references held by a child and an insufficient
3397 * huge page pool. To guarantee the original mappers
3398 * reliability, unmap the page from child processes. The child
3399 * may get SIGKILLed if it later faults.
3401 if (outside_reserve
) {
3402 page_cache_release(old_page
);
3403 BUG_ON(huge_pte_none(pte
));
3404 unmap_ref_private(mm
, vma
, old_page
, address
);
3405 BUG_ON(huge_pte_none(pte
));
3407 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3409 pte_same(huge_ptep_get(ptep
), pte
)))
3410 goto retry_avoidcopy
;
3412 * race occurs while re-acquiring page table
3413 * lock, and our job is done.
3418 ret
= (PTR_ERR(new_page
) == -ENOMEM
) ?
3419 VM_FAULT_OOM
: VM_FAULT_SIGBUS
;
3420 goto out_release_old
;
3424 * When the original hugepage is shared one, it does not have
3425 * anon_vma prepared.
3427 if (unlikely(anon_vma_prepare(vma
))) {
3429 goto out_release_all
;
3432 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3433 pages_per_huge_page(h
));
3434 __SetPageUptodate(new_page
);
3435 set_page_huge_active(new_page
);
3437 mmun_start
= address
& huge_page_mask(h
);
3438 mmun_end
= mmun_start
+ huge_page_size(h
);
3439 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3442 * Retake the page table lock to check for racing updates
3443 * before the page tables are altered
3446 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3447 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3448 ClearPagePrivate(new_page
);
3451 huge_ptep_clear_flush(vma
, address
, ptep
);
3452 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
3453 set_huge_pte_at(mm
, address
, ptep
,
3454 make_huge_pte(vma
, new_page
, 1));
3455 page_remove_rmap(old_page
);
3456 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
3457 /* Make the old page be freed below */
3458 new_page
= old_page
;
3461 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3463 page_cache_release(new_page
);
3465 page_cache_release(old_page
);
3467 spin_lock(ptl
); /* Caller expects lock to be held */
3471 /* Return the pagecache page at a given address within a VMA */
3472 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3473 struct vm_area_struct
*vma
, unsigned long address
)
3475 struct address_space
*mapping
;
3478 mapping
= vma
->vm_file
->f_mapping
;
3479 idx
= vma_hugecache_offset(h
, vma
, address
);
3481 return find_lock_page(mapping
, idx
);
3485 * Return whether there is a pagecache page to back given address within VMA.
3486 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3488 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3489 struct vm_area_struct
*vma
, unsigned long address
)
3491 struct address_space
*mapping
;
3495 mapping
= vma
->vm_file
->f_mapping
;
3496 idx
= vma_hugecache_offset(h
, vma
, address
);
3498 page
= find_get_page(mapping
, idx
);
3501 return page
!= NULL
;
3504 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3507 struct inode
*inode
= mapping
->host
;
3508 struct hstate
*h
= hstate_inode(inode
);
3509 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3513 ClearPagePrivate(page
);
3515 spin_lock(&inode
->i_lock
);
3516 inode
->i_blocks
+= blocks_per_huge_page(h
);
3517 spin_unlock(&inode
->i_lock
);
3521 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3522 struct address_space
*mapping
, pgoff_t idx
,
3523 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3525 struct hstate
*h
= hstate_vma(vma
);
3526 int ret
= VM_FAULT_SIGBUS
;
3534 * Currently, we are forced to kill the process in the event the
3535 * original mapper has unmapped pages from the child due to a failed
3536 * COW. Warn that such a situation has occurred as it may not be obvious
3538 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3539 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3545 * Use page lock to guard against racing truncation
3546 * before we get page_table_lock.
3549 page
= find_lock_page(mapping
, idx
);
3551 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3554 page
= alloc_huge_page(vma
, address
, 0);
3556 ret
= PTR_ERR(page
);
3560 ret
= VM_FAULT_SIGBUS
;
3563 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3564 __SetPageUptodate(page
);
3565 set_page_huge_active(page
);
3567 if (vma
->vm_flags
& VM_MAYSHARE
) {
3568 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3577 if (unlikely(anon_vma_prepare(vma
))) {
3579 goto backout_unlocked
;
3585 * If memory error occurs between mmap() and fault, some process
3586 * don't have hwpoisoned swap entry for errored virtual address.
3587 * So we need to block hugepage fault by PG_hwpoison bit check.
3589 if (unlikely(PageHWPoison(page
))) {
3590 ret
= VM_FAULT_HWPOISON
|
3591 VM_FAULT_SET_HINDEX(hstate_index(h
));
3592 goto backout_unlocked
;
3597 * If we are going to COW a private mapping later, we examine the
3598 * pending reservations for this page now. This will ensure that
3599 * any allocations necessary to record that reservation occur outside
3602 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3603 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3605 goto backout_unlocked
;
3607 /* Just decrements count, does not deallocate */
3608 vma_end_reservation(h
, vma
, address
);
3611 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
3613 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3618 if (!huge_pte_none(huge_ptep_get(ptep
)))
3622 ClearPagePrivate(page
);
3623 hugepage_add_new_anon_rmap(page
, vma
, address
);
3625 page_dup_rmap(page
);
3626 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3627 && (vma
->vm_flags
& VM_SHARED
)));
3628 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
3630 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3631 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3632 /* Optimization, do the COW without a second fault */
3633 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
, ptl
);
3650 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3651 struct vm_area_struct
*vma
,
3652 struct address_space
*mapping
,
3653 pgoff_t idx
, unsigned long address
)
3655 unsigned long key
[2];
3658 if (vma
->vm_flags
& VM_SHARED
) {
3659 key
[0] = (unsigned long) mapping
;
3662 key
[0] = (unsigned long) mm
;
3663 key
[1] = address
>> huge_page_shift(h
);
3666 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3668 return hash
& (num_fault_mutexes
- 1);
3672 * For uniprocesor systems we always use a single mutex, so just
3673 * return 0 and avoid the hashing overhead.
3675 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3676 struct vm_area_struct
*vma
,
3677 struct address_space
*mapping
,
3678 pgoff_t idx
, unsigned long address
)
3684 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3685 unsigned long address
, unsigned int flags
)
3692 struct page
*page
= NULL
;
3693 struct page
*pagecache_page
= NULL
;
3694 struct hstate
*h
= hstate_vma(vma
);
3695 struct address_space
*mapping
;
3696 int need_wait_lock
= 0;
3698 address
&= huge_page_mask(h
);
3700 ptep
= huge_pte_offset(mm
, address
);
3702 entry
= huge_ptep_get(ptep
);
3703 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3704 migration_entry_wait_huge(vma
, mm
, ptep
);
3706 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3707 return VM_FAULT_HWPOISON_LARGE
|
3708 VM_FAULT_SET_HINDEX(hstate_index(h
));
3710 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
3712 return VM_FAULT_OOM
;
3715 mapping
= vma
->vm_file
->f_mapping
;
3716 idx
= vma_hugecache_offset(h
, vma
, address
);
3719 * Serialize hugepage allocation and instantiation, so that we don't
3720 * get spurious allocation failures if two CPUs race to instantiate
3721 * the same page in the page cache.
3723 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
3724 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3726 entry
= huge_ptep_get(ptep
);
3727 if (huge_pte_none(entry
)) {
3728 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3735 * entry could be a migration/hwpoison entry at this point, so this
3736 * check prevents the kernel from going below assuming that we have
3737 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3738 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3741 if (!pte_present(entry
))
3745 * If we are going to COW the mapping later, we examine the pending
3746 * reservations for this page now. This will ensure that any
3747 * allocations necessary to record that reservation occur outside the
3748 * spinlock. For private mappings, we also lookup the pagecache
3749 * page now as it is used to determine if a reservation has been
3752 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3753 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3757 /* Just decrements count, does not deallocate */
3758 vma_end_reservation(h
, vma
, address
);
3760 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3761 pagecache_page
= hugetlbfs_pagecache_page(h
,
3765 ptl
= huge_pte_lock(h
, mm
, ptep
);
3767 /* Check for a racing update before calling hugetlb_cow */
3768 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3772 * hugetlb_cow() requires page locks of pte_page(entry) and
3773 * pagecache_page, so here we need take the former one
3774 * when page != pagecache_page or !pagecache_page.
3776 page
= pte_page(entry
);
3777 if (page
!= pagecache_page
)
3778 if (!trylock_page(page
)) {
3785 if (flags
& FAULT_FLAG_WRITE
) {
3786 if (!huge_pte_write(entry
)) {
3787 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
3788 pagecache_page
, ptl
);
3791 entry
= huge_pte_mkdirty(entry
);
3793 entry
= pte_mkyoung(entry
);
3794 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3795 flags
& FAULT_FLAG_WRITE
))
3796 update_mmu_cache(vma
, address
, ptep
);
3798 if (page
!= pagecache_page
)
3804 if (pagecache_page
) {
3805 unlock_page(pagecache_page
);
3806 put_page(pagecache_page
);
3809 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3811 * Generally it's safe to hold refcount during waiting page lock. But
3812 * here we just wait to defer the next page fault to avoid busy loop and
3813 * the page is not used after unlocked before returning from the current
3814 * page fault. So we are safe from accessing freed page, even if we wait
3815 * here without taking refcount.
3818 wait_on_page_locked(page
);
3822 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3823 struct page
**pages
, struct vm_area_struct
**vmas
,
3824 unsigned long *position
, unsigned long *nr_pages
,
3825 long i
, unsigned int flags
)
3827 unsigned long pfn_offset
;
3828 unsigned long vaddr
= *position
;
3829 unsigned long remainder
= *nr_pages
;
3830 struct hstate
*h
= hstate_vma(vma
);
3832 while (vaddr
< vma
->vm_end
&& remainder
) {
3834 spinlock_t
*ptl
= NULL
;
3839 * If we have a pending SIGKILL, don't keep faulting pages and
3840 * potentially allocating memory.
3842 if (unlikely(fatal_signal_pending(current
))) {
3848 * Some archs (sparc64, sh*) have multiple pte_ts to
3849 * each hugepage. We have to make sure we get the
3850 * first, for the page indexing below to work.
3852 * Note that page table lock is not held when pte is null.
3854 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3856 ptl
= huge_pte_lock(h
, mm
, pte
);
3857 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3860 * When coredumping, it suits get_dump_page if we just return
3861 * an error where there's an empty slot with no huge pagecache
3862 * to back it. This way, we avoid allocating a hugepage, and
3863 * the sparse dumpfile avoids allocating disk blocks, but its
3864 * huge holes still show up with zeroes where they need to be.
3866 if (absent
&& (flags
& FOLL_DUMP
) &&
3867 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3875 * We need call hugetlb_fault for both hugepages under migration
3876 * (in which case hugetlb_fault waits for the migration,) and
3877 * hwpoisoned hugepages (in which case we need to prevent the
3878 * caller from accessing to them.) In order to do this, we use
3879 * here is_swap_pte instead of is_hugetlb_entry_migration and
3880 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3881 * both cases, and because we can't follow correct pages
3882 * directly from any kind of swap entries.
3884 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3885 ((flags
& FOLL_WRITE
) &&
3886 !huge_pte_write(huge_ptep_get(pte
)))) {
3891 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3892 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3893 if (!(ret
& VM_FAULT_ERROR
))
3900 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3901 page
= pte_page(huge_ptep_get(pte
));
3904 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3905 get_page_foll(pages
[i
]);
3915 if (vaddr
< vma
->vm_end
&& remainder
&&
3916 pfn_offset
< pages_per_huge_page(h
)) {
3918 * We use pfn_offset to avoid touching the pageframes
3919 * of this compound page.
3925 *nr_pages
= remainder
;
3928 return i
? i
: -EFAULT
;
3931 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3932 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3934 struct mm_struct
*mm
= vma
->vm_mm
;
3935 unsigned long start
= address
;
3938 struct hstate
*h
= hstate_vma(vma
);
3939 unsigned long pages
= 0;
3941 BUG_ON(address
>= end
);
3942 flush_cache_range(vma
, address
, end
);
3944 mmu_notifier_invalidate_range_start(mm
, start
, end
);
3945 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
3946 for (; address
< end
; address
+= huge_page_size(h
)) {
3948 ptep
= huge_pte_offset(mm
, address
);
3951 ptl
= huge_pte_lock(h
, mm
, ptep
);
3952 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3957 pte
= huge_ptep_get(ptep
);
3958 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
3962 if (unlikely(is_hugetlb_entry_migration(pte
))) {
3963 swp_entry_t entry
= pte_to_swp_entry(pte
);
3965 if (is_write_migration_entry(entry
)) {
3968 make_migration_entry_read(&entry
);
3969 newpte
= swp_entry_to_pte(entry
);
3970 set_huge_pte_at(mm
, address
, ptep
, newpte
);
3976 if (!huge_pte_none(pte
)) {
3977 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3978 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3979 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3980 set_huge_pte_at(mm
, address
, ptep
, pte
);
3986 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3987 * may have cleared our pud entry and done put_page on the page table:
3988 * once we release i_mmap_rwsem, another task can do the final put_page
3989 * and that page table be reused and filled with junk.
3991 flush_tlb_range(vma
, start
, end
);
3992 mmu_notifier_invalidate_range(mm
, start
, end
);
3993 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
3994 mmu_notifier_invalidate_range_end(mm
, start
, end
);
3996 return pages
<< h
->order
;
3999 int hugetlb_reserve_pages(struct inode
*inode
,
4001 struct vm_area_struct
*vma
,
4002 vm_flags_t vm_flags
)
4005 struct hstate
*h
= hstate_inode(inode
);
4006 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4007 struct resv_map
*resv_map
;
4011 * Only apply hugepage reservation if asked. At fault time, an
4012 * attempt will be made for VM_NORESERVE to allocate a page
4013 * without using reserves
4015 if (vm_flags
& VM_NORESERVE
)
4019 * Shared mappings base their reservation on the number of pages that
4020 * are already allocated on behalf of the file. Private mappings need
4021 * to reserve the full area even if read-only as mprotect() may be
4022 * called to make the mapping read-write. Assume !vma is a shm mapping
4024 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4025 resv_map
= inode_resv_map(inode
);
4027 chg
= region_chg(resv_map
, from
, to
);
4030 resv_map
= resv_map_alloc();
4036 set_vma_resv_map(vma
, resv_map
);
4037 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4046 * There must be enough pages in the subpool for the mapping. If
4047 * the subpool has a minimum size, there may be some global
4048 * reservations already in place (gbl_reserve).
4050 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4051 if (gbl_reserve
< 0) {
4057 * Check enough hugepages are available for the reservation.
4058 * Hand the pages back to the subpool if there are not
4060 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4062 /* put back original number of pages, chg */
4063 (void)hugepage_subpool_put_pages(spool
, chg
);
4068 * Account for the reservations made. Shared mappings record regions
4069 * that have reservations as they are shared by multiple VMAs.
4070 * When the last VMA disappears, the region map says how much
4071 * the reservation was and the page cache tells how much of
4072 * the reservation was consumed. Private mappings are per-VMA and
4073 * only the consumed reservations are tracked. When the VMA
4074 * disappears, the original reservation is the VMA size and the
4075 * consumed reservations are stored in the map. Hence, nothing
4076 * else has to be done for private mappings here
4078 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4079 long add
= region_add(resv_map
, from
, to
);
4081 if (unlikely(chg
> add
)) {
4083 * pages in this range were added to the reserve
4084 * map between region_chg and region_add. This
4085 * indicates a race with alloc_huge_page. Adjust
4086 * the subpool and reserve counts modified above
4087 * based on the difference.
4091 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4093 hugetlb_acct_memory(h
, -rsv_adjust
);
4098 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4099 region_abort(resv_map
, from
, to
);
4100 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4101 kref_put(&resv_map
->refs
, resv_map_release
);
4105 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4108 struct hstate
*h
= hstate_inode(inode
);
4109 struct resv_map
*resv_map
= inode_resv_map(inode
);
4111 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4115 chg
= region_del(resv_map
, start
, end
);
4117 * region_del() can fail in the rare case where a region
4118 * must be split and another region descriptor can not be
4119 * allocated. If end == LONG_MAX, it will not fail.
4125 spin_lock(&inode
->i_lock
);
4126 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4127 spin_unlock(&inode
->i_lock
);
4130 * If the subpool has a minimum size, the number of global
4131 * reservations to be released may be adjusted.
4133 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4134 hugetlb_acct_memory(h
, -gbl_reserve
);
4139 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4140 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4141 struct vm_area_struct
*vma
,
4142 unsigned long addr
, pgoff_t idx
)
4144 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4146 unsigned long sbase
= saddr
& PUD_MASK
;
4147 unsigned long s_end
= sbase
+ PUD_SIZE
;
4149 /* Allow segments to share if only one is marked locked */
4150 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4151 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4154 * match the virtual addresses, permission and the alignment of the
4157 if (pmd_index(addr
) != pmd_index(saddr
) ||
4158 vm_flags
!= svm_flags
||
4159 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4165 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4167 unsigned long base
= addr
& PUD_MASK
;
4168 unsigned long end
= base
+ PUD_SIZE
;
4171 * check on proper vm_flags and page table alignment
4173 if (vma
->vm_flags
& VM_MAYSHARE
&&
4174 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
4180 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4181 * and returns the corresponding pte. While this is not necessary for the
4182 * !shared pmd case because we can allocate the pmd later as well, it makes the
4183 * code much cleaner. pmd allocation is essential for the shared case because
4184 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4185 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4186 * bad pmd for sharing.
4188 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4190 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4191 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4192 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4194 struct vm_area_struct
*svma
;
4195 unsigned long saddr
;
4200 if (!vma_shareable(vma
, addr
))
4201 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4203 i_mmap_lock_write(mapping
);
4204 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4208 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4210 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
4213 get_page(virt_to_page(spte
));
4222 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, spte
);
4224 if (pud_none(*pud
)) {
4225 pud_populate(mm
, pud
,
4226 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4228 put_page(virt_to_page(spte
));
4233 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4234 i_mmap_unlock_write(mapping
);
4239 * unmap huge page backed by shared pte.
4241 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4242 * indicated by page_count > 1, unmap is achieved by clearing pud and
4243 * decrementing the ref count. If count == 1, the pte page is not shared.
4245 * called with page table lock held.
4247 * returns: 1 successfully unmapped a shared pte page
4248 * 0 the underlying pte page is not shared, or it is the last user
4250 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4252 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4253 pud_t
*pud
= pud_offset(pgd
, *addr
);
4255 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4256 if (page_count(virt_to_page(ptep
)) == 1)
4260 put_page(virt_to_page(ptep
));
4262 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4265 #define want_pmd_share() (1)
4266 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4267 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4272 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4276 #define want_pmd_share() (0)
4277 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4279 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4280 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4281 unsigned long addr
, unsigned long sz
)
4287 pgd
= pgd_offset(mm
, addr
);
4288 pud
= pud_alloc(mm
, pgd
, addr
);
4290 if (sz
== PUD_SIZE
) {
4293 BUG_ON(sz
!= PMD_SIZE
);
4294 if (want_pmd_share() && pud_none(*pud
))
4295 pte
= huge_pmd_share(mm
, addr
, pud
);
4297 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4300 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
4305 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
4311 pgd
= pgd_offset(mm
, addr
);
4312 if (pgd_present(*pgd
)) {
4313 pud
= pud_offset(pgd
, addr
);
4314 if (pud_present(*pud
)) {
4316 return (pte_t
*)pud
;
4317 pmd
= pmd_offset(pud
, addr
);
4320 return (pte_t
*) pmd
;
4323 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4326 * These functions are overwritable if your architecture needs its own
4329 struct page
* __weak
4330 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4333 return ERR_PTR(-EINVAL
);
4336 struct page
* __weak
4337 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4338 pmd_t
*pmd
, int flags
)
4340 struct page
*page
= NULL
;
4343 ptl
= pmd_lockptr(mm
, pmd
);
4346 * make sure that the address range covered by this pmd is not
4347 * unmapped from other threads.
4349 if (!pmd_huge(*pmd
))
4351 if (pmd_present(*pmd
)) {
4352 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4353 if (flags
& FOLL_GET
)
4356 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t
*)pmd
))) {
4358 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4362 * hwpoisoned entry is treated as no_page_table in
4363 * follow_page_mask().
4371 struct page
* __weak
4372 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4373 pud_t
*pud
, int flags
)
4375 if (flags
& FOLL_GET
)
4378 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4381 #ifdef CONFIG_MEMORY_FAILURE
4384 * This function is called from memory failure code.
4385 * Assume the caller holds page lock of the head page.
4387 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
4389 struct hstate
*h
= page_hstate(hpage
);
4390 int nid
= page_to_nid(hpage
);
4393 spin_lock(&hugetlb_lock
);
4395 * Just checking !page_huge_active is not enough, because that could be
4396 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4398 if (!page_huge_active(hpage
) && !page_count(hpage
)) {
4400 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4401 * but dangling hpage->lru can trigger list-debug warnings
4402 * (this happens when we call unpoison_memory() on it),
4403 * so let it point to itself with list_del_init().
4405 list_del_init(&hpage
->lru
);
4406 set_page_refcounted(hpage
);
4407 h
->free_huge_pages
--;
4408 h
->free_huge_pages_node
[nid
]--;
4411 spin_unlock(&hugetlb_lock
);
4416 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4420 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4421 spin_lock(&hugetlb_lock
);
4422 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4426 clear_page_huge_active(page
);
4427 list_move_tail(&page
->lru
, list
);
4429 spin_unlock(&hugetlb_lock
);
4433 void putback_active_hugepage(struct page
*page
)
4435 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4436 spin_lock(&hugetlb_lock
);
4437 set_page_huge_active(page
);
4438 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4439 spin_unlock(&hugetlb_lock
);