]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/hugetlb.c
hugetlb: fix nr_pmds accounting with shared page tables
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
59 */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
86 }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
91 {
92 struct hugepage_subpool *spool;
93
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
109
110 return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119 }
120
121 /*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
131 {
132 long ret = delta;
133
134 if (!spool)
135 return ret;
136
137 spin_lock(&spool->lock);
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
146 }
147
148 if (spool->min_hpages != -1) { /* minimum size accounting */
149 if (delta > spool->rsv_hpages) {
150 /*
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
153 */
154 ret = delta - spool->rsv_hpages;
155 spool->rsv_hpages = 0;
156 } else {
157 ret = 0; /* reserves already accounted for */
158 spool->rsv_hpages -= delta;
159 }
160 }
161
162 unlock_ret:
163 spin_unlock(&spool->lock);
164 return ret;
165 }
166
167 /*
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
172 */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 long delta)
175 {
176 long ret = delta;
177
178 if (!spool)
179 return delta;
180
181 spin_lock(&spool->lock);
182
183 if (spool->max_hpages != -1) /* maximum size accounting */
184 spool->used_hpages -= delta;
185
186 if (spool->min_hpages != -1) { /* minimum size accounting */
187 if (spool->rsv_hpages + delta <= spool->min_hpages)
188 ret = 0;
189 else
190 ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192 spool->rsv_hpages += delta;
193 if (spool->rsv_hpages > spool->min_hpages)
194 spool->rsv_hpages = spool->min_hpages;
195 }
196
197 /*
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
200 */
201 unlock_or_release_subpool(spool);
202
203 return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208 return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213 return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
219 *
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
226 *
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231 *
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
234 */
235 struct file_region {
236 struct list_head link;
237 long from;
238 long to;
239 };
240
241 /*
242 * Add the huge page range represented by [f, t) to the reserve
243 * map. In the normal case, existing regions will be expanded
244 * to accommodate the specified range. Sufficient regions should
245 * exist for expansion due to the previous call to region_chg
246 * with the same range. However, it is possible that region_del
247 * could have been called after region_chg and modifed the map
248 * in such a way that no region exists to be expanded. In this
249 * case, pull a region descriptor from the cache associated with
250 * the map and use that for the new range.
251 *
252 * Return the number of new huge pages added to the map. This
253 * number is greater than or equal to zero.
254 */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257 struct list_head *head = &resv->regions;
258 struct file_region *rg, *nrg, *trg;
259 long add = 0;
260
261 spin_lock(&resv->lock);
262 /* Locate the region we are either in or before. */
263 list_for_each_entry(rg, head, link)
264 if (f <= rg->to)
265 break;
266
267 /*
268 * If no region exists which can be expanded to include the
269 * specified range, the list must have been modified by an
270 * interleving call to region_del(). Pull a region descriptor
271 * from the cache and use it for this range.
272 */
273 if (&rg->link == head || t < rg->from) {
274 VM_BUG_ON(resv->region_cache_count <= 0);
275
276 resv->region_cache_count--;
277 nrg = list_first_entry(&resv->region_cache, struct file_region,
278 link);
279 list_del(&nrg->link);
280
281 nrg->from = f;
282 nrg->to = t;
283 list_add(&nrg->link, rg->link.prev);
284
285 add += t - f;
286 goto out_locked;
287 }
288
289 /* Round our left edge to the current segment if it encloses us. */
290 if (f > rg->from)
291 f = rg->from;
292
293 /* Check for and consume any regions we now overlap with. */
294 nrg = rg;
295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296 if (&rg->link == head)
297 break;
298 if (rg->from > t)
299 break;
300
301 /* If this area reaches higher then extend our area to
302 * include it completely. If this is not the first area
303 * which we intend to reuse, free it. */
304 if (rg->to > t)
305 t = rg->to;
306 if (rg != nrg) {
307 /* Decrement return value by the deleted range.
308 * Another range will span this area so that by
309 * end of routine add will be >= zero
310 */
311 add -= (rg->to - rg->from);
312 list_del(&rg->link);
313 kfree(rg);
314 }
315 }
316
317 add += (nrg->from - f); /* Added to beginning of region */
318 nrg->from = f;
319 add += t - nrg->to; /* Added to end of region */
320 nrg->to = t;
321
322 out_locked:
323 resv->adds_in_progress--;
324 spin_unlock(&resv->lock);
325 VM_BUG_ON(add < 0);
326 return add;
327 }
328
329 /*
330 * Examine the existing reserve map and determine how many
331 * huge pages in the specified range [f, t) are NOT currently
332 * represented. This routine is called before a subsequent
333 * call to region_add that will actually modify the reserve
334 * map to add the specified range [f, t). region_chg does
335 * not change the number of huge pages represented by the
336 * map. However, if the existing regions in the map can not
337 * be expanded to represent the new range, a new file_region
338 * structure is added to the map as a placeholder. This is
339 * so that the subsequent region_add call will have all the
340 * regions it needs and will not fail.
341 *
342 * Upon entry, region_chg will also examine the cache of region descriptors
343 * associated with the map. If there are not enough descriptors cached, one
344 * will be allocated for the in progress add operation.
345 *
346 * Returns the number of huge pages that need to be added to the existing
347 * reservation map for the range [f, t). This number is greater or equal to
348 * zero. -ENOMEM is returned if a new file_region structure or cache entry
349 * is needed and can not be allocated.
350 */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353 struct list_head *head = &resv->regions;
354 struct file_region *rg, *nrg = NULL;
355 long chg = 0;
356
357 retry:
358 spin_lock(&resv->lock);
359 retry_locked:
360 resv->adds_in_progress++;
361
362 /*
363 * Check for sufficient descriptors in the cache to accommodate
364 * the number of in progress add operations.
365 */
366 if (resv->adds_in_progress > resv->region_cache_count) {
367 struct file_region *trg;
368
369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370 /* Must drop lock to allocate a new descriptor. */
371 resv->adds_in_progress--;
372 spin_unlock(&resv->lock);
373
374 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 if (!trg) {
376 kfree(nrg);
377 return -ENOMEM;
378 }
379
380 spin_lock(&resv->lock);
381 list_add(&trg->link, &resv->region_cache);
382 resv->region_cache_count++;
383 goto retry_locked;
384 }
385
386 /* Locate the region we are before or in. */
387 list_for_each_entry(rg, head, link)
388 if (f <= rg->to)
389 break;
390
391 /* If we are below the current region then a new region is required.
392 * Subtle, allocate a new region at the position but make it zero
393 * size such that we can guarantee to record the reservation. */
394 if (&rg->link == head || t < rg->from) {
395 if (!nrg) {
396 resv->adds_in_progress--;
397 spin_unlock(&resv->lock);
398 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
399 if (!nrg)
400 return -ENOMEM;
401
402 nrg->from = f;
403 nrg->to = f;
404 INIT_LIST_HEAD(&nrg->link);
405 goto retry;
406 }
407
408 list_add(&nrg->link, rg->link.prev);
409 chg = t - f;
410 goto out_nrg;
411 }
412
413 /* Round our left edge to the current segment if it encloses us. */
414 if (f > rg->from)
415 f = rg->from;
416 chg = t - f;
417
418 /* Check for and consume any regions we now overlap with. */
419 list_for_each_entry(rg, rg->link.prev, link) {
420 if (&rg->link == head)
421 break;
422 if (rg->from > t)
423 goto out;
424
425 /* We overlap with this area, if it extends further than
426 * us then we must extend ourselves. Account for its
427 * existing reservation. */
428 if (rg->to > t) {
429 chg += rg->to - t;
430 t = rg->to;
431 }
432 chg -= rg->to - rg->from;
433 }
434
435 out:
436 spin_unlock(&resv->lock);
437 /* We already know we raced and no longer need the new region */
438 kfree(nrg);
439 return chg;
440 out_nrg:
441 spin_unlock(&resv->lock);
442 return chg;
443 }
444
445 /*
446 * Abort the in progress add operation. The adds_in_progress field
447 * of the resv_map keeps track of the operations in progress between
448 * calls to region_chg and region_add. Operations are sometimes
449 * aborted after the call to region_chg. In such cases, region_abort
450 * is called to decrement the adds_in_progress counter.
451 *
452 * NOTE: The range arguments [f, t) are not needed or used in this
453 * routine. They are kept to make reading the calling code easier as
454 * arguments will match the associated region_chg call.
455 */
456 static void region_abort(struct resv_map *resv, long f, long t)
457 {
458 spin_lock(&resv->lock);
459 VM_BUG_ON(!resv->region_cache_count);
460 resv->adds_in_progress--;
461 spin_unlock(&resv->lock);
462 }
463
464 /*
465 * Delete the specified range [f, t) from the reserve map. If the
466 * t parameter is LONG_MAX, this indicates that ALL regions after f
467 * should be deleted. Locate the regions which intersect [f, t)
468 * and either trim, delete or split the existing regions.
469 *
470 * Returns the number of huge pages deleted from the reserve map.
471 * In the normal case, the return value is zero or more. In the
472 * case where a region must be split, a new region descriptor must
473 * be allocated. If the allocation fails, -ENOMEM will be returned.
474 * NOTE: If the parameter t == LONG_MAX, then we will never split
475 * a region and possibly return -ENOMEM. Callers specifying
476 * t == LONG_MAX do not need to check for -ENOMEM error.
477 */
478 static long region_del(struct resv_map *resv, long f, long t)
479 {
480 struct list_head *head = &resv->regions;
481 struct file_region *rg, *trg;
482 struct file_region *nrg = NULL;
483 long del = 0;
484
485 retry:
486 spin_lock(&resv->lock);
487 list_for_each_entry_safe(rg, trg, head, link) {
488 /*
489 * Skip regions before the range to be deleted. file_region
490 * ranges are normally of the form [from, to). However, there
491 * may be a "placeholder" entry in the map which is of the form
492 * (from, to) with from == to. Check for placeholder entries
493 * at the beginning of the range to be deleted.
494 */
495 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
496 continue;
497
498 if (rg->from >= t)
499 break;
500
501 if (f > rg->from && t < rg->to) { /* Must split region */
502 /*
503 * Check for an entry in the cache before dropping
504 * lock and attempting allocation.
505 */
506 if (!nrg &&
507 resv->region_cache_count > resv->adds_in_progress) {
508 nrg = list_first_entry(&resv->region_cache,
509 struct file_region,
510 link);
511 list_del(&nrg->link);
512 resv->region_cache_count--;
513 }
514
515 if (!nrg) {
516 spin_unlock(&resv->lock);
517 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
518 if (!nrg)
519 return -ENOMEM;
520 goto retry;
521 }
522
523 del += t - f;
524
525 /* New entry for end of split region */
526 nrg->from = t;
527 nrg->to = rg->to;
528 INIT_LIST_HEAD(&nrg->link);
529
530 /* Original entry is trimmed */
531 rg->to = f;
532
533 list_add(&nrg->link, &rg->link);
534 nrg = NULL;
535 break;
536 }
537
538 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
539 del += rg->to - rg->from;
540 list_del(&rg->link);
541 kfree(rg);
542 continue;
543 }
544
545 if (f <= rg->from) { /* Trim beginning of region */
546 del += t - rg->from;
547 rg->from = t;
548 } else { /* Trim end of region */
549 del += rg->to - f;
550 rg->to = f;
551 }
552 }
553
554 spin_unlock(&resv->lock);
555 kfree(nrg);
556 return del;
557 }
558
559 /*
560 * A rare out of memory error was encountered which prevented removal of
561 * the reserve map region for a page. The huge page itself was free'ed
562 * and removed from the page cache. This routine will adjust the subpool
563 * usage count, and the global reserve count if needed. By incrementing
564 * these counts, the reserve map entry which could not be deleted will
565 * appear as a "reserved" entry instead of simply dangling with incorrect
566 * counts.
567 */
568 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
569 {
570 struct hugepage_subpool *spool = subpool_inode(inode);
571 long rsv_adjust;
572
573 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
574 if (restore_reserve && rsv_adjust) {
575 struct hstate *h = hstate_inode(inode);
576
577 hugetlb_acct_memory(h, 1);
578 }
579 }
580
581 /*
582 * Count and return the number of huge pages in the reserve map
583 * that intersect with the range [f, t).
584 */
585 static long region_count(struct resv_map *resv, long f, long t)
586 {
587 struct list_head *head = &resv->regions;
588 struct file_region *rg;
589 long chg = 0;
590
591 spin_lock(&resv->lock);
592 /* Locate each segment we overlap with, and count that overlap. */
593 list_for_each_entry(rg, head, link) {
594 long seg_from;
595 long seg_to;
596
597 if (rg->to <= f)
598 continue;
599 if (rg->from >= t)
600 break;
601
602 seg_from = max(rg->from, f);
603 seg_to = min(rg->to, t);
604
605 chg += seg_to - seg_from;
606 }
607 spin_unlock(&resv->lock);
608
609 return chg;
610 }
611
612 /*
613 * Convert the address within this vma to the page offset within
614 * the mapping, in pagecache page units; huge pages here.
615 */
616 static pgoff_t vma_hugecache_offset(struct hstate *h,
617 struct vm_area_struct *vma, unsigned long address)
618 {
619 return ((address - vma->vm_start) >> huge_page_shift(h)) +
620 (vma->vm_pgoff >> huge_page_order(h));
621 }
622
623 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
624 unsigned long address)
625 {
626 return vma_hugecache_offset(hstate_vma(vma), vma, address);
627 }
628
629 /*
630 * Return the size of the pages allocated when backing a VMA. In the majority
631 * cases this will be same size as used by the page table entries.
632 */
633 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
634 {
635 struct hstate *hstate;
636
637 if (!is_vm_hugetlb_page(vma))
638 return PAGE_SIZE;
639
640 hstate = hstate_vma(vma);
641
642 return 1UL << huge_page_shift(hstate);
643 }
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645
646 /*
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific version of this
650 * function is required.
651 */
652 #ifndef vma_mmu_pagesize
653 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655 return vma_kernel_pagesize(vma);
656 }
657 #endif
658
659 /*
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
662 * alignment.
663 */
664 #define HPAGE_RESV_OWNER (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667
668 /*
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
672 *
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
677 *
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
686 */
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688 {
689 return (unsigned long)vma->vm_private_data;
690 }
691
692 static void set_vma_private_data(struct vm_area_struct *vma,
693 unsigned long value)
694 {
695 vma->vm_private_data = (void *)value;
696 }
697
698 struct resv_map *resv_map_alloc(void)
699 {
700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703 if (!resv_map || !rg) {
704 kfree(resv_map);
705 kfree(rg);
706 return NULL;
707 }
708
709 kref_init(&resv_map->refs);
710 spin_lock_init(&resv_map->lock);
711 INIT_LIST_HEAD(&resv_map->regions);
712
713 resv_map->adds_in_progress = 0;
714
715 INIT_LIST_HEAD(&resv_map->region_cache);
716 list_add(&rg->link, &resv_map->region_cache);
717 resv_map->region_cache_count = 1;
718
719 return resv_map;
720 }
721
722 void resv_map_release(struct kref *ref)
723 {
724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 struct list_head *head = &resv_map->region_cache;
726 struct file_region *rg, *trg;
727
728 /* Clear out any active regions before we release the map. */
729 region_del(resv_map, 0, LONG_MAX);
730
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg, trg, head, link) {
733 list_del(&rg->link);
734 kfree(rg);
735 }
736
737 VM_BUG_ON(resv_map->adds_in_progress);
738
739 kfree(resv_map);
740 }
741
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
743 {
744 return inode->i_mapping->private_data;
745 }
746
747 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
748 {
749 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
750 if (vma->vm_flags & VM_MAYSHARE) {
751 struct address_space *mapping = vma->vm_file->f_mapping;
752 struct inode *inode = mapping->host;
753
754 return inode_resv_map(inode);
755
756 } else {
757 return (struct resv_map *)(get_vma_private_data(vma) &
758 ~HPAGE_RESV_MASK);
759 }
760 }
761
762 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
763 {
764 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
765 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
766
767 set_vma_private_data(vma, (get_vma_private_data(vma) &
768 HPAGE_RESV_MASK) | (unsigned long)map);
769 }
770
771 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
772 {
773 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
774 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
775
776 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
777 }
778
779 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
780 {
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782
783 return (get_vma_private_data(vma) & flag) != 0;
784 }
785
786 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
787 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
788 {
789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790 if (!(vma->vm_flags & VM_MAYSHARE))
791 vma->vm_private_data = (void *)0;
792 }
793
794 /* Returns true if the VMA has associated reserve pages */
795 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
796 {
797 if (vma->vm_flags & VM_NORESERVE) {
798 /*
799 * This address is already reserved by other process(chg == 0),
800 * so, we should decrement reserved count. Without decrementing,
801 * reserve count remains after releasing inode, because this
802 * allocated page will go into page cache and is regarded as
803 * coming from reserved pool in releasing step. Currently, we
804 * don't have any other solution to deal with this situation
805 * properly, so add work-around here.
806 */
807 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
808 return true;
809 else
810 return false;
811 }
812
813 /* Shared mappings always use reserves */
814 if (vma->vm_flags & VM_MAYSHARE) {
815 /*
816 * We know VM_NORESERVE is not set. Therefore, there SHOULD
817 * be a region map for all pages. The only situation where
818 * there is no region map is if a hole was punched via
819 * fallocate. In this case, there really are no reverves to
820 * use. This situation is indicated if chg != 0.
821 */
822 if (chg)
823 return false;
824 else
825 return true;
826 }
827
828 /*
829 * Only the process that called mmap() has reserves for
830 * private mappings.
831 */
832 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
833 return true;
834
835 return false;
836 }
837
838 static void enqueue_huge_page(struct hstate *h, struct page *page)
839 {
840 int nid = page_to_nid(page);
841 list_move(&page->lru, &h->hugepage_freelists[nid]);
842 h->free_huge_pages++;
843 h->free_huge_pages_node[nid]++;
844 }
845
846 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
847 {
848 struct page *page;
849
850 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
851 if (!is_migrate_isolate_page(page))
852 break;
853 /*
854 * if 'non-isolated free hugepage' not found on the list,
855 * the allocation fails.
856 */
857 if (&h->hugepage_freelists[nid] == &page->lru)
858 return NULL;
859 list_move(&page->lru, &h->hugepage_activelist);
860 set_page_refcounted(page);
861 h->free_huge_pages--;
862 h->free_huge_pages_node[nid]--;
863 return page;
864 }
865
866 /* Movability of hugepages depends on migration support. */
867 static inline gfp_t htlb_alloc_mask(struct hstate *h)
868 {
869 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
870 return GFP_HIGHUSER_MOVABLE;
871 else
872 return GFP_HIGHUSER;
873 }
874
875 static struct page *dequeue_huge_page_vma(struct hstate *h,
876 struct vm_area_struct *vma,
877 unsigned long address, int avoid_reserve,
878 long chg)
879 {
880 struct page *page = NULL;
881 struct mempolicy *mpol;
882 nodemask_t *nodemask;
883 struct zonelist *zonelist;
884 struct zone *zone;
885 struct zoneref *z;
886 unsigned int cpuset_mems_cookie;
887
888 /*
889 * A child process with MAP_PRIVATE mappings created by their parent
890 * have no page reserves. This check ensures that reservations are
891 * not "stolen". The child may still get SIGKILLed
892 */
893 if (!vma_has_reserves(vma, chg) &&
894 h->free_huge_pages - h->resv_huge_pages == 0)
895 goto err;
896
897 /* If reserves cannot be used, ensure enough pages are in the pool */
898 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
899 goto err;
900
901 retry_cpuset:
902 cpuset_mems_cookie = read_mems_allowed_begin();
903 zonelist = huge_zonelist(vma, address,
904 htlb_alloc_mask(h), &mpol, &nodemask);
905
906 for_each_zone_zonelist_nodemask(zone, z, zonelist,
907 MAX_NR_ZONES - 1, nodemask) {
908 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
909 page = dequeue_huge_page_node(h, zone_to_nid(zone));
910 if (page) {
911 if (avoid_reserve)
912 break;
913 if (!vma_has_reserves(vma, chg))
914 break;
915
916 SetPagePrivate(page);
917 h->resv_huge_pages--;
918 break;
919 }
920 }
921 }
922
923 mpol_cond_put(mpol);
924 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
925 goto retry_cpuset;
926 return page;
927
928 err:
929 return NULL;
930 }
931
932 /*
933 * common helper functions for hstate_next_node_to_{alloc|free}.
934 * We may have allocated or freed a huge page based on a different
935 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936 * be outside of *nodes_allowed. Ensure that we use an allowed
937 * node for alloc or free.
938 */
939 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941 nid = next_node(nid, *nodes_allowed);
942 if (nid == MAX_NUMNODES)
943 nid = first_node(*nodes_allowed);
944 VM_BUG_ON(nid >= MAX_NUMNODES);
945
946 return nid;
947 }
948
949 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
950 {
951 if (!node_isset(nid, *nodes_allowed))
952 nid = next_node_allowed(nid, nodes_allowed);
953 return nid;
954 }
955
956 /*
957 * returns the previously saved node ["this node"] from which to
958 * allocate a persistent huge page for the pool and advance the
959 * next node from which to allocate, handling wrap at end of node
960 * mask.
961 */
962 static int hstate_next_node_to_alloc(struct hstate *h,
963 nodemask_t *nodes_allowed)
964 {
965 int nid;
966
967 VM_BUG_ON(!nodes_allowed);
968
969 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
970 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
971
972 return nid;
973 }
974
975 /*
976 * helper for free_pool_huge_page() - return the previously saved
977 * node ["this node"] from which to free a huge page. Advance the
978 * next node id whether or not we find a free huge page to free so
979 * that the next attempt to free addresses the next node.
980 */
981 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
982 {
983 int nid;
984
985 VM_BUG_ON(!nodes_allowed);
986
987 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
988 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
989
990 return nid;
991 }
992
993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
994 for (nr_nodes = nodes_weight(*mask); \
995 nr_nodes > 0 && \
996 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
997 nr_nodes--)
998
999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1000 for (nr_nodes = nodes_weight(*mask); \
1001 nr_nodes > 0 && \
1002 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1003 nr_nodes--)
1004
1005 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
1006 static void destroy_compound_gigantic_page(struct page *page,
1007 unsigned int order)
1008 {
1009 int i;
1010 int nr_pages = 1 << order;
1011 struct page *p = page + 1;
1012
1013 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014 clear_compound_head(p);
1015 set_page_refcounted(p);
1016 }
1017
1018 set_compound_order(page, 0);
1019 __ClearPageHead(page);
1020 }
1021
1022 static void free_gigantic_page(struct page *page, unsigned int order)
1023 {
1024 free_contig_range(page_to_pfn(page), 1 << order);
1025 }
1026
1027 static int __alloc_gigantic_page(unsigned long start_pfn,
1028 unsigned long nr_pages)
1029 {
1030 unsigned long end_pfn = start_pfn + nr_pages;
1031 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1032 }
1033
1034 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1035 unsigned long nr_pages)
1036 {
1037 unsigned long i, end_pfn = start_pfn + nr_pages;
1038 struct page *page;
1039
1040 for (i = start_pfn; i < end_pfn; i++) {
1041 if (!pfn_valid(i))
1042 return false;
1043
1044 page = pfn_to_page(i);
1045
1046 if (PageReserved(page))
1047 return false;
1048
1049 if (page_count(page) > 0)
1050 return false;
1051
1052 if (PageHuge(page))
1053 return false;
1054 }
1055
1056 return true;
1057 }
1058
1059 static bool zone_spans_last_pfn(const struct zone *zone,
1060 unsigned long start_pfn, unsigned long nr_pages)
1061 {
1062 unsigned long last_pfn = start_pfn + nr_pages - 1;
1063 return zone_spans_pfn(zone, last_pfn);
1064 }
1065
1066 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1067 {
1068 unsigned long nr_pages = 1 << order;
1069 unsigned long ret, pfn, flags;
1070 struct zone *z;
1071
1072 z = NODE_DATA(nid)->node_zones;
1073 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1074 spin_lock_irqsave(&z->lock, flags);
1075
1076 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1077 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1078 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1079 /*
1080 * We release the zone lock here because
1081 * alloc_contig_range() will also lock the zone
1082 * at some point. If there's an allocation
1083 * spinning on this lock, it may win the race
1084 * and cause alloc_contig_range() to fail...
1085 */
1086 spin_unlock_irqrestore(&z->lock, flags);
1087 ret = __alloc_gigantic_page(pfn, nr_pages);
1088 if (!ret)
1089 return pfn_to_page(pfn);
1090 spin_lock_irqsave(&z->lock, flags);
1091 }
1092 pfn += nr_pages;
1093 }
1094
1095 spin_unlock_irqrestore(&z->lock, flags);
1096 }
1097
1098 return NULL;
1099 }
1100
1101 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1102 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1103
1104 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1105 {
1106 struct page *page;
1107
1108 page = alloc_gigantic_page(nid, huge_page_order(h));
1109 if (page) {
1110 prep_compound_gigantic_page(page, huge_page_order(h));
1111 prep_new_huge_page(h, page, nid);
1112 }
1113
1114 return page;
1115 }
1116
1117 static int alloc_fresh_gigantic_page(struct hstate *h,
1118 nodemask_t *nodes_allowed)
1119 {
1120 struct page *page = NULL;
1121 int nr_nodes, node;
1122
1123 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1124 page = alloc_fresh_gigantic_page_node(h, node);
1125 if (page)
1126 return 1;
1127 }
1128
1129 return 0;
1130 }
1131
1132 static inline bool gigantic_page_supported(void) { return true; }
1133 #else
1134 static inline bool gigantic_page_supported(void) { return false; }
1135 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1136 static inline void destroy_compound_gigantic_page(struct page *page,
1137 unsigned int order) { }
1138 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1139 nodemask_t *nodes_allowed) { return 0; }
1140 #endif
1141
1142 static void update_and_free_page(struct hstate *h, struct page *page)
1143 {
1144 int i;
1145
1146 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1147 return;
1148
1149 h->nr_huge_pages--;
1150 h->nr_huge_pages_node[page_to_nid(page)]--;
1151 for (i = 0; i < pages_per_huge_page(h); i++) {
1152 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1153 1 << PG_referenced | 1 << PG_dirty |
1154 1 << PG_active | 1 << PG_private |
1155 1 << PG_writeback);
1156 }
1157 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1158 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1159 set_page_refcounted(page);
1160 if (hstate_is_gigantic(h)) {
1161 destroy_compound_gigantic_page(page, huge_page_order(h));
1162 free_gigantic_page(page, huge_page_order(h));
1163 } else {
1164 __free_pages(page, huge_page_order(h));
1165 }
1166 }
1167
1168 struct hstate *size_to_hstate(unsigned long size)
1169 {
1170 struct hstate *h;
1171
1172 for_each_hstate(h) {
1173 if (huge_page_size(h) == size)
1174 return h;
1175 }
1176 return NULL;
1177 }
1178
1179 /*
1180 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1181 * to hstate->hugepage_activelist.)
1182 *
1183 * This function can be called for tail pages, but never returns true for them.
1184 */
1185 bool page_huge_active(struct page *page)
1186 {
1187 VM_BUG_ON_PAGE(!PageHuge(page), page);
1188 return PageHead(page) && PagePrivate(&page[1]);
1189 }
1190
1191 /* never called for tail page */
1192 static void set_page_huge_active(struct page *page)
1193 {
1194 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1195 SetPagePrivate(&page[1]);
1196 }
1197
1198 static void clear_page_huge_active(struct page *page)
1199 {
1200 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1201 ClearPagePrivate(&page[1]);
1202 }
1203
1204 void free_huge_page(struct page *page)
1205 {
1206 /*
1207 * Can't pass hstate in here because it is called from the
1208 * compound page destructor.
1209 */
1210 struct hstate *h = page_hstate(page);
1211 int nid = page_to_nid(page);
1212 struct hugepage_subpool *spool =
1213 (struct hugepage_subpool *)page_private(page);
1214 bool restore_reserve;
1215
1216 set_page_private(page, 0);
1217 page->mapping = NULL;
1218 BUG_ON(page_count(page));
1219 BUG_ON(page_mapcount(page));
1220 restore_reserve = PagePrivate(page);
1221 ClearPagePrivate(page);
1222
1223 /*
1224 * A return code of zero implies that the subpool will be under its
1225 * minimum size if the reservation is not restored after page is free.
1226 * Therefore, force restore_reserve operation.
1227 */
1228 if (hugepage_subpool_put_pages(spool, 1) == 0)
1229 restore_reserve = true;
1230
1231 spin_lock(&hugetlb_lock);
1232 clear_page_huge_active(page);
1233 hugetlb_cgroup_uncharge_page(hstate_index(h),
1234 pages_per_huge_page(h), page);
1235 if (restore_reserve)
1236 h->resv_huge_pages++;
1237
1238 if (h->surplus_huge_pages_node[nid]) {
1239 /* remove the page from active list */
1240 list_del(&page->lru);
1241 update_and_free_page(h, page);
1242 h->surplus_huge_pages--;
1243 h->surplus_huge_pages_node[nid]--;
1244 } else {
1245 arch_clear_hugepage_flags(page);
1246 enqueue_huge_page(h, page);
1247 }
1248 spin_unlock(&hugetlb_lock);
1249 }
1250
1251 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1252 {
1253 INIT_LIST_HEAD(&page->lru);
1254 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1255 spin_lock(&hugetlb_lock);
1256 set_hugetlb_cgroup(page, NULL);
1257 h->nr_huge_pages++;
1258 h->nr_huge_pages_node[nid]++;
1259 spin_unlock(&hugetlb_lock);
1260 put_page(page); /* free it into the hugepage allocator */
1261 }
1262
1263 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1264 {
1265 int i;
1266 int nr_pages = 1 << order;
1267 struct page *p = page + 1;
1268
1269 /* we rely on prep_new_huge_page to set the destructor */
1270 set_compound_order(page, order);
1271 __SetPageHead(page);
1272 __ClearPageReserved(page);
1273 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1274 /*
1275 * For gigantic hugepages allocated through bootmem at
1276 * boot, it's safer to be consistent with the not-gigantic
1277 * hugepages and clear the PG_reserved bit from all tail pages
1278 * too. Otherwse drivers using get_user_pages() to access tail
1279 * pages may get the reference counting wrong if they see
1280 * PG_reserved set on a tail page (despite the head page not
1281 * having PG_reserved set). Enforcing this consistency between
1282 * head and tail pages allows drivers to optimize away a check
1283 * on the head page when they need know if put_page() is needed
1284 * after get_user_pages().
1285 */
1286 __ClearPageReserved(p);
1287 set_page_count(p, 0);
1288 set_compound_head(p, page);
1289 }
1290 }
1291
1292 /*
1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294 * transparent huge pages. See the PageTransHuge() documentation for more
1295 * details.
1296 */
1297 int PageHuge(struct page *page)
1298 {
1299 if (!PageCompound(page))
1300 return 0;
1301
1302 page = compound_head(page);
1303 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304 }
1305 EXPORT_SYMBOL_GPL(PageHuge);
1306
1307 /*
1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309 * normal or transparent huge pages.
1310 */
1311 int PageHeadHuge(struct page *page_head)
1312 {
1313 if (!PageHead(page_head))
1314 return 0;
1315
1316 return get_compound_page_dtor(page_head) == free_huge_page;
1317 }
1318
1319 pgoff_t __basepage_index(struct page *page)
1320 {
1321 struct page *page_head = compound_head(page);
1322 pgoff_t index = page_index(page_head);
1323 unsigned long compound_idx;
1324
1325 if (!PageHuge(page_head))
1326 return page_index(page);
1327
1328 if (compound_order(page_head) >= MAX_ORDER)
1329 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330 else
1331 compound_idx = page - page_head;
1332
1333 return (index << compound_order(page_head)) + compound_idx;
1334 }
1335
1336 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1337 {
1338 struct page *page;
1339
1340 page = __alloc_pages_node(nid,
1341 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342 __GFP_REPEAT|__GFP_NOWARN,
1343 huge_page_order(h));
1344 if (page) {
1345 prep_new_huge_page(h, page, nid);
1346 }
1347
1348 return page;
1349 }
1350
1351 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352 {
1353 struct page *page;
1354 int nr_nodes, node;
1355 int ret = 0;
1356
1357 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358 page = alloc_fresh_huge_page_node(h, node);
1359 if (page) {
1360 ret = 1;
1361 break;
1362 }
1363 }
1364
1365 if (ret)
1366 count_vm_event(HTLB_BUDDY_PGALLOC);
1367 else
1368 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370 return ret;
1371 }
1372
1373 /*
1374 * Free huge page from pool from next node to free.
1375 * Attempt to keep persistent huge pages more or less
1376 * balanced over allowed nodes.
1377 * Called with hugetlb_lock locked.
1378 */
1379 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380 bool acct_surplus)
1381 {
1382 int nr_nodes, node;
1383 int ret = 0;
1384
1385 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386 /*
1387 * If we're returning unused surplus pages, only examine
1388 * nodes with surplus pages.
1389 */
1390 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391 !list_empty(&h->hugepage_freelists[node])) {
1392 struct page *page =
1393 list_entry(h->hugepage_freelists[node].next,
1394 struct page, lru);
1395 list_del(&page->lru);
1396 h->free_huge_pages--;
1397 h->free_huge_pages_node[node]--;
1398 if (acct_surplus) {
1399 h->surplus_huge_pages--;
1400 h->surplus_huge_pages_node[node]--;
1401 }
1402 update_and_free_page(h, page);
1403 ret = 1;
1404 break;
1405 }
1406 }
1407
1408 return ret;
1409 }
1410
1411 /*
1412 * Dissolve a given free hugepage into free buddy pages. This function does
1413 * nothing for in-use (including surplus) hugepages.
1414 */
1415 static void dissolve_free_huge_page(struct page *page)
1416 {
1417 spin_lock(&hugetlb_lock);
1418 if (PageHuge(page) && !page_count(page)) {
1419 struct hstate *h = page_hstate(page);
1420 int nid = page_to_nid(page);
1421 list_del(&page->lru);
1422 h->free_huge_pages--;
1423 h->free_huge_pages_node[nid]--;
1424 update_and_free_page(h, page);
1425 }
1426 spin_unlock(&hugetlb_lock);
1427 }
1428
1429 /*
1430 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431 * make specified memory blocks removable from the system.
1432 * Note that start_pfn should aligned with (minimum) hugepage size.
1433 */
1434 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1435 {
1436 unsigned long pfn;
1437
1438 if (!hugepages_supported())
1439 return;
1440
1441 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1442 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1443 dissolve_free_huge_page(pfn_to_page(pfn));
1444 }
1445
1446 /*
1447 * There are 3 ways this can get called:
1448 * 1. With vma+addr: we use the VMA's memory policy
1449 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1450 * page from any node, and let the buddy allocator itself figure
1451 * it out.
1452 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1453 * strictly from 'nid'
1454 */
1455 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1456 struct vm_area_struct *vma, unsigned long addr, int nid)
1457 {
1458 int order = huge_page_order(h);
1459 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1460 unsigned int cpuset_mems_cookie;
1461
1462 /*
1463 * We need a VMA to get a memory policy. If we do not
1464 * have one, we use the 'nid' argument.
1465 *
1466 * The mempolicy stuff below has some non-inlined bits
1467 * and calls ->vm_ops. That makes it hard to optimize at
1468 * compile-time, even when NUMA is off and it does
1469 * nothing. This helps the compiler optimize it out.
1470 */
1471 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1472 /*
1473 * If a specific node is requested, make sure to
1474 * get memory from there, but only when a node
1475 * is explicitly specified.
1476 */
1477 if (nid != NUMA_NO_NODE)
1478 gfp |= __GFP_THISNODE;
1479 /*
1480 * Make sure to call something that can handle
1481 * nid=NUMA_NO_NODE
1482 */
1483 return alloc_pages_node(nid, gfp, order);
1484 }
1485
1486 /*
1487 * OK, so we have a VMA. Fetch the mempolicy and try to
1488 * allocate a huge page with it. We will only reach this
1489 * when CONFIG_NUMA=y.
1490 */
1491 do {
1492 struct page *page;
1493 struct mempolicy *mpol;
1494 struct zonelist *zl;
1495 nodemask_t *nodemask;
1496
1497 cpuset_mems_cookie = read_mems_allowed_begin();
1498 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1499 mpol_cond_put(mpol);
1500 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1501 if (page)
1502 return page;
1503 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1504
1505 return NULL;
1506 }
1507
1508 /*
1509 * There are two ways to allocate a huge page:
1510 * 1. When you have a VMA and an address (like a fault)
1511 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1512 *
1513 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1514 * this case which signifies that the allocation should be done with
1515 * respect for the VMA's memory policy.
1516 *
1517 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518 * implies that memory policies will not be taken in to account.
1519 */
1520 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1521 struct vm_area_struct *vma, unsigned long addr, int nid)
1522 {
1523 struct page *page;
1524 unsigned int r_nid;
1525
1526 if (hstate_is_gigantic(h))
1527 return NULL;
1528
1529 /*
1530 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531 * This makes sure the caller is picking _one_ of the modes with which
1532 * we can call this function, not both.
1533 */
1534 if (vma || (addr != -1)) {
1535 VM_WARN_ON_ONCE(addr == -1);
1536 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1537 }
1538 /*
1539 * Assume we will successfully allocate the surplus page to
1540 * prevent racing processes from causing the surplus to exceed
1541 * overcommit
1542 *
1543 * This however introduces a different race, where a process B
1544 * tries to grow the static hugepage pool while alloc_pages() is
1545 * called by process A. B will only examine the per-node
1546 * counters in determining if surplus huge pages can be
1547 * converted to normal huge pages in adjust_pool_surplus(). A
1548 * won't be able to increment the per-node counter, until the
1549 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550 * no more huge pages can be converted from surplus to normal
1551 * state (and doesn't try to convert again). Thus, we have a
1552 * case where a surplus huge page exists, the pool is grown, and
1553 * the surplus huge page still exists after, even though it
1554 * should just have been converted to a normal huge page. This
1555 * does not leak memory, though, as the hugepage will be freed
1556 * once it is out of use. It also does not allow the counters to
1557 * go out of whack in adjust_pool_surplus() as we don't modify
1558 * the node values until we've gotten the hugepage and only the
1559 * per-node value is checked there.
1560 */
1561 spin_lock(&hugetlb_lock);
1562 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1563 spin_unlock(&hugetlb_lock);
1564 return NULL;
1565 } else {
1566 h->nr_huge_pages++;
1567 h->surplus_huge_pages++;
1568 }
1569 spin_unlock(&hugetlb_lock);
1570
1571 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1572
1573 spin_lock(&hugetlb_lock);
1574 if (page) {
1575 INIT_LIST_HEAD(&page->lru);
1576 r_nid = page_to_nid(page);
1577 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1578 set_hugetlb_cgroup(page, NULL);
1579 /*
1580 * We incremented the global counters already
1581 */
1582 h->nr_huge_pages_node[r_nid]++;
1583 h->surplus_huge_pages_node[r_nid]++;
1584 __count_vm_event(HTLB_BUDDY_PGALLOC);
1585 } else {
1586 h->nr_huge_pages--;
1587 h->surplus_huge_pages--;
1588 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1589 }
1590 spin_unlock(&hugetlb_lock);
1591
1592 return page;
1593 }
1594
1595 /*
1596 * Allocate a huge page from 'nid'. Note, 'nid' may be
1597 * NUMA_NO_NODE, which means that it may be allocated
1598 * anywhere.
1599 */
1600 static
1601 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1602 {
1603 unsigned long addr = -1;
1604
1605 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1606 }
1607
1608 /*
1609 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1610 */
1611 static
1612 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1613 struct vm_area_struct *vma, unsigned long addr)
1614 {
1615 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1616 }
1617
1618 /*
1619 * This allocation function is useful in the context where vma is irrelevant.
1620 * E.g. soft-offlining uses this function because it only cares physical
1621 * address of error page.
1622 */
1623 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624 {
1625 struct page *page = NULL;
1626
1627 spin_lock(&hugetlb_lock);
1628 if (h->free_huge_pages - h->resv_huge_pages > 0)
1629 page = dequeue_huge_page_node(h, nid);
1630 spin_unlock(&hugetlb_lock);
1631
1632 if (!page)
1633 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1634
1635 return page;
1636 }
1637
1638 /*
1639 * Increase the hugetlb pool such that it can accommodate a reservation
1640 * of size 'delta'.
1641 */
1642 static int gather_surplus_pages(struct hstate *h, int delta)
1643 {
1644 struct list_head surplus_list;
1645 struct page *page, *tmp;
1646 int ret, i;
1647 int needed, allocated;
1648 bool alloc_ok = true;
1649
1650 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1651 if (needed <= 0) {
1652 h->resv_huge_pages += delta;
1653 return 0;
1654 }
1655
1656 allocated = 0;
1657 INIT_LIST_HEAD(&surplus_list);
1658
1659 ret = -ENOMEM;
1660 retry:
1661 spin_unlock(&hugetlb_lock);
1662 for (i = 0; i < needed; i++) {
1663 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1664 if (!page) {
1665 alloc_ok = false;
1666 break;
1667 }
1668 list_add(&page->lru, &surplus_list);
1669 }
1670 allocated += i;
1671
1672 /*
1673 * After retaking hugetlb_lock, we need to recalculate 'needed'
1674 * because either resv_huge_pages or free_huge_pages may have changed.
1675 */
1676 spin_lock(&hugetlb_lock);
1677 needed = (h->resv_huge_pages + delta) -
1678 (h->free_huge_pages + allocated);
1679 if (needed > 0) {
1680 if (alloc_ok)
1681 goto retry;
1682 /*
1683 * We were not able to allocate enough pages to
1684 * satisfy the entire reservation so we free what
1685 * we've allocated so far.
1686 */
1687 goto free;
1688 }
1689 /*
1690 * The surplus_list now contains _at_least_ the number of extra pages
1691 * needed to accommodate the reservation. Add the appropriate number
1692 * of pages to the hugetlb pool and free the extras back to the buddy
1693 * allocator. Commit the entire reservation here to prevent another
1694 * process from stealing the pages as they are added to the pool but
1695 * before they are reserved.
1696 */
1697 needed += allocated;
1698 h->resv_huge_pages += delta;
1699 ret = 0;
1700
1701 /* Free the needed pages to the hugetlb pool */
1702 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1703 if ((--needed) < 0)
1704 break;
1705 /*
1706 * This page is now managed by the hugetlb allocator and has
1707 * no users -- drop the buddy allocator's reference.
1708 */
1709 put_page_testzero(page);
1710 VM_BUG_ON_PAGE(page_count(page), page);
1711 enqueue_huge_page(h, page);
1712 }
1713 free:
1714 spin_unlock(&hugetlb_lock);
1715
1716 /* Free unnecessary surplus pages to the buddy allocator */
1717 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1718 put_page(page);
1719 spin_lock(&hugetlb_lock);
1720
1721 return ret;
1722 }
1723
1724 /*
1725 * When releasing a hugetlb pool reservation, any surplus pages that were
1726 * allocated to satisfy the reservation must be explicitly freed if they were
1727 * never used.
1728 * Called with hugetlb_lock held.
1729 */
1730 static void return_unused_surplus_pages(struct hstate *h,
1731 unsigned long unused_resv_pages)
1732 {
1733 unsigned long nr_pages;
1734
1735 /* Uncommit the reservation */
1736 h->resv_huge_pages -= unused_resv_pages;
1737
1738 /* Cannot return gigantic pages currently */
1739 if (hstate_is_gigantic(h))
1740 return;
1741
1742 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1743
1744 /*
1745 * We want to release as many surplus pages as possible, spread
1746 * evenly across all nodes with memory. Iterate across these nodes
1747 * until we can no longer free unreserved surplus pages. This occurs
1748 * when the nodes with surplus pages have no free pages.
1749 * free_pool_huge_page() will balance the the freed pages across the
1750 * on-line nodes with memory and will handle the hstate accounting.
1751 */
1752 while (nr_pages--) {
1753 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1754 break;
1755 cond_resched_lock(&hugetlb_lock);
1756 }
1757 }
1758
1759
1760 /*
1761 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762 * are used by the huge page allocation routines to manage reservations.
1763 *
1764 * vma_needs_reservation is called to determine if the huge page at addr
1765 * within the vma has an associated reservation. If a reservation is
1766 * needed, the value 1 is returned. The caller is then responsible for
1767 * managing the global reservation and subpool usage counts. After
1768 * the huge page has been allocated, vma_commit_reservation is called
1769 * to add the page to the reservation map. If the page allocation fails,
1770 * the reservation must be ended instead of committed. vma_end_reservation
1771 * is called in such cases.
1772 *
1773 * In the normal case, vma_commit_reservation returns the same value
1774 * as the preceding vma_needs_reservation call. The only time this
1775 * is not the case is if a reserve map was changed between calls. It
1776 * is the responsibility of the caller to notice the difference and
1777 * take appropriate action.
1778 */
1779 enum vma_resv_mode {
1780 VMA_NEEDS_RESV,
1781 VMA_COMMIT_RESV,
1782 VMA_END_RESV,
1783 };
1784 static long __vma_reservation_common(struct hstate *h,
1785 struct vm_area_struct *vma, unsigned long addr,
1786 enum vma_resv_mode mode)
1787 {
1788 struct resv_map *resv;
1789 pgoff_t idx;
1790 long ret;
1791
1792 resv = vma_resv_map(vma);
1793 if (!resv)
1794 return 1;
1795
1796 idx = vma_hugecache_offset(h, vma, addr);
1797 switch (mode) {
1798 case VMA_NEEDS_RESV:
1799 ret = region_chg(resv, idx, idx + 1);
1800 break;
1801 case VMA_COMMIT_RESV:
1802 ret = region_add(resv, idx, idx + 1);
1803 break;
1804 case VMA_END_RESV:
1805 region_abort(resv, idx, idx + 1);
1806 ret = 0;
1807 break;
1808 default:
1809 BUG();
1810 }
1811
1812 if (vma->vm_flags & VM_MAYSHARE)
1813 return ret;
1814 else
1815 return ret < 0 ? ret : 0;
1816 }
1817
1818 static long vma_needs_reservation(struct hstate *h,
1819 struct vm_area_struct *vma, unsigned long addr)
1820 {
1821 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1822 }
1823
1824 static long vma_commit_reservation(struct hstate *h,
1825 struct vm_area_struct *vma, unsigned long addr)
1826 {
1827 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1828 }
1829
1830 static void vma_end_reservation(struct hstate *h,
1831 struct vm_area_struct *vma, unsigned long addr)
1832 {
1833 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1834 }
1835
1836 struct page *alloc_huge_page(struct vm_area_struct *vma,
1837 unsigned long addr, int avoid_reserve)
1838 {
1839 struct hugepage_subpool *spool = subpool_vma(vma);
1840 struct hstate *h = hstate_vma(vma);
1841 struct page *page;
1842 long map_chg, map_commit;
1843 long gbl_chg;
1844 int ret, idx;
1845 struct hugetlb_cgroup *h_cg;
1846
1847 idx = hstate_index(h);
1848 /*
1849 * Examine the region/reserve map to determine if the process
1850 * has a reservation for the page to be allocated. A return
1851 * code of zero indicates a reservation exists (no change).
1852 */
1853 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1854 if (map_chg < 0)
1855 return ERR_PTR(-ENOMEM);
1856
1857 /*
1858 * Processes that did not create the mapping will have no
1859 * reserves as indicated by the region/reserve map. Check
1860 * that the allocation will not exceed the subpool limit.
1861 * Allocations for MAP_NORESERVE mappings also need to be
1862 * checked against any subpool limit.
1863 */
1864 if (map_chg || avoid_reserve) {
1865 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1866 if (gbl_chg < 0) {
1867 vma_end_reservation(h, vma, addr);
1868 return ERR_PTR(-ENOSPC);
1869 }
1870
1871 /*
1872 * Even though there was no reservation in the region/reserve
1873 * map, there could be reservations associated with the
1874 * subpool that can be used. This would be indicated if the
1875 * return value of hugepage_subpool_get_pages() is zero.
1876 * However, if avoid_reserve is specified we still avoid even
1877 * the subpool reservations.
1878 */
1879 if (avoid_reserve)
1880 gbl_chg = 1;
1881 }
1882
1883 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1884 if (ret)
1885 goto out_subpool_put;
1886
1887 spin_lock(&hugetlb_lock);
1888 /*
1889 * glb_chg is passed to indicate whether or not a page must be taken
1890 * from the global free pool (global change). gbl_chg == 0 indicates
1891 * a reservation exists for the allocation.
1892 */
1893 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1894 if (!page) {
1895 spin_unlock(&hugetlb_lock);
1896 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1897 if (!page)
1898 goto out_uncharge_cgroup;
1899 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1900 SetPagePrivate(page);
1901 h->resv_huge_pages--;
1902 }
1903 spin_lock(&hugetlb_lock);
1904 list_move(&page->lru, &h->hugepage_activelist);
1905 /* Fall through */
1906 }
1907 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1908 spin_unlock(&hugetlb_lock);
1909
1910 set_page_private(page, (unsigned long)spool);
1911
1912 map_commit = vma_commit_reservation(h, vma, addr);
1913 if (unlikely(map_chg > map_commit)) {
1914 /*
1915 * The page was added to the reservation map between
1916 * vma_needs_reservation and vma_commit_reservation.
1917 * This indicates a race with hugetlb_reserve_pages.
1918 * Adjust for the subpool count incremented above AND
1919 * in hugetlb_reserve_pages for the same page. Also,
1920 * the reservation count added in hugetlb_reserve_pages
1921 * no longer applies.
1922 */
1923 long rsv_adjust;
1924
1925 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1926 hugetlb_acct_memory(h, -rsv_adjust);
1927 }
1928 return page;
1929
1930 out_uncharge_cgroup:
1931 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1932 out_subpool_put:
1933 if (map_chg || avoid_reserve)
1934 hugepage_subpool_put_pages(spool, 1);
1935 vma_end_reservation(h, vma, addr);
1936 return ERR_PTR(-ENOSPC);
1937 }
1938
1939 /*
1940 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942 * where no ERR_VALUE is expected to be returned.
1943 */
1944 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1945 unsigned long addr, int avoid_reserve)
1946 {
1947 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1948 if (IS_ERR(page))
1949 page = NULL;
1950 return page;
1951 }
1952
1953 int __weak alloc_bootmem_huge_page(struct hstate *h)
1954 {
1955 struct huge_bootmem_page *m;
1956 int nr_nodes, node;
1957
1958 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1959 void *addr;
1960
1961 addr = memblock_virt_alloc_try_nid_nopanic(
1962 huge_page_size(h), huge_page_size(h),
1963 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1964 if (addr) {
1965 /*
1966 * Use the beginning of the huge page to store the
1967 * huge_bootmem_page struct (until gather_bootmem
1968 * puts them into the mem_map).
1969 */
1970 m = addr;
1971 goto found;
1972 }
1973 }
1974 return 0;
1975
1976 found:
1977 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1978 /* Put them into a private list first because mem_map is not up yet */
1979 list_add(&m->list, &huge_boot_pages);
1980 m->hstate = h;
1981 return 1;
1982 }
1983
1984 static void __init prep_compound_huge_page(struct page *page,
1985 unsigned int order)
1986 {
1987 if (unlikely(order > (MAX_ORDER - 1)))
1988 prep_compound_gigantic_page(page, order);
1989 else
1990 prep_compound_page(page, order);
1991 }
1992
1993 /* Put bootmem huge pages into the standard lists after mem_map is up */
1994 static void __init gather_bootmem_prealloc(void)
1995 {
1996 struct huge_bootmem_page *m;
1997
1998 list_for_each_entry(m, &huge_boot_pages, list) {
1999 struct hstate *h = m->hstate;
2000 struct page *page;
2001
2002 #ifdef CONFIG_HIGHMEM
2003 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2004 memblock_free_late(__pa(m),
2005 sizeof(struct huge_bootmem_page));
2006 #else
2007 page = virt_to_page(m);
2008 #endif
2009 WARN_ON(page_count(page) != 1);
2010 prep_compound_huge_page(page, h->order);
2011 WARN_ON(PageReserved(page));
2012 prep_new_huge_page(h, page, page_to_nid(page));
2013 /*
2014 * If we had gigantic hugepages allocated at boot time, we need
2015 * to restore the 'stolen' pages to totalram_pages in order to
2016 * fix confusing memory reports from free(1) and another
2017 * side-effects, like CommitLimit going negative.
2018 */
2019 if (hstate_is_gigantic(h))
2020 adjust_managed_page_count(page, 1 << h->order);
2021 }
2022 }
2023
2024 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2025 {
2026 unsigned long i;
2027
2028 for (i = 0; i < h->max_huge_pages; ++i) {
2029 if (hstate_is_gigantic(h)) {
2030 if (!alloc_bootmem_huge_page(h))
2031 break;
2032 } else if (!alloc_fresh_huge_page(h,
2033 &node_states[N_MEMORY]))
2034 break;
2035 }
2036 h->max_huge_pages = i;
2037 }
2038
2039 static void __init hugetlb_init_hstates(void)
2040 {
2041 struct hstate *h;
2042
2043 for_each_hstate(h) {
2044 if (minimum_order > huge_page_order(h))
2045 minimum_order = huge_page_order(h);
2046
2047 /* oversize hugepages were init'ed in early boot */
2048 if (!hstate_is_gigantic(h))
2049 hugetlb_hstate_alloc_pages(h);
2050 }
2051 VM_BUG_ON(minimum_order == UINT_MAX);
2052 }
2053
2054 static char * __init memfmt(char *buf, unsigned long n)
2055 {
2056 if (n >= (1UL << 30))
2057 sprintf(buf, "%lu GB", n >> 30);
2058 else if (n >= (1UL << 20))
2059 sprintf(buf, "%lu MB", n >> 20);
2060 else
2061 sprintf(buf, "%lu KB", n >> 10);
2062 return buf;
2063 }
2064
2065 static void __init report_hugepages(void)
2066 {
2067 struct hstate *h;
2068
2069 for_each_hstate(h) {
2070 char buf[32];
2071 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2072 memfmt(buf, huge_page_size(h)),
2073 h->free_huge_pages);
2074 }
2075 }
2076
2077 #ifdef CONFIG_HIGHMEM
2078 static void try_to_free_low(struct hstate *h, unsigned long count,
2079 nodemask_t *nodes_allowed)
2080 {
2081 int i;
2082
2083 if (hstate_is_gigantic(h))
2084 return;
2085
2086 for_each_node_mask(i, *nodes_allowed) {
2087 struct page *page, *next;
2088 struct list_head *freel = &h->hugepage_freelists[i];
2089 list_for_each_entry_safe(page, next, freel, lru) {
2090 if (count >= h->nr_huge_pages)
2091 return;
2092 if (PageHighMem(page))
2093 continue;
2094 list_del(&page->lru);
2095 update_and_free_page(h, page);
2096 h->free_huge_pages--;
2097 h->free_huge_pages_node[page_to_nid(page)]--;
2098 }
2099 }
2100 }
2101 #else
2102 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2103 nodemask_t *nodes_allowed)
2104 {
2105 }
2106 #endif
2107
2108 /*
2109 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2110 * balanced by operating on them in a round-robin fashion.
2111 * Returns 1 if an adjustment was made.
2112 */
2113 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2114 int delta)
2115 {
2116 int nr_nodes, node;
2117
2118 VM_BUG_ON(delta != -1 && delta != 1);
2119
2120 if (delta < 0) {
2121 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2122 if (h->surplus_huge_pages_node[node])
2123 goto found;
2124 }
2125 } else {
2126 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2127 if (h->surplus_huge_pages_node[node] <
2128 h->nr_huge_pages_node[node])
2129 goto found;
2130 }
2131 }
2132 return 0;
2133
2134 found:
2135 h->surplus_huge_pages += delta;
2136 h->surplus_huge_pages_node[node] += delta;
2137 return 1;
2138 }
2139
2140 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2142 nodemask_t *nodes_allowed)
2143 {
2144 unsigned long min_count, ret;
2145
2146 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2147 return h->max_huge_pages;
2148
2149 /*
2150 * Increase the pool size
2151 * First take pages out of surplus state. Then make up the
2152 * remaining difference by allocating fresh huge pages.
2153 *
2154 * We might race with __alloc_buddy_huge_page() here and be unable
2155 * to convert a surplus huge page to a normal huge page. That is
2156 * not critical, though, it just means the overall size of the
2157 * pool might be one hugepage larger than it needs to be, but
2158 * within all the constraints specified by the sysctls.
2159 */
2160 spin_lock(&hugetlb_lock);
2161 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2162 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2163 break;
2164 }
2165
2166 while (count > persistent_huge_pages(h)) {
2167 /*
2168 * If this allocation races such that we no longer need the
2169 * page, free_huge_page will handle it by freeing the page
2170 * and reducing the surplus.
2171 */
2172 spin_unlock(&hugetlb_lock);
2173
2174 /* yield cpu to avoid soft lockup */
2175 cond_resched();
2176
2177 if (hstate_is_gigantic(h))
2178 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2179 else
2180 ret = alloc_fresh_huge_page(h, nodes_allowed);
2181 spin_lock(&hugetlb_lock);
2182 if (!ret)
2183 goto out;
2184
2185 /* Bail for signals. Probably ctrl-c from user */
2186 if (signal_pending(current))
2187 goto out;
2188 }
2189
2190 /*
2191 * Decrease the pool size
2192 * First return free pages to the buddy allocator (being careful
2193 * to keep enough around to satisfy reservations). Then place
2194 * pages into surplus state as needed so the pool will shrink
2195 * to the desired size as pages become free.
2196 *
2197 * By placing pages into the surplus state independent of the
2198 * overcommit value, we are allowing the surplus pool size to
2199 * exceed overcommit. There are few sane options here. Since
2200 * __alloc_buddy_huge_page() is checking the global counter,
2201 * though, we'll note that we're not allowed to exceed surplus
2202 * and won't grow the pool anywhere else. Not until one of the
2203 * sysctls are changed, or the surplus pages go out of use.
2204 */
2205 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2206 min_count = max(count, min_count);
2207 try_to_free_low(h, min_count, nodes_allowed);
2208 while (min_count < persistent_huge_pages(h)) {
2209 if (!free_pool_huge_page(h, nodes_allowed, 0))
2210 break;
2211 cond_resched_lock(&hugetlb_lock);
2212 }
2213 while (count < persistent_huge_pages(h)) {
2214 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2215 break;
2216 }
2217 out:
2218 ret = persistent_huge_pages(h);
2219 spin_unlock(&hugetlb_lock);
2220 return ret;
2221 }
2222
2223 #define HSTATE_ATTR_RO(_name) \
2224 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2225
2226 #define HSTATE_ATTR(_name) \
2227 static struct kobj_attribute _name##_attr = \
2228 __ATTR(_name, 0644, _name##_show, _name##_store)
2229
2230 static struct kobject *hugepages_kobj;
2231 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2232
2233 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2234
2235 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2236 {
2237 int i;
2238
2239 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2240 if (hstate_kobjs[i] == kobj) {
2241 if (nidp)
2242 *nidp = NUMA_NO_NODE;
2243 return &hstates[i];
2244 }
2245
2246 return kobj_to_node_hstate(kobj, nidp);
2247 }
2248
2249 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2250 struct kobj_attribute *attr, char *buf)
2251 {
2252 struct hstate *h;
2253 unsigned long nr_huge_pages;
2254 int nid;
2255
2256 h = kobj_to_hstate(kobj, &nid);
2257 if (nid == NUMA_NO_NODE)
2258 nr_huge_pages = h->nr_huge_pages;
2259 else
2260 nr_huge_pages = h->nr_huge_pages_node[nid];
2261
2262 return sprintf(buf, "%lu\n", nr_huge_pages);
2263 }
2264
2265 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2266 struct hstate *h, int nid,
2267 unsigned long count, size_t len)
2268 {
2269 int err;
2270 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2271
2272 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2273 err = -EINVAL;
2274 goto out;
2275 }
2276
2277 if (nid == NUMA_NO_NODE) {
2278 /*
2279 * global hstate attribute
2280 */
2281 if (!(obey_mempolicy &&
2282 init_nodemask_of_mempolicy(nodes_allowed))) {
2283 NODEMASK_FREE(nodes_allowed);
2284 nodes_allowed = &node_states[N_MEMORY];
2285 }
2286 } else if (nodes_allowed) {
2287 /*
2288 * per node hstate attribute: adjust count to global,
2289 * but restrict alloc/free to the specified node.
2290 */
2291 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2292 init_nodemask_of_node(nodes_allowed, nid);
2293 } else
2294 nodes_allowed = &node_states[N_MEMORY];
2295
2296 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2297
2298 if (nodes_allowed != &node_states[N_MEMORY])
2299 NODEMASK_FREE(nodes_allowed);
2300
2301 return len;
2302 out:
2303 NODEMASK_FREE(nodes_allowed);
2304 return err;
2305 }
2306
2307 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2308 struct kobject *kobj, const char *buf,
2309 size_t len)
2310 {
2311 struct hstate *h;
2312 unsigned long count;
2313 int nid;
2314 int err;
2315
2316 err = kstrtoul(buf, 10, &count);
2317 if (err)
2318 return err;
2319
2320 h = kobj_to_hstate(kobj, &nid);
2321 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2322 }
2323
2324 static ssize_t nr_hugepages_show(struct kobject *kobj,
2325 struct kobj_attribute *attr, char *buf)
2326 {
2327 return nr_hugepages_show_common(kobj, attr, buf);
2328 }
2329
2330 static ssize_t nr_hugepages_store(struct kobject *kobj,
2331 struct kobj_attribute *attr, const char *buf, size_t len)
2332 {
2333 return nr_hugepages_store_common(false, kobj, buf, len);
2334 }
2335 HSTATE_ATTR(nr_hugepages);
2336
2337 #ifdef CONFIG_NUMA
2338
2339 /*
2340 * hstate attribute for optionally mempolicy-based constraint on persistent
2341 * huge page alloc/free.
2342 */
2343 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2344 struct kobj_attribute *attr, char *buf)
2345 {
2346 return nr_hugepages_show_common(kobj, attr, buf);
2347 }
2348
2349 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2350 struct kobj_attribute *attr, const char *buf, size_t len)
2351 {
2352 return nr_hugepages_store_common(true, kobj, buf, len);
2353 }
2354 HSTATE_ATTR(nr_hugepages_mempolicy);
2355 #endif
2356
2357
2358 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2359 struct kobj_attribute *attr, char *buf)
2360 {
2361 struct hstate *h = kobj_to_hstate(kobj, NULL);
2362 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2363 }
2364
2365 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2366 struct kobj_attribute *attr, const char *buf, size_t count)
2367 {
2368 int err;
2369 unsigned long input;
2370 struct hstate *h = kobj_to_hstate(kobj, NULL);
2371
2372 if (hstate_is_gigantic(h))
2373 return -EINVAL;
2374
2375 err = kstrtoul(buf, 10, &input);
2376 if (err)
2377 return err;
2378
2379 spin_lock(&hugetlb_lock);
2380 h->nr_overcommit_huge_pages = input;
2381 spin_unlock(&hugetlb_lock);
2382
2383 return count;
2384 }
2385 HSTATE_ATTR(nr_overcommit_hugepages);
2386
2387 static ssize_t free_hugepages_show(struct kobject *kobj,
2388 struct kobj_attribute *attr, char *buf)
2389 {
2390 struct hstate *h;
2391 unsigned long free_huge_pages;
2392 int nid;
2393
2394 h = kobj_to_hstate(kobj, &nid);
2395 if (nid == NUMA_NO_NODE)
2396 free_huge_pages = h->free_huge_pages;
2397 else
2398 free_huge_pages = h->free_huge_pages_node[nid];
2399
2400 return sprintf(buf, "%lu\n", free_huge_pages);
2401 }
2402 HSTATE_ATTR_RO(free_hugepages);
2403
2404 static ssize_t resv_hugepages_show(struct kobject *kobj,
2405 struct kobj_attribute *attr, char *buf)
2406 {
2407 struct hstate *h = kobj_to_hstate(kobj, NULL);
2408 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2409 }
2410 HSTATE_ATTR_RO(resv_hugepages);
2411
2412 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2413 struct kobj_attribute *attr, char *buf)
2414 {
2415 struct hstate *h;
2416 unsigned long surplus_huge_pages;
2417 int nid;
2418
2419 h = kobj_to_hstate(kobj, &nid);
2420 if (nid == NUMA_NO_NODE)
2421 surplus_huge_pages = h->surplus_huge_pages;
2422 else
2423 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2424
2425 return sprintf(buf, "%lu\n", surplus_huge_pages);
2426 }
2427 HSTATE_ATTR_RO(surplus_hugepages);
2428
2429 static struct attribute *hstate_attrs[] = {
2430 &nr_hugepages_attr.attr,
2431 &nr_overcommit_hugepages_attr.attr,
2432 &free_hugepages_attr.attr,
2433 &resv_hugepages_attr.attr,
2434 &surplus_hugepages_attr.attr,
2435 #ifdef CONFIG_NUMA
2436 &nr_hugepages_mempolicy_attr.attr,
2437 #endif
2438 NULL,
2439 };
2440
2441 static struct attribute_group hstate_attr_group = {
2442 .attrs = hstate_attrs,
2443 };
2444
2445 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2446 struct kobject **hstate_kobjs,
2447 struct attribute_group *hstate_attr_group)
2448 {
2449 int retval;
2450 int hi = hstate_index(h);
2451
2452 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2453 if (!hstate_kobjs[hi])
2454 return -ENOMEM;
2455
2456 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2457 if (retval)
2458 kobject_put(hstate_kobjs[hi]);
2459
2460 return retval;
2461 }
2462
2463 static void __init hugetlb_sysfs_init(void)
2464 {
2465 struct hstate *h;
2466 int err;
2467
2468 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2469 if (!hugepages_kobj)
2470 return;
2471
2472 for_each_hstate(h) {
2473 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2474 hstate_kobjs, &hstate_attr_group);
2475 if (err)
2476 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2477 }
2478 }
2479
2480 #ifdef CONFIG_NUMA
2481
2482 /*
2483 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2484 * with node devices in node_devices[] using a parallel array. The array
2485 * index of a node device or _hstate == node id.
2486 * This is here to avoid any static dependency of the node device driver, in
2487 * the base kernel, on the hugetlb module.
2488 */
2489 struct node_hstate {
2490 struct kobject *hugepages_kobj;
2491 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2492 };
2493 static struct node_hstate node_hstates[MAX_NUMNODES];
2494
2495 /*
2496 * A subset of global hstate attributes for node devices
2497 */
2498 static struct attribute *per_node_hstate_attrs[] = {
2499 &nr_hugepages_attr.attr,
2500 &free_hugepages_attr.attr,
2501 &surplus_hugepages_attr.attr,
2502 NULL,
2503 };
2504
2505 static struct attribute_group per_node_hstate_attr_group = {
2506 .attrs = per_node_hstate_attrs,
2507 };
2508
2509 /*
2510 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2511 * Returns node id via non-NULL nidp.
2512 */
2513 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2514 {
2515 int nid;
2516
2517 for (nid = 0; nid < nr_node_ids; nid++) {
2518 struct node_hstate *nhs = &node_hstates[nid];
2519 int i;
2520 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2521 if (nhs->hstate_kobjs[i] == kobj) {
2522 if (nidp)
2523 *nidp = nid;
2524 return &hstates[i];
2525 }
2526 }
2527
2528 BUG();
2529 return NULL;
2530 }
2531
2532 /*
2533 * Unregister hstate attributes from a single node device.
2534 * No-op if no hstate attributes attached.
2535 */
2536 static void hugetlb_unregister_node(struct node *node)
2537 {
2538 struct hstate *h;
2539 struct node_hstate *nhs = &node_hstates[node->dev.id];
2540
2541 if (!nhs->hugepages_kobj)
2542 return; /* no hstate attributes */
2543
2544 for_each_hstate(h) {
2545 int idx = hstate_index(h);
2546 if (nhs->hstate_kobjs[idx]) {
2547 kobject_put(nhs->hstate_kobjs[idx]);
2548 nhs->hstate_kobjs[idx] = NULL;
2549 }
2550 }
2551
2552 kobject_put(nhs->hugepages_kobj);
2553 nhs->hugepages_kobj = NULL;
2554 }
2555
2556 /*
2557 * hugetlb module exit: unregister hstate attributes from node devices
2558 * that have them.
2559 */
2560 static void hugetlb_unregister_all_nodes(void)
2561 {
2562 int nid;
2563
2564 /*
2565 * disable node device registrations.
2566 */
2567 register_hugetlbfs_with_node(NULL, NULL);
2568
2569 /*
2570 * remove hstate attributes from any nodes that have them.
2571 */
2572 for (nid = 0; nid < nr_node_ids; nid++)
2573 hugetlb_unregister_node(node_devices[nid]);
2574 }
2575
2576 /*
2577 * Register hstate attributes for a single node device.
2578 * No-op if attributes already registered.
2579 */
2580 static void hugetlb_register_node(struct node *node)
2581 {
2582 struct hstate *h;
2583 struct node_hstate *nhs = &node_hstates[node->dev.id];
2584 int err;
2585
2586 if (nhs->hugepages_kobj)
2587 return; /* already allocated */
2588
2589 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2590 &node->dev.kobj);
2591 if (!nhs->hugepages_kobj)
2592 return;
2593
2594 for_each_hstate(h) {
2595 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2596 nhs->hstate_kobjs,
2597 &per_node_hstate_attr_group);
2598 if (err) {
2599 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2600 h->name, node->dev.id);
2601 hugetlb_unregister_node(node);
2602 break;
2603 }
2604 }
2605 }
2606
2607 /*
2608 * hugetlb init time: register hstate attributes for all registered node
2609 * devices of nodes that have memory. All on-line nodes should have
2610 * registered their associated device by this time.
2611 */
2612 static void __init hugetlb_register_all_nodes(void)
2613 {
2614 int nid;
2615
2616 for_each_node_state(nid, N_MEMORY) {
2617 struct node *node = node_devices[nid];
2618 if (node->dev.id == nid)
2619 hugetlb_register_node(node);
2620 }
2621
2622 /*
2623 * Let the node device driver know we're here so it can
2624 * [un]register hstate attributes on node hotplug.
2625 */
2626 register_hugetlbfs_with_node(hugetlb_register_node,
2627 hugetlb_unregister_node);
2628 }
2629 #else /* !CONFIG_NUMA */
2630
2631 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2632 {
2633 BUG();
2634 if (nidp)
2635 *nidp = -1;
2636 return NULL;
2637 }
2638
2639 static void hugetlb_unregister_all_nodes(void) { }
2640
2641 static void hugetlb_register_all_nodes(void) { }
2642
2643 #endif
2644
2645 static void __exit hugetlb_exit(void)
2646 {
2647 struct hstate *h;
2648
2649 hugetlb_unregister_all_nodes();
2650
2651 for_each_hstate(h) {
2652 kobject_put(hstate_kobjs[hstate_index(h)]);
2653 }
2654
2655 kobject_put(hugepages_kobj);
2656 kfree(hugetlb_fault_mutex_table);
2657 }
2658 module_exit(hugetlb_exit);
2659
2660 static int __init hugetlb_init(void)
2661 {
2662 int i;
2663
2664 if (!hugepages_supported())
2665 return 0;
2666
2667 if (!size_to_hstate(default_hstate_size)) {
2668 default_hstate_size = HPAGE_SIZE;
2669 if (!size_to_hstate(default_hstate_size))
2670 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2671 }
2672 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2673 if (default_hstate_max_huge_pages)
2674 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2675
2676 hugetlb_init_hstates();
2677 gather_bootmem_prealloc();
2678 report_hugepages();
2679
2680 hugetlb_sysfs_init();
2681 hugetlb_register_all_nodes();
2682 hugetlb_cgroup_file_init();
2683
2684 #ifdef CONFIG_SMP
2685 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2686 #else
2687 num_fault_mutexes = 1;
2688 #endif
2689 hugetlb_fault_mutex_table =
2690 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2691 BUG_ON(!hugetlb_fault_mutex_table);
2692
2693 for (i = 0; i < num_fault_mutexes; i++)
2694 mutex_init(&hugetlb_fault_mutex_table[i]);
2695 return 0;
2696 }
2697 module_init(hugetlb_init);
2698
2699 /* Should be called on processing a hugepagesz=... option */
2700 void __init hugetlb_add_hstate(unsigned int order)
2701 {
2702 struct hstate *h;
2703 unsigned long i;
2704
2705 if (size_to_hstate(PAGE_SIZE << order)) {
2706 pr_warning("hugepagesz= specified twice, ignoring\n");
2707 return;
2708 }
2709 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2710 BUG_ON(order == 0);
2711 h = &hstates[hugetlb_max_hstate++];
2712 h->order = order;
2713 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2714 h->nr_huge_pages = 0;
2715 h->free_huge_pages = 0;
2716 for (i = 0; i < MAX_NUMNODES; ++i)
2717 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2718 INIT_LIST_HEAD(&h->hugepage_activelist);
2719 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2720 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2721 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2722 huge_page_size(h)/1024);
2723
2724 parsed_hstate = h;
2725 }
2726
2727 static int __init hugetlb_nrpages_setup(char *s)
2728 {
2729 unsigned long *mhp;
2730 static unsigned long *last_mhp;
2731
2732 /*
2733 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2734 * so this hugepages= parameter goes to the "default hstate".
2735 */
2736 if (!hugetlb_max_hstate)
2737 mhp = &default_hstate_max_huge_pages;
2738 else
2739 mhp = &parsed_hstate->max_huge_pages;
2740
2741 if (mhp == last_mhp) {
2742 pr_warning("hugepages= specified twice without "
2743 "interleaving hugepagesz=, ignoring\n");
2744 return 1;
2745 }
2746
2747 if (sscanf(s, "%lu", mhp) <= 0)
2748 *mhp = 0;
2749
2750 /*
2751 * Global state is always initialized later in hugetlb_init.
2752 * But we need to allocate >= MAX_ORDER hstates here early to still
2753 * use the bootmem allocator.
2754 */
2755 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2756 hugetlb_hstate_alloc_pages(parsed_hstate);
2757
2758 last_mhp = mhp;
2759
2760 return 1;
2761 }
2762 __setup("hugepages=", hugetlb_nrpages_setup);
2763
2764 static int __init hugetlb_default_setup(char *s)
2765 {
2766 default_hstate_size = memparse(s, &s);
2767 return 1;
2768 }
2769 __setup("default_hugepagesz=", hugetlb_default_setup);
2770
2771 static unsigned int cpuset_mems_nr(unsigned int *array)
2772 {
2773 int node;
2774 unsigned int nr = 0;
2775
2776 for_each_node_mask(node, cpuset_current_mems_allowed)
2777 nr += array[node];
2778
2779 return nr;
2780 }
2781
2782 #ifdef CONFIG_SYSCTL
2783 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2784 struct ctl_table *table, int write,
2785 void __user *buffer, size_t *length, loff_t *ppos)
2786 {
2787 struct hstate *h = &default_hstate;
2788 unsigned long tmp = h->max_huge_pages;
2789 int ret;
2790
2791 if (!hugepages_supported())
2792 return -ENOTSUPP;
2793
2794 table->data = &tmp;
2795 table->maxlen = sizeof(unsigned long);
2796 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2797 if (ret)
2798 goto out;
2799
2800 if (write)
2801 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2802 NUMA_NO_NODE, tmp, *length);
2803 out:
2804 return ret;
2805 }
2806
2807 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2808 void __user *buffer, size_t *length, loff_t *ppos)
2809 {
2810
2811 return hugetlb_sysctl_handler_common(false, table, write,
2812 buffer, length, ppos);
2813 }
2814
2815 #ifdef CONFIG_NUMA
2816 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2817 void __user *buffer, size_t *length, loff_t *ppos)
2818 {
2819 return hugetlb_sysctl_handler_common(true, table, write,
2820 buffer, length, ppos);
2821 }
2822 #endif /* CONFIG_NUMA */
2823
2824 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2825 void __user *buffer,
2826 size_t *length, loff_t *ppos)
2827 {
2828 struct hstate *h = &default_hstate;
2829 unsigned long tmp;
2830 int ret;
2831
2832 if (!hugepages_supported())
2833 return -ENOTSUPP;
2834
2835 tmp = h->nr_overcommit_huge_pages;
2836
2837 if (write && hstate_is_gigantic(h))
2838 return -EINVAL;
2839
2840 table->data = &tmp;
2841 table->maxlen = sizeof(unsigned long);
2842 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2843 if (ret)
2844 goto out;
2845
2846 if (write) {
2847 spin_lock(&hugetlb_lock);
2848 h->nr_overcommit_huge_pages = tmp;
2849 spin_unlock(&hugetlb_lock);
2850 }
2851 out:
2852 return ret;
2853 }
2854
2855 #endif /* CONFIG_SYSCTL */
2856
2857 void hugetlb_report_meminfo(struct seq_file *m)
2858 {
2859 struct hstate *h = &default_hstate;
2860 if (!hugepages_supported())
2861 return;
2862 seq_printf(m,
2863 "HugePages_Total: %5lu\n"
2864 "HugePages_Free: %5lu\n"
2865 "HugePages_Rsvd: %5lu\n"
2866 "HugePages_Surp: %5lu\n"
2867 "Hugepagesize: %8lu kB\n",
2868 h->nr_huge_pages,
2869 h->free_huge_pages,
2870 h->resv_huge_pages,
2871 h->surplus_huge_pages,
2872 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2873 }
2874
2875 int hugetlb_report_node_meminfo(int nid, char *buf)
2876 {
2877 struct hstate *h = &default_hstate;
2878 if (!hugepages_supported())
2879 return 0;
2880 return sprintf(buf,
2881 "Node %d HugePages_Total: %5u\n"
2882 "Node %d HugePages_Free: %5u\n"
2883 "Node %d HugePages_Surp: %5u\n",
2884 nid, h->nr_huge_pages_node[nid],
2885 nid, h->free_huge_pages_node[nid],
2886 nid, h->surplus_huge_pages_node[nid]);
2887 }
2888
2889 void hugetlb_show_meminfo(void)
2890 {
2891 struct hstate *h;
2892 int nid;
2893
2894 if (!hugepages_supported())
2895 return;
2896
2897 for_each_node_state(nid, N_MEMORY)
2898 for_each_hstate(h)
2899 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2900 nid,
2901 h->nr_huge_pages_node[nid],
2902 h->free_huge_pages_node[nid],
2903 h->surplus_huge_pages_node[nid],
2904 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2905 }
2906
2907 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2908 {
2909 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2910 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2911 }
2912
2913 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2914 unsigned long hugetlb_total_pages(void)
2915 {
2916 struct hstate *h;
2917 unsigned long nr_total_pages = 0;
2918
2919 for_each_hstate(h)
2920 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2921 return nr_total_pages;
2922 }
2923
2924 static int hugetlb_acct_memory(struct hstate *h, long delta)
2925 {
2926 int ret = -ENOMEM;
2927
2928 spin_lock(&hugetlb_lock);
2929 /*
2930 * When cpuset is configured, it breaks the strict hugetlb page
2931 * reservation as the accounting is done on a global variable. Such
2932 * reservation is completely rubbish in the presence of cpuset because
2933 * the reservation is not checked against page availability for the
2934 * current cpuset. Application can still potentially OOM'ed by kernel
2935 * with lack of free htlb page in cpuset that the task is in.
2936 * Attempt to enforce strict accounting with cpuset is almost
2937 * impossible (or too ugly) because cpuset is too fluid that
2938 * task or memory node can be dynamically moved between cpusets.
2939 *
2940 * The change of semantics for shared hugetlb mapping with cpuset is
2941 * undesirable. However, in order to preserve some of the semantics,
2942 * we fall back to check against current free page availability as
2943 * a best attempt and hopefully to minimize the impact of changing
2944 * semantics that cpuset has.
2945 */
2946 if (delta > 0) {
2947 if (gather_surplus_pages(h, delta) < 0)
2948 goto out;
2949
2950 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2951 return_unused_surplus_pages(h, delta);
2952 goto out;
2953 }
2954 }
2955
2956 ret = 0;
2957 if (delta < 0)
2958 return_unused_surplus_pages(h, (unsigned long) -delta);
2959
2960 out:
2961 spin_unlock(&hugetlb_lock);
2962 return ret;
2963 }
2964
2965 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2966 {
2967 struct resv_map *resv = vma_resv_map(vma);
2968
2969 /*
2970 * This new VMA should share its siblings reservation map if present.
2971 * The VMA will only ever have a valid reservation map pointer where
2972 * it is being copied for another still existing VMA. As that VMA
2973 * has a reference to the reservation map it cannot disappear until
2974 * after this open call completes. It is therefore safe to take a
2975 * new reference here without additional locking.
2976 */
2977 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2978 kref_get(&resv->refs);
2979 }
2980
2981 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2982 {
2983 struct hstate *h = hstate_vma(vma);
2984 struct resv_map *resv = vma_resv_map(vma);
2985 struct hugepage_subpool *spool = subpool_vma(vma);
2986 unsigned long reserve, start, end;
2987 long gbl_reserve;
2988
2989 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2990 return;
2991
2992 start = vma_hugecache_offset(h, vma, vma->vm_start);
2993 end = vma_hugecache_offset(h, vma, vma->vm_end);
2994
2995 reserve = (end - start) - region_count(resv, start, end);
2996
2997 kref_put(&resv->refs, resv_map_release);
2998
2999 if (reserve) {
3000 /*
3001 * Decrement reserve counts. The global reserve count may be
3002 * adjusted if the subpool has a minimum size.
3003 */
3004 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3005 hugetlb_acct_memory(h, -gbl_reserve);
3006 }
3007 }
3008
3009 /*
3010 * We cannot handle pagefaults against hugetlb pages at all. They cause
3011 * handle_mm_fault() to try to instantiate regular-sized pages in the
3012 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3013 * this far.
3014 */
3015 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3016 {
3017 BUG();
3018 return 0;
3019 }
3020
3021 const struct vm_operations_struct hugetlb_vm_ops = {
3022 .fault = hugetlb_vm_op_fault,
3023 .open = hugetlb_vm_op_open,
3024 .close = hugetlb_vm_op_close,
3025 };
3026
3027 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3028 int writable)
3029 {
3030 pte_t entry;
3031
3032 if (writable) {
3033 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3034 vma->vm_page_prot)));
3035 } else {
3036 entry = huge_pte_wrprotect(mk_huge_pte(page,
3037 vma->vm_page_prot));
3038 }
3039 entry = pte_mkyoung(entry);
3040 entry = pte_mkhuge(entry);
3041 entry = arch_make_huge_pte(entry, vma, page, writable);
3042
3043 return entry;
3044 }
3045
3046 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3047 unsigned long address, pte_t *ptep)
3048 {
3049 pte_t entry;
3050
3051 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3052 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3053 update_mmu_cache(vma, address, ptep);
3054 }
3055
3056 static int is_hugetlb_entry_migration(pte_t pte)
3057 {
3058 swp_entry_t swp;
3059
3060 if (huge_pte_none(pte) || pte_present(pte))
3061 return 0;
3062 swp = pte_to_swp_entry(pte);
3063 if (non_swap_entry(swp) && is_migration_entry(swp))
3064 return 1;
3065 else
3066 return 0;
3067 }
3068
3069 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3070 {
3071 swp_entry_t swp;
3072
3073 if (huge_pte_none(pte) || pte_present(pte))
3074 return 0;
3075 swp = pte_to_swp_entry(pte);
3076 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3077 return 1;
3078 else
3079 return 0;
3080 }
3081
3082 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3083 struct vm_area_struct *vma)
3084 {
3085 pte_t *src_pte, *dst_pte, entry;
3086 struct page *ptepage;
3087 unsigned long addr;
3088 int cow;
3089 struct hstate *h = hstate_vma(vma);
3090 unsigned long sz = huge_page_size(h);
3091 unsigned long mmun_start; /* For mmu_notifiers */
3092 unsigned long mmun_end; /* For mmu_notifiers */
3093 int ret = 0;
3094
3095 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3096
3097 mmun_start = vma->vm_start;
3098 mmun_end = vma->vm_end;
3099 if (cow)
3100 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3101
3102 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3103 spinlock_t *src_ptl, *dst_ptl;
3104 src_pte = huge_pte_offset(src, addr);
3105 if (!src_pte)
3106 continue;
3107 dst_pte = huge_pte_alloc(dst, addr, sz);
3108 if (!dst_pte) {
3109 ret = -ENOMEM;
3110 break;
3111 }
3112
3113 /* If the pagetables are shared don't copy or take references */
3114 if (dst_pte == src_pte)
3115 continue;
3116
3117 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3118 src_ptl = huge_pte_lockptr(h, src, src_pte);
3119 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3120 entry = huge_ptep_get(src_pte);
3121 if (huge_pte_none(entry)) { /* skip none entry */
3122 ;
3123 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3124 is_hugetlb_entry_hwpoisoned(entry))) {
3125 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3126
3127 if (is_write_migration_entry(swp_entry) && cow) {
3128 /*
3129 * COW mappings require pages in both
3130 * parent and child to be set to read.
3131 */
3132 make_migration_entry_read(&swp_entry);
3133 entry = swp_entry_to_pte(swp_entry);
3134 set_huge_pte_at(src, addr, src_pte, entry);
3135 }
3136 set_huge_pte_at(dst, addr, dst_pte, entry);
3137 } else {
3138 if (cow) {
3139 huge_ptep_set_wrprotect(src, addr, src_pte);
3140 mmu_notifier_invalidate_range(src, mmun_start,
3141 mmun_end);
3142 }
3143 entry = huge_ptep_get(src_pte);
3144 ptepage = pte_page(entry);
3145 get_page(ptepage);
3146 page_dup_rmap(ptepage);
3147 set_huge_pte_at(dst, addr, dst_pte, entry);
3148 hugetlb_count_add(pages_per_huge_page(h), dst);
3149 }
3150 spin_unlock(src_ptl);
3151 spin_unlock(dst_ptl);
3152 }
3153
3154 if (cow)
3155 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3156
3157 return ret;
3158 }
3159
3160 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3161 unsigned long start, unsigned long end,
3162 struct page *ref_page)
3163 {
3164 int force_flush = 0;
3165 struct mm_struct *mm = vma->vm_mm;
3166 unsigned long address;
3167 pte_t *ptep;
3168 pte_t pte;
3169 spinlock_t *ptl;
3170 struct page *page;
3171 struct hstate *h = hstate_vma(vma);
3172 unsigned long sz = huge_page_size(h);
3173 const unsigned long mmun_start = start; /* For mmu_notifiers */
3174 const unsigned long mmun_end = end; /* For mmu_notifiers */
3175
3176 WARN_ON(!is_vm_hugetlb_page(vma));
3177 BUG_ON(start & ~huge_page_mask(h));
3178 BUG_ON(end & ~huge_page_mask(h));
3179
3180 tlb_start_vma(tlb, vma);
3181 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3182 address = start;
3183 again:
3184 for (; address < end; address += sz) {
3185 ptep = huge_pte_offset(mm, address);
3186 if (!ptep)
3187 continue;
3188
3189 ptl = huge_pte_lock(h, mm, ptep);
3190 if (huge_pmd_unshare(mm, &address, ptep))
3191 goto unlock;
3192
3193 pte = huge_ptep_get(ptep);
3194 if (huge_pte_none(pte))
3195 goto unlock;
3196
3197 /*
3198 * Migrating hugepage or HWPoisoned hugepage is already
3199 * unmapped and its refcount is dropped, so just clear pte here.
3200 */
3201 if (unlikely(!pte_present(pte))) {
3202 huge_pte_clear(mm, address, ptep);
3203 goto unlock;
3204 }
3205
3206 page = pte_page(pte);
3207 /*
3208 * If a reference page is supplied, it is because a specific
3209 * page is being unmapped, not a range. Ensure the page we
3210 * are about to unmap is the actual page of interest.
3211 */
3212 if (ref_page) {
3213 if (page != ref_page)
3214 goto unlock;
3215
3216 /*
3217 * Mark the VMA as having unmapped its page so that
3218 * future faults in this VMA will fail rather than
3219 * looking like data was lost
3220 */
3221 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3222 }
3223
3224 pte = huge_ptep_get_and_clear(mm, address, ptep);
3225 tlb_remove_tlb_entry(tlb, ptep, address);
3226 if (huge_pte_dirty(pte))
3227 set_page_dirty(page);
3228
3229 hugetlb_count_sub(pages_per_huge_page(h), mm);
3230 page_remove_rmap(page);
3231 force_flush = !__tlb_remove_page(tlb, page);
3232 if (force_flush) {
3233 address += sz;
3234 spin_unlock(ptl);
3235 break;
3236 }
3237 /* Bail out after unmapping reference page if supplied */
3238 if (ref_page) {
3239 spin_unlock(ptl);
3240 break;
3241 }
3242 unlock:
3243 spin_unlock(ptl);
3244 }
3245 /*
3246 * mmu_gather ran out of room to batch pages, we break out of
3247 * the PTE lock to avoid doing the potential expensive TLB invalidate
3248 * and page-free while holding it.
3249 */
3250 if (force_flush) {
3251 force_flush = 0;
3252 tlb_flush_mmu(tlb);
3253 if (address < end && !ref_page)
3254 goto again;
3255 }
3256 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3257 tlb_end_vma(tlb, vma);
3258 }
3259
3260 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3261 struct vm_area_struct *vma, unsigned long start,
3262 unsigned long end, struct page *ref_page)
3263 {
3264 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3265
3266 /*
3267 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3268 * test will fail on a vma being torn down, and not grab a page table
3269 * on its way out. We're lucky that the flag has such an appropriate
3270 * name, and can in fact be safely cleared here. We could clear it
3271 * before the __unmap_hugepage_range above, but all that's necessary
3272 * is to clear it before releasing the i_mmap_rwsem. This works
3273 * because in the context this is called, the VMA is about to be
3274 * destroyed and the i_mmap_rwsem is held.
3275 */
3276 vma->vm_flags &= ~VM_MAYSHARE;
3277 }
3278
3279 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3280 unsigned long end, struct page *ref_page)
3281 {
3282 struct mm_struct *mm;
3283 struct mmu_gather tlb;
3284
3285 mm = vma->vm_mm;
3286
3287 tlb_gather_mmu(&tlb, mm, start, end);
3288 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3289 tlb_finish_mmu(&tlb, start, end);
3290 }
3291
3292 /*
3293 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3294 * mappping it owns the reserve page for. The intention is to unmap the page
3295 * from other VMAs and let the children be SIGKILLed if they are faulting the
3296 * same region.
3297 */
3298 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3299 struct page *page, unsigned long address)
3300 {
3301 struct hstate *h = hstate_vma(vma);
3302 struct vm_area_struct *iter_vma;
3303 struct address_space *mapping;
3304 pgoff_t pgoff;
3305
3306 /*
3307 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3308 * from page cache lookup which is in HPAGE_SIZE units.
3309 */
3310 address = address & huge_page_mask(h);
3311 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3312 vma->vm_pgoff;
3313 mapping = file_inode(vma->vm_file)->i_mapping;
3314
3315 /*
3316 * Take the mapping lock for the duration of the table walk. As
3317 * this mapping should be shared between all the VMAs,
3318 * __unmap_hugepage_range() is called as the lock is already held
3319 */
3320 i_mmap_lock_write(mapping);
3321 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3322 /* Do not unmap the current VMA */
3323 if (iter_vma == vma)
3324 continue;
3325
3326 /*
3327 * Shared VMAs have their own reserves and do not affect
3328 * MAP_PRIVATE accounting but it is possible that a shared
3329 * VMA is using the same page so check and skip such VMAs.
3330 */
3331 if (iter_vma->vm_flags & VM_MAYSHARE)
3332 continue;
3333
3334 /*
3335 * Unmap the page from other VMAs without their own reserves.
3336 * They get marked to be SIGKILLed if they fault in these
3337 * areas. This is because a future no-page fault on this VMA
3338 * could insert a zeroed page instead of the data existing
3339 * from the time of fork. This would look like data corruption
3340 */
3341 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3342 unmap_hugepage_range(iter_vma, address,
3343 address + huge_page_size(h), page);
3344 }
3345 i_mmap_unlock_write(mapping);
3346 }
3347
3348 /*
3349 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3350 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3351 * cannot race with other handlers or page migration.
3352 * Keep the pte_same checks anyway to make transition from the mutex easier.
3353 */
3354 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3355 unsigned long address, pte_t *ptep, pte_t pte,
3356 struct page *pagecache_page, spinlock_t *ptl)
3357 {
3358 struct hstate *h = hstate_vma(vma);
3359 struct page *old_page, *new_page;
3360 int ret = 0, outside_reserve = 0;
3361 unsigned long mmun_start; /* For mmu_notifiers */
3362 unsigned long mmun_end; /* For mmu_notifiers */
3363
3364 old_page = pte_page(pte);
3365
3366 retry_avoidcopy:
3367 /* If no-one else is actually using this page, avoid the copy
3368 * and just make the page writable */
3369 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3370 page_move_anon_rmap(old_page, vma, address);
3371 set_huge_ptep_writable(vma, address, ptep);
3372 return 0;
3373 }
3374
3375 /*
3376 * If the process that created a MAP_PRIVATE mapping is about to
3377 * perform a COW due to a shared page count, attempt to satisfy
3378 * the allocation without using the existing reserves. The pagecache
3379 * page is used to determine if the reserve at this address was
3380 * consumed or not. If reserves were used, a partial faulted mapping
3381 * at the time of fork() could consume its reserves on COW instead
3382 * of the full address range.
3383 */
3384 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3385 old_page != pagecache_page)
3386 outside_reserve = 1;
3387
3388 page_cache_get(old_page);
3389
3390 /*
3391 * Drop page table lock as buddy allocator may be called. It will
3392 * be acquired again before returning to the caller, as expected.
3393 */
3394 spin_unlock(ptl);
3395 new_page = alloc_huge_page(vma, address, outside_reserve);
3396
3397 if (IS_ERR(new_page)) {
3398 /*
3399 * If a process owning a MAP_PRIVATE mapping fails to COW,
3400 * it is due to references held by a child and an insufficient
3401 * huge page pool. To guarantee the original mappers
3402 * reliability, unmap the page from child processes. The child
3403 * may get SIGKILLed if it later faults.
3404 */
3405 if (outside_reserve) {
3406 page_cache_release(old_page);
3407 BUG_ON(huge_pte_none(pte));
3408 unmap_ref_private(mm, vma, old_page, address);
3409 BUG_ON(huge_pte_none(pte));
3410 spin_lock(ptl);
3411 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3412 if (likely(ptep &&
3413 pte_same(huge_ptep_get(ptep), pte)))
3414 goto retry_avoidcopy;
3415 /*
3416 * race occurs while re-acquiring page table
3417 * lock, and our job is done.
3418 */
3419 return 0;
3420 }
3421
3422 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3423 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3424 goto out_release_old;
3425 }
3426
3427 /*
3428 * When the original hugepage is shared one, it does not have
3429 * anon_vma prepared.
3430 */
3431 if (unlikely(anon_vma_prepare(vma))) {
3432 ret = VM_FAULT_OOM;
3433 goto out_release_all;
3434 }
3435
3436 copy_user_huge_page(new_page, old_page, address, vma,
3437 pages_per_huge_page(h));
3438 __SetPageUptodate(new_page);
3439 set_page_huge_active(new_page);
3440
3441 mmun_start = address & huge_page_mask(h);
3442 mmun_end = mmun_start + huge_page_size(h);
3443 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3444
3445 /*
3446 * Retake the page table lock to check for racing updates
3447 * before the page tables are altered
3448 */
3449 spin_lock(ptl);
3450 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3451 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3452 ClearPagePrivate(new_page);
3453
3454 /* Break COW */
3455 huge_ptep_clear_flush(vma, address, ptep);
3456 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3457 set_huge_pte_at(mm, address, ptep,
3458 make_huge_pte(vma, new_page, 1));
3459 page_remove_rmap(old_page);
3460 hugepage_add_new_anon_rmap(new_page, vma, address);
3461 /* Make the old page be freed below */
3462 new_page = old_page;
3463 }
3464 spin_unlock(ptl);
3465 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3466 out_release_all:
3467 page_cache_release(new_page);
3468 out_release_old:
3469 page_cache_release(old_page);
3470
3471 spin_lock(ptl); /* Caller expects lock to be held */
3472 return ret;
3473 }
3474
3475 /* Return the pagecache page at a given address within a VMA */
3476 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3477 struct vm_area_struct *vma, unsigned long address)
3478 {
3479 struct address_space *mapping;
3480 pgoff_t idx;
3481
3482 mapping = vma->vm_file->f_mapping;
3483 idx = vma_hugecache_offset(h, vma, address);
3484
3485 return find_lock_page(mapping, idx);
3486 }
3487
3488 /*
3489 * Return whether there is a pagecache page to back given address within VMA.
3490 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3491 */
3492 static bool hugetlbfs_pagecache_present(struct hstate *h,
3493 struct vm_area_struct *vma, unsigned long address)
3494 {
3495 struct address_space *mapping;
3496 pgoff_t idx;
3497 struct page *page;
3498
3499 mapping = vma->vm_file->f_mapping;
3500 idx = vma_hugecache_offset(h, vma, address);
3501
3502 page = find_get_page(mapping, idx);
3503 if (page)
3504 put_page(page);
3505 return page != NULL;
3506 }
3507
3508 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3509 pgoff_t idx)
3510 {
3511 struct inode *inode = mapping->host;
3512 struct hstate *h = hstate_inode(inode);
3513 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3514
3515 if (err)
3516 return err;
3517 ClearPagePrivate(page);
3518
3519 spin_lock(&inode->i_lock);
3520 inode->i_blocks += blocks_per_huge_page(h);
3521 spin_unlock(&inode->i_lock);
3522 return 0;
3523 }
3524
3525 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3526 struct address_space *mapping, pgoff_t idx,
3527 unsigned long address, pte_t *ptep, unsigned int flags)
3528 {
3529 struct hstate *h = hstate_vma(vma);
3530 int ret = VM_FAULT_SIGBUS;
3531 int anon_rmap = 0;
3532 unsigned long size;
3533 struct page *page;
3534 pte_t new_pte;
3535 spinlock_t *ptl;
3536
3537 /*
3538 * Currently, we are forced to kill the process in the event the
3539 * original mapper has unmapped pages from the child due to a failed
3540 * COW. Warn that such a situation has occurred as it may not be obvious
3541 */
3542 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3543 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3544 current->pid);
3545 return ret;
3546 }
3547
3548 /*
3549 * Use page lock to guard against racing truncation
3550 * before we get page_table_lock.
3551 */
3552 retry:
3553 page = find_lock_page(mapping, idx);
3554 if (!page) {
3555 size = i_size_read(mapping->host) >> huge_page_shift(h);
3556 if (idx >= size)
3557 goto out;
3558 page = alloc_huge_page(vma, address, 0);
3559 if (IS_ERR(page)) {
3560 ret = PTR_ERR(page);
3561 if (ret == -ENOMEM)
3562 ret = VM_FAULT_OOM;
3563 else
3564 ret = VM_FAULT_SIGBUS;
3565 goto out;
3566 }
3567 clear_huge_page(page, address, pages_per_huge_page(h));
3568 __SetPageUptodate(page);
3569 set_page_huge_active(page);
3570
3571 if (vma->vm_flags & VM_MAYSHARE) {
3572 int err = huge_add_to_page_cache(page, mapping, idx);
3573 if (err) {
3574 put_page(page);
3575 if (err == -EEXIST)
3576 goto retry;
3577 goto out;
3578 }
3579 } else {
3580 lock_page(page);
3581 if (unlikely(anon_vma_prepare(vma))) {
3582 ret = VM_FAULT_OOM;
3583 goto backout_unlocked;
3584 }
3585 anon_rmap = 1;
3586 }
3587 } else {
3588 /*
3589 * If memory error occurs between mmap() and fault, some process
3590 * don't have hwpoisoned swap entry for errored virtual address.
3591 * So we need to block hugepage fault by PG_hwpoison bit check.
3592 */
3593 if (unlikely(PageHWPoison(page))) {
3594 ret = VM_FAULT_HWPOISON |
3595 VM_FAULT_SET_HINDEX(hstate_index(h));
3596 goto backout_unlocked;
3597 }
3598 }
3599
3600 /*
3601 * If we are going to COW a private mapping later, we examine the
3602 * pending reservations for this page now. This will ensure that
3603 * any allocations necessary to record that reservation occur outside
3604 * the spinlock.
3605 */
3606 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3607 if (vma_needs_reservation(h, vma, address) < 0) {
3608 ret = VM_FAULT_OOM;
3609 goto backout_unlocked;
3610 }
3611 /* Just decrements count, does not deallocate */
3612 vma_end_reservation(h, vma, address);
3613 }
3614
3615 ptl = huge_pte_lockptr(h, mm, ptep);
3616 spin_lock(ptl);
3617 size = i_size_read(mapping->host) >> huge_page_shift(h);
3618 if (idx >= size)
3619 goto backout;
3620
3621 ret = 0;
3622 if (!huge_pte_none(huge_ptep_get(ptep)))
3623 goto backout;
3624
3625 if (anon_rmap) {
3626 ClearPagePrivate(page);
3627 hugepage_add_new_anon_rmap(page, vma, address);
3628 } else
3629 page_dup_rmap(page);
3630 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3631 && (vma->vm_flags & VM_SHARED)));
3632 set_huge_pte_at(mm, address, ptep, new_pte);
3633
3634 hugetlb_count_add(pages_per_huge_page(h), mm);
3635 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3636 /* Optimization, do the COW without a second fault */
3637 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3638 }
3639
3640 spin_unlock(ptl);
3641 unlock_page(page);
3642 out:
3643 return ret;
3644
3645 backout:
3646 spin_unlock(ptl);
3647 backout_unlocked:
3648 unlock_page(page);
3649 put_page(page);
3650 goto out;
3651 }
3652
3653 #ifdef CONFIG_SMP
3654 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3655 struct vm_area_struct *vma,
3656 struct address_space *mapping,
3657 pgoff_t idx, unsigned long address)
3658 {
3659 unsigned long key[2];
3660 u32 hash;
3661
3662 if (vma->vm_flags & VM_SHARED) {
3663 key[0] = (unsigned long) mapping;
3664 key[1] = idx;
3665 } else {
3666 key[0] = (unsigned long) mm;
3667 key[1] = address >> huge_page_shift(h);
3668 }
3669
3670 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3671
3672 return hash & (num_fault_mutexes - 1);
3673 }
3674 #else
3675 /*
3676 * For uniprocesor systems we always use a single mutex, so just
3677 * return 0 and avoid the hashing overhead.
3678 */
3679 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3680 struct vm_area_struct *vma,
3681 struct address_space *mapping,
3682 pgoff_t idx, unsigned long address)
3683 {
3684 return 0;
3685 }
3686 #endif
3687
3688 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3689 unsigned long address, unsigned int flags)
3690 {
3691 pte_t *ptep, entry;
3692 spinlock_t *ptl;
3693 int ret;
3694 u32 hash;
3695 pgoff_t idx;
3696 struct page *page = NULL;
3697 struct page *pagecache_page = NULL;
3698 struct hstate *h = hstate_vma(vma);
3699 struct address_space *mapping;
3700 int need_wait_lock = 0;
3701
3702 address &= huge_page_mask(h);
3703
3704 ptep = huge_pte_offset(mm, address);
3705 if (ptep) {
3706 entry = huge_ptep_get(ptep);
3707 if (unlikely(is_hugetlb_entry_migration(entry))) {
3708 migration_entry_wait_huge(vma, mm, ptep);
3709 return 0;
3710 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3711 return VM_FAULT_HWPOISON_LARGE |
3712 VM_FAULT_SET_HINDEX(hstate_index(h));
3713 } else {
3714 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3715 if (!ptep)
3716 return VM_FAULT_OOM;
3717 }
3718
3719 mapping = vma->vm_file->f_mapping;
3720 idx = vma_hugecache_offset(h, vma, address);
3721
3722 /*
3723 * Serialize hugepage allocation and instantiation, so that we don't
3724 * get spurious allocation failures if two CPUs race to instantiate
3725 * the same page in the page cache.
3726 */
3727 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3728 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3729
3730 entry = huge_ptep_get(ptep);
3731 if (huge_pte_none(entry)) {
3732 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3733 goto out_mutex;
3734 }
3735
3736 ret = 0;
3737
3738 /*
3739 * entry could be a migration/hwpoison entry at this point, so this
3740 * check prevents the kernel from going below assuming that we have
3741 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3742 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3743 * handle it.
3744 */
3745 if (!pte_present(entry))
3746 goto out_mutex;
3747
3748 /*
3749 * If we are going to COW the mapping later, we examine the pending
3750 * reservations for this page now. This will ensure that any
3751 * allocations necessary to record that reservation occur outside the
3752 * spinlock. For private mappings, we also lookup the pagecache
3753 * page now as it is used to determine if a reservation has been
3754 * consumed.
3755 */
3756 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3757 if (vma_needs_reservation(h, vma, address) < 0) {
3758 ret = VM_FAULT_OOM;
3759 goto out_mutex;
3760 }
3761 /* Just decrements count, does not deallocate */
3762 vma_end_reservation(h, vma, address);
3763
3764 if (!(vma->vm_flags & VM_MAYSHARE))
3765 pagecache_page = hugetlbfs_pagecache_page(h,
3766 vma, address);
3767 }
3768
3769 ptl = huge_pte_lock(h, mm, ptep);
3770
3771 /* Check for a racing update before calling hugetlb_cow */
3772 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3773 goto out_ptl;
3774
3775 /*
3776 * hugetlb_cow() requires page locks of pte_page(entry) and
3777 * pagecache_page, so here we need take the former one
3778 * when page != pagecache_page or !pagecache_page.
3779 */
3780 page = pte_page(entry);
3781 if (page != pagecache_page)
3782 if (!trylock_page(page)) {
3783 need_wait_lock = 1;
3784 goto out_ptl;
3785 }
3786
3787 get_page(page);
3788
3789 if (flags & FAULT_FLAG_WRITE) {
3790 if (!huge_pte_write(entry)) {
3791 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3792 pagecache_page, ptl);
3793 goto out_put_page;
3794 }
3795 entry = huge_pte_mkdirty(entry);
3796 }
3797 entry = pte_mkyoung(entry);
3798 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3799 flags & FAULT_FLAG_WRITE))
3800 update_mmu_cache(vma, address, ptep);
3801 out_put_page:
3802 if (page != pagecache_page)
3803 unlock_page(page);
3804 put_page(page);
3805 out_ptl:
3806 spin_unlock(ptl);
3807
3808 if (pagecache_page) {
3809 unlock_page(pagecache_page);
3810 put_page(pagecache_page);
3811 }
3812 out_mutex:
3813 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3814 /*
3815 * Generally it's safe to hold refcount during waiting page lock. But
3816 * here we just wait to defer the next page fault to avoid busy loop and
3817 * the page is not used after unlocked before returning from the current
3818 * page fault. So we are safe from accessing freed page, even if we wait
3819 * here without taking refcount.
3820 */
3821 if (need_wait_lock)
3822 wait_on_page_locked(page);
3823 return ret;
3824 }
3825
3826 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3827 struct page **pages, struct vm_area_struct **vmas,
3828 unsigned long *position, unsigned long *nr_pages,
3829 long i, unsigned int flags)
3830 {
3831 unsigned long pfn_offset;
3832 unsigned long vaddr = *position;
3833 unsigned long remainder = *nr_pages;
3834 struct hstate *h = hstate_vma(vma);
3835
3836 while (vaddr < vma->vm_end && remainder) {
3837 pte_t *pte;
3838 spinlock_t *ptl = NULL;
3839 int absent;
3840 struct page *page;
3841
3842 /*
3843 * If we have a pending SIGKILL, don't keep faulting pages and
3844 * potentially allocating memory.
3845 */
3846 if (unlikely(fatal_signal_pending(current))) {
3847 remainder = 0;
3848 break;
3849 }
3850
3851 /*
3852 * Some archs (sparc64, sh*) have multiple pte_ts to
3853 * each hugepage. We have to make sure we get the
3854 * first, for the page indexing below to work.
3855 *
3856 * Note that page table lock is not held when pte is null.
3857 */
3858 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3859 if (pte)
3860 ptl = huge_pte_lock(h, mm, pte);
3861 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3862
3863 /*
3864 * When coredumping, it suits get_dump_page if we just return
3865 * an error where there's an empty slot with no huge pagecache
3866 * to back it. This way, we avoid allocating a hugepage, and
3867 * the sparse dumpfile avoids allocating disk blocks, but its
3868 * huge holes still show up with zeroes where they need to be.
3869 */
3870 if (absent && (flags & FOLL_DUMP) &&
3871 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3872 if (pte)
3873 spin_unlock(ptl);
3874 remainder = 0;
3875 break;
3876 }
3877
3878 /*
3879 * We need call hugetlb_fault for both hugepages under migration
3880 * (in which case hugetlb_fault waits for the migration,) and
3881 * hwpoisoned hugepages (in which case we need to prevent the
3882 * caller from accessing to them.) In order to do this, we use
3883 * here is_swap_pte instead of is_hugetlb_entry_migration and
3884 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3885 * both cases, and because we can't follow correct pages
3886 * directly from any kind of swap entries.
3887 */
3888 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3889 ((flags & FOLL_WRITE) &&
3890 !huge_pte_write(huge_ptep_get(pte)))) {
3891 int ret;
3892
3893 if (pte)
3894 spin_unlock(ptl);
3895 ret = hugetlb_fault(mm, vma, vaddr,
3896 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3897 if (!(ret & VM_FAULT_ERROR))
3898 continue;
3899
3900 remainder = 0;
3901 break;
3902 }
3903
3904 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3905 page = pte_page(huge_ptep_get(pte));
3906 same_page:
3907 if (pages) {
3908 pages[i] = mem_map_offset(page, pfn_offset);
3909 get_page_foll(pages[i]);
3910 }
3911
3912 if (vmas)
3913 vmas[i] = vma;
3914
3915 vaddr += PAGE_SIZE;
3916 ++pfn_offset;
3917 --remainder;
3918 ++i;
3919 if (vaddr < vma->vm_end && remainder &&
3920 pfn_offset < pages_per_huge_page(h)) {
3921 /*
3922 * We use pfn_offset to avoid touching the pageframes
3923 * of this compound page.
3924 */
3925 goto same_page;
3926 }
3927 spin_unlock(ptl);
3928 }
3929 *nr_pages = remainder;
3930 *position = vaddr;
3931
3932 return i ? i : -EFAULT;
3933 }
3934
3935 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3936 unsigned long address, unsigned long end, pgprot_t newprot)
3937 {
3938 struct mm_struct *mm = vma->vm_mm;
3939 unsigned long start = address;
3940 pte_t *ptep;
3941 pte_t pte;
3942 struct hstate *h = hstate_vma(vma);
3943 unsigned long pages = 0;
3944
3945 BUG_ON(address >= end);
3946 flush_cache_range(vma, address, end);
3947
3948 mmu_notifier_invalidate_range_start(mm, start, end);
3949 i_mmap_lock_write(vma->vm_file->f_mapping);
3950 for (; address < end; address += huge_page_size(h)) {
3951 spinlock_t *ptl;
3952 ptep = huge_pte_offset(mm, address);
3953 if (!ptep)
3954 continue;
3955 ptl = huge_pte_lock(h, mm, ptep);
3956 if (huge_pmd_unshare(mm, &address, ptep)) {
3957 pages++;
3958 spin_unlock(ptl);
3959 continue;
3960 }
3961 pte = huge_ptep_get(ptep);
3962 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3963 spin_unlock(ptl);
3964 continue;
3965 }
3966 if (unlikely(is_hugetlb_entry_migration(pte))) {
3967 swp_entry_t entry = pte_to_swp_entry(pte);
3968
3969 if (is_write_migration_entry(entry)) {
3970 pte_t newpte;
3971
3972 make_migration_entry_read(&entry);
3973 newpte = swp_entry_to_pte(entry);
3974 set_huge_pte_at(mm, address, ptep, newpte);
3975 pages++;
3976 }
3977 spin_unlock(ptl);
3978 continue;
3979 }
3980 if (!huge_pte_none(pte)) {
3981 pte = huge_ptep_get_and_clear(mm, address, ptep);
3982 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3983 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3984 set_huge_pte_at(mm, address, ptep, pte);
3985 pages++;
3986 }
3987 spin_unlock(ptl);
3988 }
3989 /*
3990 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3991 * may have cleared our pud entry and done put_page on the page table:
3992 * once we release i_mmap_rwsem, another task can do the final put_page
3993 * and that page table be reused and filled with junk.
3994 */
3995 flush_tlb_range(vma, start, end);
3996 mmu_notifier_invalidate_range(mm, start, end);
3997 i_mmap_unlock_write(vma->vm_file->f_mapping);
3998 mmu_notifier_invalidate_range_end(mm, start, end);
3999
4000 return pages << h->order;
4001 }
4002
4003 int hugetlb_reserve_pages(struct inode *inode,
4004 long from, long to,
4005 struct vm_area_struct *vma,
4006 vm_flags_t vm_flags)
4007 {
4008 long ret, chg;
4009 struct hstate *h = hstate_inode(inode);
4010 struct hugepage_subpool *spool = subpool_inode(inode);
4011 struct resv_map *resv_map;
4012 long gbl_reserve;
4013
4014 /*
4015 * Only apply hugepage reservation if asked. At fault time, an
4016 * attempt will be made for VM_NORESERVE to allocate a page
4017 * without using reserves
4018 */
4019 if (vm_flags & VM_NORESERVE)
4020 return 0;
4021
4022 /*
4023 * Shared mappings base their reservation on the number of pages that
4024 * are already allocated on behalf of the file. Private mappings need
4025 * to reserve the full area even if read-only as mprotect() may be
4026 * called to make the mapping read-write. Assume !vma is a shm mapping
4027 */
4028 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4029 resv_map = inode_resv_map(inode);
4030
4031 chg = region_chg(resv_map, from, to);
4032
4033 } else {
4034 resv_map = resv_map_alloc();
4035 if (!resv_map)
4036 return -ENOMEM;
4037
4038 chg = to - from;
4039
4040 set_vma_resv_map(vma, resv_map);
4041 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4042 }
4043
4044 if (chg < 0) {
4045 ret = chg;
4046 goto out_err;
4047 }
4048
4049 /*
4050 * There must be enough pages in the subpool for the mapping. If
4051 * the subpool has a minimum size, there may be some global
4052 * reservations already in place (gbl_reserve).
4053 */
4054 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4055 if (gbl_reserve < 0) {
4056 ret = -ENOSPC;
4057 goto out_err;
4058 }
4059
4060 /*
4061 * Check enough hugepages are available for the reservation.
4062 * Hand the pages back to the subpool if there are not
4063 */
4064 ret = hugetlb_acct_memory(h, gbl_reserve);
4065 if (ret < 0) {
4066 /* put back original number of pages, chg */
4067 (void)hugepage_subpool_put_pages(spool, chg);
4068 goto out_err;
4069 }
4070
4071 /*
4072 * Account for the reservations made. Shared mappings record regions
4073 * that have reservations as they are shared by multiple VMAs.
4074 * When the last VMA disappears, the region map says how much
4075 * the reservation was and the page cache tells how much of
4076 * the reservation was consumed. Private mappings are per-VMA and
4077 * only the consumed reservations are tracked. When the VMA
4078 * disappears, the original reservation is the VMA size and the
4079 * consumed reservations are stored in the map. Hence, nothing
4080 * else has to be done for private mappings here
4081 */
4082 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4083 long add = region_add(resv_map, from, to);
4084
4085 if (unlikely(chg > add)) {
4086 /*
4087 * pages in this range were added to the reserve
4088 * map between region_chg and region_add. This
4089 * indicates a race with alloc_huge_page. Adjust
4090 * the subpool and reserve counts modified above
4091 * based on the difference.
4092 */
4093 long rsv_adjust;
4094
4095 rsv_adjust = hugepage_subpool_put_pages(spool,
4096 chg - add);
4097 hugetlb_acct_memory(h, -rsv_adjust);
4098 }
4099 }
4100 return 0;
4101 out_err:
4102 if (!vma || vma->vm_flags & VM_MAYSHARE)
4103 region_abort(resv_map, from, to);
4104 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4105 kref_put(&resv_map->refs, resv_map_release);
4106 return ret;
4107 }
4108
4109 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4110 long freed)
4111 {
4112 struct hstate *h = hstate_inode(inode);
4113 struct resv_map *resv_map = inode_resv_map(inode);
4114 long chg = 0;
4115 struct hugepage_subpool *spool = subpool_inode(inode);
4116 long gbl_reserve;
4117
4118 if (resv_map) {
4119 chg = region_del(resv_map, start, end);
4120 /*
4121 * region_del() can fail in the rare case where a region
4122 * must be split and another region descriptor can not be
4123 * allocated. If end == LONG_MAX, it will not fail.
4124 */
4125 if (chg < 0)
4126 return chg;
4127 }
4128
4129 spin_lock(&inode->i_lock);
4130 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4131 spin_unlock(&inode->i_lock);
4132
4133 /*
4134 * If the subpool has a minimum size, the number of global
4135 * reservations to be released may be adjusted.
4136 */
4137 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4138 hugetlb_acct_memory(h, -gbl_reserve);
4139
4140 return 0;
4141 }
4142
4143 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4144 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4145 struct vm_area_struct *vma,
4146 unsigned long addr, pgoff_t idx)
4147 {
4148 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4149 svma->vm_start;
4150 unsigned long sbase = saddr & PUD_MASK;
4151 unsigned long s_end = sbase + PUD_SIZE;
4152
4153 /* Allow segments to share if only one is marked locked */
4154 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4155 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4156
4157 /*
4158 * match the virtual addresses, permission and the alignment of the
4159 * page table page.
4160 */
4161 if (pmd_index(addr) != pmd_index(saddr) ||
4162 vm_flags != svm_flags ||
4163 sbase < svma->vm_start || svma->vm_end < s_end)
4164 return 0;
4165
4166 return saddr;
4167 }
4168
4169 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4170 {
4171 unsigned long base = addr & PUD_MASK;
4172 unsigned long end = base + PUD_SIZE;
4173
4174 /*
4175 * check on proper vm_flags and page table alignment
4176 */
4177 if (vma->vm_flags & VM_MAYSHARE &&
4178 vma->vm_start <= base && end <= vma->vm_end)
4179 return true;
4180 return false;
4181 }
4182
4183 /*
4184 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4185 * and returns the corresponding pte. While this is not necessary for the
4186 * !shared pmd case because we can allocate the pmd later as well, it makes the
4187 * code much cleaner. pmd allocation is essential for the shared case because
4188 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4189 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4190 * bad pmd for sharing.
4191 */
4192 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4193 {
4194 struct vm_area_struct *vma = find_vma(mm, addr);
4195 struct address_space *mapping = vma->vm_file->f_mapping;
4196 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4197 vma->vm_pgoff;
4198 struct vm_area_struct *svma;
4199 unsigned long saddr;
4200 pte_t *spte = NULL;
4201 pte_t *pte;
4202 spinlock_t *ptl;
4203
4204 if (!vma_shareable(vma, addr))
4205 return (pte_t *)pmd_alloc(mm, pud, addr);
4206
4207 i_mmap_lock_write(mapping);
4208 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4209 if (svma == vma)
4210 continue;
4211
4212 saddr = page_table_shareable(svma, vma, addr, idx);
4213 if (saddr) {
4214 spte = huge_pte_offset(svma->vm_mm, saddr);
4215 if (spte) {
4216 get_page(virt_to_page(spte));
4217 break;
4218 }
4219 }
4220 }
4221
4222 if (!spte)
4223 goto out;
4224
4225 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4226 spin_lock(ptl);
4227 if (pud_none(*pud)) {
4228 pud_populate(mm, pud,
4229 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4230 mm_inc_nr_pmds(mm);
4231 } else {
4232 put_page(virt_to_page(spte));
4233 }
4234 spin_unlock(ptl);
4235 out:
4236 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4237 i_mmap_unlock_write(mapping);
4238 return pte;
4239 }
4240
4241 /*
4242 * unmap huge page backed by shared pte.
4243 *
4244 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4245 * indicated by page_count > 1, unmap is achieved by clearing pud and
4246 * decrementing the ref count. If count == 1, the pte page is not shared.
4247 *
4248 * called with page table lock held.
4249 *
4250 * returns: 1 successfully unmapped a shared pte page
4251 * 0 the underlying pte page is not shared, or it is the last user
4252 */
4253 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4254 {
4255 pgd_t *pgd = pgd_offset(mm, *addr);
4256 pud_t *pud = pud_offset(pgd, *addr);
4257
4258 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4259 if (page_count(virt_to_page(ptep)) == 1)
4260 return 0;
4261
4262 pud_clear(pud);
4263 put_page(virt_to_page(ptep));
4264 mm_dec_nr_pmds(mm);
4265 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4266 return 1;
4267 }
4268 #define want_pmd_share() (1)
4269 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4270 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4271 {
4272 return NULL;
4273 }
4274
4275 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4276 {
4277 return 0;
4278 }
4279 #define want_pmd_share() (0)
4280 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4281
4282 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4283 pte_t *huge_pte_alloc(struct mm_struct *mm,
4284 unsigned long addr, unsigned long sz)
4285 {
4286 pgd_t *pgd;
4287 pud_t *pud;
4288 pte_t *pte = NULL;
4289
4290 pgd = pgd_offset(mm, addr);
4291 pud = pud_alloc(mm, pgd, addr);
4292 if (pud) {
4293 if (sz == PUD_SIZE) {
4294 pte = (pte_t *)pud;
4295 } else {
4296 BUG_ON(sz != PMD_SIZE);
4297 if (want_pmd_share() && pud_none(*pud))
4298 pte = huge_pmd_share(mm, addr, pud);
4299 else
4300 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4301 }
4302 }
4303 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4304
4305 return pte;
4306 }
4307
4308 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4309 {
4310 pgd_t *pgd;
4311 pud_t *pud;
4312 pmd_t *pmd = NULL;
4313
4314 pgd = pgd_offset(mm, addr);
4315 if (pgd_present(*pgd)) {
4316 pud = pud_offset(pgd, addr);
4317 if (pud_present(*pud)) {
4318 if (pud_huge(*pud))
4319 return (pte_t *)pud;
4320 pmd = pmd_offset(pud, addr);
4321 }
4322 }
4323 return (pte_t *) pmd;
4324 }
4325
4326 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4327
4328 /*
4329 * These functions are overwritable if your architecture needs its own
4330 * behavior.
4331 */
4332 struct page * __weak
4333 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4334 int write)
4335 {
4336 return ERR_PTR(-EINVAL);
4337 }
4338
4339 struct page * __weak
4340 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4341 pmd_t *pmd, int flags)
4342 {
4343 struct page *page = NULL;
4344 spinlock_t *ptl;
4345 retry:
4346 ptl = pmd_lockptr(mm, pmd);
4347 spin_lock(ptl);
4348 /*
4349 * make sure that the address range covered by this pmd is not
4350 * unmapped from other threads.
4351 */
4352 if (!pmd_huge(*pmd))
4353 goto out;
4354 if (pmd_present(*pmd)) {
4355 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4356 if (flags & FOLL_GET)
4357 get_page(page);
4358 } else {
4359 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4360 spin_unlock(ptl);
4361 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4362 goto retry;
4363 }
4364 /*
4365 * hwpoisoned entry is treated as no_page_table in
4366 * follow_page_mask().
4367 */
4368 }
4369 out:
4370 spin_unlock(ptl);
4371 return page;
4372 }
4373
4374 struct page * __weak
4375 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4376 pud_t *pud, int flags)
4377 {
4378 if (flags & FOLL_GET)
4379 return NULL;
4380
4381 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4382 }
4383
4384 #ifdef CONFIG_MEMORY_FAILURE
4385
4386 /*
4387 * This function is called from memory failure code.
4388 * Assume the caller holds page lock of the head page.
4389 */
4390 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4391 {
4392 struct hstate *h = page_hstate(hpage);
4393 int nid = page_to_nid(hpage);
4394 int ret = -EBUSY;
4395
4396 spin_lock(&hugetlb_lock);
4397 /*
4398 * Just checking !page_huge_active is not enough, because that could be
4399 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4400 */
4401 if (!page_huge_active(hpage) && !page_count(hpage)) {
4402 /*
4403 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4404 * but dangling hpage->lru can trigger list-debug warnings
4405 * (this happens when we call unpoison_memory() on it),
4406 * so let it point to itself with list_del_init().
4407 */
4408 list_del_init(&hpage->lru);
4409 set_page_refcounted(hpage);
4410 h->free_huge_pages--;
4411 h->free_huge_pages_node[nid]--;
4412 ret = 0;
4413 }
4414 spin_unlock(&hugetlb_lock);
4415 return ret;
4416 }
4417 #endif
4418
4419 bool isolate_huge_page(struct page *page, struct list_head *list)
4420 {
4421 bool ret = true;
4422
4423 VM_BUG_ON_PAGE(!PageHead(page), page);
4424 spin_lock(&hugetlb_lock);
4425 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4426 ret = false;
4427 goto unlock;
4428 }
4429 clear_page_huge_active(page);
4430 list_move_tail(&page->lru, list);
4431 unlock:
4432 spin_unlock(&hugetlb_lock);
4433 return ret;
4434 }
4435
4436 void putback_active_hugepage(struct page *page)
4437 {
4438 VM_BUG_ON_PAGE(!PageHead(page), page);
4439 spin_lock(&hugetlb_lock);
4440 set_page_huge_active(page);
4441 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4442 spin_unlock(&hugetlb_lock);
4443 put_page(page);
4444 }