2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
29 #include <asm/pgtable.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
38 int hugepages_treat_as_movable
;
40 int hugetlb_max_hstate __read_mostly
;
41 unsigned int default_hstate_idx
;
42 struct hstate hstates
[HUGE_MAX_HSTATE
];
44 * Minimum page order among possible hugepage sizes, set to a proper value
47 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
49 __initdata
LIST_HEAD(huge_boot_pages
);
51 /* for command line parsing */
52 static struct hstate
* __initdata parsed_hstate
;
53 static unsigned long __initdata default_hstate_max_huge_pages
;
54 static unsigned long __initdata default_hstate_size
;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock
);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes
;
67 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
74 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
76 spin_unlock(&spool
->lock
);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
82 if (spool
->min_hpages
!= -1)
83 hugetlb_acct_memory(spool
->hstate
,
89 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
92 struct hugepage_subpool
*spool
;
94 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
98 spin_lock_init(&spool
->lock
);
100 spool
->max_hpages
= max_hpages
;
102 spool
->min_hpages
= min_hpages
;
104 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
108 spool
->rsv_hpages
= min_hpages
;
113 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
115 spin_lock(&spool
->lock
);
116 BUG_ON(!spool
->count
);
118 unlock_or_release_subpool(spool
);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
137 spin_lock(&spool
->lock
);
139 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
140 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
141 spool
->used_hpages
+= delta
;
148 if (spool
->min_hpages
!= -1) { /* minimum size accounting */
149 if (delta
> spool
->rsv_hpages
) {
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
154 ret
= delta
- spool
->rsv_hpages
;
155 spool
->rsv_hpages
= 0;
157 ret
= 0; /* reserves already accounted for */
158 spool
->rsv_hpages
-= delta
;
163 spin_unlock(&spool
->lock
);
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
173 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
181 spin_lock(&spool
->lock
);
183 if (spool
->max_hpages
!= -1) /* maximum size accounting */
184 spool
->used_hpages
-= delta
;
186 if (spool
->min_hpages
!= -1) { /* minimum size accounting */
187 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
190 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
192 spool
->rsv_hpages
+= delta
;
193 if (spool
->rsv_hpages
> spool
->min_hpages
)
194 spool
->rsv_hpages
= spool
->min_hpages
;
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
201 unlock_or_release_subpool(spool
);
206 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
208 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
211 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
213 return subpool_inode(file_inode(vma
->vm_file
));
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
236 struct list_head link
;
242 * Add the huge page range represented by [f, t) to the reserve
243 * map. In the normal case, existing regions will be expanded
244 * to accommodate the specified range. Sufficient regions should
245 * exist for expansion due to the previous call to region_chg
246 * with the same range. However, it is possible that region_del
247 * could have been called after region_chg and modifed the map
248 * in such a way that no region exists to be expanded. In this
249 * case, pull a region descriptor from the cache associated with
250 * the map and use that for the new range.
252 * Return the number of new huge pages added to the map. This
253 * number is greater than or equal to zero.
255 static long region_add(struct resv_map
*resv
, long f
, long t
)
257 struct list_head
*head
= &resv
->regions
;
258 struct file_region
*rg
, *nrg
, *trg
;
261 spin_lock(&resv
->lock
);
262 /* Locate the region we are either in or before. */
263 list_for_each_entry(rg
, head
, link
)
268 * If no region exists which can be expanded to include the
269 * specified range, the list must have been modified by an
270 * interleving call to region_del(). Pull a region descriptor
271 * from the cache and use it for this range.
273 if (&rg
->link
== head
|| t
< rg
->from
) {
274 VM_BUG_ON(resv
->region_cache_count
<= 0);
276 resv
->region_cache_count
--;
277 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
279 list_del(&nrg
->link
);
283 list_add(&nrg
->link
, rg
->link
.prev
);
289 /* Round our left edge to the current segment if it encloses us. */
293 /* Check for and consume any regions we now overlap with. */
295 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
296 if (&rg
->link
== head
)
301 /* If this area reaches higher then extend our area to
302 * include it completely. If this is not the first area
303 * which we intend to reuse, free it. */
307 /* Decrement return value by the deleted range.
308 * Another range will span this area so that by
309 * end of routine add will be >= zero
311 add
-= (rg
->to
- rg
->from
);
317 add
+= (nrg
->from
- f
); /* Added to beginning of region */
319 add
+= t
- nrg
->to
; /* Added to end of region */
323 resv
->adds_in_progress
--;
324 spin_unlock(&resv
->lock
);
330 * Examine the existing reserve map and determine how many
331 * huge pages in the specified range [f, t) are NOT currently
332 * represented. This routine is called before a subsequent
333 * call to region_add that will actually modify the reserve
334 * map to add the specified range [f, t). region_chg does
335 * not change the number of huge pages represented by the
336 * map. However, if the existing regions in the map can not
337 * be expanded to represent the new range, a new file_region
338 * structure is added to the map as a placeholder. This is
339 * so that the subsequent region_add call will have all the
340 * regions it needs and will not fail.
342 * Upon entry, region_chg will also examine the cache of region descriptors
343 * associated with the map. If there are not enough descriptors cached, one
344 * will be allocated for the in progress add operation.
346 * Returns the number of huge pages that need to be added to the existing
347 * reservation map for the range [f, t). This number is greater or equal to
348 * zero. -ENOMEM is returned if a new file_region structure or cache entry
349 * is needed and can not be allocated.
351 static long region_chg(struct resv_map
*resv
, long f
, long t
)
353 struct list_head
*head
= &resv
->regions
;
354 struct file_region
*rg
, *nrg
= NULL
;
358 spin_lock(&resv
->lock
);
360 resv
->adds_in_progress
++;
363 * Check for sufficient descriptors in the cache to accommodate
364 * the number of in progress add operations.
366 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
367 struct file_region
*trg
;
369 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
370 /* Must drop lock to allocate a new descriptor. */
371 resv
->adds_in_progress
--;
372 spin_unlock(&resv
->lock
);
374 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
380 spin_lock(&resv
->lock
);
381 list_add(&trg
->link
, &resv
->region_cache
);
382 resv
->region_cache_count
++;
386 /* Locate the region we are before or in. */
387 list_for_each_entry(rg
, head
, link
)
391 /* If we are below the current region then a new region is required.
392 * Subtle, allocate a new region at the position but make it zero
393 * size such that we can guarantee to record the reservation. */
394 if (&rg
->link
== head
|| t
< rg
->from
) {
396 resv
->adds_in_progress
--;
397 spin_unlock(&resv
->lock
);
398 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
404 INIT_LIST_HEAD(&nrg
->link
);
408 list_add(&nrg
->link
, rg
->link
.prev
);
413 /* Round our left edge to the current segment if it encloses us. */
418 /* Check for and consume any regions we now overlap with. */
419 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
420 if (&rg
->link
== head
)
425 /* We overlap with this area, if it extends further than
426 * us then we must extend ourselves. Account for its
427 * existing reservation. */
432 chg
-= rg
->to
- rg
->from
;
436 spin_unlock(&resv
->lock
);
437 /* We already know we raced and no longer need the new region */
441 spin_unlock(&resv
->lock
);
446 * Abort the in progress add operation. The adds_in_progress field
447 * of the resv_map keeps track of the operations in progress between
448 * calls to region_chg and region_add. Operations are sometimes
449 * aborted after the call to region_chg. In such cases, region_abort
450 * is called to decrement the adds_in_progress counter.
452 * NOTE: The range arguments [f, t) are not needed or used in this
453 * routine. They are kept to make reading the calling code easier as
454 * arguments will match the associated region_chg call.
456 static void region_abort(struct resv_map
*resv
, long f
, long t
)
458 spin_lock(&resv
->lock
);
459 VM_BUG_ON(!resv
->region_cache_count
);
460 resv
->adds_in_progress
--;
461 spin_unlock(&resv
->lock
);
465 * Delete the specified range [f, t) from the reserve map. If the
466 * t parameter is LONG_MAX, this indicates that ALL regions after f
467 * should be deleted. Locate the regions which intersect [f, t)
468 * and either trim, delete or split the existing regions.
470 * Returns the number of huge pages deleted from the reserve map.
471 * In the normal case, the return value is zero or more. In the
472 * case where a region must be split, a new region descriptor must
473 * be allocated. If the allocation fails, -ENOMEM will be returned.
474 * NOTE: If the parameter t == LONG_MAX, then we will never split
475 * a region and possibly return -ENOMEM. Callers specifying
476 * t == LONG_MAX do not need to check for -ENOMEM error.
478 static long region_del(struct resv_map
*resv
, long f
, long t
)
480 struct list_head
*head
= &resv
->regions
;
481 struct file_region
*rg
, *trg
;
482 struct file_region
*nrg
= NULL
;
486 spin_lock(&resv
->lock
);
487 list_for_each_entry_safe(rg
, trg
, head
, link
) {
489 * Skip regions before the range to be deleted. file_region
490 * ranges are normally of the form [from, to). However, there
491 * may be a "placeholder" entry in the map which is of the form
492 * (from, to) with from == to. Check for placeholder entries
493 * at the beginning of the range to be deleted.
495 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
501 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
503 * Check for an entry in the cache before dropping
504 * lock and attempting allocation.
507 resv
->region_cache_count
> resv
->adds_in_progress
) {
508 nrg
= list_first_entry(&resv
->region_cache
,
511 list_del(&nrg
->link
);
512 resv
->region_cache_count
--;
516 spin_unlock(&resv
->lock
);
517 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
525 /* New entry for end of split region */
528 INIT_LIST_HEAD(&nrg
->link
);
530 /* Original entry is trimmed */
533 list_add(&nrg
->link
, &rg
->link
);
538 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
539 del
+= rg
->to
- rg
->from
;
545 if (f
<= rg
->from
) { /* Trim beginning of region */
548 } else { /* Trim end of region */
554 spin_unlock(&resv
->lock
);
560 * A rare out of memory error was encountered which prevented removal of
561 * the reserve map region for a page. The huge page itself was free'ed
562 * and removed from the page cache. This routine will adjust the subpool
563 * usage count, and the global reserve count if needed. By incrementing
564 * these counts, the reserve map entry which could not be deleted will
565 * appear as a "reserved" entry instead of simply dangling with incorrect
568 void hugetlb_fix_reserve_counts(struct inode
*inode
, bool restore_reserve
)
570 struct hugepage_subpool
*spool
= subpool_inode(inode
);
573 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
574 if (restore_reserve
&& rsv_adjust
) {
575 struct hstate
*h
= hstate_inode(inode
);
577 hugetlb_acct_memory(h
, 1);
582 * Count and return the number of huge pages in the reserve map
583 * that intersect with the range [f, t).
585 static long region_count(struct resv_map
*resv
, long f
, long t
)
587 struct list_head
*head
= &resv
->regions
;
588 struct file_region
*rg
;
591 spin_lock(&resv
->lock
);
592 /* Locate each segment we overlap with, and count that overlap. */
593 list_for_each_entry(rg
, head
, link
) {
602 seg_from
= max(rg
->from
, f
);
603 seg_to
= min(rg
->to
, t
);
605 chg
+= seg_to
- seg_from
;
607 spin_unlock(&resv
->lock
);
613 * Convert the address within this vma to the page offset within
614 * the mapping, in pagecache page units; huge pages here.
616 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
617 struct vm_area_struct
*vma
, unsigned long address
)
619 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
620 (vma
->vm_pgoff
>> huge_page_order(h
));
623 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
624 unsigned long address
)
626 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
630 * Return the size of the pages allocated when backing a VMA. In the majority
631 * cases this will be same size as used by the page table entries.
633 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
635 struct hstate
*hstate
;
637 if (!is_vm_hugetlb_page(vma
))
640 hstate
= hstate_vma(vma
);
642 return 1UL << huge_page_shift(hstate
);
644 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
647 * Return the page size being used by the MMU to back a VMA. In the majority
648 * of cases, the page size used by the kernel matches the MMU size. On
649 * architectures where it differs, an architecture-specific version of this
650 * function is required.
652 #ifndef vma_mmu_pagesize
653 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
655 return vma_kernel_pagesize(vma
);
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
664 #define HPAGE_RESV_OWNER (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
687 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
689 return (unsigned long)vma
->vm_private_data
;
692 static void set_vma_private_data(struct vm_area_struct
*vma
,
695 vma
->vm_private_data
= (void *)value
;
698 struct resv_map
*resv_map_alloc(void)
700 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
701 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
703 if (!resv_map
|| !rg
) {
709 kref_init(&resv_map
->refs
);
710 spin_lock_init(&resv_map
->lock
);
711 INIT_LIST_HEAD(&resv_map
->regions
);
713 resv_map
->adds_in_progress
= 0;
715 INIT_LIST_HEAD(&resv_map
->region_cache
);
716 list_add(&rg
->link
, &resv_map
->region_cache
);
717 resv_map
->region_cache_count
= 1;
722 void resv_map_release(struct kref
*ref
)
724 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
725 struct list_head
*head
= &resv_map
->region_cache
;
726 struct file_region
*rg
, *trg
;
728 /* Clear out any active regions before we release the map. */
729 region_del(resv_map
, 0, LONG_MAX
);
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg
, trg
, head
, link
) {
737 VM_BUG_ON(resv_map
->adds_in_progress
);
742 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
744 return inode
->i_mapping
->private_data
;
747 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
749 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
750 if (vma
->vm_flags
& VM_MAYSHARE
) {
751 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
752 struct inode
*inode
= mapping
->host
;
754 return inode_resv_map(inode
);
757 return (struct resv_map
*)(get_vma_private_data(vma
) &
762 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
764 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
765 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
767 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
768 HPAGE_RESV_MASK
) | (unsigned long)map
);
771 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
773 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
774 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
776 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
779 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
783 return (get_vma_private_data(vma
) & flag
) != 0;
786 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
787 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
790 if (!(vma
->vm_flags
& VM_MAYSHARE
))
791 vma
->vm_private_data
= (void *)0;
794 /* Returns true if the VMA has associated reserve pages */
795 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
797 if (vma
->vm_flags
& VM_NORESERVE
) {
799 * This address is already reserved by other process(chg == 0),
800 * so, we should decrement reserved count. Without decrementing,
801 * reserve count remains after releasing inode, because this
802 * allocated page will go into page cache and is regarded as
803 * coming from reserved pool in releasing step. Currently, we
804 * don't have any other solution to deal with this situation
805 * properly, so add work-around here.
807 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
813 /* Shared mappings always use reserves */
814 if (vma
->vm_flags
& VM_MAYSHARE
) {
816 * We know VM_NORESERVE is not set. Therefore, there SHOULD
817 * be a region map for all pages. The only situation where
818 * there is no region map is if a hole was punched via
819 * fallocate. In this case, there really are no reverves to
820 * use. This situation is indicated if chg != 0.
829 * Only the process that called mmap() has reserves for
832 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
838 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
840 int nid
= page_to_nid(page
);
841 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
842 h
->free_huge_pages
++;
843 h
->free_huge_pages_node
[nid
]++;
846 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
850 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
851 if (!is_migrate_isolate_page(page
))
854 * if 'non-isolated free hugepage' not found on the list,
855 * the allocation fails.
857 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
859 list_move(&page
->lru
, &h
->hugepage_activelist
);
860 set_page_refcounted(page
);
861 h
->free_huge_pages
--;
862 h
->free_huge_pages_node
[nid
]--;
866 /* Movability of hugepages depends on migration support. */
867 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
869 if (hugepages_treat_as_movable
|| hugepage_migration_supported(h
))
870 return GFP_HIGHUSER_MOVABLE
;
875 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
876 struct vm_area_struct
*vma
,
877 unsigned long address
, int avoid_reserve
,
880 struct page
*page
= NULL
;
881 struct mempolicy
*mpol
;
882 nodemask_t
*nodemask
;
883 struct zonelist
*zonelist
;
886 unsigned int cpuset_mems_cookie
;
889 * A child process with MAP_PRIVATE mappings created by their parent
890 * have no page reserves. This check ensures that reservations are
891 * not "stolen". The child may still get SIGKILLed
893 if (!vma_has_reserves(vma
, chg
) &&
894 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
897 /* If reserves cannot be used, ensure enough pages are in the pool */
898 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
902 cpuset_mems_cookie
= read_mems_allowed_begin();
903 zonelist
= huge_zonelist(vma
, address
,
904 htlb_alloc_mask(h
), &mpol
, &nodemask
);
906 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
907 MAX_NR_ZONES
- 1, nodemask
) {
908 if (cpuset_zone_allowed(zone
, htlb_alloc_mask(h
))) {
909 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
913 if (!vma_has_reserves(vma
, chg
))
916 SetPagePrivate(page
);
917 h
->resv_huge_pages
--;
924 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
933 * common helper functions for hstate_next_node_to_{alloc|free}.
934 * We may have allocated or freed a huge page based on a different
935 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936 * be outside of *nodes_allowed. Ensure that we use an allowed
937 * node for alloc or free.
939 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
941 nid
= next_node(nid
, *nodes_allowed
);
942 if (nid
== MAX_NUMNODES
)
943 nid
= first_node(*nodes_allowed
);
944 VM_BUG_ON(nid
>= MAX_NUMNODES
);
949 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
951 if (!node_isset(nid
, *nodes_allowed
))
952 nid
= next_node_allowed(nid
, nodes_allowed
);
957 * returns the previously saved node ["this node"] from which to
958 * allocate a persistent huge page for the pool and advance the
959 * next node from which to allocate, handling wrap at end of node
962 static int hstate_next_node_to_alloc(struct hstate
*h
,
963 nodemask_t
*nodes_allowed
)
967 VM_BUG_ON(!nodes_allowed
);
969 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
970 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
976 * helper for free_pool_huge_page() - return the previously saved
977 * node ["this node"] from which to free a huge page. Advance the
978 * next node id whether or not we find a free huge page to free so
979 * that the next attempt to free addresses the next node.
981 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
985 VM_BUG_ON(!nodes_allowed
);
987 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
988 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
993 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
994 for (nr_nodes = nodes_weight(*mask); \
996 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
999 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1000 for (nr_nodes = nodes_weight(*mask); \
1002 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1005 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
1006 static void destroy_compound_gigantic_page(struct page
*page
,
1010 int nr_pages
= 1 << order
;
1011 struct page
*p
= page
+ 1;
1013 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1014 clear_compound_head(p
);
1015 set_page_refcounted(p
);
1018 set_compound_order(page
, 0);
1019 __ClearPageHead(page
);
1022 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1024 free_contig_range(page_to_pfn(page
), 1 << order
);
1027 static int __alloc_gigantic_page(unsigned long start_pfn
,
1028 unsigned long nr_pages
)
1030 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1031 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
);
1034 static bool pfn_range_valid_gigantic(unsigned long start_pfn
,
1035 unsigned long nr_pages
)
1037 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1040 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1044 page
= pfn_to_page(i
);
1046 if (PageReserved(page
))
1049 if (page_count(page
) > 0)
1059 static bool zone_spans_last_pfn(const struct zone
*zone
,
1060 unsigned long start_pfn
, unsigned long nr_pages
)
1062 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1063 return zone_spans_pfn(zone
, last_pfn
);
1066 static struct page
*alloc_gigantic_page(int nid
, unsigned int order
)
1068 unsigned long nr_pages
= 1 << order
;
1069 unsigned long ret
, pfn
, flags
;
1072 z
= NODE_DATA(nid
)->node_zones
;
1073 for (; z
- NODE_DATA(nid
)->node_zones
< MAX_NR_ZONES
; z
++) {
1074 spin_lock_irqsave(&z
->lock
, flags
);
1076 pfn
= ALIGN(z
->zone_start_pfn
, nr_pages
);
1077 while (zone_spans_last_pfn(z
, pfn
, nr_pages
)) {
1078 if (pfn_range_valid_gigantic(pfn
, nr_pages
)) {
1080 * We release the zone lock here because
1081 * alloc_contig_range() will also lock the zone
1082 * at some point. If there's an allocation
1083 * spinning on this lock, it may win the race
1084 * and cause alloc_contig_range() to fail...
1086 spin_unlock_irqrestore(&z
->lock
, flags
);
1087 ret
= __alloc_gigantic_page(pfn
, nr_pages
);
1089 return pfn_to_page(pfn
);
1090 spin_lock_irqsave(&z
->lock
, flags
);
1095 spin_unlock_irqrestore(&z
->lock
, flags
);
1101 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1102 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1104 static struct page
*alloc_fresh_gigantic_page_node(struct hstate
*h
, int nid
)
1108 page
= alloc_gigantic_page(nid
, huge_page_order(h
));
1110 prep_compound_gigantic_page(page
, huge_page_order(h
));
1111 prep_new_huge_page(h
, page
, nid
);
1117 static int alloc_fresh_gigantic_page(struct hstate
*h
,
1118 nodemask_t
*nodes_allowed
)
1120 struct page
*page
= NULL
;
1123 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1124 page
= alloc_fresh_gigantic_page_node(h
, node
);
1132 static inline bool gigantic_page_supported(void) { return true; }
1134 static inline bool gigantic_page_supported(void) { return false; }
1135 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1136 static inline void destroy_compound_gigantic_page(struct page
*page
,
1137 unsigned int order
) { }
1138 static inline int alloc_fresh_gigantic_page(struct hstate
*h
,
1139 nodemask_t
*nodes_allowed
) { return 0; }
1142 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1146 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1150 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1151 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1152 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1153 1 << PG_referenced
| 1 << PG_dirty
|
1154 1 << PG_active
| 1 << PG_private
|
1157 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1158 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1159 set_page_refcounted(page
);
1160 if (hstate_is_gigantic(h
)) {
1161 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1162 free_gigantic_page(page
, huge_page_order(h
));
1164 __free_pages(page
, huge_page_order(h
));
1168 struct hstate
*size_to_hstate(unsigned long size
)
1172 for_each_hstate(h
) {
1173 if (huge_page_size(h
) == size
)
1180 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1181 * to hstate->hugepage_activelist.)
1183 * This function can be called for tail pages, but never returns true for them.
1185 bool page_huge_active(struct page
*page
)
1187 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1188 return PageHead(page
) && PagePrivate(&page
[1]);
1191 /* never called for tail page */
1192 static void set_page_huge_active(struct page
*page
)
1194 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1195 SetPagePrivate(&page
[1]);
1198 static void clear_page_huge_active(struct page
*page
)
1200 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1201 ClearPagePrivate(&page
[1]);
1204 void free_huge_page(struct page
*page
)
1207 * Can't pass hstate in here because it is called from the
1208 * compound page destructor.
1210 struct hstate
*h
= page_hstate(page
);
1211 int nid
= page_to_nid(page
);
1212 struct hugepage_subpool
*spool
=
1213 (struct hugepage_subpool
*)page_private(page
);
1214 bool restore_reserve
;
1216 set_page_private(page
, 0);
1217 page
->mapping
= NULL
;
1218 BUG_ON(page_count(page
));
1219 BUG_ON(page_mapcount(page
));
1220 restore_reserve
= PagePrivate(page
);
1221 ClearPagePrivate(page
);
1224 * A return code of zero implies that the subpool will be under its
1225 * minimum size if the reservation is not restored after page is free.
1226 * Therefore, force restore_reserve operation.
1228 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1229 restore_reserve
= true;
1231 spin_lock(&hugetlb_lock
);
1232 clear_page_huge_active(page
);
1233 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1234 pages_per_huge_page(h
), page
);
1235 if (restore_reserve
)
1236 h
->resv_huge_pages
++;
1238 if (h
->surplus_huge_pages_node
[nid
]) {
1239 /* remove the page from active list */
1240 list_del(&page
->lru
);
1241 update_and_free_page(h
, page
);
1242 h
->surplus_huge_pages
--;
1243 h
->surplus_huge_pages_node
[nid
]--;
1245 arch_clear_hugepage_flags(page
);
1246 enqueue_huge_page(h
, page
);
1248 spin_unlock(&hugetlb_lock
);
1251 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1253 INIT_LIST_HEAD(&page
->lru
);
1254 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1255 spin_lock(&hugetlb_lock
);
1256 set_hugetlb_cgroup(page
, NULL
);
1258 h
->nr_huge_pages_node
[nid
]++;
1259 spin_unlock(&hugetlb_lock
);
1260 put_page(page
); /* free it into the hugepage allocator */
1263 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1266 int nr_pages
= 1 << order
;
1267 struct page
*p
= page
+ 1;
1269 /* we rely on prep_new_huge_page to set the destructor */
1270 set_compound_order(page
, order
);
1271 __SetPageHead(page
);
1272 __ClearPageReserved(page
);
1273 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1275 * For gigantic hugepages allocated through bootmem at
1276 * boot, it's safer to be consistent with the not-gigantic
1277 * hugepages and clear the PG_reserved bit from all tail pages
1278 * too. Otherwse drivers using get_user_pages() to access tail
1279 * pages may get the reference counting wrong if they see
1280 * PG_reserved set on a tail page (despite the head page not
1281 * having PG_reserved set). Enforcing this consistency between
1282 * head and tail pages allows drivers to optimize away a check
1283 * on the head page when they need know if put_page() is needed
1284 * after get_user_pages().
1286 __ClearPageReserved(p
);
1287 set_page_count(p
, 0);
1288 set_compound_head(p
, page
);
1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294 * transparent huge pages. See the PageTransHuge() documentation for more
1297 int PageHuge(struct page
*page
)
1299 if (!PageCompound(page
))
1302 page
= compound_head(page
);
1303 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1305 EXPORT_SYMBOL_GPL(PageHuge
);
1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309 * normal or transparent huge pages.
1311 int PageHeadHuge(struct page
*page_head
)
1313 if (!PageHead(page_head
))
1316 return get_compound_page_dtor(page_head
) == free_huge_page
;
1319 pgoff_t
__basepage_index(struct page
*page
)
1321 struct page
*page_head
= compound_head(page
);
1322 pgoff_t index
= page_index(page_head
);
1323 unsigned long compound_idx
;
1325 if (!PageHuge(page_head
))
1326 return page_index(page
);
1328 if (compound_order(page_head
) >= MAX_ORDER
)
1329 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1331 compound_idx
= page
- page_head
;
1333 return (index
<< compound_order(page_head
)) + compound_idx
;
1336 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
1340 page
= __alloc_pages_node(nid
,
1341 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1342 __GFP_REPEAT
|__GFP_NOWARN
,
1343 huge_page_order(h
));
1345 prep_new_huge_page(h
, page
, nid
);
1351 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1357 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1358 page
= alloc_fresh_huge_page_node(h
, node
);
1366 count_vm_event(HTLB_BUDDY_PGALLOC
);
1368 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1374 * Free huge page from pool from next node to free.
1375 * Attempt to keep persistent huge pages more or less
1376 * balanced over allowed nodes.
1377 * Called with hugetlb_lock locked.
1379 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1385 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1387 * If we're returning unused surplus pages, only examine
1388 * nodes with surplus pages.
1390 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1391 !list_empty(&h
->hugepage_freelists
[node
])) {
1393 list_entry(h
->hugepage_freelists
[node
].next
,
1395 list_del(&page
->lru
);
1396 h
->free_huge_pages
--;
1397 h
->free_huge_pages_node
[node
]--;
1399 h
->surplus_huge_pages
--;
1400 h
->surplus_huge_pages_node
[node
]--;
1402 update_and_free_page(h
, page
);
1412 * Dissolve a given free hugepage into free buddy pages. This function does
1413 * nothing for in-use (including surplus) hugepages.
1415 static void dissolve_free_huge_page(struct page
*page
)
1417 spin_lock(&hugetlb_lock
);
1418 if (PageHuge(page
) && !page_count(page
)) {
1419 struct hstate
*h
= page_hstate(page
);
1420 int nid
= page_to_nid(page
);
1421 list_del(&page
->lru
);
1422 h
->free_huge_pages
--;
1423 h
->free_huge_pages_node
[nid
]--;
1424 update_and_free_page(h
, page
);
1426 spin_unlock(&hugetlb_lock
);
1430 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431 * make specified memory blocks removable from the system.
1432 * Note that start_pfn should aligned with (minimum) hugepage size.
1434 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1438 if (!hugepages_supported())
1441 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << minimum_order
));
1442 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
)
1443 dissolve_free_huge_page(pfn_to_page(pfn
));
1447 * There are 3 ways this can get called:
1448 * 1. With vma+addr: we use the VMA's memory policy
1449 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1450 * page from any node, and let the buddy allocator itself figure
1452 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1453 * strictly from 'nid'
1455 static struct page
*__hugetlb_alloc_buddy_huge_page(struct hstate
*h
,
1456 struct vm_area_struct
*vma
, unsigned long addr
, int nid
)
1458 int order
= huge_page_order(h
);
1459 gfp_t gfp
= htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_REPEAT
|__GFP_NOWARN
;
1460 unsigned int cpuset_mems_cookie
;
1463 * We need a VMA to get a memory policy. If we do not
1464 * have one, we use the 'nid' argument.
1466 * The mempolicy stuff below has some non-inlined bits
1467 * and calls ->vm_ops. That makes it hard to optimize at
1468 * compile-time, even when NUMA is off and it does
1469 * nothing. This helps the compiler optimize it out.
1471 if (!IS_ENABLED(CONFIG_NUMA
) || !vma
) {
1473 * If a specific node is requested, make sure to
1474 * get memory from there, but only when a node
1475 * is explicitly specified.
1477 if (nid
!= NUMA_NO_NODE
)
1478 gfp
|= __GFP_THISNODE
;
1480 * Make sure to call something that can handle
1483 return alloc_pages_node(nid
, gfp
, order
);
1487 * OK, so we have a VMA. Fetch the mempolicy and try to
1488 * allocate a huge page with it. We will only reach this
1489 * when CONFIG_NUMA=y.
1493 struct mempolicy
*mpol
;
1494 struct zonelist
*zl
;
1495 nodemask_t
*nodemask
;
1497 cpuset_mems_cookie
= read_mems_allowed_begin();
1498 zl
= huge_zonelist(vma
, addr
, gfp
, &mpol
, &nodemask
);
1499 mpol_cond_put(mpol
);
1500 page
= __alloc_pages_nodemask(gfp
, order
, zl
, nodemask
);
1503 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1509 * There are two ways to allocate a huge page:
1510 * 1. When you have a VMA and an address (like a fault)
1511 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1513 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1514 * this case which signifies that the allocation should be done with
1515 * respect for the VMA's memory policy.
1517 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518 * implies that memory policies will not be taken in to account.
1520 static struct page
*__alloc_buddy_huge_page(struct hstate
*h
,
1521 struct vm_area_struct
*vma
, unsigned long addr
, int nid
)
1526 if (hstate_is_gigantic(h
))
1530 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531 * This makes sure the caller is picking _one_ of the modes with which
1532 * we can call this function, not both.
1534 if (vma
|| (addr
!= -1)) {
1535 VM_WARN_ON_ONCE(addr
== -1);
1536 VM_WARN_ON_ONCE(nid
!= NUMA_NO_NODE
);
1539 * Assume we will successfully allocate the surplus page to
1540 * prevent racing processes from causing the surplus to exceed
1543 * This however introduces a different race, where a process B
1544 * tries to grow the static hugepage pool while alloc_pages() is
1545 * called by process A. B will only examine the per-node
1546 * counters in determining if surplus huge pages can be
1547 * converted to normal huge pages in adjust_pool_surplus(). A
1548 * won't be able to increment the per-node counter, until the
1549 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550 * no more huge pages can be converted from surplus to normal
1551 * state (and doesn't try to convert again). Thus, we have a
1552 * case where a surplus huge page exists, the pool is grown, and
1553 * the surplus huge page still exists after, even though it
1554 * should just have been converted to a normal huge page. This
1555 * does not leak memory, though, as the hugepage will be freed
1556 * once it is out of use. It also does not allow the counters to
1557 * go out of whack in adjust_pool_surplus() as we don't modify
1558 * the node values until we've gotten the hugepage and only the
1559 * per-node value is checked there.
1561 spin_lock(&hugetlb_lock
);
1562 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1563 spin_unlock(&hugetlb_lock
);
1567 h
->surplus_huge_pages
++;
1569 spin_unlock(&hugetlb_lock
);
1571 page
= __hugetlb_alloc_buddy_huge_page(h
, vma
, addr
, nid
);
1573 spin_lock(&hugetlb_lock
);
1575 INIT_LIST_HEAD(&page
->lru
);
1576 r_nid
= page_to_nid(page
);
1577 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1578 set_hugetlb_cgroup(page
, NULL
);
1580 * We incremented the global counters already
1582 h
->nr_huge_pages_node
[r_nid
]++;
1583 h
->surplus_huge_pages_node
[r_nid
]++;
1584 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1587 h
->surplus_huge_pages
--;
1588 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1590 spin_unlock(&hugetlb_lock
);
1596 * Allocate a huge page from 'nid'. Note, 'nid' may be
1597 * NUMA_NO_NODE, which means that it may be allocated
1601 struct page
*__alloc_buddy_huge_page_no_mpol(struct hstate
*h
, int nid
)
1603 unsigned long addr
= -1;
1605 return __alloc_buddy_huge_page(h
, NULL
, addr
, nid
);
1609 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1612 struct page
*__alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1613 struct vm_area_struct
*vma
, unsigned long addr
)
1615 return __alloc_buddy_huge_page(h
, vma
, addr
, NUMA_NO_NODE
);
1619 * This allocation function is useful in the context where vma is irrelevant.
1620 * E.g. soft-offlining uses this function because it only cares physical
1621 * address of error page.
1623 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1625 struct page
*page
= NULL
;
1627 spin_lock(&hugetlb_lock
);
1628 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1629 page
= dequeue_huge_page_node(h
, nid
);
1630 spin_unlock(&hugetlb_lock
);
1633 page
= __alloc_buddy_huge_page_no_mpol(h
, nid
);
1639 * Increase the hugetlb pool such that it can accommodate a reservation
1642 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1644 struct list_head surplus_list
;
1645 struct page
*page
, *tmp
;
1647 int needed
, allocated
;
1648 bool alloc_ok
= true;
1650 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1652 h
->resv_huge_pages
+= delta
;
1657 INIT_LIST_HEAD(&surplus_list
);
1661 spin_unlock(&hugetlb_lock
);
1662 for (i
= 0; i
< needed
; i
++) {
1663 page
= __alloc_buddy_huge_page_no_mpol(h
, NUMA_NO_NODE
);
1668 list_add(&page
->lru
, &surplus_list
);
1673 * After retaking hugetlb_lock, we need to recalculate 'needed'
1674 * because either resv_huge_pages or free_huge_pages may have changed.
1676 spin_lock(&hugetlb_lock
);
1677 needed
= (h
->resv_huge_pages
+ delta
) -
1678 (h
->free_huge_pages
+ allocated
);
1683 * We were not able to allocate enough pages to
1684 * satisfy the entire reservation so we free what
1685 * we've allocated so far.
1690 * The surplus_list now contains _at_least_ the number of extra pages
1691 * needed to accommodate the reservation. Add the appropriate number
1692 * of pages to the hugetlb pool and free the extras back to the buddy
1693 * allocator. Commit the entire reservation here to prevent another
1694 * process from stealing the pages as they are added to the pool but
1695 * before they are reserved.
1697 needed
+= allocated
;
1698 h
->resv_huge_pages
+= delta
;
1701 /* Free the needed pages to the hugetlb pool */
1702 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1706 * This page is now managed by the hugetlb allocator and has
1707 * no users -- drop the buddy allocator's reference.
1709 put_page_testzero(page
);
1710 VM_BUG_ON_PAGE(page_count(page
), page
);
1711 enqueue_huge_page(h
, page
);
1714 spin_unlock(&hugetlb_lock
);
1716 /* Free unnecessary surplus pages to the buddy allocator */
1717 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1719 spin_lock(&hugetlb_lock
);
1725 * When releasing a hugetlb pool reservation, any surplus pages that were
1726 * allocated to satisfy the reservation must be explicitly freed if they were
1728 * Called with hugetlb_lock held.
1730 static void return_unused_surplus_pages(struct hstate
*h
,
1731 unsigned long unused_resv_pages
)
1733 unsigned long nr_pages
;
1735 /* Uncommit the reservation */
1736 h
->resv_huge_pages
-= unused_resv_pages
;
1738 /* Cannot return gigantic pages currently */
1739 if (hstate_is_gigantic(h
))
1742 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1745 * We want to release as many surplus pages as possible, spread
1746 * evenly across all nodes with memory. Iterate across these nodes
1747 * until we can no longer free unreserved surplus pages. This occurs
1748 * when the nodes with surplus pages have no free pages.
1749 * free_pool_huge_page() will balance the the freed pages across the
1750 * on-line nodes with memory and will handle the hstate accounting.
1752 while (nr_pages
--) {
1753 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1755 cond_resched_lock(&hugetlb_lock
);
1761 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762 * are used by the huge page allocation routines to manage reservations.
1764 * vma_needs_reservation is called to determine if the huge page at addr
1765 * within the vma has an associated reservation. If a reservation is
1766 * needed, the value 1 is returned. The caller is then responsible for
1767 * managing the global reservation and subpool usage counts. After
1768 * the huge page has been allocated, vma_commit_reservation is called
1769 * to add the page to the reservation map. If the page allocation fails,
1770 * the reservation must be ended instead of committed. vma_end_reservation
1771 * is called in such cases.
1773 * In the normal case, vma_commit_reservation returns the same value
1774 * as the preceding vma_needs_reservation call. The only time this
1775 * is not the case is if a reserve map was changed between calls. It
1776 * is the responsibility of the caller to notice the difference and
1777 * take appropriate action.
1779 enum vma_resv_mode
{
1784 static long __vma_reservation_common(struct hstate
*h
,
1785 struct vm_area_struct
*vma
, unsigned long addr
,
1786 enum vma_resv_mode mode
)
1788 struct resv_map
*resv
;
1792 resv
= vma_resv_map(vma
);
1796 idx
= vma_hugecache_offset(h
, vma
, addr
);
1798 case VMA_NEEDS_RESV
:
1799 ret
= region_chg(resv
, idx
, idx
+ 1);
1801 case VMA_COMMIT_RESV
:
1802 ret
= region_add(resv
, idx
, idx
+ 1);
1805 region_abort(resv
, idx
, idx
+ 1);
1812 if (vma
->vm_flags
& VM_MAYSHARE
)
1815 return ret
< 0 ? ret
: 0;
1818 static long vma_needs_reservation(struct hstate
*h
,
1819 struct vm_area_struct
*vma
, unsigned long addr
)
1821 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1824 static long vma_commit_reservation(struct hstate
*h
,
1825 struct vm_area_struct
*vma
, unsigned long addr
)
1827 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1830 static void vma_end_reservation(struct hstate
*h
,
1831 struct vm_area_struct
*vma
, unsigned long addr
)
1833 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1836 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1837 unsigned long addr
, int avoid_reserve
)
1839 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1840 struct hstate
*h
= hstate_vma(vma
);
1842 long map_chg
, map_commit
;
1845 struct hugetlb_cgroup
*h_cg
;
1847 idx
= hstate_index(h
);
1849 * Examine the region/reserve map to determine if the process
1850 * has a reservation for the page to be allocated. A return
1851 * code of zero indicates a reservation exists (no change).
1853 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
1855 return ERR_PTR(-ENOMEM
);
1858 * Processes that did not create the mapping will have no
1859 * reserves as indicated by the region/reserve map. Check
1860 * that the allocation will not exceed the subpool limit.
1861 * Allocations for MAP_NORESERVE mappings also need to be
1862 * checked against any subpool limit.
1864 if (map_chg
|| avoid_reserve
) {
1865 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
1867 vma_end_reservation(h
, vma
, addr
);
1868 return ERR_PTR(-ENOSPC
);
1872 * Even though there was no reservation in the region/reserve
1873 * map, there could be reservations associated with the
1874 * subpool that can be used. This would be indicated if the
1875 * return value of hugepage_subpool_get_pages() is zero.
1876 * However, if avoid_reserve is specified we still avoid even
1877 * the subpool reservations.
1883 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1885 goto out_subpool_put
;
1887 spin_lock(&hugetlb_lock
);
1889 * glb_chg is passed to indicate whether or not a page must be taken
1890 * from the global free pool (global change). gbl_chg == 0 indicates
1891 * a reservation exists for the allocation.
1893 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
1895 spin_unlock(&hugetlb_lock
);
1896 page
= __alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
1898 goto out_uncharge_cgroup
;
1899 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
1900 SetPagePrivate(page
);
1901 h
->resv_huge_pages
--;
1903 spin_lock(&hugetlb_lock
);
1904 list_move(&page
->lru
, &h
->hugepage_activelist
);
1907 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1908 spin_unlock(&hugetlb_lock
);
1910 set_page_private(page
, (unsigned long)spool
);
1912 map_commit
= vma_commit_reservation(h
, vma
, addr
);
1913 if (unlikely(map_chg
> map_commit
)) {
1915 * The page was added to the reservation map between
1916 * vma_needs_reservation and vma_commit_reservation.
1917 * This indicates a race with hugetlb_reserve_pages.
1918 * Adjust for the subpool count incremented above AND
1919 * in hugetlb_reserve_pages for the same page. Also,
1920 * the reservation count added in hugetlb_reserve_pages
1921 * no longer applies.
1925 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
1926 hugetlb_acct_memory(h
, -rsv_adjust
);
1930 out_uncharge_cgroup
:
1931 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
1933 if (map_chg
|| avoid_reserve
)
1934 hugepage_subpool_put_pages(spool
, 1);
1935 vma_end_reservation(h
, vma
, addr
);
1936 return ERR_PTR(-ENOSPC
);
1940 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942 * where no ERR_VALUE is expected to be returned.
1944 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1945 unsigned long addr
, int avoid_reserve
)
1947 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1953 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1955 struct huge_bootmem_page
*m
;
1958 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1961 addr
= memblock_virt_alloc_try_nid_nopanic(
1962 huge_page_size(h
), huge_page_size(h
),
1963 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
1966 * Use the beginning of the huge page to store the
1967 * huge_bootmem_page struct (until gather_bootmem
1968 * puts them into the mem_map).
1977 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
1978 /* Put them into a private list first because mem_map is not up yet */
1979 list_add(&m
->list
, &huge_boot_pages
);
1984 static void __init
prep_compound_huge_page(struct page
*page
,
1987 if (unlikely(order
> (MAX_ORDER
- 1)))
1988 prep_compound_gigantic_page(page
, order
);
1990 prep_compound_page(page
, order
);
1993 /* Put bootmem huge pages into the standard lists after mem_map is up */
1994 static void __init
gather_bootmem_prealloc(void)
1996 struct huge_bootmem_page
*m
;
1998 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1999 struct hstate
*h
= m
->hstate
;
2002 #ifdef CONFIG_HIGHMEM
2003 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
2004 memblock_free_late(__pa(m
),
2005 sizeof(struct huge_bootmem_page
));
2007 page
= virt_to_page(m
);
2009 WARN_ON(page_count(page
) != 1);
2010 prep_compound_huge_page(page
, h
->order
);
2011 WARN_ON(PageReserved(page
));
2012 prep_new_huge_page(h
, page
, page_to_nid(page
));
2014 * If we had gigantic hugepages allocated at boot time, we need
2015 * to restore the 'stolen' pages to totalram_pages in order to
2016 * fix confusing memory reports from free(1) and another
2017 * side-effects, like CommitLimit going negative.
2019 if (hstate_is_gigantic(h
))
2020 adjust_managed_page_count(page
, 1 << h
->order
);
2024 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2028 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2029 if (hstate_is_gigantic(h
)) {
2030 if (!alloc_bootmem_huge_page(h
))
2032 } else if (!alloc_fresh_huge_page(h
,
2033 &node_states
[N_MEMORY
]))
2036 h
->max_huge_pages
= i
;
2039 static void __init
hugetlb_init_hstates(void)
2043 for_each_hstate(h
) {
2044 if (minimum_order
> huge_page_order(h
))
2045 minimum_order
= huge_page_order(h
);
2047 /* oversize hugepages were init'ed in early boot */
2048 if (!hstate_is_gigantic(h
))
2049 hugetlb_hstate_alloc_pages(h
);
2051 VM_BUG_ON(minimum_order
== UINT_MAX
);
2054 static char * __init
memfmt(char *buf
, unsigned long n
)
2056 if (n
>= (1UL << 30))
2057 sprintf(buf
, "%lu GB", n
>> 30);
2058 else if (n
>= (1UL << 20))
2059 sprintf(buf
, "%lu MB", n
>> 20);
2061 sprintf(buf
, "%lu KB", n
>> 10);
2065 static void __init
report_hugepages(void)
2069 for_each_hstate(h
) {
2071 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2072 memfmt(buf
, huge_page_size(h
)),
2073 h
->free_huge_pages
);
2077 #ifdef CONFIG_HIGHMEM
2078 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2079 nodemask_t
*nodes_allowed
)
2083 if (hstate_is_gigantic(h
))
2086 for_each_node_mask(i
, *nodes_allowed
) {
2087 struct page
*page
, *next
;
2088 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2089 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2090 if (count
>= h
->nr_huge_pages
)
2092 if (PageHighMem(page
))
2094 list_del(&page
->lru
);
2095 update_and_free_page(h
, page
);
2096 h
->free_huge_pages
--;
2097 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2102 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2103 nodemask_t
*nodes_allowed
)
2109 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2110 * balanced by operating on them in a round-robin fashion.
2111 * Returns 1 if an adjustment was made.
2113 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2118 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2121 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2122 if (h
->surplus_huge_pages_node
[node
])
2126 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2127 if (h
->surplus_huge_pages_node
[node
] <
2128 h
->nr_huge_pages_node
[node
])
2135 h
->surplus_huge_pages
+= delta
;
2136 h
->surplus_huge_pages_node
[node
] += delta
;
2140 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
2142 nodemask_t
*nodes_allowed
)
2144 unsigned long min_count
, ret
;
2146 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
2147 return h
->max_huge_pages
;
2150 * Increase the pool size
2151 * First take pages out of surplus state. Then make up the
2152 * remaining difference by allocating fresh huge pages.
2154 * We might race with __alloc_buddy_huge_page() here and be unable
2155 * to convert a surplus huge page to a normal huge page. That is
2156 * not critical, though, it just means the overall size of the
2157 * pool might be one hugepage larger than it needs to be, but
2158 * within all the constraints specified by the sysctls.
2160 spin_lock(&hugetlb_lock
);
2161 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2162 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2166 while (count
> persistent_huge_pages(h
)) {
2168 * If this allocation races such that we no longer need the
2169 * page, free_huge_page will handle it by freeing the page
2170 * and reducing the surplus.
2172 spin_unlock(&hugetlb_lock
);
2174 /* yield cpu to avoid soft lockup */
2177 if (hstate_is_gigantic(h
))
2178 ret
= alloc_fresh_gigantic_page(h
, nodes_allowed
);
2180 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
2181 spin_lock(&hugetlb_lock
);
2185 /* Bail for signals. Probably ctrl-c from user */
2186 if (signal_pending(current
))
2191 * Decrease the pool size
2192 * First return free pages to the buddy allocator (being careful
2193 * to keep enough around to satisfy reservations). Then place
2194 * pages into surplus state as needed so the pool will shrink
2195 * to the desired size as pages become free.
2197 * By placing pages into the surplus state independent of the
2198 * overcommit value, we are allowing the surplus pool size to
2199 * exceed overcommit. There are few sane options here. Since
2200 * __alloc_buddy_huge_page() is checking the global counter,
2201 * though, we'll note that we're not allowed to exceed surplus
2202 * and won't grow the pool anywhere else. Not until one of the
2203 * sysctls are changed, or the surplus pages go out of use.
2205 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2206 min_count
= max(count
, min_count
);
2207 try_to_free_low(h
, min_count
, nodes_allowed
);
2208 while (min_count
< persistent_huge_pages(h
)) {
2209 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2211 cond_resched_lock(&hugetlb_lock
);
2213 while (count
< persistent_huge_pages(h
)) {
2214 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2218 ret
= persistent_huge_pages(h
);
2219 spin_unlock(&hugetlb_lock
);
2223 #define HSTATE_ATTR_RO(_name) \
2224 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2226 #define HSTATE_ATTR(_name) \
2227 static struct kobj_attribute _name##_attr = \
2228 __ATTR(_name, 0644, _name##_show, _name##_store)
2230 static struct kobject
*hugepages_kobj
;
2231 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2233 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2235 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2239 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2240 if (hstate_kobjs
[i
] == kobj
) {
2242 *nidp
= NUMA_NO_NODE
;
2246 return kobj_to_node_hstate(kobj
, nidp
);
2249 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2250 struct kobj_attribute
*attr
, char *buf
)
2253 unsigned long nr_huge_pages
;
2256 h
= kobj_to_hstate(kobj
, &nid
);
2257 if (nid
== NUMA_NO_NODE
)
2258 nr_huge_pages
= h
->nr_huge_pages
;
2260 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2262 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2265 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2266 struct hstate
*h
, int nid
,
2267 unsigned long count
, size_t len
)
2270 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
2272 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
2277 if (nid
== NUMA_NO_NODE
) {
2279 * global hstate attribute
2281 if (!(obey_mempolicy
&&
2282 init_nodemask_of_mempolicy(nodes_allowed
))) {
2283 NODEMASK_FREE(nodes_allowed
);
2284 nodes_allowed
= &node_states
[N_MEMORY
];
2286 } else if (nodes_allowed
) {
2288 * per node hstate attribute: adjust count to global,
2289 * but restrict alloc/free to the specified node.
2291 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2292 init_nodemask_of_node(nodes_allowed
, nid
);
2294 nodes_allowed
= &node_states
[N_MEMORY
];
2296 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
2298 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2299 NODEMASK_FREE(nodes_allowed
);
2303 NODEMASK_FREE(nodes_allowed
);
2307 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2308 struct kobject
*kobj
, const char *buf
,
2312 unsigned long count
;
2316 err
= kstrtoul(buf
, 10, &count
);
2320 h
= kobj_to_hstate(kobj
, &nid
);
2321 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2324 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2325 struct kobj_attribute
*attr
, char *buf
)
2327 return nr_hugepages_show_common(kobj
, attr
, buf
);
2330 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2331 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2333 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2335 HSTATE_ATTR(nr_hugepages
);
2340 * hstate attribute for optionally mempolicy-based constraint on persistent
2341 * huge page alloc/free.
2343 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2344 struct kobj_attribute
*attr
, char *buf
)
2346 return nr_hugepages_show_common(kobj
, attr
, buf
);
2349 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2350 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2352 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2354 HSTATE_ATTR(nr_hugepages_mempolicy
);
2358 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2359 struct kobj_attribute
*attr
, char *buf
)
2361 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2362 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2365 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2366 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2369 unsigned long input
;
2370 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2372 if (hstate_is_gigantic(h
))
2375 err
= kstrtoul(buf
, 10, &input
);
2379 spin_lock(&hugetlb_lock
);
2380 h
->nr_overcommit_huge_pages
= input
;
2381 spin_unlock(&hugetlb_lock
);
2385 HSTATE_ATTR(nr_overcommit_hugepages
);
2387 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2388 struct kobj_attribute
*attr
, char *buf
)
2391 unsigned long free_huge_pages
;
2394 h
= kobj_to_hstate(kobj
, &nid
);
2395 if (nid
== NUMA_NO_NODE
)
2396 free_huge_pages
= h
->free_huge_pages
;
2398 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2400 return sprintf(buf
, "%lu\n", free_huge_pages
);
2402 HSTATE_ATTR_RO(free_hugepages
);
2404 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2405 struct kobj_attribute
*attr
, char *buf
)
2407 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2408 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2410 HSTATE_ATTR_RO(resv_hugepages
);
2412 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2413 struct kobj_attribute
*attr
, char *buf
)
2416 unsigned long surplus_huge_pages
;
2419 h
= kobj_to_hstate(kobj
, &nid
);
2420 if (nid
== NUMA_NO_NODE
)
2421 surplus_huge_pages
= h
->surplus_huge_pages
;
2423 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2425 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2427 HSTATE_ATTR_RO(surplus_hugepages
);
2429 static struct attribute
*hstate_attrs
[] = {
2430 &nr_hugepages_attr
.attr
,
2431 &nr_overcommit_hugepages_attr
.attr
,
2432 &free_hugepages_attr
.attr
,
2433 &resv_hugepages_attr
.attr
,
2434 &surplus_hugepages_attr
.attr
,
2436 &nr_hugepages_mempolicy_attr
.attr
,
2441 static struct attribute_group hstate_attr_group
= {
2442 .attrs
= hstate_attrs
,
2445 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2446 struct kobject
**hstate_kobjs
,
2447 struct attribute_group
*hstate_attr_group
)
2450 int hi
= hstate_index(h
);
2452 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2453 if (!hstate_kobjs
[hi
])
2456 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2458 kobject_put(hstate_kobjs
[hi
]);
2463 static void __init
hugetlb_sysfs_init(void)
2468 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2469 if (!hugepages_kobj
)
2472 for_each_hstate(h
) {
2473 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2474 hstate_kobjs
, &hstate_attr_group
);
2476 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2483 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2484 * with node devices in node_devices[] using a parallel array. The array
2485 * index of a node device or _hstate == node id.
2486 * This is here to avoid any static dependency of the node device driver, in
2487 * the base kernel, on the hugetlb module.
2489 struct node_hstate
{
2490 struct kobject
*hugepages_kobj
;
2491 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2493 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2496 * A subset of global hstate attributes for node devices
2498 static struct attribute
*per_node_hstate_attrs
[] = {
2499 &nr_hugepages_attr
.attr
,
2500 &free_hugepages_attr
.attr
,
2501 &surplus_hugepages_attr
.attr
,
2505 static struct attribute_group per_node_hstate_attr_group
= {
2506 .attrs
= per_node_hstate_attrs
,
2510 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2511 * Returns node id via non-NULL nidp.
2513 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2517 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2518 struct node_hstate
*nhs
= &node_hstates
[nid
];
2520 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2521 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2533 * Unregister hstate attributes from a single node device.
2534 * No-op if no hstate attributes attached.
2536 static void hugetlb_unregister_node(struct node
*node
)
2539 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2541 if (!nhs
->hugepages_kobj
)
2542 return; /* no hstate attributes */
2544 for_each_hstate(h
) {
2545 int idx
= hstate_index(h
);
2546 if (nhs
->hstate_kobjs
[idx
]) {
2547 kobject_put(nhs
->hstate_kobjs
[idx
]);
2548 nhs
->hstate_kobjs
[idx
] = NULL
;
2552 kobject_put(nhs
->hugepages_kobj
);
2553 nhs
->hugepages_kobj
= NULL
;
2557 * hugetlb module exit: unregister hstate attributes from node devices
2560 static void hugetlb_unregister_all_nodes(void)
2565 * disable node device registrations.
2567 register_hugetlbfs_with_node(NULL
, NULL
);
2570 * remove hstate attributes from any nodes that have them.
2572 for (nid
= 0; nid
< nr_node_ids
; nid
++)
2573 hugetlb_unregister_node(node_devices
[nid
]);
2577 * Register hstate attributes for a single node device.
2578 * No-op if attributes already registered.
2580 static void hugetlb_register_node(struct node
*node
)
2583 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2586 if (nhs
->hugepages_kobj
)
2587 return; /* already allocated */
2589 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2591 if (!nhs
->hugepages_kobj
)
2594 for_each_hstate(h
) {
2595 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2597 &per_node_hstate_attr_group
);
2599 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2600 h
->name
, node
->dev
.id
);
2601 hugetlb_unregister_node(node
);
2608 * hugetlb init time: register hstate attributes for all registered node
2609 * devices of nodes that have memory. All on-line nodes should have
2610 * registered their associated device by this time.
2612 static void __init
hugetlb_register_all_nodes(void)
2616 for_each_node_state(nid
, N_MEMORY
) {
2617 struct node
*node
= node_devices
[nid
];
2618 if (node
->dev
.id
== nid
)
2619 hugetlb_register_node(node
);
2623 * Let the node device driver know we're here so it can
2624 * [un]register hstate attributes on node hotplug.
2626 register_hugetlbfs_with_node(hugetlb_register_node
,
2627 hugetlb_unregister_node
);
2629 #else /* !CONFIG_NUMA */
2631 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2639 static void hugetlb_unregister_all_nodes(void) { }
2641 static void hugetlb_register_all_nodes(void) { }
2645 static void __exit
hugetlb_exit(void)
2649 hugetlb_unregister_all_nodes();
2651 for_each_hstate(h
) {
2652 kobject_put(hstate_kobjs
[hstate_index(h
)]);
2655 kobject_put(hugepages_kobj
);
2656 kfree(hugetlb_fault_mutex_table
);
2658 module_exit(hugetlb_exit
);
2660 static int __init
hugetlb_init(void)
2664 if (!hugepages_supported())
2667 if (!size_to_hstate(default_hstate_size
)) {
2668 default_hstate_size
= HPAGE_SIZE
;
2669 if (!size_to_hstate(default_hstate_size
))
2670 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2672 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2673 if (default_hstate_max_huge_pages
)
2674 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2676 hugetlb_init_hstates();
2677 gather_bootmem_prealloc();
2680 hugetlb_sysfs_init();
2681 hugetlb_register_all_nodes();
2682 hugetlb_cgroup_file_init();
2685 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2687 num_fault_mutexes
= 1;
2689 hugetlb_fault_mutex_table
=
2690 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2691 BUG_ON(!hugetlb_fault_mutex_table
);
2693 for (i
= 0; i
< num_fault_mutexes
; i
++)
2694 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2697 module_init(hugetlb_init
);
2699 /* Should be called on processing a hugepagesz=... option */
2700 void __init
hugetlb_add_hstate(unsigned int order
)
2705 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2706 pr_warning("hugepagesz= specified twice, ignoring\n");
2709 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2711 h
= &hstates
[hugetlb_max_hstate
++];
2713 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2714 h
->nr_huge_pages
= 0;
2715 h
->free_huge_pages
= 0;
2716 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2717 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2718 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2719 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
2720 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
2721 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2722 huge_page_size(h
)/1024);
2727 static int __init
hugetlb_nrpages_setup(char *s
)
2730 static unsigned long *last_mhp
;
2733 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2734 * so this hugepages= parameter goes to the "default hstate".
2736 if (!hugetlb_max_hstate
)
2737 mhp
= &default_hstate_max_huge_pages
;
2739 mhp
= &parsed_hstate
->max_huge_pages
;
2741 if (mhp
== last_mhp
) {
2742 pr_warning("hugepages= specified twice without "
2743 "interleaving hugepagesz=, ignoring\n");
2747 if (sscanf(s
, "%lu", mhp
) <= 0)
2751 * Global state is always initialized later in hugetlb_init.
2752 * But we need to allocate >= MAX_ORDER hstates here early to still
2753 * use the bootmem allocator.
2755 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2756 hugetlb_hstate_alloc_pages(parsed_hstate
);
2762 __setup("hugepages=", hugetlb_nrpages_setup
);
2764 static int __init
hugetlb_default_setup(char *s
)
2766 default_hstate_size
= memparse(s
, &s
);
2769 __setup("default_hugepagesz=", hugetlb_default_setup
);
2771 static unsigned int cpuset_mems_nr(unsigned int *array
)
2774 unsigned int nr
= 0;
2776 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2782 #ifdef CONFIG_SYSCTL
2783 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2784 struct ctl_table
*table
, int write
,
2785 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2787 struct hstate
*h
= &default_hstate
;
2788 unsigned long tmp
= h
->max_huge_pages
;
2791 if (!hugepages_supported())
2795 table
->maxlen
= sizeof(unsigned long);
2796 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2801 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2802 NUMA_NO_NODE
, tmp
, *length
);
2807 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2808 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2811 return hugetlb_sysctl_handler_common(false, table
, write
,
2812 buffer
, length
, ppos
);
2816 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2817 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2819 return hugetlb_sysctl_handler_common(true, table
, write
,
2820 buffer
, length
, ppos
);
2822 #endif /* CONFIG_NUMA */
2824 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2825 void __user
*buffer
,
2826 size_t *length
, loff_t
*ppos
)
2828 struct hstate
*h
= &default_hstate
;
2832 if (!hugepages_supported())
2835 tmp
= h
->nr_overcommit_huge_pages
;
2837 if (write
&& hstate_is_gigantic(h
))
2841 table
->maxlen
= sizeof(unsigned long);
2842 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2847 spin_lock(&hugetlb_lock
);
2848 h
->nr_overcommit_huge_pages
= tmp
;
2849 spin_unlock(&hugetlb_lock
);
2855 #endif /* CONFIG_SYSCTL */
2857 void hugetlb_report_meminfo(struct seq_file
*m
)
2859 struct hstate
*h
= &default_hstate
;
2860 if (!hugepages_supported())
2863 "HugePages_Total: %5lu\n"
2864 "HugePages_Free: %5lu\n"
2865 "HugePages_Rsvd: %5lu\n"
2866 "HugePages_Surp: %5lu\n"
2867 "Hugepagesize: %8lu kB\n",
2871 h
->surplus_huge_pages
,
2872 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2875 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2877 struct hstate
*h
= &default_hstate
;
2878 if (!hugepages_supported())
2881 "Node %d HugePages_Total: %5u\n"
2882 "Node %d HugePages_Free: %5u\n"
2883 "Node %d HugePages_Surp: %5u\n",
2884 nid
, h
->nr_huge_pages_node
[nid
],
2885 nid
, h
->free_huge_pages_node
[nid
],
2886 nid
, h
->surplus_huge_pages_node
[nid
]);
2889 void hugetlb_show_meminfo(void)
2894 if (!hugepages_supported())
2897 for_each_node_state(nid
, N_MEMORY
)
2899 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2901 h
->nr_huge_pages_node
[nid
],
2902 h
->free_huge_pages_node
[nid
],
2903 h
->surplus_huge_pages_node
[nid
],
2904 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2907 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
2909 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
2910 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
2913 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2914 unsigned long hugetlb_total_pages(void)
2917 unsigned long nr_total_pages
= 0;
2920 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2921 return nr_total_pages
;
2924 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2928 spin_lock(&hugetlb_lock
);
2930 * When cpuset is configured, it breaks the strict hugetlb page
2931 * reservation as the accounting is done on a global variable. Such
2932 * reservation is completely rubbish in the presence of cpuset because
2933 * the reservation is not checked against page availability for the
2934 * current cpuset. Application can still potentially OOM'ed by kernel
2935 * with lack of free htlb page in cpuset that the task is in.
2936 * Attempt to enforce strict accounting with cpuset is almost
2937 * impossible (or too ugly) because cpuset is too fluid that
2938 * task or memory node can be dynamically moved between cpusets.
2940 * The change of semantics for shared hugetlb mapping with cpuset is
2941 * undesirable. However, in order to preserve some of the semantics,
2942 * we fall back to check against current free page availability as
2943 * a best attempt and hopefully to minimize the impact of changing
2944 * semantics that cpuset has.
2947 if (gather_surplus_pages(h
, delta
) < 0)
2950 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2951 return_unused_surplus_pages(h
, delta
);
2958 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2961 spin_unlock(&hugetlb_lock
);
2965 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2967 struct resv_map
*resv
= vma_resv_map(vma
);
2970 * This new VMA should share its siblings reservation map if present.
2971 * The VMA will only ever have a valid reservation map pointer where
2972 * it is being copied for another still existing VMA. As that VMA
2973 * has a reference to the reservation map it cannot disappear until
2974 * after this open call completes. It is therefore safe to take a
2975 * new reference here without additional locking.
2977 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2978 kref_get(&resv
->refs
);
2981 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2983 struct hstate
*h
= hstate_vma(vma
);
2984 struct resv_map
*resv
= vma_resv_map(vma
);
2985 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2986 unsigned long reserve
, start
, end
;
2989 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2992 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2993 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2995 reserve
= (end
- start
) - region_count(resv
, start
, end
);
2997 kref_put(&resv
->refs
, resv_map_release
);
3001 * Decrement reserve counts. The global reserve count may be
3002 * adjusted if the subpool has a minimum size.
3004 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3005 hugetlb_acct_memory(h
, -gbl_reserve
);
3010 * We cannot handle pagefaults against hugetlb pages at all. They cause
3011 * handle_mm_fault() to try to instantiate regular-sized pages in the
3012 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3015 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3021 const struct vm_operations_struct hugetlb_vm_ops
= {
3022 .fault
= hugetlb_vm_op_fault
,
3023 .open
= hugetlb_vm_op_open
,
3024 .close
= hugetlb_vm_op_close
,
3027 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3033 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3034 vma
->vm_page_prot
)));
3036 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3037 vma
->vm_page_prot
));
3039 entry
= pte_mkyoung(entry
);
3040 entry
= pte_mkhuge(entry
);
3041 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3046 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3047 unsigned long address
, pte_t
*ptep
)
3051 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3052 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3053 update_mmu_cache(vma
, address
, ptep
);
3056 static int is_hugetlb_entry_migration(pte_t pte
)
3060 if (huge_pte_none(pte
) || pte_present(pte
))
3062 swp
= pte_to_swp_entry(pte
);
3063 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3069 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3073 if (huge_pte_none(pte
) || pte_present(pte
))
3075 swp
= pte_to_swp_entry(pte
);
3076 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3082 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3083 struct vm_area_struct
*vma
)
3085 pte_t
*src_pte
, *dst_pte
, entry
;
3086 struct page
*ptepage
;
3089 struct hstate
*h
= hstate_vma(vma
);
3090 unsigned long sz
= huge_page_size(h
);
3091 unsigned long mmun_start
; /* For mmu_notifiers */
3092 unsigned long mmun_end
; /* For mmu_notifiers */
3095 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3097 mmun_start
= vma
->vm_start
;
3098 mmun_end
= vma
->vm_end
;
3100 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
3102 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3103 spinlock_t
*src_ptl
, *dst_ptl
;
3104 src_pte
= huge_pte_offset(src
, addr
);
3107 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3113 /* If the pagetables are shared don't copy or take references */
3114 if (dst_pte
== src_pte
)
3117 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3118 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3119 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3120 entry
= huge_ptep_get(src_pte
);
3121 if (huge_pte_none(entry
)) { /* skip none entry */
3123 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3124 is_hugetlb_entry_hwpoisoned(entry
))) {
3125 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3127 if (is_write_migration_entry(swp_entry
) && cow
) {
3129 * COW mappings require pages in both
3130 * parent and child to be set to read.
3132 make_migration_entry_read(&swp_entry
);
3133 entry
= swp_entry_to_pte(swp_entry
);
3134 set_huge_pte_at(src
, addr
, src_pte
, entry
);
3136 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3139 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3140 mmu_notifier_invalidate_range(src
, mmun_start
,
3143 entry
= huge_ptep_get(src_pte
);
3144 ptepage
= pte_page(entry
);
3146 page_dup_rmap(ptepage
);
3147 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3148 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3150 spin_unlock(src_ptl
);
3151 spin_unlock(dst_ptl
);
3155 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
3160 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3161 unsigned long start
, unsigned long end
,
3162 struct page
*ref_page
)
3164 int force_flush
= 0;
3165 struct mm_struct
*mm
= vma
->vm_mm
;
3166 unsigned long address
;
3171 struct hstate
*h
= hstate_vma(vma
);
3172 unsigned long sz
= huge_page_size(h
);
3173 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
3174 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
3176 WARN_ON(!is_vm_hugetlb_page(vma
));
3177 BUG_ON(start
& ~huge_page_mask(h
));
3178 BUG_ON(end
& ~huge_page_mask(h
));
3180 tlb_start_vma(tlb
, vma
);
3181 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3184 for (; address
< end
; address
+= sz
) {
3185 ptep
= huge_pte_offset(mm
, address
);
3189 ptl
= huge_pte_lock(h
, mm
, ptep
);
3190 if (huge_pmd_unshare(mm
, &address
, ptep
))
3193 pte
= huge_ptep_get(ptep
);
3194 if (huge_pte_none(pte
))
3198 * Migrating hugepage or HWPoisoned hugepage is already
3199 * unmapped and its refcount is dropped, so just clear pte here.
3201 if (unlikely(!pte_present(pte
))) {
3202 huge_pte_clear(mm
, address
, ptep
);
3206 page
= pte_page(pte
);
3208 * If a reference page is supplied, it is because a specific
3209 * page is being unmapped, not a range. Ensure the page we
3210 * are about to unmap is the actual page of interest.
3213 if (page
!= ref_page
)
3217 * Mark the VMA as having unmapped its page so that
3218 * future faults in this VMA will fail rather than
3219 * looking like data was lost
3221 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3224 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3225 tlb_remove_tlb_entry(tlb
, ptep
, address
);
3226 if (huge_pte_dirty(pte
))
3227 set_page_dirty(page
);
3229 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3230 page_remove_rmap(page
);
3231 force_flush
= !__tlb_remove_page(tlb
, page
);
3237 /* Bail out after unmapping reference page if supplied */
3246 * mmu_gather ran out of room to batch pages, we break out of
3247 * the PTE lock to avoid doing the potential expensive TLB invalidate
3248 * and page-free while holding it.
3253 if (address
< end
&& !ref_page
)
3256 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3257 tlb_end_vma(tlb
, vma
);
3260 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3261 struct vm_area_struct
*vma
, unsigned long start
,
3262 unsigned long end
, struct page
*ref_page
)
3264 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3267 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3268 * test will fail on a vma being torn down, and not grab a page table
3269 * on its way out. We're lucky that the flag has such an appropriate
3270 * name, and can in fact be safely cleared here. We could clear it
3271 * before the __unmap_hugepage_range above, but all that's necessary
3272 * is to clear it before releasing the i_mmap_rwsem. This works
3273 * because in the context this is called, the VMA is about to be
3274 * destroyed and the i_mmap_rwsem is held.
3276 vma
->vm_flags
&= ~VM_MAYSHARE
;
3279 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3280 unsigned long end
, struct page
*ref_page
)
3282 struct mm_struct
*mm
;
3283 struct mmu_gather tlb
;
3287 tlb_gather_mmu(&tlb
, mm
, start
, end
);
3288 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3289 tlb_finish_mmu(&tlb
, start
, end
);
3293 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3294 * mappping it owns the reserve page for. The intention is to unmap the page
3295 * from other VMAs and let the children be SIGKILLed if they are faulting the
3298 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3299 struct page
*page
, unsigned long address
)
3301 struct hstate
*h
= hstate_vma(vma
);
3302 struct vm_area_struct
*iter_vma
;
3303 struct address_space
*mapping
;
3307 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3308 * from page cache lookup which is in HPAGE_SIZE units.
3310 address
= address
& huge_page_mask(h
);
3311 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3313 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
3316 * Take the mapping lock for the duration of the table walk. As
3317 * this mapping should be shared between all the VMAs,
3318 * __unmap_hugepage_range() is called as the lock is already held
3320 i_mmap_lock_write(mapping
);
3321 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3322 /* Do not unmap the current VMA */
3323 if (iter_vma
== vma
)
3327 * Shared VMAs have their own reserves and do not affect
3328 * MAP_PRIVATE accounting but it is possible that a shared
3329 * VMA is using the same page so check and skip such VMAs.
3331 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3335 * Unmap the page from other VMAs without their own reserves.
3336 * They get marked to be SIGKILLed if they fault in these
3337 * areas. This is because a future no-page fault on this VMA
3338 * could insert a zeroed page instead of the data existing
3339 * from the time of fork. This would look like data corruption
3341 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3342 unmap_hugepage_range(iter_vma
, address
,
3343 address
+ huge_page_size(h
), page
);
3345 i_mmap_unlock_write(mapping
);
3349 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3350 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3351 * cannot race with other handlers or page migration.
3352 * Keep the pte_same checks anyway to make transition from the mutex easier.
3354 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3355 unsigned long address
, pte_t
*ptep
, pte_t pte
,
3356 struct page
*pagecache_page
, spinlock_t
*ptl
)
3358 struct hstate
*h
= hstate_vma(vma
);
3359 struct page
*old_page
, *new_page
;
3360 int ret
= 0, outside_reserve
= 0;
3361 unsigned long mmun_start
; /* For mmu_notifiers */
3362 unsigned long mmun_end
; /* For mmu_notifiers */
3364 old_page
= pte_page(pte
);
3367 /* If no-one else is actually using this page, avoid the copy
3368 * and just make the page writable */
3369 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3370 page_move_anon_rmap(old_page
, vma
, address
);
3371 set_huge_ptep_writable(vma
, address
, ptep
);
3376 * If the process that created a MAP_PRIVATE mapping is about to
3377 * perform a COW due to a shared page count, attempt to satisfy
3378 * the allocation without using the existing reserves. The pagecache
3379 * page is used to determine if the reserve at this address was
3380 * consumed or not. If reserves were used, a partial faulted mapping
3381 * at the time of fork() could consume its reserves on COW instead
3382 * of the full address range.
3384 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3385 old_page
!= pagecache_page
)
3386 outside_reserve
= 1;
3388 page_cache_get(old_page
);
3391 * Drop page table lock as buddy allocator may be called. It will
3392 * be acquired again before returning to the caller, as expected.
3395 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
3397 if (IS_ERR(new_page
)) {
3399 * If a process owning a MAP_PRIVATE mapping fails to COW,
3400 * it is due to references held by a child and an insufficient
3401 * huge page pool. To guarantee the original mappers
3402 * reliability, unmap the page from child processes. The child
3403 * may get SIGKILLed if it later faults.
3405 if (outside_reserve
) {
3406 page_cache_release(old_page
);
3407 BUG_ON(huge_pte_none(pte
));
3408 unmap_ref_private(mm
, vma
, old_page
, address
);
3409 BUG_ON(huge_pte_none(pte
));
3411 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3413 pte_same(huge_ptep_get(ptep
), pte
)))
3414 goto retry_avoidcopy
;
3416 * race occurs while re-acquiring page table
3417 * lock, and our job is done.
3422 ret
= (PTR_ERR(new_page
) == -ENOMEM
) ?
3423 VM_FAULT_OOM
: VM_FAULT_SIGBUS
;
3424 goto out_release_old
;
3428 * When the original hugepage is shared one, it does not have
3429 * anon_vma prepared.
3431 if (unlikely(anon_vma_prepare(vma
))) {
3433 goto out_release_all
;
3436 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3437 pages_per_huge_page(h
));
3438 __SetPageUptodate(new_page
);
3439 set_page_huge_active(new_page
);
3441 mmun_start
= address
& huge_page_mask(h
);
3442 mmun_end
= mmun_start
+ huge_page_size(h
);
3443 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3446 * Retake the page table lock to check for racing updates
3447 * before the page tables are altered
3450 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
3451 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3452 ClearPagePrivate(new_page
);
3455 huge_ptep_clear_flush(vma
, address
, ptep
);
3456 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
3457 set_huge_pte_at(mm
, address
, ptep
,
3458 make_huge_pte(vma
, new_page
, 1));
3459 page_remove_rmap(old_page
);
3460 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
3461 /* Make the old page be freed below */
3462 new_page
= old_page
;
3465 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3467 page_cache_release(new_page
);
3469 page_cache_release(old_page
);
3471 spin_lock(ptl
); /* Caller expects lock to be held */
3475 /* Return the pagecache page at a given address within a VMA */
3476 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3477 struct vm_area_struct
*vma
, unsigned long address
)
3479 struct address_space
*mapping
;
3482 mapping
= vma
->vm_file
->f_mapping
;
3483 idx
= vma_hugecache_offset(h
, vma
, address
);
3485 return find_lock_page(mapping
, idx
);
3489 * Return whether there is a pagecache page to back given address within VMA.
3490 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3492 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3493 struct vm_area_struct
*vma
, unsigned long address
)
3495 struct address_space
*mapping
;
3499 mapping
= vma
->vm_file
->f_mapping
;
3500 idx
= vma_hugecache_offset(h
, vma
, address
);
3502 page
= find_get_page(mapping
, idx
);
3505 return page
!= NULL
;
3508 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3511 struct inode
*inode
= mapping
->host
;
3512 struct hstate
*h
= hstate_inode(inode
);
3513 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3517 ClearPagePrivate(page
);
3519 spin_lock(&inode
->i_lock
);
3520 inode
->i_blocks
+= blocks_per_huge_page(h
);
3521 spin_unlock(&inode
->i_lock
);
3525 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3526 struct address_space
*mapping
, pgoff_t idx
,
3527 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3529 struct hstate
*h
= hstate_vma(vma
);
3530 int ret
= VM_FAULT_SIGBUS
;
3538 * Currently, we are forced to kill the process in the event the
3539 * original mapper has unmapped pages from the child due to a failed
3540 * COW. Warn that such a situation has occurred as it may not be obvious
3542 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3543 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3549 * Use page lock to guard against racing truncation
3550 * before we get page_table_lock.
3553 page
= find_lock_page(mapping
, idx
);
3555 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3558 page
= alloc_huge_page(vma
, address
, 0);
3560 ret
= PTR_ERR(page
);
3564 ret
= VM_FAULT_SIGBUS
;
3567 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3568 __SetPageUptodate(page
);
3569 set_page_huge_active(page
);
3571 if (vma
->vm_flags
& VM_MAYSHARE
) {
3572 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3581 if (unlikely(anon_vma_prepare(vma
))) {
3583 goto backout_unlocked
;
3589 * If memory error occurs between mmap() and fault, some process
3590 * don't have hwpoisoned swap entry for errored virtual address.
3591 * So we need to block hugepage fault by PG_hwpoison bit check.
3593 if (unlikely(PageHWPoison(page
))) {
3594 ret
= VM_FAULT_HWPOISON
|
3595 VM_FAULT_SET_HINDEX(hstate_index(h
));
3596 goto backout_unlocked
;
3601 * If we are going to COW a private mapping later, we examine the
3602 * pending reservations for this page now. This will ensure that
3603 * any allocations necessary to record that reservation occur outside
3606 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3607 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3609 goto backout_unlocked
;
3611 /* Just decrements count, does not deallocate */
3612 vma_end_reservation(h
, vma
, address
);
3615 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
3617 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3622 if (!huge_pte_none(huge_ptep_get(ptep
)))
3626 ClearPagePrivate(page
);
3627 hugepage_add_new_anon_rmap(page
, vma
, address
);
3629 page_dup_rmap(page
);
3630 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3631 && (vma
->vm_flags
& VM_SHARED
)));
3632 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
3634 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3635 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3636 /* Optimization, do the COW without a second fault */
3637 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
, ptl
);
3654 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3655 struct vm_area_struct
*vma
,
3656 struct address_space
*mapping
,
3657 pgoff_t idx
, unsigned long address
)
3659 unsigned long key
[2];
3662 if (vma
->vm_flags
& VM_SHARED
) {
3663 key
[0] = (unsigned long) mapping
;
3666 key
[0] = (unsigned long) mm
;
3667 key
[1] = address
>> huge_page_shift(h
);
3670 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3672 return hash
& (num_fault_mutexes
- 1);
3676 * For uniprocesor systems we always use a single mutex, so just
3677 * return 0 and avoid the hashing overhead.
3679 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3680 struct vm_area_struct
*vma
,
3681 struct address_space
*mapping
,
3682 pgoff_t idx
, unsigned long address
)
3688 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3689 unsigned long address
, unsigned int flags
)
3696 struct page
*page
= NULL
;
3697 struct page
*pagecache_page
= NULL
;
3698 struct hstate
*h
= hstate_vma(vma
);
3699 struct address_space
*mapping
;
3700 int need_wait_lock
= 0;
3702 address
&= huge_page_mask(h
);
3704 ptep
= huge_pte_offset(mm
, address
);
3706 entry
= huge_ptep_get(ptep
);
3707 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3708 migration_entry_wait_huge(vma
, mm
, ptep
);
3710 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3711 return VM_FAULT_HWPOISON_LARGE
|
3712 VM_FAULT_SET_HINDEX(hstate_index(h
));
3714 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
3716 return VM_FAULT_OOM
;
3719 mapping
= vma
->vm_file
->f_mapping
;
3720 idx
= vma_hugecache_offset(h
, vma
, address
);
3723 * Serialize hugepage allocation and instantiation, so that we don't
3724 * get spurious allocation failures if two CPUs race to instantiate
3725 * the same page in the page cache.
3727 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
3728 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3730 entry
= huge_ptep_get(ptep
);
3731 if (huge_pte_none(entry
)) {
3732 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3739 * entry could be a migration/hwpoison entry at this point, so this
3740 * check prevents the kernel from going below assuming that we have
3741 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3742 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3745 if (!pte_present(entry
))
3749 * If we are going to COW the mapping later, we examine the pending
3750 * reservations for this page now. This will ensure that any
3751 * allocations necessary to record that reservation occur outside the
3752 * spinlock. For private mappings, we also lookup the pagecache
3753 * page now as it is used to determine if a reservation has been
3756 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3757 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3761 /* Just decrements count, does not deallocate */
3762 vma_end_reservation(h
, vma
, address
);
3764 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3765 pagecache_page
= hugetlbfs_pagecache_page(h
,
3769 ptl
= huge_pte_lock(h
, mm
, ptep
);
3771 /* Check for a racing update before calling hugetlb_cow */
3772 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3776 * hugetlb_cow() requires page locks of pte_page(entry) and
3777 * pagecache_page, so here we need take the former one
3778 * when page != pagecache_page or !pagecache_page.
3780 page
= pte_page(entry
);
3781 if (page
!= pagecache_page
)
3782 if (!trylock_page(page
)) {
3789 if (flags
& FAULT_FLAG_WRITE
) {
3790 if (!huge_pte_write(entry
)) {
3791 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
3792 pagecache_page
, ptl
);
3795 entry
= huge_pte_mkdirty(entry
);
3797 entry
= pte_mkyoung(entry
);
3798 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3799 flags
& FAULT_FLAG_WRITE
))
3800 update_mmu_cache(vma
, address
, ptep
);
3802 if (page
!= pagecache_page
)
3808 if (pagecache_page
) {
3809 unlock_page(pagecache_page
);
3810 put_page(pagecache_page
);
3813 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3815 * Generally it's safe to hold refcount during waiting page lock. But
3816 * here we just wait to defer the next page fault to avoid busy loop and
3817 * the page is not used after unlocked before returning from the current
3818 * page fault. So we are safe from accessing freed page, even if we wait
3819 * here without taking refcount.
3822 wait_on_page_locked(page
);
3826 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3827 struct page
**pages
, struct vm_area_struct
**vmas
,
3828 unsigned long *position
, unsigned long *nr_pages
,
3829 long i
, unsigned int flags
)
3831 unsigned long pfn_offset
;
3832 unsigned long vaddr
= *position
;
3833 unsigned long remainder
= *nr_pages
;
3834 struct hstate
*h
= hstate_vma(vma
);
3836 while (vaddr
< vma
->vm_end
&& remainder
) {
3838 spinlock_t
*ptl
= NULL
;
3843 * If we have a pending SIGKILL, don't keep faulting pages and
3844 * potentially allocating memory.
3846 if (unlikely(fatal_signal_pending(current
))) {
3852 * Some archs (sparc64, sh*) have multiple pte_ts to
3853 * each hugepage. We have to make sure we get the
3854 * first, for the page indexing below to work.
3856 * Note that page table lock is not held when pte is null.
3858 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3860 ptl
= huge_pte_lock(h
, mm
, pte
);
3861 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3864 * When coredumping, it suits get_dump_page if we just return
3865 * an error where there's an empty slot with no huge pagecache
3866 * to back it. This way, we avoid allocating a hugepage, and
3867 * the sparse dumpfile avoids allocating disk blocks, but its
3868 * huge holes still show up with zeroes where they need to be.
3870 if (absent
&& (flags
& FOLL_DUMP
) &&
3871 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3879 * We need call hugetlb_fault for both hugepages under migration
3880 * (in which case hugetlb_fault waits for the migration,) and
3881 * hwpoisoned hugepages (in which case we need to prevent the
3882 * caller from accessing to them.) In order to do this, we use
3883 * here is_swap_pte instead of is_hugetlb_entry_migration and
3884 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3885 * both cases, and because we can't follow correct pages
3886 * directly from any kind of swap entries.
3888 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3889 ((flags
& FOLL_WRITE
) &&
3890 !huge_pte_write(huge_ptep_get(pte
)))) {
3895 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3896 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3897 if (!(ret
& VM_FAULT_ERROR
))
3904 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3905 page
= pte_page(huge_ptep_get(pte
));
3908 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3909 get_page_foll(pages
[i
]);
3919 if (vaddr
< vma
->vm_end
&& remainder
&&
3920 pfn_offset
< pages_per_huge_page(h
)) {
3922 * We use pfn_offset to avoid touching the pageframes
3923 * of this compound page.
3929 *nr_pages
= remainder
;
3932 return i
? i
: -EFAULT
;
3935 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3936 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3938 struct mm_struct
*mm
= vma
->vm_mm
;
3939 unsigned long start
= address
;
3942 struct hstate
*h
= hstate_vma(vma
);
3943 unsigned long pages
= 0;
3945 BUG_ON(address
>= end
);
3946 flush_cache_range(vma
, address
, end
);
3948 mmu_notifier_invalidate_range_start(mm
, start
, end
);
3949 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
3950 for (; address
< end
; address
+= huge_page_size(h
)) {
3952 ptep
= huge_pte_offset(mm
, address
);
3955 ptl
= huge_pte_lock(h
, mm
, ptep
);
3956 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3961 pte
= huge_ptep_get(ptep
);
3962 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
3966 if (unlikely(is_hugetlb_entry_migration(pte
))) {
3967 swp_entry_t entry
= pte_to_swp_entry(pte
);
3969 if (is_write_migration_entry(entry
)) {
3972 make_migration_entry_read(&entry
);
3973 newpte
= swp_entry_to_pte(entry
);
3974 set_huge_pte_at(mm
, address
, ptep
, newpte
);
3980 if (!huge_pte_none(pte
)) {
3981 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3982 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3983 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3984 set_huge_pte_at(mm
, address
, ptep
, pte
);
3990 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3991 * may have cleared our pud entry and done put_page on the page table:
3992 * once we release i_mmap_rwsem, another task can do the final put_page
3993 * and that page table be reused and filled with junk.
3995 flush_tlb_range(vma
, start
, end
);
3996 mmu_notifier_invalidate_range(mm
, start
, end
);
3997 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
3998 mmu_notifier_invalidate_range_end(mm
, start
, end
);
4000 return pages
<< h
->order
;
4003 int hugetlb_reserve_pages(struct inode
*inode
,
4005 struct vm_area_struct
*vma
,
4006 vm_flags_t vm_flags
)
4009 struct hstate
*h
= hstate_inode(inode
);
4010 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4011 struct resv_map
*resv_map
;
4015 * Only apply hugepage reservation if asked. At fault time, an
4016 * attempt will be made for VM_NORESERVE to allocate a page
4017 * without using reserves
4019 if (vm_flags
& VM_NORESERVE
)
4023 * Shared mappings base their reservation on the number of pages that
4024 * are already allocated on behalf of the file. Private mappings need
4025 * to reserve the full area even if read-only as mprotect() may be
4026 * called to make the mapping read-write. Assume !vma is a shm mapping
4028 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4029 resv_map
= inode_resv_map(inode
);
4031 chg
= region_chg(resv_map
, from
, to
);
4034 resv_map
= resv_map_alloc();
4040 set_vma_resv_map(vma
, resv_map
);
4041 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4050 * There must be enough pages in the subpool for the mapping. If
4051 * the subpool has a minimum size, there may be some global
4052 * reservations already in place (gbl_reserve).
4054 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4055 if (gbl_reserve
< 0) {
4061 * Check enough hugepages are available for the reservation.
4062 * Hand the pages back to the subpool if there are not
4064 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4066 /* put back original number of pages, chg */
4067 (void)hugepage_subpool_put_pages(spool
, chg
);
4072 * Account for the reservations made. Shared mappings record regions
4073 * that have reservations as they are shared by multiple VMAs.
4074 * When the last VMA disappears, the region map says how much
4075 * the reservation was and the page cache tells how much of
4076 * the reservation was consumed. Private mappings are per-VMA and
4077 * only the consumed reservations are tracked. When the VMA
4078 * disappears, the original reservation is the VMA size and the
4079 * consumed reservations are stored in the map. Hence, nothing
4080 * else has to be done for private mappings here
4082 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4083 long add
= region_add(resv_map
, from
, to
);
4085 if (unlikely(chg
> add
)) {
4087 * pages in this range were added to the reserve
4088 * map between region_chg and region_add. This
4089 * indicates a race with alloc_huge_page. Adjust
4090 * the subpool and reserve counts modified above
4091 * based on the difference.
4095 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4097 hugetlb_acct_memory(h
, -rsv_adjust
);
4102 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4103 region_abort(resv_map
, from
, to
);
4104 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4105 kref_put(&resv_map
->refs
, resv_map_release
);
4109 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4112 struct hstate
*h
= hstate_inode(inode
);
4113 struct resv_map
*resv_map
= inode_resv_map(inode
);
4115 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4119 chg
= region_del(resv_map
, start
, end
);
4121 * region_del() can fail in the rare case where a region
4122 * must be split and another region descriptor can not be
4123 * allocated. If end == LONG_MAX, it will not fail.
4129 spin_lock(&inode
->i_lock
);
4130 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4131 spin_unlock(&inode
->i_lock
);
4134 * If the subpool has a minimum size, the number of global
4135 * reservations to be released may be adjusted.
4137 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4138 hugetlb_acct_memory(h
, -gbl_reserve
);
4143 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4144 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4145 struct vm_area_struct
*vma
,
4146 unsigned long addr
, pgoff_t idx
)
4148 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4150 unsigned long sbase
= saddr
& PUD_MASK
;
4151 unsigned long s_end
= sbase
+ PUD_SIZE
;
4153 /* Allow segments to share if only one is marked locked */
4154 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4155 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4158 * match the virtual addresses, permission and the alignment of the
4161 if (pmd_index(addr
) != pmd_index(saddr
) ||
4162 vm_flags
!= svm_flags
||
4163 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4169 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4171 unsigned long base
= addr
& PUD_MASK
;
4172 unsigned long end
= base
+ PUD_SIZE
;
4175 * check on proper vm_flags and page table alignment
4177 if (vma
->vm_flags
& VM_MAYSHARE
&&
4178 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
4184 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4185 * and returns the corresponding pte. While this is not necessary for the
4186 * !shared pmd case because we can allocate the pmd later as well, it makes the
4187 * code much cleaner. pmd allocation is essential for the shared case because
4188 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4189 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4190 * bad pmd for sharing.
4192 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4194 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4195 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4196 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4198 struct vm_area_struct
*svma
;
4199 unsigned long saddr
;
4204 if (!vma_shareable(vma
, addr
))
4205 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4207 i_mmap_lock_write(mapping
);
4208 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4212 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4214 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
4216 get_page(virt_to_page(spte
));
4225 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, spte
);
4227 if (pud_none(*pud
)) {
4228 pud_populate(mm
, pud
,
4229 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4232 put_page(virt_to_page(spte
));
4236 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4237 i_mmap_unlock_write(mapping
);
4242 * unmap huge page backed by shared pte.
4244 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4245 * indicated by page_count > 1, unmap is achieved by clearing pud and
4246 * decrementing the ref count. If count == 1, the pte page is not shared.
4248 * called with page table lock held.
4250 * returns: 1 successfully unmapped a shared pte page
4251 * 0 the underlying pte page is not shared, or it is the last user
4253 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4255 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4256 pud_t
*pud
= pud_offset(pgd
, *addr
);
4258 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4259 if (page_count(virt_to_page(ptep
)) == 1)
4263 put_page(virt_to_page(ptep
));
4265 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4268 #define want_pmd_share() (1)
4269 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4270 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4275 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4279 #define want_pmd_share() (0)
4280 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4282 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4283 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4284 unsigned long addr
, unsigned long sz
)
4290 pgd
= pgd_offset(mm
, addr
);
4291 pud
= pud_alloc(mm
, pgd
, addr
);
4293 if (sz
== PUD_SIZE
) {
4296 BUG_ON(sz
!= PMD_SIZE
);
4297 if (want_pmd_share() && pud_none(*pud
))
4298 pte
= huge_pmd_share(mm
, addr
, pud
);
4300 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4303 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
4308 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
4314 pgd
= pgd_offset(mm
, addr
);
4315 if (pgd_present(*pgd
)) {
4316 pud
= pud_offset(pgd
, addr
);
4317 if (pud_present(*pud
)) {
4319 return (pte_t
*)pud
;
4320 pmd
= pmd_offset(pud
, addr
);
4323 return (pte_t
*) pmd
;
4326 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4329 * These functions are overwritable if your architecture needs its own
4332 struct page
* __weak
4333 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4336 return ERR_PTR(-EINVAL
);
4339 struct page
* __weak
4340 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4341 pmd_t
*pmd
, int flags
)
4343 struct page
*page
= NULL
;
4346 ptl
= pmd_lockptr(mm
, pmd
);
4349 * make sure that the address range covered by this pmd is not
4350 * unmapped from other threads.
4352 if (!pmd_huge(*pmd
))
4354 if (pmd_present(*pmd
)) {
4355 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4356 if (flags
& FOLL_GET
)
4359 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t
*)pmd
))) {
4361 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4365 * hwpoisoned entry is treated as no_page_table in
4366 * follow_page_mask().
4374 struct page
* __weak
4375 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4376 pud_t
*pud
, int flags
)
4378 if (flags
& FOLL_GET
)
4381 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4384 #ifdef CONFIG_MEMORY_FAILURE
4387 * This function is called from memory failure code.
4388 * Assume the caller holds page lock of the head page.
4390 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
4392 struct hstate
*h
= page_hstate(hpage
);
4393 int nid
= page_to_nid(hpage
);
4396 spin_lock(&hugetlb_lock
);
4398 * Just checking !page_huge_active is not enough, because that could be
4399 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4401 if (!page_huge_active(hpage
) && !page_count(hpage
)) {
4403 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4404 * but dangling hpage->lru can trigger list-debug warnings
4405 * (this happens when we call unpoison_memory() on it),
4406 * so let it point to itself with list_del_init().
4408 list_del_init(&hpage
->lru
);
4409 set_page_refcounted(hpage
);
4410 h
->free_huge_pages
--;
4411 h
->free_huge_pages_node
[nid
]--;
4414 spin_unlock(&hugetlb_lock
);
4419 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4423 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4424 spin_lock(&hugetlb_lock
);
4425 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4429 clear_page_huge_active(page
);
4430 list_move_tail(&page
->lru
, list
);
4432 spin_unlock(&hugetlb_lock
);
4436 void putback_active_hugepage(struct page
*page
)
4438 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4439 spin_lock(&hugetlb_lock
);
4440 set_page_huge_active(page
);
4441 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4442 spin_unlock(&hugetlb_lock
);